xref: /openbmc/linux/drivers/regulator/helpers.c (revision 2a598d0b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/kernel.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
15 
16 #include "internal.h"
17 
18 /**
19  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20  *
21  * @rdev: regulator to operate on
22  *
23  * Regulators that use regmap for their register I/O can set the
24  * enable_reg and enable_mask fields in their descriptor and then use
25  * this as their is_enabled operation, saving some code.
26  */
27 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28 {
29 	unsigned int val;
30 	int ret;
31 
32 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 	if (ret != 0)
34 		return ret;
35 
36 	val &= rdev->desc->enable_mask;
37 
38 	if (rdev->desc->enable_is_inverted) {
39 		if (rdev->desc->enable_val)
40 			return val != rdev->desc->enable_val;
41 		return val == 0;
42 	} else {
43 		if (rdev->desc->enable_val)
44 			return val == rdev->desc->enable_val;
45 		return val != 0;
46 	}
47 }
48 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49 
50 /**
51  * regulator_enable_regmap - standard enable() for regmap users
52  *
53  * @rdev: regulator to operate on
54  *
55  * Regulators that use regmap for their register I/O can set the
56  * enable_reg and enable_mask fields in their descriptor and then use
57  * this as their enable() operation, saving some code.
58  */
59 int regulator_enable_regmap(struct regulator_dev *rdev)
60 {
61 	unsigned int val;
62 
63 	if (rdev->desc->enable_is_inverted) {
64 		val = rdev->desc->disable_val;
65 	} else {
66 		val = rdev->desc->enable_val;
67 		if (!val)
68 			val = rdev->desc->enable_mask;
69 	}
70 
71 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 				  rdev->desc->enable_mask, val);
73 }
74 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75 
76 /**
77  * regulator_disable_regmap - standard disable() for regmap users
78  *
79  * @rdev: regulator to operate on
80  *
81  * Regulators that use regmap for their register I/O can set the
82  * enable_reg and enable_mask fields in their descriptor and then use
83  * this as their disable() operation, saving some code.
84  */
85 int regulator_disable_regmap(struct regulator_dev *rdev)
86 {
87 	unsigned int val;
88 
89 	if (rdev->desc->enable_is_inverted) {
90 		val = rdev->desc->enable_val;
91 		if (!val)
92 			val = rdev->desc->enable_mask;
93 	} else {
94 		val = rdev->desc->disable_val;
95 	}
96 
97 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 				  rdev->desc->enable_mask, val);
99 }
100 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101 
102 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 					     unsigned int rval)
104 {
105 	int i;
106 
107 	if (!rdev->desc->linear_range_selectors)
108 		return -EINVAL;
109 
110 	rval &= rdev->desc->vsel_range_mask;
111 
112 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 		if (rdev->desc->linear_range_selectors[i] == rval)
114 			return i;
115 	}
116 	return -EINVAL;
117 }
118 
119 /**
120  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121  *
122  * @rdev: regulator to operate on
123  *
124  * Regulators that use regmap for their register I/O and use pickable
125  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126  * fields in their descriptor and then use this as their get_voltage_vsel
127  * operation, saving some code.
128  */
129 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130 {
131 	unsigned int r_val;
132 	int range;
133 	unsigned int val;
134 	int ret;
135 	unsigned int voltages = 0;
136 	const struct linear_range *r = rdev->desc->linear_ranges;
137 
138 	if (!r)
139 		return -EINVAL;
140 
141 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142 	if (ret != 0)
143 		return ret;
144 
145 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146 	if (ret != 0)
147 		return ret;
148 
149 	val &= rdev->desc->vsel_mask;
150 	val >>= ffs(rdev->desc->vsel_mask) - 1;
151 
152 	range = regulator_range_selector_to_index(rdev, r_val);
153 	if (range < 0)
154 		return -EINVAL;
155 
156 	voltages = linear_range_values_in_range_array(r, range);
157 
158 	return val + voltages;
159 }
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161 
162 /**
163  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164  *
165  * @rdev: regulator to operate on
166  * @sel: Selector to set
167  *
168  * Regulators that use regmap for their register I/O and use pickable
169  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170  * fields in their descriptor and then use this as their set_voltage_vsel
171  * operation, saving some code.
172  */
173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 					      unsigned int sel)
175 {
176 	unsigned int range;
177 	int ret, i;
178 	unsigned int voltages_in_range = 0;
179 
180 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 		const struct linear_range *r;
182 
183 		r = &rdev->desc->linear_ranges[i];
184 		voltages_in_range = linear_range_values_in_range(r);
185 
186 		if (sel < voltages_in_range)
187 			break;
188 		sel -= voltages_in_range;
189 	}
190 
191 	if (i == rdev->desc->n_linear_ranges)
192 		return -EINVAL;
193 
194 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
195 	sel += rdev->desc->linear_ranges[i].min_sel;
196 
197 	range = rdev->desc->linear_range_selectors[i];
198 
199 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200 		ret = regmap_update_bits(rdev->regmap,
201 					 rdev->desc->vsel_reg,
202 					 rdev->desc->vsel_range_mask |
203 					 rdev->desc->vsel_mask, sel | range);
204 	} else {
205 		ret = regmap_update_bits(rdev->regmap,
206 					 rdev->desc->vsel_range_reg,
207 					 rdev->desc->vsel_range_mask, range);
208 		if (ret)
209 			return ret;
210 
211 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212 				  rdev->desc->vsel_mask, sel);
213 	}
214 
215 	if (ret)
216 		return ret;
217 
218 	if (rdev->desc->apply_bit)
219 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220 					 rdev->desc->apply_bit,
221 					 rdev->desc->apply_bit);
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
225 
226 /**
227  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
228  *
229  * @rdev: regulator to operate on
230  *
231  * Regulators that use regmap for their register I/O can set the
232  * vsel_reg and vsel_mask fields in their descriptor and then use this
233  * as their get_voltage_vsel operation, saving some code.
234  */
235 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
236 {
237 	unsigned int val;
238 	int ret;
239 
240 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241 	if (ret != 0)
242 		return ret;
243 
244 	val &= rdev->desc->vsel_mask;
245 	val >>= ffs(rdev->desc->vsel_mask) - 1;
246 
247 	return val;
248 }
249 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
250 
251 /**
252  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
253  *
254  * @rdev: regulator to operate on
255  * @sel: Selector to set
256  *
257  * Regulators that use regmap for their register I/O can set the
258  * vsel_reg and vsel_mask fields in their descriptor and then use this
259  * as their set_voltage_vsel operation, saving some code.
260  */
261 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
262 {
263 	int ret;
264 
265 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
266 
267 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268 				  rdev->desc->vsel_mask, sel);
269 	if (ret)
270 		return ret;
271 
272 	if (rdev->desc->apply_bit)
273 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274 					 rdev->desc->apply_bit,
275 					 rdev->desc->apply_bit);
276 	return ret;
277 }
278 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
279 
280 /**
281  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
282  *
283  * @rdev: Regulator to operate on
284  * @min_uV: Lower bound for voltage
285  * @max_uV: Upper bound for voltage
286  *
287  * Drivers implementing set_voltage_sel() and list_voltage() can use
288  * this as their map_voltage() operation.  It will find a suitable
289  * voltage by calling list_voltage() until it gets something in bounds
290  * for the requested voltages.
291  */
292 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293 				  int min_uV, int max_uV)
294 {
295 	int best_val = INT_MAX;
296 	int selector = 0;
297 	int i, ret;
298 
299 	/* Find the smallest voltage that falls within the specified
300 	 * range.
301 	 */
302 	for (i = 0; i < rdev->desc->n_voltages; i++) {
303 		ret = rdev->desc->ops->list_voltage(rdev, i);
304 		if (ret < 0)
305 			continue;
306 
307 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308 			best_val = ret;
309 			selector = i;
310 		}
311 	}
312 
313 	if (best_val != INT_MAX)
314 		return selector;
315 	else
316 		return -EINVAL;
317 }
318 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
319 
320 /**
321  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
322  *
323  * @rdev: Regulator to operate on
324  * @min_uV: Lower bound for voltage
325  * @max_uV: Upper bound for voltage
326  *
327  * Drivers that have ascendant voltage list can use this as their
328  * map_voltage() operation.
329  */
330 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331 				 int min_uV, int max_uV)
332 {
333 	int i, ret;
334 
335 	for (i = 0; i < rdev->desc->n_voltages; i++) {
336 		ret = rdev->desc->ops->list_voltage(rdev, i);
337 		if (ret < 0)
338 			continue;
339 
340 		if (ret > max_uV)
341 			break;
342 
343 		if (ret >= min_uV && ret <= max_uV)
344 			return i;
345 	}
346 
347 	return -EINVAL;
348 }
349 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
350 
351 /**
352  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
353  *
354  * @rdev: Regulator to operate on
355  * @min_uV: Lower bound for voltage
356  * @max_uV: Upper bound for voltage
357  *
358  * Drivers providing min_uV and uV_step in their regulator_desc can
359  * use this as their map_voltage() operation.
360  */
361 int regulator_map_voltage_linear(struct regulator_dev *rdev,
362 				 int min_uV, int max_uV)
363 {
364 	int ret, voltage;
365 
366 	/* Allow uV_step to be 0 for fixed voltage */
367 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369 			return 0;
370 		else
371 			return -EINVAL;
372 	}
373 
374 	if (!rdev->desc->uV_step) {
375 		BUG_ON(!rdev->desc->uV_step);
376 		return -EINVAL;
377 	}
378 
379 	if (min_uV < rdev->desc->min_uV)
380 		min_uV = rdev->desc->min_uV;
381 
382 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383 	if (ret < 0)
384 		return ret;
385 
386 	ret += rdev->desc->linear_min_sel;
387 
388 	/* Map back into a voltage to verify we're still in bounds */
389 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
390 	if (voltage < min_uV || voltage > max_uV)
391 		return -EINVAL;
392 
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
396 
397 /**
398  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
399  *
400  * @rdev: Regulator to operate on
401  * @min_uV: Lower bound for voltage
402  * @max_uV: Upper bound for voltage
403  *
404  * Drivers providing linear_ranges in their descriptor can use this as
405  * their map_voltage() callback.
406  */
407 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408 				       int min_uV, int max_uV)
409 {
410 	const struct linear_range *range;
411 	int ret = -EINVAL;
412 	unsigned int sel;
413 	bool found;
414 	int voltage, i;
415 
416 	if (!rdev->desc->n_linear_ranges) {
417 		BUG_ON(!rdev->desc->n_linear_ranges);
418 		return -EINVAL;
419 	}
420 
421 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 		range = &rdev->desc->linear_ranges[i];
423 
424 		ret = linear_range_get_selector_high(range, min_uV, &sel,
425 						     &found);
426 		if (ret)
427 			continue;
428 		ret = sel;
429 
430 		/*
431 		 * Map back into a voltage to verify we're still in bounds.
432 		 * If we are not, then continue checking rest of the ranges.
433 		 */
434 		voltage = rdev->desc->ops->list_voltage(rdev, sel);
435 		if (voltage >= min_uV && voltage <= max_uV)
436 			break;
437 	}
438 
439 	if (i == rdev->desc->n_linear_ranges)
440 		return -EINVAL;
441 
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
445 
446 /**
447  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
448  *
449  * @rdev: Regulator to operate on
450  * @min_uV: Lower bound for voltage
451  * @max_uV: Upper bound for voltage
452  *
453  * Drivers providing pickable linear_ranges in their descriptor can use
454  * this as their map_voltage() callback.
455  */
456 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457 						int min_uV, int max_uV)
458 {
459 	const struct linear_range *range;
460 	int ret = -EINVAL;
461 	int voltage, i;
462 	unsigned int selector = 0;
463 
464 	if (!rdev->desc->n_linear_ranges) {
465 		BUG_ON(!rdev->desc->n_linear_ranges);
466 		return -EINVAL;
467 	}
468 
469 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470 		int linear_max_uV;
471 		bool found;
472 		unsigned int sel;
473 
474 		range = &rdev->desc->linear_ranges[i];
475 		linear_max_uV = linear_range_get_max_value(range);
476 
477 		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478 			selector += linear_range_values_in_range(range);
479 			continue;
480 		}
481 
482 		ret = linear_range_get_selector_high(range, min_uV, &sel,
483 						     &found);
484 		if (ret) {
485 			selector += linear_range_values_in_range(range);
486 			continue;
487 		}
488 
489 		ret = selector + sel - range->min_sel;
490 
491 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
492 
493 		/*
494 		 * Map back into a voltage to verify we're still in bounds.
495 		 * We may have overlapping voltage ranges. Hence we don't
496 		 * exit but retry until we have checked all ranges.
497 		 */
498 		if (voltage < min_uV || voltage > max_uV)
499 			selector += linear_range_values_in_range(range);
500 		else
501 			break;
502 	}
503 
504 	if (i == rdev->desc->n_linear_ranges)
505 		return -EINVAL;
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
510 
511 /**
512  * regulator_desc_list_voltage_linear - List voltages with simple calculation
513  *
514  * @desc: Regulator desc for regulator which volatges are to be listed
515  * @selector: Selector to convert into a voltage
516  *
517  * Regulators with a simple linear mapping between voltages and
518  * selectors can set min_uV and uV_step in the regulator descriptor
519  * and then use this function prior regulator registration to list
520  * the voltages. This is useful when voltages need to be listed during
521  * device-tree parsing.
522  */
523 int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
524 				       unsigned int selector)
525 {
526 	if (selector >= desc->n_voltages)
527 		return -EINVAL;
528 
529 	if (selector < desc->linear_min_sel)
530 		return 0;
531 
532 	selector -= desc->linear_min_sel;
533 
534 	return desc->min_uV + (desc->uV_step * selector);
535 }
536 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
537 
538 /**
539  * regulator_list_voltage_linear - List voltages with simple calculation
540  *
541  * @rdev: Regulator device
542  * @selector: Selector to convert into a voltage
543  *
544  * Regulators with a simple linear mapping between voltages and
545  * selectors can set min_uV and uV_step in the regulator descriptor
546  * and then use this function as their list_voltage() operation,
547  */
548 int regulator_list_voltage_linear(struct regulator_dev *rdev,
549 				  unsigned int selector)
550 {
551 	return regulator_desc_list_voltage_linear(rdev->desc, selector);
552 }
553 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
554 
555 /**
556  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
557  *
558  * @rdev: Regulator device
559  * @selector: Selector to convert into a voltage
560  *
561  * list_voltage() operation, intended to be used by drivers utilizing pickable
562  * ranges helpers.
563  */
564 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
565 						 unsigned int selector)
566 {
567 	const struct linear_range *range;
568 	int i;
569 	unsigned int all_sels = 0;
570 
571 	if (!rdev->desc->n_linear_ranges) {
572 		BUG_ON(!rdev->desc->n_linear_ranges);
573 		return -EINVAL;
574 	}
575 
576 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
577 		unsigned int sel_indexes;
578 
579 		range = &rdev->desc->linear_ranges[i];
580 
581 		sel_indexes = linear_range_values_in_range(range) - 1;
582 
583 		if (all_sels + sel_indexes >= selector) {
584 			selector -= all_sels;
585 			/*
586 			 * As we see here, pickable ranges work only as
587 			 * long as the first selector for each pickable
588 			 * range is 0, and the each subsequent range for
589 			 * this 'pick' follow immediately at next unused
590 			 * selector (Eg. there is no gaps between ranges).
591 			 * I think this is fine but it probably should be
592 			 * documented. OTOH, whole pickable range stuff
593 			 * might benefit from some documentation
594 			 */
595 			return range->min + (range->step * selector);
596 		}
597 
598 		all_sels += (sel_indexes + 1);
599 	}
600 
601 	return -EINVAL;
602 }
603 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
604 
605 /**
606  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
607  *
608  * @desc: Regulator desc for regulator which volatges are to be listed
609  * @selector: Selector to convert into a voltage
610  *
611  * Regulators with a series of simple linear mappings between voltages
612  * and selectors who have set linear_ranges in the regulator descriptor
613  * can use this function prior regulator registration to list voltages.
614  * This is useful when voltages need to be listed during device-tree
615  * parsing.
616  */
617 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
618 					     unsigned int selector)
619 {
620 	unsigned int val;
621 	int ret;
622 
623 	BUG_ON(!desc->n_linear_ranges);
624 
625 	ret = linear_range_get_value_array(desc->linear_ranges,
626 					   desc->n_linear_ranges, selector,
627 					   &val);
628 	if (ret)
629 		return ret;
630 
631 	return val;
632 }
633 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
634 
635 /**
636  * regulator_list_voltage_linear_range - List voltages for linear ranges
637  *
638  * @rdev: Regulator device
639  * @selector: Selector to convert into a voltage
640  *
641  * Regulators with a series of simple linear mappings between voltages
642  * and selectors can set linear_ranges in the regulator descriptor and
643  * then use this function as their list_voltage() operation,
644  */
645 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
646 					unsigned int selector)
647 {
648 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
649 }
650 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
651 
652 /**
653  * regulator_list_voltage_table - List voltages with table based mapping
654  *
655  * @rdev: Regulator device
656  * @selector: Selector to convert into a voltage
657  *
658  * Regulators with table based mapping between voltages and
659  * selectors can set volt_table in the regulator descriptor
660  * and then use this function as their list_voltage() operation.
661  */
662 int regulator_list_voltage_table(struct regulator_dev *rdev,
663 				 unsigned int selector)
664 {
665 	if (!rdev->desc->volt_table) {
666 		BUG_ON(!rdev->desc->volt_table);
667 		return -EINVAL;
668 	}
669 
670 	if (selector >= rdev->desc->n_voltages)
671 		return -EINVAL;
672 	if (selector < rdev->desc->linear_min_sel)
673 		return 0;
674 
675 	return rdev->desc->volt_table[selector];
676 }
677 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
678 
679 /**
680  * regulator_set_bypass_regmap - Default set_bypass() using regmap
681  *
682  * @rdev: device to operate on.
683  * @enable: state to set.
684  */
685 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
686 {
687 	unsigned int val;
688 
689 	if (enable) {
690 		val = rdev->desc->bypass_val_on;
691 		if (!val)
692 			val = rdev->desc->bypass_mask;
693 	} else {
694 		val = rdev->desc->bypass_val_off;
695 	}
696 
697 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
698 				  rdev->desc->bypass_mask, val);
699 }
700 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
701 
702 /**
703  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
704  *
705  * @rdev: device to operate on.
706  */
707 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
708 {
709 	unsigned int val;
710 
711 	val = rdev->desc->soft_start_val_on;
712 	if (!val)
713 		val = rdev->desc->soft_start_mask;
714 
715 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
716 				  rdev->desc->soft_start_mask, val);
717 }
718 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
719 
720 /**
721  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
722  *
723  * @rdev: device to operate on.
724  */
725 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
726 {
727 	unsigned int val;
728 
729 	val = rdev->desc->pull_down_val_on;
730 	if (!val)
731 		val = rdev->desc->pull_down_mask;
732 
733 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
734 				  rdev->desc->pull_down_mask, val);
735 }
736 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
737 
738 /**
739  * regulator_get_bypass_regmap - Default get_bypass() using regmap
740  *
741  * @rdev: device to operate on.
742  * @enable: current state.
743  */
744 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
745 {
746 	unsigned int val;
747 	unsigned int val_on = rdev->desc->bypass_val_on;
748 	int ret;
749 
750 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
751 	if (ret != 0)
752 		return ret;
753 
754 	if (!val_on)
755 		val_on = rdev->desc->bypass_mask;
756 
757 	*enable = (val & rdev->desc->bypass_mask) == val_on;
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
762 
763 /**
764  * regulator_set_active_discharge_regmap - Default set_active_discharge()
765  *					   using regmap
766  *
767  * @rdev: device to operate on.
768  * @enable: state to set, 0 to disable and 1 to enable.
769  */
770 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
771 					  bool enable)
772 {
773 	unsigned int val;
774 
775 	if (enable)
776 		val = rdev->desc->active_discharge_on;
777 	else
778 		val = rdev->desc->active_discharge_off;
779 
780 	return regmap_update_bits(rdev->regmap,
781 				  rdev->desc->active_discharge_reg,
782 				  rdev->desc->active_discharge_mask, val);
783 }
784 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
785 
786 /**
787  * regulator_set_current_limit_regmap - set_current_limit for regmap users
788  *
789  * @rdev: regulator to operate on
790  * @min_uA: Lower bound for current limit
791  * @max_uA: Upper bound for current limit
792  *
793  * Regulators that use regmap for their register I/O can set curr_table,
794  * csel_reg and csel_mask fields in their descriptor and then use this
795  * as their set_current_limit operation, saving some code.
796  */
797 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
798 				       int min_uA, int max_uA)
799 {
800 	unsigned int n_currents = rdev->desc->n_current_limits;
801 	int i, sel = -1;
802 
803 	if (n_currents == 0)
804 		return -EINVAL;
805 
806 	if (rdev->desc->curr_table) {
807 		const unsigned int *curr_table = rdev->desc->curr_table;
808 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
809 
810 		/* search for closest to maximum */
811 		if (ascend) {
812 			for (i = n_currents - 1; i >= 0; i--) {
813 				if (min_uA <= curr_table[i] &&
814 				    curr_table[i] <= max_uA) {
815 					sel = i;
816 					break;
817 				}
818 			}
819 		} else {
820 			for (i = 0; i < n_currents; i++) {
821 				if (min_uA <= curr_table[i] &&
822 				    curr_table[i] <= max_uA) {
823 					sel = i;
824 					break;
825 				}
826 			}
827 		}
828 	}
829 
830 	if (sel < 0)
831 		return -EINVAL;
832 
833 	sel <<= ffs(rdev->desc->csel_mask) - 1;
834 
835 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
836 				  rdev->desc->csel_mask, sel);
837 }
838 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
839 
840 /**
841  * regulator_get_current_limit_regmap - get_current_limit for regmap users
842  *
843  * @rdev: regulator to operate on
844  *
845  * Regulators that use regmap for their register I/O can set the
846  * csel_reg and csel_mask fields in their descriptor and then use this
847  * as their get_current_limit operation, saving some code.
848  */
849 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
850 {
851 	unsigned int val;
852 	int ret;
853 
854 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
855 	if (ret != 0)
856 		return ret;
857 
858 	val &= rdev->desc->csel_mask;
859 	val >>= ffs(rdev->desc->csel_mask) - 1;
860 
861 	if (rdev->desc->curr_table) {
862 		if (val >= rdev->desc->n_current_limits)
863 			return -EINVAL;
864 
865 		return rdev->desc->curr_table[val];
866 	}
867 
868 	return -EINVAL;
869 }
870 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
871 
872 /**
873  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
874  *                                   of regulator_bulk_data structs
875  *
876  * @consumers: array of regulator_bulk_data entries to initialize
877  * @supply_names: array of supply name strings
878  * @num_supplies: number of supply names to initialize
879  *
880  * Note: the 'consumers' array must be the size of 'num_supplies'.
881  */
882 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
883 				     const char *const *supply_names,
884 				     unsigned int num_supplies)
885 {
886 	unsigned int i;
887 
888 	for (i = 0; i < num_supplies; i++)
889 		consumers[i].supply = supply_names[i];
890 }
891 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
892 
893 /**
894  * regulator_is_equal - test whether two regulators are the same
895  *
896  * @reg1: first regulator to operate on
897  * @reg2: second regulator to operate on
898  */
899 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
900 {
901 	return reg1->rdev == reg2->rdev;
902 }
903 EXPORT_SYMBOL_GPL(regulator_is_equal);
904 
905 /**
906  * regulator_find_closest_bigger - helper to find offset in ramp delay table
907  *
908  * @target: targeted ramp_delay
909  * @table: table with supported ramp delays
910  * @num_sel: number of entries in the table
911  * @sel: Pointer to store table offset
912  *
913  * This is the internal helper used by regulator_set_ramp_delay_regmap to
914  * map ramp delay to register value. It should only be used directly if
915  * regulator_set_ramp_delay_regmap cannot handle a specific device setup
916  * (e.g. because the value is split over multiple registers).
917  */
918 int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
919 				  unsigned int num_sel, unsigned int *sel)
920 {
921 	unsigned int s, tmp, max, maxsel = 0;
922 	bool found = false;
923 
924 	max = table[0];
925 
926 	for (s = 0; s < num_sel; s++) {
927 		if (table[s] > max) {
928 			max = table[s];
929 			maxsel = s;
930 		}
931 		if (table[s] >= target) {
932 			if (!found || table[s] - target < tmp - target) {
933 				tmp = table[s];
934 				*sel = s;
935 				found = true;
936 				if (tmp == target)
937 					break;
938 			}
939 		}
940 	}
941 
942 	if (!found) {
943 		*sel = maxsel;
944 		return -EINVAL;
945 	}
946 
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
950 
951 /**
952  * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
953  *
954  * @rdev: regulator to operate on
955  * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
956  *
957  * Regulators that use regmap for their register I/O can set the ramp_reg
958  * and ramp_mask fields in their descriptor and then use this as their
959  * set_ramp_delay operation, saving some code.
960  */
961 int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
962 {
963 	int ret;
964 	unsigned int sel;
965 
966 	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
967 		return -EINVAL;
968 
969 	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
970 					    rdev->desc->n_ramp_values, &sel);
971 
972 	if (ret) {
973 		dev_warn(rdev_get_dev(rdev),
974 			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
975 			 rdev->desc->ramp_delay_table[sel]);
976 	}
977 
978 	sel <<= ffs(rdev->desc->ramp_mask) - 1;
979 
980 	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
981 				  rdev->desc->ramp_mask, sel);
982 }
983 EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
984