1 /*
2  * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/kernel.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/ktime.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regmap.h>
27 #include <linux/list.h>
28 
29 /* Pin control enable input pins. */
30 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE		0x00
31 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0		0x01
32 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1		0x02
33 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2		0x04
34 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3		0x08
35 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT	0x10
36 
37 /* Pin control high power mode input pins. */
38 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE		0x00
39 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0			0x01
40 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1			0x02
41 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2			0x04
42 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3			0x08
43 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B		0x10
44 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT		0x20
45 
46 /*
47  * Used with enable parameters to specify that hardware default register values
48  * should be left unaltered.
49  */
50 #define SPMI_REGULATOR_USE_HW_DEFAULT			2
51 
52 /* Soft start strength of a voltage switch type regulator */
53 enum spmi_vs_soft_start_str {
54 	SPMI_VS_SOFT_START_STR_0P05_UA = 0,
55 	SPMI_VS_SOFT_START_STR_0P25_UA,
56 	SPMI_VS_SOFT_START_STR_0P55_UA,
57 	SPMI_VS_SOFT_START_STR_0P75_UA,
58 	SPMI_VS_SOFT_START_STR_HW_DEFAULT,
59 };
60 
61 /**
62  * struct spmi_regulator_init_data - spmi-regulator initialization data
63  * @pin_ctrl_enable:        Bit mask specifying which hardware pins should be
64  *				used to enable the regulator, if any
65  *			    Value should be an ORing of
66  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants.  If
67  *				the bit specified by
68  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
69  *				set, then pin control enable hardware registers
70  *				will not be modified.
71  * @pin_ctrl_hpm:           Bit mask specifying which hardware pins should be
72  *				used to force the regulator into high power
73  *				mode, if any
74  *			    Value should be an ORing of
75  *				SPMI_REGULATOR_PIN_CTRL_HPM_* constants.  If
76  *				the bit specified by
77  *				SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
78  *				set, then pin control mode hardware registers
79  *				will not be modified.
80  * @vs_soft_start_strength: This parameter sets the soft start strength for
81  *				voltage switch type regulators.  Its value
82  *				should be one of SPMI_VS_SOFT_START_STR_*.  If
83  *				its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
84  *				then the soft start strength will be left at its
85  *				default hardware value.
86  */
87 struct spmi_regulator_init_data {
88 	unsigned				pin_ctrl_enable;
89 	unsigned				pin_ctrl_hpm;
90 	enum spmi_vs_soft_start_str		vs_soft_start_strength;
91 };
92 
93 /* These types correspond to unique register layouts. */
94 enum spmi_regulator_logical_type {
95 	SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
96 	SPMI_REGULATOR_LOGICAL_TYPE_LDO,
97 	SPMI_REGULATOR_LOGICAL_TYPE_VS,
98 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
99 	SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
100 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
101 	SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
102 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
103 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
104 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
105 };
106 
107 enum spmi_regulator_type {
108 	SPMI_REGULATOR_TYPE_BUCK		= 0x03,
109 	SPMI_REGULATOR_TYPE_LDO			= 0x04,
110 	SPMI_REGULATOR_TYPE_VS			= 0x05,
111 	SPMI_REGULATOR_TYPE_BOOST		= 0x1b,
112 	SPMI_REGULATOR_TYPE_FTS			= 0x1c,
113 	SPMI_REGULATOR_TYPE_BOOST_BYP		= 0x1f,
114 	SPMI_REGULATOR_TYPE_ULT_LDO		= 0x21,
115 	SPMI_REGULATOR_TYPE_ULT_BUCK		= 0x22,
116 };
117 
118 enum spmi_regulator_subtype {
119 	SPMI_REGULATOR_SUBTYPE_GP_CTL		= 0x08,
120 	SPMI_REGULATOR_SUBTYPE_RF_CTL		= 0x09,
121 	SPMI_REGULATOR_SUBTYPE_N50		= 0x01,
122 	SPMI_REGULATOR_SUBTYPE_N150		= 0x02,
123 	SPMI_REGULATOR_SUBTYPE_N300		= 0x03,
124 	SPMI_REGULATOR_SUBTYPE_N600		= 0x04,
125 	SPMI_REGULATOR_SUBTYPE_N1200		= 0x05,
126 	SPMI_REGULATOR_SUBTYPE_N600_ST		= 0x06,
127 	SPMI_REGULATOR_SUBTYPE_N1200_ST		= 0x07,
128 	SPMI_REGULATOR_SUBTYPE_N900_ST		= 0x14,
129 	SPMI_REGULATOR_SUBTYPE_N300_ST		= 0x15,
130 	SPMI_REGULATOR_SUBTYPE_P50		= 0x08,
131 	SPMI_REGULATOR_SUBTYPE_P150		= 0x09,
132 	SPMI_REGULATOR_SUBTYPE_P300		= 0x0a,
133 	SPMI_REGULATOR_SUBTYPE_P600		= 0x0b,
134 	SPMI_REGULATOR_SUBTYPE_P1200		= 0x0c,
135 	SPMI_REGULATOR_SUBTYPE_LN		= 0x10,
136 	SPMI_REGULATOR_SUBTYPE_LV_P50		= 0x28,
137 	SPMI_REGULATOR_SUBTYPE_LV_P150		= 0x29,
138 	SPMI_REGULATOR_SUBTYPE_LV_P300		= 0x2a,
139 	SPMI_REGULATOR_SUBTYPE_LV_P600		= 0x2b,
140 	SPMI_REGULATOR_SUBTYPE_LV_P1200		= 0x2c,
141 	SPMI_REGULATOR_SUBTYPE_LV_P450		= 0x2d,
142 	SPMI_REGULATOR_SUBTYPE_LV100		= 0x01,
143 	SPMI_REGULATOR_SUBTYPE_LV300		= 0x02,
144 	SPMI_REGULATOR_SUBTYPE_MV300		= 0x08,
145 	SPMI_REGULATOR_SUBTYPE_MV500		= 0x09,
146 	SPMI_REGULATOR_SUBTYPE_HDMI		= 0x10,
147 	SPMI_REGULATOR_SUBTYPE_OTG		= 0x11,
148 	SPMI_REGULATOR_SUBTYPE_5V_BOOST		= 0x01,
149 	SPMI_REGULATOR_SUBTYPE_FTS_CTL		= 0x08,
150 	SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL	= 0x09,
151 	SPMI_REGULATOR_SUBTYPE_BB_2A		= 0x01,
152 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1	= 0x0d,
153 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2	= 0x0e,
154 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3	= 0x0f,
155 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4	= 0x10,
156 };
157 
158 enum spmi_common_regulator_registers {
159 	SPMI_COMMON_REG_DIG_MAJOR_REV		= 0x01,
160 	SPMI_COMMON_REG_TYPE			= 0x04,
161 	SPMI_COMMON_REG_SUBTYPE			= 0x05,
162 	SPMI_COMMON_REG_VOLTAGE_RANGE		= 0x40,
163 	SPMI_COMMON_REG_VOLTAGE_SET		= 0x41,
164 	SPMI_COMMON_REG_MODE			= 0x45,
165 	SPMI_COMMON_REG_ENABLE			= 0x46,
166 	SPMI_COMMON_REG_PULL_DOWN		= 0x48,
167 	SPMI_COMMON_REG_SOFT_START		= 0x4c,
168 	SPMI_COMMON_REG_STEP_CTRL		= 0x61,
169 };
170 
171 enum spmi_vs_registers {
172 	SPMI_VS_REG_OCP				= 0x4a,
173 	SPMI_VS_REG_SOFT_START			= 0x4c,
174 };
175 
176 enum spmi_boost_registers {
177 	SPMI_BOOST_REG_CURRENT_LIMIT		= 0x4a,
178 };
179 
180 enum spmi_boost_byp_registers {
181 	SPMI_BOOST_BYP_REG_CURRENT_LIMIT	= 0x4b,
182 };
183 
184 /* Used for indexing into ctrl_reg.  These are offets from 0x40 */
185 enum spmi_common_control_register_index {
186 	SPMI_COMMON_IDX_VOLTAGE_RANGE		= 0,
187 	SPMI_COMMON_IDX_VOLTAGE_SET		= 1,
188 	SPMI_COMMON_IDX_MODE			= 5,
189 	SPMI_COMMON_IDX_ENABLE			= 6,
190 };
191 
192 /* Common regulator control register layout */
193 #define SPMI_COMMON_ENABLE_MASK			0x80
194 #define SPMI_COMMON_ENABLE			0x80
195 #define SPMI_COMMON_DISABLE			0x00
196 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK	0x08
197 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK	0x04
198 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK	0x02
199 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK	0x01
200 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK	0x0f
201 
202 /* Common regulator mode register layout */
203 #define SPMI_COMMON_MODE_HPM_MASK		0x80
204 #define SPMI_COMMON_MODE_AUTO_MASK		0x40
205 #define SPMI_COMMON_MODE_BYPASS_MASK		0x20
206 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK	0x10
207 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK	0x08
208 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK	0x04
209 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK	0x02
210 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK	0x01
211 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK	0x1f
212 
213 /* Common regulator pull down control register layout */
214 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK	0x80
215 
216 /* LDO regulator current limit control register layout */
217 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK	0x80
218 
219 /* LDO regulator soft start control register layout */
220 #define SPMI_LDO_SOFT_START_ENABLE_MASK		0x80
221 
222 /* VS regulator over current protection control register layout */
223 #define SPMI_VS_OCP_OVERRIDE			0x01
224 #define SPMI_VS_OCP_NO_OVERRIDE			0x00
225 
226 /* VS regulator soft start control register layout */
227 #define SPMI_VS_SOFT_START_ENABLE_MASK		0x80
228 #define SPMI_VS_SOFT_START_SEL_MASK		0x03
229 
230 /* Boost regulator current limit control register layout */
231 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK	0x80
232 #define SPMI_BOOST_CURRENT_LIMIT_MASK		0x07
233 
234 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES		10
235 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS	30
236 #define SPMI_VS_OCP_FALL_DELAY_US		90
237 #define SPMI_VS_OCP_FAULT_DELAY_US		20000
238 
239 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK		0x18
240 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT	3
241 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK	0x07
242 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT	0
243 
244 /* Clock rate in kHz of the FTSMPS regulator reference clock. */
245 #define SPMI_FTSMPS_CLOCK_RATE		19200
246 
247 /* Minimum voltage stepper delay for each step. */
248 #define SPMI_FTSMPS_STEP_DELAY		8
249 #define SPMI_DEFAULT_STEP_DELAY		20
250 
251 /*
252  * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
253  * adjust the step rate in order to account for oscillator variance.
254  */
255 #define SPMI_FTSMPS_STEP_MARGIN_NUM	4
256 #define SPMI_FTSMPS_STEP_MARGIN_DEN	5
257 
258 /* VSET value to decide the range of ULT SMPS */
259 #define ULT_SMPS_RANGE_SPLIT 0x60
260 
261 /**
262  * struct spmi_voltage_range - regulator set point voltage mapping description
263  * @min_uV:		Minimum programmable output voltage resulting from
264  *			set point register value 0x00
265  * @max_uV:		Maximum programmable output voltage
266  * @step_uV:		Output voltage increase resulting from the set point
267  *			register value increasing by 1
268  * @set_point_min_uV:	Minimum allowed voltage
269  * @set_point_max_uV:	Maximum allowed voltage.  This may be tweaked in order
270  *			to pick which range should be used in the case of
271  *			overlapping set points.
272  * @n_voltages:		Number of preferred voltage set points present in this
273  *			range
274  * @range_sel:		Voltage range register value corresponding to this range
275  *
276  * The following relationships must be true for the values used in this struct:
277  * (max_uV - min_uV) % step_uV == 0
278  * (set_point_min_uV - min_uV) % step_uV == 0*
279  * (set_point_max_uV - min_uV) % step_uV == 0*
280  * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
281  *
282  * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
283  * specify that the voltage range has meaning, but is not preferred.
284  */
285 struct spmi_voltage_range {
286 	int					min_uV;
287 	int					max_uV;
288 	int					step_uV;
289 	int					set_point_min_uV;
290 	int					set_point_max_uV;
291 	unsigned				n_voltages;
292 	u8					range_sel;
293 };
294 
295 /*
296  * The ranges specified in the spmi_voltage_set_points struct must be listed
297  * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
298  */
299 struct spmi_voltage_set_points {
300 	struct spmi_voltage_range		*range;
301 	int					count;
302 	unsigned				n_voltages;
303 };
304 
305 struct spmi_regulator {
306 	struct regulator_desc			desc;
307 	struct device				*dev;
308 	struct delayed_work			ocp_work;
309 	struct regmap				*regmap;
310 	struct spmi_voltage_set_points		*set_points;
311 	enum spmi_regulator_logical_type	logical_type;
312 	int					ocp_irq;
313 	int					ocp_count;
314 	int					ocp_max_retries;
315 	int					ocp_retry_delay_ms;
316 	int					hpm_min_load;
317 	int					slew_rate;
318 	ktime_t					vs_enable_time;
319 	u16					base;
320 	struct list_head			node;
321 };
322 
323 struct spmi_regulator_mapping {
324 	enum spmi_regulator_type		type;
325 	enum spmi_regulator_subtype		subtype;
326 	enum spmi_regulator_logical_type	logical_type;
327 	u32					revision_min;
328 	u32					revision_max;
329 	struct regulator_ops			*ops;
330 	struct spmi_voltage_set_points		*set_points;
331 	int					hpm_min_load;
332 };
333 
334 struct spmi_regulator_data {
335 	const char			*name;
336 	u16				base;
337 	const char			*supply;
338 	const char			*ocp;
339 	u16				force_type;
340 };
341 
342 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
343 		      _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
344 	{ \
345 		.type		= SPMI_REGULATOR_TYPE_##_type, \
346 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
347 		.revision_min	= _dig_major_min, \
348 		.revision_max	= _dig_major_max, \
349 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
350 		.ops		= &spmi_##_ops_val##_ops, \
351 		.set_points	= &_set_points_val##_set_points, \
352 		.hpm_min_load	= _hpm_min_load, \
353 	}
354 
355 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
356 	{ \
357 		.type		= SPMI_REGULATOR_TYPE_VS, \
358 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
359 		.revision_min	= _dig_major_min, \
360 		.revision_max	= _dig_major_max, \
361 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_VS, \
362 		.ops		= &spmi_vs_ops, \
363 	}
364 
365 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
366 			_set_point_max_uV, _max_uV, _step_uV) \
367 	{ \
368 		.min_uV			= _min_uV, \
369 		.max_uV			= _max_uV, \
370 		.set_point_min_uV	= _set_point_min_uV, \
371 		.set_point_max_uV	= _set_point_max_uV, \
372 		.step_uV		= _step_uV, \
373 		.range_sel		= _range_sel, \
374 	}
375 
376 #define DEFINE_SPMI_SET_POINTS(name) \
377 struct spmi_voltage_set_points name##_set_points = { \
378 	.range	= name##_ranges, \
379 	.count	= ARRAY_SIZE(name##_ranges), \
380 }
381 
382 /*
383  * These tables contain the physically available PMIC regulator voltage setpoint
384  * ranges.  Where two ranges overlap in hardware, one of the ranges is trimmed
385  * to ensure that the setpoints available to software are monotonically
386  * increasing and unique.  The set_voltage callback functions expect these
387  * properties to hold.
388  */
389 static struct spmi_voltage_range pldo_ranges[] = {
390 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
391 	SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
392 	SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
393 };
394 
395 static struct spmi_voltage_range nldo1_ranges[] = {
396 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
397 };
398 
399 static struct spmi_voltage_range nldo2_ranges[] = {
400 	SPMI_VOLTAGE_RANGE(0,  375000,       0,       0, 1537500, 12500),
401 	SPMI_VOLTAGE_RANGE(1,  375000,  375000,  768750,  768750,  6250),
402 	SPMI_VOLTAGE_RANGE(2,  750000,  775000, 1537500, 1537500, 12500),
403 };
404 
405 static struct spmi_voltage_range nldo3_ranges[] = {
406 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
407 	SPMI_VOLTAGE_RANGE(1,  375000,       0,       0, 1537500, 12500),
408 	SPMI_VOLTAGE_RANGE(2,  750000,       0,       0, 1537500, 12500),
409 };
410 
411 static struct spmi_voltage_range ln_ldo_ranges[] = {
412 	SPMI_VOLTAGE_RANGE(1,  690000,  690000, 1110000, 1110000, 60000),
413 	SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
414 };
415 
416 static struct spmi_voltage_range smps_ranges[] = {
417 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
418 	SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
419 };
420 
421 static struct spmi_voltage_range ftsmps_ranges[] = {
422 	SPMI_VOLTAGE_RANGE(0,       0,  350000, 1275000, 1275000,  5000),
423 	SPMI_VOLTAGE_RANGE(1,       0, 1280000, 2040000, 2040000, 10000),
424 };
425 
426 static struct spmi_voltage_range ftsmps2p5_ranges[] = {
427 	SPMI_VOLTAGE_RANGE(0,   80000,  350000, 1355000, 1355000,  5000),
428 	SPMI_VOLTAGE_RANGE(1,  160000, 1360000, 2200000, 2200000, 10000),
429 };
430 
431 static struct spmi_voltage_range boost_ranges[] = {
432 	SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
433 };
434 
435 static struct spmi_voltage_range boost_byp_ranges[] = {
436 	SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
437 };
438 
439 static struct spmi_voltage_range ult_lo_smps_ranges[] = {
440 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
441 	SPMI_VOLTAGE_RANGE(1,  750000,       0,       0, 1525000, 25000),
442 };
443 
444 static struct spmi_voltage_range ult_ho_smps_ranges[] = {
445 	SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
446 };
447 
448 static struct spmi_voltage_range ult_nldo_ranges[] = {
449 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
450 };
451 
452 static struct spmi_voltage_range ult_pldo_ranges[] = {
453 	SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
454 };
455 
456 static DEFINE_SPMI_SET_POINTS(pldo);
457 static DEFINE_SPMI_SET_POINTS(nldo1);
458 static DEFINE_SPMI_SET_POINTS(nldo2);
459 static DEFINE_SPMI_SET_POINTS(nldo3);
460 static DEFINE_SPMI_SET_POINTS(ln_ldo);
461 static DEFINE_SPMI_SET_POINTS(smps);
462 static DEFINE_SPMI_SET_POINTS(ftsmps);
463 static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
464 static DEFINE_SPMI_SET_POINTS(boost);
465 static DEFINE_SPMI_SET_POINTS(boost_byp);
466 static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
467 static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
468 static DEFINE_SPMI_SET_POINTS(ult_nldo);
469 static DEFINE_SPMI_SET_POINTS(ult_pldo);
470 
471 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
472 				 int len)
473 {
474 	return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
475 }
476 
477 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
478 				u8 *buf, int len)
479 {
480 	return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
481 }
482 
483 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
484 		u8 mask)
485 {
486 	return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
487 }
488 
489 static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
490 {
491 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
492 
493 	if (vreg->ocp_irq) {
494 		vreg->ocp_count = 0;
495 		vreg->vs_enable_time = ktime_get();
496 	}
497 
498 	return regulator_enable_regmap(rdev);
499 }
500 
501 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
502 {
503 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
504 	u8 reg = SPMI_VS_OCP_OVERRIDE;
505 
506 	return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, &reg, 1);
507 }
508 
509 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
510 					 int min_uV, int max_uV)
511 {
512 	const struct spmi_voltage_range *range;
513 	int uV = min_uV;
514 	int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
515 	int selector, voltage_sel;
516 
517 	/* Check if request voltage is outside of physically settable range. */
518 	lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
519 	lim_max_uV =
520 	  vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
521 
522 	if (uV < lim_min_uV && max_uV >= lim_min_uV)
523 		uV = lim_min_uV;
524 
525 	if (uV < lim_min_uV || uV > lim_max_uV) {
526 		dev_err(vreg->dev,
527 			"request v=[%d, %d] is outside possible v=[%d, %d]\n",
528 			 min_uV, max_uV, lim_min_uV, lim_max_uV);
529 		return -EINVAL;
530 	}
531 
532 	/* Find the range which uV is inside of. */
533 	for (i = vreg->set_points->count - 1; i > 0; i--) {
534 		range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
535 		if (uV > range_max_uV && range_max_uV > 0)
536 			break;
537 	}
538 
539 	range_id = i;
540 	range = &vreg->set_points->range[range_id];
541 
542 	/*
543 	 * Force uV to be an allowed set point by applying a ceiling function to
544 	 * the uV value.
545 	 */
546 	voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
547 	uV = voltage_sel * range->step_uV + range->min_uV;
548 
549 	if (uV > max_uV) {
550 		dev_err(vreg->dev,
551 			"request v=[%d, %d] cannot be met by any set point; "
552 			"next set point: %d\n",
553 			min_uV, max_uV, uV);
554 		return -EINVAL;
555 	}
556 
557 	selector = 0;
558 	for (i = 0; i < range_id; i++)
559 		selector += vreg->set_points->range[i].n_voltages;
560 	selector += (uV - range->set_point_min_uV) / range->step_uV;
561 
562 	return selector;
563 }
564 
565 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
566 				  unsigned selector, u8 *range_sel,
567 				  u8 *voltage_sel)
568 {
569 	const struct spmi_voltage_range *range, *end;
570 	unsigned offset;
571 
572 	range = vreg->set_points->range;
573 	end = range + vreg->set_points->count;
574 
575 	for (; range < end; range++) {
576 		if (selector < range->n_voltages) {
577 			/*
578 			 * hardware selectors between set point min and real
579 			 * min are invalid so we ignore them
580 			 */
581 			offset = range->set_point_min_uV - range->min_uV;
582 			offset /= range->step_uV;
583 			*voltage_sel = selector + offset;
584 			*range_sel = range->range_sel;
585 			return 0;
586 		}
587 
588 		selector -= range->n_voltages;
589 	}
590 
591 	return -EINVAL;
592 }
593 
594 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
595 				  const struct spmi_voltage_range *range)
596 {
597 	unsigned sw_sel = 0;
598 	unsigned offset, max_hw_sel;
599 	const struct spmi_voltage_range *r = vreg->set_points->range;
600 	const struct spmi_voltage_range *end = r + vreg->set_points->count;
601 
602 	for (; r < end; r++) {
603 		if (r == range && range->n_voltages) {
604 			/*
605 			 * hardware selectors between set point min and real
606 			 * min and between set point max and real max are
607 			 * invalid so we return an error if they're
608 			 * programmed into the hardware
609 			 */
610 			offset = range->set_point_min_uV - range->min_uV;
611 			offset /= range->step_uV;
612 			if (hw_sel < offset)
613 				return -EINVAL;
614 
615 			max_hw_sel = range->set_point_max_uV - range->min_uV;
616 			max_hw_sel /= range->step_uV;
617 			if (hw_sel > max_hw_sel)
618 				return -EINVAL;
619 
620 			return sw_sel + hw_sel - offset;
621 		}
622 		sw_sel += r->n_voltages;
623 	}
624 
625 	return -EINVAL;
626 }
627 
628 static const struct spmi_voltage_range *
629 spmi_regulator_find_range(struct spmi_regulator *vreg)
630 {
631 	u8 range_sel;
632 	const struct spmi_voltage_range *range, *end;
633 
634 	range = vreg->set_points->range;
635 	end = range + vreg->set_points->count;
636 
637 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
638 
639 	for (; range < end; range++)
640 		if (range->range_sel == range_sel)
641 			return range;
642 
643 	return NULL;
644 }
645 
646 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
647 		int min_uV, int max_uV)
648 {
649 	const struct spmi_voltage_range *range;
650 	int uV = min_uV;
651 	int i, selector;
652 
653 	range = spmi_regulator_find_range(vreg);
654 	if (!range)
655 		goto different_range;
656 
657 	if (uV < range->min_uV && max_uV >= range->min_uV)
658 		uV = range->min_uV;
659 
660 	if (uV < range->min_uV || uV > range->max_uV) {
661 		/* Current range doesn't support the requested voltage. */
662 		goto different_range;
663 	}
664 
665 	/*
666 	 * Force uV to be an allowed set point by applying a ceiling function to
667 	 * the uV value.
668 	 */
669 	uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
670 	uV = uV * range->step_uV + range->min_uV;
671 
672 	if (uV > max_uV) {
673 		/*
674 		 * No set point in the current voltage range is within the
675 		 * requested min_uV to max_uV range.
676 		 */
677 		goto different_range;
678 	}
679 
680 	selector = 0;
681 	for (i = 0; i < vreg->set_points->count; i++) {
682 		if (uV >= vreg->set_points->range[i].set_point_min_uV
683 		    && uV <= vreg->set_points->range[i].set_point_max_uV) {
684 			selector +=
685 			    (uV - vreg->set_points->range[i].set_point_min_uV)
686 				/ vreg->set_points->range[i].step_uV;
687 			break;
688 		}
689 
690 		selector += vreg->set_points->range[i].n_voltages;
691 	}
692 
693 	if (selector >= vreg->set_points->n_voltages)
694 		goto different_range;
695 
696 	return selector;
697 
698 different_range:
699 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
700 }
701 
702 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
703 					     int min_uV, int max_uV)
704 {
705 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
706 
707 	/*
708 	 * Favor staying in the current voltage range if possible.  This avoids
709 	 * voltage spikes that occur when changing the voltage range.
710 	 */
711 	return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
712 }
713 
714 static int
715 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
716 {
717 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
718 	int ret;
719 	u8 buf[2];
720 	u8 range_sel, voltage_sel;
721 
722 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
723 	if (ret)
724 		return ret;
725 
726 	buf[0] = range_sel;
727 	buf[1] = voltage_sel;
728 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
729 }
730 
731 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
732 		unsigned int old_selector, unsigned int new_selector)
733 {
734 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
735 	const struct spmi_voltage_range *range;
736 	int diff_uV;
737 
738 	range = spmi_regulator_find_range(vreg);
739 	if (!range)
740 		return -EINVAL;
741 
742 	diff_uV = abs(new_selector - old_selector) * range->step_uV;
743 
744 	return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
745 }
746 
747 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
748 {
749 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
750 	const struct spmi_voltage_range *range;
751 	u8 voltage_sel;
752 
753 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
754 
755 	range = spmi_regulator_find_range(vreg);
756 	if (!range)
757 		return -EINVAL;
758 
759 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
760 }
761 
762 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
763 		int min_uV, int max_uV)
764 {
765 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
766 
767 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
768 }
769 
770 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
771 						   unsigned selector)
772 {
773 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
774 	u8 sel = selector;
775 
776 	/*
777 	 * Certain types of regulators do not have a range select register so
778 	 * only voltage set register needs to be written.
779 	 */
780 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
781 }
782 
783 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
784 {
785 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
786 	u8 selector;
787 	int ret;
788 
789 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
790 	if (ret)
791 		return ret;
792 
793 	return selector;
794 }
795 
796 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
797 						  unsigned selector)
798 {
799 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
800 	int ret;
801 	u8 range_sel, voltage_sel;
802 
803 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
804 	if (ret)
805 		return ret;
806 
807 	/*
808 	 * Calculate VSET based on range
809 	 * In case of range 0: voltage_sel is a 7 bit value, can be written
810 	 *			witout any modification.
811 	 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
812 	 *			[011].
813 	 */
814 	if (range_sel == 1)
815 		voltage_sel |= ULT_SMPS_RANGE_SPLIT;
816 
817 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
818 				     voltage_sel, 0xff);
819 }
820 
821 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
822 {
823 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
824 	const struct spmi_voltage_range *range;
825 	u8 voltage_sel;
826 
827 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
828 
829 	range = spmi_regulator_find_range(vreg);
830 	if (!range)
831 		return -EINVAL;
832 
833 	if (range->range_sel == 1)
834 		voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
835 
836 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
837 }
838 
839 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
840 			unsigned selector)
841 {
842 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
843 	int uV = 0;
844 	int i;
845 
846 	if (selector >= vreg->set_points->n_voltages)
847 		return 0;
848 
849 	for (i = 0; i < vreg->set_points->count; i++) {
850 		if (selector < vreg->set_points->range[i].n_voltages) {
851 			uV = selector * vreg->set_points->range[i].step_uV
852 				+ vreg->set_points->range[i].set_point_min_uV;
853 			break;
854 		}
855 
856 		selector -= vreg->set_points->range[i].n_voltages;
857 	}
858 
859 	return uV;
860 }
861 
862 static int
863 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
864 {
865 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
866 	u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
867 	u8 val = 0;
868 
869 	if (enable)
870 		val = mask;
871 
872 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
873 }
874 
875 static int
876 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
877 {
878 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
879 	u8 val;
880 	int ret;
881 
882 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
883 	*enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
884 
885 	return ret;
886 }
887 
888 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
889 {
890 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
891 	u8 reg;
892 
893 	spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
894 
895 	if (reg & SPMI_COMMON_MODE_HPM_MASK)
896 		return REGULATOR_MODE_NORMAL;
897 
898 	if (reg & SPMI_COMMON_MODE_AUTO_MASK)
899 		return REGULATOR_MODE_FAST;
900 
901 	return REGULATOR_MODE_IDLE;
902 }
903 
904 static int
905 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
906 {
907 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
908 	u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
909 	u8 val = 0;
910 
911 	if (mode == REGULATOR_MODE_NORMAL)
912 		val = SPMI_COMMON_MODE_HPM_MASK;
913 	else if (mode == REGULATOR_MODE_FAST)
914 		val = SPMI_COMMON_MODE_AUTO_MASK;
915 
916 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
917 }
918 
919 static int
920 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
921 {
922 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
923 	unsigned int mode;
924 
925 	if (load_uA >= vreg->hpm_min_load)
926 		mode = REGULATOR_MODE_NORMAL;
927 	else
928 		mode = REGULATOR_MODE_IDLE;
929 
930 	return spmi_regulator_common_set_mode(rdev, mode);
931 }
932 
933 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
934 {
935 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
936 	unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
937 
938 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
939 				     mask, mask);
940 }
941 
942 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
943 {
944 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
945 	unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
946 
947 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
948 				     mask, mask);
949 }
950 
951 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
952 {
953 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
954 	enum spmi_regulator_logical_type type = vreg->logical_type;
955 	unsigned int current_reg;
956 	u8 reg;
957 	u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
958 		  SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
959 	int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
960 
961 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
962 		current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
963 	else
964 		current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
965 
966 	if (ilim_uA > max || ilim_uA <= 0)
967 		return -EINVAL;
968 
969 	reg = (ilim_uA - 1) / 500;
970 	reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
971 
972 	return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
973 }
974 
975 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
976 {
977 	int ret;
978 
979 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
980 		SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
981 
982 	vreg->vs_enable_time = ktime_get();
983 
984 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
985 		SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
986 
987 	return ret;
988 }
989 
990 static void spmi_regulator_vs_ocp_work(struct work_struct *work)
991 {
992 	struct delayed_work *dwork = to_delayed_work(work);
993 	struct spmi_regulator *vreg
994 		= container_of(dwork, struct spmi_regulator, ocp_work);
995 
996 	spmi_regulator_vs_clear_ocp(vreg);
997 }
998 
999 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
1000 {
1001 	struct spmi_regulator *vreg = data;
1002 	ktime_t ocp_irq_time;
1003 	s64 ocp_trigger_delay_us;
1004 
1005 	ocp_irq_time = ktime_get();
1006 	ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
1007 						vreg->vs_enable_time);
1008 
1009 	/*
1010 	 * Reset the OCP count if there is a large delay between switch enable
1011 	 * and when OCP triggers.  This is indicative of a hotplug event as
1012 	 * opposed to a fault.
1013 	 */
1014 	if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
1015 		vreg->ocp_count = 0;
1016 
1017 	/* Wait for switch output to settle back to 0 V after OCP triggered. */
1018 	udelay(SPMI_VS_OCP_FALL_DELAY_US);
1019 
1020 	vreg->ocp_count++;
1021 
1022 	if (vreg->ocp_count == 1) {
1023 		/* Immediately clear the over current condition. */
1024 		spmi_regulator_vs_clear_ocp(vreg);
1025 	} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
1026 		/* Schedule the over current clear task to run later. */
1027 		schedule_delayed_work(&vreg->ocp_work,
1028 			msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
1029 	} else {
1030 		dev_err(vreg->dev,
1031 			"OCP triggered %d times; no further retries\n",
1032 			vreg->ocp_count);
1033 	}
1034 
1035 	return IRQ_HANDLED;
1036 }
1037 
1038 static struct regulator_ops spmi_smps_ops = {
1039 	.enable			= regulator_enable_regmap,
1040 	.disable		= regulator_disable_regmap,
1041 	.is_enabled		= regulator_is_enabled_regmap,
1042 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1043 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1044 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1045 	.map_voltage		= spmi_regulator_common_map_voltage,
1046 	.list_voltage		= spmi_regulator_common_list_voltage,
1047 	.set_mode		= spmi_regulator_common_set_mode,
1048 	.get_mode		= spmi_regulator_common_get_mode,
1049 	.set_load		= spmi_regulator_common_set_load,
1050 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1051 };
1052 
1053 static struct regulator_ops spmi_ldo_ops = {
1054 	.enable			= regulator_enable_regmap,
1055 	.disable		= regulator_disable_regmap,
1056 	.is_enabled		= regulator_is_enabled_regmap,
1057 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1058 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1059 	.map_voltage		= spmi_regulator_common_map_voltage,
1060 	.list_voltage		= spmi_regulator_common_list_voltage,
1061 	.set_mode		= spmi_regulator_common_set_mode,
1062 	.get_mode		= spmi_regulator_common_get_mode,
1063 	.set_load		= spmi_regulator_common_set_load,
1064 	.set_bypass		= spmi_regulator_common_set_bypass,
1065 	.get_bypass		= spmi_regulator_common_get_bypass,
1066 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1067 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1068 };
1069 
1070 static struct regulator_ops spmi_ln_ldo_ops = {
1071 	.enable			= regulator_enable_regmap,
1072 	.disable		= regulator_disable_regmap,
1073 	.is_enabled		= regulator_is_enabled_regmap,
1074 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1075 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1076 	.map_voltage		= spmi_regulator_common_map_voltage,
1077 	.list_voltage		= spmi_regulator_common_list_voltage,
1078 	.set_bypass		= spmi_regulator_common_set_bypass,
1079 	.get_bypass		= spmi_regulator_common_get_bypass,
1080 };
1081 
1082 static struct regulator_ops spmi_vs_ops = {
1083 	.enable			= spmi_regulator_vs_enable,
1084 	.disable		= regulator_disable_regmap,
1085 	.is_enabled		= regulator_is_enabled_regmap,
1086 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1087 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1088 	.set_over_current_protection = spmi_regulator_vs_ocp,
1089 	.set_mode		= spmi_regulator_common_set_mode,
1090 	.get_mode		= spmi_regulator_common_get_mode,
1091 };
1092 
1093 static struct regulator_ops spmi_boost_ops = {
1094 	.enable			= regulator_enable_regmap,
1095 	.disable		= regulator_disable_regmap,
1096 	.is_enabled		= regulator_is_enabled_regmap,
1097 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1098 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1099 	.map_voltage		= spmi_regulator_single_map_voltage,
1100 	.list_voltage		= spmi_regulator_common_list_voltage,
1101 	.set_input_current_limit = spmi_regulator_set_ilim,
1102 };
1103 
1104 static struct regulator_ops spmi_ftsmps_ops = {
1105 	.enable			= regulator_enable_regmap,
1106 	.disable		= regulator_disable_regmap,
1107 	.is_enabled		= regulator_is_enabled_regmap,
1108 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1109 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1110 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1111 	.map_voltage		= spmi_regulator_common_map_voltage,
1112 	.list_voltage		= spmi_regulator_common_list_voltage,
1113 	.set_mode		= spmi_regulator_common_set_mode,
1114 	.get_mode		= spmi_regulator_common_get_mode,
1115 	.set_load		= spmi_regulator_common_set_load,
1116 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1117 };
1118 
1119 static struct regulator_ops spmi_ult_lo_smps_ops = {
1120 	.enable			= regulator_enable_regmap,
1121 	.disable		= regulator_disable_regmap,
1122 	.is_enabled		= regulator_is_enabled_regmap,
1123 	.set_voltage_sel	= spmi_regulator_ult_lo_smps_set_voltage,
1124 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1125 	.get_voltage_sel	= spmi_regulator_ult_lo_smps_get_voltage,
1126 	.list_voltage		= spmi_regulator_common_list_voltage,
1127 	.set_mode		= spmi_regulator_common_set_mode,
1128 	.get_mode		= spmi_regulator_common_get_mode,
1129 	.set_load		= spmi_regulator_common_set_load,
1130 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1131 };
1132 
1133 static struct regulator_ops spmi_ult_ho_smps_ops = {
1134 	.enable			= regulator_enable_regmap,
1135 	.disable		= regulator_disable_regmap,
1136 	.is_enabled		= regulator_is_enabled_regmap,
1137 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1138 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1139 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1140 	.map_voltage		= spmi_regulator_single_map_voltage,
1141 	.list_voltage		= spmi_regulator_common_list_voltage,
1142 	.set_mode		= spmi_regulator_common_set_mode,
1143 	.get_mode		= spmi_regulator_common_get_mode,
1144 	.set_load		= spmi_regulator_common_set_load,
1145 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1146 };
1147 
1148 static struct regulator_ops spmi_ult_ldo_ops = {
1149 	.enable			= regulator_enable_regmap,
1150 	.disable		= regulator_disable_regmap,
1151 	.is_enabled		= regulator_is_enabled_regmap,
1152 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1153 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1154 	.map_voltage		= spmi_regulator_single_map_voltage,
1155 	.list_voltage		= spmi_regulator_common_list_voltage,
1156 	.set_mode		= spmi_regulator_common_set_mode,
1157 	.get_mode		= spmi_regulator_common_get_mode,
1158 	.set_load		= spmi_regulator_common_set_load,
1159 	.set_bypass		= spmi_regulator_common_set_bypass,
1160 	.get_bypass		= spmi_regulator_common_get_bypass,
1161 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1162 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1163 };
1164 
1165 /* Maximum possible digital major revision value */
1166 #define INF 0xFF
1167 
1168 static const struct spmi_regulator_mapping supported_regulators[] = {
1169 	/*           type subtype dig_min dig_max ltype ops setpoints hpm_min */
1170 	SPMI_VREG(BUCK,  GP_CTL,   0, INF, SMPS,   smps,   smps,   100000),
1171 	SPMI_VREG(LDO,   N300,     0, INF, LDO,    ldo,    nldo1,   10000),
1172 	SPMI_VREG(LDO,   N600,     0,   0, LDO,    ldo,    nldo2,   10000),
1173 	SPMI_VREG(LDO,   N1200,    0,   0, LDO,    ldo,    nldo2,   10000),
1174 	SPMI_VREG(LDO,   N600,     1, INF, LDO,    ldo,    nldo3,   10000),
1175 	SPMI_VREG(LDO,   N1200,    1, INF, LDO,    ldo,    nldo3,   10000),
1176 	SPMI_VREG(LDO,   N600_ST,  0,   0, LDO,    ldo,    nldo2,   10000),
1177 	SPMI_VREG(LDO,   N1200_ST, 0,   0, LDO,    ldo,    nldo2,   10000),
1178 	SPMI_VREG(LDO,   N600_ST,  1, INF, LDO,    ldo,    nldo3,   10000),
1179 	SPMI_VREG(LDO,   N1200_ST, 1, INF, LDO,    ldo,    nldo3,   10000),
1180 	SPMI_VREG(LDO,   P50,      0, INF, LDO,    ldo,    pldo,     5000),
1181 	SPMI_VREG(LDO,   P150,     0, INF, LDO,    ldo,    pldo,    10000),
1182 	SPMI_VREG(LDO,   P300,     0, INF, LDO,    ldo,    pldo,    10000),
1183 	SPMI_VREG(LDO,   P600,     0, INF, LDO,    ldo,    pldo,    10000),
1184 	SPMI_VREG(LDO,   P1200,    0, INF, LDO,    ldo,    pldo,    10000),
1185 	SPMI_VREG(LDO,   LN,       0, INF, LN_LDO, ln_ldo, ln_ldo,      0),
1186 	SPMI_VREG(LDO,   LV_P50,   0, INF, LDO,    ldo,    pldo,     5000),
1187 	SPMI_VREG(LDO,   LV_P150,  0, INF, LDO,    ldo,    pldo,    10000),
1188 	SPMI_VREG(LDO,   LV_P300,  0, INF, LDO,    ldo,    pldo,    10000),
1189 	SPMI_VREG(LDO,   LV_P600,  0, INF, LDO,    ldo,    pldo,    10000),
1190 	SPMI_VREG(LDO,   LV_P1200, 0, INF, LDO,    ldo,    pldo,    10000),
1191 	SPMI_VREG_VS(LV100,        0, INF),
1192 	SPMI_VREG_VS(LV300,        0, INF),
1193 	SPMI_VREG_VS(MV300,        0, INF),
1194 	SPMI_VREG_VS(MV500,        0, INF),
1195 	SPMI_VREG_VS(HDMI,         0, INF),
1196 	SPMI_VREG_VS(OTG,          0, INF),
1197 	SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST,  boost,  boost,       0),
1198 	SPMI_VREG(FTS,   FTS_CTL,  0, INF, FTSMPS, ftsmps, ftsmps, 100000),
1199 	SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
1200 	SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
1201 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1202 						ult_lo_smps,   100000),
1203 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1204 						ult_lo_smps,   100000),
1205 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1206 						ult_lo_smps,   100000),
1207 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
1208 						ult_ho_smps,   100000),
1209 	SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1210 	SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1211 	SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1212 	SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1213 	SPMI_VREG(ULT_LDO, LV_P150,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1214 	SPMI_VREG(ULT_LDO, LV_P300,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1215 	SPMI_VREG(ULT_LDO, LV_P450,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1216 	SPMI_VREG(ULT_LDO, P600,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1217 	SPMI_VREG(ULT_LDO, P150,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1218 	SPMI_VREG(ULT_LDO, P50,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
1219 };
1220 
1221 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
1222 {
1223 	unsigned int n;
1224 	struct spmi_voltage_range *range = points->range;
1225 
1226 	for (; range < points->range + points->count; range++) {
1227 		n = 0;
1228 		if (range->set_point_max_uV) {
1229 			n = range->set_point_max_uV - range->set_point_min_uV;
1230 			n = (n / range->step_uV) + 1;
1231 		}
1232 		range->n_voltages = n;
1233 		points->n_voltages += n;
1234 	}
1235 }
1236 
1237 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
1238 {
1239 	const struct spmi_regulator_mapping *mapping;
1240 	int ret, i;
1241 	u32 dig_major_rev;
1242 	u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
1243 	u8 type, subtype;
1244 
1245 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
1246 		ARRAY_SIZE(version));
1247 	if (ret) {
1248 		dev_dbg(vreg->dev, "could not read version registers\n");
1249 		return ret;
1250 	}
1251 	dig_major_rev	= version[SPMI_COMMON_REG_DIG_MAJOR_REV
1252 					- SPMI_COMMON_REG_DIG_MAJOR_REV];
1253 	if (!force_type) {
1254 		type		= version[SPMI_COMMON_REG_TYPE -
1255 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1256 		subtype		= version[SPMI_COMMON_REG_SUBTYPE -
1257 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1258 	} else {
1259 		type = force_type >> 8;
1260 		subtype = force_type;
1261 	}
1262 
1263 	for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
1264 		mapping = &supported_regulators[i];
1265 		if (mapping->type == type && mapping->subtype == subtype
1266 		    && mapping->revision_min <= dig_major_rev
1267 		    && mapping->revision_max >= dig_major_rev)
1268 			goto found;
1269 	}
1270 
1271 	dev_err(vreg->dev,
1272 		"unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
1273 		vreg->desc.name, type, subtype, dig_major_rev);
1274 
1275 	return -ENODEV;
1276 
1277 found:
1278 	vreg->logical_type	= mapping->logical_type;
1279 	vreg->set_points	= mapping->set_points;
1280 	vreg->hpm_min_load	= mapping->hpm_min_load;
1281 	vreg->desc.ops		= mapping->ops;
1282 
1283 	if (mapping->set_points) {
1284 		if (!mapping->set_points->n_voltages)
1285 			spmi_calculate_num_voltages(mapping->set_points);
1286 		vreg->desc.n_voltages = mapping->set_points->n_voltages;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
1293 {
1294 	int ret;
1295 	u8 reg = 0;
1296 	int step, delay, slew_rate, step_delay;
1297 	const struct spmi_voltage_range *range;
1298 
1299 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1300 	if (ret) {
1301 		dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1302 		return ret;
1303 	}
1304 
1305 	range = spmi_regulator_find_range(vreg);
1306 	if (!range)
1307 		return -EINVAL;
1308 
1309 	switch (vreg->logical_type) {
1310 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1311 		step_delay = SPMI_FTSMPS_STEP_DELAY;
1312 		break;
1313 	default:
1314 		step_delay = SPMI_DEFAULT_STEP_DELAY;
1315 		break;
1316 	}
1317 
1318 	step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
1319 	step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
1320 
1321 	delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
1322 	delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
1323 
1324 	/* slew_rate has units of uV/us */
1325 	slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
1326 	slew_rate /= 1000 * (step_delay << delay);
1327 	slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
1328 	slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
1329 
1330 	/* Ensure that the slew rate is greater than 0 */
1331 	vreg->slew_rate = max(slew_rate, 1);
1332 
1333 	return ret;
1334 }
1335 
1336 static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
1337 				const struct spmi_regulator_init_data *data)
1338 {
1339 	int ret;
1340 	enum spmi_regulator_logical_type type;
1341 	u8 ctrl_reg[8], reg, mask;
1342 
1343 	type = vreg->logical_type;
1344 
1345 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1346 	if (ret)
1347 		return ret;
1348 
1349 	/* Set up enable pin control. */
1350 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1351 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO
1352 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_VS)
1353 	    && !(data->pin_ctrl_enable
1354 			& SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
1355 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
1356 			~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1357 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
1358 		    data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1359 	}
1360 
1361 	/* Set up mode pin control. */
1362 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1363 	    || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO)
1364 		&& !(data->pin_ctrl_hpm
1365 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1366 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1367 			~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1368 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1369 			data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1370 	}
1371 
1372 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS
1373 	   && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1374 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1375 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1376 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1377 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1378 	}
1379 
1380 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
1381 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
1382 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO)
1383 		&& !(data->pin_ctrl_hpm
1384 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1385 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1386 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1387 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1388 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1389 	}
1390 
1391 	/* Write back any control register values that were modified. */
1392 	ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1393 	if (ret)
1394 		return ret;
1395 
1396 	/* Set soft start strength and over current protection for VS. */
1397 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
1398 		if (data->vs_soft_start_strength
1399 				!= SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
1400 			reg = data->vs_soft_start_strength
1401 				& SPMI_VS_SOFT_START_SEL_MASK;
1402 			mask = SPMI_VS_SOFT_START_SEL_MASK;
1403 			return spmi_vreg_update_bits(vreg,
1404 						     SPMI_VS_REG_SOFT_START,
1405 						     reg, mask);
1406 		}
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
1413 		struct device_node *node, struct spmi_regulator_init_data *data)
1414 {
1415 	/*
1416 	 * Initialize configuration parameters to use hardware default in case
1417 	 * no value is specified via device tree.
1418 	 */
1419 	data->pin_ctrl_enable	    = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
1420 	data->pin_ctrl_hpm	    = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
1421 	data->vs_soft_start_strength	= SPMI_VS_SOFT_START_STR_HW_DEFAULT;
1422 
1423 	/* These bindings are optional, so it is okay if they aren't found. */
1424 	of_property_read_u32(node, "qcom,ocp-max-retries",
1425 		&vreg->ocp_max_retries);
1426 	of_property_read_u32(node, "qcom,ocp-retry-delay",
1427 		&vreg->ocp_retry_delay_ms);
1428 	of_property_read_u32(node, "qcom,pin-ctrl-enable",
1429 		&data->pin_ctrl_enable);
1430 	of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
1431 	of_property_read_u32(node, "qcom,vs-soft-start-strength",
1432 		&data->vs_soft_start_strength);
1433 }
1434 
1435 static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
1436 {
1437 	if (mode == 1)
1438 		return REGULATOR_MODE_NORMAL;
1439 	if (mode == 2)
1440 		return REGULATOR_MODE_FAST;
1441 
1442 	return REGULATOR_MODE_IDLE;
1443 }
1444 
1445 static int spmi_regulator_of_parse(struct device_node *node,
1446 			    const struct regulator_desc *desc,
1447 			    struct regulator_config *config)
1448 {
1449 	struct spmi_regulator_init_data data = { };
1450 	struct spmi_regulator *vreg = config->driver_data;
1451 	struct device *dev = config->dev;
1452 	int ret;
1453 
1454 	spmi_regulator_get_dt_config(vreg, node, &data);
1455 
1456 	if (!vreg->ocp_max_retries)
1457 		vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
1458 	if (!vreg->ocp_retry_delay_ms)
1459 		vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
1460 
1461 	ret = spmi_regulator_init_registers(vreg, &data);
1462 	if (ret) {
1463 		dev_err(dev, "common initialization failed, ret=%d\n", ret);
1464 		return ret;
1465 	}
1466 
1467 	switch (vreg->logical_type) {
1468 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1469 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1470 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1471 	case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1472 		ret = spmi_regulator_init_slew_rate(vreg);
1473 		if (ret)
1474 			return ret;
1475 	default:
1476 		break;
1477 	}
1478 
1479 	if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
1480 		vreg->ocp_irq = 0;
1481 
1482 	if (vreg->ocp_irq) {
1483 		ret = devm_request_irq(dev, vreg->ocp_irq,
1484 			spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
1485 			vreg);
1486 		if (ret < 0) {
1487 			dev_err(dev, "failed to request irq %d, ret=%d\n",
1488 				vreg->ocp_irq, ret);
1489 			return ret;
1490 		}
1491 
1492 		INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work);
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static const struct spmi_regulator_data pm8941_regulators[] = {
1499 	{ "s1", 0x1400, "vdd_s1", },
1500 	{ "s2", 0x1700, "vdd_s2", },
1501 	{ "s3", 0x1a00, "vdd_s3", },
1502 	{ "s4", 0xa000, },
1503 	{ "l1", 0x4000, "vdd_l1_l3", },
1504 	{ "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
1505 	{ "l3", 0x4200, "vdd_l1_l3", },
1506 	{ "l4", 0x4300, "vdd_l4_l11", },
1507 	{ "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
1508 	{ "l6", 0x4500, "vdd_l6_l12_l14_l15", },
1509 	{ "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
1510 	{ "l8", 0x4700, "vdd_l8_l16_l18_19", },
1511 	{ "l9", 0x4800, "vdd_l9_l10_l17_l22", },
1512 	{ "l10", 0x4900, "vdd_l9_l10_l17_l22", },
1513 	{ "l11", 0x4a00, "vdd_l4_l11", },
1514 	{ "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
1515 	{ "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
1516 	{ "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
1517 	{ "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
1518 	{ "l16", 0x4f00, "vdd_l8_l16_l18_19", },
1519 	{ "l17", 0x5000, "vdd_l9_l10_l17_l22", },
1520 	{ "l18", 0x5100, "vdd_l8_l16_l18_19", },
1521 	{ "l19", 0x5200, "vdd_l8_l16_l18_19", },
1522 	{ "l20", 0x5300, "vdd_l13_l20_l23_l24", },
1523 	{ "l21", 0x5400, "vdd_l21", },
1524 	{ "l22", 0x5500, "vdd_l9_l10_l17_l22", },
1525 	{ "l23", 0x5600, "vdd_l13_l20_l23_l24", },
1526 	{ "l24", 0x5700, "vdd_l13_l20_l23_l24", },
1527 	{ "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
1528 	{ "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
1529 	{ "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
1530 	{ "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
1531 	{ "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
1532 	{ }
1533 };
1534 
1535 static const struct spmi_regulator_data pm8841_regulators[] = {
1536 	{ "s1", 0x1400, "vdd_s1", },
1537 	{ "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
1538 	{ "s3", 0x1a00, "vdd_s3", },
1539 	{ "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
1540 	{ "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
1541 	{ "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
1542 	{ "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
1543 	{ "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
1544 	{ }
1545 };
1546 
1547 static const struct spmi_regulator_data pm8916_regulators[] = {
1548 	{ "s1", 0x1400, "vdd_s1", },
1549 	{ "s2", 0x1700, "vdd_s2", },
1550 	{ "s3", 0x1a00, "vdd_s3", },
1551 	{ "s4", 0x1d00, "vdd_s4", },
1552 	{ "l1", 0x4000, "vdd_l1_l3", },
1553 	{ "l2", 0x4100, "vdd_l2", },
1554 	{ "l3", 0x4200, "vdd_l1_l3", },
1555 	{ "l4", 0x4300, "vdd_l4_l5_l6", },
1556 	{ "l5", 0x4400, "vdd_l4_l5_l6", },
1557 	{ "l6", 0x4500, "vdd_l4_l5_l6", },
1558 	{ "l7", 0x4600, "vdd_l7", },
1559 	{ "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
1560 	{ "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
1561 	{ "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
1562 	{ "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
1563 	{ "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
1564 	{ "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
1565 	{ "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
1566 	{ "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
1567 	{ "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
1568 	{ "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
1569 	{ "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
1570 	{ }
1571 };
1572 
1573 static const struct spmi_regulator_data pm8994_regulators[] = {
1574 	{ "s1", 0x1400, "vdd_s1", },
1575 	{ "s2", 0x1700, "vdd_s2", },
1576 	{ "s3", 0x1a00, "vdd_s3", },
1577 	{ "s4", 0x1d00, "vdd_s4", },
1578 	{ "s5", 0x2000, "vdd_s5", },
1579 	{ "s6", 0x2300, "vdd_s6", },
1580 	{ "s7", 0x2600, "vdd_s7", },
1581 	{ "s8", 0x2900, "vdd_s8", },
1582 	{ "s9", 0x2c00, "vdd_s9", },
1583 	{ "s10", 0x2f00, "vdd_s10", },
1584 	{ "s11", 0x3200, "vdd_s11", },
1585 	{ "s12", 0x3500, "vdd_s12", },
1586 	{ "l1", 0x4000, "vdd_l1", },
1587 	{ "l2", 0x4100, "vdd_l2_l26_l28", },
1588 	{ "l3", 0x4200, "vdd_l3_l11", },
1589 	{ "l4", 0x4300, "vdd_l4_l27_l31", },
1590 	{ "l5", 0x4400, "vdd_l5_l7", },
1591 	{ "l6", 0x4500, "vdd_l6_l12_l32", },
1592 	{ "l7", 0x4600, "vdd_l5_l7", },
1593 	{ "l8", 0x4700, "vdd_l8_l16_l30", },
1594 	{ "l9", 0x4800, "vdd_l9_l10_l18_l22", },
1595 	{ "l10", 0x4900, "vdd_l9_l10_l18_l22", },
1596 	{ "l11", 0x4a00, "vdd_l3_l11", },
1597 	{ "l12", 0x4b00, "vdd_l6_l12_l32", },
1598 	{ "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
1599 	{ "l14", 0x4d00, "vdd_l14_l15", },
1600 	{ "l15", 0x4e00, "vdd_l14_l15", },
1601 	{ "l16", 0x4f00, "vdd_l8_l16_l30", },
1602 	{ "l17", 0x5000, "vdd_l17_l29", },
1603 	{ "l18", 0x5100, "vdd_l9_l10_l18_l22", },
1604 	{ "l19", 0x5200, "vdd_l13_l19_l23_l24", },
1605 	{ "l20", 0x5300, "vdd_l20_l21", },
1606 	{ "l21", 0x5400, "vdd_l20_l21", },
1607 	{ "l22", 0x5500, "vdd_l9_l10_l18_l22", },
1608 	{ "l23", 0x5600, "vdd_l13_l19_l23_l24", },
1609 	{ "l24", 0x5700, "vdd_l13_l19_l23_l24", },
1610 	{ "l25", 0x5800, "vdd_l25", },
1611 	{ "l26", 0x5900, "vdd_l2_l26_l28", },
1612 	{ "l27", 0x5a00, "vdd_l4_l27_l31", },
1613 	{ "l28", 0x5b00, "vdd_l2_l26_l28", },
1614 	{ "l29", 0x5c00, "vdd_l17_l29", },
1615 	{ "l30", 0x5d00, "vdd_l8_l16_l30", },
1616 	{ "l31", 0x5e00, "vdd_l4_l27_l31", },
1617 	{ "l32", 0x5f00, "vdd_l6_l12_l32", },
1618 	{ "lvs1", 0x8000, "vdd_lvs_1_2", },
1619 	{ "lvs2", 0x8100, "vdd_lvs_1_2", },
1620 	{ }
1621 };
1622 
1623 static const struct spmi_regulator_data pmi8994_regulators[] = {
1624 	{ "s1", 0x1400, "vdd_s1", },
1625 	{ "s2", 0x1700, "vdd_s2", },
1626 	{ "s3", 0x1a00, "vdd_s3", },
1627 	{ "l1", 0x4000, "vdd_l1", },
1628         { }
1629 };
1630 
1631 static const struct of_device_id qcom_spmi_regulator_match[] = {
1632 	{ .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
1633 	{ .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
1634 	{ .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
1635 	{ .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
1636 	{ .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
1637 	{ }
1638 };
1639 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
1640 
1641 static int qcom_spmi_regulator_probe(struct platform_device *pdev)
1642 {
1643 	const struct spmi_regulator_data *reg;
1644 	const struct of_device_id *match;
1645 	struct regulator_config config = { };
1646 	struct regulator_dev *rdev;
1647 	struct spmi_regulator *vreg;
1648 	struct regmap *regmap;
1649 	const char *name;
1650 	struct device *dev = &pdev->dev;
1651 	int ret;
1652 	struct list_head *vreg_list;
1653 
1654 	vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
1655 	if (!vreg_list)
1656 		return -ENOMEM;
1657 	INIT_LIST_HEAD(vreg_list);
1658 	platform_set_drvdata(pdev, vreg_list);
1659 
1660 	regmap = dev_get_regmap(dev->parent, NULL);
1661 	if (!regmap)
1662 		return -ENODEV;
1663 
1664 	match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
1665 	if (!match)
1666 		return -ENODEV;
1667 
1668 	for (reg = match->data; reg->name; reg++) {
1669 		vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
1670 		if (!vreg)
1671 			return -ENOMEM;
1672 
1673 		vreg->dev = dev;
1674 		vreg->base = reg->base;
1675 		vreg->regmap = regmap;
1676 
1677 		if (reg->ocp) {
1678 			vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
1679 			if (vreg->ocp_irq < 0) {
1680 				ret = vreg->ocp_irq;
1681 				goto err;
1682 			}
1683 		}
1684 
1685 		vreg->desc.id = -1;
1686 		vreg->desc.owner = THIS_MODULE;
1687 		vreg->desc.type = REGULATOR_VOLTAGE;
1688 		vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
1689 		vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
1690 		vreg->desc.enable_val = SPMI_COMMON_ENABLE;
1691 		vreg->desc.name = name = reg->name;
1692 		vreg->desc.supply_name = reg->supply;
1693 		vreg->desc.of_match = reg->name;
1694 		vreg->desc.of_parse_cb = spmi_regulator_of_parse;
1695 		vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
1696 
1697 		ret = spmi_regulator_match(vreg, reg->force_type);
1698 		if (ret)
1699 			continue;
1700 
1701 		config.dev = dev;
1702 		config.driver_data = vreg;
1703 		config.regmap = regmap;
1704 		rdev = devm_regulator_register(dev, &vreg->desc, &config);
1705 		if (IS_ERR(rdev)) {
1706 			dev_err(dev, "failed to register %s\n", name);
1707 			ret = PTR_ERR(rdev);
1708 			goto err;
1709 		}
1710 
1711 		INIT_LIST_HEAD(&vreg->node);
1712 		list_add(&vreg->node, vreg_list);
1713 	}
1714 
1715 	return 0;
1716 
1717 err:
1718 	list_for_each_entry(vreg, vreg_list, node)
1719 		if (vreg->ocp_irq)
1720 			cancel_delayed_work_sync(&vreg->ocp_work);
1721 	return ret;
1722 }
1723 
1724 static int qcom_spmi_regulator_remove(struct platform_device *pdev)
1725 {
1726 	struct spmi_regulator *vreg;
1727 	struct list_head *vreg_list = platform_get_drvdata(pdev);
1728 
1729 	list_for_each_entry(vreg, vreg_list, node)
1730 		if (vreg->ocp_irq)
1731 			cancel_delayed_work_sync(&vreg->ocp_work);
1732 
1733 	return 0;
1734 }
1735 
1736 static struct platform_driver qcom_spmi_regulator_driver = {
1737 	.driver		= {
1738 		.name	= "qcom-spmi-regulator",
1739 		.of_match_table = qcom_spmi_regulator_match,
1740 	},
1741 	.probe		= qcom_spmi_regulator_probe,
1742 	.remove		= qcom_spmi_regulator_remove,
1743 };
1744 module_platform_driver(qcom_spmi_regulator_driver);
1745 
1746 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
1747 MODULE_LICENSE("GPL v2");
1748 MODULE_ALIAS("platform:qcom-spmi-regulator");
1749