xref: /openbmc/linux/drivers/regulator/core.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 EXPORT_SYMBOL_GPL(regulator_lock);
198 
199 /**
200  * regulator_unlock - unlock a single regulator
201  * @rdev:		regulator_source
202  *
203  * This function unlocks the mutex when the
204  * reference counter reaches 0.
205  */
206 void regulator_unlock(struct regulator_dev *rdev)
207 {
208 	mutex_lock(&regulator_nesting_mutex);
209 
210 	if (--rdev->ref_cnt == 0) {
211 		rdev->mutex_owner = NULL;
212 		ww_mutex_unlock(&rdev->mutex);
213 	}
214 
215 	WARN_ON_ONCE(rdev->ref_cnt < 0);
216 
217 	mutex_unlock(&regulator_nesting_mutex);
218 }
219 EXPORT_SYMBOL_GPL(regulator_unlock);
220 
221 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 {
223 	struct regulator_dev *c_rdev;
224 	int i;
225 
226 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228 
229 		if (rdev->supply->rdev == c_rdev)
230 			return true;
231 	}
232 
233 	return false;
234 }
235 
236 static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 				       unsigned int n_coupled)
238 {
239 	struct regulator_dev *c_rdev, *supply_rdev;
240 	int i, supply_n_coupled;
241 
242 	for (i = n_coupled; i > 0; i--) {
243 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 
245 		if (!c_rdev)
246 			continue;
247 
248 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 			supply_rdev = c_rdev->supply->rdev;
250 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251 
252 			regulator_unlock_recursive(supply_rdev,
253 						   supply_n_coupled);
254 		}
255 
256 		regulator_unlock(c_rdev);
257 	}
258 }
259 
260 static int regulator_lock_recursive(struct regulator_dev *rdev,
261 				    struct regulator_dev **new_contended_rdev,
262 				    struct regulator_dev **old_contended_rdev,
263 				    struct ww_acquire_ctx *ww_ctx)
264 {
265 	struct regulator_dev *c_rdev;
266 	int i, err;
267 
268 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270 
271 		if (!c_rdev)
272 			continue;
273 
274 		if (c_rdev != *old_contended_rdev) {
275 			err = regulator_lock_nested(c_rdev, ww_ctx);
276 			if (err) {
277 				if (err == -EDEADLK) {
278 					*new_contended_rdev = c_rdev;
279 					goto err_unlock;
280 				}
281 
282 				/* shouldn't happen */
283 				WARN_ON_ONCE(err != -EALREADY);
284 			}
285 		} else {
286 			*old_contended_rdev = NULL;
287 		}
288 
289 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 			err = regulator_lock_recursive(c_rdev->supply->rdev,
291 						       new_contended_rdev,
292 						       old_contended_rdev,
293 						       ww_ctx);
294 			if (err) {
295 				regulator_unlock(c_rdev);
296 				goto err_unlock;
297 			}
298 		}
299 	}
300 
301 	return 0;
302 
303 err_unlock:
304 	regulator_unlock_recursive(rdev, i);
305 
306 	return err;
307 }
308 
309 /**
310  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311  *				regulators
312  * @rdev:			regulator source
313  * @ww_ctx:			w/w mutex acquire context
314  *
315  * Unlock all regulators related with rdev by coupling or supplying.
316  */
317 static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 				       struct ww_acquire_ctx *ww_ctx)
319 {
320 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 	ww_acquire_fini(ww_ctx);
322 }
323 
324 /**
325  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326  * @rdev:			regulator source
327  * @ww_ctx:			w/w mutex acquire context
328  *
329  * This function as a wrapper on regulator_lock_recursive(), which locks
330  * all regulators related with rdev by coupling or supplying.
331  */
332 static void regulator_lock_dependent(struct regulator_dev *rdev,
333 				     struct ww_acquire_ctx *ww_ctx)
334 {
335 	struct regulator_dev *new_contended_rdev = NULL;
336 	struct regulator_dev *old_contended_rdev = NULL;
337 	int err;
338 
339 	mutex_lock(&regulator_list_mutex);
340 
341 	ww_acquire_init(ww_ctx, &regulator_ww_class);
342 
343 	do {
344 		if (new_contended_rdev) {
345 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 			old_contended_rdev = new_contended_rdev;
347 			old_contended_rdev->ref_cnt++;
348 		}
349 
350 		err = regulator_lock_recursive(rdev,
351 					       &new_contended_rdev,
352 					       &old_contended_rdev,
353 					       ww_ctx);
354 
355 		if (old_contended_rdev)
356 			regulator_unlock(old_contended_rdev);
357 
358 	} while (err == -EDEADLK);
359 
360 	ww_acquire_done(ww_ctx);
361 
362 	mutex_unlock(&regulator_list_mutex);
363 }
364 
365 /**
366  * of_get_child_regulator - get a child regulator device node
367  * based on supply name
368  * @parent: Parent device node
369  * @prop_name: Combination regulator supply name and "-supply"
370  *
371  * Traverse all child nodes.
372  * Extract the child regulator device node corresponding to the supply name.
373  * returns the device node corresponding to the regulator if found, else
374  * returns NULL.
375  */
376 static struct device_node *of_get_child_regulator(struct device_node *parent,
377 						  const char *prop_name)
378 {
379 	struct device_node *regnode = NULL;
380 	struct device_node *child = NULL;
381 
382 	for_each_child_of_node(parent, child) {
383 		regnode = of_parse_phandle(child, prop_name, 0);
384 
385 		if (!regnode) {
386 			regnode = of_get_child_regulator(child, prop_name);
387 			if (regnode)
388 				goto err_node_put;
389 		} else {
390 			goto err_node_put;
391 		}
392 	}
393 	return NULL;
394 
395 err_node_put:
396 	of_node_put(child);
397 	return regnode;
398 }
399 
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411 	struct device_node *regnode = NULL;
412 	char prop_name[32]; /* 32 is max size of property name */
413 
414 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415 
416 	snprintf(prop_name, 32, "%s-supply", supply);
417 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418 
419 	if (!regnode) {
420 		regnode = of_get_child_regulator(dev->of_node, prop_name);
421 		if (regnode)
422 			return regnode;
423 
424 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 				prop_name, dev->of_node);
426 		return NULL;
427 	}
428 	return regnode;
429 }
430 
431 /* Platform voltage constraint check */
432 int regulator_check_voltage(struct regulator_dev *rdev,
433 			    int *min_uV, int *max_uV)
434 {
435 	BUG_ON(*min_uV > *max_uV);
436 
437 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 		rdev_err(rdev, "voltage operation not allowed\n");
439 		return -EPERM;
440 	}
441 
442 	if (*max_uV > rdev->constraints->max_uV)
443 		*max_uV = rdev->constraints->max_uV;
444 	if (*min_uV < rdev->constraints->min_uV)
445 		*min_uV = rdev->constraints->min_uV;
446 
447 	if (*min_uV > *max_uV) {
448 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 			 *min_uV, *max_uV);
450 		return -EINVAL;
451 	}
452 
453 	return 0;
454 }
455 
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461 
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 int regulator_check_consumers(struct regulator_dev *rdev,
466 			      int *min_uV, int *max_uV,
467 			      suspend_state_t state)
468 {
469 	struct regulator *regulator;
470 	struct regulator_voltage *voltage;
471 
472 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 		voltage = &regulator->voltage[state];
474 		/*
475 		 * Assume consumers that didn't say anything are OK
476 		 * with anything in the constraint range.
477 		 */
478 		if (!voltage->min_uV && !voltage->max_uV)
479 			continue;
480 
481 		if (*max_uV > voltage->max_uV)
482 			*max_uV = voltage->max_uV;
483 		if (*min_uV < voltage->min_uV)
484 			*min_uV = voltage->min_uV;
485 	}
486 
487 	if (*min_uV > *max_uV) {
488 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 			*min_uV, *max_uV);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498 					int *min_uA, int *max_uA)
499 {
500 	BUG_ON(*min_uA > *max_uA);
501 
502 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 		rdev_err(rdev, "current operation not allowed\n");
504 		return -EPERM;
505 	}
506 
507 	if (*max_uA > rdev->constraints->max_uA)
508 		*max_uA = rdev->constraints->max_uA;
509 	if (*min_uA < rdev->constraints->min_uA)
510 		*min_uA = rdev->constraints->min_uA;
511 
512 	if (*min_uA > *max_uA) {
513 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 			 *min_uA, *max_uA);
515 		return -EINVAL;
516 	}
517 
518 	return 0;
519 }
520 
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523 				    unsigned int *mode)
524 {
525 	switch (*mode) {
526 	case REGULATOR_MODE_FAST:
527 	case REGULATOR_MODE_NORMAL:
528 	case REGULATOR_MODE_IDLE:
529 	case REGULATOR_MODE_STANDBY:
530 		break;
531 	default:
532 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 		return -EINVAL;
534 	}
535 
536 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 		rdev_err(rdev, "mode operation not allowed\n");
538 		return -EPERM;
539 	}
540 
541 	/* The modes are bitmasks, the most power hungry modes having
542 	 * the lowest values. If the requested mode isn't supported
543 	 * try higher modes. */
544 	while (*mode) {
545 		if (rdev->constraints->valid_modes_mask & *mode)
546 			return 0;
547 		*mode /= 2;
548 	}
549 
550 	return -EINVAL;
551 }
552 
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556 	if (rdev->constraints == NULL)
557 		return NULL;
558 
559 	switch (state) {
560 	case PM_SUSPEND_STANDBY:
561 		return &rdev->constraints->state_standby;
562 	case PM_SUSPEND_MEM:
563 		return &rdev->constraints->state_mem;
564 	case PM_SUSPEND_MAX:
565 		return &rdev->constraints->state_disk;
566 	default:
567 		return NULL;
568 	}
569 }
570 
571 static ssize_t regulator_uV_show(struct device *dev,
572 				struct device_attribute *attr, char *buf)
573 {
574 	struct regulator_dev *rdev = dev_get_drvdata(dev);
575 	int uV;
576 
577 	regulator_lock(rdev);
578 	uV = regulator_get_voltage_rdev(rdev);
579 	regulator_unlock(rdev);
580 
581 	if (uV < 0)
582 		return uV;
583 	return sprintf(buf, "%d\n", uV);
584 }
585 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586 
587 static ssize_t regulator_uA_show(struct device *dev,
588 				struct device_attribute *attr, char *buf)
589 {
590 	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 
592 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593 }
594 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595 
596 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 			 char *buf)
598 {
599 	struct regulator_dev *rdev = dev_get_drvdata(dev);
600 
601 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
602 }
603 static DEVICE_ATTR_RO(name);
604 
605 static const char *regulator_opmode_to_str(int mode)
606 {
607 	switch (mode) {
608 	case REGULATOR_MODE_FAST:
609 		return "fast";
610 	case REGULATOR_MODE_NORMAL:
611 		return "normal";
612 	case REGULATOR_MODE_IDLE:
613 		return "idle";
614 	case REGULATOR_MODE_STANDBY:
615 		return "standby";
616 	}
617 	return "unknown";
618 }
619 
620 static ssize_t regulator_print_opmode(char *buf, int mode)
621 {
622 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623 }
624 
625 static ssize_t regulator_opmode_show(struct device *dev,
626 				    struct device_attribute *attr, char *buf)
627 {
628 	struct regulator_dev *rdev = dev_get_drvdata(dev);
629 
630 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631 }
632 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633 
634 static ssize_t regulator_print_state(char *buf, int state)
635 {
636 	if (state > 0)
637 		return sprintf(buf, "enabled\n");
638 	else if (state == 0)
639 		return sprintf(buf, "disabled\n");
640 	else
641 		return sprintf(buf, "unknown\n");
642 }
643 
644 static ssize_t regulator_state_show(struct device *dev,
645 				   struct device_attribute *attr, char *buf)
646 {
647 	struct regulator_dev *rdev = dev_get_drvdata(dev);
648 	ssize_t ret;
649 
650 	regulator_lock(rdev);
651 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 	regulator_unlock(rdev);
653 
654 	return ret;
655 }
656 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657 
658 static ssize_t regulator_status_show(struct device *dev,
659 				   struct device_attribute *attr, char *buf)
660 {
661 	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 	int status;
663 	char *label;
664 
665 	status = rdev->desc->ops->get_status(rdev);
666 	if (status < 0)
667 		return status;
668 
669 	switch (status) {
670 	case REGULATOR_STATUS_OFF:
671 		label = "off";
672 		break;
673 	case REGULATOR_STATUS_ON:
674 		label = "on";
675 		break;
676 	case REGULATOR_STATUS_ERROR:
677 		label = "error";
678 		break;
679 	case REGULATOR_STATUS_FAST:
680 		label = "fast";
681 		break;
682 	case REGULATOR_STATUS_NORMAL:
683 		label = "normal";
684 		break;
685 	case REGULATOR_STATUS_IDLE:
686 		label = "idle";
687 		break;
688 	case REGULATOR_STATUS_STANDBY:
689 		label = "standby";
690 		break;
691 	case REGULATOR_STATUS_BYPASS:
692 		label = "bypass";
693 		break;
694 	case REGULATOR_STATUS_UNDEFINED:
695 		label = "undefined";
696 		break;
697 	default:
698 		return -ERANGE;
699 	}
700 
701 	return sprintf(buf, "%s\n", label);
702 }
703 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704 
705 static ssize_t regulator_min_uA_show(struct device *dev,
706 				    struct device_attribute *attr, char *buf)
707 {
708 	struct regulator_dev *rdev = dev_get_drvdata(dev);
709 
710 	if (!rdev->constraints)
711 		return sprintf(buf, "constraint not defined\n");
712 
713 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714 }
715 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716 
717 static ssize_t regulator_max_uA_show(struct device *dev,
718 				    struct device_attribute *attr, char *buf)
719 {
720 	struct regulator_dev *rdev = dev_get_drvdata(dev);
721 
722 	if (!rdev->constraints)
723 		return sprintf(buf, "constraint not defined\n");
724 
725 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726 }
727 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728 
729 static ssize_t regulator_min_uV_show(struct device *dev,
730 				    struct device_attribute *attr, char *buf)
731 {
732 	struct regulator_dev *rdev = dev_get_drvdata(dev);
733 
734 	if (!rdev->constraints)
735 		return sprintf(buf, "constraint not defined\n");
736 
737 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738 }
739 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740 
741 static ssize_t regulator_max_uV_show(struct device *dev,
742 				    struct device_attribute *attr, char *buf)
743 {
744 	struct regulator_dev *rdev = dev_get_drvdata(dev);
745 
746 	if (!rdev->constraints)
747 		return sprintf(buf, "constraint not defined\n");
748 
749 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750 }
751 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752 
753 static ssize_t regulator_total_uA_show(struct device *dev,
754 				      struct device_attribute *attr, char *buf)
755 {
756 	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 	struct regulator *regulator;
758 	int uA = 0;
759 
760 	regulator_lock(rdev);
761 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 		if (regulator->enable_count)
763 			uA += regulator->uA_load;
764 	}
765 	regulator_unlock(rdev);
766 	return sprintf(buf, "%d\n", uA);
767 }
768 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769 
770 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 			      char *buf)
772 {
773 	struct regulator_dev *rdev = dev_get_drvdata(dev);
774 	return sprintf(buf, "%d\n", rdev->use_count);
775 }
776 static DEVICE_ATTR_RO(num_users);
777 
778 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 			 char *buf)
780 {
781 	struct regulator_dev *rdev = dev_get_drvdata(dev);
782 
783 	switch (rdev->desc->type) {
784 	case REGULATOR_VOLTAGE:
785 		return sprintf(buf, "voltage\n");
786 	case REGULATOR_CURRENT:
787 		return sprintf(buf, "current\n");
788 	}
789 	return sprintf(buf, "unknown\n");
790 }
791 static DEVICE_ATTR_RO(type);
792 
793 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 				struct device_attribute *attr, char *buf)
795 {
796 	struct regulator_dev *rdev = dev_get_drvdata(dev);
797 
798 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799 }
800 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 		regulator_suspend_mem_uV_show, NULL);
802 
803 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 				struct device_attribute *attr, char *buf)
805 {
806 	struct regulator_dev *rdev = dev_get_drvdata(dev);
807 
808 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809 }
810 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 		regulator_suspend_disk_uV_show, NULL);
812 
813 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 				struct device_attribute *attr, char *buf)
815 {
816 	struct regulator_dev *rdev = dev_get_drvdata(dev);
817 
818 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819 }
820 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 		regulator_suspend_standby_uV_show, NULL);
822 
823 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 				struct device_attribute *attr, char *buf)
825 {
826 	struct regulator_dev *rdev = dev_get_drvdata(dev);
827 
828 	return regulator_print_opmode(buf,
829 		rdev->constraints->state_mem.mode);
830 }
831 static DEVICE_ATTR(suspend_mem_mode, 0444,
832 		regulator_suspend_mem_mode_show, NULL);
833 
834 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 				struct device_attribute *attr, char *buf)
836 {
837 	struct regulator_dev *rdev = dev_get_drvdata(dev);
838 
839 	return regulator_print_opmode(buf,
840 		rdev->constraints->state_disk.mode);
841 }
842 static DEVICE_ATTR(suspend_disk_mode, 0444,
843 		regulator_suspend_disk_mode_show, NULL);
844 
845 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 				struct device_attribute *attr, char *buf)
847 {
848 	struct regulator_dev *rdev = dev_get_drvdata(dev);
849 
850 	return regulator_print_opmode(buf,
851 		rdev->constraints->state_standby.mode);
852 }
853 static DEVICE_ATTR(suspend_standby_mode, 0444,
854 		regulator_suspend_standby_mode_show, NULL);
855 
856 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 				   struct device_attribute *attr, char *buf)
858 {
859 	struct regulator_dev *rdev = dev_get_drvdata(dev);
860 
861 	return regulator_print_state(buf,
862 			rdev->constraints->state_mem.enabled);
863 }
864 static DEVICE_ATTR(suspend_mem_state, 0444,
865 		regulator_suspend_mem_state_show, NULL);
866 
867 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 				   struct device_attribute *attr, char *buf)
869 {
870 	struct regulator_dev *rdev = dev_get_drvdata(dev);
871 
872 	return regulator_print_state(buf,
873 			rdev->constraints->state_disk.enabled);
874 }
875 static DEVICE_ATTR(suspend_disk_state, 0444,
876 		regulator_suspend_disk_state_show, NULL);
877 
878 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 				   struct device_attribute *attr, char *buf)
880 {
881 	struct regulator_dev *rdev = dev_get_drvdata(dev);
882 
883 	return regulator_print_state(buf,
884 			rdev->constraints->state_standby.enabled);
885 }
886 static DEVICE_ATTR(suspend_standby_state, 0444,
887 		regulator_suspend_standby_state_show, NULL);
888 
889 static ssize_t regulator_bypass_show(struct device *dev,
890 				     struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 	const char *report;
894 	bool bypass;
895 	int ret;
896 
897 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898 
899 	if (ret != 0)
900 		report = "unknown";
901 	else if (bypass)
902 		report = "enabled";
903 	else
904 		report = "disabled";
905 
906 	return sprintf(buf, "%s\n", report);
907 }
908 static DEVICE_ATTR(bypass, 0444,
909 		   regulator_bypass_show, NULL);
910 
911 /* Calculate the new optimum regulator operating mode based on the new total
912  * consumer load. All locks held by caller */
913 static int drms_uA_update(struct regulator_dev *rdev)
914 {
915 	struct regulator *sibling;
916 	int current_uA = 0, output_uV, input_uV, err;
917 	unsigned int mode;
918 
919 	/*
920 	 * first check to see if we can set modes at all, otherwise just
921 	 * tell the consumer everything is OK.
922 	 */
923 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 		rdev_dbg(rdev, "DRMS operation not allowed\n");
925 		return 0;
926 	}
927 
928 	if (!rdev->desc->ops->get_optimum_mode &&
929 	    !rdev->desc->ops->set_load)
930 		return 0;
931 
932 	if (!rdev->desc->ops->set_mode &&
933 	    !rdev->desc->ops->set_load)
934 		return -EINVAL;
935 
936 	/* calc total requested load */
937 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 		if (sibling->enable_count)
939 			current_uA += sibling->uA_load;
940 	}
941 
942 	current_uA += rdev->constraints->system_load;
943 
944 	if (rdev->desc->ops->set_load) {
945 		/* set the optimum mode for our new total regulator load */
946 		err = rdev->desc->ops->set_load(rdev, current_uA);
947 		if (err < 0)
948 			rdev_err(rdev, "failed to set load %d\n", current_uA);
949 	} else {
950 		/* get output voltage */
951 		output_uV = regulator_get_voltage_rdev(rdev);
952 		if (output_uV <= 0) {
953 			rdev_err(rdev, "invalid output voltage found\n");
954 			return -EINVAL;
955 		}
956 
957 		/* get input voltage */
958 		input_uV = 0;
959 		if (rdev->supply)
960 			input_uV = regulator_get_voltage(rdev->supply);
961 		if (input_uV <= 0)
962 			input_uV = rdev->constraints->input_uV;
963 		if (input_uV <= 0) {
964 			rdev_err(rdev, "invalid input voltage found\n");
965 			return -EINVAL;
966 		}
967 
968 		/* now get the optimum mode for our new total regulator load */
969 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 							 output_uV, current_uA);
971 
972 		/* check the new mode is allowed */
973 		err = regulator_mode_constrain(rdev, &mode);
974 		if (err < 0) {
975 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 				 current_uA, input_uV, output_uV);
977 			return err;
978 		}
979 
980 		err = rdev->desc->ops->set_mode(rdev, mode);
981 		if (err < 0)
982 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 	}
984 
985 	return err;
986 }
987 
988 static int suspend_set_state(struct regulator_dev *rdev,
989 				    suspend_state_t state)
990 {
991 	int ret = 0;
992 	struct regulator_state *rstate;
993 
994 	rstate = regulator_get_suspend_state(rdev, state);
995 	if (rstate == NULL)
996 		return 0;
997 
998 	/* If we have no suspend mode configuration don't set anything;
999 	 * only warn if the driver implements set_suspend_voltage or
1000 	 * set_suspend_mode callback.
1001 	 */
1002 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1004 		if (rdev->desc->ops->set_suspend_voltage ||
1005 		    rdev->desc->ops->set_suspend_mode)
1006 			rdev_warn(rdev, "No configuration\n");
1007 		return 0;
1008 	}
1009 
1010 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 		rdev->desc->ops->set_suspend_enable)
1012 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 		rdev->desc->ops->set_suspend_disable)
1015 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 		ret = 0;
1018 
1019 	if (ret < 0) {
1020 		rdev_err(rdev, "failed to enabled/disable\n");
1021 		return ret;
1022 	}
1023 
1024 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 		if (ret < 0) {
1027 			rdev_err(rdev, "failed to set voltage\n");
1028 			return ret;
1029 		}
1030 	}
1031 
1032 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 		if (ret < 0) {
1035 			rdev_err(rdev, "failed to set mode\n");
1036 			return ret;
1037 		}
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 static void print_constraints(struct regulator_dev *rdev)
1044 {
1045 	struct regulation_constraints *constraints = rdev->constraints;
1046 	char buf[160] = "";
1047 	size_t len = sizeof(buf) - 1;
1048 	int count = 0;
1049 	int ret;
1050 
1051 	if (constraints->min_uV && constraints->max_uV) {
1052 		if (constraints->min_uV == constraints->max_uV)
1053 			count += scnprintf(buf + count, len - count, "%d mV ",
1054 					   constraints->min_uV / 1000);
1055 		else
1056 			count += scnprintf(buf + count, len - count,
1057 					   "%d <--> %d mV ",
1058 					   constraints->min_uV / 1000,
1059 					   constraints->max_uV / 1000);
1060 	}
1061 
1062 	if (!constraints->min_uV ||
1063 	    constraints->min_uV != constraints->max_uV) {
1064 		ret = regulator_get_voltage_rdev(rdev);
1065 		if (ret > 0)
1066 			count += scnprintf(buf + count, len - count,
1067 					   "at %d mV ", ret / 1000);
1068 	}
1069 
1070 	if (constraints->uV_offset)
1071 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 				   constraints->uV_offset / 1000);
1073 
1074 	if (constraints->min_uA && constraints->max_uA) {
1075 		if (constraints->min_uA == constraints->max_uA)
1076 			count += scnprintf(buf + count, len - count, "%d mA ",
1077 					   constraints->min_uA / 1000);
1078 		else
1079 			count += scnprintf(buf + count, len - count,
1080 					   "%d <--> %d mA ",
1081 					   constraints->min_uA / 1000,
1082 					   constraints->max_uA / 1000);
1083 	}
1084 
1085 	if (!constraints->min_uA ||
1086 	    constraints->min_uA != constraints->max_uA) {
1087 		ret = _regulator_get_current_limit(rdev);
1088 		if (ret > 0)
1089 			count += scnprintf(buf + count, len - count,
1090 					   "at %d mA ", ret / 1000);
1091 	}
1092 
1093 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 		count += scnprintf(buf + count, len - count, "fast ");
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 		count += scnprintf(buf + count, len - count, "normal ");
1097 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 		count += scnprintf(buf + count, len - count, "idle ");
1099 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 		count += scnprintf(buf + count, len - count, "standby");
1101 
1102 	if (!count)
1103 		scnprintf(buf, len, "no parameters");
1104 
1105 	rdev_dbg(rdev, "%s\n", buf);
1106 
1107 	if ((constraints->min_uV != constraints->max_uV) &&
1108 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 		rdev_warn(rdev,
1110 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111 }
1112 
1113 static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 	struct regulation_constraints *constraints)
1115 {
1116 	const struct regulator_ops *ops = rdev->desc->ops;
1117 	int ret;
1118 
1119 	/* do we need to apply the constraint voltage */
1120 	if (rdev->constraints->apply_uV &&
1121 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 		int target_min, target_max;
1123 		int current_uV = regulator_get_voltage_rdev(rdev);
1124 
1125 		if (current_uV == -ENOTRECOVERABLE) {
1126 			/* This regulator can't be read and must be initialized */
1127 			rdev_info(rdev, "Setting %d-%duV\n",
1128 				  rdev->constraints->min_uV,
1129 				  rdev->constraints->max_uV);
1130 			_regulator_do_set_voltage(rdev,
1131 						  rdev->constraints->min_uV,
1132 						  rdev->constraints->max_uV);
1133 			current_uV = regulator_get_voltage_rdev(rdev);
1134 		}
1135 
1136 		if (current_uV < 0) {
1137 			rdev_err(rdev,
1138 				 "failed to get the current voltage(%d)\n",
1139 				 current_uV);
1140 			return current_uV;
1141 		}
1142 
1143 		/*
1144 		 * If we're below the minimum voltage move up to the
1145 		 * minimum voltage, if we're above the maximum voltage
1146 		 * then move down to the maximum.
1147 		 */
1148 		target_min = current_uV;
1149 		target_max = current_uV;
1150 
1151 		if (current_uV < rdev->constraints->min_uV) {
1152 			target_min = rdev->constraints->min_uV;
1153 			target_max = rdev->constraints->min_uV;
1154 		}
1155 
1156 		if (current_uV > rdev->constraints->max_uV) {
1157 			target_min = rdev->constraints->max_uV;
1158 			target_max = rdev->constraints->max_uV;
1159 		}
1160 
1161 		if (target_min != current_uV || target_max != current_uV) {
1162 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 				  current_uV, target_min, target_max);
1164 			ret = _regulator_do_set_voltage(
1165 				rdev, target_min, target_max);
1166 			if (ret < 0) {
1167 				rdev_err(rdev,
1168 					"failed to apply %d-%duV constraint(%d)\n",
1169 					target_min, target_max, ret);
1170 				return ret;
1171 			}
1172 		}
1173 	}
1174 
1175 	/* constrain machine-level voltage specs to fit
1176 	 * the actual range supported by this regulator.
1177 	 */
1178 	if (ops->list_voltage && rdev->desc->n_voltages) {
1179 		int	count = rdev->desc->n_voltages;
1180 		int	i;
1181 		int	min_uV = INT_MAX;
1182 		int	max_uV = INT_MIN;
1183 		int	cmin = constraints->min_uV;
1184 		int	cmax = constraints->max_uV;
1185 
1186 		/* it's safe to autoconfigure fixed-voltage supplies
1187 		   and the constraints are used by list_voltage. */
1188 		if (count == 1 && !cmin) {
1189 			cmin = 1;
1190 			cmax = INT_MAX;
1191 			constraints->min_uV = cmin;
1192 			constraints->max_uV = cmax;
1193 		}
1194 
1195 		/* voltage constraints are optional */
1196 		if ((cmin == 0) && (cmax == 0))
1197 			return 0;
1198 
1199 		/* else require explicit machine-level constraints */
1200 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 			rdev_err(rdev, "invalid voltage constraints\n");
1202 			return -EINVAL;
1203 		}
1204 
1205 		/* no need to loop voltages if range is continuous */
1206 		if (rdev->desc->continuous_voltage_range)
1207 			return 0;
1208 
1209 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 		for (i = 0; i < count; i++) {
1211 			int	value;
1212 
1213 			value = ops->list_voltage(rdev, i);
1214 			if (value <= 0)
1215 				continue;
1216 
1217 			/* maybe adjust [min_uV..max_uV] */
1218 			if (value >= cmin && value < min_uV)
1219 				min_uV = value;
1220 			if (value <= cmax && value > max_uV)
1221 				max_uV = value;
1222 		}
1223 
1224 		/* final: [min_uV..max_uV] valid iff constraints valid */
1225 		if (max_uV < min_uV) {
1226 			rdev_err(rdev,
1227 				 "unsupportable voltage constraints %u-%uuV\n",
1228 				 min_uV, max_uV);
1229 			return -EINVAL;
1230 		}
1231 
1232 		/* use regulator's subset of machine constraints */
1233 		if (constraints->min_uV < min_uV) {
1234 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 				 constraints->min_uV, min_uV);
1236 			constraints->min_uV = min_uV;
1237 		}
1238 		if (constraints->max_uV > max_uV) {
1239 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 				 constraints->max_uV, max_uV);
1241 			constraints->max_uV = max_uV;
1242 		}
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static int machine_constraints_current(struct regulator_dev *rdev,
1249 	struct regulation_constraints *constraints)
1250 {
1251 	const struct regulator_ops *ops = rdev->desc->ops;
1252 	int ret;
1253 
1254 	if (!constraints->min_uA && !constraints->max_uA)
1255 		return 0;
1256 
1257 	if (constraints->min_uA > constraints->max_uA) {
1258 		rdev_err(rdev, "Invalid current constraints\n");
1259 		return -EINVAL;
1260 	}
1261 
1262 	if (!ops->set_current_limit || !ops->get_current_limit) {
1263 		rdev_warn(rdev, "Operation of current configuration missing\n");
1264 		return 0;
1265 	}
1266 
1267 	/* Set regulator current in constraints range */
1268 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 			constraints->max_uA);
1270 	if (ret < 0) {
1271 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 		return ret;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static int _regulator_do_enable(struct regulator_dev *rdev);
1279 
1280 /**
1281  * set_machine_constraints - sets regulator constraints
1282  * @rdev: regulator source
1283  * @constraints: constraints to apply
1284  *
1285  * Allows platform initialisation code to define and constrain
1286  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1287  * Constraints *must* be set by platform code in order for some
1288  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289  * set_mode.
1290  */
1291 static int set_machine_constraints(struct regulator_dev *rdev,
1292 	const struct regulation_constraints *constraints)
1293 {
1294 	int ret = 0;
1295 	const struct regulator_ops *ops = rdev->desc->ops;
1296 
1297 	if (constraints)
1298 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 					    GFP_KERNEL);
1300 	else
1301 		rdev->constraints = kzalloc(sizeof(*constraints),
1302 					    GFP_KERNEL);
1303 	if (!rdev->constraints)
1304 		return -ENOMEM;
1305 
1306 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 	if (ret != 0)
1308 		return ret;
1309 
1310 	ret = machine_constraints_current(rdev, rdev->constraints);
1311 	if (ret != 0)
1312 		return ret;
1313 
1314 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 		ret = ops->set_input_current_limit(rdev,
1316 						   rdev->constraints->ilim_uA);
1317 		if (ret < 0) {
1318 			rdev_err(rdev, "failed to set input limit\n");
1319 			return ret;
1320 		}
1321 	}
1322 
1323 	/* do we need to setup our suspend state */
1324 	if (rdev->constraints->initial_state) {
1325 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 		if (ret < 0) {
1327 			rdev_err(rdev, "failed to set suspend state\n");
1328 			return ret;
1329 		}
1330 	}
1331 
1332 	if (rdev->constraints->initial_mode) {
1333 		if (!ops->set_mode) {
1334 			rdev_err(rdev, "no set_mode operation\n");
1335 			return -EINVAL;
1336 		}
1337 
1338 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 		if (ret < 0) {
1340 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 			return ret;
1342 		}
1343 	} else if (rdev->constraints->system_load) {
1344 		/*
1345 		 * We'll only apply the initial system load if an
1346 		 * initial mode wasn't specified.
1347 		 */
1348 		drms_uA_update(rdev);
1349 	}
1350 
1351 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 		&& ops->set_ramp_delay) {
1353 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 		if (ret < 0) {
1355 			rdev_err(rdev, "failed to set ramp_delay\n");
1356 			return ret;
1357 		}
1358 	}
1359 
1360 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 		ret = ops->set_pull_down(rdev);
1362 		if (ret < 0) {
1363 			rdev_err(rdev, "failed to set pull down\n");
1364 			return ret;
1365 		}
1366 	}
1367 
1368 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 		ret = ops->set_soft_start(rdev);
1370 		if (ret < 0) {
1371 			rdev_err(rdev, "failed to set soft start\n");
1372 			return ret;
1373 		}
1374 	}
1375 
1376 	if (rdev->constraints->over_current_protection
1377 		&& ops->set_over_current_protection) {
1378 		ret = ops->set_over_current_protection(rdev);
1379 		if (ret < 0) {
1380 			rdev_err(rdev, "failed to set over current protection\n");
1381 			return ret;
1382 		}
1383 	}
1384 
1385 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 		bool ad_state = (rdev->constraints->active_discharge ==
1387 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388 
1389 		ret = ops->set_active_discharge(rdev, ad_state);
1390 		if (ret < 0) {
1391 			rdev_err(rdev, "failed to set active discharge\n");
1392 			return ret;
1393 		}
1394 	}
1395 
1396 	/* If the constraints say the regulator should be on at this point
1397 	 * and we have control then make sure it is enabled.
1398 	 */
1399 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 		if (rdev->supply) {
1401 			ret = regulator_enable(rdev->supply);
1402 			if (ret < 0) {
1403 				_regulator_put(rdev->supply);
1404 				rdev->supply = NULL;
1405 				return ret;
1406 			}
1407 		}
1408 
1409 		ret = _regulator_do_enable(rdev);
1410 		if (ret < 0 && ret != -EINVAL) {
1411 			rdev_err(rdev, "failed to enable\n");
1412 			return ret;
1413 		}
1414 
1415 		if (rdev->constraints->always_on)
1416 			rdev->use_count++;
1417 	}
1418 
1419 	print_constraints(rdev);
1420 	return 0;
1421 }
1422 
1423 /**
1424  * set_supply - set regulator supply regulator
1425  * @rdev: regulator name
1426  * @supply_rdev: supply regulator name
1427  *
1428  * Called by platform initialisation code to set the supply regulator for this
1429  * regulator. This ensures that a regulators supply will also be enabled by the
1430  * core if it's child is enabled.
1431  */
1432 static int set_supply(struct regulator_dev *rdev,
1433 		      struct regulator_dev *supply_rdev)
1434 {
1435 	int err;
1436 
1437 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438 
1439 	if (!try_module_get(supply_rdev->owner))
1440 		return -ENODEV;
1441 
1442 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 	if (rdev->supply == NULL) {
1444 		err = -ENOMEM;
1445 		return err;
1446 	}
1447 	supply_rdev->open_count++;
1448 
1449 	return 0;
1450 }
1451 
1452 /**
1453  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454  * @rdev:         regulator source
1455  * @consumer_dev_name: dev_name() string for device supply applies to
1456  * @supply:       symbolic name for supply
1457  *
1458  * Allows platform initialisation code to map physical regulator
1459  * sources to symbolic names for supplies for use by devices.  Devices
1460  * should use these symbolic names to request regulators, avoiding the
1461  * need to provide board-specific regulator names as platform data.
1462  */
1463 static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 				      const char *consumer_dev_name,
1465 				      const char *supply)
1466 {
1467 	struct regulator_map *node, *new_node;
1468 	int has_dev;
1469 
1470 	if (supply == NULL)
1471 		return -EINVAL;
1472 
1473 	if (consumer_dev_name != NULL)
1474 		has_dev = 1;
1475 	else
1476 		has_dev = 0;
1477 
1478 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 	if (new_node == NULL)
1480 		return -ENOMEM;
1481 
1482 	new_node->regulator = rdev;
1483 	new_node->supply = supply;
1484 
1485 	if (has_dev) {
1486 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 		if (new_node->dev_name == NULL) {
1488 			kfree(new_node);
1489 			return -ENOMEM;
1490 		}
1491 	}
1492 
1493 	mutex_lock(&regulator_list_mutex);
1494 	list_for_each_entry(node, &regulator_map_list, list) {
1495 		if (node->dev_name && consumer_dev_name) {
1496 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 				continue;
1498 		} else if (node->dev_name || consumer_dev_name) {
1499 			continue;
1500 		}
1501 
1502 		if (strcmp(node->supply, supply) != 0)
1503 			continue;
1504 
1505 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 			 consumer_dev_name,
1507 			 dev_name(&node->regulator->dev),
1508 			 node->regulator->desc->name,
1509 			 supply,
1510 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 		goto fail;
1512 	}
1513 
1514 	list_add(&new_node->list, &regulator_map_list);
1515 	mutex_unlock(&regulator_list_mutex);
1516 
1517 	return 0;
1518 
1519 fail:
1520 	mutex_unlock(&regulator_list_mutex);
1521 	kfree(new_node->dev_name);
1522 	kfree(new_node);
1523 	return -EBUSY;
1524 }
1525 
1526 static void unset_regulator_supplies(struct regulator_dev *rdev)
1527 {
1528 	struct regulator_map *node, *n;
1529 
1530 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531 		if (rdev == node->regulator) {
1532 			list_del(&node->list);
1533 			kfree(node->dev_name);
1534 			kfree(node);
1535 		}
1536 	}
1537 }
1538 
1539 #ifdef CONFIG_DEBUG_FS
1540 static ssize_t constraint_flags_read_file(struct file *file,
1541 					  char __user *user_buf,
1542 					  size_t count, loff_t *ppos)
1543 {
1544 	const struct regulator *regulator = file->private_data;
1545 	const struct regulation_constraints *c = regulator->rdev->constraints;
1546 	char *buf;
1547 	ssize_t ret;
1548 
1549 	if (!c)
1550 		return 0;
1551 
1552 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 	if (!buf)
1554 		return -ENOMEM;
1555 
1556 	ret = snprintf(buf, PAGE_SIZE,
1557 			"always_on: %u\n"
1558 			"boot_on: %u\n"
1559 			"apply_uV: %u\n"
1560 			"ramp_disable: %u\n"
1561 			"soft_start: %u\n"
1562 			"pull_down: %u\n"
1563 			"over_current_protection: %u\n",
1564 			c->always_on,
1565 			c->boot_on,
1566 			c->apply_uV,
1567 			c->ramp_disable,
1568 			c->soft_start,
1569 			c->pull_down,
1570 			c->over_current_protection);
1571 
1572 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 	kfree(buf);
1574 
1575 	return ret;
1576 }
1577 
1578 #endif
1579 
1580 static const struct file_operations constraint_flags_fops = {
1581 #ifdef CONFIG_DEBUG_FS
1582 	.open = simple_open,
1583 	.read = constraint_flags_read_file,
1584 	.llseek = default_llseek,
1585 #endif
1586 };
1587 
1588 #define REG_STR_SIZE	64
1589 
1590 static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 					  struct device *dev,
1592 					  const char *supply_name)
1593 {
1594 	struct regulator *regulator;
1595 	int err;
1596 
1597 	if (dev) {
1598 		char buf[REG_STR_SIZE];
1599 		int size;
1600 
1601 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 				dev->kobj.name, supply_name);
1603 		if (size >= REG_STR_SIZE)
1604 			return NULL;
1605 
1606 		supply_name = kstrdup(buf, GFP_KERNEL);
1607 		if (supply_name == NULL)
1608 			return NULL;
1609 	} else {
1610 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 		if (supply_name == NULL)
1612 			return NULL;
1613 	}
1614 
1615 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 	if (regulator == NULL) {
1617 		kfree(supply_name);
1618 		return NULL;
1619 	}
1620 
1621 	regulator->rdev = rdev;
1622 	regulator->supply_name = supply_name;
1623 
1624 	regulator_lock(rdev);
1625 	list_add(&regulator->list, &rdev->consumer_list);
1626 	regulator_unlock(rdev);
1627 
1628 	if (dev) {
1629 		regulator->dev = dev;
1630 
1631 		/* Add a link to the device sysfs entry */
1632 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 					       supply_name);
1634 		if (err) {
1635 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 				  dev->kobj.name, err);
1637 			/* non-fatal */
1638 		}
1639 	}
1640 
1641 	regulator->debugfs = debugfs_create_dir(supply_name,
1642 						rdev->debugfs);
1643 	if (!regulator->debugfs) {
1644 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 	} else {
1646 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 				   &regulator->uA_load);
1648 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652 		debugfs_create_file("constraint_flags", 0444,
1653 				    regulator->debugfs, regulator,
1654 				    &constraint_flags_fops);
1655 	}
1656 
1657 	/*
1658 	 * Check now if the regulator is an always on regulator - if
1659 	 * it is then we don't need to do nearly so much work for
1660 	 * enable/disable calls.
1661 	 */
1662 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 	    _regulator_is_enabled(rdev))
1664 		regulator->always_on = true;
1665 
1666 	return regulator;
1667 }
1668 
1669 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670 {
1671 	if (rdev->constraints && rdev->constraints->enable_time)
1672 		return rdev->constraints->enable_time;
1673 	if (rdev->desc->ops->enable_time)
1674 		return rdev->desc->ops->enable_time(rdev);
1675 	return rdev->desc->enable_time;
1676 }
1677 
1678 static struct regulator_supply_alias *regulator_find_supply_alias(
1679 		struct device *dev, const char *supply)
1680 {
1681 	struct regulator_supply_alias *map;
1682 
1683 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1684 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 			return map;
1686 
1687 	return NULL;
1688 }
1689 
1690 static void regulator_supply_alias(struct device **dev, const char **supply)
1691 {
1692 	struct regulator_supply_alias *map;
1693 
1694 	map = regulator_find_supply_alias(*dev, *supply);
1695 	if (map) {
1696 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 				*supply, map->alias_supply,
1698 				dev_name(map->alias_dev));
1699 		*dev = map->alias_dev;
1700 		*supply = map->alias_supply;
1701 	}
1702 }
1703 
1704 static int regulator_match(struct device *dev, const void *data)
1705 {
1706 	struct regulator_dev *r = dev_to_rdev(dev);
1707 
1708 	return strcmp(rdev_get_name(r), data) == 0;
1709 }
1710 
1711 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712 {
1713 	struct device *dev;
1714 
1715 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1716 
1717 	return dev ? dev_to_rdev(dev) : NULL;
1718 }
1719 
1720 /**
1721  * regulator_dev_lookup - lookup a regulator device.
1722  * @dev: device for regulator "consumer".
1723  * @supply: Supply name or regulator ID.
1724  *
1725  * If successful, returns a struct regulator_dev that corresponds to the name
1726  * @supply and with the embedded struct device refcount incremented by one.
1727  * The refcount must be dropped by calling put_device().
1728  * On failure one of the following ERR-PTR-encoded values is returned:
1729  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730  * in the future.
1731  */
1732 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 						  const char *supply)
1734 {
1735 	struct regulator_dev *r = NULL;
1736 	struct device_node *node;
1737 	struct regulator_map *map;
1738 	const char *devname = NULL;
1739 
1740 	regulator_supply_alias(&dev, &supply);
1741 
1742 	/* first do a dt based lookup */
1743 	if (dev && dev->of_node) {
1744 		node = of_get_regulator(dev, supply);
1745 		if (node) {
1746 			r = of_find_regulator_by_node(node);
1747 			if (r)
1748 				return r;
1749 
1750 			/*
1751 			 * We have a node, but there is no device.
1752 			 * assume it has not registered yet.
1753 			 */
1754 			return ERR_PTR(-EPROBE_DEFER);
1755 		}
1756 	}
1757 
1758 	/* if not found, try doing it non-dt way */
1759 	if (dev)
1760 		devname = dev_name(dev);
1761 
1762 	mutex_lock(&regulator_list_mutex);
1763 	list_for_each_entry(map, &regulator_map_list, list) {
1764 		/* If the mapping has a device set up it must match */
1765 		if (map->dev_name &&
1766 		    (!devname || strcmp(map->dev_name, devname)))
1767 			continue;
1768 
1769 		if (strcmp(map->supply, supply) == 0 &&
1770 		    get_device(&map->regulator->dev)) {
1771 			r = map->regulator;
1772 			break;
1773 		}
1774 	}
1775 	mutex_unlock(&regulator_list_mutex);
1776 
1777 	if (r)
1778 		return r;
1779 
1780 	r = regulator_lookup_by_name(supply);
1781 	if (r)
1782 		return r;
1783 
1784 	return ERR_PTR(-ENODEV);
1785 }
1786 
1787 static int regulator_resolve_supply(struct regulator_dev *rdev)
1788 {
1789 	struct regulator_dev *r;
1790 	struct device *dev = rdev->dev.parent;
1791 	int ret;
1792 
1793 	/* No supply to resolve? */
1794 	if (!rdev->supply_name)
1795 		return 0;
1796 
1797 	/* Supply already resolved? */
1798 	if (rdev->supply)
1799 		return 0;
1800 
1801 	r = regulator_dev_lookup(dev, rdev->supply_name);
1802 	if (IS_ERR(r)) {
1803 		ret = PTR_ERR(r);
1804 
1805 		/* Did the lookup explicitly defer for us? */
1806 		if (ret == -EPROBE_DEFER)
1807 			return ret;
1808 
1809 		if (have_full_constraints()) {
1810 			r = dummy_regulator_rdev;
1811 			get_device(&r->dev);
1812 		} else {
1813 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 				rdev->supply_name, rdev->desc->name);
1815 			return -EPROBE_DEFER;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * If the supply's parent device is not the same as the
1821 	 * regulator's parent device, then ensure the parent device
1822 	 * is bound before we resolve the supply, in case the parent
1823 	 * device get probe deferred and unregisters the supply.
1824 	 */
1825 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 		if (!device_is_bound(r->dev.parent)) {
1827 			put_device(&r->dev);
1828 			return -EPROBE_DEFER;
1829 		}
1830 	}
1831 
1832 	/* Recursively resolve the supply of the supply */
1833 	ret = regulator_resolve_supply(r);
1834 	if (ret < 0) {
1835 		put_device(&r->dev);
1836 		return ret;
1837 	}
1838 
1839 	ret = set_supply(rdev, r);
1840 	if (ret < 0) {
1841 		put_device(&r->dev);
1842 		return ret;
1843 	}
1844 
1845 	/*
1846 	 * In set_machine_constraints() we may have turned this regulator on
1847 	 * but we couldn't propagate to the supply if it hadn't been resolved
1848 	 * yet.  Do it now.
1849 	 */
1850 	if (rdev->use_count) {
1851 		ret = regulator_enable(rdev->supply);
1852 		if (ret < 0) {
1853 			_regulator_put(rdev->supply);
1854 			rdev->supply = NULL;
1855 			return ret;
1856 		}
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /* Internal regulator request function */
1863 struct regulator *_regulator_get(struct device *dev, const char *id,
1864 				 enum regulator_get_type get_type)
1865 {
1866 	struct regulator_dev *rdev;
1867 	struct regulator *regulator;
1868 	struct device_link *link;
1869 	int ret;
1870 
1871 	if (get_type >= MAX_GET_TYPE) {
1872 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 		return ERR_PTR(-EINVAL);
1874 	}
1875 
1876 	if (id == NULL) {
1877 		pr_err("get() with no identifier\n");
1878 		return ERR_PTR(-EINVAL);
1879 	}
1880 
1881 	rdev = regulator_dev_lookup(dev, id);
1882 	if (IS_ERR(rdev)) {
1883 		ret = PTR_ERR(rdev);
1884 
1885 		/*
1886 		 * If regulator_dev_lookup() fails with error other
1887 		 * than -ENODEV our job here is done, we simply return it.
1888 		 */
1889 		if (ret != -ENODEV)
1890 			return ERR_PTR(ret);
1891 
1892 		if (!have_full_constraints()) {
1893 			dev_warn(dev,
1894 				 "incomplete constraints, dummy supplies not allowed\n");
1895 			return ERR_PTR(-ENODEV);
1896 		}
1897 
1898 		switch (get_type) {
1899 		case NORMAL_GET:
1900 			/*
1901 			 * Assume that a regulator is physically present and
1902 			 * enabled, even if it isn't hooked up, and just
1903 			 * provide a dummy.
1904 			 */
1905 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 			rdev = dummy_regulator_rdev;
1907 			get_device(&rdev->dev);
1908 			break;
1909 
1910 		case EXCLUSIVE_GET:
1911 			dev_warn(dev,
1912 				 "dummy supplies not allowed for exclusive requests\n");
1913 			fallthrough;
1914 
1915 		default:
1916 			return ERR_PTR(-ENODEV);
1917 		}
1918 	}
1919 
1920 	if (rdev->exclusive) {
1921 		regulator = ERR_PTR(-EPERM);
1922 		put_device(&rdev->dev);
1923 		return regulator;
1924 	}
1925 
1926 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 		regulator = ERR_PTR(-EBUSY);
1928 		put_device(&rdev->dev);
1929 		return regulator;
1930 	}
1931 
1932 	mutex_lock(&regulator_list_mutex);
1933 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 	mutex_unlock(&regulator_list_mutex);
1935 
1936 	if (ret != 0) {
1937 		regulator = ERR_PTR(-EPROBE_DEFER);
1938 		put_device(&rdev->dev);
1939 		return regulator;
1940 	}
1941 
1942 	ret = regulator_resolve_supply(rdev);
1943 	if (ret < 0) {
1944 		regulator = ERR_PTR(ret);
1945 		put_device(&rdev->dev);
1946 		return regulator;
1947 	}
1948 
1949 	if (!try_module_get(rdev->owner)) {
1950 		regulator = ERR_PTR(-EPROBE_DEFER);
1951 		put_device(&rdev->dev);
1952 		return regulator;
1953 	}
1954 
1955 	regulator = create_regulator(rdev, dev, id);
1956 	if (regulator == NULL) {
1957 		regulator = ERR_PTR(-ENOMEM);
1958 		module_put(rdev->owner);
1959 		put_device(&rdev->dev);
1960 		return regulator;
1961 	}
1962 
1963 	rdev->open_count++;
1964 	if (get_type == EXCLUSIVE_GET) {
1965 		rdev->exclusive = 1;
1966 
1967 		ret = _regulator_is_enabled(rdev);
1968 		if (ret > 0)
1969 			rdev->use_count = 1;
1970 		else
1971 			rdev->use_count = 0;
1972 	}
1973 
1974 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 	if (!IS_ERR_OR_NULL(link))
1976 		regulator->device_link = true;
1977 
1978 	return regulator;
1979 }
1980 
1981 /**
1982  * regulator_get - lookup and obtain a reference to a regulator.
1983  * @dev: device for regulator "consumer"
1984  * @id: Supply name or regulator ID.
1985  *
1986  * Returns a struct regulator corresponding to the regulator producer,
1987  * or IS_ERR() condition containing errno.
1988  *
1989  * Use of supply names configured via regulator_set_device_supply() is
1990  * strongly encouraged.  It is recommended that the supply name used
1991  * should match the name used for the supply and/or the relevant
1992  * device pins in the datasheet.
1993  */
1994 struct regulator *regulator_get(struct device *dev, const char *id)
1995 {
1996 	return _regulator_get(dev, id, NORMAL_GET);
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_get);
1999 
2000 /**
2001  * regulator_get_exclusive - obtain exclusive access to a regulator.
2002  * @dev: device for regulator "consumer"
2003  * @id: Supply name or regulator ID.
2004  *
2005  * Returns a struct regulator corresponding to the regulator producer,
2006  * or IS_ERR() condition containing errno.  Other consumers will be
2007  * unable to obtain this regulator while this reference is held and the
2008  * use count for the regulator will be initialised to reflect the current
2009  * state of the regulator.
2010  *
2011  * This is intended for use by consumers which cannot tolerate shared
2012  * use of the regulator such as those which need to force the
2013  * regulator off for correct operation of the hardware they are
2014  * controlling.
2015  *
2016  * Use of supply names configured via regulator_set_device_supply() is
2017  * strongly encouraged.  It is recommended that the supply name used
2018  * should match the name used for the supply and/or the relevant
2019  * device pins in the datasheet.
2020  */
2021 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022 {
2023 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026 
2027 /**
2028  * regulator_get_optional - obtain optional access to a regulator.
2029  * @dev: device for regulator "consumer"
2030  * @id: Supply name or regulator ID.
2031  *
2032  * Returns a struct regulator corresponding to the regulator producer,
2033  * or IS_ERR() condition containing errno.
2034  *
2035  * This is intended for use by consumers for devices which can have
2036  * some supplies unconnected in normal use, such as some MMC devices.
2037  * It can allow the regulator core to provide stub supplies for other
2038  * supplies requested using normal regulator_get() calls without
2039  * disrupting the operation of drivers that can handle absent
2040  * supplies.
2041  *
2042  * Use of supply names configured via regulator_set_device_supply() is
2043  * strongly encouraged.  It is recommended that the supply name used
2044  * should match the name used for the supply and/or the relevant
2045  * device pins in the datasheet.
2046  */
2047 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048 {
2049 	return _regulator_get(dev, id, OPTIONAL_GET);
2050 }
2051 EXPORT_SYMBOL_GPL(regulator_get_optional);
2052 
2053 static void destroy_regulator(struct regulator *regulator)
2054 {
2055 	struct regulator_dev *rdev = regulator->rdev;
2056 
2057 	debugfs_remove_recursive(regulator->debugfs);
2058 
2059 	if (regulator->dev) {
2060 		if (regulator->device_link)
2061 			device_link_remove(regulator->dev, &rdev->dev);
2062 
2063 		/* remove any sysfs entries */
2064 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 	}
2066 
2067 	regulator_lock(rdev);
2068 	list_del(&regulator->list);
2069 
2070 	rdev->open_count--;
2071 	rdev->exclusive = 0;
2072 	regulator_unlock(rdev);
2073 
2074 	kfree_const(regulator->supply_name);
2075 	kfree(regulator);
2076 }
2077 
2078 /* regulator_list_mutex lock held by regulator_put() */
2079 static void _regulator_put(struct regulator *regulator)
2080 {
2081 	struct regulator_dev *rdev;
2082 
2083 	if (IS_ERR_OR_NULL(regulator))
2084 		return;
2085 
2086 	lockdep_assert_held_once(&regulator_list_mutex);
2087 
2088 	/* Docs say you must disable before calling regulator_put() */
2089 	WARN_ON(regulator->enable_count);
2090 
2091 	rdev = regulator->rdev;
2092 
2093 	destroy_regulator(regulator);
2094 
2095 	module_put(rdev->owner);
2096 	put_device(&rdev->dev);
2097 }
2098 
2099 /**
2100  * regulator_put - "free" the regulator source
2101  * @regulator: regulator source
2102  *
2103  * Note: drivers must ensure that all regulator_enable calls made on this
2104  * regulator source are balanced by regulator_disable calls prior to calling
2105  * this function.
2106  */
2107 void regulator_put(struct regulator *regulator)
2108 {
2109 	mutex_lock(&regulator_list_mutex);
2110 	_regulator_put(regulator);
2111 	mutex_unlock(&regulator_list_mutex);
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_put);
2114 
2115 /**
2116  * regulator_register_supply_alias - Provide device alias for supply lookup
2117  *
2118  * @dev: device that will be given as the regulator "consumer"
2119  * @id: Supply name or regulator ID
2120  * @alias_dev: device that should be used to lookup the supply
2121  * @alias_id: Supply name or regulator ID that should be used to lookup the
2122  * supply
2123  *
2124  * All lookups for id on dev will instead be conducted for alias_id on
2125  * alias_dev.
2126  */
2127 int regulator_register_supply_alias(struct device *dev, const char *id,
2128 				    struct device *alias_dev,
2129 				    const char *alias_id)
2130 {
2131 	struct regulator_supply_alias *map;
2132 
2133 	map = regulator_find_supply_alias(dev, id);
2134 	if (map)
2135 		return -EEXIST;
2136 
2137 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 	if (!map)
2139 		return -ENOMEM;
2140 
2141 	map->src_dev = dev;
2142 	map->src_supply = id;
2143 	map->alias_dev = alias_dev;
2144 	map->alias_supply = alias_id;
2145 
2146 	list_add(&map->list, &regulator_supply_alias_list);
2147 
2148 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2150 
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154 
2155 /**
2156  * regulator_unregister_supply_alias - Remove device alias
2157  *
2158  * @dev: device that will be given as the regulator "consumer"
2159  * @id: Supply name or regulator ID
2160  *
2161  * Remove a lookup alias if one exists for id on dev.
2162  */
2163 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164 {
2165 	struct regulator_supply_alias *map;
2166 
2167 	map = regulator_find_supply_alias(dev, id);
2168 	if (map) {
2169 		list_del(&map->list);
2170 		kfree(map);
2171 	}
2172 }
2173 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174 
2175 /**
2176  * regulator_bulk_register_supply_alias - register multiple aliases
2177  *
2178  * @dev: device that will be given as the regulator "consumer"
2179  * @id: List of supply names or regulator IDs
2180  * @alias_dev: device that should be used to lookup the supply
2181  * @alias_id: List of supply names or regulator IDs that should be used to
2182  * lookup the supply
2183  * @num_id: Number of aliases to register
2184  *
2185  * @return 0 on success, an errno on failure.
2186  *
2187  * This helper function allows drivers to register several supply
2188  * aliases in one operation.  If any of the aliases cannot be
2189  * registered any aliases that were registered will be removed
2190  * before returning to the caller.
2191  */
2192 int regulator_bulk_register_supply_alias(struct device *dev,
2193 					 const char *const *id,
2194 					 struct device *alias_dev,
2195 					 const char *const *alias_id,
2196 					 int num_id)
2197 {
2198 	int i;
2199 	int ret;
2200 
2201 	for (i = 0; i < num_id; ++i) {
2202 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 						      alias_id[i]);
2204 		if (ret < 0)
2205 			goto err;
2206 	}
2207 
2208 	return 0;
2209 
2210 err:
2211 	dev_err(dev,
2212 		"Failed to create supply alias %s,%s -> %s,%s\n",
2213 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214 
2215 	while (--i >= 0)
2216 		regulator_unregister_supply_alias(dev, id[i]);
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221 
2222 /**
2223  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224  *
2225  * @dev: device that will be given as the regulator "consumer"
2226  * @id: List of supply names or regulator IDs
2227  * @num_id: Number of aliases to unregister
2228  *
2229  * This helper function allows drivers to unregister several supply
2230  * aliases in one operation.
2231  */
2232 void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 					    const char *const *id,
2234 					    int num_id)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < num_id; ++i)
2239 		regulator_unregister_supply_alias(dev, id[i]);
2240 }
2241 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242 
2243 
2244 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 				const struct regulator_config *config)
2247 {
2248 	struct regulator_enable_gpio *pin, *new_pin;
2249 	struct gpio_desc *gpiod;
2250 
2251 	gpiod = config->ena_gpiod;
2252 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253 
2254 	mutex_lock(&regulator_list_mutex);
2255 
2256 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257 		if (pin->gpiod == gpiod) {
2258 			rdev_dbg(rdev, "GPIO is already used\n");
2259 			goto update_ena_gpio_to_rdev;
2260 		}
2261 	}
2262 
2263 	if (new_pin == NULL) {
2264 		mutex_unlock(&regulator_list_mutex);
2265 		return -ENOMEM;
2266 	}
2267 
2268 	pin = new_pin;
2269 	new_pin = NULL;
2270 
2271 	pin->gpiod = gpiod;
2272 	list_add(&pin->list, &regulator_ena_gpio_list);
2273 
2274 update_ena_gpio_to_rdev:
2275 	pin->request_count++;
2276 	rdev->ena_pin = pin;
2277 
2278 	mutex_unlock(&regulator_list_mutex);
2279 	kfree(new_pin);
2280 
2281 	return 0;
2282 }
2283 
2284 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285 {
2286 	struct regulator_enable_gpio *pin, *n;
2287 
2288 	if (!rdev->ena_pin)
2289 		return;
2290 
2291 	/* Free the GPIO only in case of no use */
2292 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293 		if (pin != rdev->ena_pin)
2294 			continue;
2295 
2296 		if (--pin->request_count)
2297 			break;
2298 
2299 		gpiod_put(pin->gpiod);
2300 		list_del(&pin->list);
2301 		kfree(pin);
2302 		break;
2303 	}
2304 
2305 	rdev->ena_pin = NULL;
2306 }
2307 
2308 /**
2309  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310  * @rdev: regulator_dev structure
2311  * @enable: enable GPIO at initial use?
2312  *
2313  * GPIO is enabled in case of initial use. (enable_count is 0)
2314  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315  */
2316 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317 {
2318 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2319 
2320 	if (!pin)
2321 		return -EINVAL;
2322 
2323 	if (enable) {
2324 		/* Enable GPIO at initial use */
2325 		if (pin->enable_count == 0)
2326 			gpiod_set_value_cansleep(pin->gpiod, 1);
2327 
2328 		pin->enable_count++;
2329 	} else {
2330 		if (pin->enable_count > 1) {
2331 			pin->enable_count--;
2332 			return 0;
2333 		}
2334 
2335 		/* Disable GPIO if not used */
2336 		if (pin->enable_count <= 1) {
2337 			gpiod_set_value_cansleep(pin->gpiod, 0);
2338 			pin->enable_count = 0;
2339 		}
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /**
2346  * _regulator_enable_delay - a delay helper function
2347  * @delay: time to delay in microseconds
2348  *
2349  * Delay for the requested amount of time as per the guidelines in:
2350  *
2351  *     Documentation/timers/timers-howto.rst
2352  *
2353  * The assumption here is that regulators will never be enabled in
2354  * atomic context and therefore sleeping functions can be used.
2355  */
2356 static void _regulator_enable_delay(unsigned int delay)
2357 {
2358 	unsigned int ms = delay / 1000;
2359 	unsigned int us = delay % 1000;
2360 
2361 	if (ms > 0) {
2362 		/*
2363 		 * For small enough values, handle super-millisecond
2364 		 * delays in the usleep_range() call below.
2365 		 */
2366 		if (ms < 20)
2367 			us += ms * 1000;
2368 		else
2369 			msleep(ms);
2370 	}
2371 
2372 	/*
2373 	 * Give the scheduler some room to coalesce with any other
2374 	 * wakeup sources. For delays shorter than 10 us, don't even
2375 	 * bother setting up high-resolution timers and just busy-
2376 	 * loop.
2377 	 */
2378 	if (us >= 10)
2379 		usleep_range(us, us + 100);
2380 	else
2381 		udelay(us);
2382 }
2383 
2384 /**
2385  * _regulator_check_status_enabled
2386  *
2387  * A helper function to check if the regulator status can be interpreted
2388  * as 'regulator is enabled'.
2389  * @rdev: the regulator device to check
2390  *
2391  * Return:
2392  * * 1			- if status shows regulator is in enabled state
2393  * * 0			- if not enabled state
2394  * * Error Value	- as received from ops->get_status()
2395  */
2396 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397 {
2398 	int ret = rdev->desc->ops->get_status(rdev);
2399 
2400 	if (ret < 0) {
2401 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 		return ret;
2403 	}
2404 
2405 	switch (ret) {
2406 	case REGULATOR_STATUS_OFF:
2407 	case REGULATOR_STATUS_ERROR:
2408 	case REGULATOR_STATUS_UNDEFINED:
2409 		return 0;
2410 	default:
2411 		return 1;
2412 	}
2413 }
2414 
2415 static int _regulator_do_enable(struct regulator_dev *rdev)
2416 {
2417 	int ret, delay;
2418 
2419 	/* Query before enabling in case configuration dependent.  */
2420 	ret = _regulator_get_enable_time(rdev);
2421 	if (ret >= 0) {
2422 		delay = ret;
2423 	} else {
2424 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 		delay = 0;
2426 	}
2427 
2428 	trace_regulator_enable(rdev_get_name(rdev));
2429 
2430 	if (rdev->desc->off_on_delay) {
2431 		/* if needed, keep a distance of off_on_delay from last time
2432 		 * this regulator was disabled.
2433 		 */
2434 		unsigned long start_jiffy = jiffies;
2435 		unsigned long intended, max_delay, remaining;
2436 
2437 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 		intended = rdev->last_off_jiffy + max_delay;
2439 
2440 		if (time_before(start_jiffy, intended)) {
2441 			/* calc remaining jiffies to deal with one-time
2442 			 * timer wrapping.
2443 			 * in case of multiple timer wrapping, either it can be
2444 			 * detected by out-of-range remaining, or it cannot be
2445 			 * detected and we get a penalty of
2446 			 * _regulator_enable_delay().
2447 			 */
2448 			remaining = intended - start_jiffy;
2449 			if (remaining <= max_delay)
2450 				_regulator_enable_delay(
2451 						jiffies_to_usecs(remaining));
2452 		}
2453 	}
2454 
2455 	if (rdev->ena_pin) {
2456 		if (!rdev->ena_gpio_state) {
2457 			ret = regulator_ena_gpio_ctrl(rdev, true);
2458 			if (ret < 0)
2459 				return ret;
2460 			rdev->ena_gpio_state = 1;
2461 		}
2462 	} else if (rdev->desc->ops->enable) {
2463 		ret = rdev->desc->ops->enable(rdev);
2464 		if (ret < 0)
2465 			return ret;
2466 	} else {
2467 		return -EINVAL;
2468 	}
2469 
2470 	/* Allow the regulator to ramp; it would be useful to extend
2471 	 * this for bulk operations so that the regulators can ramp
2472 	 * together.  */
2473 	trace_regulator_enable_delay(rdev_get_name(rdev));
2474 
2475 	/* If poll_enabled_time is set, poll upto the delay calculated
2476 	 * above, delaying poll_enabled_time uS to check if the regulator
2477 	 * actually got enabled.
2478 	 * If the regulator isn't enabled after enable_delay has
2479 	 * expired, return -ETIMEDOUT.
2480 	 */
2481 	if (rdev->desc->poll_enabled_time) {
2482 		unsigned int time_remaining = delay;
2483 
2484 		while (time_remaining > 0) {
2485 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2486 
2487 			if (rdev->desc->ops->get_status) {
2488 				ret = _regulator_check_status_enabled(rdev);
2489 				if (ret < 0)
2490 					return ret;
2491 				else if (ret)
2492 					break;
2493 			} else if (rdev->desc->ops->is_enabled(rdev))
2494 				break;
2495 
2496 			time_remaining -= rdev->desc->poll_enabled_time;
2497 		}
2498 
2499 		if (time_remaining <= 0) {
2500 			rdev_err(rdev, "Enabled check timed out\n");
2501 			return -ETIMEDOUT;
2502 		}
2503 	} else {
2504 		_regulator_enable_delay(delay);
2505 	}
2506 
2507 	trace_regulator_enable_complete(rdev_get_name(rdev));
2508 
2509 	return 0;
2510 }
2511 
2512 /**
2513  * _regulator_handle_consumer_enable - handle that a consumer enabled
2514  * @regulator: regulator source
2515  *
2516  * Some things on a regulator consumer (like the contribution towards total
2517  * load on the regulator) only have an effect when the consumer wants the
2518  * regulator enabled.  Explained in example with two consumers of the same
2519  * regulator:
2520  *   consumer A: set_load(100);       => total load = 0
2521  *   consumer A: regulator_enable();  => total load = 100
2522  *   consumer B: set_load(1000);      => total load = 100
2523  *   consumer B: regulator_enable();  => total load = 1100
2524  *   consumer A: regulator_disable(); => total_load = 1000
2525  *
2526  * This function (together with _regulator_handle_consumer_disable) is
2527  * responsible for keeping track of the refcount for a given regulator consumer
2528  * and applying / unapplying these things.
2529  *
2530  * Returns 0 upon no error; -error upon error.
2531  */
2532 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533 {
2534 	struct regulator_dev *rdev = regulator->rdev;
2535 
2536 	lockdep_assert_held_once(&rdev->mutex.base);
2537 
2538 	regulator->enable_count++;
2539 	if (regulator->uA_load && regulator->enable_count == 1)
2540 		return drms_uA_update(rdev);
2541 
2542 	return 0;
2543 }
2544 
2545 /**
2546  * _regulator_handle_consumer_disable - handle that a consumer disabled
2547  * @regulator: regulator source
2548  *
2549  * The opposite of _regulator_handle_consumer_enable().
2550  *
2551  * Returns 0 upon no error; -error upon error.
2552  */
2553 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554 {
2555 	struct regulator_dev *rdev = regulator->rdev;
2556 
2557 	lockdep_assert_held_once(&rdev->mutex.base);
2558 
2559 	if (!regulator->enable_count) {
2560 		rdev_err(rdev, "Underflow of regulator enable count\n");
2561 		return -EINVAL;
2562 	}
2563 
2564 	regulator->enable_count--;
2565 	if (regulator->uA_load && regulator->enable_count == 0)
2566 		return drms_uA_update(rdev);
2567 
2568 	return 0;
2569 }
2570 
2571 /* locks held by regulator_enable() */
2572 static int _regulator_enable(struct regulator *regulator)
2573 {
2574 	struct regulator_dev *rdev = regulator->rdev;
2575 	int ret;
2576 
2577 	lockdep_assert_held_once(&rdev->mutex.base);
2578 
2579 	if (rdev->use_count == 0 && rdev->supply) {
2580 		ret = _regulator_enable(rdev->supply);
2581 		if (ret < 0)
2582 			return ret;
2583 	}
2584 
2585 	/* balance only if there are regulators coupled */
2586 	if (rdev->coupling_desc.n_coupled > 1) {
2587 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 		if (ret < 0)
2589 			goto err_disable_supply;
2590 	}
2591 
2592 	ret = _regulator_handle_consumer_enable(regulator);
2593 	if (ret < 0)
2594 		goto err_disable_supply;
2595 
2596 	if (rdev->use_count == 0) {
2597 		/* The regulator may on if it's not switchable or left on */
2598 		ret = _regulator_is_enabled(rdev);
2599 		if (ret == -EINVAL || ret == 0) {
2600 			if (!regulator_ops_is_valid(rdev,
2601 					REGULATOR_CHANGE_STATUS)) {
2602 				ret = -EPERM;
2603 				goto err_consumer_disable;
2604 			}
2605 
2606 			ret = _regulator_do_enable(rdev);
2607 			if (ret < 0)
2608 				goto err_consumer_disable;
2609 
2610 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 					     NULL);
2612 		} else if (ret < 0) {
2613 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 			goto err_consumer_disable;
2615 		}
2616 		/* Fallthrough on positive return values - already enabled */
2617 	}
2618 
2619 	rdev->use_count++;
2620 
2621 	return 0;
2622 
2623 err_consumer_disable:
2624 	_regulator_handle_consumer_disable(regulator);
2625 
2626 err_disable_supply:
2627 	if (rdev->use_count == 0 && rdev->supply)
2628 		_regulator_disable(rdev->supply);
2629 
2630 	return ret;
2631 }
2632 
2633 /**
2634  * regulator_enable - enable regulator output
2635  * @regulator: regulator source
2636  *
2637  * Request that the regulator be enabled with the regulator output at
2638  * the predefined voltage or current value.  Calls to regulator_enable()
2639  * must be balanced with calls to regulator_disable().
2640  *
2641  * NOTE: the output value can be set by other drivers, boot loader or may be
2642  * hardwired in the regulator.
2643  */
2644 int regulator_enable(struct regulator *regulator)
2645 {
2646 	struct regulator_dev *rdev = regulator->rdev;
2647 	struct ww_acquire_ctx ww_ctx;
2648 	int ret;
2649 
2650 	regulator_lock_dependent(rdev, &ww_ctx);
2651 	ret = _regulator_enable(regulator);
2652 	regulator_unlock_dependent(rdev, &ww_ctx);
2653 
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regulator_enable);
2657 
2658 static int _regulator_do_disable(struct regulator_dev *rdev)
2659 {
2660 	int ret;
2661 
2662 	trace_regulator_disable(rdev_get_name(rdev));
2663 
2664 	if (rdev->ena_pin) {
2665 		if (rdev->ena_gpio_state) {
2666 			ret = regulator_ena_gpio_ctrl(rdev, false);
2667 			if (ret < 0)
2668 				return ret;
2669 			rdev->ena_gpio_state = 0;
2670 		}
2671 
2672 	} else if (rdev->desc->ops->disable) {
2673 		ret = rdev->desc->ops->disable(rdev);
2674 		if (ret != 0)
2675 			return ret;
2676 	}
2677 
2678 	/* cares about last_off_jiffy only if off_on_delay is required by
2679 	 * device.
2680 	 */
2681 	if (rdev->desc->off_on_delay)
2682 		rdev->last_off_jiffy = jiffies;
2683 
2684 	trace_regulator_disable_complete(rdev_get_name(rdev));
2685 
2686 	return 0;
2687 }
2688 
2689 /* locks held by regulator_disable() */
2690 static int _regulator_disable(struct regulator *regulator)
2691 {
2692 	struct regulator_dev *rdev = regulator->rdev;
2693 	int ret = 0;
2694 
2695 	lockdep_assert_held_once(&rdev->mutex.base);
2696 
2697 	if (WARN(rdev->use_count <= 0,
2698 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 		return -EIO;
2700 
2701 	/* are we the last user and permitted to disable ? */
2702 	if (rdev->use_count == 1 &&
2703 	    (rdev->constraints && !rdev->constraints->always_on)) {
2704 
2705 		/* we are last user */
2706 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 			ret = _notifier_call_chain(rdev,
2708 						   REGULATOR_EVENT_PRE_DISABLE,
2709 						   NULL);
2710 			if (ret & NOTIFY_STOP_MASK)
2711 				return -EINVAL;
2712 
2713 			ret = _regulator_do_disable(rdev);
2714 			if (ret < 0) {
2715 				rdev_err(rdev, "failed to disable\n");
2716 				_notifier_call_chain(rdev,
2717 						REGULATOR_EVENT_ABORT_DISABLE,
2718 						NULL);
2719 				return ret;
2720 			}
2721 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 					NULL);
2723 		}
2724 
2725 		rdev->use_count = 0;
2726 	} else if (rdev->use_count > 1) {
2727 		rdev->use_count--;
2728 	}
2729 
2730 	if (ret == 0)
2731 		ret = _regulator_handle_consumer_disable(regulator);
2732 
2733 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735 
2736 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 		ret = _regulator_disable(rdev->supply);
2738 
2739 	return ret;
2740 }
2741 
2742 /**
2743  * regulator_disable - disable regulator output
2744  * @regulator: regulator source
2745  *
2746  * Disable the regulator output voltage or current.  Calls to
2747  * regulator_enable() must be balanced with calls to
2748  * regulator_disable().
2749  *
2750  * NOTE: this will only disable the regulator output if no other consumer
2751  * devices have it enabled, the regulator device supports disabling and
2752  * machine constraints permit this operation.
2753  */
2754 int regulator_disable(struct regulator *regulator)
2755 {
2756 	struct regulator_dev *rdev = regulator->rdev;
2757 	struct ww_acquire_ctx ww_ctx;
2758 	int ret;
2759 
2760 	regulator_lock_dependent(rdev, &ww_ctx);
2761 	ret = _regulator_disable(regulator);
2762 	regulator_unlock_dependent(rdev, &ww_ctx);
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(regulator_disable);
2767 
2768 /* locks held by regulator_force_disable() */
2769 static int _regulator_force_disable(struct regulator_dev *rdev)
2770 {
2771 	int ret = 0;
2772 
2773 	lockdep_assert_held_once(&rdev->mutex.base);
2774 
2775 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 	if (ret & NOTIFY_STOP_MASK)
2778 		return -EINVAL;
2779 
2780 	ret = _regulator_do_disable(rdev);
2781 	if (ret < 0) {
2782 		rdev_err(rdev, "failed to force disable\n");
2783 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 		return ret;
2786 	}
2787 
2788 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 			REGULATOR_EVENT_DISABLE, NULL);
2790 
2791 	return 0;
2792 }
2793 
2794 /**
2795  * regulator_force_disable - force disable regulator output
2796  * @regulator: regulator source
2797  *
2798  * Forcibly disable the regulator output voltage or current.
2799  * NOTE: this *will* disable the regulator output even if other consumer
2800  * devices have it enabled. This should be used for situations when device
2801  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802  */
2803 int regulator_force_disable(struct regulator *regulator)
2804 {
2805 	struct regulator_dev *rdev = regulator->rdev;
2806 	struct ww_acquire_ctx ww_ctx;
2807 	int ret;
2808 
2809 	regulator_lock_dependent(rdev, &ww_ctx);
2810 
2811 	ret = _regulator_force_disable(regulator->rdev);
2812 
2813 	if (rdev->coupling_desc.n_coupled > 1)
2814 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815 
2816 	if (regulator->uA_load) {
2817 		regulator->uA_load = 0;
2818 		ret = drms_uA_update(rdev);
2819 	}
2820 
2821 	if (rdev->use_count != 0 && rdev->supply)
2822 		_regulator_disable(rdev->supply);
2823 
2824 	regulator_unlock_dependent(rdev, &ww_ctx);
2825 
2826 	return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(regulator_force_disable);
2829 
2830 static void regulator_disable_work(struct work_struct *work)
2831 {
2832 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 						  disable_work.work);
2834 	struct ww_acquire_ctx ww_ctx;
2835 	int count, i, ret;
2836 	struct regulator *regulator;
2837 	int total_count = 0;
2838 
2839 	regulator_lock_dependent(rdev, &ww_ctx);
2840 
2841 	/*
2842 	 * Workqueue functions queue the new work instance while the previous
2843 	 * work instance is being processed. Cancel the queued work instance
2844 	 * as the work instance under processing does the job of the queued
2845 	 * work instance.
2846 	 */
2847 	cancel_delayed_work(&rdev->disable_work);
2848 
2849 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 		count = regulator->deferred_disables;
2851 
2852 		if (!count)
2853 			continue;
2854 
2855 		total_count += count;
2856 		regulator->deferred_disables = 0;
2857 
2858 		for (i = 0; i < count; i++) {
2859 			ret = _regulator_disable(regulator);
2860 			if (ret != 0)
2861 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862 		}
2863 	}
2864 	WARN_ON(!total_count);
2865 
2866 	if (rdev->coupling_desc.n_coupled > 1)
2867 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868 
2869 	regulator_unlock_dependent(rdev, &ww_ctx);
2870 }
2871 
2872 /**
2873  * regulator_disable_deferred - disable regulator output with delay
2874  * @regulator: regulator source
2875  * @ms: milliseconds until the regulator is disabled
2876  *
2877  * Execute regulator_disable() on the regulator after a delay.  This
2878  * is intended for use with devices that require some time to quiesce.
2879  *
2880  * NOTE: this will only disable the regulator output if no other consumer
2881  * devices have it enabled, the regulator device supports disabling and
2882  * machine constraints permit this operation.
2883  */
2884 int regulator_disable_deferred(struct regulator *regulator, int ms)
2885 {
2886 	struct regulator_dev *rdev = regulator->rdev;
2887 
2888 	if (!ms)
2889 		return regulator_disable(regulator);
2890 
2891 	regulator_lock(rdev);
2892 	regulator->deferred_disables++;
2893 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 			 msecs_to_jiffies(ms));
2895 	regulator_unlock(rdev);
2896 
2897 	return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900 
2901 static int _regulator_is_enabled(struct regulator_dev *rdev)
2902 {
2903 	/* A GPIO control always takes precedence */
2904 	if (rdev->ena_pin)
2905 		return rdev->ena_gpio_state;
2906 
2907 	/* If we don't know then assume that the regulator is always on */
2908 	if (!rdev->desc->ops->is_enabled)
2909 		return 1;
2910 
2911 	return rdev->desc->ops->is_enabled(rdev);
2912 }
2913 
2914 static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 				   unsigned selector, int lock)
2916 {
2917 	const struct regulator_ops *ops = rdev->desc->ops;
2918 	int ret;
2919 
2920 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 		return rdev->desc->fixed_uV;
2922 
2923 	if (ops->list_voltage) {
2924 		if (selector >= rdev->desc->n_voltages)
2925 			return -EINVAL;
2926 		if (lock)
2927 			regulator_lock(rdev);
2928 		ret = ops->list_voltage(rdev, selector);
2929 		if (lock)
2930 			regulator_unlock(rdev);
2931 	} else if (rdev->is_switch && rdev->supply) {
2932 		ret = _regulator_list_voltage(rdev->supply->rdev,
2933 					      selector, lock);
2934 	} else {
2935 		return -EINVAL;
2936 	}
2937 
2938 	if (ret > 0) {
2939 		if (ret < rdev->constraints->min_uV)
2940 			ret = 0;
2941 		else if (ret > rdev->constraints->max_uV)
2942 			ret = 0;
2943 	}
2944 
2945 	return ret;
2946 }
2947 
2948 /**
2949  * regulator_is_enabled - is the regulator output enabled
2950  * @regulator: regulator source
2951  *
2952  * Returns positive if the regulator driver backing the source/client
2953  * has requested that the device be enabled, zero if it hasn't, else a
2954  * negative errno code.
2955  *
2956  * Note that the device backing this regulator handle can have multiple
2957  * users, so it might be enabled even if regulator_enable() was never
2958  * called for this particular source.
2959  */
2960 int regulator_is_enabled(struct regulator *regulator)
2961 {
2962 	int ret;
2963 
2964 	if (regulator->always_on)
2965 		return 1;
2966 
2967 	regulator_lock(regulator->rdev);
2968 	ret = _regulator_is_enabled(regulator->rdev);
2969 	regulator_unlock(regulator->rdev);
2970 
2971 	return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974 
2975 /**
2976  * regulator_count_voltages - count regulator_list_voltage() selectors
2977  * @regulator: regulator source
2978  *
2979  * Returns number of selectors, or negative errno.  Selectors are
2980  * numbered starting at zero, and typically correspond to bitfields
2981  * in hardware registers.
2982  */
2983 int regulator_count_voltages(struct regulator *regulator)
2984 {
2985 	struct regulator_dev	*rdev = regulator->rdev;
2986 
2987 	if (rdev->desc->n_voltages)
2988 		return rdev->desc->n_voltages;
2989 
2990 	if (!rdev->is_switch || !rdev->supply)
2991 		return -EINVAL;
2992 
2993 	return regulator_count_voltages(rdev->supply);
2994 }
2995 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996 
2997 /**
2998  * regulator_list_voltage - enumerate supported voltages
2999  * @regulator: regulator source
3000  * @selector: identify voltage to list
3001  * Context: can sleep
3002  *
3003  * Returns a voltage that can be passed to @regulator_set_voltage(),
3004  * zero if this selector code can't be used on this system, or a
3005  * negative errno.
3006  */
3007 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008 {
3009 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3010 }
3011 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012 
3013 /**
3014  * regulator_get_regmap - get the regulator's register map
3015  * @regulator: regulator source
3016  *
3017  * Returns the register map for the given regulator, or an ERR_PTR value
3018  * if the regulator doesn't use regmap.
3019  */
3020 struct regmap *regulator_get_regmap(struct regulator *regulator)
3021 {
3022 	struct regmap *map = regulator->rdev->regmap;
3023 
3024 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3025 }
3026 
3027 /**
3028  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029  * @regulator: regulator source
3030  * @vsel_reg: voltage selector register, output parameter
3031  * @vsel_mask: mask for voltage selector bitfield, output parameter
3032  *
3033  * Returns the hardware register offset and bitmask used for setting the
3034  * regulator voltage. This might be useful when configuring voltage-scaling
3035  * hardware or firmware that can make I2C requests behind the kernel's back,
3036  * for example.
3037  *
3038  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039  * and 0 is returned, otherwise a negative errno is returned.
3040  */
3041 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 					 unsigned *vsel_reg,
3043 					 unsigned *vsel_mask)
3044 {
3045 	struct regulator_dev *rdev = regulator->rdev;
3046 	const struct regulator_ops *ops = rdev->desc->ops;
3047 
3048 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 		return -EOPNOTSUPP;
3050 
3051 	*vsel_reg = rdev->desc->vsel_reg;
3052 	*vsel_mask = rdev->desc->vsel_mask;
3053 
3054 	 return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057 
3058 /**
3059  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060  * @regulator: regulator source
3061  * @selector: identify voltage to list
3062  *
3063  * Converts the selector to a hardware-specific voltage selector that can be
3064  * directly written to the regulator registers. The address of the voltage
3065  * register can be determined by calling @regulator_get_hardware_vsel_register.
3066  *
3067  * On error a negative errno is returned.
3068  */
3069 int regulator_list_hardware_vsel(struct regulator *regulator,
3070 				 unsigned selector)
3071 {
3072 	struct regulator_dev *rdev = regulator->rdev;
3073 	const struct regulator_ops *ops = rdev->desc->ops;
3074 
3075 	if (selector >= rdev->desc->n_voltages)
3076 		return -EINVAL;
3077 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 		return -EOPNOTSUPP;
3079 
3080 	return selector;
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083 
3084 /**
3085  * regulator_get_linear_step - return the voltage step size between VSEL values
3086  * @regulator: regulator source
3087  *
3088  * Returns the voltage step size between VSEL values for linear
3089  * regulators, or return 0 if the regulator isn't a linear regulator.
3090  */
3091 unsigned int regulator_get_linear_step(struct regulator *regulator)
3092 {
3093 	struct regulator_dev *rdev = regulator->rdev;
3094 
3095 	return rdev->desc->uV_step;
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098 
3099 /**
3100  * regulator_is_supported_voltage - check if a voltage range can be supported
3101  *
3102  * @regulator: Regulator to check.
3103  * @min_uV: Minimum required voltage in uV.
3104  * @max_uV: Maximum required voltage in uV.
3105  *
3106  * Returns a boolean.
3107  */
3108 int regulator_is_supported_voltage(struct regulator *regulator,
3109 				   int min_uV, int max_uV)
3110 {
3111 	struct regulator_dev *rdev = regulator->rdev;
3112 	int i, voltages, ret;
3113 
3114 	/* If we can't change voltage check the current voltage */
3115 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 		ret = regulator_get_voltage(regulator);
3117 		if (ret >= 0)
3118 			return min_uV <= ret && ret <= max_uV;
3119 		else
3120 			return ret;
3121 	}
3122 
3123 	/* Any voltage within constrains range is fine? */
3124 	if (rdev->desc->continuous_voltage_range)
3125 		return min_uV >= rdev->constraints->min_uV &&
3126 				max_uV <= rdev->constraints->max_uV;
3127 
3128 	ret = regulator_count_voltages(regulator);
3129 	if (ret < 0)
3130 		return 0;
3131 	voltages = ret;
3132 
3133 	for (i = 0; i < voltages; i++) {
3134 		ret = regulator_list_voltage(regulator, i);
3135 
3136 		if (ret >= min_uV && ret <= max_uV)
3137 			return 1;
3138 	}
3139 
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143 
3144 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 				 int max_uV)
3146 {
3147 	const struct regulator_desc *desc = rdev->desc;
3148 
3149 	if (desc->ops->map_voltage)
3150 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151 
3152 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154 
3155 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157 
3158 	if (desc->ops->list_voltage ==
3159 		regulator_list_voltage_pickable_linear_range)
3160 		return regulator_map_voltage_pickable_linear_range(rdev,
3161 							min_uV, max_uV);
3162 
3163 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164 }
3165 
3166 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 				       int min_uV, int max_uV,
3168 				       unsigned *selector)
3169 {
3170 	struct pre_voltage_change_data data;
3171 	int ret;
3172 
3173 	data.old_uV = regulator_get_voltage_rdev(rdev);
3174 	data.min_uV = min_uV;
3175 	data.max_uV = max_uV;
3176 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 				   &data);
3178 	if (ret & NOTIFY_STOP_MASK)
3179 		return -EINVAL;
3180 
3181 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 	if (ret >= 0)
3183 		return ret;
3184 
3185 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 			     (void *)data.old_uV);
3187 
3188 	return ret;
3189 }
3190 
3191 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 					   int uV, unsigned selector)
3193 {
3194 	struct pre_voltage_change_data data;
3195 	int ret;
3196 
3197 	data.old_uV = regulator_get_voltage_rdev(rdev);
3198 	data.min_uV = uV;
3199 	data.max_uV = uV;
3200 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 				   &data);
3202 	if (ret & NOTIFY_STOP_MASK)
3203 		return -EINVAL;
3204 
3205 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 	if (ret >= 0)
3207 		return ret;
3208 
3209 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 			     (void *)data.old_uV);
3211 
3212 	return ret;
3213 }
3214 
3215 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 					   int uV, int new_selector)
3217 {
3218 	const struct regulator_ops *ops = rdev->desc->ops;
3219 	int diff, old_sel, curr_sel, ret;
3220 
3221 	/* Stepping is only needed if the regulator is enabled. */
3222 	if (!_regulator_is_enabled(rdev))
3223 		goto final_set;
3224 
3225 	if (!ops->get_voltage_sel)
3226 		return -EINVAL;
3227 
3228 	old_sel = ops->get_voltage_sel(rdev);
3229 	if (old_sel < 0)
3230 		return old_sel;
3231 
3232 	diff = new_selector - old_sel;
3233 	if (diff == 0)
3234 		return 0; /* No change needed. */
3235 
3236 	if (diff > 0) {
3237 		/* Stepping up. */
3238 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 		     curr_sel < new_selector;
3240 		     curr_sel += rdev->desc->vsel_step) {
3241 			/*
3242 			 * Call the callback directly instead of using
3243 			 * _regulator_call_set_voltage_sel() as we don't
3244 			 * want to notify anyone yet. Same in the branch
3245 			 * below.
3246 			 */
3247 			ret = ops->set_voltage_sel(rdev, curr_sel);
3248 			if (ret)
3249 				goto try_revert;
3250 		}
3251 	} else {
3252 		/* Stepping down. */
3253 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 		     curr_sel > new_selector;
3255 		     curr_sel -= rdev->desc->vsel_step) {
3256 			ret = ops->set_voltage_sel(rdev, curr_sel);
3257 			if (ret)
3258 				goto try_revert;
3259 		}
3260 	}
3261 
3262 final_set:
3263 	/* The final selector will trigger the notifiers. */
3264 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265 
3266 try_revert:
3267 	/*
3268 	 * At least try to return to the previous voltage if setting a new
3269 	 * one failed.
3270 	 */
3271 	(void)ops->set_voltage_sel(rdev, old_sel);
3272 	return ret;
3273 }
3274 
3275 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 				       int old_uV, int new_uV)
3277 {
3278 	unsigned int ramp_delay = 0;
3279 
3280 	if (rdev->constraints->ramp_delay)
3281 		ramp_delay = rdev->constraints->ramp_delay;
3282 	else if (rdev->desc->ramp_delay)
3283 		ramp_delay = rdev->desc->ramp_delay;
3284 	else if (rdev->constraints->settling_time)
3285 		return rdev->constraints->settling_time;
3286 	else if (rdev->constraints->settling_time_up &&
3287 		 (new_uV > old_uV))
3288 		return rdev->constraints->settling_time_up;
3289 	else if (rdev->constraints->settling_time_down &&
3290 		 (new_uV < old_uV))
3291 		return rdev->constraints->settling_time_down;
3292 
3293 	if (ramp_delay == 0) {
3294 		rdev_dbg(rdev, "ramp_delay not set\n");
3295 		return 0;
3296 	}
3297 
3298 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299 }
3300 
3301 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 				     int min_uV, int max_uV)
3303 {
3304 	int ret;
3305 	int delay = 0;
3306 	int best_val = 0;
3307 	unsigned int selector;
3308 	int old_selector = -1;
3309 	const struct regulator_ops *ops = rdev->desc->ops;
3310 	int old_uV = regulator_get_voltage_rdev(rdev);
3311 
3312 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313 
3314 	min_uV += rdev->constraints->uV_offset;
3315 	max_uV += rdev->constraints->uV_offset;
3316 
3317 	/*
3318 	 * If we can't obtain the old selector there is not enough
3319 	 * info to call set_voltage_time_sel().
3320 	 */
3321 	if (_regulator_is_enabled(rdev) &&
3322 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 		old_selector = ops->get_voltage_sel(rdev);
3324 		if (old_selector < 0)
3325 			return old_selector;
3326 	}
3327 
3328 	if (ops->set_voltage) {
3329 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 						  &selector);
3331 
3332 		if (ret >= 0) {
3333 			if (ops->list_voltage)
3334 				best_val = ops->list_voltage(rdev,
3335 							     selector);
3336 			else
3337 				best_val = regulator_get_voltage_rdev(rdev);
3338 		}
3339 
3340 	} else if (ops->set_voltage_sel) {
3341 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 		if (ret >= 0) {
3343 			best_val = ops->list_voltage(rdev, ret);
3344 			if (min_uV <= best_val && max_uV >= best_val) {
3345 				selector = ret;
3346 				if (old_selector == selector)
3347 					ret = 0;
3348 				else if (rdev->desc->vsel_step)
3349 					ret = _regulator_set_voltage_sel_step(
3350 						rdev, best_val, selector);
3351 				else
3352 					ret = _regulator_call_set_voltage_sel(
3353 						rdev, best_val, selector);
3354 			} else {
3355 				ret = -EINVAL;
3356 			}
3357 		}
3358 	} else {
3359 		ret = -EINVAL;
3360 	}
3361 
3362 	if (ret)
3363 		goto out;
3364 
3365 	if (ops->set_voltage_time_sel) {
3366 		/*
3367 		 * Call set_voltage_time_sel if successfully obtained
3368 		 * old_selector
3369 		 */
3370 		if (old_selector >= 0 && old_selector != selector)
3371 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 							  selector);
3373 	} else {
3374 		if (old_uV != best_val) {
3375 			if (ops->set_voltage_time)
3376 				delay = ops->set_voltage_time(rdev, old_uV,
3377 							      best_val);
3378 			else
3379 				delay = _regulator_set_voltage_time(rdev,
3380 								    old_uV,
3381 								    best_val);
3382 		}
3383 	}
3384 
3385 	if (delay < 0) {
3386 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 		delay = 0;
3388 	}
3389 
3390 	/* Insert any necessary delays */
3391 	if (delay >= 1000) {
3392 		mdelay(delay / 1000);
3393 		udelay(delay % 1000);
3394 	} else if (delay) {
3395 		udelay(delay);
3396 	}
3397 
3398 	if (best_val >= 0) {
3399 		unsigned long data = best_val;
3400 
3401 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 				     (void *)data);
3403 	}
3404 
3405 out:
3406 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407 
3408 	return ret;
3409 }
3410 
3411 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 				  int min_uV, int max_uV, suspend_state_t state)
3413 {
3414 	struct regulator_state *rstate;
3415 	int uV, sel;
3416 
3417 	rstate = regulator_get_suspend_state(rdev, state);
3418 	if (rstate == NULL)
3419 		return -EINVAL;
3420 
3421 	if (min_uV < rstate->min_uV)
3422 		min_uV = rstate->min_uV;
3423 	if (max_uV > rstate->max_uV)
3424 		max_uV = rstate->max_uV;
3425 
3426 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 	if (sel < 0)
3428 		return sel;
3429 
3430 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 	if (uV >= min_uV && uV <= max_uV)
3432 		rstate->uV = uV;
3433 
3434 	return 0;
3435 }
3436 
3437 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 					  int min_uV, int max_uV,
3439 					  suspend_state_t state)
3440 {
3441 	struct regulator_dev *rdev = regulator->rdev;
3442 	struct regulator_voltage *voltage = &regulator->voltage[state];
3443 	int ret = 0;
3444 	int old_min_uV, old_max_uV;
3445 	int current_uV;
3446 
3447 	/* If we're setting the same range as last time the change
3448 	 * should be a noop (some cpufreq implementations use the same
3449 	 * voltage for multiple frequencies, for example).
3450 	 */
3451 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 		goto out;
3453 
3454 	/* If we're trying to set a range that overlaps the current voltage,
3455 	 * return successfully even though the regulator does not support
3456 	 * changing the voltage.
3457 	 */
3458 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 		current_uV = regulator_get_voltage_rdev(rdev);
3460 		if (min_uV <= current_uV && current_uV <= max_uV) {
3461 			voltage->min_uV = min_uV;
3462 			voltage->max_uV = max_uV;
3463 			goto out;
3464 		}
3465 	}
3466 
3467 	/* sanity check */
3468 	if (!rdev->desc->ops->set_voltage &&
3469 	    !rdev->desc->ops->set_voltage_sel) {
3470 		ret = -EINVAL;
3471 		goto out;
3472 	}
3473 
3474 	/* constraints check */
3475 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 	if (ret < 0)
3477 		goto out;
3478 
3479 	/* restore original values in case of error */
3480 	old_min_uV = voltage->min_uV;
3481 	old_max_uV = voltage->max_uV;
3482 	voltage->min_uV = min_uV;
3483 	voltage->max_uV = max_uV;
3484 
3485 	/* for not coupled regulators this will just set the voltage */
3486 	ret = regulator_balance_voltage(rdev, state);
3487 	if (ret < 0) {
3488 		voltage->min_uV = old_min_uV;
3489 		voltage->max_uV = old_max_uV;
3490 	}
3491 
3492 out:
3493 	return ret;
3494 }
3495 
3496 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 			       int max_uV, suspend_state_t state)
3498 {
3499 	int best_supply_uV = 0;
3500 	int supply_change_uV = 0;
3501 	int ret;
3502 
3503 	if (rdev->supply &&
3504 	    regulator_ops_is_valid(rdev->supply->rdev,
3505 				   REGULATOR_CHANGE_VOLTAGE) &&
3506 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 					   rdev->desc->ops->get_voltage_sel))) {
3508 		int current_supply_uV;
3509 		int selector;
3510 
3511 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 		if (selector < 0) {
3513 			ret = selector;
3514 			goto out;
3515 		}
3516 
3517 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 		if (best_supply_uV < 0) {
3519 			ret = best_supply_uV;
3520 			goto out;
3521 		}
3522 
3523 		best_supply_uV += rdev->desc->min_dropout_uV;
3524 
3525 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 		if (current_supply_uV < 0) {
3527 			ret = current_supply_uV;
3528 			goto out;
3529 		}
3530 
3531 		supply_change_uV = best_supply_uV - current_supply_uV;
3532 	}
3533 
3534 	if (supply_change_uV > 0) {
3535 		ret = regulator_set_voltage_unlocked(rdev->supply,
3536 				best_supply_uV, INT_MAX, state);
3537 		if (ret) {
3538 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 					ret);
3540 			goto out;
3541 		}
3542 	}
3543 
3544 	if (state == PM_SUSPEND_ON)
3545 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 	else
3547 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 							max_uV, state);
3549 	if (ret < 0)
3550 		goto out;
3551 
3552 	if (supply_change_uV < 0) {
3553 		ret = regulator_set_voltage_unlocked(rdev->supply,
3554 				best_supply_uV, INT_MAX, state);
3555 		if (ret)
3556 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 					ret);
3558 		/* No need to fail here */
3559 		ret = 0;
3560 	}
3561 
3562 out:
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566 
3567 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 					int *current_uV, int *min_uV)
3569 {
3570 	struct regulation_constraints *constraints = rdev->constraints;
3571 
3572 	/* Limit voltage change only if necessary */
3573 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 		return 1;
3575 
3576 	if (*current_uV < 0) {
3577 		*current_uV = regulator_get_voltage_rdev(rdev);
3578 
3579 		if (*current_uV < 0)
3580 			return *current_uV;
3581 	}
3582 
3583 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 		return 1;
3585 
3586 	/* Clamp target voltage within the given step */
3587 	if (*current_uV < *min_uV)
3588 		*min_uV = min(*current_uV + constraints->max_uV_step,
3589 			      *min_uV);
3590 	else
3591 		*min_uV = max(*current_uV - constraints->max_uV_step,
3592 			      *min_uV);
3593 
3594 	return 0;
3595 }
3596 
3597 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 					 int *current_uV,
3599 					 int *min_uV, int *max_uV,
3600 					 suspend_state_t state,
3601 					 int n_coupled)
3602 {
3603 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 	struct regulation_constraints *constraints = rdev->constraints;
3606 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 	int max_current_uV = 0, min_current_uV = INT_MAX;
3608 	int highest_min_uV = 0, target_uV, possible_uV;
3609 	int i, ret, max_spread;
3610 	bool done;
3611 
3612 	*current_uV = -1;
3613 
3614 	/*
3615 	 * If there are no coupled regulators, simply set the voltage
3616 	 * demanded by consumers.
3617 	 */
3618 	if (n_coupled == 1) {
3619 		/*
3620 		 * If consumers don't provide any demands, set voltage
3621 		 * to min_uV
3622 		 */
3623 		desired_min_uV = constraints->min_uV;
3624 		desired_max_uV = constraints->max_uV;
3625 
3626 		ret = regulator_check_consumers(rdev,
3627 						&desired_min_uV,
3628 						&desired_max_uV, state);
3629 		if (ret < 0)
3630 			return ret;
3631 
3632 		possible_uV = desired_min_uV;
3633 		done = true;
3634 
3635 		goto finish;
3636 	}
3637 
3638 	/* Find highest min desired voltage */
3639 	for (i = 0; i < n_coupled; i++) {
3640 		int tmp_min = 0;
3641 		int tmp_max = INT_MAX;
3642 
3643 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644 
3645 		ret = regulator_check_consumers(c_rdevs[i],
3646 						&tmp_min,
3647 						&tmp_max, state);
3648 		if (ret < 0)
3649 			return ret;
3650 
3651 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 		if (ret < 0)
3653 			return ret;
3654 
3655 		highest_min_uV = max(highest_min_uV, tmp_min);
3656 
3657 		if (i == 0) {
3658 			desired_min_uV = tmp_min;
3659 			desired_max_uV = tmp_max;
3660 		}
3661 	}
3662 
3663 	max_spread = constraints->max_spread[0];
3664 
3665 	/*
3666 	 * Let target_uV be equal to the desired one if possible.
3667 	 * If not, set it to minimum voltage, allowed by other coupled
3668 	 * regulators.
3669 	 */
3670 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671 
3672 	/*
3673 	 * Find min and max voltages, which currently aren't violating
3674 	 * max_spread.
3675 	 */
3676 	for (i = 1; i < n_coupled; i++) {
3677 		int tmp_act;
3678 
3679 		if (!_regulator_is_enabled(c_rdevs[i]))
3680 			continue;
3681 
3682 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 		if (tmp_act < 0)
3684 			return tmp_act;
3685 
3686 		min_current_uV = min(tmp_act, min_current_uV);
3687 		max_current_uV = max(tmp_act, max_current_uV);
3688 	}
3689 
3690 	/* There aren't any other regulators enabled */
3691 	if (max_current_uV == 0) {
3692 		possible_uV = target_uV;
3693 	} else {
3694 		/*
3695 		 * Correct target voltage, so as it currently isn't
3696 		 * violating max_spread
3697 		 */
3698 		possible_uV = max(target_uV, max_current_uV - max_spread);
3699 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3700 	}
3701 
3702 	if (possible_uV > desired_max_uV)
3703 		return -EINVAL;
3704 
3705 	done = (possible_uV == target_uV);
3706 	desired_min_uV = possible_uV;
3707 
3708 finish:
3709 	/* Apply max_uV_step constraint if necessary */
3710 	if (state == PM_SUSPEND_ON) {
3711 		ret = regulator_limit_voltage_step(rdev, current_uV,
3712 						   &desired_min_uV);
3713 		if (ret < 0)
3714 			return ret;
3715 
3716 		if (ret == 0)
3717 			done = false;
3718 	}
3719 
3720 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3721 	if (n_coupled > 1 && *current_uV == -1) {
3722 
3723 		if (_regulator_is_enabled(rdev)) {
3724 			ret = regulator_get_voltage_rdev(rdev);
3725 			if (ret < 0)
3726 				return ret;
3727 
3728 			*current_uV = ret;
3729 		} else {
3730 			*current_uV = desired_min_uV;
3731 		}
3732 	}
3733 
3734 	*min_uV = desired_min_uV;
3735 	*max_uV = desired_max_uV;
3736 
3737 	return done;
3738 }
3739 
3740 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 				 suspend_state_t state, bool skip_coupled)
3742 {
3743 	struct regulator_dev **c_rdevs;
3744 	struct regulator_dev *best_rdev;
3745 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 	unsigned int delta, best_delta;
3748 	unsigned long c_rdev_done = 0;
3749 	bool best_c_rdev_done;
3750 
3751 	c_rdevs = c_desc->coupled_rdevs;
3752 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753 
3754 	/*
3755 	 * Find the best possible voltage change on each loop. Leave the loop
3756 	 * if there isn't any possible change.
3757 	 */
3758 	do {
3759 		best_c_rdev_done = false;
3760 		best_delta = 0;
3761 		best_min_uV = 0;
3762 		best_max_uV = 0;
3763 		best_c_rdev = 0;
3764 		best_rdev = NULL;
3765 
3766 		/*
3767 		 * Find highest difference between optimal voltage
3768 		 * and current voltage.
3769 		 */
3770 		for (i = 0; i < n_coupled; i++) {
3771 			/*
3772 			 * optimal_uV is the best voltage that can be set for
3773 			 * i-th regulator at the moment without violating
3774 			 * max_spread constraint in order to balance
3775 			 * the coupled voltages.
3776 			 */
3777 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778 
3779 			if (test_bit(i, &c_rdev_done))
3780 				continue;
3781 
3782 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 							    &current_uV,
3784 							    &optimal_uV,
3785 							    &optimal_max_uV,
3786 							    state, n_coupled);
3787 			if (ret < 0)
3788 				goto out;
3789 
3790 			delta = abs(optimal_uV - current_uV);
3791 
3792 			if (delta && best_delta <= delta) {
3793 				best_c_rdev_done = ret;
3794 				best_delta = delta;
3795 				best_rdev = c_rdevs[i];
3796 				best_min_uV = optimal_uV;
3797 				best_max_uV = optimal_max_uV;
3798 				best_c_rdev = i;
3799 			}
3800 		}
3801 
3802 		/* Nothing to change, return successfully */
3803 		if (!best_rdev) {
3804 			ret = 0;
3805 			goto out;
3806 		}
3807 
3808 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 						 best_max_uV, state);
3810 
3811 		if (ret < 0)
3812 			goto out;
3813 
3814 		if (best_c_rdev_done)
3815 			set_bit(best_c_rdev, &c_rdev_done);
3816 
3817 	} while (n_coupled > 1);
3818 
3819 out:
3820 	return ret;
3821 }
3822 
3823 static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 				     suspend_state_t state)
3825 {
3826 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 	struct regulator_coupler *coupler = c_desc->coupler;
3828 	bool skip_coupled = false;
3829 
3830 	/*
3831 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 	 * other coupled regulators.
3833 	 */
3834 	if (state != PM_SUSPEND_ON)
3835 		skip_coupled = true;
3836 
3837 	if (c_desc->n_resolved < c_desc->n_coupled) {
3838 		rdev_err(rdev, "Not all coupled regulators registered\n");
3839 		return -EPERM;
3840 	}
3841 
3842 	/* Invoke custom balancer for customized couplers */
3843 	if (coupler && coupler->balance_voltage)
3844 		return coupler->balance_voltage(coupler, rdev, state);
3845 
3846 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847 }
3848 
3849 /**
3850  * regulator_set_voltage - set regulator output voltage
3851  * @regulator: regulator source
3852  * @min_uV: Minimum required voltage in uV
3853  * @max_uV: Maximum acceptable voltage in uV
3854  *
3855  * Sets a voltage regulator to the desired output voltage. This can be set
3856  * during any regulator state. IOW, regulator can be disabled or enabled.
3857  *
3858  * If the regulator is enabled then the voltage will change to the new value
3859  * immediately otherwise if the regulator is disabled the regulator will
3860  * output at the new voltage when enabled.
3861  *
3862  * NOTE: If the regulator is shared between several devices then the lowest
3863  * request voltage that meets the system constraints will be used.
3864  * Regulator system constraints must be set for this regulator before
3865  * calling this function otherwise this call will fail.
3866  */
3867 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868 {
3869 	struct ww_acquire_ctx ww_ctx;
3870 	int ret;
3871 
3872 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873 
3874 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 					     PM_SUSPEND_ON);
3876 
3877 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878 
3879 	return ret;
3880 }
3881 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882 
3883 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 					   suspend_state_t state, bool en)
3885 {
3886 	struct regulator_state *rstate;
3887 
3888 	rstate = regulator_get_suspend_state(rdev, state);
3889 	if (rstate == NULL)
3890 		return -EINVAL;
3891 
3892 	if (!rstate->changeable)
3893 		return -EPERM;
3894 
3895 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896 
3897 	return 0;
3898 }
3899 
3900 int regulator_suspend_enable(struct regulator_dev *rdev,
3901 				    suspend_state_t state)
3902 {
3903 	return regulator_suspend_toggle(rdev, state, true);
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906 
3907 int regulator_suspend_disable(struct regulator_dev *rdev,
3908 				     suspend_state_t state)
3909 {
3910 	struct regulator *regulator;
3911 	struct regulator_voltage *voltage;
3912 
3913 	/*
3914 	 * if any consumer wants this regulator device keeping on in
3915 	 * suspend states, don't set it as disabled.
3916 	 */
3917 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 		voltage = &regulator->voltage[state];
3919 		if (voltage->min_uV || voltage->max_uV)
3920 			return 0;
3921 	}
3922 
3923 	return regulator_suspend_toggle(rdev, state, false);
3924 }
3925 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926 
3927 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 					  int min_uV, int max_uV,
3929 					  suspend_state_t state)
3930 {
3931 	struct regulator_dev *rdev = regulator->rdev;
3932 	struct regulator_state *rstate;
3933 
3934 	rstate = regulator_get_suspend_state(rdev, state);
3935 	if (rstate == NULL)
3936 		return -EINVAL;
3937 
3938 	if (rstate->min_uV == rstate->max_uV) {
3939 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 		return -EPERM;
3941 	}
3942 
3943 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944 }
3945 
3946 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 				  int max_uV, suspend_state_t state)
3948 {
3949 	struct ww_acquire_ctx ww_ctx;
3950 	int ret;
3951 
3952 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 		return -EINVAL;
3955 
3956 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957 
3958 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 					     max_uV, state);
3960 
3961 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962 
3963 	return ret;
3964 }
3965 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966 
3967 /**
3968  * regulator_set_voltage_time - get raise/fall time
3969  * @regulator: regulator source
3970  * @old_uV: starting voltage in microvolts
3971  * @new_uV: target voltage in microvolts
3972  *
3973  * Provided with the starting and ending voltage, this function attempts to
3974  * calculate the time in microseconds required to rise or fall to this new
3975  * voltage.
3976  */
3977 int regulator_set_voltage_time(struct regulator *regulator,
3978 			       int old_uV, int new_uV)
3979 {
3980 	struct regulator_dev *rdev = regulator->rdev;
3981 	const struct regulator_ops *ops = rdev->desc->ops;
3982 	int old_sel = -1;
3983 	int new_sel = -1;
3984 	int voltage;
3985 	int i;
3986 
3987 	if (ops->set_voltage_time)
3988 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 	else if (!ops->set_voltage_time_sel)
3990 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991 
3992 	/* Currently requires operations to do this */
3993 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 		return -EINVAL;
3995 
3996 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 		/* We only look for exact voltage matches here */
3998 		voltage = regulator_list_voltage(regulator, i);
3999 		if (voltage < 0)
4000 			return -EINVAL;
4001 		if (voltage == 0)
4002 			continue;
4003 		if (voltage == old_uV)
4004 			old_sel = i;
4005 		if (voltage == new_uV)
4006 			new_sel = i;
4007 	}
4008 
4009 	if (old_sel < 0 || new_sel < 0)
4010 		return -EINVAL;
4011 
4012 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013 }
4014 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015 
4016 /**
4017  * regulator_set_voltage_time_sel - get raise/fall time
4018  * @rdev: regulator source device
4019  * @old_selector: selector for starting voltage
4020  * @new_selector: selector for target voltage
4021  *
4022  * Provided with the starting and target voltage selectors, this function
4023  * returns time in microseconds required to rise or fall to this new voltage
4024  *
4025  * Drivers providing ramp_delay in regulation_constraints can use this as their
4026  * set_voltage_time_sel() operation.
4027  */
4028 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 				   unsigned int old_selector,
4030 				   unsigned int new_selector)
4031 {
4032 	int old_volt, new_volt;
4033 
4034 	/* sanity check */
4035 	if (!rdev->desc->ops->list_voltage)
4036 		return -EINVAL;
4037 
4038 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040 
4041 	if (rdev->desc->ops->set_voltage_time)
4042 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 							 new_volt);
4044 	else
4045 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046 }
4047 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048 
4049 /**
4050  * regulator_sync_voltage - re-apply last regulator output voltage
4051  * @regulator: regulator source
4052  *
4053  * Re-apply the last configured voltage.  This is intended to be used
4054  * where some external control source the consumer is cooperating with
4055  * has caused the configured voltage to change.
4056  */
4057 int regulator_sync_voltage(struct regulator *regulator)
4058 {
4059 	struct regulator_dev *rdev = regulator->rdev;
4060 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061 	int ret, min_uV, max_uV;
4062 
4063 	regulator_lock(rdev);
4064 
4065 	if (!rdev->desc->ops->set_voltage &&
4066 	    !rdev->desc->ops->set_voltage_sel) {
4067 		ret = -EINVAL;
4068 		goto out;
4069 	}
4070 
4071 	/* This is only going to work if we've had a voltage configured. */
4072 	if (!voltage->min_uV && !voltage->max_uV) {
4073 		ret = -EINVAL;
4074 		goto out;
4075 	}
4076 
4077 	min_uV = voltage->min_uV;
4078 	max_uV = voltage->max_uV;
4079 
4080 	/* This should be a paranoia check... */
4081 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 	if (ret < 0)
4083 		goto out;
4084 
4085 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 	if (ret < 0)
4087 		goto out;
4088 
4089 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090 
4091 out:
4092 	regulator_unlock(rdev);
4093 	return ret;
4094 }
4095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096 
4097 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098 {
4099 	int sel, ret;
4100 	bool bypassed;
4101 
4102 	if (rdev->desc->ops->get_bypass) {
4103 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 		if (ret < 0)
4105 			return ret;
4106 		if (bypassed) {
4107 			/* if bypassed the regulator must have a supply */
4108 			if (!rdev->supply) {
4109 				rdev_err(rdev,
4110 					 "bypassed regulator has no supply!\n");
4111 				return -EPROBE_DEFER;
4112 			}
4113 
4114 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4115 		}
4116 	}
4117 
4118 	if (rdev->desc->ops->get_voltage_sel) {
4119 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 		if (sel < 0)
4121 			return sel;
4122 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 	} else if (rdev->desc->ops->get_voltage) {
4124 		ret = rdev->desc->ops->get_voltage(rdev);
4125 	} else if (rdev->desc->ops->list_voltage) {
4126 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 		ret = rdev->desc->fixed_uV;
4129 	} else if (rdev->supply) {
4130 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 	} else {
4132 		return -EINVAL;
4133 	}
4134 
4135 	if (ret < 0)
4136 		return ret;
4137 	return ret - rdev->constraints->uV_offset;
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140 
4141 /**
4142  * regulator_get_voltage - get regulator output voltage
4143  * @regulator: regulator source
4144  *
4145  * This returns the current regulator voltage in uV.
4146  *
4147  * NOTE: If the regulator is disabled it will return the voltage value. This
4148  * function should not be used to determine regulator state.
4149  */
4150 int regulator_get_voltage(struct regulator *regulator)
4151 {
4152 	struct ww_acquire_ctx ww_ctx;
4153 	int ret;
4154 
4155 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156 	ret = regulator_get_voltage_rdev(regulator->rdev);
4157 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158 
4159 	return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162 
4163 /**
4164  * regulator_set_current_limit - set regulator output current limit
4165  * @regulator: regulator source
4166  * @min_uA: Minimum supported current in uA
4167  * @max_uA: Maximum supported current in uA
4168  *
4169  * Sets current sink to the desired output current. This can be set during
4170  * any regulator state. IOW, regulator can be disabled or enabled.
4171  *
4172  * If the regulator is enabled then the current will change to the new value
4173  * immediately otherwise if the regulator is disabled the regulator will
4174  * output at the new current when enabled.
4175  *
4176  * NOTE: Regulator system constraints must be set for this regulator before
4177  * calling this function otherwise this call will fail.
4178  */
4179 int regulator_set_current_limit(struct regulator *regulator,
4180 			       int min_uA, int max_uA)
4181 {
4182 	struct regulator_dev *rdev = regulator->rdev;
4183 	int ret;
4184 
4185 	regulator_lock(rdev);
4186 
4187 	/* sanity check */
4188 	if (!rdev->desc->ops->set_current_limit) {
4189 		ret = -EINVAL;
4190 		goto out;
4191 	}
4192 
4193 	/* constraints check */
4194 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195 	if (ret < 0)
4196 		goto out;
4197 
4198 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199 out:
4200 	regulator_unlock(rdev);
4201 	return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204 
4205 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206 {
4207 	/* sanity check */
4208 	if (!rdev->desc->ops->get_current_limit)
4209 		return -EINVAL;
4210 
4211 	return rdev->desc->ops->get_current_limit(rdev);
4212 }
4213 
4214 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215 {
4216 	int ret;
4217 
4218 	regulator_lock(rdev);
4219 	ret = _regulator_get_current_limit_unlocked(rdev);
4220 	regulator_unlock(rdev);
4221 
4222 	return ret;
4223 }
4224 
4225 /**
4226  * regulator_get_current_limit - get regulator output current
4227  * @regulator: regulator source
4228  *
4229  * This returns the current supplied by the specified current sink in uA.
4230  *
4231  * NOTE: If the regulator is disabled it will return the current value. This
4232  * function should not be used to determine regulator state.
4233  */
4234 int regulator_get_current_limit(struct regulator *regulator)
4235 {
4236 	return _regulator_get_current_limit(regulator->rdev);
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239 
4240 /**
4241  * regulator_set_mode - set regulator operating mode
4242  * @regulator: regulator source
4243  * @mode: operating mode - one of the REGULATOR_MODE constants
4244  *
4245  * Set regulator operating mode to increase regulator efficiency or improve
4246  * regulation performance.
4247  *
4248  * NOTE: Regulator system constraints must be set for this regulator before
4249  * calling this function otherwise this call will fail.
4250  */
4251 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252 {
4253 	struct regulator_dev *rdev = regulator->rdev;
4254 	int ret;
4255 	int regulator_curr_mode;
4256 
4257 	regulator_lock(rdev);
4258 
4259 	/* sanity check */
4260 	if (!rdev->desc->ops->set_mode) {
4261 		ret = -EINVAL;
4262 		goto out;
4263 	}
4264 
4265 	/* return if the same mode is requested */
4266 	if (rdev->desc->ops->get_mode) {
4267 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268 		if (regulator_curr_mode == mode) {
4269 			ret = 0;
4270 			goto out;
4271 		}
4272 	}
4273 
4274 	/* constraints check */
4275 	ret = regulator_mode_constrain(rdev, &mode);
4276 	if (ret < 0)
4277 		goto out;
4278 
4279 	ret = rdev->desc->ops->set_mode(rdev, mode);
4280 out:
4281 	regulator_unlock(rdev);
4282 	return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(regulator_set_mode);
4285 
4286 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287 {
4288 	/* sanity check */
4289 	if (!rdev->desc->ops->get_mode)
4290 		return -EINVAL;
4291 
4292 	return rdev->desc->ops->get_mode(rdev);
4293 }
4294 
4295 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296 {
4297 	int ret;
4298 
4299 	regulator_lock(rdev);
4300 	ret = _regulator_get_mode_unlocked(rdev);
4301 	regulator_unlock(rdev);
4302 
4303 	return ret;
4304 }
4305 
4306 /**
4307  * regulator_get_mode - get regulator operating mode
4308  * @regulator: regulator source
4309  *
4310  * Get the current regulator operating mode.
4311  */
4312 unsigned int regulator_get_mode(struct regulator *regulator)
4313 {
4314 	return _regulator_get_mode(regulator->rdev);
4315 }
4316 EXPORT_SYMBOL_GPL(regulator_get_mode);
4317 
4318 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319 					unsigned int *flags)
4320 {
4321 	int ret;
4322 
4323 	regulator_lock(rdev);
4324 
4325 	/* sanity check */
4326 	if (!rdev->desc->ops->get_error_flags) {
4327 		ret = -EINVAL;
4328 		goto out;
4329 	}
4330 
4331 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332 out:
4333 	regulator_unlock(rdev);
4334 	return ret;
4335 }
4336 
4337 /**
4338  * regulator_get_error_flags - get regulator error information
4339  * @regulator: regulator source
4340  * @flags: pointer to store error flags
4341  *
4342  * Get the current regulator error information.
4343  */
4344 int regulator_get_error_flags(struct regulator *regulator,
4345 				unsigned int *flags)
4346 {
4347 	return _regulator_get_error_flags(regulator->rdev, flags);
4348 }
4349 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350 
4351 /**
4352  * regulator_set_load - set regulator load
4353  * @regulator: regulator source
4354  * @uA_load: load current
4355  *
4356  * Notifies the regulator core of a new device load. This is then used by
4357  * DRMS (if enabled by constraints) to set the most efficient regulator
4358  * operating mode for the new regulator loading.
4359  *
4360  * Consumer devices notify their supply regulator of the maximum power
4361  * they will require (can be taken from device datasheet in the power
4362  * consumption tables) when they change operational status and hence power
4363  * state. Examples of operational state changes that can affect power
4364  * consumption are :-
4365  *
4366  *    o Device is opened / closed.
4367  *    o Device I/O is about to begin or has just finished.
4368  *    o Device is idling in between work.
4369  *
4370  * This information is also exported via sysfs to userspace.
4371  *
4372  * DRMS will sum the total requested load on the regulator and change
4373  * to the most efficient operating mode if platform constraints allow.
4374  *
4375  * NOTE: when a regulator consumer requests to have a regulator
4376  * disabled then any load that consumer requested no longer counts
4377  * toward the total requested load.  If the regulator is re-enabled
4378  * then the previously requested load will start counting again.
4379  *
4380  * If a regulator is an always-on regulator then an individual consumer's
4381  * load will still be removed if that consumer is fully disabled.
4382  *
4383  * On error a negative errno is returned.
4384  */
4385 int regulator_set_load(struct regulator *regulator, int uA_load)
4386 {
4387 	struct regulator_dev *rdev = regulator->rdev;
4388 	int old_uA_load;
4389 	int ret = 0;
4390 
4391 	regulator_lock(rdev);
4392 	old_uA_load = regulator->uA_load;
4393 	regulator->uA_load = uA_load;
4394 	if (regulator->enable_count && old_uA_load != uA_load) {
4395 		ret = drms_uA_update(rdev);
4396 		if (ret < 0)
4397 			regulator->uA_load = old_uA_load;
4398 	}
4399 	regulator_unlock(rdev);
4400 
4401 	return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(regulator_set_load);
4404 
4405 /**
4406  * regulator_allow_bypass - allow the regulator to go into bypass mode
4407  *
4408  * @regulator: Regulator to configure
4409  * @enable: enable or disable bypass mode
4410  *
4411  * Allow the regulator to go into bypass mode if all other consumers
4412  * for the regulator also enable bypass mode and the machine
4413  * constraints allow this.  Bypass mode means that the regulator is
4414  * simply passing the input directly to the output with no regulation.
4415  */
4416 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417 {
4418 	struct regulator_dev *rdev = regulator->rdev;
4419 	const char *name = rdev_get_name(rdev);
4420 	int ret = 0;
4421 
4422 	if (!rdev->desc->ops->set_bypass)
4423 		return 0;
4424 
4425 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426 		return 0;
4427 
4428 	regulator_lock(rdev);
4429 
4430 	if (enable && !regulator->bypass) {
4431 		rdev->bypass_count++;
4432 
4433 		if (rdev->bypass_count == rdev->open_count) {
4434 			trace_regulator_bypass_enable(name);
4435 
4436 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4437 			if (ret != 0)
4438 				rdev->bypass_count--;
4439 			else
4440 				trace_regulator_bypass_enable_complete(name);
4441 		}
4442 
4443 	} else if (!enable && regulator->bypass) {
4444 		rdev->bypass_count--;
4445 
4446 		if (rdev->bypass_count != rdev->open_count) {
4447 			trace_regulator_bypass_disable(name);
4448 
4449 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4450 			if (ret != 0)
4451 				rdev->bypass_count++;
4452 			else
4453 				trace_regulator_bypass_disable_complete(name);
4454 		}
4455 	}
4456 
4457 	if (ret == 0)
4458 		regulator->bypass = enable;
4459 
4460 	regulator_unlock(rdev);
4461 
4462 	return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465 
4466 /**
4467  * regulator_register_notifier - register regulator event notifier
4468  * @regulator: regulator source
4469  * @nb: notifier block
4470  *
4471  * Register notifier block to receive regulator events.
4472  */
4473 int regulator_register_notifier(struct regulator *regulator,
4474 			      struct notifier_block *nb)
4475 {
4476 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4477 						nb);
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480 
4481 /**
4482  * regulator_unregister_notifier - unregister regulator event notifier
4483  * @regulator: regulator source
4484  * @nb: notifier block
4485  *
4486  * Unregister regulator event notifier block.
4487  */
4488 int regulator_unregister_notifier(struct regulator *regulator,
4489 				struct notifier_block *nb)
4490 {
4491 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4492 						  nb);
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495 
4496 /* notify regulator consumers and downstream regulator consumers.
4497  * Note mutex must be held by caller.
4498  */
4499 static int _notifier_call_chain(struct regulator_dev *rdev,
4500 				  unsigned long event, void *data)
4501 {
4502 	/* call rdev chain first */
4503 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504 }
4505 
4506 /**
4507  * regulator_bulk_get - get multiple regulator consumers
4508  *
4509  * @dev:           Device to supply
4510  * @num_consumers: Number of consumers to register
4511  * @consumers:     Configuration of consumers; clients are stored here.
4512  *
4513  * @return 0 on success, an errno on failure.
4514  *
4515  * This helper function allows drivers to get several regulator
4516  * consumers in one operation.  If any of the regulators cannot be
4517  * acquired then any regulators that were allocated will be freed
4518  * before returning to the caller.
4519  */
4520 int regulator_bulk_get(struct device *dev, int num_consumers,
4521 		       struct regulator_bulk_data *consumers)
4522 {
4523 	int i;
4524 	int ret;
4525 
4526 	for (i = 0; i < num_consumers; i++)
4527 		consumers[i].consumer = NULL;
4528 
4529 	for (i = 0; i < num_consumers; i++) {
4530 		consumers[i].consumer = regulator_get(dev,
4531 						      consumers[i].supply);
4532 		if (IS_ERR(consumers[i].consumer)) {
4533 			ret = PTR_ERR(consumers[i].consumer);
4534 			consumers[i].consumer = NULL;
4535 			goto err;
4536 		}
4537 	}
4538 
4539 	return 0;
4540 
4541 err:
4542 	if (ret != -EPROBE_DEFER)
4543 		dev_err(dev, "Failed to get supply '%s': %d\n",
4544 			consumers[i].supply, ret);
4545 	else
4546 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547 			consumers[i].supply);
4548 
4549 	while (--i >= 0)
4550 		regulator_put(consumers[i].consumer);
4551 
4552 	return ret;
4553 }
4554 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555 
4556 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557 {
4558 	struct regulator_bulk_data *bulk = data;
4559 
4560 	bulk->ret = regulator_enable(bulk->consumer);
4561 }
4562 
4563 /**
4564  * regulator_bulk_enable - enable multiple regulator consumers
4565  *
4566  * @num_consumers: Number of consumers
4567  * @consumers:     Consumer data; clients are stored here.
4568  * @return         0 on success, an errno on failure
4569  *
4570  * This convenience API allows consumers to enable multiple regulator
4571  * clients in a single API call.  If any consumers cannot be enabled
4572  * then any others that were enabled will be disabled again prior to
4573  * return.
4574  */
4575 int regulator_bulk_enable(int num_consumers,
4576 			  struct regulator_bulk_data *consumers)
4577 {
4578 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579 	int i;
4580 	int ret = 0;
4581 
4582 	for (i = 0; i < num_consumers; i++) {
4583 		async_schedule_domain(regulator_bulk_enable_async,
4584 				      &consumers[i], &async_domain);
4585 	}
4586 
4587 	async_synchronize_full_domain(&async_domain);
4588 
4589 	/* If any consumer failed we need to unwind any that succeeded */
4590 	for (i = 0; i < num_consumers; i++) {
4591 		if (consumers[i].ret != 0) {
4592 			ret = consumers[i].ret;
4593 			goto err;
4594 		}
4595 	}
4596 
4597 	return 0;
4598 
4599 err:
4600 	for (i = 0; i < num_consumers; i++) {
4601 		if (consumers[i].ret < 0)
4602 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603 			       consumers[i].ret);
4604 		else
4605 			regulator_disable(consumers[i].consumer);
4606 	}
4607 
4608 	return ret;
4609 }
4610 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611 
4612 /**
4613  * regulator_bulk_disable - disable multiple regulator consumers
4614  *
4615  * @num_consumers: Number of consumers
4616  * @consumers:     Consumer data; clients are stored here.
4617  * @return         0 on success, an errno on failure
4618  *
4619  * This convenience API allows consumers to disable multiple regulator
4620  * clients in a single API call.  If any consumers cannot be disabled
4621  * then any others that were disabled will be enabled again prior to
4622  * return.
4623  */
4624 int regulator_bulk_disable(int num_consumers,
4625 			   struct regulator_bulk_data *consumers)
4626 {
4627 	int i;
4628 	int ret, r;
4629 
4630 	for (i = num_consumers - 1; i >= 0; --i) {
4631 		ret = regulator_disable(consumers[i].consumer);
4632 		if (ret != 0)
4633 			goto err;
4634 	}
4635 
4636 	return 0;
4637 
4638 err:
4639 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640 	for (++i; i < num_consumers; ++i) {
4641 		r = regulator_enable(consumers[i].consumer);
4642 		if (r != 0)
4643 			pr_err("Failed to re-enable %s: %d\n",
4644 			       consumers[i].supply, r);
4645 	}
4646 
4647 	return ret;
4648 }
4649 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650 
4651 /**
4652  * regulator_bulk_force_disable - force disable multiple regulator consumers
4653  *
4654  * @num_consumers: Number of consumers
4655  * @consumers:     Consumer data; clients are stored here.
4656  * @return         0 on success, an errno on failure
4657  *
4658  * This convenience API allows consumers to forcibly disable multiple regulator
4659  * clients in a single API call.
4660  * NOTE: This should be used for situations when device damage will
4661  * likely occur if the regulators are not disabled (e.g. over temp).
4662  * Although regulator_force_disable function call for some consumers can
4663  * return error numbers, the function is called for all consumers.
4664  */
4665 int regulator_bulk_force_disable(int num_consumers,
4666 			   struct regulator_bulk_data *consumers)
4667 {
4668 	int i;
4669 	int ret = 0;
4670 
4671 	for (i = 0; i < num_consumers; i++) {
4672 		consumers[i].ret =
4673 			    regulator_force_disable(consumers[i].consumer);
4674 
4675 		/* Store first error for reporting */
4676 		if (consumers[i].ret && !ret)
4677 			ret = consumers[i].ret;
4678 	}
4679 
4680 	return ret;
4681 }
4682 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683 
4684 /**
4685  * regulator_bulk_free - free multiple regulator consumers
4686  *
4687  * @num_consumers: Number of consumers
4688  * @consumers:     Consumer data; clients are stored here.
4689  *
4690  * This convenience API allows consumers to free multiple regulator
4691  * clients in a single API call.
4692  */
4693 void regulator_bulk_free(int num_consumers,
4694 			 struct regulator_bulk_data *consumers)
4695 {
4696 	int i;
4697 
4698 	for (i = 0; i < num_consumers; i++) {
4699 		regulator_put(consumers[i].consumer);
4700 		consumers[i].consumer = NULL;
4701 	}
4702 }
4703 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704 
4705 /**
4706  * regulator_notifier_call_chain - call regulator event notifier
4707  * @rdev: regulator source
4708  * @event: notifier block
4709  * @data: callback-specific data.
4710  *
4711  * Called by regulator drivers to notify clients a regulator event has
4712  * occurred. We also notify regulator clients downstream.
4713  * Note lock must be held by caller.
4714  */
4715 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716 				  unsigned long event, void *data)
4717 {
4718 	lockdep_assert_held_once(&rdev->mutex.base);
4719 
4720 	_notifier_call_chain(rdev, event, data);
4721 	return NOTIFY_DONE;
4722 
4723 }
4724 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725 
4726 /**
4727  * regulator_mode_to_status - convert a regulator mode into a status
4728  *
4729  * @mode: Mode to convert
4730  *
4731  * Convert a regulator mode into a status.
4732  */
4733 int regulator_mode_to_status(unsigned int mode)
4734 {
4735 	switch (mode) {
4736 	case REGULATOR_MODE_FAST:
4737 		return REGULATOR_STATUS_FAST;
4738 	case REGULATOR_MODE_NORMAL:
4739 		return REGULATOR_STATUS_NORMAL;
4740 	case REGULATOR_MODE_IDLE:
4741 		return REGULATOR_STATUS_IDLE;
4742 	case REGULATOR_MODE_STANDBY:
4743 		return REGULATOR_STATUS_STANDBY;
4744 	default:
4745 		return REGULATOR_STATUS_UNDEFINED;
4746 	}
4747 }
4748 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749 
4750 static struct attribute *regulator_dev_attrs[] = {
4751 	&dev_attr_name.attr,
4752 	&dev_attr_num_users.attr,
4753 	&dev_attr_type.attr,
4754 	&dev_attr_microvolts.attr,
4755 	&dev_attr_microamps.attr,
4756 	&dev_attr_opmode.attr,
4757 	&dev_attr_state.attr,
4758 	&dev_attr_status.attr,
4759 	&dev_attr_bypass.attr,
4760 	&dev_attr_requested_microamps.attr,
4761 	&dev_attr_min_microvolts.attr,
4762 	&dev_attr_max_microvolts.attr,
4763 	&dev_attr_min_microamps.attr,
4764 	&dev_attr_max_microamps.attr,
4765 	&dev_attr_suspend_standby_state.attr,
4766 	&dev_attr_suspend_mem_state.attr,
4767 	&dev_attr_suspend_disk_state.attr,
4768 	&dev_attr_suspend_standby_microvolts.attr,
4769 	&dev_attr_suspend_mem_microvolts.attr,
4770 	&dev_attr_suspend_disk_microvolts.attr,
4771 	&dev_attr_suspend_standby_mode.attr,
4772 	&dev_attr_suspend_mem_mode.attr,
4773 	&dev_attr_suspend_disk_mode.attr,
4774 	NULL
4775 };
4776 
4777 /*
4778  * To avoid cluttering sysfs (and memory) with useless state, only
4779  * create attributes that can be meaningfully displayed.
4780  */
4781 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782 					 struct attribute *attr, int idx)
4783 {
4784 	struct device *dev = kobj_to_dev(kobj);
4785 	struct regulator_dev *rdev = dev_to_rdev(dev);
4786 	const struct regulator_ops *ops = rdev->desc->ops;
4787 	umode_t mode = attr->mode;
4788 
4789 	/* these three are always present */
4790 	if (attr == &dev_attr_name.attr ||
4791 	    attr == &dev_attr_num_users.attr ||
4792 	    attr == &dev_attr_type.attr)
4793 		return mode;
4794 
4795 	/* some attributes need specific methods to be displayed */
4796 	if (attr == &dev_attr_microvolts.attr) {
4797 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801 			return mode;
4802 		return 0;
4803 	}
4804 
4805 	if (attr == &dev_attr_microamps.attr)
4806 		return ops->get_current_limit ? mode : 0;
4807 
4808 	if (attr == &dev_attr_opmode.attr)
4809 		return ops->get_mode ? mode : 0;
4810 
4811 	if (attr == &dev_attr_state.attr)
4812 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813 
4814 	if (attr == &dev_attr_status.attr)
4815 		return ops->get_status ? mode : 0;
4816 
4817 	if (attr == &dev_attr_bypass.attr)
4818 		return ops->get_bypass ? mode : 0;
4819 
4820 	/* constraints need specific supporting methods */
4821 	if (attr == &dev_attr_min_microvolts.attr ||
4822 	    attr == &dev_attr_max_microvolts.attr)
4823 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824 
4825 	if (attr == &dev_attr_min_microamps.attr ||
4826 	    attr == &dev_attr_max_microamps.attr)
4827 		return ops->set_current_limit ? mode : 0;
4828 
4829 	if (attr == &dev_attr_suspend_standby_state.attr ||
4830 	    attr == &dev_attr_suspend_mem_state.attr ||
4831 	    attr == &dev_attr_suspend_disk_state.attr)
4832 		return mode;
4833 
4834 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4836 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4837 		return ops->set_suspend_voltage ? mode : 0;
4838 
4839 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4840 	    attr == &dev_attr_suspend_mem_mode.attr ||
4841 	    attr == &dev_attr_suspend_disk_mode.attr)
4842 		return ops->set_suspend_mode ? mode : 0;
4843 
4844 	return mode;
4845 }
4846 
4847 static const struct attribute_group regulator_dev_group = {
4848 	.attrs = regulator_dev_attrs,
4849 	.is_visible = regulator_attr_is_visible,
4850 };
4851 
4852 static const struct attribute_group *regulator_dev_groups[] = {
4853 	&regulator_dev_group,
4854 	NULL
4855 };
4856 
4857 static void regulator_dev_release(struct device *dev)
4858 {
4859 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4860 
4861 	kfree(rdev->constraints);
4862 	of_node_put(rdev->dev.of_node);
4863 	kfree(rdev);
4864 }
4865 
4866 static void rdev_init_debugfs(struct regulator_dev *rdev)
4867 {
4868 	struct device *parent = rdev->dev.parent;
4869 	const char *rname = rdev_get_name(rdev);
4870 	char name[NAME_MAX];
4871 
4872 	/* Avoid duplicate debugfs directory names */
4873 	if (parent && rname == rdev->desc->name) {
4874 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875 			 rname);
4876 		rname = name;
4877 	}
4878 
4879 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880 	if (!rdev->debugfs) {
4881 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4882 		return;
4883 	}
4884 
4885 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886 			   &rdev->use_count);
4887 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888 			   &rdev->open_count);
4889 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890 			   &rdev->bypass_count);
4891 }
4892 
4893 static int regulator_register_resolve_supply(struct device *dev, void *data)
4894 {
4895 	struct regulator_dev *rdev = dev_to_rdev(dev);
4896 
4897 	if (regulator_resolve_supply(rdev))
4898 		rdev_dbg(rdev, "unable to resolve supply\n");
4899 
4900 	return 0;
4901 }
4902 
4903 int regulator_coupler_register(struct regulator_coupler *coupler)
4904 {
4905 	mutex_lock(&regulator_list_mutex);
4906 	list_add_tail(&coupler->list, &regulator_coupler_list);
4907 	mutex_unlock(&regulator_list_mutex);
4908 
4909 	return 0;
4910 }
4911 
4912 static struct regulator_coupler *
4913 regulator_find_coupler(struct regulator_dev *rdev)
4914 {
4915 	struct regulator_coupler *coupler;
4916 	int err;
4917 
4918 	/*
4919 	 * Note that regulators are appended to the list and the generic
4920 	 * coupler is registered first, hence it will be attached at last
4921 	 * if nobody cared.
4922 	 */
4923 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4924 		err = coupler->attach_regulator(coupler, rdev);
4925 		if (!err) {
4926 			if (!coupler->balance_voltage &&
4927 			    rdev->coupling_desc.n_coupled > 2)
4928 				goto err_unsupported;
4929 
4930 			return coupler;
4931 		}
4932 
4933 		if (err < 0)
4934 			return ERR_PTR(err);
4935 
4936 		if (err == 1)
4937 			continue;
4938 
4939 		break;
4940 	}
4941 
4942 	return ERR_PTR(-EINVAL);
4943 
4944 err_unsupported:
4945 	if (coupler->detach_regulator)
4946 		coupler->detach_regulator(coupler, rdev);
4947 
4948 	rdev_err(rdev,
4949 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4950 
4951 	return ERR_PTR(-EPERM);
4952 }
4953 
4954 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955 {
4956 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4958 	int n_coupled = c_desc->n_coupled;
4959 	struct regulator_dev *c_rdev;
4960 	int i;
4961 
4962 	for (i = 1; i < n_coupled; i++) {
4963 		/* already resolved */
4964 		if (c_desc->coupled_rdevs[i])
4965 			continue;
4966 
4967 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968 
4969 		if (!c_rdev)
4970 			continue;
4971 
4972 		if (c_rdev->coupling_desc.coupler != coupler) {
4973 			rdev_err(rdev, "coupler mismatch with %s\n",
4974 				 rdev_get_name(c_rdev));
4975 			return;
4976 		}
4977 
4978 		c_desc->coupled_rdevs[i] = c_rdev;
4979 		c_desc->n_resolved++;
4980 
4981 		regulator_resolve_coupling(c_rdev);
4982 	}
4983 }
4984 
4985 static void regulator_remove_coupling(struct regulator_dev *rdev)
4986 {
4987 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989 	struct regulator_dev *__c_rdev, *c_rdev;
4990 	unsigned int __n_coupled, n_coupled;
4991 	int i, k;
4992 	int err;
4993 
4994 	n_coupled = c_desc->n_coupled;
4995 
4996 	for (i = 1; i < n_coupled; i++) {
4997 		c_rdev = c_desc->coupled_rdevs[i];
4998 
4999 		if (!c_rdev)
5000 			continue;
5001 
5002 		regulator_lock(c_rdev);
5003 
5004 		__c_desc = &c_rdev->coupling_desc;
5005 		__n_coupled = __c_desc->n_coupled;
5006 
5007 		for (k = 1; k < __n_coupled; k++) {
5008 			__c_rdev = __c_desc->coupled_rdevs[k];
5009 
5010 			if (__c_rdev == rdev) {
5011 				__c_desc->coupled_rdevs[k] = NULL;
5012 				__c_desc->n_resolved--;
5013 				break;
5014 			}
5015 		}
5016 
5017 		regulator_unlock(c_rdev);
5018 
5019 		c_desc->coupled_rdevs[i] = NULL;
5020 		c_desc->n_resolved--;
5021 	}
5022 
5023 	if (coupler && coupler->detach_regulator) {
5024 		err = coupler->detach_regulator(coupler, rdev);
5025 		if (err)
5026 			rdev_err(rdev, "failed to detach from coupler: %d\n",
5027 				 err);
5028 	}
5029 
5030 	kfree(rdev->coupling_desc.coupled_rdevs);
5031 	rdev->coupling_desc.coupled_rdevs = NULL;
5032 }
5033 
5034 static int regulator_init_coupling(struct regulator_dev *rdev)
5035 {
5036 	int err, n_phandles;
5037 	size_t alloc_size;
5038 
5039 	if (!IS_ENABLED(CONFIG_OF))
5040 		n_phandles = 0;
5041 	else
5042 		n_phandles = of_get_n_coupled(rdev);
5043 
5044 	alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045 
5046 	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047 	if (!rdev->coupling_desc.coupled_rdevs)
5048 		return -ENOMEM;
5049 
5050 	/*
5051 	 * Every regulator should always have coupling descriptor filled with
5052 	 * at least pointer to itself.
5053 	 */
5054 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5056 	rdev->coupling_desc.n_resolved++;
5057 
5058 	/* regulator isn't coupled */
5059 	if (n_phandles == 0)
5060 		return 0;
5061 
5062 	if (!of_check_coupling_data(rdev))
5063 		return -EPERM;
5064 
5065 	mutex_lock(&regulator_list_mutex);
5066 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067 	mutex_unlock(&regulator_list_mutex);
5068 
5069 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5070 		err = PTR_ERR(rdev->coupling_desc.coupler);
5071 		rdev_err(rdev, "failed to get coupler: %d\n", err);
5072 		return err;
5073 	}
5074 
5075 	return 0;
5076 }
5077 
5078 static int generic_coupler_attach(struct regulator_coupler *coupler,
5079 				  struct regulator_dev *rdev)
5080 {
5081 	if (rdev->coupling_desc.n_coupled > 2) {
5082 		rdev_err(rdev,
5083 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084 		return -EPERM;
5085 	}
5086 
5087 	if (!rdev->constraints->always_on) {
5088 		rdev_err(rdev,
5089 			 "Coupling of a non always-on regulator is unimplemented\n");
5090 		return -ENOTSUPP;
5091 	}
5092 
5093 	return 0;
5094 }
5095 
5096 static struct regulator_coupler generic_regulator_coupler = {
5097 	.attach_regulator = generic_coupler_attach,
5098 };
5099 
5100 /**
5101  * regulator_register - register regulator
5102  * @regulator_desc: regulator to register
5103  * @cfg: runtime configuration for regulator
5104  *
5105  * Called by regulator drivers to register a regulator.
5106  * Returns a valid pointer to struct regulator_dev on success
5107  * or an ERR_PTR() on error.
5108  */
5109 struct regulator_dev *
5110 regulator_register(const struct regulator_desc *regulator_desc,
5111 		   const struct regulator_config *cfg)
5112 {
5113 	const struct regulation_constraints *constraints = NULL;
5114 	const struct regulator_init_data *init_data;
5115 	struct regulator_config *config = NULL;
5116 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5117 	struct regulator_dev *rdev;
5118 	bool dangling_cfg_gpiod = false;
5119 	bool dangling_of_gpiod = false;
5120 	struct device *dev;
5121 	int ret, i;
5122 
5123 	if (cfg == NULL)
5124 		return ERR_PTR(-EINVAL);
5125 	if (cfg->ena_gpiod)
5126 		dangling_cfg_gpiod = true;
5127 	if (regulator_desc == NULL) {
5128 		ret = -EINVAL;
5129 		goto rinse;
5130 	}
5131 
5132 	dev = cfg->dev;
5133 	WARN_ON(!dev);
5134 
5135 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136 		ret = -EINVAL;
5137 		goto rinse;
5138 	}
5139 
5140 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141 	    regulator_desc->type != REGULATOR_CURRENT) {
5142 		ret = -EINVAL;
5143 		goto rinse;
5144 	}
5145 
5146 	/* Only one of each should be implemented */
5147 	WARN_ON(regulator_desc->ops->get_voltage &&
5148 		regulator_desc->ops->get_voltage_sel);
5149 	WARN_ON(regulator_desc->ops->set_voltage &&
5150 		regulator_desc->ops->set_voltage_sel);
5151 
5152 	/* If we're using selectors we must implement list_voltage. */
5153 	if (regulator_desc->ops->get_voltage_sel &&
5154 	    !regulator_desc->ops->list_voltage) {
5155 		ret = -EINVAL;
5156 		goto rinse;
5157 	}
5158 	if (regulator_desc->ops->set_voltage_sel &&
5159 	    !regulator_desc->ops->list_voltage) {
5160 		ret = -EINVAL;
5161 		goto rinse;
5162 	}
5163 
5164 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165 	if (rdev == NULL) {
5166 		ret = -ENOMEM;
5167 		goto rinse;
5168 	}
5169 	device_initialize(&rdev->dev);
5170 
5171 	/*
5172 	 * Duplicate the config so the driver could override it after
5173 	 * parsing init data.
5174 	 */
5175 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176 	if (config == NULL) {
5177 		ret = -ENOMEM;
5178 		goto clean;
5179 	}
5180 
5181 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182 					       &rdev->dev.of_node);
5183 
5184 	/*
5185 	 * Sometimes not all resources are probed already so we need to take
5186 	 * that into account. This happens most the time if the ena_gpiod comes
5187 	 * from a gpio extender or something else.
5188 	 */
5189 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190 		ret = -EPROBE_DEFER;
5191 		goto clean;
5192 	}
5193 
5194 	/*
5195 	 * We need to keep track of any GPIO descriptor coming from the
5196 	 * device tree until we have handled it over to the core. If the
5197 	 * config that was passed in to this function DOES NOT contain
5198 	 * a descriptor, and the config after this call DOES contain
5199 	 * a descriptor, we definitely got one from parsing the device
5200 	 * tree.
5201 	 */
5202 	if (!cfg->ena_gpiod && config->ena_gpiod)
5203 		dangling_of_gpiod = true;
5204 	if (!init_data) {
5205 		init_data = config->init_data;
5206 		rdev->dev.of_node = of_node_get(config->of_node);
5207 	}
5208 
5209 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5210 	rdev->reg_data = config->driver_data;
5211 	rdev->owner = regulator_desc->owner;
5212 	rdev->desc = regulator_desc;
5213 	if (config->regmap)
5214 		rdev->regmap = config->regmap;
5215 	else if (dev_get_regmap(dev, NULL))
5216 		rdev->regmap = dev_get_regmap(dev, NULL);
5217 	else if (dev->parent)
5218 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219 	INIT_LIST_HEAD(&rdev->consumer_list);
5220 	INIT_LIST_HEAD(&rdev->list);
5221 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223 
5224 	/* preform any regulator specific init */
5225 	if (init_data && init_data->regulator_init) {
5226 		ret = init_data->regulator_init(rdev->reg_data);
5227 		if (ret < 0)
5228 			goto clean;
5229 	}
5230 
5231 	if (config->ena_gpiod) {
5232 		ret = regulator_ena_gpio_request(rdev, config);
5233 		if (ret != 0) {
5234 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235 				 ret);
5236 			goto clean;
5237 		}
5238 		/* The regulator core took over the GPIO descriptor */
5239 		dangling_cfg_gpiod = false;
5240 		dangling_of_gpiod = false;
5241 	}
5242 
5243 	/* register with sysfs */
5244 	rdev->dev.class = &regulator_class;
5245 	rdev->dev.parent = dev;
5246 	dev_set_name(&rdev->dev, "regulator.%lu",
5247 		    (unsigned long) atomic_inc_return(&regulator_no));
5248 	dev_set_drvdata(&rdev->dev, rdev);
5249 
5250 	/* set regulator constraints */
5251 	if (init_data)
5252 		constraints = &init_data->constraints;
5253 
5254 	if (init_data && init_data->supply_regulator)
5255 		rdev->supply_name = init_data->supply_regulator;
5256 	else if (regulator_desc->supply_name)
5257 		rdev->supply_name = regulator_desc->supply_name;
5258 
5259 	/*
5260 	 * Attempt to resolve the regulator supply, if specified,
5261 	 * but don't return an error if we fail because we will try
5262 	 * to resolve it again later as more regulators are added.
5263 	 */
5264 	if (regulator_resolve_supply(rdev))
5265 		rdev_dbg(rdev, "unable to resolve supply\n");
5266 
5267 	ret = set_machine_constraints(rdev, constraints);
5268 	if (ret < 0)
5269 		goto wash;
5270 
5271 	ret = regulator_init_coupling(rdev);
5272 	if (ret < 0)
5273 		goto wash;
5274 
5275 	/* add consumers devices */
5276 	if (init_data) {
5277 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278 			ret = set_consumer_device_supply(rdev,
5279 				init_data->consumer_supplies[i].dev_name,
5280 				init_data->consumer_supplies[i].supply);
5281 			if (ret < 0) {
5282 				dev_err(dev, "Failed to set supply %s\n",
5283 					init_data->consumer_supplies[i].supply);
5284 				goto unset_supplies;
5285 			}
5286 		}
5287 	}
5288 
5289 	if (!rdev->desc->ops->get_voltage &&
5290 	    !rdev->desc->ops->list_voltage &&
5291 	    !rdev->desc->fixed_uV)
5292 		rdev->is_switch = true;
5293 
5294 	ret = device_add(&rdev->dev);
5295 	if (ret != 0)
5296 		goto unset_supplies;
5297 
5298 	rdev_init_debugfs(rdev);
5299 
5300 	/* try to resolve regulators coupling since a new one was registered */
5301 	mutex_lock(&regulator_list_mutex);
5302 	regulator_resolve_coupling(rdev);
5303 	mutex_unlock(&regulator_list_mutex);
5304 
5305 	/* try to resolve regulators supply since a new one was registered */
5306 	class_for_each_device(&regulator_class, NULL, NULL,
5307 			      regulator_register_resolve_supply);
5308 	kfree(config);
5309 	return rdev;
5310 
5311 unset_supplies:
5312 	mutex_lock(&regulator_list_mutex);
5313 	unset_regulator_supplies(rdev);
5314 	regulator_remove_coupling(rdev);
5315 	mutex_unlock(&regulator_list_mutex);
5316 wash:
5317 	kfree(rdev->coupling_desc.coupled_rdevs);
5318 	mutex_lock(&regulator_list_mutex);
5319 	regulator_ena_gpio_free(rdev);
5320 	mutex_unlock(&regulator_list_mutex);
5321 clean:
5322 	if (dangling_of_gpiod)
5323 		gpiod_put(config->ena_gpiod);
5324 	kfree(config);
5325 	put_device(&rdev->dev);
5326 rinse:
5327 	if (dangling_cfg_gpiod)
5328 		gpiod_put(cfg->ena_gpiod);
5329 	return ERR_PTR(ret);
5330 }
5331 EXPORT_SYMBOL_GPL(regulator_register);
5332 
5333 /**
5334  * regulator_unregister - unregister regulator
5335  * @rdev: regulator to unregister
5336  *
5337  * Called by regulator drivers to unregister a regulator.
5338  */
5339 void regulator_unregister(struct regulator_dev *rdev)
5340 {
5341 	if (rdev == NULL)
5342 		return;
5343 
5344 	if (rdev->supply) {
5345 		while (rdev->use_count--)
5346 			regulator_disable(rdev->supply);
5347 		regulator_put(rdev->supply);
5348 	}
5349 
5350 	flush_work(&rdev->disable_work.work);
5351 
5352 	mutex_lock(&regulator_list_mutex);
5353 
5354 	debugfs_remove_recursive(rdev->debugfs);
5355 	WARN_ON(rdev->open_count);
5356 	regulator_remove_coupling(rdev);
5357 	unset_regulator_supplies(rdev);
5358 	list_del(&rdev->list);
5359 	regulator_ena_gpio_free(rdev);
5360 	device_unregister(&rdev->dev);
5361 
5362 	mutex_unlock(&regulator_list_mutex);
5363 }
5364 EXPORT_SYMBOL_GPL(regulator_unregister);
5365 
5366 #ifdef CONFIG_SUSPEND
5367 /**
5368  * regulator_suspend - prepare regulators for system wide suspend
5369  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370  *
5371  * Configure each regulator with it's suspend operating parameters for state.
5372  */
5373 static int regulator_suspend(struct device *dev)
5374 {
5375 	struct regulator_dev *rdev = dev_to_rdev(dev);
5376 	suspend_state_t state = pm_suspend_target_state;
5377 	int ret;
5378 
5379 	regulator_lock(rdev);
5380 	ret = suspend_set_state(rdev, state);
5381 	regulator_unlock(rdev);
5382 
5383 	return ret;
5384 }
5385 
5386 static int regulator_resume(struct device *dev)
5387 {
5388 	suspend_state_t state = pm_suspend_target_state;
5389 	struct regulator_dev *rdev = dev_to_rdev(dev);
5390 	struct regulator_state *rstate;
5391 	int ret = 0;
5392 
5393 	rstate = regulator_get_suspend_state(rdev, state);
5394 	if (rstate == NULL)
5395 		return 0;
5396 
5397 	regulator_lock(rdev);
5398 
5399 	if (rdev->desc->ops->resume &&
5400 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5401 	     rstate->enabled == DISABLE_IN_SUSPEND))
5402 		ret = rdev->desc->ops->resume(rdev);
5403 
5404 	regulator_unlock(rdev);
5405 
5406 	return ret;
5407 }
5408 #else /* !CONFIG_SUSPEND */
5409 
5410 #define regulator_suspend	NULL
5411 #define regulator_resume	NULL
5412 
5413 #endif /* !CONFIG_SUSPEND */
5414 
5415 #ifdef CONFIG_PM
5416 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 	.suspend	= regulator_suspend,
5418 	.resume		= regulator_resume,
5419 };
5420 #endif
5421 
5422 struct class regulator_class = {
5423 	.name = "regulator",
5424 	.dev_release = regulator_dev_release,
5425 	.dev_groups = regulator_dev_groups,
5426 #ifdef CONFIG_PM
5427 	.pm = &regulator_pm_ops,
5428 #endif
5429 };
5430 /**
5431  * regulator_has_full_constraints - the system has fully specified constraints
5432  *
5433  * Calling this function will cause the regulator API to disable all
5434  * regulators which have a zero use count and don't have an always_on
5435  * constraint in a late_initcall.
5436  *
5437  * The intention is that this will become the default behaviour in a
5438  * future kernel release so users are encouraged to use this facility
5439  * now.
5440  */
5441 void regulator_has_full_constraints(void)
5442 {
5443 	has_full_constraints = 1;
5444 }
5445 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446 
5447 /**
5448  * rdev_get_drvdata - get rdev regulator driver data
5449  * @rdev: regulator
5450  *
5451  * Get rdev regulator driver private data. This call can be used in the
5452  * regulator driver context.
5453  */
5454 void *rdev_get_drvdata(struct regulator_dev *rdev)
5455 {
5456 	return rdev->reg_data;
5457 }
5458 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459 
5460 /**
5461  * regulator_get_drvdata - get regulator driver data
5462  * @regulator: regulator
5463  *
5464  * Get regulator driver private data. This call can be used in the consumer
5465  * driver context when non API regulator specific functions need to be called.
5466  */
5467 void *regulator_get_drvdata(struct regulator *regulator)
5468 {
5469 	return regulator->rdev->reg_data;
5470 }
5471 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472 
5473 /**
5474  * regulator_set_drvdata - set regulator driver data
5475  * @regulator: regulator
5476  * @data: data
5477  */
5478 void regulator_set_drvdata(struct regulator *regulator, void *data)
5479 {
5480 	regulator->rdev->reg_data = data;
5481 }
5482 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483 
5484 /**
5485  * regulator_get_id - get regulator ID
5486  * @rdev: regulator
5487  */
5488 int rdev_get_id(struct regulator_dev *rdev)
5489 {
5490 	return rdev->desc->id;
5491 }
5492 EXPORT_SYMBOL_GPL(rdev_get_id);
5493 
5494 struct device *rdev_get_dev(struct regulator_dev *rdev)
5495 {
5496 	return &rdev->dev;
5497 }
5498 EXPORT_SYMBOL_GPL(rdev_get_dev);
5499 
5500 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501 {
5502 	return rdev->regmap;
5503 }
5504 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505 
5506 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507 {
5508 	return reg_init_data->driver_data;
5509 }
5510 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511 
5512 #ifdef CONFIG_DEBUG_FS
5513 static int supply_map_show(struct seq_file *sf, void *data)
5514 {
5515 	struct regulator_map *map;
5516 
5517 	list_for_each_entry(map, &regulator_map_list, list) {
5518 		seq_printf(sf, "%s -> %s.%s\n",
5519 				rdev_get_name(map->regulator), map->dev_name,
5520 				map->supply);
5521 	}
5522 
5523 	return 0;
5524 }
5525 DEFINE_SHOW_ATTRIBUTE(supply_map);
5526 
5527 struct summary_data {
5528 	struct seq_file *s;
5529 	struct regulator_dev *parent;
5530 	int level;
5531 };
5532 
5533 static void regulator_summary_show_subtree(struct seq_file *s,
5534 					   struct regulator_dev *rdev,
5535 					   int level);
5536 
5537 static int regulator_summary_show_children(struct device *dev, void *data)
5538 {
5539 	struct regulator_dev *rdev = dev_to_rdev(dev);
5540 	struct summary_data *summary_data = data;
5541 
5542 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543 		regulator_summary_show_subtree(summary_data->s, rdev,
5544 					       summary_data->level + 1);
5545 
5546 	return 0;
5547 }
5548 
5549 static void regulator_summary_show_subtree(struct seq_file *s,
5550 					   struct regulator_dev *rdev,
5551 					   int level)
5552 {
5553 	struct regulation_constraints *c;
5554 	struct regulator *consumer;
5555 	struct summary_data summary_data;
5556 	unsigned int opmode;
5557 
5558 	if (!rdev)
5559 		return;
5560 
5561 	opmode = _regulator_get_mode_unlocked(rdev);
5562 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 		   level * 3 + 1, "",
5564 		   30 - level * 3, rdev_get_name(rdev),
5565 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5566 		   regulator_opmode_to_str(opmode));
5567 
5568 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 	seq_printf(s, "%5dmA ",
5570 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5571 
5572 	c = rdev->constraints;
5573 	if (c) {
5574 		switch (rdev->desc->type) {
5575 		case REGULATOR_VOLTAGE:
5576 			seq_printf(s, "%5dmV %5dmV ",
5577 				   c->min_uV / 1000, c->max_uV / 1000);
5578 			break;
5579 		case REGULATOR_CURRENT:
5580 			seq_printf(s, "%5dmA %5dmA ",
5581 				   c->min_uA / 1000, c->max_uA / 1000);
5582 			break;
5583 		}
5584 	}
5585 
5586 	seq_puts(s, "\n");
5587 
5588 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589 		if (consumer->dev && consumer->dev->class == &regulator_class)
5590 			continue;
5591 
5592 		seq_printf(s, "%*s%-*s ",
5593 			   (level + 1) * 3 + 1, "",
5594 			   30 - (level + 1) * 3,
5595 			   consumer->supply_name ? consumer->supply_name :
5596 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597 
5598 		switch (rdev->desc->type) {
5599 		case REGULATOR_VOLTAGE:
5600 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601 				   consumer->enable_count,
5602 				   consumer->uA_load / 1000,
5603 				   consumer->uA_load && !consumer->enable_count ?
5604 				   '*' : ' ',
5605 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 			break;
5608 		case REGULATOR_CURRENT:
5609 			break;
5610 		}
5611 
5612 		seq_puts(s, "\n");
5613 	}
5614 
5615 	summary_data.s = s;
5616 	summary_data.level = level;
5617 	summary_data.parent = rdev;
5618 
5619 	class_for_each_device(&regulator_class, NULL, &summary_data,
5620 			      regulator_summary_show_children);
5621 }
5622 
5623 struct summary_lock_data {
5624 	struct ww_acquire_ctx *ww_ctx;
5625 	struct regulator_dev **new_contended_rdev;
5626 	struct regulator_dev **old_contended_rdev;
5627 };
5628 
5629 static int regulator_summary_lock_one(struct device *dev, void *data)
5630 {
5631 	struct regulator_dev *rdev = dev_to_rdev(dev);
5632 	struct summary_lock_data *lock_data = data;
5633 	int ret = 0;
5634 
5635 	if (rdev != *lock_data->old_contended_rdev) {
5636 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637 
5638 		if (ret == -EDEADLK)
5639 			*lock_data->new_contended_rdev = rdev;
5640 		else
5641 			WARN_ON_ONCE(ret);
5642 	} else {
5643 		*lock_data->old_contended_rdev = NULL;
5644 	}
5645 
5646 	return ret;
5647 }
5648 
5649 static int regulator_summary_unlock_one(struct device *dev, void *data)
5650 {
5651 	struct regulator_dev *rdev = dev_to_rdev(dev);
5652 	struct summary_lock_data *lock_data = data;
5653 
5654 	if (lock_data) {
5655 		if (rdev == *lock_data->new_contended_rdev)
5656 			return -EDEADLK;
5657 	}
5658 
5659 	regulator_unlock(rdev);
5660 
5661 	return 0;
5662 }
5663 
5664 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665 				      struct regulator_dev **new_contended_rdev,
5666 				      struct regulator_dev **old_contended_rdev)
5667 {
5668 	struct summary_lock_data lock_data;
5669 	int ret;
5670 
5671 	lock_data.ww_ctx = ww_ctx;
5672 	lock_data.new_contended_rdev = new_contended_rdev;
5673 	lock_data.old_contended_rdev = old_contended_rdev;
5674 
5675 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5676 				    regulator_summary_lock_one);
5677 	if (ret)
5678 		class_for_each_device(&regulator_class, NULL, &lock_data,
5679 				      regulator_summary_unlock_one);
5680 
5681 	return ret;
5682 }
5683 
5684 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685 {
5686 	struct regulator_dev *new_contended_rdev = NULL;
5687 	struct regulator_dev *old_contended_rdev = NULL;
5688 	int err;
5689 
5690 	mutex_lock(&regulator_list_mutex);
5691 
5692 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5693 
5694 	do {
5695 		if (new_contended_rdev) {
5696 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697 			old_contended_rdev = new_contended_rdev;
5698 			old_contended_rdev->ref_cnt++;
5699 		}
5700 
5701 		err = regulator_summary_lock_all(ww_ctx,
5702 						 &new_contended_rdev,
5703 						 &old_contended_rdev);
5704 
5705 		if (old_contended_rdev)
5706 			regulator_unlock(old_contended_rdev);
5707 
5708 	} while (err == -EDEADLK);
5709 
5710 	ww_acquire_done(ww_ctx);
5711 }
5712 
5713 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714 {
5715 	class_for_each_device(&regulator_class, NULL, NULL,
5716 			      regulator_summary_unlock_one);
5717 	ww_acquire_fini(ww_ctx);
5718 
5719 	mutex_unlock(&regulator_list_mutex);
5720 }
5721 
5722 static int regulator_summary_show_roots(struct device *dev, void *data)
5723 {
5724 	struct regulator_dev *rdev = dev_to_rdev(dev);
5725 	struct seq_file *s = data;
5726 
5727 	if (!rdev->supply)
5728 		regulator_summary_show_subtree(s, rdev, 0);
5729 
5730 	return 0;
5731 }
5732 
5733 static int regulator_summary_show(struct seq_file *s, void *data)
5734 {
5735 	struct ww_acquire_ctx ww_ctx;
5736 
5737 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5738 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739 
5740 	regulator_summary_lock(&ww_ctx);
5741 
5742 	class_for_each_device(&regulator_class, NULL, s,
5743 			      regulator_summary_show_roots);
5744 
5745 	regulator_summary_unlock(&ww_ctx);
5746 
5747 	return 0;
5748 }
5749 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750 #endif /* CONFIG_DEBUG_FS */
5751 
5752 static int __init regulator_init(void)
5753 {
5754 	int ret;
5755 
5756 	ret = class_register(&regulator_class);
5757 
5758 	debugfs_root = debugfs_create_dir("regulator", NULL);
5759 	if (!debugfs_root)
5760 		pr_warn("regulator: Failed to create debugfs directory\n");
5761 
5762 #ifdef CONFIG_DEBUG_FS
5763 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764 			    &supply_map_fops);
5765 
5766 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767 			    NULL, &regulator_summary_fops);
5768 #endif
5769 	regulator_dummy_init();
5770 
5771 	regulator_coupler_register(&generic_regulator_coupler);
5772 
5773 	return ret;
5774 }
5775 
5776 /* init early to allow our consumers to complete system booting */
5777 core_initcall(regulator_init);
5778 
5779 static int regulator_late_cleanup(struct device *dev, void *data)
5780 {
5781 	struct regulator_dev *rdev = dev_to_rdev(dev);
5782 	const struct regulator_ops *ops = rdev->desc->ops;
5783 	struct regulation_constraints *c = rdev->constraints;
5784 	int enabled, ret;
5785 
5786 	if (c && c->always_on)
5787 		return 0;
5788 
5789 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 		return 0;
5791 
5792 	regulator_lock(rdev);
5793 
5794 	if (rdev->use_count)
5795 		goto unlock;
5796 
5797 	/* If we can't read the status assume it's on. */
5798 	if (ops->is_enabled)
5799 		enabled = ops->is_enabled(rdev);
5800 	else
5801 		enabled = 1;
5802 
5803 	if (!enabled)
5804 		goto unlock;
5805 
5806 	if (have_full_constraints()) {
5807 		/* We log since this may kill the system if it goes
5808 		 * wrong. */
5809 		rdev_info(rdev, "disabling\n");
5810 		ret = _regulator_do_disable(rdev);
5811 		if (ret != 0)
5812 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5813 	} else {
5814 		/* The intention is that in future we will
5815 		 * assume that full constraints are provided
5816 		 * so warn even if we aren't going to do
5817 		 * anything here.
5818 		 */
5819 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820 	}
5821 
5822 unlock:
5823 	regulator_unlock(rdev);
5824 
5825 	return 0;
5826 }
5827 
5828 static void regulator_init_complete_work_function(struct work_struct *work)
5829 {
5830 	/*
5831 	 * Regulators may had failed to resolve their input supplies
5832 	 * when were registered, either because the input supply was
5833 	 * not registered yet or because its parent device was not
5834 	 * bound yet. So attempt to resolve the input supplies for
5835 	 * pending regulators before trying to disable unused ones.
5836 	 */
5837 	class_for_each_device(&regulator_class, NULL, NULL,
5838 			      regulator_register_resolve_supply);
5839 
5840 	/* If we have a full configuration then disable any regulators
5841 	 * we have permission to change the status for and which are
5842 	 * not in use or always_on.  This is effectively the default
5843 	 * for DT and ACPI as they have full constraints.
5844 	 */
5845 	class_for_each_device(&regulator_class, NULL, NULL,
5846 			      regulator_late_cleanup);
5847 }
5848 
5849 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850 			    regulator_init_complete_work_function);
5851 
5852 static int __init regulator_init_complete(void)
5853 {
5854 	/*
5855 	 * Since DT doesn't provide an idiomatic mechanism for
5856 	 * enabling full constraints and since it's much more natural
5857 	 * with DT to provide them just assume that a DT enabled
5858 	 * system has full constraints.
5859 	 */
5860 	if (of_have_populated_dt())
5861 		has_full_constraints = true;
5862 
5863 	/*
5864 	 * We punt completion for an arbitrary amount of time since
5865 	 * systems like distros will load many drivers from userspace
5866 	 * so consumers might not always be ready yet, this is
5867 	 * particularly an issue with laptops where this might bounce
5868 	 * the display off then on.  Ideally we'd get a notification
5869 	 * from userspace when this happens but we don't so just wait
5870 	 * a bit and hope we waited long enough.  It'd be better if
5871 	 * we'd only do this on systems that need it, and a kernel
5872 	 * command line option might be useful.
5873 	 */
5874 	schedule_delayed_work(&regulator_init_complete_work,
5875 			      msecs_to_jiffies(30000));
5876 
5877 	return 0;
5878 }
5879 late_initcall_sync(regulator_init_complete);
5880