xref: /openbmc/linux/drivers/regulator/core.c (revision f7c35abe)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 	int i;
163 
164 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 		mutex_lock_nested(&rdev->mutex, i);
166 }
167 
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 	struct regulator *supply;
175 
176 	while (1) {
177 		mutex_unlock(&rdev->mutex);
178 		supply = rdev->supply;
179 
180 		if (!rdev->supply)
181 			return;
182 
183 		rdev = supply->rdev;
184 	}
185 }
186 
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 	struct device_node *regnode = NULL;
199 	char prop_name[32]; /* 32 is max size of property name */
200 
201 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202 
203 	snprintf(prop_name, 32, "%s-supply", supply);
204 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205 
206 	if (!regnode) {
207 		dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 				prop_name, dev->of_node->full_name);
209 		return NULL;
210 	}
211 	return regnode;
212 }
213 
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 				   int *min_uV, int *max_uV)
217 {
218 	BUG_ON(*min_uV > *max_uV);
219 
220 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 		rdev_err(rdev, "voltage operation not allowed\n");
222 		return -EPERM;
223 	}
224 
225 	if (*max_uV > rdev->constraints->max_uV)
226 		*max_uV = rdev->constraints->max_uV;
227 	if (*min_uV < rdev->constraints->min_uV)
228 		*min_uV = rdev->constraints->min_uV;
229 
230 	if (*min_uV > *max_uV) {
231 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 			 *min_uV, *max_uV);
233 		return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 				     int *min_uV, int *max_uV)
244 {
245 	struct regulator *regulator;
246 
247 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 		/*
249 		 * Assume consumers that didn't say anything are OK
250 		 * with anything in the constraint range.
251 		 */
252 		if (!regulator->min_uV && !regulator->max_uV)
253 			continue;
254 
255 		if (*max_uV > regulator->max_uV)
256 			*max_uV = regulator->max_uV;
257 		if (*min_uV < regulator->min_uV)
258 			*min_uV = regulator->min_uV;
259 	}
260 
261 	if (*min_uV > *max_uV) {
262 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 			*min_uV, *max_uV);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 					int *min_uA, int *max_uA)
273 {
274 	BUG_ON(*min_uA > *max_uA);
275 
276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 		rdev_err(rdev, "current operation not allowed\n");
278 		return -EPERM;
279 	}
280 
281 	if (*max_uA > rdev->constraints->max_uA)
282 		*max_uA = rdev->constraints->max_uA;
283 	if (*min_uA < rdev->constraints->min_uA)
284 		*min_uA = rdev->constraints->min_uA;
285 
286 	if (*min_uA > *max_uA) {
287 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 			 *min_uA, *max_uA);
289 		return -EINVAL;
290 	}
291 
292 	return 0;
293 }
294 
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 				    unsigned int *mode)
298 {
299 	switch (*mode) {
300 	case REGULATOR_MODE_FAST:
301 	case REGULATOR_MODE_NORMAL:
302 	case REGULATOR_MODE_IDLE:
303 	case REGULATOR_MODE_STANDBY:
304 		break;
305 	default:
306 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 		return -EINVAL;
308 	}
309 
310 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 		rdev_err(rdev, "mode operation not allowed\n");
312 		return -EPERM;
313 	}
314 
315 	/* The modes are bitmasks, the most power hungry modes having
316 	 * the lowest values. If the requested mode isn't supported
317 	 * try higher modes. */
318 	while (*mode) {
319 		if (rdev->constraints->valid_modes_mask & *mode)
320 			return 0;
321 		*mode /= 2;
322 	}
323 
324 	return -EINVAL;
325 }
326 
327 static ssize_t regulator_uV_show(struct device *dev,
328 				struct device_attribute *attr, char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 	ssize_t ret;
332 
333 	mutex_lock(&rdev->mutex);
334 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 	mutex_unlock(&rdev->mutex);
336 
337 	return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340 
341 static ssize_t regulator_uA_show(struct device *dev,
342 				struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349 
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 			 char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358 
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 	switch (mode) {
362 	case REGULATOR_MODE_FAST:
363 		return sprintf(buf, "fast\n");
364 	case REGULATOR_MODE_NORMAL:
365 		return sprintf(buf, "normal\n");
366 	case REGULATOR_MODE_IDLE:
367 		return sprintf(buf, "idle\n");
368 	case REGULATOR_MODE_STANDBY:
369 		return sprintf(buf, "standby\n");
370 	}
371 	return sprintf(buf, "unknown\n");
372 }
373 
374 static ssize_t regulator_opmode_show(struct device *dev,
375 				    struct device_attribute *attr, char *buf)
376 {
377 	struct regulator_dev *rdev = dev_get_drvdata(dev);
378 
379 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382 
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 	if (state > 0)
386 		return sprintf(buf, "enabled\n");
387 	else if (state == 0)
388 		return sprintf(buf, "disabled\n");
389 	else
390 		return sprintf(buf, "unknown\n");
391 }
392 
393 static ssize_t regulator_state_show(struct device *dev,
394 				   struct device_attribute *attr, char *buf)
395 {
396 	struct regulator_dev *rdev = dev_get_drvdata(dev);
397 	ssize_t ret;
398 
399 	mutex_lock(&rdev->mutex);
400 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 	mutex_unlock(&rdev->mutex);
402 
403 	return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406 
407 static ssize_t regulator_status_show(struct device *dev,
408 				   struct device_attribute *attr, char *buf)
409 {
410 	struct regulator_dev *rdev = dev_get_drvdata(dev);
411 	int status;
412 	char *label;
413 
414 	status = rdev->desc->ops->get_status(rdev);
415 	if (status < 0)
416 		return status;
417 
418 	switch (status) {
419 	case REGULATOR_STATUS_OFF:
420 		label = "off";
421 		break;
422 	case REGULATOR_STATUS_ON:
423 		label = "on";
424 		break;
425 	case REGULATOR_STATUS_ERROR:
426 		label = "error";
427 		break;
428 	case REGULATOR_STATUS_FAST:
429 		label = "fast";
430 		break;
431 	case REGULATOR_STATUS_NORMAL:
432 		label = "normal";
433 		break;
434 	case REGULATOR_STATUS_IDLE:
435 		label = "idle";
436 		break;
437 	case REGULATOR_STATUS_STANDBY:
438 		label = "standby";
439 		break;
440 	case REGULATOR_STATUS_BYPASS:
441 		label = "bypass";
442 		break;
443 	case REGULATOR_STATUS_UNDEFINED:
444 		label = "undefined";
445 		break;
446 	default:
447 		return -ERANGE;
448 	}
449 
450 	return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453 
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465 
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477 
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 				    struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	if (!rdev->constraints)
484 		return sprintf(buf, "constraint not defined\n");
485 
486 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489 
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 				    struct device_attribute *attr, char *buf)
492 {
493 	struct regulator_dev *rdev = dev_get_drvdata(dev);
494 
495 	if (!rdev->constraints)
496 		return sprintf(buf, "constraint not defined\n");
497 
498 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501 
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 				      struct device_attribute *attr, char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 	struct regulator *regulator;
507 	int uA = 0;
508 
509 	mutex_lock(&rdev->mutex);
510 	list_for_each_entry(regulator, &rdev->consumer_list, list)
511 		uA += regulator->uA_load;
512 	mutex_unlock(&rdev->mutex);
513 	return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516 
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 			      char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 	return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524 
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 			 char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 
530 	switch (rdev->desc->type) {
531 	case REGULATOR_VOLTAGE:
532 		return sprintf(buf, "voltage\n");
533 	case REGULATOR_CURRENT:
534 		return sprintf(buf, "current\n");
535 	}
536 	return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539 
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 				struct device_attribute *attr, char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 
545 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 		regulator_suspend_mem_uV_show, NULL);
549 
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 				struct device_attribute *attr, char *buf)
552 {
553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 
555 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 		regulator_suspend_disk_uV_show, NULL);
559 
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 				struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 		regulator_suspend_standby_uV_show, NULL);
569 
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 				struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return regulator_print_opmode(buf,
576 		rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 		regulator_suspend_mem_mode_show, NULL);
580 
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 				struct device_attribute *attr, char *buf)
583 {
584 	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 
586 	return regulator_print_opmode(buf,
587 		rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 		regulator_suspend_disk_mode_show, NULL);
591 
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 				struct device_attribute *attr, char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 
597 	return regulator_print_opmode(buf,
598 		rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 		regulator_suspend_standby_mode_show, NULL);
602 
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 				   struct device_attribute *attr, char *buf)
605 {
606 	struct regulator_dev *rdev = dev_get_drvdata(dev);
607 
608 	return regulator_print_state(buf,
609 			rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 		regulator_suspend_mem_state_show, NULL);
613 
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 				   struct device_attribute *attr, char *buf)
616 {
617 	struct regulator_dev *rdev = dev_get_drvdata(dev);
618 
619 	return regulator_print_state(buf,
620 			rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 		regulator_suspend_disk_state_show, NULL);
624 
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 				   struct device_attribute *attr, char *buf)
627 {
628 	struct regulator_dev *rdev = dev_get_drvdata(dev);
629 
630 	return regulator_print_state(buf,
631 			rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 		regulator_suspend_standby_state_show, NULL);
635 
636 static ssize_t regulator_bypass_show(struct device *dev,
637 				     struct device_attribute *attr, char *buf)
638 {
639 	struct regulator_dev *rdev = dev_get_drvdata(dev);
640 	const char *report;
641 	bool bypass;
642 	int ret;
643 
644 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645 
646 	if (ret != 0)
647 		report = "unknown";
648 	else if (bypass)
649 		report = "enabled";
650 	else
651 		report = "disabled";
652 
653 	return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 		   regulator_bypass_show, NULL);
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	lockdep_assert_held_once(&rdev->mutex);
667 
668 	/*
669 	 * first check to see if we can set modes at all, otherwise just
670 	 * tell the consumer everything is OK.
671 	 */
672 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 		return 0;
674 
675 	if (!rdev->desc->ops->get_optimum_mode &&
676 	    !rdev->desc->ops->set_load)
677 		return 0;
678 
679 	if (!rdev->desc->ops->set_mode &&
680 	    !rdev->desc->ops->set_load)
681 		return -EINVAL;
682 
683 	/* calc total requested load */
684 	list_for_each_entry(sibling, &rdev->consumer_list, list)
685 		current_uA += sibling->uA_load;
686 
687 	current_uA += rdev->constraints->system_load;
688 
689 	if (rdev->desc->ops->set_load) {
690 		/* set the optimum mode for our new total regulator load */
691 		err = rdev->desc->ops->set_load(rdev, current_uA);
692 		if (err < 0)
693 			rdev_err(rdev, "failed to set load %d\n", current_uA);
694 	} else {
695 		/* get output voltage */
696 		output_uV = _regulator_get_voltage(rdev);
697 		if (output_uV <= 0) {
698 			rdev_err(rdev, "invalid output voltage found\n");
699 			return -EINVAL;
700 		}
701 
702 		/* get input voltage */
703 		input_uV = 0;
704 		if (rdev->supply)
705 			input_uV = regulator_get_voltage(rdev->supply);
706 		if (input_uV <= 0)
707 			input_uV = rdev->constraints->input_uV;
708 		if (input_uV <= 0) {
709 			rdev_err(rdev, "invalid input voltage found\n");
710 			return -EINVAL;
711 		}
712 
713 		/* now get the optimum mode for our new total regulator load */
714 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 							 output_uV, current_uA);
716 
717 		/* check the new mode is allowed */
718 		err = regulator_mode_constrain(rdev, &mode);
719 		if (err < 0) {
720 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 				 current_uA, input_uV, output_uV);
722 			return err;
723 		}
724 
725 		err = rdev->desc->ops->set_mode(rdev, mode);
726 		if (err < 0)
727 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 	}
729 
730 	return err;
731 }
732 
733 static int suspend_set_state(struct regulator_dev *rdev,
734 	struct regulator_state *rstate)
735 {
736 	int ret = 0;
737 
738 	/* If we have no suspend mode configration don't set anything;
739 	 * only warn if the driver implements set_suspend_voltage or
740 	 * set_suspend_mode callback.
741 	 */
742 	if (!rstate->enabled && !rstate->disabled) {
743 		if (rdev->desc->ops->set_suspend_voltage ||
744 		    rdev->desc->ops->set_suspend_mode)
745 			rdev_warn(rdev, "No configuration\n");
746 		return 0;
747 	}
748 
749 	if (rstate->enabled && rstate->disabled) {
750 		rdev_err(rdev, "invalid configuration\n");
751 		return -EINVAL;
752 	}
753 
754 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 		ret = rdev->desc->ops->set_suspend_enable(rdev);
756 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 		ret = rdev->desc->ops->set_suspend_disable(rdev);
758 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 		ret = 0;
760 
761 	if (ret < 0) {
762 		rdev_err(rdev, "failed to enabled/disable\n");
763 		return ret;
764 	}
765 
766 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 		if (ret < 0) {
769 			rdev_err(rdev, "failed to set voltage\n");
770 			return ret;
771 		}
772 	}
773 
774 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 		if (ret < 0) {
777 			rdev_err(rdev, "failed to set mode\n");
778 			return ret;
779 		}
780 	}
781 	return ret;
782 }
783 
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 	if (!rdev->constraints)
788 		return -EINVAL;
789 
790 	switch (state) {
791 	case PM_SUSPEND_STANDBY:
792 		return suspend_set_state(rdev,
793 			&rdev->constraints->state_standby);
794 	case PM_SUSPEND_MEM:
795 		return suspend_set_state(rdev,
796 			&rdev->constraints->state_mem);
797 	case PM_SUSPEND_MAX:
798 		return suspend_set_state(rdev,
799 			&rdev->constraints->state_disk);
800 	default:
801 		return -EINVAL;
802 	}
803 }
804 
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 	struct regulation_constraints *constraints = rdev->constraints;
808 	char buf[160] = "";
809 	size_t len = sizeof(buf) - 1;
810 	int count = 0;
811 	int ret;
812 
813 	if (constraints->min_uV && constraints->max_uV) {
814 		if (constraints->min_uV == constraints->max_uV)
815 			count += scnprintf(buf + count, len - count, "%d mV ",
816 					   constraints->min_uV / 1000);
817 		else
818 			count += scnprintf(buf + count, len - count,
819 					   "%d <--> %d mV ",
820 					   constraints->min_uV / 1000,
821 					   constraints->max_uV / 1000);
822 	}
823 
824 	if (!constraints->min_uV ||
825 	    constraints->min_uV != constraints->max_uV) {
826 		ret = _regulator_get_voltage(rdev);
827 		if (ret > 0)
828 			count += scnprintf(buf + count, len - count,
829 					   "at %d mV ", ret / 1000);
830 	}
831 
832 	if (constraints->uV_offset)
833 		count += scnprintf(buf + count, len - count, "%dmV offset ",
834 				   constraints->uV_offset / 1000);
835 
836 	if (constraints->min_uA && constraints->max_uA) {
837 		if (constraints->min_uA == constraints->max_uA)
838 			count += scnprintf(buf + count, len - count, "%d mA ",
839 					   constraints->min_uA / 1000);
840 		else
841 			count += scnprintf(buf + count, len - count,
842 					   "%d <--> %d mA ",
843 					   constraints->min_uA / 1000,
844 					   constraints->max_uA / 1000);
845 	}
846 
847 	if (!constraints->min_uA ||
848 	    constraints->min_uA != constraints->max_uA) {
849 		ret = _regulator_get_current_limit(rdev);
850 		if (ret > 0)
851 			count += scnprintf(buf + count, len - count,
852 					   "at %d mA ", ret / 1000);
853 	}
854 
855 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 		count += scnprintf(buf + count, len - count, "fast ");
857 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 		count += scnprintf(buf + count, len - count, "normal ");
859 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 		count += scnprintf(buf + count, len - count, "idle ");
861 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 		count += scnprintf(buf + count, len - count, "standby");
863 
864 	if (!count)
865 		scnprintf(buf, len, "no parameters");
866 
867 	rdev_dbg(rdev, "%s\n", buf);
868 
869 	if ((constraints->min_uV != constraints->max_uV) &&
870 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 		rdev_warn(rdev,
872 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874 
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 	struct regulation_constraints *constraints)
877 {
878 	const struct regulator_ops *ops = rdev->desc->ops;
879 	int ret;
880 
881 	/* do we need to apply the constraint voltage */
882 	if (rdev->constraints->apply_uV &&
883 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 		int target_min, target_max;
885 		int current_uV = _regulator_get_voltage(rdev);
886 		if (current_uV < 0) {
887 			rdev_err(rdev,
888 				 "failed to get the current voltage(%d)\n",
889 				 current_uV);
890 			return current_uV;
891 		}
892 
893 		/*
894 		 * If we're below the minimum voltage move up to the
895 		 * minimum voltage, if we're above the maximum voltage
896 		 * then move down to the maximum.
897 		 */
898 		target_min = current_uV;
899 		target_max = current_uV;
900 
901 		if (current_uV < rdev->constraints->min_uV) {
902 			target_min = rdev->constraints->min_uV;
903 			target_max = rdev->constraints->min_uV;
904 		}
905 
906 		if (current_uV > rdev->constraints->max_uV) {
907 			target_min = rdev->constraints->max_uV;
908 			target_max = rdev->constraints->max_uV;
909 		}
910 
911 		if (target_min != current_uV || target_max != current_uV) {
912 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 				  current_uV, target_min, target_max);
914 			ret = _regulator_do_set_voltage(
915 				rdev, target_min, target_max);
916 			if (ret < 0) {
917 				rdev_err(rdev,
918 					"failed to apply %d-%duV constraint(%d)\n",
919 					target_min, target_max, ret);
920 				return ret;
921 			}
922 		}
923 	}
924 
925 	/* constrain machine-level voltage specs to fit
926 	 * the actual range supported by this regulator.
927 	 */
928 	if (ops->list_voltage && rdev->desc->n_voltages) {
929 		int	count = rdev->desc->n_voltages;
930 		int	i;
931 		int	min_uV = INT_MAX;
932 		int	max_uV = INT_MIN;
933 		int	cmin = constraints->min_uV;
934 		int	cmax = constraints->max_uV;
935 
936 		/* it's safe to autoconfigure fixed-voltage supplies
937 		   and the constraints are used by list_voltage. */
938 		if (count == 1 && !cmin) {
939 			cmin = 1;
940 			cmax = INT_MAX;
941 			constraints->min_uV = cmin;
942 			constraints->max_uV = cmax;
943 		}
944 
945 		/* voltage constraints are optional */
946 		if ((cmin == 0) && (cmax == 0))
947 			return 0;
948 
949 		/* else require explicit machine-level constraints */
950 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 			rdev_err(rdev, "invalid voltage constraints\n");
952 			return -EINVAL;
953 		}
954 
955 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 		for (i = 0; i < count; i++) {
957 			int	value;
958 
959 			value = ops->list_voltage(rdev, i);
960 			if (value <= 0)
961 				continue;
962 
963 			/* maybe adjust [min_uV..max_uV] */
964 			if (value >= cmin && value < min_uV)
965 				min_uV = value;
966 			if (value <= cmax && value > max_uV)
967 				max_uV = value;
968 		}
969 
970 		/* final: [min_uV..max_uV] valid iff constraints valid */
971 		if (max_uV < min_uV) {
972 			rdev_err(rdev,
973 				 "unsupportable voltage constraints %u-%uuV\n",
974 				 min_uV, max_uV);
975 			return -EINVAL;
976 		}
977 
978 		/* use regulator's subset of machine constraints */
979 		if (constraints->min_uV < min_uV) {
980 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 				 constraints->min_uV, min_uV);
982 			constraints->min_uV = min_uV;
983 		}
984 		if (constraints->max_uV > max_uV) {
985 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 				 constraints->max_uV, max_uV);
987 			constraints->max_uV = max_uV;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 	struct regulation_constraints *constraints)
996 {
997 	const struct regulator_ops *ops = rdev->desc->ops;
998 	int ret;
999 
1000 	if (!constraints->min_uA && !constraints->max_uA)
1001 		return 0;
1002 
1003 	if (constraints->min_uA > constraints->max_uA) {
1004 		rdev_err(rdev, "Invalid current constraints\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	if (!ops->set_current_limit || !ops->get_current_limit) {
1009 		rdev_warn(rdev, "Operation of current configuration missing\n");
1010 		return 0;
1011 	}
1012 
1013 	/* Set regulator current in constraints range */
1014 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 			constraints->max_uA);
1016 	if (ret < 0) {
1017 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 		return ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025 
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 	const struct regulation_constraints *constraints)
1039 {
1040 	int ret = 0;
1041 	const struct regulator_ops *ops = rdev->desc->ops;
1042 
1043 	if (constraints)
1044 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 					    GFP_KERNEL);
1046 	else
1047 		rdev->constraints = kzalloc(sizeof(*constraints),
1048 					    GFP_KERNEL);
1049 	if (!rdev->constraints)
1050 		return -ENOMEM;
1051 
1052 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 	if (ret != 0)
1054 		return ret;
1055 
1056 	ret = machine_constraints_current(rdev, rdev->constraints);
1057 	if (ret != 0)
1058 		return ret;
1059 
1060 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 		ret = ops->set_input_current_limit(rdev,
1062 						   rdev->constraints->ilim_uA);
1063 		if (ret < 0) {
1064 			rdev_err(rdev, "failed to set input limit\n");
1065 			return ret;
1066 		}
1067 	}
1068 
1069 	/* do we need to setup our suspend state */
1070 	if (rdev->constraints->initial_state) {
1071 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 		if (ret < 0) {
1073 			rdev_err(rdev, "failed to set suspend state\n");
1074 			return ret;
1075 		}
1076 	}
1077 
1078 	if (rdev->constraints->initial_mode) {
1079 		if (!ops->set_mode) {
1080 			rdev_err(rdev, "no set_mode operation\n");
1081 			return -EINVAL;
1082 		}
1083 
1084 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 		if (ret < 0) {
1086 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 			return ret;
1088 		}
1089 	}
1090 
1091 	/* If the constraints say the regulator should be on at this point
1092 	 * and we have control then make sure it is enabled.
1093 	 */
1094 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 		ret = _regulator_do_enable(rdev);
1096 		if (ret < 0 && ret != -EINVAL) {
1097 			rdev_err(rdev, "failed to enable\n");
1098 			return ret;
1099 		}
1100 	}
1101 
1102 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 		&& ops->set_ramp_delay) {
1104 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 		if (ret < 0) {
1106 			rdev_err(rdev, "failed to set ramp_delay\n");
1107 			return ret;
1108 		}
1109 	}
1110 
1111 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 		ret = ops->set_pull_down(rdev);
1113 		if (ret < 0) {
1114 			rdev_err(rdev, "failed to set pull down\n");
1115 			return ret;
1116 		}
1117 	}
1118 
1119 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 		ret = ops->set_soft_start(rdev);
1121 		if (ret < 0) {
1122 			rdev_err(rdev, "failed to set soft start\n");
1123 			return ret;
1124 		}
1125 	}
1126 
1127 	if (rdev->constraints->over_current_protection
1128 		&& ops->set_over_current_protection) {
1129 		ret = ops->set_over_current_protection(rdev);
1130 		if (ret < 0) {
1131 			rdev_err(rdev, "failed to set over current protection\n");
1132 			return ret;
1133 		}
1134 	}
1135 
1136 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 		bool ad_state = (rdev->constraints->active_discharge ==
1138 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139 
1140 		ret = ops->set_active_discharge(rdev, ad_state);
1141 		if (ret < 0) {
1142 			rdev_err(rdev, "failed to set active discharge\n");
1143 			return ret;
1144 		}
1145 	}
1146 
1147 	print_constraints(rdev);
1148 	return 0;
1149 }
1150 
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161 		      struct regulator_dev *supply_rdev)
1162 {
1163 	int err;
1164 
1165 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166 
1167 	if (!try_module_get(supply_rdev->owner))
1168 		return -ENODEV;
1169 
1170 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 	if (rdev->supply == NULL) {
1172 		err = -ENOMEM;
1173 		return err;
1174 	}
1175 	supply_rdev->open_count++;
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 				      const char *consumer_dev_name,
1193 				      const char *supply)
1194 {
1195 	struct regulator_map *node;
1196 	int has_dev;
1197 
1198 	if (supply == NULL)
1199 		return -EINVAL;
1200 
1201 	if (consumer_dev_name != NULL)
1202 		has_dev = 1;
1203 	else
1204 		has_dev = 0;
1205 
1206 	list_for_each_entry(node, &regulator_map_list, list) {
1207 		if (node->dev_name && consumer_dev_name) {
1208 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 				continue;
1210 		} else if (node->dev_name || consumer_dev_name) {
1211 			continue;
1212 		}
1213 
1214 		if (strcmp(node->supply, supply) != 0)
1215 			continue;
1216 
1217 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 			 consumer_dev_name,
1219 			 dev_name(&node->regulator->dev),
1220 			 node->regulator->desc->name,
1221 			 supply,
1222 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 		return -EBUSY;
1224 	}
1225 
1226 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 	if (node == NULL)
1228 		return -ENOMEM;
1229 
1230 	node->regulator = rdev;
1231 	node->supply = supply;
1232 
1233 	if (has_dev) {
1234 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 		if (node->dev_name == NULL) {
1236 			kfree(node);
1237 			return -ENOMEM;
1238 		}
1239 	}
1240 
1241 	list_add(&node->list, &regulator_map_list);
1242 	return 0;
1243 }
1244 
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 	struct regulator_map *node, *n;
1248 
1249 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 		if (rdev == node->regulator) {
1251 			list_del(&node->list);
1252 			kfree(node->dev_name);
1253 			kfree(node);
1254 		}
1255 	}
1256 }
1257 
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 					  char __user *user_buf,
1261 					  size_t count, loff_t *ppos)
1262 {
1263 	const struct regulator *regulator = file->private_data;
1264 	const struct regulation_constraints *c = regulator->rdev->constraints;
1265 	char *buf;
1266 	ssize_t ret;
1267 
1268 	if (!c)
1269 		return 0;
1270 
1271 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	ret = snprintf(buf, PAGE_SIZE,
1276 			"always_on: %u\n"
1277 			"boot_on: %u\n"
1278 			"apply_uV: %u\n"
1279 			"ramp_disable: %u\n"
1280 			"soft_start: %u\n"
1281 			"pull_down: %u\n"
1282 			"over_current_protection: %u\n",
1283 			c->always_on,
1284 			c->boot_on,
1285 			c->apply_uV,
1286 			c->ramp_disable,
1287 			c->soft_start,
1288 			c->pull_down,
1289 			c->over_current_protection);
1290 
1291 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 	kfree(buf);
1293 
1294 	return ret;
1295 }
1296 
1297 #endif
1298 
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 	.open = simple_open,
1302 	.read = constraint_flags_read_file,
1303 	.llseek = default_llseek,
1304 #endif
1305 };
1306 
1307 #define REG_STR_SIZE	64
1308 
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 					  struct device *dev,
1311 					  const char *supply_name)
1312 {
1313 	struct regulator *regulator;
1314 	char buf[REG_STR_SIZE];
1315 	int err, size;
1316 
1317 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 	if (regulator == NULL)
1319 		return NULL;
1320 
1321 	mutex_lock(&rdev->mutex);
1322 	regulator->rdev = rdev;
1323 	list_add(&regulator->list, &rdev->consumer_list);
1324 
1325 	if (dev) {
1326 		regulator->dev = dev;
1327 
1328 		/* Add a link to the device sysfs entry */
1329 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330 				 dev->kobj.name, supply_name);
1331 		if (size >= REG_STR_SIZE)
1332 			goto overflow_err;
1333 
1334 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 		if (regulator->supply_name == NULL)
1336 			goto overflow_err;
1337 
1338 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 					buf);
1340 		if (err) {
1341 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 				  dev->kobj.name, err);
1343 			/* non-fatal */
1344 		}
1345 	} else {
1346 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347 		if (regulator->supply_name == NULL)
1348 			goto overflow_err;
1349 	}
1350 
1351 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 						rdev->debugfs);
1353 	if (!regulator->debugfs) {
1354 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 	} else {
1356 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 				   &regulator->uA_load);
1358 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 				   &regulator->min_uV);
1360 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 				   &regulator->max_uV);
1362 		debugfs_create_file("constraint_flags", 0444,
1363 				    regulator->debugfs, regulator,
1364 				    &constraint_flags_fops);
1365 	}
1366 
1367 	/*
1368 	 * Check now if the regulator is an always on regulator - if
1369 	 * it is then we don't need to do nearly so much work for
1370 	 * enable/disable calls.
1371 	 */
1372 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 	    _regulator_is_enabled(rdev))
1374 		regulator->always_on = true;
1375 
1376 	mutex_unlock(&rdev->mutex);
1377 	return regulator;
1378 overflow_err:
1379 	list_del(&regulator->list);
1380 	kfree(regulator);
1381 	mutex_unlock(&rdev->mutex);
1382 	return NULL;
1383 }
1384 
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 	if (rdev->constraints && rdev->constraints->enable_time)
1388 		return rdev->constraints->enable_time;
1389 	if (!rdev->desc->ops->enable_time)
1390 		return rdev->desc->enable_time;
1391 	return rdev->desc->ops->enable_time(rdev);
1392 }
1393 
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 		struct device *dev, const char *supply)
1396 {
1397 	struct regulator_supply_alias *map;
1398 
1399 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 			return map;
1402 
1403 	return NULL;
1404 }
1405 
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 	struct regulator_supply_alias *map;
1409 
1410 	map = regulator_find_supply_alias(*dev, *supply);
1411 	if (map) {
1412 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 				*supply, map->alias_supply,
1414 				dev_name(map->alias_dev));
1415 		*dev = map->alias_dev;
1416 		*supply = map->alias_supply;
1417 	}
1418 }
1419 
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 	return dev->of_node == data;
1423 }
1424 
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 	struct device *dev;
1428 
1429 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430 
1431 	return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433 
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 	struct regulator_dev *r = dev_to_rdev(dev);
1437 
1438 	return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440 
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 	struct device *dev;
1444 
1445 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446 
1447 	return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449 
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one.
1459  * The refcount must be dropped by calling put_device().
1460  * On failure one of the following ERR-PTR-encoded values is returned:
1461  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462  * in the future.
1463  */
1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1465 						  const char *supply)
1466 {
1467 	struct regulator_dev *r;
1468 	struct device_node *node;
1469 	struct regulator_map *map;
1470 	const char *devname = NULL;
1471 
1472 	regulator_supply_alias(&dev, &supply);
1473 
1474 	/* first do a dt based lookup */
1475 	if (dev && dev->of_node) {
1476 		node = of_get_regulator(dev, supply);
1477 		if (node) {
1478 			r = of_find_regulator_by_node(node);
1479 			if (r)
1480 				return r;
1481 
1482 			/*
1483 			 * We have a node, but there is no device.
1484 			 * assume it has not registered yet.
1485 			 */
1486 			return ERR_PTR(-EPROBE_DEFER);
1487 		}
1488 	}
1489 
1490 	/* if not found, try doing it non-dt way */
1491 	if (dev)
1492 		devname = dev_name(dev);
1493 
1494 	r = regulator_lookup_by_name(supply);
1495 	if (r)
1496 		return r;
1497 
1498 	mutex_lock(&regulator_list_mutex);
1499 	list_for_each_entry(map, &regulator_map_list, list) {
1500 		/* If the mapping has a device set up it must match */
1501 		if (map->dev_name &&
1502 		    (!devname || strcmp(map->dev_name, devname)))
1503 			continue;
1504 
1505 		if (strcmp(map->supply, supply) == 0 &&
1506 		    get_device(&map->regulator->dev)) {
1507 			r = map->regulator;
1508 			break;
1509 		}
1510 	}
1511 	mutex_unlock(&regulator_list_mutex);
1512 
1513 	if (r)
1514 		return r;
1515 
1516 	return ERR_PTR(-ENODEV);
1517 }
1518 
1519 static int regulator_resolve_supply(struct regulator_dev *rdev)
1520 {
1521 	struct regulator_dev *r;
1522 	struct device *dev = rdev->dev.parent;
1523 	int ret;
1524 
1525 	/* No supply to resovle? */
1526 	if (!rdev->supply_name)
1527 		return 0;
1528 
1529 	/* Supply already resolved? */
1530 	if (rdev->supply)
1531 		return 0;
1532 
1533 	r = regulator_dev_lookup(dev, rdev->supply_name);
1534 	if (IS_ERR(r)) {
1535 		ret = PTR_ERR(r);
1536 
1537 		if (ret == -ENODEV) {
1538 			/*
1539 			 * No supply was specified for this regulator and
1540 			 * there will never be one.
1541 			 */
1542 			return 0;
1543 		}
1544 
1545 		/* Did the lookup explicitly defer for us? */
1546 		if (ret == -EPROBE_DEFER)
1547 			return ret;
1548 
1549 		if (have_full_constraints()) {
1550 			r = dummy_regulator_rdev;
1551 			get_device(&r->dev);
1552 		} else {
1553 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1554 				rdev->supply_name, rdev->desc->name);
1555 			return -EPROBE_DEFER;
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * If the supply's parent device is not the same as the
1561 	 * regulator's parent device, then ensure the parent device
1562 	 * is bound before we resolve the supply, in case the parent
1563 	 * device get probe deferred and unregisters the supply.
1564 	 */
1565 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1566 		if (!device_is_bound(r->dev.parent)) {
1567 			put_device(&r->dev);
1568 			return -EPROBE_DEFER;
1569 		}
1570 	}
1571 
1572 	/* Recursively resolve the supply of the supply */
1573 	ret = regulator_resolve_supply(r);
1574 	if (ret < 0) {
1575 		put_device(&r->dev);
1576 		return ret;
1577 	}
1578 
1579 	ret = set_supply(rdev, r);
1580 	if (ret < 0) {
1581 		put_device(&r->dev);
1582 		return ret;
1583 	}
1584 
1585 	/* Cascade always-on state to supply */
1586 	if (_regulator_is_enabled(rdev)) {
1587 		ret = regulator_enable(rdev->supply);
1588 		if (ret < 0) {
1589 			_regulator_put(rdev->supply);
1590 			rdev->supply = NULL;
1591 			return ret;
1592 		}
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /* Internal regulator request function */
1599 struct regulator *_regulator_get(struct device *dev, const char *id,
1600 				 enum regulator_get_type get_type)
1601 {
1602 	struct regulator_dev *rdev;
1603 	struct regulator *regulator;
1604 	const char *devname = dev ? dev_name(dev) : "deviceless";
1605 	int ret;
1606 
1607 	if (get_type >= MAX_GET_TYPE) {
1608 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1609 		return ERR_PTR(-EINVAL);
1610 	}
1611 
1612 	if (id == NULL) {
1613 		pr_err("get() with no identifier\n");
1614 		return ERR_PTR(-EINVAL);
1615 	}
1616 
1617 	rdev = regulator_dev_lookup(dev, id);
1618 	if (IS_ERR(rdev)) {
1619 		ret = PTR_ERR(rdev);
1620 
1621 		/*
1622 		 * If regulator_dev_lookup() fails with error other
1623 		 * than -ENODEV our job here is done, we simply return it.
1624 		 */
1625 		if (ret != -ENODEV)
1626 			return ERR_PTR(ret);
1627 
1628 		if (!have_full_constraints()) {
1629 			dev_warn(dev,
1630 				 "incomplete constraints, dummy supplies not allowed\n");
1631 			return ERR_PTR(-ENODEV);
1632 		}
1633 
1634 		switch (get_type) {
1635 		case NORMAL_GET:
1636 			/*
1637 			 * Assume that a regulator is physically present and
1638 			 * enabled, even if it isn't hooked up, and just
1639 			 * provide a dummy.
1640 			 */
1641 			dev_warn(dev,
1642 				 "%s supply %s not found, using dummy regulator\n",
1643 				 devname, id);
1644 			rdev = dummy_regulator_rdev;
1645 			get_device(&rdev->dev);
1646 			break;
1647 
1648 		case EXCLUSIVE_GET:
1649 			dev_warn(dev,
1650 				 "dummy supplies not allowed for exclusive requests\n");
1651 			/* fall through */
1652 
1653 		default:
1654 			return ERR_PTR(-ENODEV);
1655 		}
1656 	}
1657 
1658 	if (rdev->exclusive) {
1659 		regulator = ERR_PTR(-EPERM);
1660 		put_device(&rdev->dev);
1661 		return regulator;
1662 	}
1663 
1664 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1665 		regulator = ERR_PTR(-EBUSY);
1666 		put_device(&rdev->dev);
1667 		return regulator;
1668 	}
1669 
1670 	ret = regulator_resolve_supply(rdev);
1671 	if (ret < 0) {
1672 		regulator = ERR_PTR(ret);
1673 		put_device(&rdev->dev);
1674 		return regulator;
1675 	}
1676 
1677 	if (!try_module_get(rdev->owner)) {
1678 		regulator = ERR_PTR(-EPROBE_DEFER);
1679 		put_device(&rdev->dev);
1680 		return regulator;
1681 	}
1682 
1683 	regulator = create_regulator(rdev, dev, id);
1684 	if (regulator == NULL) {
1685 		regulator = ERR_PTR(-ENOMEM);
1686 		put_device(&rdev->dev);
1687 		module_put(rdev->owner);
1688 		return regulator;
1689 	}
1690 
1691 	rdev->open_count++;
1692 	if (get_type == EXCLUSIVE_GET) {
1693 		rdev->exclusive = 1;
1694 
1695 		ret = _regulator_is_enabled(rdev);
1696 		if (ret > 0)
1697 			rdev->use_count = 1;
1698 		else
1699 			rdev->use_count = 0;
1700 	}
1701 
1702 	return regulator;
1703 }
1704 
1705 /**
1706  * regulator_get - lookup and obtain a reference to a regulator.
1707  * @dev: device for regulator "consumer"
1708  * @id: Supply name or regulator ID.
1709  *
1710  * Returns a struct regulator corresponding to the regulator producer,
1711  * or IS_ERR() condition containing errno.
1712  *
1713  * Use of supply names configured via regulator_set_device_supply() is
1714  * strongly encouraged.  It is recommended that the supply name used
1715  * should match the name used for the supply and/or the relevant
1716  * device pins in the datasheet.
1717  */
1718 struct regulator *regulator_get(struct device *dev, const char *id)
1719 {
1720 	return _regulator_get(dev, id, NORMAL_GET);
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_get);
1723 
1724 /**
1725  * regulator_get_exclusive - obtain exclusive access to a regulator.
1726  * @dev: device for regulator "consumer"
1727  * @id: Supply name or regulator ID.
1728  *
1729  * Returns a struct regulator corresponding to the regulator producer,
1730  * or IS_ERR() condition containing errno.  Other consumers will be
1731  * unable to obtain this regulator while this reference is held and the
1732  * use count for the regulator will be initialised to reflect the current
1733  * state of the regulator.
1734  *
1735  * This is intended for use by consumers which cannot tolerate shared
1736  * use of the regulator such as those which need to force the
1737  * regulator off for correct operation of the hardware they are
1738  * controlling.
1739  *
1740  * Use of supply names configured via regulator_set_device_supply() is
1741  * strongly encouraged.  It is recommended that the supply name used
1742  * should match the name used for the supply and/or the relevant
1743  * device pins in the datasheet.
1744  */
1745 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1746 {
1747 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1750 
1751 /**
1752  * regulator_get_optional - obtain optional access to a regulator.
1753  * @dev: device for regulator "consumer"
1754  * @id: Supply name or regulator ID.
1755  *
1756  * Returns a struct regulator corresponding to the regulator producer,
1757  * or IS_ERR() condition containing errno.
1758  *
1759  * This is intended for use by consumers for devices which can have
1760  * some supplies unconnected in normal use, such as some MMC devices.
1761  * It can allow the regulator core to provide stub supplies for other
1762  * supplies requested using normal regulator_get() calls without
1763  * disrupting the operation of drivers that can handle absent
1764  * supplies.
1765  *
1766  * Use of supply names configured via regulator_set_device_supply() is
1767  * strongly encouraged.  It is recommended that the supply name used
1768  * should match the name used for the supply and/or the relevant
1769  * device pins in the datasheet.
1770  */
1771 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1772 {
1773 	return _regulator_get(dev, id, OPTIONAL_GET);
1774 }
1775 EXPORT_SYMBOL_GPL(regulator_get_optional);
1776 
1777 /* regulator_list_mutex lock held by regulator_put() */
1778 static void _regulator_put(struct regulator *regulator)
1779 {
1780 	struct regulator_dev *rdev;
1781 
1782 	if (IS_ERR_OR_NULL(regulator))
1783 		return;
1784 
1785 	lockdep_assert_held_once(&regulator_list_mutex);
1786 
1787 	rdev = regulator->rdev;
1788 
1789 	debugfs_remove_recursive(regulator->debugfs);
1790 
1791 	/* remove any sysfs entries */
1792 	if (regulator->dev)
1793 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1794 	mutex_lock(&rdev->mutex);
1795 	list_del(&regulator->list);
1796 
1797 	rdev->open_count--;
1798 	rdev->exclusive = 0;
1799 	put_device(&rdev->dev);
1800 	mutex_unlock(&rdev->mutex);
1801 
1802 	kfree(regulator->supply_name);
1803 	kfree(regulator);
1804 
1805 	module_put(rdev->owner);
1806 }
1807 
1808 /**
1809  * regulator_put - "free" the regulator source
1810  * @regulator: regulator source
1811  *
1812  * Note: drivers must ensure that all regulator_enable calls made on this
1813  * regulator source are balanced by regulator_disable calls prior to calling
1814  * this function.
1815  */
1816 void regulator_put(struct regulator *regulator)
1817 {
1818 	mutex_lock(&regulator_list_mutex);
1819 	_regulator_put(regulator);
1820 	mutex_unlock(&regulator_list_mutex);
1821 }
1822 EXPORT_SYMBOL_GPL(regulator_put);
1823 
1824 /**
1825  * regulator_register_supply_alias - Provide device alias for supply lookup
1826  *
1827  * @dev: device that will be given as the regulator "consumer"
1828  * @id: Supply name or regulator ID
1829  * @alias_dev: device that should be used to lookup the supply
1830  * @alias_id: Supply name or regulator ID that should be used to lookup the
1831  * supply
1832  *
1833  * All lookups for id on dev will instead be conducted for alias_id on
1834  * alias_dev.
1835  */
1836 int regulator_register_supply_alias(struct device *dev, const char *id,
1837 				    struct device *alias_dev,
1838 				    const char *alias_id)
1839 {
1840 	struct regulator_supply_alias *map;
1841 
1842 	map = regulator_find_supply_alias(dev, id);
1843 	if (map)
1844 		return -EEXIST;
1845 
1846 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1847 	if (!map)
1848 		return -ENOMEM;
1849 
1850 	map->src_dev = dev;
1851 	map->src_supply = id;
1852 	map->alias_dev = alias_dev;
1853 	map->alias_supply = alias_id;
1854 
1855 	list_add(&map->list, &regulator_supply_alias_list);
1856 
1857 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1858 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1859 
1860 	return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1863 
1864 /**
1865  * regulator_unregister_supply_alias - Remove device alias
1866  *
1867  * @dev: device that will be given as the regulator "consumer"
1868  * @id: Supply name or regulator ID
1869  *
1870  * Remove a lookup alias if one exists for id on dev.
1871  */
1872 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1873 {
1874 	struct regulator_supply_alias *map;
1875 
1876 	map = regulator_find_supply_alias(dev, id);
1877 	if (map) {
1878 		list_del(&map->list);
1879 		kfree(map);
1880 	}
1881 }
1882 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1883 
1884 /**
1885  * regulator_bulk_register_supply_alias - register multiple aliases
1886  *
1887  * @dev: device that will be given as the regulator "consumer"
1888  * @id: List of supply names or regulator IDs
1889  * @alias_dev: device that should be used to lookup the supply
1890  * @alias_id: List of supply names or regulator IDs that should be used to
1891  * lookup the supply
1892  * @num_id: Number of aliases to register
1893  *
1894  * @return 0 on success, an errno on failure.
1895  *
1896  * This helper function allows drivers to register several supply
1897  * aliases in one operation.  If any of the aliases cannot be
1898  * registered any aliases that were registered will be removed
1899  * before returning to the caller.
1900  */
1901 int regulator_bulk_register_supply_alias(struct device *dev,
1902 					 const char *const *id,
1903 					 struct device *alias_dev,
1904 					 const char *const *alias_id,
1905 					 int num_id)
1906 {
1907 	int i;
1908 	int ret;
1909 
1910 	for (i = 0; i < num_id; ++i) {
1911 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1912 						      alias_id[i]);
1913 		if (ret < 0)
1914 			goto err;
1915 	}
1916 
1917 	return 0;
1918 
1919 err:
1920 	dev_err(dev,
1921 		"Failed to create supply alias %s,%s -> %s,%s\n",
1922 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1923 
1924 	while (--i >= 0)
1925 		regulator_unregister_supply_alias(dev, id[i]);
1926 
1927 	return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1930 
1931 /**
1932  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1933  *
1934  * @dev: device that will be given as the regulator "consumer"
1935  * @id: List of supply names or regulator IDs
1936  * @num_id: Number of aliases to unregister
1937  *
1938  * This helper function allows drivers to unregister several supply
1939  * aliases in one operation.
1940  */
1941 void regulator_bulk_unregister_supply_alias(struct device *dev,
1942 					    const char *const *id,
1943 					    int num_id)
1944 {
1945 	int i;
1946 
1947 	for (i = 0; i < num_id; ++i)
1948 		regulator_unregister_supply_alias(dev, id[i]);
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1951 
1952 
1953 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1954 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1955 				const struct regulator_config *config)
1956 {
1957 	struct regulator_enable_gpio *pin;
1958 	struct gpio_desc *gpiod;
1959 	int ret;
1960 
1961 	gpiod = gpio_to_desc(config->ena_gpio);
1962 
1963 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1964 		if (pin->gpiod == gpiod) {
1965 			rdev_dbg(rdev, "GPIO %d is already used\n",
1966 				config->ena_gpio);
1967 			goto update_ena_gpio_to_rdev;
1968 		}
1969 	}
1970 
1971 	ret = gpio_request_one(config->ena_gpio,
1972 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1973 				rdev_get_name(rdev));
1974 	if (ret)
1975 		return ret;
1976 
1977 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1978 	if (pin == NULL) {
1979 		gpio_free(config->ena_gpio);
1980 		return -ENOMEM;
1981 	}
1982 
1983 	pin->gpiod = gpiod;
1984 	pin->ena_gpio_invert = config->ena_gpio_invert;
1985 	list_add(&pin->list, &regulator_ena_gpio_list);
1986 
1987 update_ena_gpio_to_rdev:
1988 	pin->request_count++;
1989 	rdev->ena_pin = pin;
1990 	return 0;
1991 }
1992 
1993 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1994 {
1995 	struct regulator_enable_gpio *pin, *n;
1996 
1997 	if (!rdev->ena_pin)
1998 		return;
1999 
2000 	/* Free the GPIO only in case of no use */
2001 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2002 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2003 			if (pin->request_count <= 1) {
2004 				pin->request_count = 0;
2005 				gpiod_put(pin->gpiod);
2006 				list_del(&pin->list);
2007 				kfree(pin);
2008 				rdev->ena_pin = NULL;
2009 				return;
2010 			} else {
2011 				pin->request_count--;
2012 			}
2013 		}
2014 	}
2015 }
2016 
2017 /**
2018  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2019  * @rdev: regulator_dev structure
2020  * @enable: enable GPIO at initial use?
2021  *
2022  * GPIO is enabled in case of initial use. (enable_count is 0)
2023  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2024  */
2025 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2026 {
2027 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2028 
2029 	if (!pin)
2030 		return -EINVAL;
2031 
2032 	if (enable) {
2033 		/* Enable GPIO at initial use */
2034 		if (pin->enable_count == 0)
2035 			gpiod_set_value_cansleep(pin->gpiod,
2036 						 !pin->ena_gpio_invert);
2037 
2038 		pin->enable_count++;
2039 	} else {
2040 		if (pin->enable_count > 1) {
2041 			pin->enable_count--;
2042 			return 0;
2043 		}
2044 
2045 		/* Disable GPIO if not used */
2046 		if (pin->enable_count <= 1) {
2047 			gpiod_set_value_cansleep(pin->gpiod,
2048 						 pin->ena_gpio_invert);
2049 			pin->enable_count = 0;
2050 		}
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 /**
2057  * _regulator_enable_delay - a delay helper function
2058  * @delay: time to delay in microseconds
2059  *
2060  * Delay for the requested amount of time as per the guidelines in:
2061  *
2062  *     Documentation/timers/timers-howto.txt
2063  *
2064  * The assumption here is that regulators will never be enabled in
2065  * atomic context and therefore sleeping functions can be used.
2066  */
2067 static void _regulator_enable_delay(unsigned int delay)
2068 {
2069 	unsigned int ms = delay / 1000;
2070 	unsigned int us = delay % 1000;
2071 
2072 	if (ms > 0) {
2073 		/*
2074 		 * For small enough values, handle super-millisecond
2075 		 * delays in the usleep_range() call below.
2076 		 */
2077 		if (ms < 20)
2078 			us += ms * 1000;
2079 		else
2080 			msleep(ms);
2081 	}
2082 
2083 	/*
2084 	 * Give the scheduler some room to coalesce with any other
2085 	 * wakeup sources. For delays shorter than 10 us, don't even
2086 	 * bother setting up high-resolution timers and just busy-
2087 	 * loop.
2088 	 */
2089 	if (us >= 10)
2090 		usleep_range(us, us + 100);
2091 	else
2092 		udelay(us);
2093 }
2094 
2095 static int _regulator_do_enable(struct regulator_dev *rdev)
2096 {
2097 	int ret, delay;
2098 
2099 	/* Query before enabling in case configuration dependent.  */
2100 	ret = _regulator_get_enable_time(rdev);
2101 	if (ret >= 0) {
2102 		delay = ret;
2103 	} else {
2104 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2105 		delay = 0;
2106 	}
2107 
2108 	trace_regulator_enable(rdev_get_name(rdev));
2109 
2110 	if (rdev->desc->off_on_delay) {
2111 		/* if needed, keep a distance of off_on_delay from last time
2112 		 * this regulator was disabled.
2113 		 */
2114 		unsigned long start_jiffy = jiffies;
2115 		unsigned long intended, max_delay, remaining;
2116 
2117 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2118 		intended = rdev->last_off_jiffy + max_delay;
2119 
2120 		if (time_before(start_jiffy, intended)) {
2121 			/* calc remaining jiffies to deal with one-time
2122 			 * timer wrapping.
2123 			 * in case of multiple timer wrapping, either it can be
2124 			 * detected by out-of-range remaining, or it cannot be
2125 			 * detected and we gets a panelty of
2126 			 * _regulator_enable_delay().
2127 			 */
2128 			remaining = intended - start_jiffy;
2129 			if (remaining <= max_delay)
2130 				_regulator_enable_delay(
2131 						jiffies_to_usecs(remaining));
2132 		}
2133 	}
2134 
2135 	if (rdev->ena_pin) {
2136 		if (!rdev->ena_gpio_state) {
2137 			ret = regulator_ena_gpio_ctrl(rdev, true);
2138 			if (ret < 0)
2139 				return ret;
2140 			rdev->ena_gpio_state = 1;
2141 		}
2142 	} else if (rdev->desc->ops->enable) {
2143 		ret = rdev->desc->ops->enable(rdev);
2144 		if (ret < 0)
2145 			return ret;
2146 	} else {
2147 		return -EINVAL;
2148 	}
2149 
2150 	/* Allow the regulator to ramp; it would be useful to extend
2151 	 * this for bulk operations so that the regulators can ramp
2152 	 * together.  */
2153 	trace_regulator_enable_delay(rdev_get_name(rdev));
2154 
2155 	_regulator_enable_delay(delay);
2156 
2157 	trace_regulator_enable_complete(rdev_get_name(rdev));
2158 
2159 	return 0;
2160 }
2161 
2162 /* locks held by regulator_enable() */
2163 static int _regulator_enable(struct regulator_dev *rdev)
2164 {
2165 	int ret;
2166 
2167 	lockdep_assert_held_once(&rdev->mutex);
2168 
2169 	/* check voltage and requested load before enabling */
2170 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2171 		drms_uA_update(rdev);
2172 
2173 	if (rdev->use_count == 0) {
2174 		/* The regulator may on if it's not switchable or left on */
2175 		ret = _regulator_is_enabled(rdev);
2176 		if (ret == -EINVAL || ret == 0) {
2177 			if (!regulator_ops_is_valid(rdev,
2178 					REGULATOR_CHANGE_STATUS))
2179 				return -EPERM;
2180 
2181 			ret = _regulator_do_enable(rdev);
2182 			if (ret < 0)
2183 				return ret;
2184 
2185 		} else if (ret < 0) {
2186 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2187 			return ret;
2188 		}
2189 		/* Fallthrough on positive return values - already enabled */
2190 	}
2191 
2192 	rdev->use_count++;
2193 
2194 	return 0;
2195 }
2196 
2197 /**
2198  * regulator_enable - enable regulator output
2199  * @regulator: regulator source
2200  *
2201  * Request that the regulator be enabled with the regulator output at
2202  * the predefined voltage or current value.  Calls to regulator_enable()
2203  * must be balanced with calls to regulator_disable().
2204  *
2205  * NOTE: the output value can be set by other drivers, boot loader or may be
2206  * hardwired in the regulator.
2207  */
2208 int regulator_enable(struct regulator *regulator)
2209 {
2210 	struct regulator_dev *rdev = regulator->rdev;
2211 	int ret = 0;
2212 
2213 	if (regulator->always_on)
2214 		return 0;
2215 
2216 	if (rdev->supply) {
2217 		ret = regulator_enable(rdev->supply);
2218 		if (ret != 0)
2219 			return ret;
2220 	}
2221 
2222 	mutex_lock(&rdev->mutex);
2223 	ret = _regulator_enable(rdev);
2224 	mutex_unlock(&rdev->mutex);
2225 
2226 	if (ret != 0 && rdev->supply)
2227 		regulator_disable(rdev->supply);
2228 
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_enable);
2232 
2233 static int _regulator_do_disable(struct regulator_dev *rdev)
2234 {
2235 	int ret;
2236 
2237 	trace_regulator_disable(rdev_get_name(rdev));
2238 
2239 	if (rdev->ena_pin) {
2240 		if (rdev->ena_gpio_state) {
2241 			ret = regulator_ena_gpio_ctrl(rdev, false);
2242 			if (ret < 0)
2243 				return ret;
2244 			rdev->ena_gpio_state = 0;
2245 		}
2246 
2247 	} else if (rdev->desc->ops->disable) {
2248 		ret = rdev->desc->ops->disable(rdev);
2249 		if (ret != 0)
2250 			return ret;
2251 	}
2252 
2253 	/* cares about last_off_jiffy only if off_on_delay is required by
2254 	 * device.
2255 	 */
2256 	if (rdev->desc->off_on_delay)
2257 		rdev->last_off_jiffy = jiffies;
2258 
2259 	trace_regulator_disable_complete(rdev_get_name(rdev));
2260 
2261 	return 0;
2262 }
2263 
2264 /* locks held by regulator_disable() */
2265 static int _regulator_disable(struct regulator_dev *rdev)
2266 {
2267 	int ret = 0;
2268 
2269 	lockdep_assert_held_once(&rdev->mutex);
2270 
2271 	if (WARN(rdev->use_count <= 0,
2272 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2273 		return -EIO;
2274 
2275 	/* are we the last user and permitted to disable ? */
2276 	if (rdev->use_count == 1 &&
2277 	    (rdev->constraints && !rdev->constraints->always_on)) {
2278 
2279 		/* we are last user */
2280 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2281 			ret = _notifier_call_chain(rdev,
2282 						   REGULATOR_EVENT_PRE_DISABLE,
2283 						   NULL);
2284 			if (ret & NOTIFY_STOP_MASK)
2285 				return -EINVAL;
2286 
2287 			ret = _regulator_do_disable(rdev);
2288 			if (ret < 0) {
2289 				rdev_err(rdev, "failed to disable\n");
2290 				_notifier_call_chain(rdev,
2291 						REGULATOR_EVENT_ABORT_DISABLE,
2292 						NULL);
2293 				return ret;
2294 			}
2295 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2296 					NULL);
2297 		}
2298 
2299 		rdev->use_count = 0;
2300 	} else if (rdev->use_count > 1) {
2301 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2302 			drms_uA_update(rdev);
2303 
2304 		rdev->use_count--;
2305 	}
2306 
2307 	return ret;
2308 }
2309 
2310 /**
2311  * regulator_disable - disable regulator output
2312  * @regulator: regulator source
2313  *
2314  * Disable the regulator output voltage or current.  Calls to
2315  * regulator_enable() must be balanced with calls to
2316  * regulator_disable().
2317  *
2318  * NOTE: this will only disable the regulator output if no other consumer
2319  * devices have it enabled, the regulator device supports disabling and
2320  * machine constraints permit this operation.
2321  */
2322 int regulator_disable(struct regulator *regulator)
2323 {
2324 	struct regulator_dev *rdev = regulator->rdev;
2325 	int ret = 0;
2326 
2327 	if (regulator->always_on)
2328 		return 0;
2329 
2330 	mutex_lock(&rdev->mutex);
2331 	ret = _regulator_disable(rdev);
2332 	mutex_unlock(&rdev->mutex);
2333 
2334 	if (ret == 0 && rdev->supply)
2335 		regulator_disable(rdev->supply);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_disable);
2340 
2341 /* locks held by regulator_force_disable() */
2342 static int _regulator_force_disable(struct regulator_dev *rdev)
2343 {
2344 	int ret = 0;
2345 
2346 	lockdep_assert_held_once(&rdev->mutex);
2347 
2348 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2350 	if (ret & NOTIFY_STOP_MASK)
2351 		return -EINVAL;
2352 
2353 	ret = _regulator_do_disable(rdev);
2354 	if (ret < 0) {
2355 		rdev_err(rdev, "failed to force disable\n");
2356 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2357 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2358 		return ret;
2359 	}
2360 
2361 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2362 			REGULATOR_EVENT_DISABLE, NULL);
2363 
2364 	return 0;
2365 }
2366 
2367 /**
2368  * regulator_force_disable - force disable regulator output
2369  * @regulator: regulator source
2370  *
2371  * Forcibly disable the regulator output voltage or current.
2372  * NOTE: this *will* disable the regulator output even if other consumer
2373  * devices have it enabled. This should be used for situations when device
2374  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2375  */
2376 int regulator_force_disable(struct regulator *regulator)
2377 {
2378 	struct regulator_dev *rdev = regulator->rdev;
2379 	int ret;
2380 
2381 	mutex_lock(&rdev->mutex);
2382 	regulator->uA_load = 0;
2383 	ret = _regulator_force_disable(regulator->rdev);
2384 	mutex_unlock(&rdev->mutex);
2385 
2386 	if (rdev->supply)
2387 		while (rdev->open_count--)
2388 			regulator_disable(rdev->supply);
2389 
2390 	return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_force_disable);
2393 
2394 static void regulator_disable_work(struct work_struct *work)
2395 {
2396 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2397 						  disable_work.work);
2398 	int count, i, ret;
2399 
2400 	mutex_lock(&rdev->mutex);
2401 
2402 	BUG_ON(!rdev->deferred_disables);
2403 
2404 	count = rdev->deferred_disables;
2405 	rdev->deferred_disables = 0;
2406 
2407 	for (i = 0; i < count; i++) {
2408 		ret = _regulator_disable(rdev);
2409 		if (ret != 0)
2410 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2411 	}
2412 
2413 	mutex_unlock(&rdev->mutex);
2414 
2415 	if (rdev->supply) {
2416 		for (i = 0; i < count; i++) {
2417 			ret = regulator_disable(rdev->supply);
2418 			if (ret != 0) {
2419 				rdev_err(rdev,
2420 					 "Supply disable failed: %d\n", ret);
2421 			}
2422 		}
2423 	}
2424 }
2425 
2426 /**
2427  * regulator_disable_deferred - disable regulator output with delay
2428  * @regulator: regulator source
2429  * @ms: miliseconds until the regulator is disabled
2430  *
2431  * Execute regulator_disable() on the regulator after a delay.  This
2432  * is intended for use with devices that require some time to quiesce.
2433  *
2434  * NOTE: this will only disable the regulator output if no other consumer
2435  * devices have it enabled, the regulator device supports disabling and
2436  * machine constraints permit this operation.
2437  */
2438 int regulator_disable_deferred(struct regulator *regulator, int ms)
2439 {
2440 	struct regulator_dev *rdev = regulator->rdev;
2441 
2442 	if (regulator->always_on)
2443 		return 0;
2444 
2445 	if (!ms)
2446 		return regulator_disable(regulator);
2447 
2448 	mutex_lock(&rdev->mutex);
2449 	rdev->deferred_disables++;
2450 	mutex_unlock(&rdev->mutex);
2451 
2452 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2453 			   msecs_to_jiffies(ms));
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2457 
2458 static int _regulator_is_enabled(struct regulator_dev *rdev)
2459 {
2460 	/* A GPIO control always takes precedence */
2461 	if (rdev->ena_pin)
2462 		return rdev->ena_gpio_state;
2463 
2464 	/* If we don't know then assume that the regulator is always on */
2465 	if (!rdev->desc->ops->is_enabled)
2466 		return 1;
2467 
2468 	return rdev->desc->ops->is_enabled(rdev);
2469 }
2470 
2471 static int _regulator_list_voltage(struct regulator *regulator,
2472 				    unsigned selector, int lock)
2473 {
2474 	struct regulator_dev *rdev = regulator->rdev;
2475 	const struct regulator_ops *ops = rdev->desc->ops;
2476 	int ret;
2477 
2478 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2479 		return rdev->desc->fixed_uV;
2480 
2481 	if (ops->list_voltage) {
2482 		if (selector >= rdev->desc->n_voltages)
2483 			return -EINVAL;
2484 		if (lock)
2485 			mutex_lock(&rdev->mutex);
2486 		ret = ops->list_voltage(rdev, selector);
2487 		if (lock)
2488 			mutex_unlock(&rdev->mutex);
2489 	} else if (rdev->supply) {
2490 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2491 	} else {
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (ret > 0) {
2496 		if (ret < rdev->constraints->min_uV)
2497 			ret = 0;
2498 		else if (ret > rdev->constraints->max_uV)
2499 			ret = 0;
2500 	}
2501 
2502 	return ret;
2503 }
2504 
2505 /**
2506  * regulator_is_enabled - is the regulator output enabled
2507  * @regulator: regulator source
2508  *
2509  * Returns positive if the regulator driver backing the source/client
2510  * has requested that the device be enabled, zero if it hasn't, else a
2511  * negative errno code.
2512  *
2513  * Note that the device backing this regulator handle can have multiple
2514  * users, so it might be enabled even if regulator_enable() was never
2515  * called for this particular source.
2516  */
2517 int regulator_is_enabled(struct regulator *regulator)
2518 {
2519 	int ret;
2520 
2521 	if (regulator->always_on)
2522 		return 1;
2523 
2524 	mutex_lock(&regulator->rdev->mutex);
2525 	ret = _regulator_is_enabled(regulator->rdev);
2526 	mutex_unlock(&regulator->rdev->mutex);
2527 
2528 	return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2531 
2532 /**
2533  * regulator_count_voltages - count regulator_list_voltage() selectors
2534  * @regulator: regulator source
2535  *
2536  * Returns number of selectors, or negative errno.  Selectors are
2537  * numbered starting at zero, and typically correspond to bitfields
2538  * in hardware registers.
2539  */
2540 int regulator_count_voltages(struct regulator *regulator)
2541 {
2542 	struct regulator_dev	*rdev = regulator->rdev;
2543 
2544 	if (rdev->desc->n_voltages)
2545 		return rdev->desc->n_voltages;
2546 
2547 	if (!rdev->supply)
2548 		return -EINVAL;
2549 
2550 	return regulator_count_voltages(rdev->supply);
2551 }
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2553 
2554 /**
2555  * regulator_list_voltage - enumerate supported voltages
2556  * @regulator: regulator source
2557  * @selector: identify voltage to list
2558  * Context: can sleep
2559  *
2560  * Returns a voltage that can be passed to @regulator_set_voltage(),
2561  * zero if this selector code can't be used on this system, or a
2562  * negative errno.
2563  */
2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2565 {
2566 	return _regulator_list_voltage(regulator, selector, 1);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2569 
2570 /**
2571  * regulator_get_regmap - get the regulator's register map
2572  * @regulator: regulator source
2573  *
2574  * Returns the register map for the given regulator, or an ERR_PTR value
2575  * if the regulator doesn't use regmap.
2576  */
2577 struct regmap *regulator_get_regmap(struct regulator *regulator)
2578 {
2579 	struct regmap *map = regulator->rdev->regmap;
2580 
2581 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2582 }
2583 
2584 /**
2585  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586  * @regulator: regulator source
2587  * @vsel_reg: voltage selector register, output parameter
2588  * @vsel_mask: mask for voltage selector bitfield, output parameter
2589  *
2590  * Returns the hardware register offset and bitmask used for setting the
2591  * regulator voltage. This might be useful when configuring voltage-scaling
2592  * hardware or firmware that can make I2C requests behind the kernel's back,
2593  * for example.
2594  *
2595  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596  * and 0 is returned, otherwise a negative errno is returned.
2597  */
2598 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2599 					 unsigned *vsel_reg,
2600 					 unsigned *vsel_mask)
2601 {
2602 	struct regulator_dev *rdev = regulator->rdev;
2603 	const struct regulator_ops *ops = rdev->desc->ops;
2604 
2605 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2606 		return -EOPNOTSUPP;
2607 
2608 	 *vsel_reg = rdev->desc->vsel_reg;
2609 	 *vsel_mask = rdev->desc->vsel_mask;
2610 
2611 	 return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2614 
2615 /**
2616  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617  * @regulator: regulator source
2618  * @selector: identify voltage to list
2619  *
2620  * Converts the selector to a hardware-specific voltage selector that can be
2621  * directly written to the regulator registers. The address of the voltage
2622  * register can be determined by calling @regulator_get_hardware_vsel_register.
2623  *
2624  * On error a negative errno is returned.
2625  */
2626 int regulator_list_hardware_vsel(struct regulator *regulator,
2627 				 unsigned selector)
2628 {
2629 	struct regulator_dev *rdev = regulator->rdev;
2630 	const struct regulator_ops *ops = rdev->desc->ops;
2631 
2632 	if (selector >= rdev->desc->n_voltages)
2633 		return -EINVAL;
2634 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2635 		return -EOPNOTSUPP;
2636 
2637 	return selector;
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2640 
2641 /**
2642  * regulator_get_linear_step - return the voltage step size between VSEL values
2643  * @regulator: regulator source
2644  *
2645  * Returns the voltage step size between VSEL values for linear
2646  * regulators, or return 0 if the regulator isn't a linear regulator.
2647  */
2648 unsigned int regulator_get_linear_step(struct regulator *regulator)
2649 {
2650 	struct regulator_dev *rdev = regulator->rdev;
2651 
2652 	return rdev->desc->uV_step;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2655 
2656 /**
2657  * regulator_is_supported_voltage - check if a voltage range can be supported
2658  *
2659  * @regulator: Regulator to check.
2660  * @min_uV: Minimum required voltage in uV.
2661  * @max_uV: Maximum required voltage in uV.
2662  *
2663  * Returns a boolean or a negative error code.
2664  */
2665 int regulator_is_supported_voltage(struct regulator *regulator,
2666 				   int min_uV, int max_uV)
2667 {
2668 	struct regulator_dev *rdev = regulator->rdev;
2669 	int i, voltages, ret;
2670 
2671 	/* If we can't change voltage check the current voltage */
2672 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2673 		ret = regulator_get_voltage(regulator);
2674 		if (ret >= 0)
2675 			return min_uV <= ret && ret <= max_uV;
2676 		else
2677 			return ret;
2678 	}
2679 
2680 	/* Any voltage within constrains range is fine? */
2681 	if (rdev->desc->continuous_voltage_range)
2682 		return min_uV >= rdev->constraints->min_uV &&
2683 				max_uV <= rdev->constraints->max_uV;
2684 
2685 	ret = regulator_count_voltages(regulator);
2686 	if (ret < 0)
2687 		return ret;
2688 	voltages = ret;
2689 
2690 	for (i = 0; i < voltages; i++) {
2691 		ret = regulator_list_voltage(regulator, i);
2692 
2693 		if (ret >= min_uV && ret <= max_uV)
2694 			return 1;
2695 	}
2696 
2697 	return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2700 
2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2702 				 int max_uV)
2703 {
2704 	const struct regulator_desc *desc = rdev->desc;
2705 
2706 	if (desc->ops->map_voltage)
2707 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2708 
2709 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2710 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2711 
2712 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2713 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2714 
2715 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2716 }
2717 
2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2719 				       int min_uV, int max_uV,
2720 				       unsigned *selector)
2721 {
2722 	struct pre_voltage_change_data data;
2723 	int ret;
2724 
2725 	data.old_uV = _regulator_get_voltage(rdev);
2726 	data.min_uV = min_uV;
2727 	data.max_uV = max_uV;
2728 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2729 				   &data);
2730 	if (ret & NOTIFY_STOP_MASK)
2731 		return -EINVAL;
2732 
2733 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2734 	if (ret >= 0)
2735 		return ret;
2736 
2737 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738 			     (void *)data.old_uV);
2739 
2740 	return ret;
2741 }
2742 
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2744 					   int uV, unsigned selector)
2745 {
2746 	struct pre_voltage_change_data data;
2747 	int ret;
2748 
2749 	data.old_uV = _regulator_get_voltage(rdev);
2750 	data.min_uV = uV;
2751 	data.max_uV = uV;
2752 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2753 				   &data);
2754 	if (ret & NOTIFY_STOP_MASK)
2755 		return -EINVAL;
2756 
2757 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2758 	if (ret >= 0)
2759 		return ret;
2760 
2761 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2762 			     (void *)data.old_uV);
2763 
2764 	return ret;
2765 }
2766 
2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2768 				       int old_uV, int new_uV)
2769 {
2770 	unsigned int ramp_delay = 0;
2771 
2772 	if (rdev->constraints->ramp_delay)
2773 		ramp_delay = rdev->constraints->ramp_delay;
2774 	else if (rdev->desc->ramp_delay)
2775 		ramp_delay = rdev->desc->ramp_delay;
2776 
2777 	if (ramp_delay == 0) {
2778 		rdev_dbg(rdev, "ramp_delay not set\n");
2779 		return 0;
2780 	}
2781 
2782 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2783 }
2784 
2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2786 				     int min_uV, int max_uV)
2787 {
2788 	int ret;
2789 	int delay = 0;
2790 	int best_val = 0;
2791 	unsigned int selector;
2792 	int old_selector = -1;
2793 	const struct regulator_ops *ops = rdev->desc->ops;
2794 	int old_uV = _regulator_get_voltage(rdev);
2795 
2796 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2797 
2798 	min_uV += rdev->constraints->uV_offset;
2799 	max_uV += rdev->constraints->uV_offset;
2800 
2801 	/*
2802 	 * If we can't obtain the old selector there is not enough
2803 	 * info to call set_voltage_time_sel().
2804 	 */
2805 	if (_regulator_is_enabled(rdev) &&
2806 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2807 		old_selector = ops->get_voltage_sel(rdev);
2808 		if (old_selector < 0)
2809 			return old_selector;
2810 	}
2811 
2812 	if (ops->set_voltage) {
2813 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2814 						  &selector);
2815 
2816 		if (ret >= 0) {
2817 			if (ops->list_voltage)
2818 				best_val = ops->list_voltage(rdev,
2819 							     selector);
2820 			else
2821 				best_val = _regulator_get_voltage(rdev);
2822 		}
2823 
2824 	} else if (ops->set_voltage_sel) {
2825 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2826 		if (ret >= 0) {
2827 			best_val = ops->list_voltage(rdev, ret);
2828 			if (min_uV <= best_val && max_uV >= best_val) {
2829 				selector = ret;
2830 				if (old_selector == selector)
2831 					ret = 0;
2832 				else
2833 					ret = _regulator_call_set_voltage_sel(
2834 						rdev, best_val, selector);
2835 			} else {
2836 				ret = -EINVAL;
2837 			}
2838 		}
2839 	} else {
2840 		ret = -EINVAL;
2841 	}
2842 
2843 	if (ret)
2844 		goto out;
2845 
2846 	if (ops->set_voltage_time_sel) {
2847 		/*
2848 		 * Call set_voltage_time_sel if successfully obtained
2849 		 * old_selector
2850 		 */
2851 		if (old_selector >= 0 && old_selector != selector)
2852 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2853 							  selector);
2854 	} else {
2855 		if (old_uV != best_val) {
2856 			if (ops->set_voltage_time)
2857 				delay = ops->set_voltage_time(rdev, old_uV,
2858 							      best_val);
2859 			else
2860 				delay = _regulator_set_voltage_time(rdev,
2861 								    old_uV,
2862 								    best_val);
2863 		}
2864 	}
2865 
2866 	if (delay < 0) {
2867 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2868 		delay = 0;
2869 	}
2870 
2871 	/* Insert any necessary delays */
2872 	if (delay >= 1000) {
2873 		mdelay(delay / 1000);
2874 		udelay(delay % 1000);
2875 	} else if (delay) {
2876 		udelay(delay);
2877 	}
2878 
2879 	if (best_val >= 0) {
2880 		unsigned long data = best_val;
2881 
2882 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2883 				     (void *)data);
2884 	}
2885 
2886 out:
2887 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2888 
2889 	return ret;
2890 }
2891 
2892 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2893 					  int min_uV, int max_uV)
2894 {
2895 	struct regulator_dev *rdev = regulator->rdev;
2896 	int ret = 0;
2897 	int old_min_uV, old_max_uV;
2898 	int current_uV;
2899 	int best_supply_uV = 0;
2900 	int supply_change_uV = 0;
2901 
2902 	/* If we're setting the same range as last time the change
2903 	 * should be a noop (some cpufreq implementations use the same
2904 	 * voltage for multiple frequencies, for example).
2905 	 */
2906 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2907 		goto out;
2908 
2909 	/* If we're trying to set a range that overlaps the current voltage,
2910 	 * return successfully even though the regulator does not support
2911 	 * changing the voltage.
2912 	 */
2913 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2914 		current_uV = _regulator_get_voltage(rdev);
2915 		if (min_uV <= current_uV && current_uV <= max_uV) {
2916 			regulator->min_uV = min_uV;
2917 			regulator->max_uV = max_uV;
2918 			goto out;
2919 		}
2920 	}
2921 
2922 	/* sanity check */
2923 	if (!rdev->desc->ops->set_voltage &&
2924 	    !rdev->desc->ops->set_voltage_sel) {
2925 		ret = -EINVAL;
2926 		goto out;
2927 	}
2928 
2929 	/* constraints check */
2930 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2931 	if (ret < 0)
2932 		goto out;
2933 
2934 	/* restore original values in case of error */
2935 	old_min_uV = regulator->min_uV;
2936 	old_max_uV = regulator->max_uV;
2937 	regulator->min_uV = min_uV;
2938 	regulator->max_uV = max_uV;
2939 
2940 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2941 	if (ret < 0)
2942 		goto out2;
2943 
2944 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2945 				!rdev->desc->ops->get_voltage)) {
2946 		int current_supply_uV;
2947 		int selector;
2948 
2949 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2950 		if (selector < 0) {
2951 			ret = selector;
2952 			goto out2;
2953 		}
2954 
2955 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2956 		if (best_supply_uV < 0) {
2957 			ret = best_supply_uV;
2958 			goto out2;
2959 		}
2960 
2961 		best_supply_uV += rdev->desc->min_dropout_uV;
2962 
2963 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2964 		if (current_supply_uV < 0) {
2965 			ret = current_supply_uV;
2966 			goto out2;
2967 		}
2968 
2969 		supply_change_uV = best_supply_uV - current_supply_uV;
2970 	}
2971 
2972 	if (supply_change_uV > 0) {
2973 		ret = regulator_set_voltage_unlocked(rdev->supply,
2974 				best_supply_uV, INT_MAX);
2975 		if (ret) {
2976 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2977 					ret);
2978 			goto out2;
2979 		}
2980 	}
2981 
2982 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2983 	if (ret < 0)
2984 		goto out2;
2985 
2986 	if (supply_change_uV < 0) {
2987 		ret = regulator_set_voltage_unlocked(rdev->supply,
2988 				best_supply_uV, INT_MAX);
2989 		if (ret)
2990 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2991 					ret);
2992 		/* No need to fail here */
2993 		ret = 0;
2994 	}
2995 
2996 out:
2997 	return ret;
2998 out2:
2999 	regulator->min_uV = old_min_uV;
3000 	regulator->max_uV = old_max_uV;
3001 
3002 	return ret;
3003 }
3004 
3005 /**
3006  * regulator_set_voltage - set regulator output voltage
3007  * @regulator: regulator source
3008  * @min_uV: Minimum required voltage in uV
3009  * @max_uV: Maximum acceptable voltage in uV
3010  *
3011  * Sets a voltage regulator to the desired output voltage. This can be set
3012  * during any regulator state. IOW, regulator can be disabled or enabled.
3013  *
3014  * If the regulator is enabled then the voltage will change to the new value
3015  * immediately otherwise if the regulator is disabled the regulator will
3016  * output at the new voltage when enabled.
3017  *
3018  * NOTE: If the regulator is shared between several devices then the lowest
3019  * request voltage that meets the system constraints will be used.
3020  * Regulator system constraints must be set for this regulator before
3021  * calling this function otherwise this call will fail.
3022  */
3023 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3024 {
3025 	int ret = 0;
3026 
3027 	regulator_lock_supply(regulator->rdev);
3028 
3029 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3030 
3031 	regulator_unlock_supply(regulator->rdev);
3032 
3033 	return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3036 
3037 /**
3038  * regulator_set_voltage_time - get raise/fall time
3039  * @regulator: regulator source
3040  * @old_uV: starting voltage in microvolts
3041  * @new_uV: target voltage in microvolts
3042  *
3043  * Provided with the starting and ending voltage, this function attempts to
3044  * calculate the time in microseconds required to rise or fall to this new
3045  * voltage.
3046  */
3047 int regulator_set_voltage_time(struct regulator *regulator,
3048 			       int old_uV, int new_uV)
3049 {
3050 	struct regulator_dev *rdev = regulator->rdev;
3051 	const struct regulator_ops *ops = rdev->desc->ops;
3052 	int old_sel = -1;
3053 	int new_sel = -1;
3054 	int voltage;
3055 	int i;
3056 
3057 	if (ops->set_voltage_time)
3058 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3059 	else if (!ops->set_voltage_time_sel)
3060 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3061 
3062 	/* Currently requires operations to do this */
3063 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3064 		return -EINVAL;
3065 
3066 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3067 		/* We only look for exact voltage matches here */
3068 		voltage = regulator_list_voltage(regulator, i);
3069 		if (voltage < 0)
3070 			return -EINVAL;
3071 		if (voltage == 0)
3072 			continue;
3073 		if (voltage == old_uV)
3074 			old_sel = i;
3075 		if (voltage == new_uV)
3076 			new_sel = i;
3077 	}
3078 
3079 	if (old_sel < 0 || new_sel < 0)
3080 		return -EINVAL;
3081 
3082 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3085 
3086 /**
3087  * regulator_set_voltage_time_sel - get raise/fall time
3088  * @rdev: regulator source device
3089  * @old_selector: selector for starting voltage
3090  * @new_selector: selector for target voltage
3091  *
3092  * Provided with the starting and target voltage selectors, this function
3093  * returns time in microseconds required to rise or fall to this new voltage
3094  *
3095  * Drivers providing ramp_delay in regulation_constraints can use this as their
3096  * set_voltage_time_sel() operation.
3097  */
3098 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3099 				   unsigned int old_selector,
3100 				   unsigned int new_selector)
3101 {
3102 	int old_volt, new_volt;
3103 
3104 	/* sanity check */
3105 	if (!rdev->desc->ops->list_voltage)
3106 		return -EINVAL;
3107 
3108 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3109 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3110 
3111 	if (rdev->desc->ops->set_voltage_time)
3112 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3113 							 new_volt);
3114 	else
3115 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3118 
3119 /**
3120  * regulator_sync_voltage - re-apply last regulator output voltage
3121  * @regulator: regulator source
3122  *
3123  * Re-apply the last configured voltage.  This is intended to be used
3124  * where some external control source the consumer is cooperating with
3125  * has caused the configured voltage to change.
3126  */
3127 int regulator_sync_voltage(struct regulator *regulator)
3128 {
3129 	struct regulator_dev *rdev = regulator->rdev;
3130 	int ret, min_uV, max_uV;
3131 
3132 	mutex_lock(&rdev->mutex);
3133 
3134 	if (!rdev->desc->ops->set_voltage &&
3135 	    !rdev->desc->ops->set_voltage_sel) {
3136 		ret = -EINVAL;
3137 		goto out;
3138 	}
3139 
3140 	/* This is only going to work if we've had a voltage configured. */
3141 	if (!regulator->min_uV && !regulator->max_uV) {
3142 		ret = -EINVAL;
3143 		goto out;
3144 	}
3145 
3146 	min_uV = regulator->min_uV;
3147 	max_uV = regulator->max_uV;
3148 
3149 	/* This should be a paranoia check... */
3150 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3151 	if (ret < 0)
3152 		goto out;
3153 
3154 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3155 	if (ret < 0)
3156 		goto out;
3157 
3158 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3159 
3160 out:
3161 	mutex_unlock(&rdev->mutex);
3162 	return ret;
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3165 
3166 static int _regulator_get_voltage(struct regulator_dev *rdev)
3167 {
3168 	int sel, ret;
3169 	bool bypassed;
3170 
3171 	if (rdev->desc->ops->get_bypass) {
3172 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3173 		if (ret < 0)
3174 			return ret;
3175 		if (bypassed) {
3176 			/* if bypassed the regulator must have a supply */
3177 			if (!rdev->supply) {
3178 				rdev_err(rdev,
3179 					 "bypassed regulator has no supply!\n");
3180 				return -EPROBE_DEFER;
3181 			}
3182 
3183 			return _regulator_get_voltage(rdev->supply->rdev);
3184 		}
3185 	}
3186 
3187 	if (rdev->desc->ops->get_voltage_sel) {
3188 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3189 		if (sel < 0)
3190 			return sel;
3191 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3192 	} else if (rdev->desc->ops->get_voltage) {
3193 		ret = rdev->desc->ops->get_voltage(rdev);
3194 	} else if (rdev->desc->ops->list_voltage) {
3195 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3196 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3197 		ret = rdev->desc->fixed_uV;
3198 	} else if (rdev->supply) {
3199 		ret = _regulator_get_voltage(rdev->supply->rdev);
3200 	} else {
3201 		return -EINVAL;
3202 	}
3203 
3204 	if (ret < 0)
3205 		return ret;
3206 	return ret - rdev->constraints->uV_offset;
3207 }
3208 
3209 /**
3210  * regulator_get_voltage - get regulator output voltage
3211  * @regulator: regulator source
3212  *
3213  * This returns the current regulator voltage in uV.
3214  *
3215  * NOTE: If the regulator is disabled it will return the voltage value. This
3216  * function should not be used to determine regulator state.
3217  */
3218 int regulator_get_voltage(struct regulator *regulator)
3219 {
3220 	int ret;
3221 
3222 	regulator_lock_supply(regulator->rdev);
3223 
3224 	ret = _regulator_get_voltage(regulator->rdev);
3225 
3226 	regulator_unlock_supply(regulator->rdev);
3227 
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3231 
3232 /**
3233  * regulator_set_current_limit - set regulator output current limit
3234  * @regulator: regulator source
3235  * @min_uA: Minimum supported current in uA
3236  * @max_uA: Maximum supported current in uA
3237  *
3238  * Sets current sink to the desired output current. This can be set during
3239  * any regulator state. IOW, regulator can be disabled or enabled.
3240  *
3241  * If the regulator is enabled then the current will change to the new value
3242  * immediately otherwise if the regulator is disabled the regulator will
3243  * output at the new current when enabled.
3244  *
3245  * NOTE: Regulator system constraints must be set for this regulator before
3246  * calling this function otherwise this call will fail.
3247  */
3248 int regulator_set_current_limit(struct regulator *regulator,
3249 			       int min_uA, int max_uA)
3250 {
3251 	struct regulator_dev *rdev = regulator->rdev;
3252 	int ret;
3253 
3254 	mutex_lock(&rdev->mutex);
3255 
3256 	/* sanity check */
3257 	if (!rdev->desc->ops->set_current_limit) {
3258 		ret = -EINVAL;
3259 		goto out;
3260 	}
3261 
3262 	/* constraints check */
3263 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3264 	if (ret < 0)
3265 		goto out;
3266 
3267 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3268 out:
3269 	mutex_unlock(&rdev->mutex);
3270 	return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3273 
3274 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3275 {
3276 	int ret;
3277 
3278 	mutex_lock(&rdev->mutex);
3279 
3280 	/* sanity check */
3281 	if (!rdev->desc->ops->get_current_limit) {
3282 		ret = -EINVAL;
3283 		goto out;
3284 	}
3285 
3286 	ret = rdev->desc->ops->get_current_limit(rdev);
3287 out:
3288 	mutex_unlock(&rdev->mutex);
3289 	return ret;
3290 }
3291 
3292 /**
3293  * regulator_get_current_limit - get regulator output current
3294  * @regulator: regulator source
3295  *
3296  * This returns the current supplied by the specified current sink in uA.
3297  *
3298  * NOTE: If the regulator is disabled it will return the current value. This
3299  * function should not be used to determine regulator state.
3300  */
3301 int regulator_get_current_limit(struct regulator *regulator)
3302 {
3303 	return _regulator_get_current_limit(regulator->rdev);
3304 }
3305 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3306 
3307 /**
3308  * regulator_set_mode - set regulator operating mode
3309  * @regulator: regulator source
3310  * @mode: operating mode - one of the REGULATOR_MODE constants
3311  *
3312  * Set regulator operating mode to increase regulator efficiency or improve
3313  * regulation performance.
3314  *
3315  * NOTE: Regulator system constraints must be set for this regulator before
3316  * calling this function otherwise this call will fail.
3317  */
3318 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3319 {
3320 	struct regulator_dev *rdev = regulator->rdev;
3321 	int ret;
3322 	int regulator_curr_mode;
3323 
3324 	mutex_lock(&rdev->mutex);
3325 
3326 	/* sanity check */
3327 	if (!rdev->desc->ops->set_mode) {
3328 		ret = -EINVAL;
3329 		goto out;
3330 	}
3331 
3332 	/* return if the same mode is requested */
3333 	if (rdev->desc->ops->get_mode) {
3334 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3335 		if (regulator_curr_mode == mode) {
3336 			ret = 0;
3337 			goto out;
3338 		}
3339 	}
3340 
3341 	/* constraints check */
3342 	ret = regulator_mode_constrain(rdev, &mode);
3343 	if (ret < 0)
3344 		goto out;
3345 
3346 	ret = rdev->desc->ops->set_mode(rdev, mode);
3347 out:
3348 	mutex_unlock(&rdev->mutex);
3349 	return ret;
3350 }
3351 EXPORT_SYMBOL_GPL(regulator_set_mode);
3352 
3353 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3354 {
3355 	int ret;
3356 
3357 	mutex_lock(&rdev->mutex);
3358 
3359 	/* sanity check */
3360 	if (!rdev->desc->ops->get_mode) {
3361 		ret = -EINVAL;
3362 		goto out;
3363 	}
3364 
3365 	ret = rdev->desc->ops->get_mode(rdev);
3366 out:
3367 	mutex_unlock(&rdev->mutex);
3368 	return ret;
3369 }
3370 
3371 /**
3372  * regulator_get_mode - get regulator operating mode
3373  * @regulator: regulator source
3374  *
3375  * Get the current regulator operating mode.
3376  */
3377 unsigned int regulator_get_mode(struct regulator *regulator)
3378 {
3379 	return _regulator_get_mode(regulator->rdev);
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_get_mode);
3382 
3383 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3384 					unsigned int *flags)
3385 {
3386 	int ret;
3387 
3388 	mutex_lock(&rdev->mutex);
3389 
3390 	/* sanity check */
3391 	if (!rdev->desc->ops->get_error_flags) {
3392 		ret = -EINVAL;
3393 		goto out;
3394 	}
3395 
3396 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3397 out:
3398 	mutex_unlock(&rdev->mutex);
3399 	return ret;
3400 }
3401 
3402 /**
3403  * regulator_get_error_flags - get regulator error information
3404  * @regulator: regulator source
3405  * @flags: pointer to store error flags
3406  *
3407  * Get the current regulator error information.
3408  */
3409 int regulator_get_error_flags(struct regulator *regulator,
3410 				unsigned int *flags)
3411 {
3412 	return _regulator_get_error_flags(regulator->rdev, flags);
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3415 
3416 /**
3417  * regulator_set_load - set regulator load
3418  * @regulator: regulator source
3419  * @uA_load: load current
3420  *
3421  * Notifies the regulator core of a new device load. This is then used by
3422  * DRMS (if enabled by constraints) to set the most efficient regulator
3423  * operating mode for the new regulator loading.
3424  *
3425  * Consumer devices notify their supply regulator of the maximum power
3426  * they will require (can be taken from device datasheet in the power
3427  * consumption tables) when they change operational status and hence power
3428  * state. Examples of operational state changes that can affect power
3429  * consumption are :-
3430  *
3431  *    o Device is opened / closed.
3432  *    o Device I/O is about to begin or has just finished.
3433  *    o Device is idling in between work.
3434  *
3435  * This information is also exported via sysfs to userspace.
3436  *
3437  * DRMS will sum the total requested load on the regulator and change
3438  * to the most efficient operating mode if platform constraints allow.
3439  *
3440  * On error a negative errno is returned.
3441  */
3442 int regulator_set_load(struct regulator *regulator, int uA_load)
3443 {
3444 	struct regulator_dev *rdev = regulator->rdev;
3445 	int ret;
3446 
3447 	mutex_lock(&rdev->mutex);
3448 	regulator->uA_load = uA_load;
3449 	ret = drms_uA_update(rdev);
3450 	mutex_unlock(&rdev->mutex);
3451 
3452 	return ret;
3453 }
3454 EXPORT_SYMBOL_GPL(regulator_set_load);
3455 
3456 /**
3457  * regulator_allow_bypass - allow the regulator to go into bypass mode
3458  *
3459  * @regulator: Regulator to configure
3460  * @enable: enable or disable bypass mode
3461  *
3462  * Allow the regulator to go into bypass mode if all other consumers
3463  * for the regulator also enable bypass mode and the machine
3464  * constraints allow this.  Bypass mode means that the regulator is
3465  * simply passing the input directly to the output with no regulation.
3466  */
3467 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3468 {
3469 	struct regulator_dev *rdev = regulator->rdev;
3470 	int ret = 0;
3471 
3472 	if (!rdev->desc->ops->set_bypass)
3473 		return 0;
3474 
3475 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3476 		return 0;
3477 
3478 	mutex_lock(&rdev->mutex);
3479 
3480 	if (enable && !regulator->bypass) {
3481 		rdev->bypass_count++;
3482 
3483 		if (rdev->bypass_count == rdev->open_count) {
3484 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3485 			if (ret != 0)
3486 				rdev->bypass_count--;
3487 		}
3488 
3489 	} else if (!enable && regulator->bypass) {
3490 		rdev->bypass_count--;
3491 
3492 		if (rdev->bypass_count != rdev->open_count) {
3493 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3494 			if (ret != 0)
3495 				rdev->bypass_count++;
3496 		}
3497 	}
3498 
3499 	if (ret == 0)
3500 		regulator->bypass = enable;
3501 
3502 	mutex_unlock(&rdev->mutex);
3503 
3504 	return ret;
3505 }
3506 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3507 
3508 /**
3509  * regulator_register_notifier - register regulator event notifier
3510  * @regulator: regulator source
3511  * @nb: notifier block
3512  *
3513  * Register notifier block to receive regulator events.
3514  */
3515 int regulator_register_notifier(struct regulator *regulator,
3516 			      struct notifier_block *nb)
3517 {
3518 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3519 						nb);
3520 }
3521 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3522 
3523 /**
3524  * regulator_unregister_notifier - unregister regulator event notifier
3525  * @regulator: regulator source
3526  * @nb: notifier block
3527  *
3528  * Unregister regulator event notifier block.
3529  */
3530 int regulator_unregister_notifier(struct regulator *regulator,
3531 				struct notifier_block *nb)
3532 {
3533 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3534 						  nb);
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3537 
3538 /* notify regulator consumers and downstream regulator consumers.
3539  * Note mutex must be held by caller.
3540  */
3541 static int _notifier_call_chain(struct regulator_dev *rdev,
3542 				  unsigned long event, void *data)
3543 {
3544 	/* call rdev chain first */
3545 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3546 }
3547 
3548 /**
3549  * regulator_bulk_get - get multiple regulator consumers
3550  *
3551  * @dev:           Device to supply
3552  * @num_consumers: Number of consumers to register
3553  * @consumers:     Configuration of consumers; clients are stored here.
3554  *
3555  * @return 0 on success, an errno on failure.
3556  *
3557  * This helper function allows drivers to get several regulator
3558  * consumers in one operation.  If any of the regulators cannot be
3559  * acquired then any regulators that were allocated will be freed
3560  * before returning to the caller.
3561  */
3562 int regulator_bulk_get(struct device *dev, int num_consumers,
3563 		       struct regulator_bulk_data *consumers)
3564 {
3565 	int i;
3566 	int ret;
3567 
3568 	for (i = 0; i < num_consumers; i++)
3569 		consumers[i].consumer = NULL;
3570 
3571 	for (i = 0; i < num_consumers; i++) {
3572 		consumers[i].consumer = regulator_get(dev,
3573 						      consumers[i].supply);
3574 		if (IS_ERR(consumers[i].consumer)) {
3575 			ret = PTR_ERR(consumers[i].consumer);
3576 			dev_err(dev, "Failed to get supply '%s': %d\n",
3577 				consumers[i].supply, ret);
3578 			consumers[i].consumer = NULL;
3579 			goto err;
3580 		}
3581 	}
3582 
3583 	return 0;
3584 
3585 err:
3586 	while (--i >= 0)
3587 		regulator_put(consumers[i].consumer);
3588 
3589 	return ret;
3590 }
3591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3592 
3593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3594 {
3595 	struct regulator_bulk_data *bulk = data;
3596 
3597 	bulk->ret = regulator_enable(bulk->consumer);
3598 }
3599 
3600 /**
3601  * regulator_bulk_enable - enable multiple regulator consumers
3602  *
3603  * @num_consumers: Number of consumers
3604  * @consumers:     Consumer data; clients are stored here.
3605  * @return         0 on success, an errno on failure
3606  *
3607  * This convenience API allows consumers to enable multiple regulator
3608  * clients in a single API call.  If any consumers cannot be enabled
3609  * then any others that were enabled will be disabled again prior to
3610  * return.
3611  */
3612 int regulator_bulk_enable(int num_consumers,
3613 			  struct regulator_bulk_data *consumers)
3614 {
3615 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3616 	int i;
3617 	int ret = 0;
3618 
3619 	for (i = 0; i < num_consumers; i++) {
3620 		if (consumers[i].consumer->always_on)
3621 			consumers[i].ret = 0;
3622 		else
3623 			async_schedule_domain(regulator_bulk_enable_async,
3624 					      &consumers[i], &async_domain);
3625 	}
3626 
3627 	async_synchronize_full_domain(&async_domain);
3628 
3629 	/* If any consumer failed we need to unwind any that succeeded */
3630 	for (i = 0; i < num_consumers; i++) {
3631 		if (consumers[i].ret != 0) {
3632 			ret = consumers[i].ret;
3633 			goto err;
3634 		}
3635 	}
3636 
3637 	return 0;
3638 
3639 err:
3640 	for (i = 0; i < num_consumers; i++) {
3641 		if (consumers[i].ret < 0)
3642 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3643 			       consumers[i].ret);
3644 		else
3645 			regulator_disable(consumers[i].consumer);
3646 	}
3647 
3648 	return ret;
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3651 
3652 /**
3653  * regulator_bulk_disable - disable multiple regulator consumers
3654  *
3655  * @num_consumers: Number of consumers
3656  * @consumers:     Consumer data; clients are stored here.
3657  * @return         0 on success, an errno on failure
3658  *
3659  * This convenience API allows consumers to disable multiple regulator
3660  * clients in a single API call.  If any consumers cannot be disabled
3661  * then any others that were disabled will be enabled again prior to
3662  * return.
3663  */
3664 int regulator_bulk_disable(int num_consumers,
3665 			   struct regulator_bulk_data *consumers)
3666 {
3667 	int i;
3668 	int ret, r;
3669 
3670 	for (i = num_consumers - 1; i >= 0; --i) {
3671 		ret = regulator_disable(consumers[i].consumer);
3672 		if (ret != 0)
3673 			goto err;
3674 	}
3675 
3676 	return 0;
3677 
3678 err:
3679 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3680 	for (++i; i < num_consumers; ++i) {
3681 		r = regulator_enable(consumers[i].consumer);
3682 		if (r != 0)
3683 			pr_err("Failed to re-enable %s: %d\n",
3684 			       consumers[i].supply, r);
3685 	}
3686 
3687 	return ret;
3688 }
3689 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3690 
3691 /**
3692  * regulator_bulk_force_disable - force disable multiple regulator consumers
3693  *
3694  * @num_consumers: Number of consumers
3695  * @consumers:     Consumer data; clients are stored here.
3696  * @return         0 on success, an errno on failure
3697  *
3698  * This convenience API allows consumers to forcibly disable multiple regulator
3699  * clients in a single API call.
3700  * NOTE: This should be used for situations when device damage will
3701  * likely occur if the regulators are not disabled (e.g. over temp).
3702  * Although regulator_force_disable function call for some consumers can
3703  * return error numbers, the function is called for all consumers.
3704  */
3705 int regulator_bulk_force_disable(int num_consumers,
3706 			   struct regulator_bulk_data *consumers)
3707 {
3708 	int i;
3709 	int ret = 0;
3710 
3711 	for (i = 0; i < num_consumers; i++) {
3712 		consumers[i].ret =
3713 			    regulator_force_disable(consumers[i].consumer);
3714 
3715 		/* Store first error for reporting */
3716 		if (consumers[i].ret && !ret)
3717 			ret = consumers[i].ret;
3718 	}
3719 
3720 	return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3723 
3724 /**
3725  * regulator_bulk_free - free multiple regulator consumers
3726  *
3727  * @num_consumers: Number of consumers
3728  * @consumers:     Consumer data; clients are stored here.
3729  *
3730  * This convenience API allows consumers to free multiple regulator
3731  * clients in a single API call.
3732  */
3733 void regulator_bulk_free(int num_consumers,
3734 			 struct regulator_bulk_data *consumers)
3735 {
3736 	int i;
3737 
3738 	for (i = 0; i < num_consumers; i++) {
3739 		regulator_put(consumers[i].consumer);
3740 		consumers[i].consumer = NULL;
3741 	}
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3744 
3745 /**
3746  * regulator_notifier_call_chain - call regulator event notifier
3747  * @rdev: regulator source
3748  * @event: notifier block
3749  * @data: callback-specific data.
3750  *
3751  * Called by regulator drivers to notify clients a regulator event has
3752  * occurred. We also notify regulator clients downstream.
3753  * Note lock must be held by caller.
3754  */
3755 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3756 				  unsigned long event, void *data)
3757 {
3758 	lockdep_assert_held_once(&rdev->mutex);
3759 
3760 	_notifier_call_chain(rdev, event, data);
3761 	return NOTIFY_DONE;
3762 
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3765 
3766 /**
3767  * regulator_mode_to_status - convert a regulator mode into a status
3768  *
3769  * @mode: Mode to convert
3770  *
3771  * Convert a regulator mode into a status.
3772  */
3773 int regulator_mode_to_status(unsigned int mode)
3774 {
3775 	switch (mode) {
3776 	case REGULATOR_MODE_FAST:
3777 		return REGULATOR_STATUS_FAST;
3778 	case REGULATOR_MODE_NORMAL:
3779 		return REGULATOR_STATUS_NORMAL;
3780 	case REGULATOR_MODE_IDLE:
3781 		return REGULATOR_STATUS_IDLE;
3782 	case REGULATOR_MODE_STANDBY:
3783 		return REGULATOR_STATUS_STANDBY;
3784 	default:
3785 		return REGULATOR_STATUS_UNDEFINED;
3786 	}
3787 }
3788 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3789 
3790 static struct attribute *regulator_dev_attrs[] = {
3791 	&dev_attr_name.attr,
3792 	&dev_attr_num_users.attr,
3793 	&dev_attr_type.attr,
3794 	&dev_attr_microvolts.attr,
3795 	&dev_attr_microamps.attr,
3796 	&dev_attr_opmode.attr,
3797 	&dev_attr_state.attr,
3798 	&dev_attr_status.attr,
3799 	&dev_attr_bypass.attr,
3800 	&dev_attr_requested_microamps.attr,
3801 	&dev_attr_min_microvolts.attr,
3802 	&dev_attr_max_microvolts.attr,
3803 	&dev_attr_min_microamps.attr,
3804 	&dev_attr_max_microamps.attr,
3805 	&dev_attr_suspend_standby_state.attr,
3806 	&dev_attr_suspend_mem_state.attr,
3807 	&dev_attr_suspend_disk_state.attr,
3808 	&dev_attr_suspend_standby_microvolts.attr,
3809 	&dev_attr_suspend_mem_microvolts.attr,
3810 	&dev_attr_suspend_disk_microvolts.attr,
3811 	&dev_attr_suspend_standby_mode.attr,
3812 	&dev_attr_suspend_mem_mode.attr,
3813 	&dev_attr_suspend_disk_mode.attr,
3814 	NULL
3815 };
3816 
3817 /*
3818  * To avoid cluttering sysfs (and memory) with useless state, only
3819  * create attributes that can be meaningfully displayed.
3820  */
3821 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3822 					 struct attribute *attr, int idx)
3823 {
3824 	struct device *dev = kobj_to_dev(kobj);
3825 	struct regulator_dev *rdev = dev_to_rdev(dev);
3826 	const struct regulator_ops *ops = rdev->desc->ops;
3827 	umode_t mode = attr->mode;
3828 
3829 	/* these three are always present */
3830 	if (attr == &dev_attr_name.attr ||
3831 	    attr == &dev_attr_num_users.attr ||
3832 	    attr == &dev_attr_type.attr)
3833 		return mode;
3834 
3835 	/* some attributes need specific methods to be displayed */
3836 	if (attr == &dev_attr_microvolts.attr) {
3837 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3838 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3839 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3840 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3841 			return mode;
3842 		return 0;
3843 	}
3844 
3845 	if (attr == &dev_attr_microamps.attr)
3846 		return ops->get_current_limit ? mode : 0;
3847 
3848 	if (attr == &dev_attr_opmode.attr)
3849 		return ops->get_mode ? mode : 0;
3850 
3851 	if (attr == &dev_attr_state.attr)
3852 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3853 
3854 	if (attr == &dev_attr_status.attr)
3855 		return ops->get_status ? mode : 0;
3856 
3857 	if (attr == &dev_attr_bypass.attr)
3858 		return ops->get_bypass ? mode : 0;
3859 
3860 	/* some attributes are type-specific */
3861 	if (attr == &dev_attr_requested_microamps.attr)
3862 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3863 
3864 	/* constraints need specific supporting methods */
3865 	if (attr == &dev_attr_min_microvolts.attr ||
3866 	    attr == &dev_attr_max_microvolts.attr)
3867 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3868 
3869 	if (attr == &dev_attr_min_microamps.attr ||
3870 	    attr == &dev_attr_max_microamps.attr)
3871 		return ops->set_current_limit ? mode : 0;
3872 
3873 	if (attr == &dev_attr_suspend_standby_state.attr ||
3874 	    attr == &dev_attr_suspend_mem_state.attr ||
3875 	    attr == &dev_attr_suspend_disk_state.attr)
3876 		return mode;
3877 
3878 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3879 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3880 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3881 		return ops->set_suspend_voltage ? mode : 0;
3882 
3883 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3884 	    attr == &dev_attr_suspend_mem_mode.attr ||
3885 	    attr == &dev_attr_suspend_disk_mode.attr)
3886 		return ops->set_suspend_mode ? mode : 0;
3887 
3888 	return mode;
3889 }
3890 
3891 static const struct attribute_group regulator_dev_group = {
3892 	.attrs = regulator_dev_attrs,
3893 	.is_visible = regulator_attr_is_visible,
3894 };
3895 
3896 static const struct attribute_group *regulator_dev_groups[] = {
3897 	&regulator_dev_group,
3898 	NULL
3899 };
3900 
3901 static void regulator_dev_release(struct device *dev)
3902 {
3903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3904 
3905 	kfree(rdev->constraints);
3906 	of_node_put(rdev->dev.of_node);
3907 	kfree(rdev);
3908 }
3909 
3910 static struct class regulator_class = {
3911 	.name = "regulator",
3912 	.dev_release = regulator_dev_release,
3913 	.dev_groups = regulator_dev_groups,
3914 };
3915 
3916 static void rdev_init_debugfs(struct regulator_dev *rdev)
3917 {
3918 	struct device *parent = rdev->dev.parent;
3919 	const char *rname = rdev_get_name(rdev);
3920 	char name[NAME_MAX];
3921 
3922 	/* Avoid duplicate debugfs directory names */
3923 	if (parent && rname == rdev->desc->name) {
3924 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3925 			 rname);
3926 		rname = name;
3927 	}
3928 
3929 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3930 	if (!rdev->debugfs) {
3931 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3932 		return;
3933 	}
3934 
3935 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3936 			   &rdev->use_count);
3937 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3938 			   &rdev->open_count);
3939 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3940 			   &rdev->bypass_count);
3941 }
3942 
3943 static int regulator_register_resolve_supply(struct device *dev, void *data)
3944 {
3945 	struct regulator_dev *rdev = dev_to_rdev(dev);
3946 
3947 	if (regulator_resolve_supply(rdev))
3948 		rdev_dbg(rdev, "unable to resolve supply\n");
3949 
3950 	return 0;
3951 }
3952 
3953 /**
3954  * regulator_register - register regulator
3955  * @regulator_desc: regulator to register
3956  * @cfg: runtime configuration for regulator
3957  *
3958  * Called by regulator drivers to register a regulator.
3959  * Returns a valid pointer to struct regulator_dev on success
3960  * or an ERR_PTR() on error.
3961  */
3962 struct regulator_dev *
3963 regulator_register(const struct regulator_desc *regulator_desc,
3964 		   const struct regulator_config *cfg)
3965 {
3966 	const struct regulation_constraints *constraints = NULL;
3967 	const struct regulator_init_data *init_data;
3968 	struct regulator_config *config = NULL;
3969 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3970 	struct regulator_dev *rdev;
3971 	struct device *dev;
3972 	int ret, i;
3973 
3974 	if (regulator_desc == NULL || cfg == NULL)
3975 		return ERR_PTR(-EINVAL);
3976 
3977 	dev = cfg->dev;
3978 	WARN_ON(!dev);
3979 
3980 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3981 		return ERR_PTR(-EINVAL);
3982 
3983 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3984 	    regulator_desc->type != REGULATOR_CURRENT)
3985 		return ERR_PTR(-EINVAL);
3986 
3987 	/* Only one of each should be implemented */
3988 	WARN_ON(regulator_desc->ops->get_voltage &&
3989 		regulator_desc->ops->get_voltage_sel);
3990 	WARN_ON(regulator_desc->ops->set_voltage &&
3991 		regulator_desc->ops->set_voltage_sel);
3992 
3993 	/* If we're using selectors we must implement list_voltage. */
3994 	if (regulator_desc->ops->get_voltage_sel &&
3995 	    !regulator_desc->ops->list_voltage) {
3996 		return ERR_PTR(-EINVAL);
3997 	}
3998 	if (regulator_desc->ops->set_voltage_sel &&
3999 	    !regulator_desc->ops->list_voltage) {
4000 		return ERR_PTR(-EINVAL);
4001 	}
4002 
4003 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4004 	if (rdev == NULL)
4005 		return ERR_PTR(-ENOMEM);
4006 
4007 	/*
4008 	 * Duplicate the config so the driver could override it after
4009 	 * parsing init data.
4010 	 */
4011 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4012 	if (config == NULL) {
4013 		kfree(rdev);
4014 		return ERR_PTR(-ENOMEM);
4015 	}
4016 
4017 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4018 					       &rdev->dev.of_node);
4019 	if (!init_data) {
4020 		init_data = config->init_data;
4021 		rdev->dev.of_node = of_node_get(config->of_node);
4022 	}
4023 
4024 	mutex_init(&rdev->mutex);
4025 	rdev->reg_data = config->driver_data;
4026 	rdev->owner = regulator_desc->owner;
4027 	rdev->desc = regulator_desc;
4028 	if (config->regmap)
4029 		rdev->regmap = config->regmap;
4030 	else if (dev_get_regmap(dev, NULL))
4031 		rdev->regmap = dev_get_regmap(dev, NULL);
4032 	else if (dev->parent)
4033 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4034 	INIT_LIST_HEAD(&rdev->consumer_list);
4035 	INIT_LIST_HEAD(&rdev->list);
4036 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4037 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4038 
4039 	/* preform any regulator specific init */
4040 	if (init_data && init_data->regulator_init) {
4041 		ret = init_data->regulator_init(rdev->reg_data);
4042 		if (ret < 0)
4043 			goto clean;
4044 	}
4045 
4046 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4047 	    gpio_is_valid(config->ena_gpio)) {
4048 		mutex_lock(&regulator_list_mutex);
4049 		ret = regulator_ena_gpio_request(rdev, config);
4050 		mutex_unlock(&regulator_list_mutex);
4051 		if (ret != 0) {
4052 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4053 				 config->ena_gpio, ret);
4054 			goto clean;
4055 		}
4056 	}
4057 
4058 	/* register with sysfs */
4059 	rdev->dev.class = &regulator_class;
4060 	rdev->dev.parent = dev;
4061 	dev_set_name(&rdev->dev, "regulator.%lu",
4062 		    (unsigned long) atomic_inc_return(&regulator_no));
4063 
4064 	/* set regulator constraints */
4065 	if (init_data)
4066 		constraints = &init_data->constraints;
4067 
4068 	if (init_data && init_data->supply_regulator)
4069 		rdev->supply_name = init_data->supply_regulator;
4070 	else if (regulator_desc->supply_name)
4071 		rdev->supply_name = regulator_desc->supply_name;
4072 
4073 	/*
4074 	 * Attempt to resolve the regulator supply, if specified,
4075 	 * but don't return an error if we fail because we will try
4076 	 * to resolve it again later as more regulators are added.
4077 	 */
4078 	if (regulator_resolve_supply(rdev))
4079 		rdev_dbg(rdev, "unable to resolve supply\n");
4080 
4081 	ret = set_machine_constraints(rdev, constraints);
4082 	if (ret < 0)
4083 		goto wash;
4084 
4085 	/* add consumers devices */
4086 	if (init_data) {
4087 		mutex_lock(&regulator_list_mutex);
4088 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4089 			ret = set_consumer_device_supply(rdev,
4090 				init_data->consumer_supplies[i].dev_name,
4091 				init_data->consumer_supplies[i].supply);
4092 			if (ret < 0) {
4093 				mutex_unlock(&regulator_list_mutex);
4094 				dev_err(dev, "Failed to set supply %s\n",
4095 					init_data->consumer_supplies[i].supply);
4096 				goto unset_supplies;
4097 			}
4098 		}
4099 		mutex_unlock(&regulator_list_mutex);
4100 	}
4101 
4102 	ret = device_register(&rdev->dev);
4103 	if (ret != 0) {
4104 		put_device(&rdev->dev);
4105 		goto unset_supplies;
4106 	}
4107 
4108 	dev_set_drvdata(&rdev->dev, rdev);
4109 	rdev_init_debugfs(rdev);
4110 
4111 	/* try to resolve regulators supply since a new one was registered */
4112 	class_for_each_device(&regulator_class, NULL, NULL,
4113 			      regulator_register_resolve_supply);
4114 	kfree(config);
4115 	return rdev;
4116 
4117 unset_supplies:
4118 	mutex_lock(&regulator_list_mutex);
4119 	unset_regulator_supplies(rdev);
4120 	mutex_unlock(&regulator_list_mutex);
4121 wash:
4122 	kfree(rdev->constraints);
4123 	mutex_lock(&regulator_list_mutex);
4124 	regulator_ena_gpio_free(rdev);
4125 	mutex_unlock(&regulator_list_mutex);
4126 clean:
4127 	kfree(rdev);
4128 	kfree(config);
4129 	return ERR_PTR(ret);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_register);
4132 
4133 /**
4134  * regulator_unregister - unregister regulator
4135  * @rdev: regulator to unregister
4136  *
4137  * Called by regulator drivers to unregister a regulator.
4138  */
4139 void regulator_unregister(struct regulator_dev *rdev)
4140 {
4141 	if (rdev == NULL)
4142 		return;
4143 
4144 	if (rdev->supply) {
4145 		while (rdev->use_count--)
4146 			regulator_disable(rdev->supply);
4147 		regulator_put(rdev->supply);
4148 	}
4149 	mutex_lock(&regulator_list_mutex);
4150 	debugfs_remove_recursive(rdev->debugfs);
4151 	flush_work(&rdev->disable_work.work);
4152 	WARN_ON(rdev->open_count);
4153 	unset_regulator_supplies(rdev);
4154 	list_del(&rdev->list);
4155 	regulator_ena_gpio_free(rdev);
4156 	mutex_unlock(&regulator_list_mutex);
4157 	device_unregister(&rdev->dev);
4158 }
4159 EXPORT_SYMBOL_GPL(regulator_unregister);
4160 
4161 static int _regulator_suspend_prepare(struct device *dev, void *data)
4162 {
4163 	struct regulator_dev *rdev = dev_to_rdev(dev);
4164 	const suspend_state_t *state = data;
4165 	int ret;
4166 
4167 	mutex_lock(&rdev->mutex);
4168 	ret = suspend_prepare(rdev, *state);
4169 	mutex_unlock(&rdev->mutex);
4170 
4171 	return ret;
4172 }
4173 
4174 /**
4175  * regulator_suspend_prepare - prepare regulators for system wide suspend
4176  * @state: system suspend state
4177  *
4178  * Configure each regulator with it's suspend operating parameters for state.
4179  * This will usually be called by machine suspend code prior to supending.
4180  */
4181 int regulator_suspend_prepare(suspend_state_t state)
4182 {
4183 	/* ON is handled by regulator active state */
4184 	if (state == PM_SUSPEND_ON)
4185 		return -EINVAL;
4186 
4187 	return class_for_each_device(&regulator_class, NULL, &state,
4188 				     _regulator_suspend_prepare);
4189 }
4190 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4191 
4192 static int _regulator_suspend_finish(struct device *dev, void *data)
4193 {
4194 	struct regulator_dev *rdev = dev_to_rdev(dev);
4195 	int ret;
4196 
4197 	mutex_lock(&rdev->mutex);
4198 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4199 		if (!_regulator_is_enabled(rdev)) {
4200 			ret = _regulator_do_enable(rdev);
4201 			if (ret)
4202 				dev_err(dev,
4203 					"Failed to resume regulator %d\n",
4204 					ret);
4205 		}
4206 	} else {
4207 		if (!have_full_constraints())
4208 			goto unlock;
4209 		if (!_regulator_is_enabled(rdev))
4210 			goto unlock;
4211 
4212 		ret = _regulator_do_disable(rdev);
4213 		if (ret)
4214 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4215 	}
4216 unlock:
4217 	mutex_unlock(&rdev->mutex);
4218 
4219 	/* Keep processing regulators in spite of any errors */
4220 	return 0;
4221 }
4222 
4223 /**
4224  * regulator_suspend_finish - resume regulators from system wide suspend
4225  *
4226  * Turn on regulators that might be turned off by regulator_suspend_prepare
4227  * and that should be turned on according to the regulators properties.
4228  */
4229 int regulator_suspend_finish(void)
4230 {
4231 	return class_for_each_device(&regulator_class, NULL, NULL,
4232 				     _regulator_suspend_finish);
4233 }
4234 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4235 
4236 /**
4237  * regulator_has_full_constraints - the system has fully specified constraints
4238  *
4239  * Calling this function will cause the regulator API to disable all
4240  * regulators which have a zero use count and don't have an always_on
4241  * constraint in a late_initcall.
4242  *
4243  * The intention is that this will become the default behaviour in a
4244  * future kernel release so users are encouraged to use this facility
4245  * now.
4246  */
4247 void regulator_has_full_constraints(void)
4248 {
4249 	has_full_constraints = 1;
4250 }
4251 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4252 
4253 /**
4254  * rdev_get_drvdata - get rdev regulator driver data
4255  * @rdev: regulator
4256  *
4257  * Get rdev regulator driver private data. This call can be used in the
4258  * regulator driver context.
4259  */
4260 void *rdev_get_drvdata(struct regulator_dev *rdev)
4261 {
4262 	return rdev->reg_data;
4263 }
4264 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4265 
4266 /**
4267  * regulator_get_drvdata - get regulator driver data
4268  * @regulator: regulator
4269  *
4270  * Get regulator driver private data. This call can be used in the consumer
4271  * driver context when non API regulator specific functions need to be called.
4272  */
4273 void *regulator_get_drvdata(struct regulator *regulator)
4274 {
4275 	return regulator->rdev->reg_data;
4276 }
4277 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4278 
4279 /**
4280  * regulator_set_drvdata - set regulator driver data
4281  * @regulator: regulator
4282  * @data: data
4283  */
4284 void regulator_set_drvdata(struct regulator *regulator, void *data)
4285 {
4286 	regulator->rdev->reg_data = data;
4287 }
4288 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4289 
4290 /**
4291  * regulator_get_id - get regulator ID
4292  * @rdev: regulator
4293  */
4294 int rdev_get_id(struct regulator_dev *rdev)
4295 {
4296 	return rdev->desc->id;
4297 }
4298 EXPORT_SYMBOL_GPL(rdev_get_id);
4299 
4300 struct device *rdev_get_dev(struct regulator_dev *rdev)
4301 {
4302 	return &rdev->dev;
4303 }
4304 EXPORT_SYMBOL_GPL(rdev_get_dev);
4305 
4306 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4307 {
4308 	return reg_init_data->driver_data;
4309 }
4310 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4311 
4312 #ifdef CONFIG_DEBUG_FS
4313 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4314 				    size_t count, loff_t *ppos)
4315 {
4316 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4317 	ssize_t len, ret = 0;
4318 	struct regulator_map *map;
4319 
4320 	if (!buf)
4321 		return -ENOMEM;
4322 
4323 	list_for_each_entry(map, &regulator_map_list, list) {
4324 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4325 			       "%s -> %s.%s\n",
4326 			       rdev_get_name(map->regulator), map->dev_name,
4327 			       map->supply);
4328 		if (len >= 0)
4329 			ret += len;
4330 		if (ret > PAGE_SIZE) {
4331 			ret = PAGE_SIZE;
4332 			break;
4333 		}
4334 	}
4335 
4336 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4337 
4338 	kfree(buf);
4339 
4340 	return ret;
4341 }
4342 #endif
4343 
4344 static const struct file_operations supply_map_fops = {
4345 #ifdef CONFIG_DEBUG_FS
4346 	.read = supply_map_read_file,
4347 	.llseek = default_llseek,
4348 #endif
4349 };
4350 
4351 #ifdef CONFIG_DEBUG_FS
4352 struct summary_data {
4353 	struct seq_file *s;
4354 	struct regulator_dev *parent;
4355 	int level;
4356 };
4357 
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359 					   struct regulator_dev *rdev,
4360 					   int level);
4361 
4362 static int regulator_summary_show_children(struct device *dev, void *data)
4363 {
4364 	struct regulator_dev *rdev = dev_to_rdev(dev);
4365 	struct summary_data *summary_data = data;
4366 
4367 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4368 		regulator_summary_show_subtree(summary_data->s, rdev,
4369 					       summary_data->level + 1);
4370 
4371 	return 0;
4372 }
4373 
4374 static void regulator_summary_show_subtree(struct seq_file *s,
4375 					   struct regulator_dev *rdev,
4376 					   int level)
4377 {
4378 	struct regulation_constraints *c;
4379 	struct regulator *consumer;
4380 	struct summary_data summary_data;
4381 
4382 	if (!rdev)
4383 		return;
4384 
4385 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4386 		   level * 3 + 1, "",
4387 		   30 - level * 3, rdev_get_name(rdev),
4388 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4389 
4390 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4391 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4392 
4393 	c = rdev->constraints;
4394 	if (c) {
4395 		switch (rdev->desc->type) {
4396 		case REGULATOR_VOLTAGE:
4397 			seq_printf(s, "%5dmV %5dmV ",
4398 				   c->min_uV / 1000, c->max_uV / 1000);
4399 			break;
4400 		case REGULATOR_CURRENT:
4401 			seq_printf(s, "%5dmA %5dmA ",
4402 				   c->min_uA / 1000, c->max_uA / 1000);
4403 			break;
4404 		}
4405 	}
4406 
4407 	seq_puts(s, "\n");
4408 
4409 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4410 		if (consumer->dev && consumer->dev->class == &regulator_class)
4411 			continue;
4412 
4413 		seq_printf(s, "%*s%-*s ",
4414 			   (level + 1) * 3 + 1, "",
4415 			   30 - (level + 1) * 3,
4416 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4417 
4418 		switch (rdev->desc->type) {
4419 		case REGULATOR_VOLTAGE:
4420 			seq_printf(s, "%37dmV %5dmV",
4421 				   consumer->min_uV / 1000,
4422 				   consumer->max_uV / 1000);
4423 			break;
4424 		case REGULATOR_CURRENT:
4425 			break;
4426 		}
4427 
4428 		seq_puts(s, "\n");
4429 	}
4430 
4431 	summary_data.s = s;
4432 	summary_data.level = level;
4433 	summary_data.parent = rdev;
4434 
4435 	class_for_each_device(&regulator_class, NULL, &summary_data,
4436 			      regulator_summary_show_children);
4437 }
4438 
4439 static int regulator_summary_show_roots(struct device *dev, void *data)
4440 {
4441 	struct regulator_dev *rdev = dev_to_rdev(dev);
4442 	struct seq_file *s = data;
4443 
4444 	if (!rdev->supply)
4445 		regulator_summary_show_subtree(s, rdev, 0);
4446 
4447 	return 0;
4448 }
4449 
4450 static int regulator_summary_show(struct seq_file *s, void *data)
4451 {
4452 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4453 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4454 
4455 	class_for_each_device(&regulator_class, NULL, s,
4456 			      regulator_summary_show_roots);
4457 
4458 	return 0;
4459 }
4460 
4461 static int regulator_summary_open(struct inode *inode, struct file *file)
4462 {
4463 	return single_open(file, regulator_summary_show, inode->i_private);
4464 }
4465 #endif
4466 
4467 static const struct file_operations regulator_summary_fops = {
4468 #ifdef CONFIG_DEBUG_FS
4469 	.open		= regulator_summary_open,
4470 	.read		= seq_read,
4471 	.llseek		= seq_lseek,
4472 	.release	= single_release,
4473 #endif
4474 };
4475 
4476 static int __init regulator_init(void)
4477 {
4478 	int ret;
4479 
4480 	ret = class_register(&regulator_class);
4481 
4482 	debugfs_root = debugfs_create_dir("regulator", NULL);
4483 	if (!debugfs_root)
4484 		pr_warn("regulator: Failed to create debugfs directory\n");
4485 
4486 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4487 			    &supply_map_fops);
4488 
4489 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4490 			    NULL, &regulator_summary_fops);
4491 
4492 	regulator_dummy_init();
4493 
4494 	return ret;
4495 }
4496 
4497 /* init early to allow our consumers to complete system booting */
4498 core_initcall(regulator_init);
4499 
4500 static int __init regulator_late_cleanup(struct device *dev, void *data)
4501 {
4502 	struct regulator_dev *rdev = dev_to_rdev(dev);
4503 	const struct regulator_ops *ops = rdev->desc->ops;
4504 	struct regulation_constraints *c = rdev->constraints;
4505 	int enabled, ret;
4506 
4507 	if (c && c->always_on)
4508 		return 0;
4509 
4510 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4511 		return 0;
4512 
4513 	mutex_lock(&rdev->mutex);
4514 
4515 	if (rdev->use_count)
4516 		goto unlock;
4517 
4518 	/* If we can't read the status assume it's on. */
4519 	if (ops->is_enabled)
4520 		enabled = ops->is_enabled(rdev);
4521 	else
4522 		enabled = 1;
4523 
4524 	if (!enabled)
4525 		goto unlock;
4526 
4527 	if (have_full_constraints()) {
4528 		/* We log since this may kill the system if it goes
4529 		 * wrong. */
4530 		rdev_info(rdev, "disabling\n");
4531 		ret = _regulator_do_disable(rdev);
4532 		if (ret != 0)
4533 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4534 	} else {
4535 		/* The intention is that in future we will
4536 		 * assume that full constraints are provided
4537 		 * so warn even if we aren't going to do
4538 		 * anything here.
4539 		 */
4540 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4541 	}
4542 
4543 unlock:
4544 	mutex_unlock(&rdev->mutex);
4545 
4546 	return 0;
4547 }
4548 
4549 static int __init regulator_init_complete(void)
4550 {
4551 	/*
4552 	 * Since DT doesn't provide an idiomatic mechanism for
4553 	 * enabling full constraints and since it's much more natural
4554 	 * with DT to provide them just assume that a DT enabled
4555 	 * system has full constraints.
4556 	 */
4557 	if (of_have_populated_dt())
4558 		has_full_constraints = true;
4559 
4560 	/*
4561 	 * Regulators may had failed to resolve their input supplies
4562 	 * when were registered, either because the input supply was
4563 	 * not registered yet or because its parent device was not
4564 	 * bound yet. So attempt to resolve the input supplies for
4565 	 * pending regulators before trying to disable unused ones.
4566 	 */
4567 	class_for_each_device(&regulator_class, NULL, NULL,
4568 			      regulator_register_resolve_supply);
4569 
4570 	/* If we have a full configuration then disable any regulators
4571 	 * we have permission to change the status for and which are
4572 	 * not in use or always_on.  This is effectively the default
4573 	 * for DT and ACPI as they have full constraints.
4574 	 */
4575 	class_for_each_device(&regulator_class, NULL, NULL,
4576 			      regulator_late_cleanup);
4577 
4578 	return 0;
4579 }
4580 late_initcall_sync(regulator_init_complete);
4581