1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/delay.h> 8 #include <linux/devm-helpers.h> 9 #include <linux/err.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/bitops.h> 13 #include <linux/slab.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include <linux/platform_device.h> 17 #include <linux/ktime.h> 18 #include <linux/regulator/driver.h> 19 #include <linux/regmap.h> 20 #include <linux/list.h> 21 #include <linux/mfd/syscon.h> 22 #include <linux/io.h> 23 24 /* Pin control enable input pins. */ 25 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE 0x00 26 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0 0x01 27 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1 0x02 28 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2 0x04 29 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3 0x08 30 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT 0x10 31 32 /* Pin control high power mode input pins. */ 33 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE 0x00 34 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0 0x01 35 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1 0x02 36 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2 0x04 37 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3 0x08 38 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B 0x10 39 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT 0x20 40 41 /* 42 * Used with enable parameters to specify that hardware default register values 43 * should be left unaltered. 44 */ 45 #define SPMI_REGULATOR_USE_HW_DEFAULT 2 46 47 /* Soft start strength of a voltage switch type regulator */ 48 enum spmi_vs_soft_start_str { 49 SPMI_VS_SOFT_START_STR_0P05_UA = 0, 50 SPMI_VS_SOFT_START_STR_0P25_UA, 51 SPMI_VS_SOFT_START_STR_0P55_UA, 52 SPMI_VS_SOFT_START_STR_0P75_UA, 53 SPMI_VS_SOFT_START_STR_HW_DEFAULT, 54 }; 55 56 /** 57 * struct spmi_regulator_init_data - spmi-regulator initialization data 58 * @pin_ctrl_enable: Bit mask specifying which hardware pins should be 59 * used to enable the regulator, if any 60 * Value should be an ORing of 61 * SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants. If 62 * the bit specified by 63 * SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is 64 * set, then pin control enable hardware registers 65 * will not be modified. 66 * @pin_ctrl_hpm: Bit mask specifying which hardware pins should be 67 * used to force the regulator into high power 68 * mode, if any 69 * Value should be an ORing of 70 * SPMI_REGULATOR_PIN_CTRL_HPM_* constants. If 71 * the bit specified by 72 * SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is 73 * set, then pin control mode hardware registers 74 * will not be modified. 75 * @vs_soft_start_strength: This parameter sets the soft start strength for 76 * voltage switch type regulators. Its value 77 * should be one of SPMI_VS_SOFT_START_STR_*. If 78 * its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT, 79 * then the soft start strength will be left at its 80 * default hardware value. 81 */ 82 struct spmi_regulator_init_data { 83 unsigned pin_ctrl_enable; 84 unsigned pin_ctrl_hpm; 85 enum spmi_vs_soft_start_str vs_soft_start_strength; 86 }; 87 88 /* These types correspond to unique register layouts. */ 89 enum spmi_regulator_logical_type { 90 SPMI_REGULATOR_LOGICAL_TYPE_SMPS, 91 SPMI_REGULATOR_LOGICAL_TYPE_LDO, 92 SPMI_REGULATOR_LOGICAL_TYPE_VS, 93 SPMI_REGULATOR_LOGICAL_TYPE_BOOST, 94 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS, 95 SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP, 96 SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO, 97 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS, 98 SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS, 99 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO, 100 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426, 101 SPMI_REGULATOR_LOGICAL_TYPE_HFS430, 102 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS3, 103 SPMI_REGULATOR_LOGICAL_TYPE_LDO_510, 104 SPMI_REGULATOR_LOGICAL_TYPE_HFSMPS, 105 }; 106 107 enum spmi_regulator_type { 108 SPMI_REGULATOR_TYPE_BUCK = 0x03, 109 SPMI_REGULATOR_TYPE_LDO = 0x04, 110 SPMI_REGULATOR_TYPE_VS = 0x05, 111 SPMI_REGULATOR_TYPE_BOOST = 0x1b, 112 SPMI_REGULATOR_TYPE_FTS = 0x1c, 113 SPMI_REGULATOR_TYPE_BOOST_BYP = 0x1f, 114 SPMI_REGULATOR_TYPE_ULT_LDO = 0x21, 115 SPMI_REGULATOR_TYPE_ULT_BUCK = 0x22, 116 }; 117 118 enum spmi_regulator_subtype { 119 SPMI_REGULATOR_SUBTYPE_GP_CTL = 0x08, 120 SPMI_REGULATOR_SUBTYPE_RF_CTL = 0x09, 121 SPMI_REGULATOR_SUBTYPE_N50 = 0x01, 122 SPMI_REGULATOR_SUBTYPE_N150 = 0x02, 123 SPMI_REGULATOR_SUBTYPE_N300 = 0x03, 124 SPMI_REGULATOR_SUBTYPE_N600 = 0x04, 125 SPMI_REGULATOR_SUBTYPE_N1200 = 0x05, 126 SPMI_REGULATOR_SUBTYPE_N600_ST = 0x06, 127 SPMI_REGULATOR_SUBTYPE_N1200_ST = 0x07, 128 SPMI_REGULATOR_SUBTYPE_N900_ST = 0x14, 129 SPMI_REGULATOR_SUBTYPE_N300_ST = 0x15, 130 SPMI_REGULATOR_SUBTYPE_P50 = 0x08, 131 SPMI_REGULATOR_SUBTYPE_P150 = 0x09, 132 SPMI_REGULATOR_SUBTYPE_P300 = 0x0a, 133 SPMI_REGULATOR_SUBTYPE_P600 = 0x0b, 134 SPMI_REGULATOR_SUBTYPE_P1200 = 0x0c, 135 SPMI_REGULATOR_SUBTYPE_LN = 0x10, 136 SPMI_REGULATOR_SUBTYPE_LV_P50 = 0x28, 137 SPMI_REGULATOR_SUBTYPE_LV_P150 = 0x29, 138 SPMI_REGULATOR_SUBTYPE_LV_P300 = 0x2a, 139 SPMI_REGULATOR_SUBTYPE_LV_P600 = 0x2b, 140 SPMI_REGULATOR_SUBTYPE_LV_P1200 = 0x2c, 141 SPMI_REGULATOR_SUBTYPE_LV_P450 = 0x2d, 142 SPMI_REGULATOR_SUBTYPE_HT_N300_ST = 0x30, 143 SPMI_REGULATOR_SUBTYPE_HT_N600_ST = 0x31, 144 SPMI_REGULATOR_SUBTYPE_HT_N1200_ST = 0x32, 145 SPMI_REGULATOR_SUBTYPE_HT_LVP150 = 0x3b, 146 SPMI_REGULATOR_SUBTYPE_HT_LVP300 = 0x3c, 147 SPMI_REGULATOR_SUBTYPE_L660_N300_ST = 0x42, 148 SPMI_REGULATOR_SUBTYPE_L660_N600_ST = 0x43, 149 SPMI_REGULATOR_SUBTYPE_L660_P50 = 0x46, 150 SPMI_REGULATOR_SUBTYPE_L660_P150 = 0x47, 151 SPMI_REGULATOR_SUBTYPE_L660_P600 = 0x49, 152 SPMI_REGULATOR_SUBTYPE_L660_LVP150 = 0x4d, 153 SPMI_REGULATOR_SUBTYPE_L660_LVP600 = 0x4f, 154 SPMI_REGULATOR_SUBTYPE_LV100 = 0x01, 155 SPMI_REGULATOR_SUBTYPE_LV300 = 0x02, 156 SPMI_REGULATOR_SUBTYPE_MV300 = 0x08, 157 SPMI_REGULATOR_SUBTYPE_MV500 = 0x09, 158 SPMI_REGULATOR_SUBTYPE_HDMI = 0x10, 159 SPMI_REGULATOR_SUBTYPE_OTG = 0x11, 160 SPMI_REGULATOR_SUBTYPE_5V_BOOST = 0x01, 161 SPMI_REGULATOR_SUBTYPE_FTS_CTL = 0x08, 162 SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09, 163 SPMI_REGULATOR_SUBTYPE_FTS426_CTL = 0x0a, 164 SPMI_REGULATOR_SUBTYPE_BB_2A = 0x01, 165 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0d, 166 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0e, 167 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0f, 168 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10, 169 SPMI_REGULATOR_SUBTYPE_HFS430 = 0x0a, 170 SPMI_REGULATOR_SUBTYPE_HT_P150 = 0x35, 171 SPMI_REGULATOR_SUBTYPE_HT_P600 = 0x3d, 172 SPMI_REGULATOR_SUBTYPE_HFSMPS_510 = 0x0a, 173 SPMI_REGULATOR_SUBTYPE_FTSMPS_510 = 0x0b, 174 SPMI_REGULATOR_SUBTYPE_LV_P150_510 = 0x71, 175 SPMI_REGULATOR_SUBTYPE_LV_P300_510 = 0x72, 176 SPMI_REGULATOR_SUBTYPE_LV_P600_510 = 0x73, 177 SPMI_REGULATOR_SUBTYPE_N300_510 = 0x6a, 178 SPMI_REGULATOR_SUBTYPE_N600_510 = 0x6b, 179 SPMI_REGULATOR_SUBTYPE_N1200_510 = 0x6c, 180 SPMI_REGULATOR_SUBTYPE_MV_P50_510 = 0x7a, 181 SPMI_REGULATOR_SUBTYPE_MV_P150_510 = 0x7b, 182 SPMI_REGULATOR_SUBTYPE_MV_P600_510 = 0x7d, 183 }; 184 185 enum spmi_common_regulator_registers { 186 SPMI_COMMON_REG_DIG_MAJOR_REV = 0x01, 187 SPMI_COMMON_REG_TYPE = 0x04, 188 SPMI_COMMON_REG_SUBTYPE = 0x05, 189 SPMI_COMMON_REG_VOLTAGE_RANGE = 0x40, 190 SPMI_COMMON_REG_VOLTAGE_SET = 0x41, 191 SPMI_COMMON_REG_MODE = 0x45, 192 SPMI_COMMON_REG_ENABLE = 0x46, 193 SPMI_COMMON_REG_PULL_DOWN = 0x48, 194 SPMI_COMMON_REG_SOFT_START = 0x4c, 195 SPMI_COMMON_REG_STEP_CTRL = 0x61, 196 }; 197 198 /* 199 * Second common register layout used by newer devices starting with ftsmps426 200 * Note that some of the registers from the first common layout remain 201 * unchanged and their definition is not duplicated. 202 */ 203 enum spmi_ftsmps426_regulator_registers { 204 SPMI_FTSMPS426_REG_VOLTAGE_LSB = 0x40, 205 SPMI_FTSMPS426_REG_VOLTAGE_MSB = 0x41, 206 SPMI_FTSMPS426_REG_VOLTAGE_ULS_LSB = 0x68, 207 SPMI_FTSMPS426_REG_VOLTAGE_ULS_MSB = 0x69, 208 }; 209 210 /* 211 * Third common register layout 212 */ 213 enum spmi_hfsmps_regulator_registers { 214 SPMI_HFSMPS_REG_STEP_CTRL = 0x3c, 215 SPMI_HFSMPS_REG_PULL_DOWN = 0xa0, 216 }; 217 218 enum spmi_vs_registers { 219 SPMI_VS_REG_OCP = 0x4a, 220 SPMI_VS_REG_SOFT_START = 0x4c, 221 }; 222 223 enum spmi_boost_registers { 224 SPMI_BOOST_REG_CURRENT_LIMIT = 0x4a, 225 }; 226 227 enum spmi_boost_byp_registers { 228 SPMI_BOOST_BYP_REG_CURRENT_LIMIT = 0x4b, 229 }; 230 231 enum spmi_saw3_registers { 232 SAW3_SECURE = 0x00, 233 SAW3_ID = 0x04, 234 SAW3_SPM_STS = 0x0C, 235 SAW3_AVS_STS = 0x10, 236 SAW3_PMIC_STS = 0x14, 237 SAW3_RST = 0x18, 238 SAW3_VCTL = 0x1C, 239 SAW3_AVS_CTL = 0x20, 240 SAW3_AVS_LIMIT = 0x24, 241 SAW3_AVS_DLY = 0x28, 242 SAW3_AVS_HYSTERESIS = 0x2C, 243 SAW3_SPM_STS2 = 0x38, 244 SAW3_SPM_PMIC_DATA_3 = 0x4C, 245 SAW3_VERSION = 0xFD0, 246 }; 247 248 /* Used for indexing into ctrl_reg. These are offets from 0x40 */ 249 enum spmi_common_control_register_index { 250 SPMI_COMMON_IDX_VOLTAGE_RANGE = 0, 251 SPMI_COMMON_IDX_VOLTAGE_SET = 1, 252 SPMI_COMMON_IDX_MODE = 5, 253 SPMI_COMMON_IDX_ENABLE = 6, 254 }; 255 256 /* Common regulator control register layout */ 257 #define SPMI_COMMON_ENABLE_MASK 0x80 258 #define SPMI_COMMON_ENABLE 0x80 259 #define SPMI_COMMON_DISABLE 0x00 260 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08 261 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04 262 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02 263 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01 264 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0f 265 266 /* Common regulator mode register layout */ 267 #define SPMI_COMMON_MODE_HPM_MASK 0x80 268 #define SPMI_COMMON_MODE_AUTO_MASK 0x40 269 #define SPMI_COMMON_MODE_BYPASS_MASK 0x20 270 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10 271 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08 272 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04 273 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02 274 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01 275 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK 0x1f 276 277 #define SPMI_FTSMPS426_MODE_BYPASS_MASK 3 278 #define SPMI_FTSMPS426_MODE_RETENTION_MASK 4 279 #define SPMI_FTSMPS426_MODE_LPM_MASK 5 280 #define SPMI_FTSMPS426_MODE_AUTO_MASK 6 281 #define SPMI_FTSMPS426_MODE_HPM_MASK 7 282 283 #define SPMI_FTSMPS426_MODE_MASK 0x07 284 285 /* Third common regulator mode register values */ 286 #define SPMI_HFSMPS_MODE_BYPASS_MASK 2 287 #define SPMI_HFSMPS_MODE_RETENTION_MASK 3 288 #define SPMI_HFSMPS_MODE_LPM_MASK 4 289 #define SPMI_HFSMPS_MODE_AUTO_MASK 6 290 #define SPMI_HFSMPS_MODE_HPM_MASK 7 291 292 #define SPMI_HFSMPS_MODE_MASK 0x07 293 294 /* Common regulator pull down control register layout */ 295 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK 0x80 296 297 /* LDO regulator current limit control register layout */ 298 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80 299 300 /* LDO regulator soft start control register layout */ 301 #define SPMI_LDO_SOFT_START_ENABLE_MASK 0x80 302 303 /* VS regulator over current protection control register layout */ 304 #define SPMI_VS_OCP_OVERRIDE 0x01 305 #define SPMI_VS_OCP_NO_OVERRIDE 0x00 306 307 /* VS regulator soft start control register layout */ 308 #define SPMI_VS_SOFT_START_ENABLE_MASK 0x80 309 #define SPMI_VS_SOFT_START_SEL_MASK 0x03 310 311 /* Boost regulator current limit control register layout */ 312 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80 313 #define SPMI_BOOST_CURRENT_LIMIT_MASK 0x07 314 315 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES 10 316 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS 30 317 #define SPMI_VS_OCP_FALL_DELAY_US 90 318 #define SPMI_VS_OCP_FAULT_DELAY_US 20000 319 320 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK 0x18 321 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT 3 322 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK 0x07 323 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT 0 324 325 /* Clock rate in kHz of the FTSMPS regulator reference clock. */ 326 #define SPMI_FTSMPS_CLOCK_RATE 19200 327 328 /* Minimum voltage stepper delay for each step. */ 329 #define SPMI_FTSMPS_STEP_DELAY 8 330 #define SPMI_DEFAULT_STEP_DELAY 20 331 332 /* 333 * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to 334 * adjust the step rate in order to account for oscillator variance. 335 */ 336 #define SPMI_FTSMPS_STEP_MARGIN_NUM 4 337 #define SPMI_FTSMPS_STEP_MARGIN_DEN 5 338 339 /* slew_rate has units of uV/us. */ 340 #define SPMI_HFSMPS_SLEW_RATE_38p4 38400 341 342 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK 0x03 343 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT 0 344 345 /* Clock rate in kHz of the FTSMPS426 regulator reference clock. */ 346 #define SPMI_FTSMPS426_CLOCK_RATE 4800 347 348 #define SPMI_HFS430_CLOCK_RATE 1600 349 350 /* Minimum voltage stepper delay for each step. */ 351 #define SPMI_FTSMPS426_STEP_DELAY 2 352 353 /* 354 * The ratio SPMI_FTSMPS426_STEP_MARGIN_NUM/SPMI_FTSMPS426_STEP_MARGIN_DEN is 355 * used to adjust the step rate in order to account for oscillator variance. 356 */ 357 #define SPMI_FTSMPS426_STEP_MARGIN_NUM 10 358 #define SPMI_FTSMPS426_STEP_MARGIN_DEN 11 359 360 361 /* VSET value to decide the range of ULT SMPS */ 362 #define ULT_SMPS_RANGE_SPLIT 0x60 363 364 /** 365 * struct spmi_voltage_range - regulator set point voltage mapping description 366 * @min_uV: Minimum programmable output voltage resulting from 367 * set point register value 0x00 368 * @max_uV: Maximum programmable output voltage 369 * @step_uV: Output voltage increase resulting from the set point 370 * register value increasing by 1 371 * @set_point_min_uV: Minimum allowed voltage 372 * @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order 373 * to pick which range should be used in the case of 374 * overlapping set points. 375 * @n_voltages: Number of preferred voltage set points present in this 376 * range 377 * @range_sel: Voltage range register value corresponding to this range 378 * 379 * The following relationships must be true for the values used in this struct: 380 * (max_uV - min_uV) % step_uV == 0 381 * (set_point_min_uV - min_uV) % step_uV == 0* 382 * (set_point_max_uV - min_uV) % step_uV == 0* 383 * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1 384 * 385 * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to 386 * specify that the voltage range has meaning, but is not preferred. 387 */ 388 struct spmi_voltage_range { 389 int min_uV; 390 int max_uV; 391 int step_uV; 392 int set_point_min_uV; 393 int set_point_max_uV; 394 unsigned n_voltages; 395 u8 range_sel; 396 }; 397 398 /* 399 * The ranges specified in the spmi_voltage_set_points struct must be listed 400 * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV. 401 */ 402 struct spmi_voltage_set_points { 403 struct spmi_voltage_range *range; 404 int count; 405 unsigned n_voltages; 406 }; 407 408 struct spmi_regulator { 409 struct regulator_desc desc; 410 struct device *dev; 411 struct delayed_work ocp_work; 412 struct regmap *regmap; 413 struct spmi_voltage_set_points *set_points; 414 enum spmi_regulator_logical_type logical_type; 415 int ocp_irq; 416 int ocp_count; 417 int ocp_max_retries; 418 int ocp_retry_delay_ms; 419 int hpm_min_load; 420 int slew_rate; 421 ktime_t vs_enable_time; 422 u16 base; 423 struct list_head node; 424 }; 425 426 struct spmi_regulator_mapping { 427 enum spmi_regulator_type type; 428 enum spmi_regulator_subtype subtype; 429 enum spmi_regulator_logical_type logical_type; 430 u32 revision_min; 431 u32 revision_max; 432 const struct regulator_ops *ops; 433 struct spmi_voltage_set_points *set_points; 434 int hpm_min_load; 435 }; 436 437 struct spmi_regulator_data { 438 const char *name; 439 u16 base; 440 const char *supply; 441 const char *ocp; 442 u16 force_type; 443 }; 444 445 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \ 446 _logical_type, _ops_val, _set_points_val, _hpm_min_load) \ 447 { \ 448 .type = SPMI_REGULATOR_TYPE_##_type, \ 449 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \ 450 .revision_min = _dig_major_min, \ 451 .revision_max = _dig_major_max, \ 452 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \ 453 .ops = &spmi_##_ops_val##_ops, \ 454 .set_points = &_set_points_val##_set_points, \ 455 .hpm_min_load = _hpm_min_load, \ 456 } 457 458 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \ 459 { \ 460 .type = SPMI_REGULATOR_TYPE_VS, \ 461 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \ 462 .revision_min = _dig_major_min, \ 463 .revision_max = _dig_major_max, \ 464 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_VS, \ 465 .ops = &spmi_vs_ops, \ 466 } 467 468 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \ 469 _set_point_max_uV, _max_uV, _step_uV) \ 470 { \ 471 .min_uV = _min_uV, \ 472 .max_uV = _max_uV, \ 473 .set_point_min_uV = _set_point_min_uV, \ 474 .set_point_max_uV = _set_point_max_uV, \ 475 .step_uV = _step_uV, \ 476 .range_sel = _range_sel, \ 477 } 478 479 #define DEFINE_SPMI_SET_POINTS(name) \ 480 struct spmi_voltage_set_points name##_set_points = { \ 481 .range = name##_ranges, \ 482 .count = ARRAY_SIZE(name##_ranges), \ 483 } 484 485 /* 486 * These tables contain the physically available PMIC regulator voltage setpoint 487 * ranges. Where two ranges overlap in hardware, one of the ranges is trimmed 488 * to ensure that the setpoints available to software are monotonically 489 * increasing and unique. The set_voltage callback functions expect these 490 * properties to hold. 491 */ 492 static struct spmi_voltage_range pldo_ranges[] = { 493 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), 494 SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000), 495 SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000), 496 }; 497 498 static struct spmi_voltage_range nldo1_ranges[] = { 499 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500), 500 }; 501 502 static struct spmi_voltage_range nldo2_ranges[] = { 503 SPMI_VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500), 504 SPMI_VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250), 505 SPMI_VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500), 506 }; 507 508 static struct spmi_voltage_range nldo3_ranges[] = { 509 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), 510 SPMI_VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500), 511 SPMI_VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500), 512 }; 513 514 static struct spmi_voltage_range ln_ldo_ranges[] = { 515 SPMI_VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000), 516 SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000), 517 }; 518 519 static struct spmi_voltage_range smps_ranges[] = { 520 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), 521 SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000), 522 }; 523 524 static struct spmi_voltage_range ftsmps_ranges[] = { 525 SPMI_VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000), 526 SPMI_VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000), 527 }; 528 529 static struct spmi_voltage_range ftsmps2p5_ranges[] = { 530 SPMI_VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000), 531 SPMI_VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000), 532 }; 533 534 static struct spmi_voltage_range ftsmps426_ranges[] = { 535 SPMI_VOLTAGE_RANGE(0, 0, 320000, 1352000, 1352000, 4000), 536 }; 537 538 static struct spmi_voltage_range boost_ranges[] = { 539 SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000), 540 }; 541 542 static struct spmi_voltage_range boost_byp_ranges[] = { 543 SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000), 544 }; 545 546 static struct spmi_voltage_range ult_lo_smps_ranges[] = { 547 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500), 548 SPMI_VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000), 549 }; 550 551 static struct spmi_voltage_range ult_ho_smps_ranges[] = { 552 SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000), 553 }; 554 555 static struct spmi_voltage_range ult_nldo_ranges[] = { 556 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500), 557 }; 558 559 static struct spmi_voltage_range ult_pldo_ranges[] = { 560 SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500), 561 }; 562 563 static struct spmi_voltage_range pldo660_ranges[] = { 564 SPMI_VOLTAGE_RANGE(0, 1504000, 1504000, 3544000, 3544000, 8000), 565 }; 566 567 static struct spmi_voltage_range nldo660_ranges[] = { 568 SPMI_VOLTAGE_RANGE(0, 320000, 320000, 1304000, 1304000, 8000), 569 }; 570 571 static struct spmi_voltage_range ht_lvpldo_ranges[] = { 572 SPMI_VOLTAGE_RANGE(0, 1504000, 1504000, 2000000, 2000000, 8000), 573 }; 574 575 static struct spmi_voltage_range ht_nldo_ranges[] = { 576 SPMI_VOLTAGE_RANGE(0, 312000, 312000, 1304000, 1304000, 8000), 577 }; 578 579 static struct spmi_voltage_range hfs430_ranges[] = { 580 SPMI_VOLTAGE_RANGE(0, 320000, 320000, 2040000, 2040000, 8000), 581 }; 582 583 static struct spmi_voltage_range ht_p150_ranges[] = { 584 SPMI_VOLTAGE_RANGE(0, 1616000, 1616000, 3304000, 3304000, 8000), 585 }; 586 587 static struct spmi_voltage_range ht_p600_ranges[] = { 588 SPMI_VOLTAGE_RANGE(0, 1704000, 1704000, 1896000, 1896000, 8000), 589 }; 590 591 static struct spmi_voltage_range nldo_510_ranges[] = { 592 SPMI_VOLTAGE_RANGE(0, 320000, 320000, 1304000, 1304000, 8000), 593 }; 594 595 static struct spmi_voltage_range ftsmps510_ranges[] = { 596 SPMI_VOLTAGE_RANGE(0, 300000, 300000, 1372000, 1372000, 4000), 597 }; 598 599 static DEFINE_SPMI_SET_POINTS(pldo); 600 static DEFINE_SPMI_SET_POINTS(nldo1); 601 static DEFINE_SPMI_SET_POINTS(nldo2); 602 static DEFINE_SPMI_SET_POINTS(nldo3); 603 static DEFINE_SPMI_SET_POINTS(ln_ldo); 604 static DEFINE_SPMI_SET_POINTS(smps); 605 static DEFINE_SPMI_SET_POINTS(ftsmps); 606 static DEFINE_SPMI_SET_POINTS(ftsmps2p5); 607 static DEFINE_SPMI_SET_POINTS(ftsmps426); 608 static DEFINE_SPMI_SET_POINTS(boost); 609 static DEFINE_SPMI_SET_POINTS(boost_byp); 610 static DEFINE_SPMI_SET_POINTS(ult_lo_smps); 611 static DEFINE_SPMI_SET_POINTS(ult_ho_smps); 612 static DEFINE_SPMI_SET_POINTS(ult_nldo); 613 static DEFINE_SPMI_SET_POINTS(ult_pldo); 614 static DEFINE_SPMI_SET_POINTS(pldo660); 615 static DEFINE_SPMI_SET_POINTS(nldo660); 616 static DEFINE_SPMI_SET_POINTS(ht_lvpldo); 617 static DEFINE_SPMI_SET_POINTS(ht_nldo); 618 static DEFINE_SPMI_SET_POINTS(hfs430); 619 static DEFINE_SPMI_SET_POINTS(ht_p150); 620 static DEFINE_SPMI_SET_POINTS(ht_p600); 621 static DEFINE_SPMI_SET_POINTS(nldo_510); 622 static DEFINE_SPMI_SET_POINTS(ftsmps510); 623 624 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf, 625 int len) 626 { 627 return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len); 628 } 629 630 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr, 631 u8 *buf, int len) 632 { 633 return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len); 634 } 635 636 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val, 637 u8 mask) 638 { 639 return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val); 640 } 641 642 static int spmi_regulator_vs_enable(struct regulator_dev *rdev) 643 { 644 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 645 646 if (vreg->ocp_irq) { 647 vreg->ocp_count = 0; 648 vreg->vs_enable_time = ktime_get(); 649 } 650 651 return regulator_enable_regmap(rdev); 652 } 653 654 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev, int lim_uA, 655 int severity, bool enable) 656 { 657 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 658 u8 reg = SPMI_VS_OCP_OVERRIDE; 659 660 if (lim_uA || !enable || severity != REGULATOR_SEVERITY_PROT) 661 return -EINVAL; 662 663 return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, ®, 1); 664 } 665 666 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg, 667 int min_uV, int max_uV) 668 { 669 const struct spmi_voltage_range *range; 670 int uV = min_uV; 671 int lim_min_uV, lim_max_uV, i, range_id, range_max_uV; 672 int selector, voltage_sel; 673 674 /* Check if request voltage is outside of physically settable range. */ 675 lim_min_uV = vreg->set_points->range[0].set_point_min_uV; 676 lim_max_uV = 677 vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV; 678 679 if (uV < lim_min_uV && max_uV >= lim_min_uV) 680 uV = lim_min_uV; 681 682 if (uV < lim_min_uV || uV > lim_max_uV) { 683 dev_err(vreg->dev, 684 "request v=[%d, %d] is outside possible v=[%d, %d]\n", 685 min_uV, max_uV, lim_min_uV, lim_max_uV); 686 return -EINVAL; 687 } 688 689 /* Find the range which uV is inside of. */ 690 for (i = vreg->set_points->count - 1; i > 0; i--) { 691 range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV; 692 if (uV > range_max_uV && range_max_uV > 0) 693 break; 694 } 695 696 range_id = i; 697 range = &vreg->set_points->range[range_id]; 698 699 /* 700 * Force uV to be an allowed set point by applying a ceiling function to 701 * the uV value. 702 */ 703 voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV); 704 uV = voltage_sel * range->step_uV + range->min_uV; 705 706 if (uV > max_uV) { 707 dev_err(vreg->dev, 708 "request v=[%d, %d] cannot be met by any set point; " 709 "next set point: %d\n", 710 min_uV, max_uV, uV); 711 return -EINVAL; 712 } 713 714 selector = 0; 715 for (i = 0; i < range_id; i++) 716 selector += vreg->set_points->range[i].n_voltages; 717 selector += (uV - range->set_point_min_uV) / range->step_uV; 718 719 return selector; 720 } 721 722 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg, 723 unsigned selector, u8 *range_sel, 724 u8 *voltage_sel) 725 { 726 const struct spmi_voltage_range *range, *end; 727 unsigned offset; 728 729 range = vreg->set_points->range; 730 end = range + vreg->set_points->count; 731 732 for (; range < end; range++) { 733 if (selector < range->n_voltages) { 734 /* 735 * hardware selectors between set point min and real 736 * min are invalid so we ignore them 737 */ 738 offset = range->set_point_min_uV - range->min_uV; 739 offset /= range->step_uV; 740 *voltage_sel = selector + offset; 741 *range_sel = range->range_sel; 742 return 0; 743 } 744 745 selector -= range->n_voltages; 746 } 747 748 return -EINVAL; 749 } 750 751 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel, 752 const struct spmi_voltage_range *range) 753 { 754 unsigned sw_sel = 0; 755 unsigned offset, max_hw_sel; 756 const struct spmi_voltage_range *r = vreg->set_points->range; 757 const struct spmi_voltage_range *end = r + vreg->set_points->count; 758 759 for (; r < end; r++) { 760 if (r == range && range->n_voltages) { 761 /* 762 * hardware selectors between set point min and real 763 * min and between set point max and real max are 764 * invalid so we return an error if they're 765 * programmed into the hardware 766 */ 767 offset = range->set_point_min_uV - range->min_uV; 768 offset /= range->step_uV; 769 if (hw_sel < offset) 770 return -EINVAL; 771 772 max_hw_sel = range->set_point_max_uV - range->min_uV; 773 max_hw_sel /= range->step_uV; 774 if (hw_sel > max_hw_sel) 775 return -EINVAL; 776 777 return sw_sel + hw_sel - offset; 778 } 779 sw_sel += r->n_voltages; 780 } 781 782 return -EINVAL; 783 } 784 785 static const struct spmi_voltage_range * 786 spmi_regulator_find_range(struct spmi_regulator *vreg) 787 { 788 u8 range_sel; 789 const struct spmi_voltage_range *range, *end; 790 791 range = vreg->set_points->range; 792 end = range + vreg->set_points->count; 793 794 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1); 795 796 for (; range < end; range++) 797 if (range->range_sel == range_sel) 798 return range; 799 800 return NULL; 801 } 802 803 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg, 804 int min_uV, int max_uV) 805 { 806 const struct spmi_voltage_range *range; 807 int uV = min_uV; 808 int i, selector; 809 810 range = spmi_regulator_find_range(vreg); 811 if (!range) 812 goto different_range; 813 814 if (uV < range->min_uV && max_uV >= range->min_uV) 815 uV = range->min_uV; 816 817 if (uV < range->min_uV || uV > range->max_uV) { 818 /* Current range doesn't support the requested voltage. */ 819 goto different_range; 820 } 821 822 /* 823 * Force uV to be an allowed set point by applying a ceiling function to 824 * the uV value. 825 */ 826 uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV); 827 uV = uV * range->step_uV + range->min_uV; 828 829 if (uV > max_uV) { 830 /* 831 * No set point in the current voltage range is within the 832 * requested min_uV to max_uV range. 833 */ 834 goto different_range; 835 } 836 837 selector = 0; 838 for (i = 0; i < vreg->set_points->count; i++) { 839 if (uV >= vreg->set_points->range[i].set_point_min_uV 840 && uV <= vreg->set_points->range[i].set_point_max_uV) { 841 selector += 842 (uV - vreg->set_points->range[i].set_point_min_uV) 843 / vreg->set_points->range[i].step_uV; 844 break; 845 } 846 847 selector += vreg->set_points->range[i].n_voltages; 848 } 849 850 if (selector >= vreg->set_points->n_voltages) 851 goto different_range; 852 853 return selector; 854 855 different_range: 856 return spmi_regulator_select_voltage(vreg, min_uV, max_uV); 857 } 858 859 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev, 860 int min_uV, int max_uV) 861 { 862 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 863 864 /* 865 * Favor staying in the current voltage range if possible. This avoids 866 * voltage spikes that occur when changing the voltage range. 867 */ 868 return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV); 869 } 870 871 static int 872 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector) 873 { 874 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 875 int ret; 876 u8 buf[2]; 877 u8 range_sel, voltage_sel; 878 879 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); 880 if (ret) 881 return ret; 882 883 buf[0] = range_sel; 884 buf[1] = voltage_sel; 885 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2); 886 } 887 888 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev, 889 unsigned selector); 890 891 static int spmi_regulator_ftsmps426_set_voltage(struct regulator_dev *rdev, 892 unsigned selector) 893 { 894 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 895 u8 buf[2]; 896 int mV; 897 898 mV = spmi_regulator_common_list_voltage(rdev, selector) / 1000; 899 900 buf[0] = mV & 0xff; 901 buf[1] = mV >> 8; 902 return spmi_vreg_write(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2); 903 } 904 905 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev, 906 unsigned int old_selector, unsigned int new_selector) 907 { 908 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 909 int diff_uV; 910 911 diff_uV = abs(spmi_regulator_common_list_voltage(rdev, new_selector) - 912 spmi_regulator_common_list_voltage(rdev, old_selector)); 913 914 return DIV_ROUND_UP(diff_uV, vreg->slew_rate); 915 } 916 917 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev) 918 { 919 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 920 const struct spmi_voltage_range *range; 921 u8 voltage_sel; 922 923 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1); 924 925 range = spmi_regulator_find_range(vreg); 926 if (!range) 927 return -EINVAL; 928 929 return spmi_hw_selector_to_sw(vreg, voltage_sel, range); 930 } 931 932 static int spmi_regulator_ftsmps426_get_voltage(struct regulator_dev *rdev) 933 { 934 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 935 const struct spmi_voltage_range *range; 936 u8 buf[2]; 937 int uV; 938 939 spmi_vreg_read(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2); 940 941 uV = (((unsigned int)buf[1] << 8) | (unsigned int)buf[0]) * 1000; 942 range = vreg->set_points->range; 943 944 return (uV - range->set_point_min_uV) / range->step_uV; 945 } 946 947 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev, 948 int min_uV, int max_uV) 949 { 950 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 951 952 return spmi_regulator_select_voltage(vreg, min_uV, max_uV); 953 } 954 955 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev, 956 unsigned selector) 957 { 958 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 959 u8 sel = selector; 960 961 /* 962 * Certain types of regulators do not have a range select register so 963 * only voltage set register needs to be written. 964 */ 965 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1); 966 } 967 968 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev) 969 { 970 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 971 u8 selector; 972 int ret; 973 974 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1); 975 if (ret) 976 return ret; 977 978 return selector; 979 } 980 981 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev, 982 unsigned selector) 983 { 984 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 985 int ret; 986 u8 range_sel, voltage_sel; 987 988 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); 989 if (ret) 990 return ret; 991 992 /* 993 * Calculate VSET based on range 994 * In case of range 0: voltage_sel is a 7 bit value, can be written 995 * witout any modification. 996 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to 997 * [011]. 998 */ 999 if (range_sel == 1) 1000 voltage_sel |= ULT_SMPS_RANGE_SPLIT; 1001 1002 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET, 1003 voltage_sel, 0xff); 1004 } 1005 1006 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev) 1007 { 1008 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1009 const struct spmi_voltage_range *range; 1010 u8 voltage_sel; 1011 1012 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1); 1013 1014 range = spmi_regulator_find_range(vreg); 1015 if (!range) 1016 return -EINVAL; 1017 1018 if (range->range_sel == 1) 1019 voltage_sel &= ~ULT_SMPS_RANGE_SPLIT; 1020 1021 return spmi_hw_selector_to_sw(vreg, voltage_sel, range); 1022 } 1023 1024 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev, 1025 unsigned selector) 1026 { 1027 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1028 int uV = 0; 1029 int i; 1030 1031 if (selector >= vreg->set_points->n_voltages) 1032 return 0; 1033 1034 for (i = 0; i < vreg->set_points->count; i++) { 1035 if (selector < vreg->set_points->range[i].n_voltages) { 1036 uV = selector * vreg->set_points->range[i].step_uV 1037 + vreg->set_points->range[i].set_point_min_uV; 1038 break; 1039 } 1040 1041 selector -= vreg->set_points->range[i].n_voltages; 1042 } 1043 1044 return uV; 1045 } 1046 1047 static int 1048 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable) 1049 { 1050 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1051 u8 mask = SPMI_COMMON_MODE_BYPASS_MASK; 1052 u8 val = 0; 1053 1054 if (enable) 1055 val = mask; 1056 1057 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); 1058 } 1059 1060 static int 1061 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable) 1062 { 1063 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1064 u8 val; 1065 int ret; 1066 1067 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1); 1068 *enable = val & SPMI_COMMON_MODE_BYPASS_MASK; 1069 1070 return ret; 1071 } 1072 1073 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev) 1074 { 1075 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1076 u8 reg; 1077 1078 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1); 1079 1080 reg &= SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK; 1081 1082 switch (reg) { 1083 case SPMI_COMMON_MODE_HPM_MASK: 1084 return REGULATOR_MODE_NORMAL; 1085 case SPMI_COMMON_MODE_AUTO_MASK: 1086 return REGULATOR_MODE_FAST; 1087 default: 1088 return REGULATOR_MODE_IDLE; 1089 } 1090 } 1091 1092 static unsigned int spmi_regulator_ftsmps426_get_mode(struct regulator_dev *rdev) 1093 { 1094 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1095 u8 reg; 1096 1097 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1); 1098 1099 switch (reg) { 1100 case SPMI_FTSMPS426_MODE_HPM_MASK: 1101 return REGULATOR_MODE_NORMAL; 1102 case SPMI_FTSMPS426_MODE_AUTO_MASK: 1103 return REGULATOR_MODE_FAST; 1104 default: 1105 return REGULATOR_MODE_IDLE; 1106 } 1107 } 1108 1109 static unsigned int spmi_regulator_hfsmps_get_mode(struct regulator_dev *rdev) 1110 { 1111 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1112 u8 reg; 1113 1114 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, ®, 1); 1115 1116 switch (reg) { 1117 case SPMI_HFSMPS_MODE_HPM_MASK: 1118 return REGULATOR_MODE_NORMAL; 1119 case SPMI_HFSMPS_MODE_AUTO_MASK: 1120 return REGULATOR_MODE_FAST; 1121 default: 1122 return REGULATOR_MODE_IDLE; 1123 } 1124 } 1125 1126 static int 1127 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode) 1128 { 1129 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1130 u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK; 1131 u8 val; 1132 1133 switch (mode) { 1134 case REGULATOR_MODE_NORMAL: 1135 val = SPMI_COMMON_MODE_HPM_MASK; 1136 break; 1137 case REGULATOR_MODE_FAST: 1138 val = SPMI_COMMON_MODE_AUTO_MASK; 1139 break; 1140 default: 1141 val = 0; 1142 break; 1143 } 1144 1145 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); 1146 } 1147 1148 static int 1149 spmi_regulator_ftsmps426_set_mode(struct regulator_dev *rdev, unsigned int mode) 1150 { 1151 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1152 u8 mask = SPMI_FTSMPS426_MODE_MASK; 1153 u8 val; 1154 1155 switch (mode) { 1156 case REGULATOR_MODE_NORMAL: 1157 val = SPMI_FTSMPS426_MODE_HPM_MASK; 1158 break; 1159 case REGULATOR_MODE_FAST: 1160 val = SPMI_FTSMPS426_MODE_AUTO_MASK; 1161 break; 1162 case REGULATOR_MODE_IDLE: 1163 val = SPMI_FTSMPS426_MODE_LPM_MASK; 1164 break; 1165 default: 1166 return -EINVAL; 1167 } 1168 1169 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); 1170 } 1171 1172 static int 1173 spmi_regulator_hfsmps_set_mode(struct regulator_dev *rdev, unsigned int mode) 1174 { 1175 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1176 u8 mask = SPMI_HFSMPS_MODE_MASK; 1177 u8 val; 1178 1179 switch (mode) { 1180 case REGULATOR_MODE_NORMAL: 1181 val = SPMI_HFSMPS_MODE_HPM_MASK; 1182 break; 1183 case REGULATOR_MODE_FAST: 1184 val = SPMI_HFSMPS_MODE_AUTO_MASK; 1185 break; 1186 case REGULATOR_MODE_IDLE: 1187 val = vreg->logical_type == 1188 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS3 ? 1189 SPMI_HFSMPS_MODE_RETENTION_MASK : 1190 SPMI_HFSMPS_MODE_LPM_MASK; 1191 break; 1192 default: 1193 return -EINVAL; 1194 } 1195 1196 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask); 1197 } 1198 1199 static int 1200 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA) 1201 { 1202 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1203 unsigned int mode; 1204 1205 if (load_uA >= vreg->hpm_min_load) 1206 mode = REGULATOR_MODE_NORMAL; 1207 else 1208 mode = REGULATOR_MODE_IDLE; 1209 1210 return spmi_regulator_common_set_mode(rdev, mode); 1211 } 1212 1213 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev) 1214 { 1215 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1216 unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK; 1217 1218 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN, 1219 mask, mask); 1220 } 1221 1222 static int spmi_regulator_hfsmps_set_pull_down(struct regulator_dev *rdev) 1223 { 1224 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1225 unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK; 1226 1227 return spmi_vreg_update_bits(vreg, SPMI_HFSMPS_REG_PULL_DOWN, 1228 mask, mask); 1229 } 1230 1231 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev) 1232 { 1233 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1234 unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK; 1235 1236 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START, 1237 mask, mask); 1238 } 1239 1240 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA) 1241 { 1242 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1243 enum spmi_regulator_logical_type type = vreg->logical_type; 1244 unsigned int current_reg; 1245 u8 reg; 1246 u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK | 1247 SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK; 1248 int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500; 1249 1250 if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST) 1251 current_reg = SPMI_BOOST_REG_CURRENT_LIMIT; 1252 else 1253 current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT; 1254 1255 if (ilim_uA > max || ilim_uA <= 0) 1256 return -EINVAL; 1257 1258 reg = (ilim_uA - 1) / 500; 1259 reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK; 1260 1261 return spmi_vreg_update_bits(vreg, current_reg, reg, mask); 1262 } 1263 1264 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg) 1265 { 1266 int ret; 1267 1268 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE, 1269 SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK); 1270 1271 vreg->vs_enable_time = ktime_get(); 1272 1273 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE, 1274 SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK); 1275 1276 return ret; 1277 } 1278 1279 static void spmi_regulator_vs_ocp_work(struct work_struct *work) 1280 { 1281 struct delayed_work *dwork = to_delayed_work(work); 1282 struct spmi_regulator *vreg 1283 = container_of(dwork, struct spmi_regulator, ocp_work); 1284 1285 spmi_regulator_vs_clear_ocp(vreg); 1286 } 1287 1288 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data) 1289 { 1290 struct spmi_regulator *vreg = data; 1291 ktime_t ocp_irq_time; 1292 s64 ocp_trigger_delay_us; 1293 1294 ocp_irq_time = ktime_get(); 1295 ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time, 1296 vreg->vs_enable_time); 1297 1298 /* 1299 * Reset the OCP count if there is a large delay between switch enable 1300 * and when OCP triggers. This is indicative of a hotplug event as 1301 * opposed to a fault. 1302 */ 1303 if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US) 1304 vreg->ocp_count = 0; 1305 1306 /* Wait for switch output to settle back to 0 V after OCP triggered. */ 1307 udelay(SPMI_VS_OCP_FALL_DELAY_US); 1308 1309 vreg->ocp_count++; 1310 1311 if (vreg->ocp_count == 1) { 1312 /* Immediately clear the over current condition. */ 1313 spmi_regulator_vs_clear_ocp(vreg); 1314 } else if (vreg->ocp_count <= vreg->ocp_max_retries) { 1315 /* Schedule the over current clear task to run later. */ 1316 schedule_delayed_work(&vreg->ocp_work, 1317 msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1); 1318 } else { 1319 dev_err(vreg->dev, 1320 "OCP triggered %d times; no further retries\n", 1321 vreg->ocp_count); 1322 } 1323 1324 return IRQ_HANDLED; 1325 } 1326 1327 #define SAW3_VCTL_DATA_MASK 0xFF 1328 #define SAW3_VCTL_CLEAR_MASK 0x700FF 1329 #define SAW3_AVS_CTL_EN_MASK 0x1 1330 #define SAW3_AVS_CTL_TGGL_MASK 0x8000000 1331 #define SAW3_AVS_CTL_CLEAR_MASK 0x7efc00 1332 1333 static struct regmap *saw_regmap; 1334 1335 static void spmi_saw_set_vdd(void *data) 1336 { 1337 u32 vctl, data3, avs_ctl, pmic_sts; 1338 bool avs_enabled = false; 1339 unsigned long timeout; 1340 u8 voltage_sel = *(u8 *)data; 1341 1342 regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl); 1343 regmap_read(saw_regmap, SAW3_VCTL, &vctl); 1344 regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3); 1345 1346 /* select the band */ 1347 vctl &= ~SAW3_VCTL_CLEAR_MASK; 1348 vctl |= (u32)voltage_sel; 1349 1350 data3 &= ~SAW3_VCTL_CLEAR_MASK; 1351 data3 |= (u32)voltage_sel; 1352 1353 /* If AVS is enabled, switch it off during the voltage change */ 1354 avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl; 1355 if (avs_enabled) { 1356 avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK; 1357 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl); 1358 } 1359 1360 regmap_write(saw_regmap, SAW3_RST, 1); 1361 regmap_write(saw_regmap, SAW3_VCTL, vctl); 1362 regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3); 1363 1364 timeout = jiffies + usecs_to_jiffies(100); 1365 do { 1366 regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts); 1367 pmic_sts &= SAW3_VCTL_DATA_MASK; 1368 if (pmic_sts == (u32)voltage_sel) 1369 break; 1370 1371 cpu_relax(); 1372 1373 } while (time_before(jiffies, timeout)); 1374 1375 /* After successful voltage change, switch the AVS back on */ 1376 if (avs_enabled) { 1377 pmic_sts &= 0x3f; 1378 avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK; 1379 avs_ctl |= ((pmic_sts - 4) << 10); 1380 avs_ctl |= (pmic_sts << 17); 1381 avs_ctl |= SAW3_AVS_CTL_TGGL_MASK; 1382 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl); 1383 } 1384 } 1385 1386 static int 1387 spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector) 1388 { 1389 struct spmi_regulator *vreg = rdev_get_drvdata(rdev); 1390 int ret; 1391 u8 range_sel, voltage_sel; 1392 1393 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel); 1394 if (ret) 1395 return ret; 1396 1397 if (0 != range_sel) { 1398 dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \ 1399 range_sel, voltage_sel); 1400 return -EINVAL; 1401 } 1402 1403 /* Always do the SAW register writes on the first CPU */ 1404 return smp_call_function_single(0, spmi_saw_set_vdd, \ 1405 &voltage_sel, true); 1406 } 1407 1408 static struct regulator_ops spmi_saw_ops = {}; 1409 1410 static const struct regulator_ops spmi_smps_ops = { 1411 .enable = regulator_enable_regmap, 1412 .disable = regulator_disable_regmap, 1413 .is_enabled = regulator_is_enabled_regmap, 1414 .set_voltage_sel = spmi_regulator_common_set_voltage, 1415 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1416 .get_voltage_sel = spmi_regulator_common_get_voltage, 1417 .map_voltage = spmi_regulator_common_map_voltage, 1418 .list_voltage = spmi_regulator_common_list_voltage, 1419 .set_mode = spmi_regulator_common_set_mode, 1420 .get_mode = spmi_regulator_common_get_mode, 1421 .set_load = spmi_regulator_common_set_load, 1422 .set_pull_down = spmi_regulator_common_set_pull_down, 1423 }; 1424 1425 static const struct regulator_ops spmi_ldo_ops = { 1426 .enable = regulator_enable_regmap, 1427 .disable = regulator_disable_regmap, 1428 .is_enabled = regulator_is_enabled_regmap, 1429 .set_voltage_sel = spmi_regulator_common_set_voltage, 1430 .get_voltage_sel = spmi_regulator_common_get_voltage, 1431 .map_voltage = spmi_regulator_common_map_voltage, 1432 .list_voltage = spmi_regulator_common_list_voltage, 1433 .set_mode = spmi_regulator_common_set_mode, 1434 .get_mode = spmi_regulator_common_get_mode, 1435 .set_load = spmi_regulator_common_set_load, 1436 .set_bypass = spmi_regulator_common_set_bypass, 1437 .get_bypass = spmi_regulator_common_get_bypass, 1438 .set_pull_down = spmi_regulator_common_set_pull_down, 1439 .set_soft_start = spmi_regulator_common_set_soft_start, 1440 }; 1441 1442 static const struct regulator_ops spmi_ln_ldo_ops = { 1443 .enable = regulator_enable_regmap, 1444 .disable = regulator_disable_regmap, 1445 .is_enabled = regulator_is_enabled_regmap, 1446 .set_voltage_sel = spmi_regulator_common_set_voltage, 1447 .get_voltage_sel = spmi_regulator_common_get_voltage, 1448 .map_voltage = spmi_regulator_common_map_voltage, 1449 .list_voltage = spmi_regulator_common_list_voltage, 1450 .set_bypass = spmi_regulator_common_set_bypass, 1451 .get_bypass = spmi_regulator_common_get_bypass, 1452 }; 1453 1454 static const struct regulator_ops spmi_vs_ops = { 1455 .enable = spmi_regulator_vs_enable, 1456 .disable = regulator_disable_regmap, 1457 .is_enabled = regulator_is_enabled_regmap, 1458 .set_pull_down = spmi_regulator_common_set_pull_down, 1459 .set_soft_start = spmi_regulator_common_set_soft_start, 1460 .set_over_current_protection = spmi_regulator_vs_ocp, 1461 .set_mode = spmi_regulator_common_set_mode, 1462 .get_mode = spmi_regulator_common_get_mode, 1463 }; 1464 1465 static const struct regulator_ops spmi_boost_ops = { 1466 .enable = regulator_enable_regmap, 1467 .disable = regulator_disable_regmap, 1468 .is_enabled = regulator_is_enabled_regmap, 1469 .set_voltage_sel = spmi_regulator_single_range_set_voltage, 1470 .get_voltage_sel = spmi_regulator_single_range_get_voltage, 1471 .map_voltage = spmi_regulator_single_map_voltage, 1472 .list_voltage = spmi_regulator_common_list_voltage, 1473 .set_input_current_limit = spmi_regulator_set_ilim, 1474 }; 1475 1476 static const struct regulator_ops spmi_ftsmps_ops = { 1477 .enable = regulator_enable_regmap, 1478 .disable = regulator_disable_regmap, 1479 .is_enabled = regulator_is_enabled_regmap, 1480 .set_voltage_sel = spmi_regulator_common_set_voltage, 1481 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1482 .get_voltage_sel = spmi_regulator_common_get_voltage, 1483 .map_voltage = spmi_regulator_common_map_voltage, 1484 .list_voltage = spmi_regulator_common_list_voltage, 1485 .set_mode = spmi_regulator_common_set_mode, 1486 .get_mode = spmi_regulator_common_get_mode, 1487 .set_load = spmi_regulator_common_set_load, 1488 .set_pull_down = spmi_regulator_common_set_pull_down, 1489 }; 1490 1491 static const struct regulator_ops spmi_ult_lo_smps_ops = { 1492 .enable = regulator_enable_regmap, 1493 .disable = regulator_disable_regmap, 1494 .is_enabled = regulator_is_enabled_regmap, 1495 .set_voltage_sel = spmi_regulator_ult_lo_smps_set_voltage, 1496 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1497 .get_voltage_sel = spmi_regulator_ult_lo_smps_get_voltage, 1498 .list_voltage = spmi_regulator_common_list_voltage, 1499 .set_mode = spmi_regulator_common_set_mode, 1500 .get_mode = spmi_regulator_common_get_mode, 1501 .set_load = spmi_regulator_common_set_load, 1502 .set_pull_down = spmi_regulator_common_set_pull_down, 1503 }; 1504 1505 static const struct regulator_ops spmi_ult_ho_smps_ops = { 1506 .enable = regulator_enable_regmap, 1507 .disable = regulator_disable_regmap, 1508 .is_enabled = regulator_is_enabled_regmap, 1509 .set_voltage_sel = spmi_regulator_single_range_set_voltage, 1510 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1511 .get_voltage_sel = spmi_regulator_single_range_get_voltage, 1512 .map_voltage = spmi_regulator_single_map_voltage, 1513 .list_voltage = spmi_regulator_common_list_voltage, 1514 .set_mode = spmi_regulator_common_set_mode, 1515 .get_mode = spmi_regulator_common_get_mode, 1516 .set_load = spmi_regulator_common_set_load, 1517 .set_pull_down = spmi_regulator_common_set_pull_down, 1518 }; 1519 1520 static const struct regulator_ops spmi_ult_ldo_ops = { 1521 .enable = regulator_enable_regmap, 1522 .disable = regulator_disable_regmap, 1523 .is_enabled = regulator_is_enabled_regmap, 1524 .set_voltage_sel = spmi_regulator_single_range_set_voltage, 1525 .get_voltage_sel = spmi_regulator_single_range_get_voltage, 1526 .map_voltage = spmi_regulator_single_map_voltage, 1527 .list_voltage = spmi_regulator_common_list_voltage, 1528 .set_mode = spmi_regulator_common_set_mode, 1529 .get_mode = spmi_regulator_common_get_mode, 1530 .set_load = spmi_regulator_common_set_load, 1531 .set_bypass = spmi_regulator_common_set_bypass, 1532 .get_bypass = spmi_regulator_common_get_bypass, 1533 .set_pull_down = spmi_regulator_common_set_pull_down, 1534 .set_soft_start = spmi_regulator_common_set_soft_start, 1535 }; 1536 1537 static const struct regulator_ops spmi_ftsmps426_ops = { 1538 .enable = regulator_enable_regmap, 1539 .disable = regulator_disable_regmap, 1540 .is_enabled = regulator_is_enabled_regmap, 1541 .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage, 1542 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1543 .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage, 1544 .map_voltage = spmi_regulator_single_map_voltage, 1545 .list_voltage = spmi_regulator_common_list_voltage, 1546 .set_mode = spmi_regulator_ftsmps426_set_mode, 1547 .get_mode = spmi_regulator_ftsmps426_get_mode, 1548 .set_load = spmi_regulator_common_set_load, 1549 .set_pull_down = spmi_regulator_common_set_pull_down, 1550 }; 1551 1552 static const struct regulator_ops spmi_hfs430_ops = { 1553 .enable = regulator_enable_regmap, 1554 .disable = regulator_disable_regmap, 1555 .is_enabled = regulator_is_enabled_regmap, 1556 .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage, 1557 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1558 .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage, 1559 .map_voltage = spmi_regulator_single_map_voltage, 1560 .list_voltage = spmi_regulator_common_list_voltage, 1561 .set_mode = spmi_regulator_ftsmps426_set_mode, 1562 .get_mode = spmi_regulator_ftsmps426_get_mode, 1563 }; 1564 1565 static const struct regulator_ops spmi_hfsmps_ops = { 1566 .enable = regulator_enable_regmap, 1567 .disable = regulator_disable_regmap, 1568 .is_enabled = regulator_is_enabled_regmap, 1569 .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage, 1570 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel, 1571 .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage, 1572 .map_voltage = spmi_regulator_single_map_voltage, 1573 .list_voltage = spmi_regulator_common_list_voltage, 1574 .set_mode = spmi_regulator_hfsmps_set_mode, 1575 .get_mode = spmi_regulator_hfsmps_get_mode, 1576 .set_load = spmi_regulator_common_set_load, 1577 .set_pull_down = spmi_regulator_hfsmps_set_pull_down, 1578 }; 1579 1580 /* Maximum possible digital major revision value */ 1581 #define INF 0xFF 1582 1583 static const struct spmi_regulator_mapping supported_regulators[] = { 1584 /* type subtype dig_min dig_max ltype ops setpoints hpm_min */ 1585 SPMI_VREG(LDO, HT_P600, 0, INF, HFS430, hfs430, ht_p600, 10000), 1586 SPMI_VREG(LDO, HT_P150, 0, INF, HFS430, hfs430, ht_p150, 10000), 1587 SPMI_VREG(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000), 1588 SPMI_VREG(BUCK, HFS430, 0, 3, HFS430, hfs430, hfs430, 10000), 1589 SPMI_VREG(BUCK, HFSMPS_510, 4, INF, HFSMPS, hfsmps, hfs430, 100000), 1590 SPMI_VREG(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000), 1591 SPMI_VREG(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000), 1592 SPMI_VREG(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000), 1593 SPMI_VREG(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000), 1594 SPMI_VREG(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000), 1595 SPMI_VREG(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000), 1596 SPMI_VREG(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000), 1597 SPMI_VREG(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000), 1598 SPMI_VREG(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000), 1599 SPMI_VREG(LDO, P50, 0, INF, LDO, ldo, pldo, 5000), 1600 SPMI_VREG(LDO, P150, 0, INF, LDO, ldo, pldo, 10000), 1601 SPMI_VREG(LDO, P300, 0, INF, LDO, ldo, pldo, 10000), 1602 SPMI_VREG(LDO, P600, 0, INF, LDO, ldo, pldo, 10000), 1603 SPMI_VREG(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000), 1604 SPMI_VREG(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0), 1605 SPMI_VREG(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000), 1606 SPMI_VREG(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000), 1607 SPMI_VREG(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000), 1608 SPMI_VREG(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000), 1609 SPMI_VREG(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000), 1610 SPMI_VREG(LDO, HT_N300_ST, 0, INF, FTSMPS426, ftsmps426, 1611 ht_nldo, 30000), 1612 SPMI_VREG(LDO, HT_N600_ST, 0, INF, FTSMPS426, ftsmps426, 1613 ht_nldo, 30000), 1614 SPMI_VREG(LDO, HT_N1200_ST, 0, INF, FTSMPS426, ftsmps426, 1615 ht_nldo, 30000), 1616 SPMI_VREG(LDO, HT_LVP150, 0, INF, FTSMPS426, ftsmps426, 1617 ht_lvpldo, 10000), 1618 SPMI_VREG(LDO, HT_LVP300, 0, INF, FTSMPS426, ftsmps426, 1619 ht_lvpldo, 10000), 1620 SPMI_VREG(LDO, L660_N300_ST, 0, INF, FTSMPS426, ftsmps426, 1621 nldo660, 10000), 1622 SPMI_VREG(LDO, L660_N600_ST, 0, INF, FTSMPS426, ftsmps426, 1623 nldo660, 10000), 1624 SPMI_VREG(LDO, L660_P50, 0, INF, FTSMPS426, ftsmps426, 1625 pldo660, 10000), 1626 SPMI_VREG(LDO, L660_P150, 0, INF, FTSMPS426, ftsmps426, 1627 pldo660, 10000), 1628 SPMI_VREG(LDO, L660_P600, 0, INF, FTSMPS426, ftsmps426, 1629 pldo660, 10000), 1630 SPMI_VREG(LDO, L660_LVP150, 0, INF, FTSMPS426, ftsmps426, 1631 ht_lvpldo, 10000), 1632 SPMI_VREG(LDO, L660_LVP600, 0, INF, FTSMPS426, ftsmps426, 1633 ht_lvpldo, 10000), 1634 SPMI_VREG_VS(LV100, 0, INF), 1635 SPMI_VREG_VS(LV300, 0, INF), 1636 SPMI_VREG_VS(MV300, 0, INF), 1637 SPMI_VREG_VS(MV500, 0, INF), 1638 SPMI_VREG_VS(HDMI, 0, INF), 1639 SPMI_VREG_VS(OTG, 0, INF), 1640 SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0), 1641 SPMI_VREG(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000), 1642 SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000), 1643 SPMI_VREG(FTS, FTS426_CTL, 0, INF, FTSMPS426, ftsmps426, ftsmps426, 100000), 1644 SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0), 1645 SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps, 1646 ult_lo_smps, 100000), 1647 SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps, 1648 ult_lo_smps, 100000), 1649 SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps, 1650 ult_lo_smps, 100000), 1651 SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps, 1652 ult_ho_smps, 100000), 1653 SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), 1654 SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), 1655 SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), 1656 SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000), 1657 SPMI_VREG(ULT_LDO, LV_P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1658 SPMI_VREG(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1659 SPMI_VREG(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1660 SPMI_VREG(ULT_LDO, LV_P450, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1661 SPMI_VREG(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1662 SPMI_VREG(ULT_LDO, P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1663 SPMI_VREG(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000), 1664 SPMI_VREG(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000), 1665 SPMI_VREG(LDO, LV_P150_510, 0, INF, LDO_510, hfsmps, ht_lvpldo, 10000), 1666 SPMI_VREG(LDO, LV_P300_510, 0, INF, LDO_510, hfsmps, ht_lvpldo, 10000), 1667 SPMI_VREG(LDO, LV_P600_510, 0, INF, LDO_510, hfsmps, ht_lvpldo, 10000), 1668 SPMI_VREG(LDO, MV_P50_510, 0, INF, LDO_510, hfsmps, pldo660, 10000), 1669 SPMI_VREG(LDO, MV_P150_510, 0, INF, LDO_510, hfsmps, pldo660, 10000), 1670 SPMI_VREG(LDO, MV_P600_510, 0, INF, LDO_510, hfsmps, pldo660, 10000), 1671 SPMI_VREG(LDO, N300_510, 0, INF, LDO_510, hfsmps, nldo_510, 10000), 1672 SPMI_VREG(LDO, N600_510, 0, INF, LDO_510, hfsmps, nldo_510, 10000), 1673 SPMI_VREG(LDO, N1200_510, 0, INF, LDO_510, hfsmps, nldo_510, 10000), 1674 SPMI_VREG(FTS, FTSMPS_510, 0, INF, FTSMPS3, hfsmps, ftsmps510, 100000), 1675 }; 1676 1677 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points) 1678 { 1679 unsigned int n; 1680 struct spmi_voltage_range *range = points->range; 1681 1682 for (; range < points->range + points->count; range++) { 1683 n = 0; 1684 if (range->set_point_max_uV) { 1685 n = range->set_point_max_uV - range->set_point_min_uV; 1686 n = (n / range->step_uV) + 1; 1687 } 1688 range->n_voltages = n; 1689 points->n_voltages += n; 1690 } 1691 } 1692 1693 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type) 1694 { 1695 const struct spmi_regulator_mapping *mapping; 1696 int ret, i; 1697 u32 dig_major_rev; 1698 u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1]; 1699 u8 type, subtype; 1700 1701 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version, 1702 ARRAY_SIZE(version)); 1703 if (ret) { 1704 dev_dbg(vreg->dev, "could not read version registers\n"); 1705 return ret; 1706 } 1707 dig_major_rev = version[SPMI_COMMON_REG_DIG_MAJOR_REV 1708 - SPMI_COMMON_REG_DIG_MAJOR_REV]; 1709 1710 if (!force_type) { 1711 type = version[SPMI_COMMON_REG_TYPE - 1712 SPMI_COMMON_REG_DIG_MAJOR_REV]; 1713 subtype = version[SPMI_COMMON_REG_SUBTYPE - 1714 SPMI_COMMON_REG_DIG_MAJOR_REV]; 1715 } else { 1716 type = force_type >> 8; 1717 subtype = force_type; 1718 } 1719 1720 for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) { 1721 mapping = &supported_regulators[i]; 1722 if (mapping->type == type && mapping->subtype == subtype 1723 && mapping->revision_min <= dig_major_rev 1724 && mapping->revision_max >= dig_major_rev) 1725 goto found; 1726 } 1727 1728 dev_err(vreg->dev, 1729 "unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n", 1730 vreg->desc.name, type, subtype, dig_major_rev); 1731 1732 return -ENODEV; 1733 1734 found: 1735 vreg->logical_type = mapping->logical_type; 1736 vreg->set_points = mapping->set_points; 1737 vreg->hpm_min_load = mapping->hpm_min_load; 1738 vreg->desc.ops = mapping->ops; 1739 1740 if (mapping->set_points) { 1741 if (!mapping->set_points->n_voltages) 1742 spmi_calculate_num_voltages(mapping->set_points); 1743 vreg->desc.n_voltages = mapping->set_points->n_voltages; 1744 } 1745 1746 return 0; 1747 } 1748 1749 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg) 1750 { 1751 int ret; 1752 u8 reg = 0; 1753 int step, delay, slew_rate, step_delay; 1754 const struct spmi_voltage_range *range; 1755 1756 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1); 1757 if (ret) { 1758 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret); 1759 return ret; 1760 } 1761 1762 range = spmi_regulator_find_range(vreg); 1763 if (!range) 1764 return -EINVAL; 1765 1766 switch (vreg->logical_type) { 1767 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS: 1768 step_delay = SPMI_FTSMPS_STEP_DELAY; 1769 break; 1770 default: 1771 step_delay = SPMI_DEFAULT_STEP_DELAY; 1772 break; 1773 } 1774 1775 step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK; 1776 step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT; 1777 1778 delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK; 1779 delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT; 1780 1781 /* slew_rate has units of uV/us */ 1782 slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step); 1783 slew_rate /= 1000 * (step_delay << delay); 1784 slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM; 1785 slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN; 1786 1787 /* Ensure that the slew rate is greater than 0 */ 1788 vreg->slew_rate = max(slew_rate, 1); 1789 1790 return ret; 1791 } 1792 1793 static int spmi_regulator_init_slew_rate_ftsmps426(struct spmi_regulator *vreg, 1794 int clock_rate) 1795 { 1796 int ret; 1797 u8 reg = 0; 1798 int delay, slew_rate; 1799 const struct spmi_voltage_range *range = &vreg->set_points->range[0]; 1800 1801 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, ®, 1); 1802 if (ret) { 1803 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret); 1804 return ret; 1805 } 1806 1807 delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK; 1808 delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT; 1809 1810 /* slew_rate has units of uV/us */ 1811 slew_rate = clock_rate * range->step_uV; 1812 slew_rate /= 1000 * (SPMI_FTSMPS426_STEP_DELAY << delay); 1813 slew_rate *= SPMI_FTSMPS426_STEP_MARGIN_NUM; 1814 slew_rate /= SPMI_FTSMPS426_STEP_MARGIN_DEN; 1815 1816 /* Ensure that the slew rate is greater than 0 */ 1817 vreg->slew_rate = max(slew_rate, 1); 1818 1819 return ret; 1820 } 1821 1822 static int spmi_regulator_init_slew_rate_hfsmps(struct spmi_regulator *vreg) 1823 { 1824 int ret; 1825 u8 reg = 0; 1826 int delay; 1827 1828 ret = spmi_vreg_read(vreg, SPMI_HFSMPS_REG_STEP_CTRL, ®, 1); 1829 if (ret) { 1830 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret); 1831 return ret; 1832 } 1833 1834 delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK; 1835 delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT; 1836 1837 vreg->slew_rate = SPMI_HFSMPS_SLEW_RATE_38p4 >> delay; 1838 1839 return ret; 1840 } 1841 1842 static int spmi_regulator_init_registers(struct spmi_regulator *vreg, 1843 const struct spmi_regulator_init_data *data) 1844 { 1845 int ret; 1846 enum spmi_regulator_logical_type type; 1847 u8 ctrl_reg[8], reg, mask; 1848 1849 type = vreg->logical_type; 1850 1851 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8); 1852 if (ret) 1853 return ret; 1854 1855 /* Set up enable pin control. */ 1856 if (!(data->pin_ctrl_enable & SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) { 1857 switch (type) { 1858 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS: 1859 case SPMI_REGULATOR_LOGICAL_TYPE_LDO: 1860 case SPMI_REGULATOR_LOGICAL_TYPE_VS: 1861 ctrl_reg[SPMI_COMMON_IDX_ENABLE] &= 1862 ~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK; 1863 ctrl_reg[SPMI_COMMON_IDX_ENABLE] |= 1864 data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK; 1865 break; 1866 default: 1867 break; 1868 } 1869 } 1870 1871 /* Set up mode pin control. */ 1872 if (!(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) { 1873 switch (type) { 1874 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS: 1875 case SPMI_REGULATOR_LOGICAL_TYPE_LDO: 1876 ctrl_reg[SPMI_COMMON_IDX_MODE] &= 1877 ~SPMI_COMMON_MODE_FOLLOW_ALL_MASK; 1878 ctrl_reg[SPMI_COMMON_IDX_MODE] |= 1879 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK; 1880 break; 1881 case SPMI_REGULATOR_LOGICAL_TYPE_VS: 1882 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS: 1883 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS: 1884 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO: 1885 ctrl_reg[SPMI_COMMON_IDX_MODE] &= 1886 ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; 1887 ctrl_reg[SPMI_COMMON_IDX_MODE] |= 1888 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK; 1889 break; 1890 default: 1891 break; 1892 } 1893 } 1894 1895 /* Write back any control register values that were modified. */ 1896 ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8); 1897 if (ret) 1898 return ret; 1899 1900 /* Set soft start strength and over current protection for VS. */ 1901 if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) { 1902 if (data->vs_soft_start_strength 1903 != SPMI_VS_SOFT_START_STR_HW_DEFAULT) { 1904 reg = data->vs_soft_start_strength 1905 & SPMI_VS_SOFT_START_SEL_MASK; 1906 mask = SPMI_VS_SOFT_START_SEL_MASK; 1907 return spmi_vreg_update_bits(vreg, 1908 SPMI_VS_REG_SOFT_START, 1909 reg, mask); 1910 } 1911 } 1912 1913 return 0; 1914 } 1915 1916 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg, 1917 struct device_node *node, struct spmi_regulator_init_data *data) 1918 { 1919 /* 1920 * Initialize configuration parameters to use hardware default in case 1921 * no value is specified via device tree. 1922 */ 1923 data->pin_ctrl_enable = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT; 1924 data->pin_ctrl_hpm = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT; 1925 data->vs_soft_start_strength = SPMI_VS_SOFT_START_STR_HW_DEFAULT; 1926 1927 /* These bindings are optional, so it is okay if they aren't found. */ 1928 of_property_read_u32(node, "qcom,ocp-max-retries", 1929 &vreg->ocp_max_retries); 1930 of_property_read_u32(node, "qcom,ocp-retry-delay", 1931 &vreg->ocp_retry_delay_ms); 1932 of_property_read_u32(node, "qcom,pin-ctrl-enable", 1933 &data->pin_ctrl_enable); 1934 of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm); 1935 of_property_read_u32(node, "qcom,vs-soft-start-strength", 1936 &data->vs_soft_start_strength); 1937 } 1938 1939 static unsigned int spmi_regulator_of_map_mode(unsigned int mode) 1940 { 1941 if (mode == 1) 1942 return REGULATOR_MODE_NORMAL; 1943 if (mode == 2) 1944 return REGULATOR_MODE_FAST; 1945 1946 return REGULATOR_MODE_IDLE; 1947 } 1948 1949 static int spmi_regulator_of_parse(struct device_node *node, 1950 const struct regulator_desc *desc, 1951 struct regulator_config *config) 1952 { 1953 struct spmi_regulator_init_data data = { }; 1954 struct spmi_regulator *vreg = config->driver_data; 1955 struct device *dev = config->dev; 1956 int ret; 1957 1958 spmi_regulator_get_dt_config(vreg, node, &data); 1959 1960 if (!vreg->ocp_max_retries) 1961 vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES; 1962 if (!vreg->ocp_retry_delay_ms) 1963 vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS; 1964 1965 ret = spmi_regulator_init_registers(vreg, &data); 1966 if (ret) { 1967 dev_err(dev, "common initialization failed, ret=%d\n", ret); 1968 return ret; 1969 } 1970 1971 switch (vreg->logical_type) { 1972 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS: 1973 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS: 1974 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS: 1975 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS: 1976 ret = spmi_regulator_init_slew_rate(vreg); 1977 if (ret) 1978 return ret; 1979 break; 1980 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426: 1981 ret = spmi_regulator_init_slew_rate_ftsmps426(vreg, 1982 SPMI_FTSMPS426_CLOCK_RATE); 1983 if (ret) 1984 return ret; 1985 break; 1986 case SPMI_REGULATOR_LOGICAL_TYPE_HFS430: 1987 ret = spmi_regulator_init_slew_rate_ftsmps426(vreg, 1988 SPMI_HFS430_CLOCK_RATE); 1989 if (ret) 1990 return ret; 1991 break; 1992 case SPMI_REGULATOR_LOGICAL_TYPE_HFSMPS: 1993 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS3: 1994 ret = spmi_regulator_init_slew_rate_hfsmps(vreg); 1995 if (ret) 1996 return ret; 1997 break; 1998 default: 1999 break; 2000 } 2001 2002 if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS) 2003 vreg->ocp_irq = 0; 2004 2005 if (vreg->ocp_irq) { 2006 ret = devm_request_irq(dev, vreg->ocp_irq, 2007 spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp", 2008 vreg); 2009 if (ret < 0) { 2010 dev_err(dev, "failed to request irq %d, ret=%d\n", 2011 vreg->ocp_irq, ret); 2012 return ret; 2013 } 2014 2015 ret = devm_delayed_work_autocancel(dev, &vreg->ocp_work, 2016 spmi_regulator_vs_ocp_work); 2017 if (ret) 2018 return ret; 2019 } 2020 2021 return 0; 2022 } 2023 2024 static const struct spmi_regulator_data pm6125_regulators[] = { 2025 { "s1", 0x1400, "vdd_s1" }, 2026 { "s2", 0x1700, "vdd_s2" }, 2027 { "s3", 0x1a00, "vdd_s3" }, 2028 { "s4", 0x1d00, "vdd_s4" }, 2029 { "s5", 0x2000, "vdd_s5" }, 2030 { "s6", 0x2300, "vdd_s6" }, 2031 { "s7", 0x2600, "vdd_s7" }, 2032 { "s8", 0x2900, "vdd_s8" }, 2033 { "l1", 0x4000, "vdd_l1_l7_l17_l18" }, 2034 { "l2", 0x4100, "vdd_l2_l3_l4" }, 2035 { "l3", 0x4200, "vdd_l2_l3_l4" }, 2036 { "l4", 0x4300, "vdd_l2_l3_l4" }, 2037 { "l5", 0x4400, "vdd_l5_l15_l19_l20_l21_l22" }, 2038 { "l6", 0x4500, "vdd_l6_l8" }, 2039 { "l7", 0x4600, "vdd_l1_l7_l17_l18" }, 2040 { "l8", 0x4700, "vdd_l6_l8" }, 2041 { "l9", 0x4800, "vdd_l9_l11" }, 2042 { "l10", 0x4900, "vdd_l10_l13_l14" }, 2043 { "l11", 0x4a00, "vdd_l9_l11" }, 2044 { "l12", 0x4b00, "vdd_l12_l16" }, 2045 { "l13", 0x4c00, "vdd_l10_l13_l14" }, 2046 { "l14", 0x4d00, "vdd_l10_l13_l14" }, 2047 { "l15", 0x4e00, "vdd_l5_l15_l19_l20_l21_l22" }, 2048 { "l16", 0x4f00, "vdd_l12_l16" }, 2049 { "l17", 0x5000, "vdd_l1_l7_l17_l18" }, 2050 { "l18", 0x5100, "vdd_l1_l7_l17_l18" }, 2051 { "l19", 0x5200, "vdd_l5_l15_l19_l20_l21_l22" }, 2052 { "l20", 0x5300, "vdd_l5_l15_l19_l20_l21_l22" }, 2053 { "l21", 0x5400, "vdd_l5_l15_l19_l20_l21_l22" }, 2054 { "l22", 0x5500, "vdd_l5_l15_l19_l20_l21_l22" }, 2055 { "l23", 0x5600, "vdd_l23_l24" }, 2056 { "l24", 0x5700, "vdd_l23_l24" }, 2057 }; 2058 2059 static const struct spmi_regulator_data pm660_regulators[] = { 2060 { "s1", 0x1400, "vdd_s1", }, 2061 { "s2", 0x1700, "vdd_s2", }, 2062 { "s3", 0x1a00, "vdd_s3", }, 2063 { "s4", 0x1d00, "vdd_s3", }, 2064 { "s5", 0x2000, "vdd_s5", }, 2065 { "s6", 0x2300, "vdd_s6", }, 2066 { "l1", 0x4000, "vdd_l1_l6_l7", }, 2067 { "l2", 0x4100, "vdd_l2_l3", }, 2068 { "l3", 0x4200, "vdd_l2_l3", }, 2069 /* l4 is unaccessible on PM660 */ 2070 { "l5", 0x4400, "vdd_l5", }, 2071 { "l6", 0x4500, "vdd_l1_l6_l7", }, 2072 { "l7", 0x4600, "vdd_l1_l6_l7", }, 2073 { "l8", 0x4700, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2074 { "l9", 0x4800, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2075 { "l10", 0x4900, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2076 { "l11", 0x4a00, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2077 { "l12", 0x4b00, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2078 { "l13", 0x4c00, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2079 { "l14", 0x4d00, "vdd_l8_l9_l10_l11_l12_l13_l14", }, 2080 { "l15", 0x4e00, "vdd_l15_l16_l17_l18_l19", }, 2081 { "l16", 0x4f00, "vdd_l15_l16_l17_l18_l19", }, 2082 { "l17", 0x5000, "vdd_l15_l16_l17_l18_l19", }, 2083 { "l18", 0x5100, "vdd_l15_l16_l17_l18_l19", }, 2084 { "l19", 0x5200, "vdd_l15_l16_l17_l18_l19", }, 2085 { } 2086 }; 2087 2088 static const struct spmi_regulator_data pm660l_regulators[] = { 2089 { "s1", 0x1400, "vdd_s1", }, 2090 { "s2", 0x1700, "vdd_s2", }, 2091 { "s3", 0x1a00, "vdd_s3", }, 2092 { "s4", 0x1d00, "vdd_s4", }, 2093 { "s5", 0x2000, "vdd_s5", }, 2094 { "l1", 0x4000, "vdd_l1_l9_l10", }, 2095 { "l2", 0x4100, "vdd_l2", }, 2096 { "l3", 0x4200, "vdd_l3_l5_l7_l8", }, 2097 { "l4", 0x4300, "vdd_l4_l6", }, 2098 { "l5", 0x4400, "vdd_l3_l5_l7_l8", }, 2099 { "l6", 0x4500, "vdd_l4_l6", }, 2100 { "l7", 0x4600, "vdd_l3_l5_l7_l8", }, 2101 { "l8", 0x4700, "vdd_l3_l5_l7_l8", }, 2102 { "l9", 0x4800, "vdd_l1_l9_l10", }, 2103 { "l10", 0x4900, "vdd_l1_l9_l10", }, 2104 { } 2105 }; 2106 2107 static const struct spmi_regulator_data pm8004_regulators[] = { 2108 { "s2", 0x1700, "vdd_s2", }, 2109 { "s5", 0x2000, "vdd_s5", }, 2110 { } 2111 }; 2112 2113 static const struct spmi_regulator_data pm8005_regulators[] = { 2114 { "s1", 0x1400, "vdd_s1", }, 2115 { "s2", 0x1700, "vdd_s2", }, 2116 { "s3", 0x1a00, "vdd_s3", }, 2117 { "s4", 0x1d00, "vdd_s4", }, 2118 { } 2119 }; 2120 2121 static const struct spmi_regulator_data pm8226_regulators[] = { 2122 { "s1", 0x1400, "vdd_s1", }, 2123 { "s2", 0x1700, "vdd_s2", }, 2124 { "s3", 0x1a00, "vdd_s3", }, 2125 { "s4", 0x1d00, "vdd_s4", }, 2126 { "s5", 0x2000, "vdd_s5", }, 2127 { "l1", 0x4000, "vdd_l1_l2_l4_l5", }, 2128 { "l2", 0x4100, "vdd_l1_l2_l4_l5", }, 2129 { "l3", 0x4200, "vdd_l3_l24_l26", }, 2130 { "l4", 0x4300, "vdd_l1_l2_l4_l5", }, 2131 { "l5", 0x4400, "vdd_l1_l2_l4_l5", }, 2132 { "l6", 0x4500, "vdd_l6_l7_l8_l9_l27", }, 2133 { "l7", 0x4600, "vdd_l6_l7_l8_l9_l27", }, 2134 { "l8", 0x4700, "vdd_l6_l7_l8_l9_l27", }, 2135 { "l9", 0x4800, "vdd_l6_l7_l8_l9_l27", }, 2136 { "l10", 0x4900, "vdd_l10_l11_l13", }, 2137 { "l11", 0x4a00, "vdd_l10_l11_l13", }, 2138 { "l12", 0x4b00, "vdd_l12_l14", }, 2139 { "l13", 0x4c00, "vdd_l10_l11_l13", }, 2140 { "l14", 0x4d00, "vdd_l12_l14", }, 2141 { "l15", 0x4e00, "vdd_l15_l16_l17_l18", }, 2142 { "l16", 0x4f00, "vdd_l15_l16_l17_l18", }, 2143 { "l17", 0x5000, "vdd_l15_l16_l17_l18", }, 2144 { "l18", 0x5100, "vdd_l15_l16_l17_l18", }, 2145 { "l19", 0x5200, "vdd_l19_l20_l21_l22_l23_l28", }, 2146 { "l20", 0x5300, "vdd_l19_l20_l21_l22_l23_l28", }, 2147 { "l21", 0x5400, "vdd_l19_l20_l21_l22_l23_l28", }, 2148 { "l22", 0x5500, "vdd_l19_l20_l21_l22_l23_l28", }, 2149 { "l23", 0x5600, "vdd_l19_l20_l21_l22_l23_l28", }, 2150 { "l24", 0x5700, "vdd_l3_l24_l26", }, 2151 { "l25", 0x5800, "vdd_l25", }, 2152 { "l26", 0x5900, "vdd_l3_l24_l26", }, 2153 { "l27", 0x5a00, "vdd_l6_l7_l8_l9_l27", }, 2154 { "l28", 0x5b00, "vdd_l19_l20_l21_l22_l23_l28", }, 2155 { "lvs1", 0x8000, "vdd_lvs1", }, 2156 { } 2157 }; 2158 2159 static const struct spmi_regulator_data pm8841_regulators[] = { 2160 { "s1", 0x1400, "vdd_s1", }, 2161 { "s2", 0x1700, "vdd_s2", NULL, 0x1c08 }, 2162 { "s3", 0x1a00, "vdd_s3", }, 2163 { "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 }, 2164 { "s5", 0x2000, "vdd_s5", NULL, 0x1c08 }, 2165 { "s6", 0x2300, "vdd_s6", NULL, 0x1c08 }, 2166 { "s7", 0x2600, "vdd_s7", NULL, 0x1c08 }, 2167 { "s8", 0x2900, "vdd_s8", NULL, 0x1c08 }, 2168 { } 2169 }; 2170 2171 static const struct spmi_regulator_data pm8916_regulators[] = { 2172 { "s1", 0x1400, "vdd_s1", }, 2173 { "s2", 0x1700, "vdd_s2", }, 2174 { "s3", 0x1a00, "vdd_s3", }, 2175 { "s4", 0x1d00, "vdd_s4", }, 2176 { "l1", 0x4000, "vdd_l1_l3", }, 2177 { "l2", 0x4100, "vdd_l2", }, 2178 { "l3", 0x4200, "vdd_l1_l3", }, 2179 { "l4", 0x4300, "vdd_l4_l5_l6", }, 2180 { "l5", 0x4400, "vdd_l4_l5_l6", }, 2181 { "l6", 0x4500, "vdd_l4_l5_l6", }, 2182 { "l7", 0x4600, "vdd_l7", }, 2183 { "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", }, 2184 { "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", }, 2185 { "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", }, 2186 { "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", }, 2187 { "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", }, 2188 { "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", }, 2189 { "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", }, 2190 { "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", }, 2191 { "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", }, 2192 { "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", }, 2193 { "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", }, 2194 { } 2195 }; 2196 2197 static const struct spmi_regulator_data pm8941_regulators[] = { 2198 { "s1", 0x1400, "vdd_s1", }, 2199 { "s2", 0x1700, "vdd_s2", }, 2200 { "s3", 0x1a00, "vdd_s3", }, 2201 { "s4", 0xa000, }, 2202 { "l1", 0x4000, "vdd_l1_l3", }, 2203 { "l2", 0x4100, "vdd_l2_lvs_1_2_3", }, 2204 { "l3", 0x4200, "vdd_l1_l3", }, 2205 { "l4", 0x4300, "vdd_l4_l11", }, 2206 { "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 }, 2207 { "l6", 0x4500, "vdd_l6_l12_l14_l15", }, 2208 { "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 }, 2209 { "l8", 0x4700, "vdd_l8_l16_l18_19", }, 2210 { "l9", 0x4800, "vdd_l9_l10_l17_l22", }, 2211 { "l10", 0x4900, "vdd_l9_l10_l17_l22", }, 2212 { "l11", 0x4a00, "vdd_l4_l11", }, 2213 { "l12", 0x4b00, "vdd_l6_l12_l14_l15", }, 2214 { "l13", 0x4c00, "vdd_l13_l20_l23_l24", }, 2215 { "l14", 0x4d00, "vdd_l6_l12_l14_l15", }, 2216 { "l15", 0x4e00, "vdd_l6_l12_l14_l15", }, 2217 { "l16", 0x4f00, "vdd_l8_l16_l18_19", }, 2218 { "l17", 0x5000, "vdd_l9_l10_l17_l22", }, 2219 { "l18", 0x5100, "vdd_l8_l16_l18_19", }, 2220 { "l19", 0x5200, "vdd_l8_l16_l18_19", }, 2221 { "l20", 0x5300, "vdd_l13_l20_l23_l24", }, 2222 { "l21", 0x5400, "vdd_l21", }, 2223 { "l22", 0x5500, "vdd_l9_l10_l17_l22", }, 2224 { "l23", 0x5600, "vdd_l13_l20_l23_l24", }, 2225 { "l24", 0x5700, "vdd_l13_l20_l23_l24", }, 2226 { "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", }, 2227 { "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", }, 2228 { "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", }, 2229 { "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", }, 2230 { "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", }, 2231 { } 2232 }; 2233 2234 static const struct spmi_regulator_data pm8950_regulators[] = { 2235 { "s1", 0x1400, "vdd_s1", }, 2236 { "s2", 0x1700, "vdd_s2", }, 2237 { "s3", 0x1a00, "vdd_s3", }, 2238 { "s4", 0x1d00, "vdd_s4", }, 2239 { "s5", 0x2000, "vdd_s5", }, 2240 { "s6", 0x2300, "vdd_s6", }, 2241 { "l1", 0x4000, "vdd_l1_l19", }, 2242 { "l2", 0x4100, "vdd_l2_l23", }, 2243 { "l3", 0x4200, "vdd_l3", }, 2244 { "l4", 0x4300, "vdd_l4_l5_l6_l7_l16", }, 2245 { "l5", 0x4400, "vdd_l4_l5_l6_l7_l16", }, 2246 { "l6", 0x4500, "vdd_l4_l5_l6_l7_l16", }, 2247 { "l7", 0x4600, "vdd_l4_l5_l6_l7_l16", }, 2248 { "l8", 0x4700, "vdd_l8_l11_l12_l17_l22", }, 2249 { "l9", 0x4800, "vdd_l9_l10_l13_l14_l15_l18", }, 2250 { "l10", 0x4900, "vdd_l9_l10_l13_l14_l15_l18", }, 2251 { "l11", 0x4a00, "vdd_l8_l11_l12_l17_l22", }, 2252 { "l12", 0x4b00, "vdd_l8_l11_l12_l17_l22", }, 2253 { "l13", 0x4c00, "vdd_l9_l10_l13_l14_l15_l18", }, 2254 { "l14", 0x4d00, "vdd_l9_l10_l13_l14_l15_l18", }, 2255 { "l15", 0x4e00, "vdd_l9_l10_l13_l14_l15_l18", }, 2256 { "l16", 0x4f00, "vdd_l4_l5_l6_l7_l16", }, 2257 { "l17", 0x5000, "vdd_l8_l11_l12_l17_l22", }, 2258 { "l18", 0x5100, "vdd_l9_l10_l13_l14_l15_l18", }, 2259 { "l19", 0x5200, "vdd_l1_l19", }, 2260 { "l20", 0x5300, "vdd_l20", }, 2261 { "l21", 0x5400, "vdd_l21", }, 2262 { "l22", 0x5500, "vdd_l8_l11_l12_l17_l22", }, 2263 { "l23", 0x5600, "vdd_l2_l23", }, 2264 { } 2265 }; 2266 2267 static const struct spmi_regulator_data pm8994_regulators[] = { 2268 { "s1", 0x1400, "vdd_s1", }, 2269 { "s2", 0x1700, "vdd_s2", }, 2270 { "s3", 0x1a00, "vdd_s3", }, 2271 { "s4", 0x1d00, "vdd_s4", }, 2272 { "s5", 0x2000, "vdd_s5", }, 2273 { "s6", 0x2300, "vdd_s6", }, 2274 { "s7", 0x2600, "vdd_s7", }, 2275 { "s8", 0x2900, "vdd_s8", }, 2276 { "s9", 0x2c00, "vdd_s9", }, 2277 { "s10", 0x2f00, "vdd_s10", }, 2278 { "s11", 0x3200, "vdd_s11", }, 2279 { "s12", 0x3500, "vdd_s12", }, 2280 { "l1", 0x4000, "vdd_l1", }, 2281 { "l2", 0x4100, "vdd_l2_l26_l28", }, 2282 { "l3", 0x4200, "vdd_l3_l11", }, 2283 { "l4", 0x4300, "vdd_l4_l27_l31", }, 2284 { "l5", 0x4400, "vdd_l5_l7", }, 2285 { "l6", 0x4500, "vdd_l6_l12_l32", }, 2286 { "l7", 0x4600, "vdd_l5_l7", }, 2287 { "l8", 0x4700, "vdd_l8_l16_l30", }, 2288 { "l9", 0x4800, "vdd_l9_l10_l18_l22", }, 2289 { "l10", 0x4900, "vdd_l9_l10_l18_l22", }, 2290 { "l11", 0x4a00, "vdd_l3_l11", }, 2291 { "l12", 0x4b00, "vdd_l6_l12_l32", }, 2292 { "l13", 0x4c00, "vdd_l13_l19_l23_l24", }, 2293 { "l14", 0x4d00, "vdd_l14_l15", }, 2294 { "l15", 0x4e00, "vdd_l14_l15", }, 2295 { "l16", 0x4f00, "vdd_l8_l16_l30", }, 2296 { "l17", 0x5000, "vdd_l17_l29", }, 2297 { "l18", 0x5100, "vdd_l9_l10_l18_l22", }, 2298 { "l19", 0x5200, "vdd_l13_l19_l23_l24", }, 2299 { "l20", 0x5300, "vdd_l20_l21", }, 2300 { "l21", 0x5400, "vdd_l20_l21", }, 2301 { "l22", 0x5500, "vdd_l9_l10_l18_l22", }, 2302 { "l23", 0x5600, "vdd_l13_l19_l23_l24", }, 2303 { "l24", 0x5700, "vdd_l13_l19_l23_l24", }, 2304 { "l25", 0x5800, "vdd_l25", }, 2305 { "l26", 0x5900, "vdd_l2_l26_l28", }, 2306 { "l27", 0x5a00, "vdd_l4_l27_l31", }, 2307 { "l28", 0x5b00, "vdd_l2_l26_l28", }, 2308 { "l29", 0x5c00, "vdd_l17_l29", }, 2309 { "l30", 0x5d00, "vdd_l8_l16_l30", }, 2310 { "l31", 0x5e00, "vdd_l4_l27_l31", }, 2311 { "l32", 0x5f00, "vdd_l6_l12_l32", }, 2312 { "lvs1", 0x8000, "vdd_lvs_1_2", }, 2313 { "lvs2", 0x8100, "vdd_lvs_1_2", }, 2314 { } 2315 }; 2316 2317 static const struct spmi_regulator_data pmi8994_regulators[] = { 2318 { "s1", 0x1400, "vdd_s1", }, 2319 { "s2", 0x1700, "vdd_s2", }, 2320 { "s3", 0x1a00, "vdd_s3", }, 2321 { "l1", 0x4000, "vdd_l1", }, 2322 { } 2323 }; 2324 2325 static const struct spmi_regulator_data pmp8074_regulators[] = { 2326 { "s1", 0x1400, "vdd_s1"}, 2327 { "s2", 0x1700, "vdd_s2"}, 2328 { "s3", 0x1a00, "vdd_s3"}, 2329 { "s4", 0x1d00, "vdd_s4"}, 2330 { "s5", 0x2000, "vdd_s5"}, 2331 { "l1", 0x4000, "vdd_l1_l2"}, 2332 { "l2", 0x4100, "vdd_l1_l2"}, 2333 { "l3", 0x4200, "vdd_l3_l8"}, 2334 { "l4", 0x4300, "vdd_l4"}, 2335 { "l5", 0x4400, "vdd_l5_l6_l15"}, 2336 { "l6", 0x4500, "vdd_l5_l6_l15"}, 2337 { "l7", 0x4600, "vdd_l7"}, 2338 { "l8", 0x4700, "vdd_l3_l8"}, 2339 { "l9", 0x4800, "vdd_l9"}, 2340 /* l10 is currently unsupported HT_P50 */ 2341 { "l11", 0x4a00, "vdd_l10_l11_l12_l13"}, 2342 { "l12", 0x4b00, "vdd_l10_l11_l12_l13"}, 2343 { "l13", 0x4c00, "vdd_l10_l11_l12_l13"}, 2344 { } 2345 }; 2346 2347 static const struct spmi_regulator_data pms405_regulators[] = { 2348 { "s3", 0x1a00, "vdd_s3"}, 2349 { } 2350 }; 2351 2352 static const struct of_device_id qcom_spmi_regulator_match[] = { 2353 { .compatible = "qcom,pm6125-regulators", .data = &pm6125_regulators }, 2354 { .compatible = "qcom,pm660-regulators", .data = &pm660_regulators }, 2355 { .compatible = "qcom,pm660l-regulators", .data = &pm660l_regulators }, 2356 { .compatible = "qcom,pm8004-regulators", .data = &pm8004_regulators }, 2357 { .compatible = "qcom,pm8005-regulators", .data = &pm8005_regulators }, 2358 { .compatible = "qcom,pm8226-regulators", .data = &pm8226_regulators }, 2359 { .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators }, 2360 { .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators }, 2361 { .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators }, 2362 { .compatible = "qcom,pm8950-regulators", .data = &pm8950_regulators }, 2363 { .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators }, 2364 { .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators }, 2365 { .compatible = "qcom,pmp8074-regulators", .data = &pmp8074_regulators }, 2366 { .compatible = "qcom,pms405-regulators", .data = &pms405_regulators }, 2367 { } 2368 }; 2369 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match); 2370 2371 static int qcom_spmi_regulator_probe(struct platform_device *pdev) 2372 { 2373 const struct spmi_regulator_data *reg; 2374 const struct spmi_voltage_range *range; 2375 const struct of_device_id *match; 2376 struct regulator_config config = { }; 2377 struct regulator_dev *rdev; 2378 struct spmi_regulator *vreg; 2379 struct regmap *regmap; 2380 const char *name; 2381 struct device *dev = &pdev->dev; 2382 struct device_node *node = pdev->dev.of_node; 2383 struct device_node *syscon, *reg_node; 2384 struct property *reg_prop; 2385 int ret, lenp; 2386 struct list_head *vreg_list; 2387 2388 vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL); 2389 if (!vreg_list) 2390 return -ENOMEM; 2391 INIT_LIST_HEAD(vreg_list); 2392 platform_set_drvdata(pdev, vreg_list); 2393 2394 regmap = dev_get_regmap(dev->parent, NULL); 2395 if (!regmap) 2396 return -ENODEV; 2397 2398 match = of_match_device(qcom_spmi_regulator_match, &pdev->dev); 2399 if (!match) 2400 return -ENODEV; 2401 2402 if (of_find_property(node, "qcom,saw-reg", &lenp)) { 2403 syscon = of_parse_phandle(node, "qcom,saw-reg", 0); 2404 saw_regmap = syscon_node_to_regmap(syscon); 2405 of_node_put(syscon); 2406 if (IS_ERR(saw_regmap)) 2407 dev_err(dev, "ERROR reading SAW regmap\n"); 2408 } 2409 2410 for (reg = match->data; reg->name; reg++) { 2411 2412 if (saw_regmap) { 2413 reg_node = of_get_child_by_name(node, reg->name); 2414 reg_prop = of_find_property(reg_node, "qcom,saw-slave", 2415 &lenp); 2416 of_node_put(reg_node); 2417 if (reg_prop) 2418 continue; 2419 } 2420 2421 vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL); 2422 if (!vreg) 2423 return -ENOMEM; 2424 2425 vreg->dev = dev; 2426 vreg->base = reg->base; 2427 vreg->regmap = regmap; 2428 if (reg->ocp) { 2429 vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp); 2430 if (vreg->ocp_irq < 0) 2431 return vreg->ocp_irq; 2432 } 2433 vreg->desc.id = -1; 2434 vreg->desc.owner = THIS_MODULE; 2435 vreg->desc.type = REGULATOR_VOLTAGE; 2436 vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE; 2437 vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK; 2438 vreg->desc.enable_val = SPMI_COMMON_ENABLE; 2439 vreg->desc.name = name = reg->name; 2440 vreg->desc.supply_name = reg->supply; 2441 vreg->desc.of_match = reg->name; 2442 vreg->desc.of_parse_cb = spmi_regulator_of_parse; 2443 vreg->desc.of_map_mode = spmi_regulator_of_map_mode; 2444 2445 ret = spmi_regulator_match(vreg, reg->force_type); 2446 if (ret) 2447 continue; 2448 2449 if (saw_regmap) { 2450 reg_node = of_get_child_by_name(node, reg->name); 2451 reg_prop = of_find_property(reg_node, "qcom,saw-leader", 2452 &lenp); 2453 of_node_put(reg_node); 2454 if (reg_prop) { 2455 spmi_saw_ops = *(vreg->desc.ops); 2456 spmi_saw_ops.set_voltage_sel = 2457 spmi_regulator_saw_set_voltage; 2458 vreg->desc.ops = &spmi_saw_ops; 2459 } 2460 } 2461 2462 if (vreg->set_points && vreg->set_points->count == 1) { 2463 /* since there is only one range */ 2464 range = vreg->set_points->range; 2465 vreg->desc.uV_step = range->step_uV; 2466 } 2467 2468 config.dev = dev; 2469 config.driver_data = vreg; 2470 config.regmap = regmap; 2471 rdev = devm_regulator_register(dev, &vreg->desc, &config); 2472 if (IS_ERR(rdev)) { 2473 dev_err(dev, "failed to register %s\n", name); 2474 return PTR_ERR(rdev); 2475 } 2476 2477 INIT_LIST_HEAD(&vreg->node); 2478 list_add(&vreg->node, vreg_list); 2479 } 2480 2481 return 0; 2482 } 2483 2484 static struct platform_driver qcom_spmi_regulator_driver = { 2485 .driver = { 2486 .name = "qcom-spmi-regulator", 2487 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2488 .of_match_table = qcom_spmi_regulator_match, 2489 }, 2490 .probe = qcom_spmi_regulator_probe, 2491 }; 2492 module_platform_driver(qcom_spmi_regulator_driver); 2493 2494 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver"); 2495 MODULE_LICENSE("GPL v2"); 2496 MODULE_ALIAS("platform:qcom-spmi-regulator"); 2497