xref: /openbmc/linux/drivers/regulator/helpers.c (revision ae213c44)
1 /*
2  * helpers.c  --  Voltage/Current Regulator framework helper functions.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  *  This program is free software; you can redistribute  it and/or modify it
8  *  under  the terms of  the GNU General  Public License as published by the
9  *  Free Software Foundation;  either version 2 of the  License, or (at your
10  *  option) any later version.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/regulator/driver.h>
20 #include <linux/module.h>
21 
22 /**
23  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
24  *
25  * @rdev: regulator to operate on
26  *
27  * Regulators that use regmap for their register I/O can set the
28  * enable_reg and enable_mask fields in their descriptor and then use
29  * this as their is_enabled operation, saving some code.
30  */
31 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
32 {
33 	unsigned int val;
34 	int ret;
35 
36 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
37 	if (ret != 0)
38 		return ret;
39 
40 	val &= rdev->desc->enable_mask;
41 
42 	if (rdev->desc->enable_is_inverted) {
43 		if (rdev->desc->enable_val)
44 			return val != rdev->desc->enable_val;
45 		return val == 0;
46 	} else {
47 		if (rdev->desc->enable_val)
48 			return val == rdev->desc->enable_val;
49 		return val != 0;
50 	}
51 }
52 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
53 
54 /**
55  * regulator_enable_regmap - standard enable() for regmap users
56  *
57  * @rdev: regulator to operate on
58  *
59  * Regulators that use regmap for their register I/O can set the
60  * enable_reg and enable_mask fields in their descriptor and then use
61  * this as their enable() operation, saving some code.
62  */
63 int regulator_enable_regmap(struct regulator_dev *rdev)
64 {
65 	unsigned int val;
66 
67 	if (rdev->desc->enable_is_inverted) {
68 		val = rdev->desc->disable_val;
69 	} else {
70 		val = rdev->desc->enable_val;
71 		if (!val)
72 			val = rdev->desc->enable_mask;
73 	}
74 
75 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
76 				  rdev->desc->enable_mask, val);
77 }
78 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
79 
80 /**
81  * regulator_disable_regmap - standard disable() for regmap users
82  *
83  * @rdev: regulator to operate on
84  *
85  * Regulators that use regmap for their register I/O can set the
86  * enable_reg and enable_mask fields in their descriptor and then use
87  * this as their disable() operation, saving some code.
88  */
89 int regulator_disable_regmap(struct regulator_dev *rdev)
90 {
91 	unsigned int val;
92 
93 	if (rdev->desc->enable_is_inverted) {
94 		val = rdev->desc->enable_val;
95 		if (!val)
96 			val = rdev->desc->enable_mask;
97 	} else {
98 		val = rdev->desc->disable_val;
99 	}
100 
101 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
102 				  rdev->desc->enable_mask, val);
103 }
104 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
105 
106 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
107 					     unsigned int rval)
108 {
109 	int i;
110 
111 	if (!rdev->desc->linear_range_selectors)
112 		return -EINVAL;
113 
114 	rval &= rdev->desc->vsel_range_mask;
115 
116 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
117 		if (rdev->desc->linear_range_selectors[i] == rval)
118 			return i;
119 	}
120 	return -EINVAL;
121 }
122 
123 /**
124  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
125  *
126  * @rdev: regulator to operate on
127  *
128  * Regulators that use regmap for their register I/O and use pickable
129  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
130  * fields in their descriptor and then use this as their get_voltage_vsel
131  * operation, saving some code.
132  */
133 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
134 {
135 	unsigned int r_val;
136 	int range;
137 	unsigned int val;
138 	int ret, i;
139 	unsigned int voltages_in_range = 0;
140 
141 	if (!rdev->desc->linear_ranges)
142 		return -EINVAL;
143 
144 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
145 	if (ret != 0)
146 		return ret;
147 
148 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
149 	if (ret != 0)
150 		return ret;
151 
152 	val &= rdev->desc->vsel_mask;
153 	val >>= ffs(rdev->desc->vsel_mask) - 1;
154 
155 	range = regulator_range_selector_to_index(rdev, r_val);
156 	if (range < 0)
157 		return -EINVAL;
158 
159 	for (i = 0; i < range; i++)
160 		voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
161 				     rdev->desc->linear_ranges[i].min_sel) + 1;
162 
163 	return val + voltages_in_range;
164 }
165 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
166 
167 /**
168  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
169  *
170  * @rdev: regulator to operate on
171  * @sel: Selector to set
172  *
173  * Regulators that use regmap for their register I/O and use pickable
174  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
175  * fields in their descriptor and then use this as their set_voltage_vsel
176  * operation, saving some code.
177  */
178 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
179 					      unsigned int sel)
180 {
181 	unsigned int range;
182 	int ret, i;
183 	unsigned int voltages_in_range = 0;
184 
185 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
186 		voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
187 				     rdev->desc->linear_ranges[i].min_sel) + 1;
188 		if (sel < voltages_in_range)
189 			break;
190 		sel -= voltages_in_range;
191 	}
192 
193 	if (i == rdev->desc->n_linear_ranges)
194 		return -EINVAL;
195 
196 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
197 	sel += rdev->desc->linear_ranges[i].min_sel;
198 
199 	range = rdev->desc->linear_range_selectors[i];
200 
201 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
202 		ret = regmap_update_bits(rdev->regmap,
203 					 rdev->desc->vsel_reg,
204 					 rdev->desc->vsel_range_mask |
205 					 rdev->desc->vsel_mask, sel | range);
206 	} else {
207 		ret = regmap_update_bits(rdev->regmap,
208 					 rdev->desc->vsel_range_reg,
209 					 rdev->desc->vsel_range_mask, range);
210 		if (ret)
211 			return ret;
212 
213 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
214 				  rdev->desc->vsel_mask, sel);
215 	}
216 
217 	if (ret)
218 		return ret;
219 
220 	if (rdev->desc->apply_bit)
221 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
222 					 rdev->desc->apply_bit,
223 					 rdev->desc->apply_bit);
224 	return ret;
225 }
226 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
227 
228 /**
229  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
230  *
231  * @rdev: regulator to operate on
232  *
233  * Regulators that use regmap for their register I/O can set the
234  * vsel_reg and vsel_mask fields in their descriptor and then use this
235  * as their get_voltage_vsel operation, saving some code.
236  */
237 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
238 {
239 	unsigned int val;
240 	int ret;
241 
242 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
243 	if (ret != 0)
244 		return ret;
245 
246 	val &= rdev->desc->vsel_mask;
247 	val >>= ffs(rdev->desc->vsel_mask) - 1;
248 
249 	return val;
250 }
251 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
252 
253 /**
254  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
255  *
256  * @rdev: regulator to operate on
257  * @sel: Selector to set
258  *
259  * Regulators that use regmap for their register I/O can set the
260  * vsel_reg and vsel_mask fields in their descriptor and then use this
261  * as their set_voltage_vsel operation, saving some code.
262  */
263 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
264 {
265 	int ret;
266 
267 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
268 
269 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
270 				  rdev->desc->vsel_mask, sel);
271 	if (ret)
272 		return ret;
273 
274 	if (rdev->desc->apply_bit)
275 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
276 					 rdev->desc->apply_bit,
277 					 rdev->desc->apply_bit);
278 	return ret;
279 }
280 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
281 
282 /**
283  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
284  *
285  * @rdev: Regulator to operate on
286  * @min_uV: Lower bound for voltage
287  * @max_uV: Upper bound for voltage
288  *
289  * Drivers implementing set_voltage_sel() and list_voltage() can use
290  * this as their map_voltage() operation.  It will find a suitable
291  * voltage by calling list_voltage() until it gets something in bounds
292  * for the requested voltages.
293  */
294 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
295 				  int min_uV, int max_uV)
296 {
297 	int best_val = INT_MAX;
298 	int selector = 0;
299 	int i, ret;
300 
301 	/* Find the smallest voltage that falls within the specified
302 	 * range.
303 	 */
304 	for (i = 0; i < rdev->desc->n_voltages; i++) {
305 		ret = rdev->desc->ops->list_voltage(rdev, i);
306 		if (ret < 0)
307 			continue;
308 
309 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
310 			best_val = ret;
311 			selector = i;
312 		}
313 	}
314 
315 	if (best_val != INT_MAX)
316 		return selector;
317 	else
318 		return -EINVAL;
319 }
320 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
321 
322 /**
323  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
324  *
325  * @rdev: Regulator to operate on
326  * @min_uV: Lower bound for voltage
327  * @max_uV: Upper bound for voltage
328  *
329  * Drivers that have ascendant voltage list can use this as their
330  * map_voltage() operation.
331  */
332 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
333 				 int min_uV, int max_uV)
334 {
335 	int i, ret;
336 
337 	for (i = 0; i < rdev->desc->n_voltages; i++) {
338 		ret = rdev->desc->ops->list_voltage(rdev, i);
339 		if (ret < 0)
340 			continue;
341 
342 		if (ret > max_uV)
343 			break;
344 
345 		if (ret >= min_uV && ret <= max_uV)
346 			return i;
347 	}
348 
349 	return -EINVAL;
350 }
351 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
352 
353 /**
354  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
355  *
356  * @rdev: Regulator to operate on
357  * @min_uV: Lower bound for voltage
358  * @max_uV: Upper bound for voltage
359  *
360  * Drivers providing min_uV and uV_step in their regulator_desc can
361  * use this as their map_voltage() operation.
362  */
363 int regulator_map_voltage_linear(struct regulator_dev *rdev,
364 				 int min_uV, int max_uV)
365 {
366 	int ret, voltage;
367 
368 	/* Allow uV_step to be 0 for fixed voltage */
369 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
370 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
371 			return 0;
372 		else
373 			return -EINVAL;
374 	}
375 
376 	if (!rdev->desc->uV_step) {
377 		BUG_ON(!rdev->desc->uV_step);
378 		return -EINVAL;
379 	}
380 
381 	if (min_uV < rdev->desc->min_uV)
382 		min_uV = rdev->desc->min_uV;
383 
384 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
385 	if (ret < 0)
386 		return ret;
387 
388 	ret += rdev->desc->linear_min_sel;
389 
390 	/* Map back into a voltage to verify we're still in bounds */
391 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
392 	if (voltage < min_uV || voltage > max_uV)
393 		return -EINVAL;
394 
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
398 
399 /**
400  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
401  *
402  * @rdev: Regulator to operate on
403  * @min_uV: Lower bound for voltage
404  * @max_uV: Upper bound for voltage
405  *
406  * Drivers providing linear_ranges in their descriptor can use this as
407  * their map_voltage() callback.
408  */
409 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
410 				       int min_uV, int max_uV)
411 {
412 	const struct regulator_linear_range *range;
413 	int ret = -EINVAL;
414 	int voltage, i;
415 
416 	if (!rdev->desc->n_linear_ranges) {
417 		BUG_ON(!rdev->desc->n_linear_ranges);
418 		return -EINVAL;
419 	}
420 
421 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 		int linear_max_uV;
423 
424 		range = &rdev->desc->linear_ranges[i];
425 		linear_max_uV = range->min_uV +
426 			(range->max_sel - range->min_sel) * range->uV_step;
427 
428 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
429 			continue;
430 
431 		if (min_uV <= range->min_uV)
432 			min_uV = range->min_uV;
433 
434 		/* range->uV_step == 0 means fixed voltage range */
435 		if (range->uV_step == 0) {
436 			ret = 0;
437 		} else {
438 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
439 					   range->uV_step);
440 			if (ret < 0)
441 				return ret;
442 		}
443 
444 		ret += range->min_sel;
445 
446 		/*
447 		 * Map back into a voltage to verify we're still in bounds.
448 		 * If we are not, then continue checking rest of the ranges.
449 		 */
450 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
451 		if (voltage >= min_uV && voltage <= max_uV)
452 			break;
453 	}
454 
455 	if (i == rdev->desc->n_linear_ranges)
456 		return -EINVAL;
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
461 
462 /**
463  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
464  *
465  * @rdev: Regulator to operate on
466  * @min_uV: Lower bound for voltage
467  * @max_uV: Upper bound for voltage
468  *
469  * Drivers providing pickable linear_ranges in their descriptor can use
470  * this as their map_voltage() callback.
471  */
472 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
473 						int min_uV, int max_uV)
474 {
475 	const struct regulator_linear_range *range;
476 	int ret = -EINVAL;
477 	int voltage, i;
478 	unsigned int selector = 0;
479 
480 	if (!rdev->desc->n_linear_ranges) {
481 		BUG_ON(!rdev->desc->n_linear_ranges);
482 		return -EINVAL;
483 	}
484 
485 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
486 		int linear_max_uV;
487 
488 		range = &rdev->desc->linear_ranges[i];
489 		linear_max_uV = range->min_uV +
490 			(range->max_sel - range->min_sel) * range->uV_step;
491 
492 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
493 			selector += (range->max_sel - range->min_sel + 1);
494 			continue;
495 		}
496 
497 		if (min_uV <= range->min_uV)
498 			min_uV = range->min_uV;
499 
500 		/* range->uV_step == 0 means fixed voltage range */
501 		if (range->uV_step == 0) {
502 			ret = 0;
503 		} else {
504 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
505 					   range->uV_step);
506 			if (ret < 0)
507 				return ret;
508 		}
509 
510 		ret += selector;
511 
512 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
513 
514 		/*
515 		 * Map back into a voltage to verify we're still in bounds.
516 		 * We may have overlapping voltage ranges. Hence we don't
517 		 * exit but retry until we have checked all ranges.
518 		 */
519 		if (voltage < min_uV || voltage > max_uV)
520 			selector += (range->max_sel - range->min_sel + 1);
521 		else
522 			break;
523 	}
524 
525 	if (i == rdev->desc->n_linear_ranges)
526 		return -EINVAL;
527 
528 	return ret;
529 }
530 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
531 
532 /**
533  * regulator_list_voltage_linear - List voltages with simple calculation
534  *
535  * @rdev: Regulator device
536  * @selector: Selector to convert into a voltage
537  *
538  * Regulators with a simple linear mapping between voltages and
539  * selectors can set min_uV and uV_step in the regulator descriptor
540  * and then use this function as their list_voltage() operation,
541  */
542 int regulator_list_voltage_linear(struct regulator_dev *rdev,
543 				  unsigned int selector)
544 {
545 	if (selector >= rdev->desc->n_voltages)
546 		return -EINVAL;
547 	if (selector < rdev->desc->linear_min_sel)
548 		return 0;
549 
550 	selector -= rdev->desc->linear_min_sel;
551 
552 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
553 }
554 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
555 
556 /**
557  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
558  *
559  * @rdev: Regulator device
560  * @selector: Selector to convert into a voltage
561  *
562  * list_voltage() operation, intended to be used by drivers utilizing pickable
563  * ranges helpers.
564  */
565 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
566 						 unsigned int selector)
567 {
568 	const struct regulator_linear_range *range;
569 	int i;
570 	unsigned int all_sels = 0;
571 
572 	if (!rdev->desc->n_linear_ranges) {
573 		BUG_ON(!rdev->desc->n_linear_ranges);
574 		return -EINVAL;
575 	}
576 
577 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
578 		unsigned int sels_in_range;
579 
580 		range = &rdev->desc->linear_ranges[i];
581 
582 		sels_in_range = range->max_sel - range->min_sel;
583 
584 		if (all_sels + sels_in_range >= selector) {
585 			selector -= all_sels;
586 			return range->min_uV + (range->uV_step * selector);
587 		}
588 
589 		all_sels += (sels_in_range + 1);
590 	}
591 
592 	return -EINVAL;
593 }
594 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
595 
596 /**
597  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
598  *
599  * @desc: Regulator desc for regulator which volatges are to be listed
600  * @selector: Selector to convert into a voltage
601  *
602  * Regulators with a series of simple linear mappings between voltages
603  * and selectors who have set linear_ranges in the regulator descriptor
604  * can use this function prior regulator registration to list voltages.
605  * This is useful when voltages need to be listed during device-tree
606  * parsing.
607  */
608 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
609 					     unsigned int selector)
610 {
611 	const struct regulator_linear_range *range;
612 	int i;
613 
614 	if (!desc->n_linear_ranges) {
615 		BUG_ON(!desc->n_linear_ranges);
616 		return -EINVAL;
617 	}
618 
619 	for (i = 0; i < desc->n_linear_ranges; i++) {
620 		range = &desc->linear_ranges[i];
621 
622 		if (!(selector >= range->min_sel &&
623 		      selector <= range->max_sel))
624 			continue;
625 
626 		selector -= range->min_sel;
627 
628 		return range->min_uV + (range->uV_step * selector);
629 	}
630 
631 	return -EINVAL;
632 }
633 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
634 
635 /**
636  * regulator_list_voltage_linear_range - List voltages for linear ranges
637  *
638  * @rdev: Regulator device
639  * @selector: Selector to convert into a voltage
640  *
641  * Regulators with a series of simple linear mappings between voltages
642  * and selectors can set linear_ranges in the regulator descriptor and
643  * then use this function as their list_voltage() operation,
644  */
645 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
646 					unsigned int selector)
647 {
648 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
649 }
650 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
651 
652 /**
653  * regulator_list_voltage_table - List voltages with table based mapping
654  *
655  * @rdev: Regulator device
656  * @selector: Selector to convert into a voltage
657  *
658  * Regulators with table based mapping between voltages and
659  * selectors can set volt_table in the regulator descriptor
660  * and then use this function as their list_voltage() operation.
661  */
662 int regulator_list_voltage_table(struct regulator_dev *rdev,
663 				 unsigned int selector)
664 {
665 	if (!rdev->desc->volt_table) {
666 		BUG_ON(!rdev->desc->volt_table);
667 		return -EINVAL;
668 	}
669 
670 	if (selector >= rdev->desc->n_voltages)
671 		return -EINVAL;
672 
673 	return rdev->desc->volt_table[selector];
674 }
675 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
676 
677 /**
678  * regulator_set_bypass_regmap - Default set_bypass() using regmap
679  *
680  * @rdev: device to operate on.
681  * @enable: state to set.
682  */
683 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
684 {
685 	unsigned int val;
686 
687 	if (enable) {
688 		val = rdev->desc->bypass_val_on;
689 		if (!val)
690 			val = rdev->desc->bypass_mask;
691 	} else {
692 		val = rdev->desc->bypass_val_off;
693 	}
694 
695 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
696 				  rdev->desc->bypass_mask, val);
697 }
698 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
699 
700 /**
701  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
702  *
703  * @rdev: device to operate on.
704  */
705 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
706 {
707 	unsigned int val;
708 
709 	val = rdev->desc->soft_start_val_on;
710 	if (!val)
711 		val = rdev->desc->soft_start_mask;
712 
713 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
714 				  rdev->desc->soft_start_mask, val);
715 }
716 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
717 
718 /**
719  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
720  *
721  * @rdev: device to operate on.
722  */
723 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
724 {
725 	unsigned int val;
726 
727 	val = rdev->desc->pull_down_val_on;
728 	if (!val)
729 		val = rdev->desc->pull_down_mask;
730 
731 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
732 				  rdev->desc->pull_down_mask, val);
733 }
734 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
735 
736 /**
737  * regulator_get_bypass_regmap - Default get_bypass() using regmap
738  *
739  * @rdev: device to operate on.
740  * @enable: current state.
741  */
742 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
743 {
744 	unsigned int val;
745 	unsigned int val_on = rdev->desc->bypass_val_on;
746 	int ret;
747 
748 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
749 	if (ret != 0)
750 		return ret;
751 
752 	if (!val_on)
753 		val_on = rdev->desc->bypass_mask;
754 
755 	*enable = (val & rdev->desc->bypass_mask) == val_on;
756 
757 	return 0;
758 }
759 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
760 
761 /**
762  * regulator_set_active_discharge_regmap - Default set_active_discharge()
763  *					   using regmap
764  *
765  * @rdev: device to operate on.
766  * @enable: state to set, 0 to disable and 1 to enable.
767  */
768 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
769 					  bool enable)
770 {
771 	unsigned int val;
772 
773 	if (enable)
774 		val = rdev->desc->active_discharge_on;
775 	else
776 		val = rdev->desc->active_discharge_off;
777 
778 	return regmap_update_bits(rdev->regmap,
779 				  rdev->desc->active_discharge_reg,
780 				  rdev->desc->active_discharge_mask, val);
781 }
782 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
783 
784 /**
785  * regulator_set_current_limit_regmap - set_current_limit for regmap users
786  *
787  * @rdev: regulator to operate on
788  * @min_uA: Lower bound for current limit
789  * @max_uA: Upper bound for current limit
790  *
791  * Regulators that use regmap for their register I/O can set curr_table,
792  * csel_reg and csel_mask fields in their descriptor and then use this
793  * as their set_current_limit operation, saving some code.
794  */
795 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
796 				       int min_uA, int max_uA)
797 {
798 	unsigned int n_currents = rdev->desc->n_current_limits;
799 	int i, sel = -1;
800 
801 	if (n_currents == 0)
802 		return -EINVAL;
803 
804 	if (rdev->desc->curr_table) {
805 		const unsigned int *curr_table = rdev->desc->curr_table;
806 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
807 
808 		/* search for closest to maximum */
809 		if (ascend) {
810 			for (i = n_currents - 1; i >= 0; i--) {
811 				if (min_uA <= curr_table[i] &&
812 				    curr_table[i] <= max_uA) {
813 					sel = i;
814 					break;
815 				}
816 			}
817 		} else {
818 			for (i = 0; i < n_currents; i++) {
819 				if (min_uA <= curr_table[i] &&
820 				    curr_table[i] <= max_uA) {
821 					sel = i;
822 					break;
823 				}
824 			}
825 		}
826 	}
827 
828 	if (sel < 0)
829 		return -EINVAL;
830 
831 	sel <<= ffs(rdev->desc->csel_mask) - 1;
832 
833 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
834 				  rdev->desc->csel_mask, sel);
835 }
836 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
837 
838 /**
839  * regulator_get_current_limit_regmap - get_current_limit for regmap users
840  *
841  * @rdev: regulator to operate on
842  *
843  * Regulators that use regmap for their register I/O can set the
844  * csel_reg and csel_mask fields in their descriptor and then use this
845  * as their get_current_limit operation, saving some code.
846  */
847 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
848 {
849 	unsigned int val;
850 	int ret;
851 
852 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
853 	if (ret != 0)
854 		return ret;
855 
856 	val &= rdev->desc->csel_mask;
857 	val >>= ffs(rdev->desc->csel_mask) - 1;
858 
859 	if (rdev->desc->curr_table) {
860 		if (val >= rdev->desc->n_current_limits)
861 			return -EINVAL;
862 
863 		return rdev->desc->curr_table[val];
864 	}
865 
866 	return -EINVAL;
867 }
868 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
869