1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/property.h>
10 #include <linux/regmap.h>
11 #include <linux/regulator/driver.h>
12 
13 #define RTMV20_REG_DEVINFO	0x00
14 #define RTMV20_REG_PULSEDELAY	0x01
15 #define RTMV20_REG_PULSEWIDTH	0x03
16 #define RTMV20_REG_LDCTRL1	0x05
17 #define RTMV20_REG_ESPULSEWIDTH	0x06
18 #define RTMV20_REG_ESLDCTRL1	0x08
19 #define RTMV20_REG_LBP		0x0A
20 #define RTMV20_REG_LDCTRL2	0x0B
21 #define RTMV20_REG_FSIN1CTRL1	0x0D
22 #define RTMV20_REG_FSIN1CTRL3	0x0F
23 #define RTMV20_REG_FSIN2CTRL1	0x10
24 #define RTMV20_REG_FSIN2CTRL3	0x12
25 #define RTMV20_REG_ENCTRL	0x13
26 #define RTMV20_REG_STRBVSYNDLYL 0x29
27 #define RTMV20_REG_LDIRQ	0x30
28 #define RTMV20_REG_LDSTAT	0x40
29 #define RTMV20_REG_LDMASK	0x50
30 #define RTMV20_MAX_REGS		(RTMV20_REG_LDMASK + 1)
31 
32 #define RTMV20_VID_MASK		GENMASK(7, 4)
33 #define RICHTEK_VID		0x80
34 #define RTMV20_LDCURR_MASK	GENMASK(7, 0)
35 #define RTMV20_DELAY_MASK	GENMASK(9, 0)
36 #define RTMV20_WIDTH_MASK	GENMASK(13, 0)
37 #define RTMV20_WIDTH2_MASK	GENMASK(7, 0)
38 #define RTMV20_LBPLVL_MASK	GENMASK(3, 0)
39 #define RTMV20_LBPEN_MASK	BIT(7)
40 #define RTMV20_STROBEPOL_MASK	BIT(0)
41 #define RTMV20_VSYNPOL_MASK	BIT(1)
42 #define RTMV20_FSINEN_MASK	BIT(7)
43 #define RTMV20_ESEN_MASK	BIT(6)
44 #define RTMV20_FSINOUT_MASK	BIT(2)
45 #define LDENABLE_MASK		(BIT(3) | BIT(0))
46 
47 #define OTPEVT_MASK		BIT(4)
48 #define SHORTEVT_MASK		BIT(3)
49 #define OPENEVT_MASK		BIT(2)
50 #define LBPEVT_MASK		BIT(1)
51 #define OCPEVT_MASK		BIT(0)
52 #define FAILEVT_MASK		(SHORTEVT_MASK | OPENEVT_MASK | LBPEVT_MASK)
53 
54 #define RTMV20_LSW_MINUA	0
55 #define RTMV20_LSW_MAXUA	6000000
56 #define RTMV20_LSW_STEPUA	30000
57 
58 #define RTMV20_LSW_DEFAULTUA	3000000
59 
60 #define RTMV20_I2CRDY_TIMEUS	200
61 #define RTMV20_CSRDY_TIMEUS	2000
62 
63 struct rtmv20_priv {
64 	struct device *dev;
65 	struct regmap *regmap;
66 	struct gpio_desc *enable_gpio;
67 	struct regulator_dev *rdev;
68 };
69 
70 static int rtmv20_lsw_enable(struct regulator_dev *rdev)
71 {
72 	struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
73 	int ret;
74 
75 	gpiod_set_value(priv->enable_gpio, 1);
76 
77 	/* Wait for I2C can be accessed */
78 	usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
79 
80 	/* HW re-enable, disable cache only and sync regcache here */
81 	regcache_cache_only(priv->regmap, false);
82 	ret = regcache_sync(priv->regmap);
83 	if (ret)
84 		return ret;
85 
86 	return regulator_enable_regmap(rdev);
87 }
88 
89 static int rtmv20_lsw_disable(struct regulator_dev *rdev)
90 {
91 	struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
92 	int ret;
93 
94 	ret = regulator_disable_regmap(rdev);
95 	if (ret)
96 		return ret;
97 
98 	/* Mark the regcache as dirty and cache only before HW disabled */
99 	regcache_cache_only(priv->regmap, true);
100 	regcache_mark_dirty(priv->regmap);
101 
102 	gpiod_set_value(priv->enable_gpio, 0);
103 
104 	return 0;
105 }
106 
107 static int rtmv20_lsw_set_current_limit(struct regulator_dev *rdev, int min_uA,
108 					int max_uA)
109 {
110 	int sel;
111 
112 	if (min_uA > RTMV20_LSW_MAXUA || max_uA < RTMV20_LSW_MINUA)
113 		return -EINVAL;
114 
115 	if (max_uA > RTMV20_LSW_MAXUA)
116 		max_uA = RTMV20_LSW_MAXUA;
117 
118 	sel = (max_uA - RTMV20_LSW_MINUA) / RTMV20_LSW_STEPUA;
119 
120 	/* Ensure the selected setting is still in range */
121 	if ((sel * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA) < min_uA)
122 		return -EINVAL;
123 
124 	sel <<= ffs(rdev->desc->csel_mask) - 1;
125 
126 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
127 				  rdev->desc->csel_mask, sel);
128 }
129 
130 static int rtmv20_lsw_get_current_limit(struct regulator_dev *rdev)
131 {
132 	unsigned int val;
133 	int ret;
134 
135 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
136 	if (ret)
137 		return ret;
138 
139 	val &= rdev->desc->csel_mask;
140 	val >>= ffs(rdev->desc->csel_mask) - 1;
141 
142 	return val * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA;
143 }
144 
145 static const struct regulator_ops rtmv20_regulator_ops = {
146 	.set_current_limit = rtmv20_lsw_set_current_limit,
147 	.get_current_limit = rtmv20_lsw_get_current_limit,
148 	.enable = rtmv20_lsw_enable,
149 	.disable = rtmv20_lsw_disable,
150 	.is_enabled = regulator_is_enabled_regmap,
151 };
152 
153 static const struct regulator_desc rtmv20_lsw_desc = {
154 	.name = "rtmv20,lsw",
155 	.of_match = of_match_ptr("lsw"),
156 	.type = REGULATOR_CURRENT,
157 	.owner = THIS_MODULE,
158 	.ops = &rtmv20_regulator_ops,
159 	.csel_reg = RTMV20_REG_LDCTRL1,
160 	.csel_mask = RTMV20_LDCURR_MASK,
161 	.enable_reg = RTMV20_REG_ENCTRL,
162 	.enable_mask = LDENABLE_MASK,
163 	.enable_time = RTMV20_CSRDY_TIMEUS,
164 };
165 
166 static irqreturn_t rtmv20_irq_handler(int irq, void *data)
167 {
168 	struct rtmv20_priv *priv = data;
169 	unsigned int val;
170 	int ret;
171 
172 	ret = regmap_read(priv->regmap, RTMV20_REG_LDIRQ, &val);
173 	if (ret) {
174 		dev_err(priv->dev, "Failed to get irq flags\n");
175 		return IRQ_NONE;
176 	}
177 
178 	if (val & OTPEVT_MASK)
179 		regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_TEMP, NULL);
180 
181 	if (val & OCPEVT_MASK)
182 		regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL);
183 
184 	if (val & FAILEVT_MASK)
185 		regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_FAIL, NULL);
186 
187 	return IRQ_HANDLED;
188 }
189 
190 static u32 clamp_to_selector(u32 val, u32 min, u32 max, u32 step)
191 {
192 	u32 retval = clamp_val(val, min, max);
193 
194 	return (retval - min) / step;
195 }
196 
197 static int rtmv20_properties_init(struct rtmv20_priv *priv)
198 {
199 	const struct {
200 		const char *name;
201 		u32 def;
202 		u32 min;
203 		u32 max;
204 		u32 step;
205 		u32 addr;
206 		u32 mask;
207 	} props[] = {
208 		{ "richtek,ld-pulse-delay-us", 0, 0, 100000, 100, RTMV20_REG_PULSEDELAY,
209 			RTMV20_DELAY_MASK },
210 		{ "richtek,ld-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_PULSEWIDTH,
211 			RTMV20_WIDTH_MASK },
212 		{ "richtek,fsin1-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN1CTRL1,
213 			RTMV20_DELAY_MASK },
214 		{ "richtek,fsin1-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN1CTRL3,
215 			RTMV20_WIDTH2_MASK },
216 		{ "richtek,fsin2-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN2CTRL1,
217 			RTMV20_DELAY_MASK },
218 		{ "richtek,fsin2-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN2CTRL3,
219 			RTMV20_WIDTH2_MASK },
220 		{ "richtek,es-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_ESPULSEWIDTH,
221 			RTMV20_WIDTH_MASK },
222 		{ "richtek,es-ld-current-microamp", 3000000, 0, 6000000, 30000,
223 			RTMV20_REG_ESLDCTRL1, RTMV20_LDCURR_MASK },
224 		{ "richtek,lbp-level-microvolt", 2700000, 2400000, 3700000, 100000, RTMV20_REG_LBP,
225 			RTMV20_LBPLVL_MASK },
226 		{ "richtek,lbp-enable", 0, 0, 1, 1, RTMV20_REG_LBP, RTMV20_LBPEN_MASK },
227 		{ "richtek,strobe-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
228 			RTMV20_STROBEPOL_MASK },
229 		{ "richtek,vsync-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
230 			RTMV20_VSYNPOL_MASK },
231 		{ "richtek,fsin-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINEN_MASK },
232 		{ "richtek,fsin-output", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINOUT_MASK },
233 		{ "richtek,es-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_ESEN_MASK },
234 	};
235 	int i, ret;
236 
237 	for (i = 0; i < ARRAY_SIZE(props); i++) {
238 		__be16 bval16;
239 		u16 val16;
240 		u32 temp;
241 		int significant_bit = fls(props[i].mask);
242 		int shift = ffs(props[i].mask) - 1;
243 
244 		if (props[i].max > 1) {
245 			ret = device_property_read_u32(priv->dev, props[i].name, &temp);
246 			if (ret)
247 				temp = props[i].def;
248 		} else
249 			temp = device_property_read_bool(priv->dev, props[i].name);
250 
251 		temp = clamp_to_selector(temp, props[i].min, props[i].max, props[i].step);
252 
253 		/* If significant bit is over 8, two byte access, others one */
254 		if (significant_bit > 8) {
255 			ret = regmap_raw_read(priv->regmap, props[i].addr, &bval16, sizeof(bval16));
256 			if (ret)
257 				return ret;
258 
259 			val16 = be16_to_cpu(bval16);
260 			val16 &= ~props[i].mask;
261 			val16 |= (temp << shift);
262 			bval16 = cpu_to_be16(val16);
263 
264 			ret = regmap_raw_write(priv->regmap, props[i].addr, &bval16,
265 					       sizeof(bval16));
266 		} else {
267 			ret = regmap_update_bits(priv->regmap, props[i].addr, props[i].mask,
268 						 temp << shift);
269 		}
270 
271 		if (ret)
272 			return ret;
273 	}
274 
275 	return 0;
276 }
277 
278 static int rtmv20_check_chip_exist(struct rtmv20_priv *priv)
279 {
280 	unsigned int val;
281 	int ret;
282 
283 	ret = regmap_read(priv->regmap, RTMV20_REG_DEVINFO, &val);
284 	if (ret)
285 		return ret;
286 
287 	if ((val & RTMV20_VID_MASK) != RICHTEK_VID)
288 		return -ENODEV;
289 
290 	return 0;
291 }
292 
293 static bool rtmv20_is_accessible_reg(struct device *dev, unsigned int reg)
294 {
295 	switch (reg) {
296 	case RTMV20_REG_DEVINFO ... RTMV20_REG_STRBVSYNDLYL:
297 	case RTMV20_REG_LDIRQ:
298 	case RTMV20_REG_LDSTAT:
299 	case RTMV20_REG_LDMASK:
300 		return true;
301 	}
302 	return false;
303 }
304 
305 static bool rtmv20_is_volatile_reg(struct device *dev, unsigned int reg)
306 {
307 	if (reg == RTMV20_REG_LDIRQ || reg == RTMV20_REG_LDSTAT)
308 		return true;
309 	return false;
310 }
311 
312 static const struct regmap_config rtmv20_regmap_config = {
313 	.reg_bits = 8,
314 	.val_bits = 8,
315 	.cache_type = REGCACHE_RBTREE,
316 	.max_register = RTMV20_REG_LDMASK,
317 	.num_reg_defaults_raw = RTMV20_MAX_REGS,
318 
319 	.writeable_reg = rtmv20_is_accessible_reg,
320 	.readable_reg = rtmv20_is_accessible_reg,
321 	.volatile_reg = rtmv20_is_volatile_reg,
322 };
323 
324 static int rtmv20_probe(struct i2c_client *i2c)
325 {
326 	struct rtmv20_priv *priv;
327 	struct regulator_config config = {};
328 	int ret;
329 
330 	priv = devm_kzalloc(&i2c->dev, sizeof(*priv), GFP_KERNEL);
331 	if (!priv)
332 		return -ENOMEM;
333 
334 	priv->dev = &i2c->dev;
335 
336 	/* Before regmap register, configure HW enable to make I2C accessible */
337 	priv->enable_gpio = devm_gpiod_get(&i2c->dev, "enable", GPIOD_OUT_HIGH);
338 	if (IS_ERR(priv->enable_gpio)) {
339 		dev_err(&i2c->dev, "Failed to get enable gpio\n");
340 		return PTR_ERR(priv->enable_gpio);
341 	}
342 
343 	/* Wait for I2C can be accessed */
344 	usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
345 
346 	priv->regmap = devm_regmap_init_i2c(i2c, &rtmv20_regmap_config);
347 	if (IS_ERR(priv->regmap)) {
348 		dev_err(&i2c->dev, "Failed to allocate register map\n");
349 		return PTR_ERR(priv->regmap);
350 	}
351 
352 	ret = rtmv20_check_chip_exist(priv);
353 	if (ret) {
354 		dev_err(&i2c->dev, "Chip vendor info is not matched\n");
355 		return ret;
356 	}
357 
358 	ret = rtmv20_properties_init(priv);
359 	if (ret) {
360 		dev_err(&i2c->dev, "Failed to init properties\n");
361 		return ret;
362 	}
363 
364 	/*
365 	 * keep in shutdown mode to minimize the current consumption
366 	 * and also mark regcache as dirty
367 	 */
368 	regcache_cache_only(priv->regmap, true);
369 	regcache_mark_dirty(priv->regmap);
370 	gpiod_set_value(priv->enable_gpio, 0);
371 
372 	config.dev = &i2c->dev;
373 	config.regmap = priv->regmap;
374 	config.driver_data = priv;
375 	priv->rdev = devm_regulator_register(&i2c->dev, &rtmv20_lsw_desc, &config);
376 	if (IS_ERR(priv->rdev)) {
377 		dev_err(&i2c->dev, "Failed to register regulator\n");
378 		return PTR_ERR(priv->rdev);
379 	}
380 
381 	/* Unmask all events before IRQ registered */
382 	ret = regmap_write(priv->regmap, RTMV20_REG_LDMASK, 0);
383 	if (ret)
384 		return ret;
385 
386 	return devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, rtmv20_irq_handler,
387 					 IRQF_ONESHOT, dev_name(&i2c->dev), priv);
388 }
389 
390 static int __maybe_unused rtmv20_suspend(struct device *dev)
391 {
392 	struct i2c_client *i2c = to_i2c_client(dev);
393 
394 	/*
395 	 * When system suspend, disable irq to prevent interrupt trigger
396 	 * during I2C bus suspend
397 	 */
398 	disable_irq(i2c->irq);
399 	if (device_may_wakeup(dev))
400 		enable_irq_wake(i2c->irq);
401 
402 	return 0;
403 }
404 
405 static int __maybe_unused rtmv20_resume(struct device *dev)
406 {
407 	struct i2c_client *i2c = to_i2c_client(dev);
408 
409 	/* Enable irq after I2C bus already resume */
410 	enable_irq(i2c->irq);
411 	if (device_may_wakeup(dev))
412 		disable_irq_wake(i2c->irq);
413 
414 	return 0;
415 }
416 
417 static SIMPLE_DEV_PM_OPS(rtmv20_pm, rtmv20_suspend, rtmv20_resume);
418 
419 static const struct of_device_id __maybe_unused rtmv20_of_id[] = {
420 	{ .compatible = "richtek,rtmv20", },
421 	{}
422 };
423 MODULE_DEVICE_TABLE(of, rtmv20_of_id);
424 
425 static struct i2c_driver rtmv20_driver = {
426 	.driver = {
427 		.name = "rtmv20",
428 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
429 		.of_match_table = of_match_ptr(rtmv20_of_id),
430 		.pm = &rtmv20_pm,
431 	},
432 	.probe = rtmv20_probe,
433 };
434 module_i2c_driver(rtmv20_driver);
435 
436 MODULE_AUTHOR("ChiYuan Huang <cy_huang@richtek.com>");
437 MODULE_DESCRIPTION("Richtek RTMV20 Regulator Driver");
438 MODULE_LICENSE("GPL v2");
439