xref: /openbmc/linux/drivers/regulator/helpers.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/kernel.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
15 
16 #include "internal.h"
17 
18 /**
19  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20  *
21  * @rdev: regulator to operate on
22  *
23  * Regulators that use regmap for their register I/O can set the
24  * enable_reg and enable_mask fields in their descriptor and then use
25  * this as their is_enabled operation, saving some code.
26  */
27 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28 {
29 	unsigned int val;
30 	int ret;
31 
32 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 	if (ret != 0)
34 		return ret;
35 
36 	val &= rdev->desc->enable_mask;
37 
38 	if (rdev->desc->enable_is_inverted) {
39 		if (rdev->desc->enable_val)
40 			return val != rdev->desc->enable_val;
41 		return val == 0;
42 	} else {
43 		if (rdev->desc->enable_val)
44 			return val == rdev->desc->enable_val;
45 		return val != 0;
46 	}
47 }
48 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49 
50 /**
51  * regulator_enable_regmap - standard enable() for regmap users
52  *
53  * @rdev: regulator to operate on
54  *
55  * Regulators that use regmap for their register I/O can set the
56  * enable_reg and enable_mask fields in their descriptor and then use
57  * this as their enable() operation, saving some code.
58  */
59 int regulator_enable_regmap(struct regulator_dev *rdev)
60 {
61 	unsigned int val;
62 
63 	if (rdev->desc->enable_is_inverted) {
64 		val = rdev->desc->disable_val;
65 	} else {
66 		val = rdev->desc->enable_val;
67 		if (!val)
68 			val = rdev->desc->enable_mask;
69 	}
70 
71 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 				  rdev->desc->enable_mask, val);
73 }
74 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75 
76 /**
77  * regulator_disable_regmap - standard disable() for regmap users
78  *
79  * @rdev: regulator to operate on
80  *
81  * Regulators that use regmap for their register I/O can set the
82  * enable_reg and enable_mask fields in their descriptor and then use
83  * this as their disable() operation, saving some code.
84  */
85 int regulator_disable_regmap(struct regulator_dev *rdev)
86 {
87 	unsigned int val;
88 
89 	if (rdev->desc->enable_is_inverted) {
90 		val = rdev->desc->enable_val;
91 		if (!val)
92 			val = rdev->desc->enable_mask;
93 	} else {
94 		val = rdev->desc->disable_val;
95 	}
96 
97 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 				  rdev->desc->enable_mask, val);
99 }
100 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101 
102 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 					     unsigned int rval)
104 {
105 	int i;
106 
107 	if (!rdev->desc->linear_range_selectors)
108 		return -EINVAL;
109 
110 	rval &= rdev->desc->vsel_range_mask;
111 
112 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 		if (rdev->desc->linear_range_selectors[i] == rval)
114 			return i;
115 	}
116 	return -EINVAL;
117 }
118 
119 /**
120  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121  *
122  * @rdev: regulator to operate on
123  *
124  * Regulators that use regmap for their register I/O and use pickable
125  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126  * fields in their descriptor and then use this as their get_voltage_vsel
127  * operation, saving some code.
128  */
129 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130 {
131 	unsigned int r_val;
132 	int range;
133 	unsigned int val;
134 	int ret, i;
135 	unsigned int voltages_in_range = 0;
136 
137 	if (!rdev->desc->linear_ranges)
138 		return -EINVAL;
139 
140 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
141 	if (ret != 0)
142 		return ret;
143 
144 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
145 	if (ret != 0)
146 		return ret;
147 
148 	val &= rdev->desc->vsel_mask;
149 	val >>= ffs(rdev->desc->vsel_mask) - 1;
150 
151 	range = regulator_range_selector_to_index(rdev, r_val);
152 	if (range < 0)
153 		return -EINVAL;
154 
155 	for (i = 0; i < range; i++)
156 		voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
157 				     rdev->desc->linear_ranges[i].min_sel) + 1;
158 
159 	return val + voltages_in_range;
160 }
161 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
162 
163 /**
164  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
165  *
166  * @rdev: regulator to operate on
167  * @sel: Selector to set
168  *
169  * Regulators that use regmap for their register I/O and use pickable
170  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
171  * fields in their descriptor and then use this as their set_voltage_vsel
172  * operation, saving some code.
173  */
174 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
175 					      unsigned int sel)
176 {
177 	unsigned int range;
178 	int ret, i;
179 	unsigned int voltages_in_range = 0;
180 
181 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
182 		voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
183 				     rdev->desc->linear_ranges[i].min_sel) + 1;
184 		if (sel < voltages_in_range)
185 			break;
186 		sel -= voltages_in_range;
187 	}
188 
189 	if (i == rdev->desc->n_linear_ranges)
190 		return -EINVAL;
191 
192 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
193 	sel += rdev->desc->linear_ranges[i].min_sel;
194 
195 	range = rdev->desc->linear_range_selectors[i];
196 
197 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
198 		ret = regmap_update_bits(rdev->regmap,
199 					 rdev->desc->vsel_reg,
200 					 rdev->desc->vsel_range_mask |
201 					 rdev->desc->vsel_mask, sel | range);
202 	} else {
203 		ret = regmap_update_bits(rdev->regmap,
204 					 rdev->desc->vsel_range_reg,
205 					 rdev->desc->vsel_range_mask, range);
206 		if (ret)
207 			return ret;
208 
209 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
210 				  rdev->desc->vsel_mask, sel);
211 	}
212 
213 	if (ret)
214 		return ret;
215 
216 	if (rdev->desc->apply_bit)
217 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
218 					 rdev->desc->apply_bit,
219 					 rdev->desc->apply_bit);
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
223 
224 /**
225  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
226  *
227  * @rdev: regulator to operate on
228  *
229  * Regulators that use regmap for their register I/O can set the
230  * vsel_reg and vsel_mask fields in their descriptor and then use this
231  * as their get_voltage_vsel operation, saving some code.
232  */
233 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
234 {
235 	unsigned int val;
236 	int ret;
237 
238 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
239 	if (ret != 0)
240 		return ret;
241 
242 	val &= rdev->desc->vsel_mask;
243 	val >>= ffs(rdev->desc->vsel_mask) - 1;
244 
245 	return val;
246 }
247 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
248 
249 /**
250  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
251  *
252  * @rdev: regulator to operate on
253  * @sel: Selector to set
254  *
255  * Regulators that use regmap for their register I/O can set the
256  * vsel_reg and vsel_mask fields in their descriptor and then use this
257  * as their set_voltage_vsel operation, saving some code.
258  */
259 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
260 {
261 	int ret;
262 
263 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
264 
265 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
266 				  rdev->desc->vsel_mask, sel);
267 	if (ret)
268 		return ret;
269 
270 	if (rdev->desc->apply_bit)
271 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
272 					 rdev->desc->apply_bit,
273 					 rdev->desc->apply_bit);
274 	return ret;
275 }
276 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
277 
278 /**
279  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
280  *
281  * @rdev: Regulator to operate on
282  * @min_uV: Lower bound for voltage
283  * @max_uV: Upper bound for voltage
284  *
285  * Drivers implementing set_voltage_sel() and list_voltage() can use
286  * this as their map_voltage() operation.  It will find a suitable
287  * voltage by calling list_voltage() until it gets something in bounds
288  * for the requested voltages.
289  */
290 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
291 				  int min_uV, int max_uV)
292 {
293 	int best_val = INT_MAX;
294 	int selector = 0;
295 	int i, ret;
296 
297 	/* Find the smallest voltage that falls within the specified
298 	 * range.
299 	 */
300 	for (i = 0; i < rdev->desc->n_voltages; i++) {
301 		ret = rdev->desc->ops->list_voltage(rdev, i);
302 		if (ret < 0)
303 			continue;
304 
305 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
306 			best_val = ret;
307 			selector = i;
308 		}
309 	}
310 
311 	if (best_val != INT_MAX)
312 		return selector;
313 	else
314 		return -EINVAL;
315 }
316 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
317 
318 /**
319  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
320  *
321  * @rdev: Regulator to operate on
322  * @min_uV: Lower bound for voltage
323  * @max_uV: Upper bound for voltage
324  *
325  * Drivers that have ascendant voltage list can use this as their
326  * map_voltage() operation.
327  */
328 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
329 				 int min_uV, int max_uV)
330 {
331 	int i, ret;
332 
333 	for (i = 0; i < rdev->desc->n_voltages; i++) {
334 		ret = rdev->desc->ops->list_voltage(rdev, i);
335 		if (ret < 0)
336 			continue;
337 
338 		if (ret > max_uV)
339 			break;
340 
341 		if (ret >= min_uV && ret <= max_uV)
342 			return i;
343 	}
344 
345 	return -EINVAL;
346 }
347 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
348 
349 /**
350  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
351  *
352  * @rdev: Regulator to operate on
353  * @min_uV: Lower bound for voltage
354  * @max_uV: Upper bound for voltage
355  *
356  * Drivers providing min_uV and uV_step in their regulator_desc can
357  * use this as their map_voltage() operation.
358  */
359 int regulator_map_voltage_linear(struct regulator_dev *rdev,
360 				 int min_uV, int max_uV)
361 {
362 	int ret, voltage;
363 
364 	/* Allow uV_step to be 0 for fixed voltage */
365 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
366 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
367 			return 0;
368 		else
369 			return -EINVAL;
370 	}
371 
372 	if (!rdev->desc->uV_step) {
373 		BUG_ON(!rdev->desc->uV_step);
374 		return -EINVAL;
375 	}
376 
377 	if (min_uV < rdev->desc->min_uV)
378 		min_uV = rdev->desc->min_uV;
379 
380 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
381 	if (ret < 0)
382 		return ret;
383 
384 	ret += rdev->desc->linear_min_sel;
385 
386 	/* Map back into a voltage to verify we're still in bounds */
387 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
388 	if (voltage < min_uV || voltage > max_uV)
389 		return -EINVAL;
390 
391 	return ret;
392 }
393 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
394 
395 /**
396  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
397  *
398  * @rdev: Regulator to operate on
399  * @min_uV: Lower bound for voltage
400  * @max_uV: Upper bound for voltage
401  *
402  * Drivers providing linear_ranges in their descriptor can use this as
403  * their map_voltage() callback.
404  */
405 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
406 				       int min_uV, int max_uV)
407 {
408 	const struct regulator_linear_range *range;
409 	int ret = -EINVAL;
410 	int voltage, i;
411 
412 	if (!rdev->desc->n_linear_ranges) {
413 		BUG_ON(!rdev->desc->n_linear_ranges);
414 		return -EINVAL;
415 	}
416 
417 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
418 		int linear_max_uV;
419 
420 		range = &rdev->desc->linear_ranges[i];
421 		linear_max_uV = range->min_uV +
422 			(range->max_sel - range->min_sel) * range->uV_step;
423 
424 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
425 			continue;
426 
427 		if (min_uV <= range->min_uV)
428 			min_uV = range->min_uV;
429 
430 		/* range->uV_step == 0 means fixed voltage range */
431 		if (range->uV_step == 0) {
432 			ret = 0;
433 		} else {
434 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
435 					   range->uV_step);
436 			if (ret < 0)
437 				return ret;
438 		}
439 
440 		ret += range->min_sel;
441 
442 		/*
443 		 * Map back into a voltage to verify we're still in bounds.
444 		 * If we are not, then continue checking rest of the ranges.
445 		 */
446 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
447 		if (voltage >= min_uV && voltage <= max_uV)
448 			break;
449 	}
450 
451 	if (i == rdev->desc->n_linear_ranges)
452 		return -EINVAL;
453 
454 	return ret;
455 }
456 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
457 
458 /**
459  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
460  *
461  * @rdev: Regulator to operate on
462  * @min_uV: Lower bound for voltage
463  * @max_uV: Upper bound for voltage
464  *
465  * Drivers providing pickable linear_ranges in their descriptor can use
466  * this as their map_voltage() callback.
467  */
468 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
469 						int min_uV, int max_uV)
470 {
471 	const struct regulator_linear_range *range;
472 	int ret = -EINVAL;
473 	int voltage, i;
474 	unsigned int selector = 0;
475 
476 	if (!rdev->desc->n_linear_ranges) {
477 		BUG_ON(!rdev->desc->n_linear_ranges);
478 		return -EINVAL;
479 	}
480 
481 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
482 		int linear_max_uV;
483 
484 		range = &rdev->desc->linear_ranges[i];
485 		linear_max_uV = range->min_uV +
486 			(range->max_sel - range->min_sel) * range->uV_step;
487 
488 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
489 			selector += (range->max_sel - range->min_sel + 1);
490 			continue;
491 		}
492 
493 		if (min_uV <= range->min_uV)
494 			min_uV = range->min_uV;
495 
496 		/* range->uV_step == 0 means fixed voltage range */
497 		if (range->uV_step == 0) {
498 			ret = 0;
499 		} else {
500 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
501 					   range->uV_step);
502 			if (ret < 0)
503 				return ret;
504 		}
505 
506 		ret += selector;
507 
508 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
509 
510 		/*
511 		 * Map back into a voltage to verify we're still in bounds.
512 		 * We may have overlapping voltage ranges. Hence we don't
513 		 * exit but retry until we have checked all ranges.
514 		 */
515 		if (voltage < min_uV || voltage > max_uV)
516 			selector += (range->max_sel - range->min_sel + 1);
517 		else
518 			break;
519 	}
520 
521 	if (i == rdev->desc->n_linear_ranges)
522 		return -EINVAL;
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
527 
528 /**
529  * regulator_list_voltage_linear - List voltages with simple calculation
530  *
531  * @rdev: Regulator device
532  * @selector: Selector to convert into a voltage
533  *
534  * Regulators with a simple linear mapping between voltages and
535  * selectors can set min_uV and uV_step in the regulator descriptor
536  * and then use this function as their list_voltage() operation,
537  */
538 int regulator_list_voltage_linear(struct regulator_dev *rdev,
539 				  unsigned int selector)
540 {
541 	if (selector >= rdev->desc->n_voltages)
542 		return -EINVAL;
543 	if (selector < rdev->desc->linear_min_sel)
544 		return 0;
545 
546 	selector -= rdev->desc->linear_min_sel;
547 
548 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
549 }
550 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
551 
552 /**
553  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
554  *
555  * @rdev: Regulator device
556  * @selector: Selector to convert into a voltage
557  *
558  * list_voltage() operation, intended to be used by drivers utilizing pickable
559  * ranges helpers.
560  */
561 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
562 						 unsigned int selector)
563 {
564 	const struct regulator_linear_range *range;
565 	int i;
566 	unsigned int all_sels = 0;
567 
568 	if (!rdev->desc->n_linear_ranges) {
569 		BUG_ON(!rdev->desc->n_linear_ranges);
570 		return -EINVAL;
571 	}
572 
573 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
574 		unsigned int sels_in_range;
575 
576 		range = &rdev->desc->linear_ranges[i];
577 
578 		sels_in_range = range->max_sel - range->min_sel;
579 
580 		if (all_sels + sels_in_range >= selector) {
581 			selector -= all_sels;
582 			return range->min_uV + (range->uV_step * selector);
583 		}
584 
585 		all_sels += (sels_in_range + 1);
586 	}
587 
588 	return -EINVAL;
589 }
590 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
591 
592 /**
593  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
594  *
595  * @desc: Regulator desc for regulator which volatges are to be listed
596  * @selector: Selector to convert into a voltage
597  *
598  * Regulators with a series of simple linear mappings between voltages
599  * and selectors who have set linear_ranges in the regulator descriptor
600  * can use this function prior regulator registration to list voltages.
601  * This is useful when voltages need to be listed during device-tree
602  * parsing.
603  */
604 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
605 					     unsigned int selector)
606 {
607 	const struct regulator_linear_range *range;
608 	int i;
609 
610 	if (!desc->n_linear_ranges) {
611 		BUG_ON(!desc->n_linear_ranges);
612 		return -EINVAL;
613 	}
614 
615 	for (i = 0; i < desc->n_linear_ranges; i++) {
616 		range = &desc->linear_ranges[i];
617 
618 		if (!(selector >= range->min_sel &&
619 		      selector <= range->max_sel))
620 			continue;
621 
622 		selector -= range->min_sel;
623 
624 		return range->min_uV + (range->uV_step * selector);
625 	}
626 
627 	return -EINVAL;
628 }
629 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
630 
631 /**
632  * regulator_list_voltage_linear_range - List voltages for linear ranges
633  *
634  * @rdev: Regulator device
635  * @selector: Selector to convert into a voltage
636  *
637  * Regulators with a series of simple linear mappings between voltages
638  * and selectors can set linear_ranges in the regulator descriptor and
639  * then use this function as their list_voltage() operation,
640  */
641 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
642 					unsigned int selector)
643 {
644 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
645 }
646 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
647 
648 /**
649  * regulator_list_voltage_table - List voltages with table based mapping
650  *
651  * @rdev: Regulator device
652  * @selector: Selector to convert into a voltage
653  *
654  * Regulators with table based mapping between voltages and
655  * selectors can set volt_table in the regulator descriptor
656  * and then use this function as their list_voltage() operation.
657  */
658 int regulator_list_voltage_table(struct regulator_dev *rdev,
659 				 unsigned int selector)
660 {
661 	if (!rdev->desc->volt_table) {
662 		BUG_ON(!rdev->desc->volt_table);
663 		return -EINVAL;
664 	}
665 
666 	if (selector >= rdev->desc->n_voltages)
667 		return -EINVAL;
668 
669 	return rdev->desc->volt_table[selector];
670 }
671 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
672 
673 /**
674  * regulator_set_bypass_regmap - Default set_bypass() using regmap
675  *
676  * @rdev: device to operate on.
677  * @enable: state to set.
678  */
679 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
680 {
681 	unsigned int val;
682 
683 	if (enable) {
684 		val = rdev->desc->bypass_val_on;
685 		if (!val)
686 			val = rdev->desc->bypass_mask;
687 	} else {
688 		val = rdev->desc->bypass_val_off;
689 	}
690 
691 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
692 				  rdev->desc->bypass_mask, val);
693 }
694 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
695 
696 /**
697  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
698  *
699  * @rdev: device to operate on.
700  */
701 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
702 {
703 	unsigned int val;
704 
705 	val = rdev->desc->soft_start_val_on;
706 	if (!val)
707 		val = rdev->desc->soft_start_mask;
708 
709 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
710 				  rdev->desc->soft_start_mask, val);
711 }
712 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
713 
714 /**
715  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
716  *
717  * @rdev: device to operate on.
718  */
719 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
720 {
721 	unsigned int val;
722 
723 	val = rdev->desc->pull_down_val_on;
724 	if (!val)
725 		val = rdev->desc->pull_down_mask;
726 
727 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
728 				  rdev->desc->pull_down_mask, val);
729 }
730 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
731 
732 /**
733  * regulator_get_bypass_regmap - Default get_bypass() using regmap
734  *
735  * @rdev: device to operate on.
736  * @enable: current state.
737  */
738 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
739 {
740 	unsigned int val;
741 	unsigned int val_on = rdev->desc->bypass_val_on;
742 	int ret;
743 
744 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
745 	if (ret != 0)
746 		return ret;
747 
748 	if (!val_on)
749 		val_on = rdev->desc->bypass_mask;
750 
751 	*enable = (val & rdev->desc->bypass_mask) == val_on;
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
756 
757 /**
758  * regulator_set_active_discharge_regmap - Default set_active_discharge()
759  *					   using regmap
760  *
761  * @rdev: device to operate on.
762  * @enable: state to set, 0 to disable and 1 to enable.
763  */
764 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
765 					  bool enable)
766 {
767 	unsigned int val;
768 
769 	if (enable)
770 		val = rdev->desc->active_discharge_on;
771 	else
772 		val = rdev->desc->active_discharge_off;
773 
774 	return regmap_update_bits(rdev->regmap,
775 				  rdev->desc->active_discharge_reg,
776 				  rdev->desc->active_discharge_mask, val);
777 }
778 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
779 
780 /**
781  * regulator_set_current_limit_regmap - set_current_limit for regmap users
782  *
783  * @rdev: regulator to operate on
784  * @min_uA: Lower bound for current limit
785  * @max_uA: Upper bound for current limit
786  *
787  * Regulators that use regmap for their register I/O can set curr_table,
788  * csel_reg and csel_mask fields in their descriptor and then use this
789  * as their set_current_limit operation, saving some code.
790  */
791 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
792 				       int min_uA, int max_uA)
793 {
794 	unsigned int n_currents = rdev->desc->n_current_limits;
795 	int i, sel = -1;
796 
797 	if (n_currents == 0)
798 		return -EINVAL;
799 
800 	if (rdev->desc->curr_table) {
801 		const unsigned int *curr_table = rdev->desc->curr_table;
802 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
803 
804 		/* search for closest to maximum */
805 		if (ascend) {
806 			for (i = n_currents - 1; i >= 0; i--) {
807 				if (min_uA <= curr_table[i] &&
808 				    curr_table[i] <= max_uA) {
809 					sel = i;
810 					break;
811 				}
812 			}
813 		} else {
814 			for (i = 0; i < n_currents; i++) {
815 				if (min_uA <= curr_table[i] &&
816 				    curr_table[i] <= max_uA) {
817 					sel = i;
818 					break;
819 				}
820 			}
821 		}
822 	}
823 
824 	if (sel < 0)
825 		return -EINVAL;
826 
827 	sel <<= ffs(rdev->desc->csel_mask) - 1;
828 
829 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
830 				  rdev->desc->csel_mask, sel);
831 }
832 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
833 
834 /**
835  * regulator_get_current_limit_regmap - get_current_limit for regmap users
836  *
837  * @rdev: regulator to operate on
838  *
839  * Regulators that use regmap for their register I/O can set the
840  * csel_reg and csel_mask fields in their descriptor and then use this
841  * as their get_current_limit operation, saving some code.
842  */
843 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
844 {
845 	unsigned int val;
846 	int ret;
847 
848 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
849 	if (ret != 0)
850 		return ret;
851 
852 	val &= rdev->desc->csel_mask;
853 	val >>= ffs(rdev->desc->csel_mask) - 1;
854 
855 	if (rdev->desc->curr_table) {
856 		if (val >= rdev->desc->n_current_limits)
857 			return -EINVAL;
858 
859 		return rdev->desc->curr_table[val];
860 	}
861 
862 	return -EINVAL;
863 }
864 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
865 
866 /**
867  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
868  *                                   of regulator_bulk_data structs
869  *
870  * @consumers: array of regulator_bulk_data entries to initialize
871  * @supply_names: array of supply name strings
872  * @num_supplies: number of supply names to initialize
873  *
874  * Note: the 'consumers' array must be the size of 'num_supplies'.
875  */
876 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
877 				     const char *const *supply_names,
878 				     unsigned int num_supplies)
879 {
880 	unsigned int i;
881 
882 	for (i = 0; i < num_supplies; i++)
883 		consumers[i].supply = supply_names[i];
884 }
885 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
886 
887 /**
888  * regulator_is_equal - test whether two regulators are the same
889  *
890  * @reg1: first regulator to operate on
891  * @reg2: second regulator to operate on
892  */
893 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
894 {
895 	return reg1->rdev == reg2->rdev;
896 }
897 EXPORT_SYMBOL_GPL(regulator_is_equal);
898