1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/bitops.h>
12 #include <linux/slab.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/ktime.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regmap.h>
19 #include <linux/list.h>
20 #include <linux/mfd/syscon.h>
21 #include <linux/io.h>
22 
23 /* Pin control enable input pins. */
24 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE		0x00
25 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0		0x01
26 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1		0x02
27 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2		0x04
28 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3		0x08
29 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT	0x10
30 
31 /* Pin control high power mode input pins. */
32 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE		0x00
33 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0			0x01
34 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1			0x02
35 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2			0x04
36 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3			0x08
37 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B		0x10
38 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT		0x20
39 
40 /*
41  * Used with enable parameters to specify that hardware default register values
42  * should be left unaltered.
43  */
44 #define SPMI_REGULATOR_USE_HW_DEFAULT			2
45 
46 /* Soft start strength of a voltage switch type regulator */
47 enum spmi_vs_soft_start_str {
48 	SPMI_VS_SOFT_START_STR_0P05_UA = 0,
49 	SPMI_VS_SOFT_START_STR_0P25_UA,
50 	SPMI_VS_SOFT_START_STR_0P55_UA,
51 	SPMI_VS_SOFT_START_STR_0P75_UA,
52 	SPMI_VS_SOFT_START_STR_HW_DEFAULT,
53 };
54 
55 /**
56  * struct spmi_regulator_init_data - spmi-regulator initialization data
57  * @pin_ctrl_enable:        Bit mask specifying which hardware pins should be
58  *				used to enable the regulator, if any
59  *			    Value should be an ORing of
60  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants.  If
61  *				the bit specified by
62  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
63  *				set, then pin control enable hardware registers
64  *				will not be modified.
65  * @pin_ctrl_hpm:           Bit mask specifying which hardware pins should be
66  *				used to force the regulator into high power
67  *				mode, if any
68  *			    Value should be an ORing of
69  *				SPMI_REGULATOR_PIN_CTRL_HPM_* constants.  If
70  *				the bit specified by
71  *				SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
72  *				set, then pin control mode hardware registers
73  *				will not be modified.
74  * @vs_soft_start_strength: This parameter sets the soft start strength for
75  *				voltage switch type regulators.  Its value
76  *				should be one of SPMI_VS_SOFT_START_STR_*.  If
77  *				its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
78  *				then the soft start strength will be left at its
79  *				default hardware value.
80  */
81 struct spmi_regulator_init_data {
82 	unsigned				pin_ctrl_enable;
83 	unsigned				pin_ctrl_hpm;
84 	enum spmi_vs_soft_start_str		vs_soft_start_strength;
85 };
86 
87 /* These types correspond to unique register layouts. */
88 enum spmi_regulator_logical_type {
89 	SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
90 	SPMI_REGULATOR_LOGICAL_TYPE_LDO,
91 	SPMI_REGULATOR_LOGICAL_TYPE_VS,
92 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
93 	SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
94 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
95 	SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
96 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
97 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
98 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
99 };
100 
101 enum spmi_regulator_type {
102 	SPMI_REGULATOR_TYPE_BUCK		= 0x03,
103 	SPMI_REGULATOR_TYPE_LDO			= 0x04,
104 	SPMI_REGULATOR_TYPE_VS			= 0x05,
105 	SPMI_REGULATOR_TYPE_BOOST		= 0x1b,
106 	SPMI_REGULATOR_TYPE_FTS			= 0x1c,
107 	SPMI_REGULATOR_TYPE_BOOST_BYP		= 0x1f,
108 	SPMI_REGULATOR_TYPE_ULT_LDO		= 0x21,
109 	SPMI_REGULATOR_TYPE_ULT_BUCK		= 0x22,
110 };
111 
112 enum spmi_regulator_subtype {
113 	SPMI_REGULATOR_SUBTYPE_GP_CTL		= 0x08,
114 	SPMI_REGULATOR_SUBTYPE_RF_CTL		= 0x09,
115 	SPMI_REGULATOR_SUBTYPE_N50		= 0x01,
116 	SPMI_REGULATOR_SUBTYPE_N150		= 0x02,
117 	SPMI_REGULATOR_SUBTYPE_N300		= 0x03,
118 	SPMI_REGULATOR_SUBTYPE_N600		= 0x04,
119 	SPMI_REGULATOR_SUBTYPE_N1200		= 0x05,
120 	SPMI_REGULATOR_SUBTYPE_N600_ST		= 0x06,
121 	SPMI_REGULATOR_SUBTYPE_N1200_ST		= 0x07,
122 	SPMI_REGULATOR_SUBTYPE_N900_ST		= 0x14,
123 	SPMI_REGULATOR_SUBTYPE_N300_ST		= 0x15,
124 	SPMI_REGULATOR_SUBTYPE_P50		= 0x08,
125 	SPMI_REGULATOR_SUBTYPE_P150		= 0x09,
126 	SPMI_REGULATOR_SUBTYPE_P300		= 0x0a,
127 	SPMI_REGULATOR_SUBTYPE_P600		= 0x0b,
128 	SPMI_REGULATOR_SUBTYPE_P1200		= 0x0c,
129 	SPMI_REGULATOR_SUBTYPE_LN		= 0x10,
130 	SPMI_REGULATOR_SUBTYPE_LV_P50		= 0x28,
131 	SPMI_REGULATOR_SUBTYPE_LV_P150		= 0x29,
132 	SPMI_REGULATOR_SUBTYPE_LV_P300		= 0x2a,
133 	SPMI_REGULATOR_SUBTYPE_LV_P600		= 0x2b,
134 	SPMI_REGULATOR_SUBTYPE_LV_P1200		= 0x2c,
135 	SPMI_REGULATOR_SUBTYPE_LV_P450		= 0x2d,
136 	SPMI_REGULATOR_SUBTYPE_LV100		= 0x01,
137 	SPMI_REGULATOR_SUBTYPE_LV300		= 0x02,
138 	SPMI_REGULATOR_SUBTYPE_MV300		= 0x08,
139 	SPMI_REGULATOR_SUBTYPE_MV500		= 0x09,
140 	SPMI_REGULATOR_SUBTYPE_HDMI		= 0x10,
141 	SPMI_REGULATOR_SUBTYPE_OTG		= 0x11,
142 	SPMI_REGULATOR_SUBTYPE_5V_BOOST		= 0x01,
143 	SPMI_REGULATOR_SUBTYPE_FTS_CTL		= 0x08,
144 	SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL	= 0x09,
145 	SPMI_REGULATOR_SUBTYPE_BB_2A		= 0x01,
146 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1	= 0x0d,
147 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2	= 0x0e,
148 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3	= 0x0f,
149 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4	= 0x10,
150 };
151 
152 enum spmi_common_regulator_registers {
153 	SPMI_COMMON_REG_DIG_MAJOR_REV		= 0x01,
154 	SPMI_COMMON_REG_TYPE			= 0x04,
155 	SPMI_COMMON_REG_SUBTYPE			= 0x05,
156 	SPMI_COMMON_REG_VOLTAGE_RANGE		= 0x40,
157 	SPMI_COMMON_REG_VOLTAGE_SET		= 0x41,
158 	SPMI_COMMON_REG_MODE			= 0x45,
159 	SPMI_COMMON_REG_ENABLE			= 0x46,
160 	SPMI_COMMON_REG_PULL_DOWN		= 0x48,
161 	SPMI_COMMON_REG_SOFT_START		= 0x4c,
162 	SPMI_COMMON_REG_STEP_CTRL		= 0x61,
163 };
164 
165 enum spmi_vs_registers {
166 	SPMI_VS_REG_OCP				= 0x4a,
167 	SPMI_VS_REG_SOFT_START			= 0x4c,
168 };
169 
170 enum spmi_boost_registers {
171 	SPMI_BOOST_REG_CURRENT_LIMIT		= 0x4a,
172 };
173 
174 enum spmi_boost_byp_registers {
175 	SPMI_BOOST_BYP_REG_CURRENT_LIMIT	= 0x4b,
176 };
177 
178 enum spmi_saw3_registers {
179 	SAW3_SECURE				= 0x00,
180 	SAW3_ID					= 0x04,
181 	SAW3_SPM_STS				= 0x0C,
182 	SAW3_AVS_STS				= 0x10,
183 	SAW3_PMIC_STS				= 0x14,
184 	SAW3_RST				= 0x18,
185 	SAW3_VCTL				= 0x1C,
186 	SAW3_AVS_CTL				= 0x20,
187 	SAW3_AVS_LIMIT				= 0x24,
188 	SAW3_AVS_DLY				= 0x28,
189 	SAW3_AVS_HYSTERESIS			= 0x2C,
190 	SAW3_SPM_STS2				= 0x38,
191 	SAW3_SPM_PMIC_DATA_3			= 0x4C,
192 	SAW3_VERSION				= 0xFD0,
193 };
194 
195 /* Used for indexing into ctrl_reg.  These are offets from 0x40 */
196 enum spmi_common_control_register_index {
197 	SPMI_COMMON_IDX_VOLTAGE_RANGE		= 0,
198 	SPMI_COMMON_IDX_VOLTAGE_SET		= 1,
199 	SPMI_COMMON_IDX_MODE			= 5,
200 	SPMI_COMMON_IDX_ENABLE			= 6,
201 };
202 
203 /* Common regulator control register layout */
204 #define SPMI_COMMON_ENABLE_MASK			0x80
205 #define SPMI_COMMON_ENABLE			0x80
206 #define SPMI_COMMON_DISABLE			0x00
207 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK	0x08
208 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK	0x04
209 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK	0x02
210 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK	0x01
211 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK	0x0f
212 
213 /* Common regulator mode register layout */
214 #define SPMI_COMMON_MODE_HPM_MASK		0x80
215 #define SPMI_COMMON_MODE_AUTO_MASK		0x40
216 #define SPMI_COMMON_MODE_BYPASS_MASK		0x20
217 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK	0x10
218 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK	0x08
219 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK	0x04
220 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK	0x02
221 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK	0x01
222 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK	0x1f
223 
224 /* Common regulator pull down control register layout */
225 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK	0x80
226 
227 /* LDO regulator current limit control register layout */
228 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK	0x80
229 
230 /* LDO regulator soft start control register layout */
231 #define SPMI_LDO_SOFT_START_ENABLE_MASK		0x80
232 
233 /* VS regulator over current protection control register layout */
234 #define SPMI_VS_OCP_OVERRIDE			0x01
235 #define SPMI_VS_OCP_NO_OVERRIDE			0x00
236 
237 /* VS regulator soft start control register layout */
238 #define SPMI_VS_SOFT_START_ENABLE_MASK		0x80
239 #define SPMI_VS_SOFT_START_SEL_MASK		0x03
240 
241 /* Boost regulator current limit control register layout */
242 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK	0x80
243 #define SPMI_BOOST_CURRENT_LIMIT_MASK		0x07
244 
245 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES		10
246 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS	30
247 #define SPMI_VS_OCP_FALL_DELAY_US		90
248 #define SPMI_VS_OCP_FAULT_DELAY_US		20000
249 
250 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK		0x18
251 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT	3
252 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK	0x07
253 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT	0
254 
255 /* Clock rate in kHz of the FTSMPS regulator reference clock. */
256 #define SPMI_FTSMPS_CLOCK_RATE		19200
257 
258 /* Minimum voltage stepper delay for each step. */
259 #define SPMI_FTSMPS_STEP_DELAY		8
260 #define SPMI_DEFAULT_STEP_DELAY		20
261 
262 /*
263  * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
264  * adjust the step rate in order to account for oscillator variance.
265  */
266 #define SPMI_FTSMPS_STEP_MARGIN_NUM	4
267 #define SPMI_FTSMPS_STEP_MARGIN_DEN	5
268 
269 /* VSET value to decide the range of ULT SMPS */
270 #define ULT_SMPS_RANGE_SPLIT 0x60
271 
272 /**
273  * struct spmi_voltage_range - regulator set point voltage mapping description
274  * @min_uV:		Minimum programmable output voltage resulting from
275  *			set point register value 0x00
276  * @max_uV:		Maximum programmable output voltage
277  * @step_uV:		Output voltage increase resulting from the set point
278  *			register value increasing by 1
279  * @set_point_min_uV:	Minimum allowed voltage
280  * @set_point_max_uV:	Maximum allowed voltage.  This may be tweaked in order
281  *			to pick which range should be used in the case of
282  *			overlapping set points.
283  * @n_voltages:		Number of preferred voltage set points present in this
284  *			range
285  * @range_sel:		Voltage range register value corresponding to this range
286  *
287  * The following relationships must be true for the values used in this struct:
288  * (max_uV - min_uV) % step_uV == 0
289  * (set_point_min_uV - min_uV) % step_uV == 0*
290  * (set_point_max_uV - min_uV) % step_uV == 0*
291  * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
292  *
293  * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
294  * specify that the voltage range has meaning, but is not preferred.
295  */
296 struct spmi_voltage_range {
297 	int					min_uV;
298 	int					max_uV;
299 	int					step_uV;
300 	int					set_point_min_uV;
301 	int					set_point_max_uV;
302 	unsigned				n_voltages;
303 	u8					range_sel;
304 };
305 
306 /*
307  * The ranges specified in the spmi_voltage_set_points struct must be listed
308  * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
309  */
310 struct spmi_voltage_set_points {
311 	struct spmi_voltage_range		*range;
312 	int					count;
313 	unsigned				n_voltages;
314 };
315 
316 struct spmi_regulator {
317 	struct regulator_desc			desc;
318 	struct device				*dev;
319 	struct delayed_work			ocp_work;
320 	struct regmap				*regmap;
321 	struct spmi_voltage_set_points		*set_points;
322 	enum spmi_regulator_logical_type	logical_type;
323 	int					ocp_irq;
324 	int					ocp_count;
325 	int					ocp_max_retries;
326 	int					ocp_retry_delay_ms;
327 	int					hpm_min_load;
328 	int					slew_rate;
329 	ktime_t					vs_enable_time;
330 	u16					base;
331 	struct list_head			node;
332 };
333 
334 struct spmi_regulator_mapping {
335 	enum spmi_regulator_type		type;
336 	enum spmi_regulator_subtype		subtype;
337 	enum spmi_regulator_logical_type	logical_type;
338 	u32					revision_min;
339 	u32					revision_max;
340 	struct regulator_ops			*ops;
341 	struct spmi_voltage_set_points		*set_points;
342 	int					hpm_min_load;
343 };
344 
345 struct spmi_regulator_data {
346 	const char			*name;
347 	u16				base;
348 	const char			*supply;
349 	const char			*ocp;
350 	u16				force_type;
351 };
352 
353 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
354 		      _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
355 	{ \
356 		.type		= SPMI_REGULATOR_TYPE_##_type, \
357 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
358 		.revision_min	= _dig_major_min, \
359 		.revision_max	= _dig_major_max, \
360 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
361 		.ops		= &spmi_##_ops_val##_ops, \
362 		.set_points	= &_set_points_val##_set_points, \
363 		.hpm_min_load	= _hpm_min_load, \
364 	}
365 
366 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
367 	{ \
368 		.type		= SPMI_REGULATOR_TYPE_VS, \
369 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
370 		.revision_min	= _dig_major_min, \
371 		.revision_max	= _dig_major_max, \
372 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_VS, \
373 		.ops		= &spmi_vs_ops, \
374 	}
375 
376 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
377 			_set_point_max_uV, _max_uV, _step_uV) \
378 	{ \
379 		.min_uV			= _min_uV, \
380 		.max_uV			= _max_uV, \
381 		.set_point_min_uV	= _set_point_min_uV, \
382 		.set_point_max_uV	= _set_point_max_uV, \
383 		.step_uV		= _step_uV, \
384 		.range_sel		= _range_sel, \
385 	}
386 
387 #define DEFINE_SPMI_SET_POINTS(name) \
388 struct spmi_voltage_set_points name##_set_points = { \
389 	.range	= name##_ranges, \
390 	.count	= ARRAY_SIZE(name##_ranges), \
391 }
392 
393 /*
394  * These tables contain the physically available PMIC regulator voltage setpoint
395  * ranges.  Where two ranges overlap in hardware, one of the ranges is trimmed
396  * to ensure that the setpoints available to software are monotonically
397  * increasing and unique.  The set_voltage callback functions expect these
398  * properties to hold.
399  */
400 static struct spmi_voltage_range pldo_ranges[] = {
401 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
402 	SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
403 	SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
404 };
405 
406 static struct spmi_voltage_range nldo1_ranges[] = {
407 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
408 };
409 
410 static struct spmi_voltage_range nldo2_ranges[] = {
411 	SPMI_VOLTAGE_RANGE(0,  375000,       0,       0, 1537500, 12500),
412 	SPMI_VOLTAGE_RANGE(1,  375000,  375000,  768750,  768750,  6250),
413 	SPMI_VOLTAGE_RANGE(2,  750000,  775000, 1537500, 1537500, 12500),
414 };
415 
416 static struct spmi_voltage_range nldo3_ranges[] = {
417 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
418 	SPMI_VOLTAGE_RANGE(1,  375000,       0,       0, 1537500, 12500),
419 	SPMI_VOLTAGE_RANGE(2,  750000,       0,       0, 1537500, 12500),
420 };
421 
422 static struct spmi_voltage_range ln_ldo_ranges[] = {
423 	SPMI_VOLTAGE_RANGE(1,  690000,  690000, 1110000, 1110000, 60000),
424 	SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
425 };
426 
427 static struct spmi_voltage_range smps_ranges[] = {
428 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
429 	SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
430 };
431 
432 static struct spmi_voltage_range ftsmps_ranges[] = {
433 	SPMI_VOLTAGE_RANGE(0,       0,  350000, 1275000, 1275000,  5000),
434 	SPMI_VOLTAGE_RANGE(1,       0, 1280000, 2040000, 2040000, 10000),
435 };
436 
437 static struct spmi_voltage_range ftsmps2p5_ranges[] = {
438 	SPMI_VOLTAGE_RANGE(0,   80000,  350000, 1355000, 1355000,  5000),
439 	SPMI_VOLTAGE_RANGE(1,  160000, 1360000, 2200000, 2200000, 10000),
440 };
441 
442 static struct spmi_voltage_range boost_ranges[] = {
443 	SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
444 };
445 
446 static struct spmi_voltage_range boost_byp_ranges[] = {
447 	SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
448 };
449 
450 static struct spmi_voltage_range ult_lo_smps_ranges[] = {
451 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
452 	SPMI_VOLTAGE_RANGE(1,  750000,       0,       0, 1525000, 25000),
453 };
454 
455 static struct spmi_voltage_range ult_ho_smps_ranges[] = {
456 	SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
457 };
458 
459 static struct spmi_voltage_range ult_nldo_ranges[] = {
460 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
461 };
462 
463 static struct spmi_voltage_range ult_pldo_ranges[] = {
464 	SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
465 };
466 
467 static DEFINE_SPMI_SET_POINTS(pldo);
468 static DEFINE_SPMI_SET_POINTS(nldo1);
469 static DEFINE_SPMI_SET_POINTS(nldo2);
470 static DEFINE_SPMI_SET_POINTS(nldo3);
471 static DEFINE_SPMI_SET_POINTS(ln_ldo);
472 static DEFINE_SPMI_SET_POINTS(smps);
473 static DEFINE_SPMI_SET_POINTS(ftsmps);
474 static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
475 static DEFINE_SPMI_SET_POINTS(boost);
476 static DEFINE_SPMI_SET_POINTS(boost_byp);
477 static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
478 static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
479 static DEFINE_SPMI_SET_POINTS(ult_nldo);
480 static DEFINE_SPMI_SET_POINTS(ult_pldo);
481 
482 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
483 				 int len)
484 {
485 	return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
486 }
487 
488 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
489 				u8 *buf, int len)
490 {
491 	return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
492 }
493 
494 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
495 		u8 mask)
496 {
497 	return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
498 }
499 
500 static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
501 {
502 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
503 
504 	if (vreg->ocp_irq) {
505 		vreg->ocp_count = 0;
506 		vreg->vs_enable_time = ktime_get();
507 	}
508 
509 	return regulator_enable_regmap(rdev);
510 }
511 
512 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
513 {
514 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
515 	u8 reg = SPMI_VS_OCP_OVERRIDE;
516 
517 	return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, &reg, 1);
518 }
519 
520 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
521 					 int min_uV, int max_uV)
522 {
523 	const struct spmi_voltage_range *range;
524 	int uV = min_uV;
525 	int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
526 	int selector, voltage_sel;
527 
528 	/* Check if request voltage is outside of physically settable range. */
529 	lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
530 	lim_max_uV =
531 	  vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
532 
533 	if (uV < lim_min_uV && max_uV >= lim_min_uV)
534 		uV = lim_min_uV;
535 
536 	if (uV < lim_min_uV || uV > lim_max_uV) {
537 		dev_err(vreg->dev,
538 			"request v=[%d, %d] is outside possible v=[%d, %d]\n",
539 			 min_uV, max_uV, lim_min_uV, lim_max_uV);
540 		return -EINVAL;
541 	}
542 
543 	/* Find the range which uV is inside of. */
544 	for (i = vreg->set_points->count - 1; i > 0; i--) {
545 		range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
546 		if (uV > range_max_uV && range_max_uV > 0)
547 			break;
548 	}
549 
550 	range_id = i;
551 	range = &vreg->set_points->range[range_id];
552 
553 	/*
554 	 * Force uV to be an allowed set point by applying a ceiling function to
555 	 * the uV value.
556 	 */
557 	voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
558 	uV = voltage_sel * range->step_uV + range->min_uV;
559 
560 	if (uV > max_uV) {
561 		dev_err(vreg->dev,
562 			"request v=[%d, %d] cannot be met by any set point; "
563 			"next set point: %d\n",
564 			min_uV, max_uV, uV);
565 		return -EINVAL;
566 	}
567 
568 	selector = 0;
569 	for (i = 0; i < range_id; i++)
570 		selector += vreg->set_points->range[i].n_voltages;
571 	selector += (uV - range->set_point_min_uV) / range->step_uV;
572 
573 	return selector;
574 }
575 
576 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
577 				  unsigned selector, u8 *range_sel,
578 				  u8 *voltage_sel)
579 {
580 	const struct spmi_voltage_range *range, *end;
581 	unsigned offset;
582 
583 	range = vreg->set_points->range;
584 	end = range + vreg->set_points->count;
585 
586 	for (; range < end; range++) {
587 		if (selector < range->n_voltages) {
588 			/*
589 			 * hardware selectors between set point min and real
590 			 * min are invalid so we ignore them
591 			 */
592 			offset = range->set_point_min_uV - range->min_uV;
593 			offset /= range->step_uV;
594 			*voltage_sel = selector + offset;
595 			*range_sel = range->range_sel;
596 			return 0;
597 		}
598 
599 		selector -= range->n_voltages;
600 	}
601 
602 	return -EINVAL;
603 }
604 
605 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
606 				  const struct spmi_voltage_range *range)
607 {
608 	unsigned sw_sel = 0;
609 	unsigned offset, max_hw_sel;
610 	const struct spmi_voltage_range *r = vreg->set_points->range;
611 	const struct spmi_voltage_range *end = r + vreg->set_points->count;
612 
613 	for (; r < end; r++) {
614 		if (r == range && range->n_voltages) {
615 			/*
616 			 * hardware selectors between set point min and real
617 			 * min and between set point max and real max are
618 			 * invalid so we return an error if they're
619 			 * programmed into the hardware
620 			 */
621 			offset = range->set_point_min_uV - range->min_uV;
622 			offset /= range->step_uV;
623 			if (hw_sel < offset)
624 				return -EINVAL;
625 
626 			max_hw_sel = range->set_point_max_uV - range->min_uV;
627 			max_hw_sel /= range->step_uV;
628 			if (hw_sel > max_hw_sel)
629 				return -EINVAL;
630 
631 			return sw_sel + hw_sel - offset;
632 		}
633 		sw_sel += r->n_voltages;
634 	}
635 
636 	return -EINVAL;
637 }
638 
639 static const struct spmi_voltage_range *
640 spmi_regulator_find_range(struct spmi_regulator *vreg)
641 {
642 	u8 range_sel;
643 	const struct spmi_voltage_range *range, *end;
644 
645 	range = vreg->set_points->range;
646 	end = range + vreg->set_points->count;
647 
648 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
649 
650 	for (; range < end; range++)
651 		if (range->range_sel == range_sel)
652 			return range;
653 
654 	return NULL;
655 }
656 
657 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
658 		int min_uV, int max_uV)
659 {
660 	const struct spmi_voltage_range *range;
661 	int uV = min_uV;
662 	int i, selector;
663 
664 	range = spmi_regulator_find_range(vreg);
665 	if (!range)
666 		goto different_range;
667 
668 	if (uV < range->min_uV && max_uV >= range->min_uV)
669 		uV = range->min_uV;
670 
671 	if (uV < range->min_uV || uV > range->max_uV) {
672 		/* Current range doesn't support the requested voltage. */
673 		goto different_range;
674 	}
675 
676 	/*
677 	 * Force uV to be an allowed set point by applying a ceiling function to
678 	 * the uV value.
679 	 */
680 	uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
681 	uV = uV * range->step_uV + range->min_uV;
682 
683 	if (uV > max_uV) {
684 		/*
685 		 * No set point in the current voltage range is within the
686 		 * requested min_uV to max_uV range.
687 		 */
688 		goto different_range;
689 	}
690 
691 	selector = 0;
692 	for (i = 0; i < vreg->set_points->count; i++) {
693 		if (uV >= vreg->set_points->range[i].set_point_min_uV
694 		    && uV <= vreg->set_points->range[i].set_point_max_uV) {
695 			selector +=
696 			    (uV - vreg->set_points->range[i].set_point_min_uV)
697 				/ vreg->set_points->range[i].step_uV;
698 			break;
699 		}
700 
701 		selector += vreg->set_points->range[i].n_voltages;
702 	}
703 
704 	if (selector >= vreg->set_points->n_voltages)
705 		goto different_range;
706 
707 	return selector;
708 
709 different_range:
710 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
711 }
712 
713 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
714 					     int min_uV, int max_uV)
715 {
716 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
717 
718 	/*
719 	 * Favor staying in the current voltage range if possible.  This avoids
720 	 * voltage spikes that occur when changing the voltage range.
721 	 */
722 	return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
723 }
724 
725 static int
726 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
727 {
728 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
729 	int ret;
730 	u8 buf[2];
731 	u8 range_sel, voltage_sel;
732 
733 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
734 	if (ret)
735 		return ret;
736 
737 	buf[0] = range_sel;
738 	buf[1] = voltage_sel;
739 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
740 }
741 
742 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
743 		unsigned int old_selector, unsigned int new_selector)
744 {
745 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
746 	const struct spmi_voltage_range *range;
747 	int diff_uV;
748 
749 	range = spmi_regulator_find_range(vreg);
750 	if (!range)
751 		return -EINVAL;
752 
753 	diff_uV = abs(new_selector - old_selector) * range->step_uV;
754 
755 	return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
756 }
757 
758 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
759 {
760 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
761 	const struct spmi_voltage_range *range;
762 	u8 voltage_sel;
763 
764 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
765 
766 	range = spmi_regulator_find_range(vreg);
767 	if (!range)
768 		return -EINVAL;
769 
770 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
771 }
772 
773 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
774 		int min_uV, int max_uV)
775 {
776 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
777 
778 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
779 }
780 
781 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
782 						   unsigned selector)
783 {
784 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
785 	u8 sel = selector;
786 
787 	/*
788 	 * Certain types of regulators do not have a range select register so
789 	 * only voltage set register needs to be written.
790 	 */
791 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
792 }
793 
794 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
795 {
796 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
797 	u8 selector;
798 	int ret;
799 
800 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
801 	if (ret)
802 		return ret;
803 
804 	return selector;
805 }
806 
807 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
808 						  unsigned selector)
809 {
810 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
811 	int ret;
812 	u8 range_sel, voltage_sel;
813 
814 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
815 	if (ret)
816 		return ret;
817 
818 	/*
819 	 * Calculate VSET based on range
820 	 * In case of range 0: voltage_sel is a 7 bit value, can be written
821 	 *			witout any modification.
822 	 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
823 	 *			[011].
824 	 */
825 	if (range_sel == 1)
826 		voltage_sel |= ULT_SMPS_RANGE_SPLIT;
827 
828 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
829 				     voltage_sel, 0xff);
830 }
831 
832 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
833 {
834 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
835 	const struct spmi_voltage_range *range;
836 	u8 voltage_sel;
837 
838 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
839 
840 	range = spmi_regulator_find_range(vreg);
841 	if (!range)
842 		return -EINVAL;
843 
844 	if (range->range_sel == 1)
845 		voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
846 
847 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
848 }
849 
850 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
851 			unsigned selector)
852 {
853 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
854 	int uV = 0;
855 	int i;
856 
857 	if (selector >= vreg->set_points->n_voltages)
858 		return 0;
859 
860 	for (i = 0; i < vreg->set_points->count; i++) {
861 		if (selector < vreg->set_points->range[i].n_voltages) {
862 			uV = selector * vreg->set_points->range[i].step_uV
863 				+ vreg->set_points->range[i].set_point_min_uV;
864 			break;
865 		}
866 
867 		selector -= vreg->set_points->range[i].n_voltages;
868 	}
869 
870 	return uV;
871 }
872 
873 static int
874 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
875 {
876 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
877 	u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
878 	u8 val = 0;
879 
880 	if (enable)
881 		val = mask;
882 
883 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
884 }
885 
886 static int
887 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
888 {
889 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
890 	u8 val;
891 	int ret;
892 
893 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
894 	*enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
895 
896 	return ret;
897 }
898 
899 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
900 {
901 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
902 	u8 reg;
903 
904 	spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
905 
906 	if (reg & SPMI_COMMON_MODE_HPM_MASK)
907 		return REGULATOR_MODE_NORMAL;
908 
909 	if (reg & SPMI_COMMON_MODE_AUTO_MASK)
910 		return REGULATOR_MODE_FAST;
911 
912 	return REGULATOR_MODE_IDLE;
913 }
914 
915 static int
916 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
917 {
918 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
919 	u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
920 	u8 val = 0;
921 
922 	if (mode == REGULATOR_MODE_NORMAL)
923 		val = SPMI_COMMON_MODE_HPM_MASK;
924 	else if (mode == REGULATOR_MODE_FAST)
925 		val = SPMI_COMMON_MODE_AUTO_MASK;
926 
927 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
928 }
929 
930 static int
931 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
932 {
933 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
934 	unsigned int mode;
935 
936 	if (load_uA >= vreg->hpm_min_load)
937 		mode = REGULATOR_MODE_NORMAL;
938 	else
939 		mode = REGULATOR_MODE_IDLE;
940 
941 	return spmi_regulator_common_set_mode(rdev, mode);
942 }
943 
944 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
945 {
946 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
947 	unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
948 
949 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
950 				     mask, mask);
951 }
952 
953 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
954 {
955 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
956 	unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
957 
958 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
959 				     mask, mask);
960 }
961 
962 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
963 {
964 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
965 	enum spmi_regulator_logical_type type = vreg->logical_type;
966 	unsigned int current_reg;
967 	u8 reg;
968 	u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
969 		  SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
970 	int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
971 
972 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
973 		current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
974 	else
975 		current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
976 
977 	if (ilim_uA > max || ilim_uA <= 0)
978 		return -EINVAL;
979 
980 	reg = (ilim_uA - 1) / 500;
981 	reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
982 
983 	return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
984 }
985 
986 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
987 {
988 	int ret;
989 
990 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
991 		SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
992 
993 	vreg->vs_enable_time = ktime_get();
994 
995 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
996 		SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
997 
998 	return ret;
999 }
1000 
1001 static void spmi_regulator_vs_ocp_work(struct work_struct *work)
1002 {
1003 	struct delayed_work *dwork = to_delayed_work(work);
1004 	struct spmi_regulator *vreg
1005 		= container_of(dwork, struct spmi_regulator, ocp_work);
1006 
1007 	spmi_regulator_vs_clear_ocp(vreg);
1008 }
1009 
1010 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
1011 {
1012 	struct spmi_regulator *vreg = data;
1013 	ktime_t ocp_irq_time;
1014 	s64 ocp_trigger_delay_us;
1015 
1016 	ocp_irq_time = ktime_get();
1017 	ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
1018 						vreg->vs_enable_time);
1019 
1020 	/*
1021 	 * Reset the OCP count if there is a large delay between switch enable
1022 	 * and when OCP triggers.  This is indicative of a hotplug event as
1023 	 * opposed to a fault.
1024 	 */
1025 	if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
1026 		vreg->ocp_count = 0;
1027 
1028 	/* Wait for switch output to settle back to 0 V after OCP triggered. */
1029 	udelay(SPMI_VS_OCP_FALL_DELAY_US);
1030 
1031 	vreg->ocp_count++;
1032 
1033 	if (vreg->ocp_count == 1) {
1034 		/* Immediately clear the over current condition. */
1035 		spmi_regulator_vs_clear_ocp(vreg);
1036 	} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
1037 		/* Schedule the over current clear task to run later. */
1038 		schedule_delayed_work(&vreg->ocp_work,
1039 			msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
1040 	} else {
1041 		dev_err(vreg->dev,
1042 			"OCP triggered %d times; no further retries\n",
1043 			vreg->ocp_count);
1044 	}
1045 
1046 	return IRQ_HANDLED;
1047 }
1048 
1049 #define SAW3_VCTL_DATA_MASK	0xFF
1050 #define SAW3_VCTL_CLEAR_MASK	0x700FF
1051 #define SAW3_AVS_CTL_EN_MASK	0x1
1052 #define SAW3_AVS_CTL_TGGL_MASK	0x8000000
1053 #define SAW3_AVS_CTL_CLEAR_MASK	0x7efc00
1054 
1055 static struct regmap *saw_regmap;
1056 
1057 static void spmi_saw_set_vdd(void *data)
1058 {
1059 	u32 vctl, data3, avs_ctl, pmic_sts;
1060 	bool avs_enabled = false;
1061 	unsigned long timeout;
1062 	u8 voltage_sel = *(u8 *)data;
1063 
1064 	regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl);
1065 	regmap_read(saw_regmap, SAW3_VCTL, &vctl);
1066 	regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3);
1067 
1068 	/* select the band */
1069 	vctl &= ~SAW3_VCTL_CLEAR_MASK;
1070 	vctl |= (u32)voltage_sel;
1071 
1072 	data3 &= ~SAW3_VCTL_CLEAR_MASK;
1073 	data3 |= (u32)voltage_sel;
1074 
1075 	/* If AVS is enabled, switch it off during the voltage change */
1076 	avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl;
1077 	if (avs_enabled) {
1078 		avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK;
1079 		regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1080 	}
1081 
1082 	regmap_write(saw_regmap, SAW3_RST, 1);
1083 	regmap_write(saw_regmap, SAW3_VCTL, vctl);
1084 	regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3);
1085 
1086 	timeout = jiffies + usecs_to_jiffies(100);
1087 	do {
1088 		regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts);
1089 		pmic_sts &= SAW3_VCTL_DATA_MASK;
1090 		if (pmic_sts == (u32)voltage_sel)
1091 			break;
1092 
1093 		cpu_relax();
1094 
1095 	} while (time_before(jiffies, timeout));
1096 
1097 	/* After successful voltage change, switch the AVS back on */
1098 	if (avs_enabled) {
1099 		pmic_sts &= 0x3f;
1100 		avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK;
1101 		avs_ctl |= ((pmic_sts - 4) << 10);
1102 		avs_ctl |= (pmic_sts << 17);
1103 		avs_ctl |= SAW3_AVS_CTL_TGGL_MASK;
1104 		regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1105 	}
1106 }
1107 
1108 static int
1109 spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector)
1110 {
1111 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1112 	int ret;
1113 	u8 range_sel, voltage_sel;
1114 
1115 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
1116 	if (ret)
1117 		return ret;
1118 
1119 	if (0 != range_sel) {
1120 		dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \
1121 			range_sel, voltage_sel);
1122 		return -EINVAL;
1123 	}
1124 
1125 	/* Always do the SAW register writes on the first CPU */
1126 	return smp_call_function_single(0, spmi_saw_set_vdd, \
1127 					&voltage_sel, true);
1128 }
1129 
1130 static struct regulator_ops spmi_saw_ops = {};
1131 
1132 static struct regulator_ops spmi_smps_ops = {
1133 	.enable			= regulator_enable_regmap,
1134 	.disable		= regulator_disable_regmap,
1135 	.is_enabled		= regulator_is_enabled_regmap,
1136 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1137 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1138 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1139 	.map_voltage		= spmi_regulator_common_map_voltage,
1140 	.list_voltage		= spmi_regulator_common_list_voltage,
1141 	.set_mode		= spmi_regulator_common_set_mode,
1142 	.get_mode		= spmi_regulator_common_get_mode,
1143 	.set_load		= spmi_regulator_common_set_load,
1144 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1145 };
1146 
1147 static struct regulator_ops spmi_ldo_ops = {
1148 	.enable			= regulator_enable_regmap,
1149 	.disable		= regulator_disable_regmap,
1150 	.is_enabled		= regulator_is_enabled_regmap,
1151 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1152 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1153 	.map_voltage		= spmi_regulator_common_map_voltage,
1154 	.list_voltage		= spmi_regulator_common_list_voltage,
1155 	.set_mode		= spmi_regulator_common_set_mode,
1156 	.get_mode		= spmi_regulator_common_get_mode,
1157 	.set_load		= spmi_regulator_common_set_load,
1158 	.set_bypass		= spmi_regulator_common_set_bypass,
1159 	.get_bypass		= spmi_regulator_common_get_bypass,
1160 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1161 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1162 };
1163 
1164 static struct regulator_ops spmi_ln_ldo_ops = {
1165 	.enable			= regulator_enable_regmap,
1166 	.disable		= regulator_disable_regmap,
1167 	.is_enabled		= regulator_is_enabled_regmap,
1168 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1169 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1170 	.map_voltage		= spmi_regulator_common_map_voltage,
1171 	.list_voltage		= spmi_regulator_common_list_voltage,
1172 	.set_bypass		= spmi_regulator_common_set_bypass,
1173 	.get_bypass		= spmi_regulator_common_get_bypass,
1174 };
1175 
1176 static struct regulator_ops spmi_vs_ops = {
1177 	.enable			= spmi_regulator_vs_enable,
1178 	.disable		= regulator_disable_regmap,
1179 	.is_enabled		= regulator_is_enabled_regmap,
1180 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1181 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1182 	.set_over_current_protection = spmi_regulator_vs_ocp,
1183 	.set_mode		= spmi_regulator_common_set_mode,
1184 	.get_mode		= spmi_regulator_common_get_mode,
1185 };
1186 
1187 static struct regulator_ops spmi_boost_ops = {
1188 	.enable			= regulator_enable_regmap,
1189 	.disable		= regulator_disable_regmap,
1190 	.is_enabled		= regulator_is_enabled_regmap,
1191 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1192 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1193 	.map_voltage		= spmi_regulator_single_map_voltage,
1194 	.list_voltage		= spmi_regulator_common_list_voltage,
1195 	.set_input_current_limit = spmi_regulator_set_ilim,
1196 };
1197 
1198 static struct regulator_ops spmi_ftsmps_ops = {
1199 	.enable			= regulator_enable_regmap,
1200 	.disable		= regulator_disable_regmap,
1201 	.is_enabled		= regulator_is_enabled_regmap,
1202 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1203 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1204 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1205 	.map_voltage		= spmi_regulator_common_map_voltage,
1206 	.list_voltage		= spmi_regulator_common_list_voltage,
1207 	.set_mode		= spmi_regulator_common_set_mode,
1208 	.get_mode		= spmi_regulator_common_get_mode,
1209 	.set_load		= spmi_regulator_common_set_load,
1210 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1211 };
1212 
1213 static struct regulator_ops spmi_ult_lo_smps_ops = {
1214 	.enable			= regulator_enable_regmap,
1215 	.disable		= regulator_disable_regmap,
1216 	.is_enabled		= regulator_is_enabled_regmap,
1217 	.set_voltage_sel	= spmi_regulator_ult_lo_smps_set_voltage,
1218 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1219 	.get_voltage_sel	= spmi_regulator_ult_lo_smps_get_voltage,
1220 	.list_voltage		= spmi_regulator_common_list_voltage,
1221 	.set_mode		= spmi_regulator_common_set_mode,
1222 	.get_mode		= spmi_regulator_common_get_mode,
1223 	.set_load		= spmi_regulator_common_set_load,
1224 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1225 };
1226 
1227 static struct regulator_ops spmi_ult_ho_smps_ops = {
1228 	.enable			= regulator_enable_regmap,
1229 	.disable		= regulator_disable_regmap,
1230 	.is_enabled		= regulator_is_enabled_regmap,
1231 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1232 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1233 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1234 	.map_voltage		= spmi_regulator_single_map_voltage,
1235 	.list_voltage		= spmi_regulator_common_list_voltage,
1236 	.set_mode		= spmi_regulator_common_set_mode,
1237 	.get_mode		= spmi_regulator_common_get_mode,
1238 	.set_load		= spmi_regulator_common_set_load,
1239 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1240 };
1241 
1242 static struct regulator_ops spmi_ult_ldo_ops = {
1243 	.enable			= regulator_enable_regmap,
1244 	.disable		= regulator_disable_regmap,
1245 	.is_enabled		= regulator_is_enabled_regmap,
1246 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1247 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1248 	.map_voltage		= spmi_regulator_single_map_voltage,
1249 	.list_voltage		= spmi_regulator_common_list_voltage,
1250 	.set_mode		= spmi_regulator_common_set_mode,
1251 	.get_mode		= spmi_regulator_common_get_mode,
1252 	.set_load		= spmi_regulator_common_set_load,
1253 	.set_bypass		= spmi_regulator_common_set_bypass,
1254 	.get_bypass		= spmi_regulator_common_get_bypass,
1255 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1256 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1257 };
1258 
1259 /* Maximum possible digital major revision value */
1260 #define INF 0xFF
1261 
1262 static const struct spmi_regulator_mapping supported_regulators[] = {
1263 	/*           type subtype dig_min dig_max ltype ops setpoints hpm_min */
1264 	SPMI_VREG(BUCK,  GP_CTL,   0, INF, SMPS,   smps,   smps,   100000),
1265 	SPMI_VREG(LDO,   N300,     0, INF, LDO,    ldo,    nldo1,   10000),
1266 	SPMI_VREG(LDO,   N600,     0,   0, LDO,    ldo,    nldo2,   10000),
1267 	SPMI_VREG(LDO,   N1200,    0,   0, LDO,    ldo,    nldo2,   10000),
1268 	SPMI_VREG(LDO,   N600,     1, INF, LDO,    ldo,    nldo3,   10000),
1269 	SPMI_VREG(LDO,   N1200,    1, INF, LDO,    ldo,    nldo3,   10000),
1270 	SPMI_VREG(LDO,   N600_ST,  0,   0, LDO,    ldo,    nldo2,   10000),
1271 	SPMI_VREG(LDO,   N1200_ST, 0,   0, LDO,    ldo,    nldo2,   10000),
1272 	SPMI_VREG(LDO,   N600_ST,  1, INF, LDO,    ldo,    nldo3,   10000),
1273 	SPMI_VREG(LDO,   N1200_ST, 1, INF, LDO,    ldo,    nldo3,   10000),
1274 	SPMI_VREG(LDO,   P50,      0, INF, LDO,    ldo,    pldo,     5000),
1275 	SPMI_VREG(LDO,   P150,     0, INF, LDO,    ldo,    pldo,    10000),
1276 	SPMI_VREG(LDO,   P300,     0, INF, LDO,    ldo,    pldo,    10000),
1277 	SPMI_VREG(LDO,   P600,     0, INF, LDO,    ldo,    pldo,    10000),
1278 	SPMI_VREG(LDO,   P1200,    0, INF, LDO,    ldo,    pldo,    10000),
1279 	SPMI_VREG(LDO,   LN,       0, INF, LN_LDO, ln_ldo, ln_ldo,      0),
1280 	SPMI_VREG(LDO,   LV_P50,   0, INF, LDO,    ldo,    pldo,     5000),
1281 	SPMI_VREG(LDO,   LV_P150,  0, INF, LDO,    ldo,    pldo,    10000),
1282 	SPMI_VREG(LDO,   LV_P300,  0, INF, LDO,    ldo,    pldo,    10000),
1283 	SPMI_VREG(LDO,   LV_P600,  0, INF, LDO,    ldo,    pldo,    10000),
1284 	SPMI_VREG(LDO,   LV_P1200, 0, INF, LDO,    ldo,    pldo,    10000),
1285 	SPMI_VREG_VS(LV100,        0, INF),
1286 	SPMI_VREG_VS(LV300,        0, INF),
1287 	SPMI_VREG_VS(MV300,        0, INF),
1288 	SPMI_VREG_VS(MV500,        0, INF),
1289 	SPMI_VREG_VS(HDMI,         0, INF),
1290 	SPMI_VREG_VS(OTG,          0, INF),
1291 	SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST,  boost,  boost,       0),
1292 	SPMI_VREG(FTS,   FTS_CTL,  0, INF, FTSMPS, ftsmps, ftsmps, 100000),
1293 	SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
1294 	SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
1295 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1296 						ult_lo_smps,   100000),
1297 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1298 						ult_lo_smps,   100000),
1299 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1300 						ult_lo_smps,   100000),
1301 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
1302 						ult_ho_smps,   100000),
1303 	SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1304 	SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1305 	SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1306 	SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1307 	SPMI_VREG(ULT_LDO, LV_P150,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1308 	SPMI_VREG(ULT_LDO, LV_P300,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1309 	SPMI_VREG(ULT_LDO, LV_P450,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1310 	SPMI_VREG(ULT_LDO, P600,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1311 	SPMI_VREG(ULT_LDO, P150,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1312 	SPMI_VREG(ULT_LDO, P50,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
1313 };
1314 
1315 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
1316 {
1317 	unsigned int n;
1318 	struct spmi_voltage_range *range = points->range;
1319 
1320 	for (; range < points->range + points->count; range++) {
1321 		n = 0;
1322 		if (range->set_point_max_uV) {
1323 			n = range->set_point_max_uV - range->set_point_min_uV;
1324 			n = (n / range->step_uV) + 1;
1325 		}
1326 		range->n_voltages = n;
1327 		points->n_voltages += n;
1328 	}
1329 }
1330 
1331 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
1332 {
1333 	const struct spmi_regulator_mapping *mapping;
1334 	int ret, i;
1335 	u32 dig_major_rev;
1336 	u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
1337 	u8 type, subtype;
1338 
1339 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
1340 		ARRAY_SIZE(version));
1341 	if (ret) {
1342 		dev_dbg(vreg->dev, "could not read version registers\n");
1343 		return ret;
1344 	}
1345 	dig_major_rev	= version[SPMI_COMMON_REG_DIG_MAJOR_REV
1346 					- SPMI_COMMON_REG_DIG_MAJOR_REV];
1347 
1348 	if (!force_type) {
1349 		type		= version[SPMI_COMMON_REG_TYPE -
1350 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1351 		subtype		= version[SPMI_COMMON_REG_SUBTYPE -
1352 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1353 	} else {
1354 		type = force_type >> 8;
1355 		subtype = force_type;
1356 	}
1357 
1358 	for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
1359 		mapping = &supported_regulators[i];
1360 		if (mapping->type == type && mapping->subtype == subtype
1361 		    && mapping->revision_min <= dig_major_rev
1362 		    && mapping->revision_max >= dig_major_rev)
1363 			goto found;
1364 	}
1365 
1366 	dev_err(vreg->dev,
1367 		"unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
1368 		vreg->desc.name, type, subtype, dig_major_rev);
1369 
1370 	return -ENODEV;
1371 
1372 found:
1373 	vreg->logical_type	= mapping->logical_type;
1374 	vreg->set_points	= mapping->set_points;
1375 	vreg->hpm_min_load	= mapping->hpm_min_load;
1376 	vreg->desc.ops		= mapping->ops;
1377 
1378 	if (mapping->set_points) {
1379 		if (!mapping->set_points->n_voltages)
1380 			spmi_calculate_num_voltages(mapping->set_points);
1381 		vreg->desc.n_voltages = mapping->set_points->n_voltages;
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
1388 {
1389 	int ret;
1390 	u8 reg = 0;
1391 	int step, delay, slew_rate, step_delay;
1392 	const struct spmi_voltage_range *range;
1393 
1394 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1395 	if (ret) {
1396 		dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1397 		return ret;
1398 	}
1399 
1400 	range = spmi_regulator_find_range(vreg);
1401 	if (!range)
1402 		return -EINVAL;
1403 
1404 	switch (vreg->logical_type) {
1405 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1406 		step_delay = SPMI_FTSMPS_STEP_DELAY;
1407 		break;
1408 	default:
1409 		step_delay = SPMI_DEFAULT_STEP_DELAY;
1410 		break;
1411 	}
1412 
1413 	step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
1414 	step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
1415 
1416 	delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
1417 	delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
1418 
1419 	/* slew_rate has units of uV/us */
1420 	slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
1421 	slew_rate /= 1000 * (step_delay << delay);
1422 	slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
1423 	slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
1424 
1425 	/* Ensure that the slew rate is greater than 0 */
1426 	vreg->slew_rate = max(slew_rate, 1);
1427 
1428 	return ret;
1429 }
1430 
1431 static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
1432 				const struct spmi_regulator_init_data *data)
1433 {
1434 	int ret;
1435 	enum spmi_regulator_logical_type type;
1436 	u8 ctrl_reg[8], reg, mask;
1437 
1438 	type = vreg->logical_type;
1439 
1440 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1441 	if (ret)
1442 		return ret;
1443 
1444 	/* Set up enable pin control. */
1445 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1446 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO
1447 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_VS)
1448 	    && !(data->pin_ctrl_enable
1449 			& SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
1450 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
1451 			~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1452 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
1453 		    data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1454 	}
1455 
1456 	/* Set up mode pin control. */
1457 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1458 	    || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO)
1459 		&& !(data->pin_ctrl_hpm
1460 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1461 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1462 			~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1463 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1464 			data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1465 	}
1466 
1467 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS
1468 	   && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1469 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1470 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1471 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1472 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1473 	}
1474 
1475 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
1476 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
1477 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO)
1478 		&& !(data->pin_ctrl_hpm
1479 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1480 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1481 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1482 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1483 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1484 	}
1485 
1486 	/* Write back any control register values that were modified. */
1487 	ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1488 	if (ret)
1489 		return ret;
1490 
1491 	/* Set soft start strength and over current protection for VS. */
1492 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
1493 		if (data->vs_soft_start_strength
1494 				!= SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
1495 			reg = data->vs_soft_start_strength
1496 				& SPMI_VS_SOFT_START_SEL_MASK;
1497 			mask = SPMI_VS_SOFT_START_SEL_MASK;
1498 			return spmi_vreg_update_bits(vreg,
1499 						     SPMI_VS_REG_SOFT_START,
1500 						     reg, mask);
1501 		}
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
1508 		struct device_node *node, struct spmi_regulator_init_data *data)
1509 {
1510 	/*
1511 	 * Initialize configuration parameters to use hardware default in case
1512 	 * no value is specified via device tree.
1513 	 */
1514 	data->pin_ctrl_enable	    = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
1515 	data->pin_ctrl_hpm	    = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
1516 	data->vs_soft_start_strength	= SPMI_VS_SOFT_START_STR_HW_DEFAULT;
1517 
1518 	/* These bindings are optional, so it is okay if they aren't found. */
1519 	of_property_read_u32(node, "qcom,ocp-max-retries",
1520 		&vreg->ocp_max_retries);
1521 	of_property_read_u32(node, "qcom,ocp-retry-delay",
1522 		&vreg->ocp_retry_delay_ms);
1523 	of_property_read_u32(node, "qcom,pin-ctrl-enable",
1524 		&data->pin_ctrl_enable);
1525 	of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
1526 	of_property_read_u32(node, "qcom,vs-soft-start-strength",
1527 		&data->vs_soft_start_strength);
1528 }
1529 
1530 static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
1531 {
1532 	if (mode == 1)
1533 		return REGULATOR_MODE_NORMAL;
1534 	if (mode == 2)
1535 		return REGULATOR_MODE_FAST;
1536 
1537 	return REGULATOR_MODE_IDLE;
1538 }
1539 
1540 static int spmi_regulator_of_parse(struct device_node *node,
1541 			    const struct regulator_desc *desc,
1542 			    struct regulator_config *config)
1543 {
1544 	struct spmi_regulator_init_data data = { };
1545 	struct spmi_regulator *vreg = config->driver_data;
1546 	struct device *dev = config->dev;
1547 	int ret;
1548 
1549 	spmi_regulator_get_dt_config(vreg, node, &data);
1550 
1551 	if (!vreg->ocp_max_retries)
1552 		vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
1553 	if (!vreg->ocp_retry_delay_ms)
1554 		vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
1555 
1556 	ret = spmi_regulator_init_registers(vreg, &data);
1557 	if (ret) {
1558 		dev_err(dev, "common initialization failed, ret=%d\n", ret);
1559 		return ret;
1560 	}
1561 
1562 	switch (vreg->logical_type) {
1563 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1564 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1565 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1566 	case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1567 		ret = spmi_regulator_init_slew_rate(vreg);
1568 		if (ret)
1569 			return ret;
1570 	default:
1571 		break;
1572 	}
1573 
1574 	if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
1575 		vreg->ocp_irq = 0;
1576 
1577 	if (vreg->ocp_irq) {
1578 		ret = devm_request_irq(dev, vreg->ocp_irq,
1579 			spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
1580 			vreg);
1581 		if (ret < 0) {
1582 			dev_err(dev, "failed to request irq %d, ret=%d\n",
1583 				vreg->ocp_irq, ret);
1584 			return ret;
1585 		}
1586 
1587 		INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static const struct spmi_regulator_data pm8941_regulators[] = {
1594 	{ "s1", 0x1400, "vdd_s1", },
1595 	{ "s2", 0x1700, "vdd_s2", },
1596 	{ "s3", 0x1a00, "vdd_s3", },
1597 	{ "s4", 0xa000, },
1598 	{ "l1", 0x4000, "vdd_l1_l3", },
1599 	{ "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
1600 	{ "l3", 0x4200, "vdd_l1_l3", },
1601 	{ "l4", 0x4300, "vdd_l4_l11", },
1602 	{ "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
1603 	{ "l6", 0x4500, "vdd_l6_l12_l14_l15", },
1604 	{ "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
1605 	{ "l8", 0x4700, "vdd_l8_l16_l18_19", },
1606 	{ "l9", 0x4800, "vdd_l9_l10_l17_l22", },
1607 	{ "l10", 0x4900, "vdd_l9_l10_l17_l22", },
1608 	{ "l11", 0x4a00, "vdd_l4_l11", },
1609 	{ "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
1610 	{ "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
1611 	{ "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
1612 	{ "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
1613 	{ "l16", 0x4f00, "vdd_l8_l16_l18_19", },
1614 	{ "l17", 0x5000, "vdd_l9_l10_l17_l22", },
1615 	{ "l18", 0x5100, "vdd_l8_l16_l18_19", },
1616 	{ "l19", 0x5200, "vdd_l8_l16_l18_19", },
1617 	{ "l20", 0x5300, "vdd_l13_l20_l23_l24", },
1618 	{ "l21", 0x5400, "vdd_l21", },
1619 	{ "l22", 0x5500, "vdd_l9_l10_l17_l22", },
1620 	{ "l23", 0x5600, "vdd_l13_l20_l23_l24", },
1621 	{ "l24", 0x5700, "vdd_l13_l20_l23_l24", },
1622 	{ "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
1623 	{ "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
1624 	{ "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
1625 	{ "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
1626 	{ "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
1627 	{ }
1628 };
1629 
1630 static const struct spmi_regulator_data pm8841_regulators[] = {
1631 	{ "s1", 0x1400, "vdd_s1", },
1632 	{ "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
1633 	{ "s3", 0x1a00, "vdd_s3", },
1634 	{ "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
1635 	{ "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
1636 	{ "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
1637 	{ "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
1638 	{ "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
1639 	{ }
1640 };
1641 
1642 static const struct spmi_regulator_data pm8916_regulators[] = {
1643 	{ "s1", 0x1400, "vdd_s1", },
1644 	{ "s2", 0x1700, "vdd_s2", },
1645 	{ "s3", 0x1a00, "vdd_s3", },
1646 	{ "s4", 0x1d00, "vdd_s4", },
1647 	{ "l1", 0x4000, "vdd_l1_l3", },
1648 	{ "l2", 0x4100, "vdd_l2", },
1649 	{ "l3", 0x4200, "vdd_l1_l3", },
1650 	{ "l4", 0x4300, "vdd_l4_l5_l6", },
1651 	{ "l5", 0x4400, "vdd_l4_l5_l6", },
1652 	{ "l6", 0x4500, "vdd_l4_l5_l6", },
1653 	{ "l7", 0x4600, "vdd_l7", },
1654 	{ "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
1655 	{ "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
1656 	{ "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
1657 	{ "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
1658 	{ "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
1659 	{ "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
1660 	{ "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
1661 	{ "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
1662 	{ "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
1663 	{ "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
1664 	{ "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
1665 	{ }
1666 };
1667 
1668 static const struct spmi_regulator_data pm8994_regulators[] = {
1669 	{ "s1", 0x1400, "vdd_s1", },
1670 	{ "s2", 0x1700, "vdd_s2", },
1671 	{ "s3", 0x1a00, "vdd_s3", },
1672 	{ "s4", 0x1d00, "vdd_s4", },
1673 	{ "s5", 0x2000, "vdd_s5", },
1674 	{ "s6", 0x2300, "vdd_s6", },
1675 	{ "s7", 0x2600, "vdd_s7", },
1676 	{ "s8", 0x2900, "vdd_s8", },
1677 	{ "s9", 0x2c00, "vdd_s9", },
1678 	{ "s10", 0x2f00, "vdd_s10", },
1679 	{ "s11", 0x3200, "vdd_s11", },
1680 	{ "s12", 0x3500, "vdd_s12", },
1681 	{ "l1", 0x4000, "vdd_l1", },
1682 	{ "l2", 0x4100, "vdd_l2_l26_l28", },
1683 	{ "l3", 0x4200, "vdd_l3_l11", },
1684 	{ "l4", 0x4300, "vdd_l4_l27_l31", },
1685 	{ "l5", 0x4400, "vdd_l5_l7", },
1686 	{ "l6", 0x4500, "vdd_l6_l12_l32", },
1687 	{ "l7", 0x4600, "vdd_l5_l7", },
1688 	{ "l8", 0x4700, "vdd_l8_l16_l30", },
1689 	{ "l9", 0x4800, "vdd_l9_l10_l18_l22", },
1690 	{ "l10", 0x4900, "vdd_l9_l10_l18_l22", },
1691 	{ "l11", 0x4a00, "vdd_l3_l11", },
1692 	{ "l12", 0x4b00, "vdd_l6_l12_l32", },
1693 	{ "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
1694 	{ "l14", 0x4d00, "vdd_l14_l15", },
1695 	{ "l15", 0x4e00, "vdd_l14_l15", },
1696 	{ "l16", 0x4f00, "vdd_l8_l16_l30", },
1697 	{ "l17", 0x5000, "vdd_l17_l29", },
1698 	{ "l18", 0x5100, "vdd_l9_l10_l18_l22", },
1699 	{ "l19", 0x5200, "vdd_l13_l19_l23_l24", },
1700 	{ "l20", 0x5300, "vdd_l20_l21", },
1701 	{ "l21", 0x5400, "vdd_l20_l21", },
1702 	{ "l22", 0x5500, "vdd_l9_l10_l18_l22", },
1703 	{ "l23", 0x5600, "vdd_l13_l19_l23_l24", },
1704 	{ "l24", 0x5700, "vdd_l13_l19_l23_l24", },
1705 	{ "l25", 0x5800, "vdd_l25", },
1706 	{ "l26", 0x5900, "vdd_l2_l26_l28", },
1707 	{ "l27", 0x5a00, "vdd_l4_l27_l31", },
1708 	{ "l28", 0x5b00, "vdd_l2_l26_l28", },
1709 	{ "l29", 0x5c00, "vdd_l17_l29", },
1710 	{ "l30", 0x5d00, "vdd_l8_l16_l30", },
1711 	{ "l31", 0x5e00, "vdd_l4_l27_l31", },
1712 	{ "l32", 0x5f00, "vdd_l6_l12_l32", },
1713 	{ "lvs1", 0x8000, "vdd_lvs_1_2", },
1714 	{ "lvs2", 0x8100, "vdd_lvs_1_2", },
1715 	{ }
1716 };
1717 
1718 static const struct spmi_regulator_data pmi8994_regulators[] = {
1719 	{ "s1", 0x1400, "vdd_s1", },
1720 	{ "s2", 0x1700, "vdd_s2", },
1721 	{ "s3", 0x1a00, "vdd_s3", },
1722 	{ "l1", 0x4000, "vdd_l1", },
1723 	{ }
1724 };
1725 
1726 static const struct of_device_id qcom_spmi_regulator_match[] = {
1727 	{ .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
1728 	{ .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
1729 	{ .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
1730 	{ .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
1731 	{ .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
1732 	{ }
1733 };
1734 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
1735 
1736 static int qcom_spmi_regulator_probe(struct platform_device *pdev)
1737 {
1738 	const struct spmi_regulator_data *reg;
1739 	const struct of_device_id *match;
1740 	struct regulator_config config = { };
1741 	struct regulator_dev *rdev;
1742 	struct spmi_regulator *vreg;
1743 	struct regmap *regmap;
1744 	const char *name;
1745 	struct device *dev = &pdev->dev;
1746 	struct device_node *node = pdev->dev.of_node;
1747 	struct device_node *syscon, *reg_node;
1748 	struct property *reg_prop;
1749 	int ret, lenp;
1750 	struct list_head *vreg_list;
1751 
1752 	vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
1753 	if (!vreg_list)
1754 		return -ENOMEM;
1755 	INIT_LIST_HEAD(vreg_list);
1756 	platform_set_drvdata(pdev, vreg_list);
1757 
1758 	regmap = dev_get_regmap(dev->parent, NULL);
1759 	if (!regmap)
1760 		return -ENODEV;
1761 
1762 	match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
1763 	if (!match)
1764 		return -ENODEV;
1765 
1766 	if (of_find_property(node, "qcom,saw-reg", &lenp)) {
1767 		syscon = of_parse_phandle(node, "qcom,saw-reg", 0);
1768 		saw_regmap = syscon_node_to_regmap(syscon);
1769 		of_node_put(syscon);
1770 		if (IS_ERR(saw_regmap))
1771 			dev_err(dev, "ERROR reading SAW regmap\n");
1772 	}
1773 
1774 	for (reg = match->data; reg->name; reg++) {
1775 
1776 		if (saw_regmap) {
1777 			reg_node = of_get_child_by_name(node, reg->name);
1778 			reg_prop = of_find_property(reg_node, "qcom,saw-slave",
1779 						    &lenp);
1780 			of_node_put(reg_node);
1781 			if (reg_prop)
1782 				continue;
1783 		}
1784 
1785 		vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
1786 		if (!vreg)
1787 			return -ENOMEM;
1788 
1789 		vreg->dev = dev;
1790 		vreg->base = reg->base;
1791 		vreg->regmap = regmap;
1792 		if (reg->ocp) {
1793 			vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
1794 			if (vreg->ocp_irq < 0) {
1795 				ret = vreg->ocp_irq;
1796 				goto err;
1797 			}
1798 		}
1799 		vreg->desc.id = -1;
1800 		vreg->desc.owner = THIS_MODULE;
1801 		vreg->desc.type = REGULATOR_VOLTAGE;
1802 		vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
1803 		vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
1804 		vreg->desc.enable_val = SPMI_COMMON_ENABLE;
1805 		vreg->desc.name = name = reg->name;
1806 		vreg->desc.supply_name = reg->supply;
1807 		vreg->desc.of_match = reg->name;
1808 		vreg->desc.of_parse_cb = spmi_regulator_of_parse;
1809 		vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
1810 
1811 		ret = spmi_regulator_match(vreg, reg->force_type);
1812 		if (ret)
1813 			continue;
1814 
1815 		if (saw_regmap) {
1816 			reg_node = of_get_child_by_name(node, reg->name);
1817 			reg_prop = of_find_property(reg_node, "qcom,saw-leader",
1818 						    &lenp);
1819 			of_node_put(reg_node);
1820 			if (reg_prop) {
1821 				spmi_saw_ops = *(vreg->desc.ops);
1822 				spmi_saw_ops.set_voltage_sel =
1823 					spmi_regulator_saw_set_voltage;
1824 				vreg->desc.ops = &spmi_saw_ops;
1825 			}
1826 		}
1827 
1828 		config.dev = dev;
1829 		config.driver_data = vreg;
1830 		config.regmap = regmap;
1831 		rdev = devm_regulator_register(dev, &vreg->desc, &config);
1832 		if (IS_ERR(rdev)) {
1833 			dev_err(dev, "failed to register %s\n", name);
1834 			ret = PTR_ERR(rdev);
1835 			goto err;
1836 		}
1837 
1838 		INIT_LIST_HEAD(&vreg->node);
1839 		list_add(&vreg->node, vreg_list);
1840 	}
1841 
1842 	return 0;
1843 
1844 err:
1845 	list_for_each_entry(vreg, vreg_list, node)
1846 		if (vreg->ocp_irq)
1847 			cancel_delayed_work_sync(&vreg->ocp_work);
1848 	return ret;
1849 }
1850 
1851 static int qcom_spmi_regulator_remove(struct platform_device *pdev)
1852 {
1853 	struct spmi_regulator *vreg;
1854 	struct list_head *vreg_list = platform_get_drvdata(pdev);
1855 
1856 	list_for_each_entry(vreg, vreg_list, node)
1857 		if (vreg->ocp_irq)
1858 			cancel_delayed_work_sync(&vreg->ocp_work);
1859 
1860 	return 0;
1861 }
1862 
1863 static struct platform_driver qcom_spmi_regulator_driver = {
1864 	.driver		= {
1865 		.name	= "qcom-spmi-regulator",
1866 		.of_match_table = qcom_spmi_regulator_match,
1867 	},
1868 	.probe		= qcom_spmi_regulator_probe,
1869 	.remove		= qcom_spmi_regulator_remove,
1870 };
1871 module_platform_driver(qcom_spmi_regulator_driver);
1872 
1873 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
1874 MODULE_LICENSE("GPL v2");
1875 MODULE_ALIAS("platform:qcom-spmi-regulator");
1876