xref: /openbmc/linux/drivers/regulator/helpers.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/regulator/driver.h>
16 
17 #include "internal.h"
18 
19 /**
20  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21  *
22  * @rdev: regulator to operate on
23  *
24  * Regulators that use regmap for their register I/O can set the
25  * enable_reg and enable_mask fields in their descriptor and then use
26  * this as their is_enabled operation, saving some code.
27  */
28 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29 {
30 	unsigned int val;
31 	int ret;
32 
33 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
34 	if (ret != 0)
35 		return ret;
36 
37 	val &= rdev->desc->enable_mask;
38 
39 	if (rdev->desc->enable_is_inverted) {
40 		if (rdev->desc->enable_val)
41 			return val != rdev->desc->enable_val;
42 		return val == 0;
43 	} else {
44 		if (rdev->desc->enable_val)
45 			return val == rdev->desc->enable_val;
46 		return val != 0;
47 	}
48 }
49 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50 
51 /**
52  * regulator_enable_regmap - standard enable() for regmap users
53  *
54  * @rdev: regulator to operate on
55  *
56  * Regulators that use regmap for their register I/O can set the
57  * enable_reg and enable_mask fields in their descriptor and then use
58  * this as their enable() operation, saving some code.
59  */
60 int regulator_enable_regmap(struct regulator_dev *rdev)
61 {
62 	unsigned int val;
63 
64 	if (rdev->desc->enable_is_inverted) {
65 		val = rdev->desc->disable_val;
66 	} else {
67 		val = rdev->desc->enable_val;
68 		if (!val)
69 			val = rdev->desc->enable_mask;
70 	}
71 
72 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
73 				  rdev->desc->enable_mask, val);
74 }
75 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76 
77 /**
78  * regulator_disable_regmap - standard disable() for regmap users
79  *
80  * @rdev: regulator to operate on
81  *
82  * Regulators that use regmap for their register I/O can set the
83  * enable_reg and enable_mask fields in their descriptor and then use
84  * this as their disable() operation, saving some code.
85  */
86 int regulator_disable_regmap(struct regulator_dev *rdev)
87 {
88 	unsigned int val;
89 
90 	if (rdev->desc->enable_is_inverted) {
91 		val = rdev->desc->enable_val;
92 		if (!val)
93 			val = rdev->desc->enable_mask;
94 	} else {
95 		val = rdev->desc->disable_val;
96 	}
97 
98 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
99 				  rdev->desc->enable_mask, val);
100 }
101 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102 
103 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104 					     unsigned int rval)
105 {
106 	int i;
107 
108 	if (!rdev->desc->linear_range_selectors_bitfield)
109 		return -EINVAL;
110 
111 	rval &= rdev->desc->vsel_range_mask;
112 	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113 
114 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115 		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116 			return i;
117 	}
118 	return -EINVAL;
119 }
120 
121 /**
122  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123  *
124  * @rdev: regulator to operate on
125  *
126  * Regulators that use regmap for their register I/O and use pickable
127  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128  * fields in their descriptor and then use this as their get_voltage_vsel
129  * operation, saving some code.
130  */
131 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132 {
133 	unsigned int r_val;
134 	int range;
135 	unsigned int val;
136 	int ret;
137 	unsigned int voltages = 0;
138 	const struct linear_range *r = rdev->desc->linear_ranges;
139 
140 	if (!r)
141 		return -EINVAL;
142 
143 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144 	if (ret != 0)
145 		return ret;
146 
147 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148 	if (ret != 0)
149 		return ret;
150 
151 	val &= rdev->desc->vsel_mask;
152 	val >>= ffs(rdev->desc->vsel_mask) - 1;
153 
154 	range = regulator_range_selector_to_index(rdev, r_val);
155 	if (range < 0)
156 		return -EINVAL;
157 
158 	voltages = linear_range_values_in_range_array(r, range);
159 
160 	return val + voltages;
161 }
162 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163 
164 /**
165  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
166  *
167  * @rdev: regulator to operate on
168  * @sel: Selector to set
169  *
170  * Regulators that use regmap for their register I/O and use pickable
171  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
172  * fields in their descriptor and then use this as their set_voltage_vsel
173  * operation, saving some code.
174  */
175 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
176 					      unsigned int sel)
177 {
178 	unsigned int range;
179 	int ret, i;
180 	unsigned int voltages_in_range = 0;
181 
182 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
183 		const struct linear_range *r;
184 
185 		r = &rdev->desc->linear_ranges[i];
186 		voltages_in_range = linear_range_values_in_range(r);
187 
188 		if (sel < voltages_in_range)
189 			break;
190 		sel -= voltages_in_range;
191 	}
192 
193 	if (i == rdev->desc->n_linear_ranges)
194 		return -EINVAL;
195 
196 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
197 	sel += rdev->desc->linear_ranges[i].min_sel;
198 
199 	range = rdev->desc->linear_range_selectors_bitfield[i];
200 	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
201 
202 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
203 		ret = regmap_update_bits(rdev->regmap,
204 					 rdev->desc->vsel_reg,
205 					 rdev->desc->vsel_range_mask |
206 					 rdev->desc->vsel_mask, sel | range);
207 	} else {
208 		ret = regmap_update_bits(rdev->regmap,
209 					 rdev->desc->vsel_range_reg,
210 					 rdev->desc->vsel_range_mask, range);
211 		if (ret)
212 			return ret;
213 
214 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
215 				  rdev->desc->vsel_mask, sel);
216 	}
217 
218 	if (ret)
219 		return ret;
220 
221 	if (rdev->desc->apply_bit)
222 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
223 					 rdev->desc->apply_bit,
224 					 rdev->desc->apply_bit);
225 	return ret;
226 }
227 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
228 
229 /**
230  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
231  *
232  * @rdev: regulator to operate on
233  *
234  * Regulators that use regmap for their register I/O can set the
235  * vsel_reg and vsel_mask fields in their descriptor and then use this
236  * as their get_voltage_vsel operation, saving some code.
237  */
238 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
239 {
240 	unsigned int val;
241 	int ret;
242 
243 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
244 	if (ret != 0)
245 		return ret;
246 
247 	val &= rdev->desc->vsel_mask;
248 	val >>= ffs(rdev->desc->vsel_mask) - 1;
249 
250 	return val;
251 }
252 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
253 
254 /**
255  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
256  *
257  * @rdev: regulator to operate on
258  * @sel: Selector to set
259  *
260  * Regulators that use regmap for their register I/O can set the
261  * vsel_reg and vsel_mask fields in their descriptor and then use this
262  * as their set_voltage_vsel operation, saving some code.
263  */
264 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
265 {
266 	int ret;
267 
268 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
269 
270 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
271 				  rdev->desc->vsel_mask, sel);
272 	if (ret)
273 		return ret;
274 
275 	if (rdev->desc->apply_bit)
276 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
277 					 rdev->desc->apply_bit,
278 					 rdev->desc->apply_bit);
279 	return ret;
280 }
281 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
282 
283 /**
284  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
285  *
286  * @rdev: Regulator to operate on
287  * @min_uV: Lower bound for voltage
288  * @max_uV: Upper bound for voltage
289  *
290  * Drivers implementing set_voltage_sel() and list_voltage() can use
291  * this as their map_voltage() operation.  It will find a suitable
292  * voltage by calling list_voltage() until it gets something in bounds
293  * for the requested voltages.
294  */
295 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
296 				  int min_uV, int max_uV)
297 {
298 	int best_val = INT_MAX;
299 	int selector = 0;
300 	int i, ret;
301 
302 	/* Find the smallest voltage that falls within the specified
303 	 * range.
304 	 */
305 	for (i = 0; i < rdev->desc->n_voltages; i++) {
306 		ret = rdev->desc->ops->list_voltage(rdev, i);
307 		if (ret < 0)
308 			continue;
309 
310 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
311 			best_val = ret;
312 			selector = i;
313 		}
314 	}
315 
316 	if (best_val != INT_MAX)
317 		return selector;
318 	else
319 		return -EINVAL;
320 }
321 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
322 
323 /**
324  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
325  *
326  * @rdev: Regulator to operate on
327  * @min_uV: Lower bound for voltage
328  * @max_uV: Upper bound for voltage
329  *
330  * Drivers that have ascendant voltage list can use this as their
331  * map_voltage() operation.
332  */
333 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
334 				 int min_uV, int max_uV)
335 {
336 	int i, ret;
337 
338 	for (i = 0; i < rdev->desc->n_voltages; i++) {
339 		ret = rdev->desc->ops->list_voltage(rdev, i);
340 		if (ret < 0)
341 			continue;
342 
343 		if (ret > max_uV)
344 			break;
345 
346 		if (ret >= min_uV && ret <= max_uV)
347 			return i;
348 	}
349 
350 	return -EINVAL;
351 }
352 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
353 
354 /**
355  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
356  *
357  * @rdev: Regulator to operate on
358  * @min_uV: Lower bound for voltage
359  * @max_uV: Upper bound for voltage
360  *
361  * Drivers providing min_uV and uV_step in their regulator_desc can
362  * use this as their map_voltage() operation.
363  */
364 int regulator_map_voltage_linear(struct regulator_dev *rdev,
365 				 int min_uV, int max_uV)
366 {
367 	int ret, voltage;
368 
369 	/* Allow uV_step to be 0 for fixed voltage */
370 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
371 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
372 			return 0;
373 		else
374 			return -EINVAL;
375 	}
376 
377 	if (!rdev->desc->uV_step) {
378 		BUG_ON(!rdev->desc->uV_step);
379 		return -EINVAL;
380 	}
381 
382 	if (min_uV < rdev->desc->min_uV)
383 		min_uV = rdev->desc->min_uV;
384 
385 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
386 	if (ret < 0)
387 		return ret;
388 
389 	ret += rdev->desc->linear_min_sel;
390 
391 	/* Map back into a voltage to verify we're still in bounds */
392 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
393 	if (voltage < min_uV || voltage > max_uV)
394 		return -EINVAL;
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
399 
400 /**
401  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
402  *
403  * @rdev: Regulator to operate on
404  * @min_uV: Lower bound for voltage
405  * @max_uV: Upper bound for voltage
406  *
407  * Drivers providing linear_ranges in their descriptor can use this as
408  * their map_voltage() callback.
409  */
410 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
411 				       int min_uV, int max_uV)
412 {
413 	const struct linear_range *range;
414 	int ret = -EINVAL;
415 	unsigned int sel;
416 	bool found;
417 	int voltage, i;
418 
419 	if (!rdev->desc->n_linear_ranges) {
420 		BUG_ON(!rdev->desc->n_linear_ranges);
421 		return -EINVAL;
422 	}
423 
424 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
425 		range = &rdev->desc->linear_ranges[i];
426 
427 		ret = linear_range_get_selector_high(range, min_uV, &sel,
428 						     &found);
429 		if (ret)
430 			continue;
431 		ret = sel;
432 
433 		/*
434 		 * Map back into a voltage to verify we're still in bounds.
435 		 * If we are not, then continue checking rest of the ranges.
436 		 */
437 		voltage = rdev->desc->ops->list_voltage(rdev, sel);
438 		if (voltage >= min_uV && voltage <= max_uV)
439 			break;
440 	}
441 
442 	if (i == rdev->desc->n_linear_ranges)
443 		return -EINVAL;
444 
445 	return ret;
446 }
447 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
448 
449 /**
450  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
451  *
452  * @rdev: Regulator to operate on
453  * @min_uV: Lower bound for voltage
454  * @max_uV: Upper bound for voltage
455  *
456  * Drivers providing pickable linear_ranges in their descriptor can use
457  * this as their map_voltage() callback.
458  */
459 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
460 						int min_uV, int max_uV)
461 {
462 	const struct linear_range *range;
463 	int ret = -EINVAL;
464 	int voltage, i;
465 	unsigned int selector = 0;
466 
467 	if (!rdev->desc->n_linear_ranges) {
468 		BUG_ON(!rdev->desc->n_linear_ranges);
469 		return -EINVAL;
470 	}
471 
472 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
473 		int linear_max_uV;
474 		bool found;
475 		unsigned int sel;
476 
477 		range = &rdev->desc->linear_ranges[i];
478 		linear_max_uV = linear_range_get_max_value(range);
479 
480 		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
481 			selector += linear_range_values_in_range(range);
482 			continue;
483 		}
484 
485 		ret = linear_range_get_selector_high(range, min_uV, &sel,
486 						     &found);
487 		if (ret) {
488 			selector += linear_range_values_in_range(range);
489 			continue;
490 		}
491 
492 		ret = selector + sel - range->min_sel;
493 
494 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
495 
496 		/*
497 		 * Map back into a voltage to verify we're still in bounds.
498 		 * We may have overlapping voltage ranges. Hence we don't
499 		 * exit but retry until we have checked all ranges.
500 		 */
501 		if (voltage < min_uV || voltage > max_uV)
502 			selector += linear_range_values_in_range(range);
503 		else
504 			break;
505 	}
506 
507 	if (i == rdev->desc->n_linear_ranges)
508 		return -EINVAL;
509 
510 	return ret;
511 }
512 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
513 
514 /**
515  * regulator_desc_list_voltage_linear - List voltages with simple calculation
516  *
517  * @desc: Regulator desc for regulator which volatges are to be listed
518  * @selector: Selector to convert into a voltage
519  *
520  * Regulators with a simple linear mapping between voltages and
521  * selectors can set min_uV and uV_step in the regulator descriptor
522  * and then use this function prior regulator registration to list
523  * the voltages. This is useful when voltages need to be listed during
524  * device-tree parsing.
525  */
526 int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
527 				       unsigned int selector)
528 {
529 	if (selector >= desc->n_voltages)
530 		return -EINVAL;
531 
532 	if (selector < desc->linear_min_sel)
533 		return 0;
534 
535 	selector -= desc->linear_min_sel;
536 
537 	return desc->min_uV + (desc->uV_step * selector);
538 }
539 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
540 
541 /**
542  * regulator_list_voltage_linear - List voltages with simple calculation
543  *
544  * @rdev: Regulator device
545  * @selector: Selector to convert into a voltage
546  *
547  * Regulators with a simple linear mapping between voltages and
548  * selectors can set min_uV and uV_step in the regulator descriptor
549  * and then use this function as their list_voltage() operation,
550  */
551 int regulator_list_voltage_linear(struct regulator_dev *rdev,
552 				  unsigned int selector)
553 {
554 	return regulator_desc_list_voltage_linear(rdev->desc, selector);
555 }
556 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
557 
558 /**
559  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
560  *
561  * @rdev: Regulator device
562  * @selector: Selector to convert into a voltage
563  *
564  * list_voltage() operation, intended to be used by drivers utilizing pickable
565  * ranges helpers.
566  */
567 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
568 						 unsigned int selector)
569 {
570 	const struct linear_range *range;
571 	int i;
572 	unsigned int all_sels = 0;
573 
574 	if (!rdev->desc->n_linear_ranges) {
575 		BUG_ON(!rdev->desc->n_linear_ranges);
576 		return -EINVAL;
577 	}
578 
579 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
580 		unsigned int sel_indexes;
581 
582 		range = &rdev->desc->linear_ranges[i];
583 
584 		sel_indexes = linear_range_values_in_range(range) - 1;
585 
586 		if (all_sels + sel_indexes >= selector) {
587 			selector -= all_sels;
588 			/*
589 			 * As we see here, pickable ranges work only as
590 			 * long as the first selector for each pickable
591 			 * range is 0, and the each subsequent range for
592 			 * this 'pick' follow immediately at next unused
593 			 * selector (Eg. there is no gaps between ranges).
594 			 * I think this is fine but it probably should be
595 			 * documented. OTOH, whole pickable range stuff
596 			 * might benefit from some documentation
597 			 */
598 			return range->min + (range->step * selector);
599 		}
600 
601 		all_sels += (sel_indexes + 1);
602 	}
603 
604 	return -EINVAL;
605 }
606 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
607 
608 /**
609  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
610  *
611  * @desc: Regulator desc for regulator which volatges are to be listed
612  * @selector: Selector to convert into a voltage
613  *
614  * Regulators with a series of simple linear mappings between voltages
615  * and selectors who have set linear_ranges in the regulator descriptor
616  * can use this function prior regulator registration to list voltages.
617  * This is useful when voltages need to be listed during device-tree
618  * parsing.
619  */
620 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
621 					     unsigned int selector)
622 {
623 	unsigned int val;
624 	int ret;
625 
626 	BUG_ON(!desc->n_linear_ranges);
627 
628 	ret = linear_range_get_value_array(desc->linear_ranges,
629 					   desc->n_linear_ranges, selector,
630 					   &val);
631 	if (ret)
632 		return ret;
633 
634 	return val;
635 }
636 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
637 
638 /**
639  * regulator_list_voltage_linear_range - List voltages for linear ranges
640  *
641  * @rdev: Regulator device
642  * @selector: Selector to convert into a voltage
643  *
644  * Regulators with a series of simple linear mappings between voltages
645  * and selectors can set linear_ranges in the regulator descriptor and
646  * then use this function as their list_voltage() operation,
647  */
648 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
649 					unsigned int selector)
650 {
651 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
652 }
653 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
654 
655 /**
656  * regulator_list_voltage_table - List voltages with table based mapping
657  *
658  * @rdev: Regulator device
659  * @selector: Selector to convert into a voltage
660  *
661  * Regulators with table based mapping between voltages and
662  * selectors can set volt_table in the regulator descriptor
663  * and then use this function as their list_voltage() operation.
664  */
665 int regulator_list_voltage_table(struct regulator_dev *rdev,
666 				 unsigned int selector)
667 {
668 	if (!rdev->desc->volt_table) {
669 		BUG_ON(!rdev->desc->volt_table);
670 		return -EINVAL;
671 	}
672 
673 	if (selector >= rdev->desc->n_voltages)
674 		return -EINVAL;
675 	if (selector < rdev->desc->linear_min_sel)
676 		return 0;
677 
678 	return rdev->desc->volt_table[selector];
679 }
680 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
681 
682 /**
683  * regulator_set_bypass_regmap - Default set_bypass() using regmap
684  *
685  * @rdev: device to operate on.
686  * @enable: state to set.
687  */
688 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
689 {
690 	unsigned int val;
691 
692 	if (enable) {
693 		val = rdev->desc->bypass_val_on;
694 		if (!val)
695 			val = rdev->desc->bypass_mask;
696 	} else {
697 		val = rdev->desc->bypass_val_off;
698 	}
699 
700 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
701 				  rdev->desc->bypass_mask, val);
702 }
703 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
704 
705 /**
706  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
707  *
708  * @rdev: device to operate on.
709  */
710 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
711 {
712 	unsigned int val;
713 
714 	val = rdev->desc->soft_start_val_on;
715 	if (!val)
716 		val = rdev->desc->soft_start_mask;
717 
718 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
719 				  rdev->desc->soft_start_mask, val);
720 }
721 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
722 
723 /**
724  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
725  *
726  * @rdev: device to operate on.
727  */
728 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
729 {
730 	unsigned int val;
731 
732 	val = rdev->desc->pull_down_val_on;
733 	if (!val)
734 		val = rdev->desc->pull_down_mask;
735 
736 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
737 				  rdev->desc->pull_down_mask, val);
738 }
739 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
740 
741 /**
742  * regulator_get_bypass_regmap - Default get_bypass() using regmap
743  *
744  * @rdev: device to operate on.
745  * @enable: current state.
746  */
747 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
748 {
749 	unsigned int val;
750 	unsigned int val_on = rdev->desc->bypass_val_on;
751 	int ret;
752 
753 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
754 	if (ret != 0)
755 		return ret;
756 
757 	if (!val_on)
758 		val_on = rdev->desc->bypass_mask;
759 
760 	*enable = (val & rdev->desc->bypass_mask) == val_on;
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
765 
766 /**
767  * regulator_set_active_discharge_regmap - Default set_active_discharge()
768  *					   using regmap
769  *
770  * @rdev: device to operate on.
771  * @enable: state to set, 0 to disable and 1 to enable.
772  */
773 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
774 					  bool enable)
775 {
776 	unsigned int val;
777 
778 	if (enable)
779 		val = rdev->desc->active_discharge_on;
780 	else
781 		val = rdev->desc->active_discharge_off;
782 
783 	return regmap_update_bits(rdev->regmap,
784 				  rdev->desc->active_discharge_reg,
785 				  rdev->desc->active_discharge_mask, val);
786 }
787 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
788 
789 /**
790  * regulator_set_current_limit_regmap - set_current_limit for regmap users
791  *
792  * @rdev: regulator to operate on
793  * @min_uA: Lower bound for current limit
794  * @max_uA: Upper bound for current limit
795  *
796  * Regulators that use regmap for their register I/O can set curr_table,
797  * csel_reg and csel_mask fields in their descriptor and then use this
798  * as their set_current_limit operation, saving some code.
799  */
800 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
801 				       int min_uA, int max_uA)
802 {
803 	unsigned int n_currents = rdev->desc->n_current_limits;
804 	int i, sel = -1;
805 
806 	if (n_currents == 0)
807 		return -EINVAL;
808 
809 	if (rdev->desc->curr_table) {
810 		const unsigned int *curr_table = rdev->desc->curr_table;
811 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
812 
813 		/* search for closest to maximum */
814 		if (ascend) {
815 			for (i = n_currents - 1; i >= 0; i--) {
816 				if (min_uA <= curr_table[i] &&
817 				    curr_table[i] <= max_uA) {
818 					sel = i;
819 					break;
820 				}
821 			}
822 		} else {
823 			for (i = 0; i < n_currents; i++) {
824 				if (min_uA <= curr_table[i] &&
825 				    curr_table[i] <= max_uA) {
826 					sel = i;
827 					break;
828 				}
829 			}
830 		}
831 	}
832 
833 	if (sel < 0)
834 		return -EINVAL;
835 
836 	sel <<= ffs(rdev->desc->csel_mask) - 1;
837 
838 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
839 				  rdev->desc->csel_mask, sel);
840 }
841 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
842 
843 /**
844  * regulator_get_current_limit_regmap - get_current_limit for regmap users
845  *
846  * @rdev: regulator to operate on
847  *
848  * Regulators that use regmap for their register I/O can set the
849  * csel_reg and csel_mask fields in their descriptor and then use this
850  * as their get_current_limit operation, saving some code.
851  */
852 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
853 {
854 	unsigned int val;
855 	int ret;
856 
857 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
858 	if (ret != 0)
859 		return ret;
860 
861 	val &= rdev->desc->csel_mask;
862 	val >>= ffs(rdev->desc->csel_mask) - 1;
863 
864 	if (rdev->desc->curr_table) {
865 		if (val >= rdev->desc->n_current_limits)
866 			return -EINVAL;
867 
868 		return rdev->desc->curr_table[val];
869 	}
870 
871 	return -EINVAL;
872 }
873 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
874 
875 /**
876  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
877  *                                   of regulator_bulk_data structs
878  *
879  * @consumers: array of regulator_bulk_data entries to initialize
880  * @supply_names: array of supply name strings
881  * @num_supplies: number of supply names to initialize
882  *
883  * Note: the 'consumers' array must be the size of 'num_supplies'.
884  */
885 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
886 				     const char *const *supply_names,
887 				     unsigned int num_supplies)
888 {
889 	unsigned int i;
890 
891 	for (i = 0; i < num_supplies; i++)
892 		consumers[i].supply = supply_names[i];
893 }
894 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
895 
896 /**
897  * regulator_is_equal - test whether two regulators are the same
898  *
899  * @reg1: first regulator to operate on
900  * @reg2: second regulator to operate on
901  */
902 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
903 {
904 	return reg1->rdev == reg2->rdev;
905 }
906 EXPORT_SYMBOL_GPL(regulator_is_equal);
907 
908 /**
909  * regulator_find_closest_bigger - helper to find offset in ramp delay table
910  *
911  * @target: targeted ramp_delay
912  * @table: table with supported ramp delays
913  * @num_sel: number of entries in the table
914  * @sel: Pointer to store table offset
915  *
916  * This is the internal helper used by regulator_set_ramp_delay_regmap to
917  * map ramp delay to register value. It should only be used directly if
918  * regulator_set_ramp_delay_regmap cannot handle a specific device setup
919  * (e.g. because the value is split over multiple registers).
920  */
921 int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
922 				  unsigned int num_sel, unsigned int *sel)
923 {
924 	unsigned int s, tmp, max, maxsel = 0;
925 	bool found = false;
926 
927 	max = table[0];
928 
929 	for (s = 0; s < num_sel; s++) {
930 		if (table[s] > max) {
931 			max = table[s];
932 			maxsel = s;
933 		}
934 		if (table[s] >= target) {
935 			if (!found || table[s] - target < tmp - target) {
936 				tmp = table[s];
937 				*sel = s;
938 				found = true;
939 				if (tmp == target)
940 					break;
941 			}
942 		}
943 	}
944 
945 	if (!found) {
946 		*sel = maxsel;
947 		return -EINVAL;
948 	}
949 
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
953 
954 /**
955  * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
956  *
957  * @rdev: regulator to operate on
958  * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
959  *
960  * Regulators that use regmap for their register I/O can set the ramp_reg
961  * and ramp_mask fields in their descriptor and then use this as their
962  * set_ramp_delay operation, saving some code.
963  */
964 int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
965 {
966 	int ret;
967 	unsigned int sel;
968 
969 	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
970 		return -EINVAL;
971 
972 	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
973 					    rdev->desc->n_ramp_values, &sel);
974 
975 	if (ret) {
976 		dev_warn(rdev_get_dev(rdev),
977 			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
978 			 rdev->desc->ramp_delay_table[sel]);
979 	}
980 
981 	sel <<= ffs(rdev->desc->ramp_mask) - 1;
982 
983 	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
984 				  rdev->desc->ramp_mask, sel);
985 }
986 EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
987