xref: /openbmc/linux/drivers/regulator/helpers.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * helpers.c  --  Voltage/Current Regulator framework helper functions.
4  *
5  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
6  * Copyright 2008 SlimLogic Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/regmap.h>
13 #include <linux/regulator/consumer.h>
14 #include <linux/regulator/driver.h>
15 #include <linux/module.h>
16 
17 /**
18  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
19  *
20  * @rdev: regulator to operate on
21  *
22  * Regulators that use regmap for their register I/O can set the
23  * enable_reg and enable_mask fields in their descriptor and then use
24  * this as their is_enabled operation, saving some code.
25  */
26 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
27 {
28 	unsigned int val;
29 	int ret;
30 
31 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
32 	if (ret != 0)
33 		return ret;
34 
35 	val &= rdev->desc->enable_mask;
36 
37 	if (rdev->desc->enable_is_inverted) {
38 		if (rdev->desc->enable_val)
39 			return val != rdev->desc->enable_val;
40 		return val == 0;
41 	} else {
42 		if (rdev->desc->enable_val)
43 			return val == rdev->desc->enable_val;
44 		return val != 0;
45 	}
46 }
47 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
48 
49 /**
50  * regulator_enable_regmap - standard enable() for regmap users
51  *
52  * @rdev: regulator to operate on
53  *
54  * Regulators that use regmap for their register I/O can set the
55  * enable_reg and enable_mask fields in their descriptor and then use
56  * this as their enable() operation, saving some code.
57  */
58 int regulator_enable_regmap(struct regulator_dev *rdev)
59 {
60 	unsigned int val;
61 
62 	if (rdev->desc->enable_is_inverted) {
63 		val = rdev->desc->disable_val;
64 	} else {
65 		val = rdev->desc->enable_val;
66 		if (!val)
67 			val = rdev->desc->enable_mask;
68 	}
69 
70 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
71 				  rdev->desc->enable_mask, val);
72 }
73 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
74 
75 /**
76  * regulator_disable_regmap - standard disable() for regmap users
77  *
78  * @rdev: regulator to operate on
79  *
80  * Regulators that use regmap for their register I/O can set the
81  * enable_reg and enable_mask fields in their descriptor and then use
82  * this as their disable() operation, saving some code.
83  */
84 int regulator_disable_regmap(struct regulator_dev *rdev)
85 {
86 	unsigned int val;
87 
88 	if (rdev->desc->enable_is_inverted) {
89 		val = rdev->desc->enable_val;
90 		if (!val)
91 			val = rdev->desc->enable_mask;
92 	} else {
93 		val = rdev->desc->disable_val;
94 	}
95 
96 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
97 				  rdev->desc->enable_mask, val);
98 }
99 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
100 
101 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
102 					     unsigned int rval)
103 {
104 	int i;
105 
106 	if (!rdev->desc->linear_range_selectors)
107 		return -EINVAL;
108 
109 	rval &= rdev->desc->vsel_range_mask;
110 
111 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
112 		if (rdev->desc->linear_range_selectors[i] == rval)
113 			return i;
114 	}
115 	return -EINVAL;
116 }
117 
118 /**
119  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
120  *
121  * @rdev: regulator to operate on
122  *
123  * Regulators that use regmap for their register I/O and use pickable
124  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
125  * fields in their descriptor and then use this as their get_voltage_vsel
126  * operation, saving some code.
127  */
128 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
129 {
130 	unsigned int r_val;
131 	int range;
132 	unsigned int val;
133 	int ret, i;
134 	unsigned int voltages_in_range = 0;
135 
136 	if (!rdev->desc->linear_ranges)
137 		return -EINVAL;
138 
139 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
140 	if (ret != 0)
141 		return ret;
142 
143 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
144 	if (ret != 0)
145 		return ret;
146 
147 	val &= rdev->desc->vsel_mask;
148 	val >>= ffs(rdev->desc->vsel_mask) - 1;
149 
150 	range = regulator_range_selector_to_index(rdev, r_val);
151 	if (range < 0)
152 		return -EINVAL;
153 
154 	for (i = 0; i < range; i++)
155 		voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
156 				     rdev->desc->linear_ranges[i].min_sel) + 1;
157 
158 	return val + voltages_in_range;
159 }
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161 
162 /**
163  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164  *
165  * @rdev: regulator to operate on
166  * @sel: Selector to set
167  *
168  * Regulators that use regmap for their register I/O and use pickable
169  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170  * fields in their descriptor and then use this as their set_voltage_vsel
171  * operation, saving some code.
172  */
173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 					      unsigned int sel)
175 {
176 	unsigned int range;
177 	int ret, i;
178 	unsigned int voltages_in_range = 0;
179 
180 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 		voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
182 				     rdev->desc->linear_ranges[i].min_sel) + 1;
183 		if (sel < voltages_in_range)
184 			break;
185 		sel -= voltages_in_range;
186 	}
187 
188 	if (i == rdev->desc->n_linear_ranges)
189 		return -EINVAL;
190 
191 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
192 	sel += rdev->desc->linear_ranges[i].min_sel;
193 
194 	range = rdev->desc->linear_range_selectors[i];
195 
196 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
197 		ret = regmap_update_bits(rdev->regmap,
198 					 rdev->desc->vsel_reg,
199 					 rdev->desc->vsel_range_mask |
200 					 rdev->desc->vsel_mask, sel | range);
201 	} else {
202 		ret = regmap_update_bits(rdev->regmap,
203 					 rdev->desc->vsel_range_reg,
204 					 rdev->desc->vsel_range_mask, range);
205 		if (ret)
206 			return ret;
207 
208 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
209 				  rdev->desc->vsel_mask, sel);
210 	}
211 
212 	if (ret)
213 		return ret;
214 
215 	if (rdev->desc->apply_bit)
216 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
217 					 rdev->desc->apply_bit,
218 					 rdev->desc->apply_bit);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
222 
223 /**
224  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
225  *
226  * @rdev: regulator to operate on
227  *
228  * Regulators that use regmap for their register I/O can set the
229  * vsel_reg and vsel_mask fields in their descriptor and then use this
230  * as their get_voltage_vsel operation, saving some code.
231  */
232 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
233 {
234 	unsigned int val;
235 	int ret;
236 
237 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
238 	if (ret != 0)
239 		return ret;
240 
241 	val &= rdev->desc->vsel_mask;
242 	val >>= ffs(rdev->desc->vsel_mask) - 1;
243 
244 	return val;
245 }
246 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
247 
248 /**
249  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
250  *
251  * @rdev: regulator to operate on
252  * @sel: Selector to set
253  *
254  * Regulators that use regmap for their register I/O can set the
255  * vsel_reg and vsel_mask fields in their descriptor and then use this
256  * as their set_voltage_vsel operation, saving some code.
257  */
258 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
259 {
260 	int ret;
261 
262 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
263 
264 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
265 				  rdev->desc->vsel_mask, sel);
266 	if (ret)
267 		return ret;
268 
269 	if (rdev->desc->apply_bit)
270 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
271 					 rdev->desc->apply_bit,
272 					 rdev->desc->apply_bit);
273 	return ret;
274 }
275 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
276 
277 /**
278  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
279  *
280  * @rdev: Regulator to operate on
281  * @min_uV: Lower bound for voltage
282  * @max_uV: Upper bound for voltage
283  *
284  * Drivers implementing set_voltage_sel() and list_voltage() can use
285  * this as their map_voltage() operation.  It will find a suitable
286  * voltage by calling list_voltage() until it gets something in bounds
287  * for the requested voltages.
288  */
289 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
290 				  int min_uV, int max_uV)
291 {
292 	int best_val = INT_MAX;
293 	int selector = 0;
294 	int i, ret;
295 
296 	/* Find the smallest voltage that falls within the specified
297 	 * range.
298 	 */
299 	for (i = 0; i < rdev->desc->n_voltages; i++) {
300 		ret = rdev->desc->ops->list_voltage(rdev, i);
301 		if (ret < 0)
302 			continue;
303 
304 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
305 			best_val = ret;
306 			selector = i;
307 		}
308 	}
309 
310 	if (best_val != INT_MAX)
311 		return selector;
312 	else
313 		return -EINVAL;
314 }
315 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
316 
317 /**
318  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
319  *
320  * @rdev: Regulator to operate on
321  * @min_uV: Lower bound for voltage
322  * @max_uV: Upper bound for voltage
323  *
324  * Drivers that have ascendant voltage list can use this as their
325  * map_voltage() operation.
326  */
327 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
328 				 int min_uV, int max_uV)
329 {
330 	int i, ret;
331 
332 	for (i = 0; i < rdev->desc->n_voltages; i++) {
333 		ret = rdev->desc->ops->list_voltage(rdev, i);
334 		if (ret < 0)
335 			continue;
336 
337 		if (ret > max_uV)
338 			break;
339 
340 		if (ret >= min_uV && ret <= max_uV)
341 			return i;
342 	}
343 
344 	return -EINVAL;
345 }
346 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
347 
348 /**
349  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
350  *
351  * @rdev: Regulator to operate on
352  * @min_uV: Lower bound for voltage
353  * @max_uV: Upper bound for voltage
354  *
355  * Drivers providing min_uV and uV_step in their regulator_desc can
356  * use this as their map_voltage() operation.
357  */
358 int regulator_map_voltage_linear(struct regulator_dev *rdev,
359 				 int min_uV, int max_uV)
360 {
361 	int ret, voltage;
362 
363 	/* Allow uV_step to be 0 for fixed voltage */
364 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
365 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
366 			return 0;
367 		else
368 			return -EINVAL;
369 	}
370 
371 	if (!rdev->desc->uV_step) {
372 		BUG_ON(!rdev->desc->uV_step);
373 		return -EINVAL;
374 	}
375 
376 	if (min_uV < rdev->desc->min_uV)
377 		min_uV = rdev->desc->min_uV;
378 
379 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
380 	if (ret < 0)
381 		return ret;
382 
383 	ret += rdev->desc->linear_min_sel;
384 
385 	/* Map back into a voltage to verify we're still in bounds */
386 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
387 	if (voltage < min_uV || voltage > max_uV)
388 		return -EINVAL;
389 
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
393 
394 /**
395  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
396  *
397  * @rdev: Regulator to operate on
398  * @min_uV: Lower bound for voltage
399  * @max_uV: Upper bound for voltage
400  *
401  * Drivers providing linear_ranges in their descriptor can use this as
402  * their map_voltage() callback.
403  */
404 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
405 				       int min_uV, int max_uV)
406 {
407 	const struct regulator_linear_range *range;
408 	int ret = -EINVAL;
409 	int voltage, i;
410 
411 	if (!rdev->desc->n_linear_ranges) {
412 		BUG_ON(!rdev->desc->n_linear_ranges);
413 		return -EINVAL;
414 	}
415 
416 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
417 		int linear_max_uV;
418 
419 		range = &rdev->desc->linear_ranges[i];
420 		linear_max_uV = range->min_uV +
421 			(range->max_sel - range->min_sel) * range->uV_step;
422 
423 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
424 			continue;
425 
426 		if (min_uV <= range->min_uV)
427 			min_uV = range->min_uV;
428 
429 		/* range->uV_step == 0 means fixed voltage range */
430 		if (range->uV_step == 0) {
431 			ret = 0;
432 		} else {
433 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
434 					   range->uV_step);
435 			if (ret < 0)
436 				return ret;
437 		}
438 
439 		ret += range->min_sel;
440 
441 		/*
442 		 * Map back into a voltage to verify we're still in bounds.
443 		 * If we are not, then continue checking rest of the ranges.
444 		 */
445 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
446 		if (voltage >= min_uV && voltage <= max_uV)
447 			break;
448 	}
449 
450 	if (i == rdev->desc->n_linear_ranges)
451 		return -EINVAL;
452 
453 	return ret;
454 }
455 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
456 
457 /**
458  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
459  *
460  * @rdev: Regulator to operate on
461  * @min_uV: Lower bound for voltage
462  * @max_uV: Upper bound for voltage
463  *
464  * Drivers providing pickable linear_ranges in their descriptor can use
465  * this as their map_voltage() callback.
466  */
467 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
468 						int min_uV, int max_uV)
469 {
470 	const struct regulator_linear_range *range;
471 	int ret = -EINVAL;
472 	int voltage, i;
473 	unsigned int selector = 0;
474 
475 	if (!rdev->desc->n_linear_ranges) {
476 		BUG_ON(!rdev->desc->n_linear_ranges);
477 		return -EINVAL;
478 	}
479 
480 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
481 		int linear_max_uV;
482 
483 		range = &rdev->desc->linear_ranges[i];
484 		linear_max_uV = range->min_uV +
485 			(range->max_sel - range->min_sel) * range->uV_step;
486 
487 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
488 			selector += (range->max_sel - range->min_sel + 1);
489 			continue;
490 		}
491 
492 		if (min_uV <= range->min_uV)
493 			min_uV = range->min_uV;
494 
495 		/* range->uV_step == 0 means fixed voltage range */
496 		if (range->uV_step == 0) {
497 			ret = 0;
498 		} else {
499 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
500 					   range->uV_step);
501 			if (ret < 0)
502 				return ret;
503 		}
504 
505 		ret += selector;
506 
507 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
508 
509 		/*
510 		 * Map back into a voltage to verify we're still in bounds.
511 		 * We may have overlapping voltage ranges. Hence we don't
512 		 * exit but retry until we have checked all ranges.
513 		 */
514 		if (voltage < min_uV || voltage > max_uV)
515 			selector += (range->max_sel - range->min_sel + 1);
516 		else
517 			break;
518 	}
519 
520 	if (i == rdev->desc->n_linear_ranges)
521 		return -EINVAL;
522 
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
526 
527 /**
528  * regulator_list_voltage_linear - List voltages with simple calculation
529  *
530  * @rdev: Regulator device
531  * @selector: Selector to convert into a voltage
532  *
533  * Regulators with a simple linear mapping between voltages and
534  * selectors can set min_uV and uV_step in the regulator descriptor
535  * and then use this function as their list_voltage() operation,
536  */
537 int regulator_list_voltage_linear(struct regulator_dev *rdev,
538 				  unsigned int selector)
539 {
540 	if (selector >= rdev->desc->n_voltages)
541 		return -EINVAL;
542 	if (selector < rdev->desc->linear_min_sel)
543 		return 0;
544 
545 	selector -= rdev->desc->linear_min_sel;
546 
547 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
548 }
549 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
550 
551 /**
552  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
553  *
554  * @rdev: Regulator device
555  * @selector: Selector to convert into a voltage
556  *
557  * list_voltage() operation, intended to be used by drivers utilizing pickable
558  * ranges helpers.
559  */
560 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
561 						 unsigned int selector)
562 {
563 	const struct regulator_linear_range *range;
564 	int i;
565 	unsigned int all_sels = 0;
566 
567 	if (!rdev->desc->n_linear_ranges) {
568 		BUG_ON(!rdev->desc->n_linear_ranges);
569 		return -EINVAL;
570 	}
571 
572 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
573 		unsigned int sels_in_range;
574 
575 		range = &rdev->desc->linear_ranges[i];
576 
577 		sels_in_range = range->max_sel - range->min_sel;
578 
579 		if (all_sels + sels_in_range >= selector) {
580 			selector -= all_sels;
581 			return range->min_uV + (range->uV_step * selector);
582 		}
583 
584 		all_sels += (sels_in_range + 1);
585 	}
586 
587 	return -EINVAL;
588 }
589 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
590 
591 /**
592  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
593  *
594  * @desc: Regulator desc for regulator which volatges are to be listed
595  * @selector: Selector to convert into a voltage
596  *
597  * Regulators with a series of simple linear mappings between voltages
598  * and selectors who have set linear_ranges in the regulator descriptor
599  * can use this function prior regulator registration to list voltages.
600  * This is useful when voltages need to be listed during device-tree
601  * parsing.
602  */
603 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
604 					     unsigned int selector)
605 {
606 	const struct regulator_linear_range *range;
607 	int i;
608 
609 	if (!desc->n_linear_ranges) {
610 		BUG_ON(!desc->n_linear_ranges);
611 		return -EINVAL;
612 	}
613 
614 	for (i = 0; i < desc->n_linear_ranges; i++) {
615 		range = &desc->linear_ranges[i];
616 
617 		if (!(selector >= range->min_sel &&
618 		      selector <= range->max_sel))
619 			continue;
620 
621 		selector -= range->min_sel;
622 
623 		return range->min_uV + (range->uV_step * selector);
624 	}
625 
626 	return -EINVAL;
627 }
628 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
629 
630 /**
631  * regulator_list_voltage_linear_range - List voltages for linear ranges
632  *
633  * @rdev: Regulator device
634  * @selector: Selector to convert into a voltage
635  *
636  * Regulators with a series of simple linear mappings between voltages
637  * and selectors can set linear_ranges in the regulator descriptor and
638  * then use this function as their list_voltage() operation,
639  */
640 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
641 					unsigned int selector)
642 {
643 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
644 }
645 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
646 
647 /**
648  * regulator_list_voltage_table - List voltages with table based mapping
649  *
650  * @rdev: Regulator device
651  * @selector: Selector to convert into a voltage
652  *
653  * Regulators with table based mapping between voltages and
654  * selectors can set volt_table in the regulator descriptor
655  * and then use this function as their list_voltage() operation.
656  */
657 int regulator_list_voltage_table(struct regulator_dev *rdev,
658 				 unsigned int selector)
659 {
660 	if (!rdev->desc->volt_table) {
661 		BUG_ON(!rdev->desc->volt_table);
662 		return -EINVAL;
663 	}
664 
665 	if (selector >= rdev->desc->n_voltages)
666 		return -EINVAL;
667 
668 	return rdev->desc->volt_table[selector];
669 }
670 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
671 
672 /**
673  * regulator_set_bypass_regmap - Default set_bypass() using regmap
674  *
675  * @rdev: device to operate on.
676  * @enable: state to set.
677  */
678 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
679 {
680 	unsigned int val;
681 
682 	if (enable) {
683 		val = rdev->desc->bypass_val_on;
684 		if (!val)
685 			val = rdev->desc->bypass_mask;
686 	} else {
687 		val = rdev->desc->bypass_val_off;
688 	}
689 
690 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
691 				  rdev->desc->bypass_mask, val);
692 }
693 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
694 
695 /**
696  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
697  *
698  * @rdev: device to operate on.
699  */
700 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
701 {
702 	unsigned int val;
703 
704 	val = rdev->desc->soft_start_val_on;
705 	if (!val)
706 		val = rdev->desc->soft_start_mask;
707 
708 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
709 				  rdev->desc->soft_start_mask, val);
710 }
711 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
712 
713 /**
714  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
715  *
716  * @rdev: device to operate on.
717  */
718 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
719 {
720 	unsigned int val;
721 
722 	val = rdev->desc->pull_down_val_on;
723 	if (!val)
724 		val = rdev->desc->pull_down_mask;
725 
726 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
727 				  rdev->desc->pull_down_mask, val);
728 }
729 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
730 
731 /**
732  * regulator_get_bypass_regmap - Default get_bypass() using regmap
733  *
734  * @rdev: device to operate on.
735  * @enable: current state.
736  */
737 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
738 {
739 	unsigned int val;
740 	unsigned int val_on = rdev->desc->bypass_val_on;
741 	int ret;
742 
743 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
744 	if (ret != 0)
745 		return ret;
746 
747 	if (!val_on)
748 		val_on = rdev->desc->bypass_mask;
749 
750 	*enable = (val & rdev->desc->bypass_mask) == val_on;
751 
752 	return 0;
753 }
754 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
755 
756 /**
757  * regulator_set_active_discharge_regmap - Default set_active_discharge()
758  *					   using regmap
759  *
760  * @rdev: device to operate on.
761  * @enable: state to set, 0 to disable and 1 to enable.
762  */
763 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
764 					  bool enable)
765 {
766 	unsigned int val;
767 
768 	if (enable)
769 		val = rdev->desc->active_discharge_on;
770 	else
771 		val = rdev->desc->active_discharge_off;
772 
773 	return regmap_update_bits(rdev->regmap,
774 				  rdev->desc->active_discharge_reg,
775 				  rdev->desc->active_discharge_mask, val);
776 }
777 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
778 
779 /**
780  * regulator_set_current_limit_regmap - set_current_limit for regmap users
781  *
782  * @rdev: regulator to operate on
783  * @min_uA: Lower bound for current limit
784  * @max_uA: Upper bound for current limit
785  *
786  * Regulators that use regmap for their register I/O can set curr_table,
787  * csel_reg and csel_mask fields in their descriptor and then use this
788  * as their set_current_limit operation, saving some code.
789  */
790 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
791 				       int min_uA, int max_uA)
792 {
793 	unsigned int n_currents = rdev->desc->n_current_limits;
794 	int i, sel = -1;
795 
796 	if (n_currents == 0)
797 		return -EINVAL;
798 
799 	if (rdev->desc->curr_table) {
800 		const unsigned int *curr_table = rdev->desc->curr_table;
801 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
802 
803 		/* search for closest to maximum */
804 		if (ascend) {
805 			for (i = n_currents - 1; i >= 0; i--) {
806 				if (min_uA <= curr_table[i] &&
807 				    curr_table[i] <= max_uA) {
808 					sel = i;
809 					break;
810 				}
811 			}
812 		} else {
813 			for (i = 0; i < n_currents; i++) {
814 				if (min_uA <= curr_table[i] &&
815 				    curr_table[i] <= max_uA) {
816 					sel = i;
817 					break;
818 				}
819 			}
820 		}
821 	}
822 
823 	if (sel < 0)
824 		return -EINVAL;
825 
826 	sel <<= ffs(rdev->desc->csel_mask) - 1;
827 
828 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
829 				  rdev->desc->csel_mask, sel);
830 }
831 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
832 
833 /**
834  * regulator_get_current_limit_regmap - get_current_limit for regmap users
835  *
836  * @rdev: regulator to operate on
837  *
838  * Regulators that use regmap for their register I/O can set the
839  * csel_reg and csel_mask fields in their descriptor and then use this
840  * as their get_current_limit operation, saving some code.
841  */
842 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
843 {
844 	unsigned int val;
845 	int ret;
846 
847 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
848 	if (ret != 0)
849 		return ret;
850 
851 	val &= rdev->desc->csel_mask;
852 	val >>= ffs(rdev->desc->csel_mask) - 1;
853 
854 	if (rdev->desc->curr_table) {
855 		if (val >= rdev->desc->n_current_limits)
856 			return -EINVAL;
857 
858 		return rdev->desc->curr_table[val];
859 	}
860 
861 	return -EINVAL;
862 }
863 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
864