xref: /openbmc/linux/drivers/regulator/core.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	struct gpio_desc *gpiod;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130 	if (!rdev->constraints) {
131 		rdev_err(rdev, "no constraints\n");
132 		return false;
133 	}
134 
135 	if (rdev->constraints->valid_ops_mask & ops)
136 		return true;
137 
138 	return false;
139 }
140 
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143 	if (rdev && rdev->supply)
144 		return rdev->supply->rdev;
145 
146 	return NULL;
147 }
148 
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:		regulator source
152  * @subclass:		mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 				  unsigned int subclass)
162 {
163 	if (!mutex_trylock(&rdev->mutex)) {
164 		if (rdev->mutex_owner == current) {
165 			rdev->ref_cnt++;
166 			return;
167 		}
168 		mutex_lock_nested(&rdev->mutex, subclass);
169 	}
170 
171 	rdev->ref_cnt = 1;
172 	rdev->mutex_owner = current;
173 }
174 
175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177 	regulator_lock_nested(rdev, 0);
178 }
179 
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:		regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189 	if (rdev->ref_cnt != 0) {
190 		rdev->ref_cnt--;
191 
192 		if (!rdev->ref_cnt) {
193 			rdev->mutex_owner = NULL;
194 			mutex_unlock(&rdev->mutex);
195 		}
196 	}
197 }
198 
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205 	int i;
206 
207 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 		regulator_lock_nested(rdev, i);
209 }
210 
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217 	struct regulator *supply;
218 
219 	while (1) {
220 		regulator_unlock(rdev);
221 		supply = rdev->supply;
222 
223 		if (!rdev->supply)
224 			return;
225 
226 		rdev = supply->rdev;
227 	}
228 }
229 
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241 	struct device_node *regnode = NULL;
242 	char prop_name[32]; /* 32 is max size of property name */
243 
244 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245 
246 	snprintf(prop_name, 32, "%s-supply", supply);
247 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248 
249 	if (!regnode) {
250 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 				prop_name, dev->of_node);
252 		return NULL;
253 	}
254 	return regnode;
255 }
256 
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 				   int *min_uV, int *max_uV)
260 {
261 	BUG_ON(*min_uV > *max_uV);
262 
263 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 		rdev_err(rdev, "voltage operation not allowed\n");
265 		return -EPERM;
266 	}
267 
268 	if (*max_uV > rdev->constraints->max_uV)
269 		*max_uV = rdev->constraints->max_uV;
270 	if (*min_uV < rdev->constraints->min_uV)
271 		*min_uV = rdev->constraints->min_uV;
272 
273 	if (*min_uV > *max_uV) {
274 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 			 *min_uV, *max_uV);
276 		return -EINVAL;
277 	}
278 
279 	return 0;
280 }
281 
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
284 {
285 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287 
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 				     int *min_uV, int *max_uV,
293 				     suspend_state_t state)
294 {
295 	struct regulator *regulator;
296 	struct regulator_voltage *voltage;
297 
298 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 		voltage = &regulator->voltage[state];
300 		/*
301 		 * Assume consumers that didn't say anything are OK
302 		 * with anything in the constraint range.
303 		 */
304 		if (!voltage->min_uV && !voltage->max_uV)
305 			continue;
306 
307 		if (*max_uV > voltage->max_uV)
308 			*max_uV = voltage->max_uV;
309 		if (*min_uV < voltage->min_uV)
310 			*min_uV = voltage->min_uV;
311 	}
312 
313 	if (*min_uV > *max_uV) {
314 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 			*min_uV, *max_uV);
316 		return -EINVAL;
317 	}
318 
319 	return 0;
320 }
321 
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 					int *min_uA, int *max_uA)
325 {
326 	BUG_ON(*min_uA > *max_uA);
327 
328 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 		rdev_err(rdev, "current operation not allowed\n");
330 		return -EPERM;
331 	}
332 
333 	if (*max_uA > rdev->constraints->max_uA)
334 		*max_uA = rdev->constraints->max_uA;
335 	if (*min_uA < rdev->constraints->min_uA)
336 		*min_uA = rdev->constraints->min_uA;
337 
338 	if (*min_uA > *max_uA) {
339 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 			 *min_uA, *max_uA);
341 		return -EINVAL;
342 	}
343 
344 	return 0;
345 }
346 
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 				    unsigned int *mode)
350 {
351 	switch (*mode) {
352 	case REGULATOR_MODE_FAST:
353 	case REGULATOR_MODE_NORMAL:
354 	case REGULATOR_MODE_IDLE:
355 	case REGULATOR_MODE_STANDBY:
356 		break;
357 	default:
358 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 		return -EINVAL;
360 	}
361 
362 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 		rdev_err(rdev, "mode operation not allowed\n");
364 		return -EPERM;
365 	}
366 
367 	/* The modes are bitmasks, the most power hungry modes having
368 	 * the lowest values. If the requested mode isn't supported
369 	 * try higher modes. */
370 	while (*mode) {
371 		if (rdev->constraints->valid_modes_mask & *mode)
372 			return 0;
373 		*mode /= 2;
374 	}
375 
376 	return -EINVAL;
377 }
378 
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382 	if (rdev->constraints == NULL)
383 		return NULL;
384 
385 	switch (state) {
386 	case PM_SUSPEND_STANDBY:
387 		return &rdev->constraints->state_standby;
388 	case PM_SUSPEND_MEM:
389 		return &rdev->constraints->state_mem;
390 	case PM_SUSPEND_MAX:
391 		return &rdev->constraints->state_disk;
392 	default:
393 		return NULL;
394 	}
395 }
396 
397 static ssize_t regulator_uV_show(struct device *dev,
398 				struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	ssize_t ret;
402 
403 	regulator_lock(rdev);
404 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 	regulator_unlock(rdev);
406 
407 	return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410 
411 static ssize_t regulator_uA_show(struct device *dev,
412 				struct device_attribute *attr, char *buf)
413 {
414 	struct regulator_dev *rdev = dev_get_drvdata(dev);
415 
416 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419 
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 			 char *buf)
422 {
423 	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 
425 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428 
429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431 	switch (mode) {
432 	case REGULATOR_MODE_FAST:
433 		return sprintf(buf, "fast\n");
434 	case REGULATOR_MODE_NORMAL:
435 		return sprintf(buf, "normal\n");
436 	case REGULATOR_MODE_IDLE:
437 		return sprintf(buf, "idle\n");
438 	case REGULATOR_MODE_STANDBY:
439 		return sprintf(buf, "standby\n");
440 	}
441 	return sprintf(buf, "unknown\n");
442 }
443 
444 static ssize_t regulator_opmode_show(struct device *dev,
445 				    struct device_attribute *attr, char *buf)
446 {
447 	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 
449 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452 
453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455 	if (state > 0)
456 		return sprintf(buf, "enabled\n");
457 	else if (state == 0)
458 		return sprintf(buf, "disabled\n");
459 	else
460 		return sprintf(buf, "unknown\n");
461 }
462 
463 static ssize_t regulator_state_show(struct device *dev,
464 				   struct device_attribute *attr, char *buf)
465 {
466 	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 	ssize_t ret;
468 
469 	regulator_lock(rdev);
470 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 	regulator_unlock(rdev);
472 
473 	return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476 
477 static ssize_t regulator_status_show(struct device *dev,
478 				   struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 	int status;
482 	char *label;
483 
484 	status = rdev->desc->ops->get_status(rdev);
485 	if (status < 0)
486 		return status;
487 
488 	switch (status) {
489 	case REGULATOR_STATUS_OFF:
490 		label = "off";
491 		break;
492 	case REGULATOR_STATUS_ON:
493 		label = "on";
494 		break;
495 	case REGULATOR_STATUS_ERROR:
496 		label = "error";
497 		break;
498 	case REGULATOR_STATUS_FAST:
499 		label = "fast";
500 		break;
501 	case REGULATOR_STATUS_NORMAL:
502 		label = "normal";
503 		break;
504 	case REGULATOR_STATUS_IDLE:
505 		label = "idle";
506 		break;
507 	case REGULATOR_STATUS_STANDBY:
508 		label = "standby";
509 		break;
510 	case REGULATOR_STATUS_BYPASS:
511 		label = "bypass";
512 		break;
513 	case REGULATOR_STATUS_UNDEFINED:
514 		label = "undefined";
515 		break;
516 	default:
517 		return -ERANGE;
518 	}
519 
520 	return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523 
524 static ssize_t regulator_min_uA_show(struct device *dev,
525 				    struct device_attribute *attr, char *buf)
526 {
527 	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 
529 	if (!rdev->constraints)
530 		return sprintf(buf, "constraint not defined\n");
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535 
536 static ssize_t regulator_max_uA_show(struct device *dev,
537 				    struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	if (!rdev->constraints)
542 		return sprintf(buf, "constraint not defined\n");
543 
544 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547 
548 static ssize_t regulator_min_uV_show(struct device *dev,
549 				    struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	if (!rdev->constraints)
554 		return sprintf(buf, "constraint not defined\n");
555 
556 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559 
560 static ssize_t regulator_max_uV_show(struct device *dev,
561 				    struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	if (!rdev->constraints)
566 		return sprintf(buf, "constraint not defined\n");
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571 
572 static ssize_t regulator_total_uA_show(struct device *dev,
573 				      struct device_attribute *attr, char *buf)
574 {
575 	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 	struct regulator *regulator;
577 	int uA = 0;
578 
579 	regulator_lock(rdev);
580 	list_for_each_entry(regulator, &rdev->consumer_list, list)
581 		uA += regulator->uA_load;
582 	regulator_unlock(rdev);
583 	return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586 
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 			      char *buf)
589 {
590 	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 	return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594 
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 			 char *buf)
597 {
598 	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 
600 	switch (rdev->desc->type) {
601 	case REGULATOR_VOLTAGE:
602 		return sprintf(buf, "voltage\n");
603 	case REGULATOR_CURRENT:
604 		return sprintf(buf, "current\n");
605 	}
606 	return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609 
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 				struct device_attribute *attr, char *buf)
612 {
613 	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 
615 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 		regulator_suspend_mem_uV_show, NULL);
619 
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 				struct device_attribute *attr, char *buf)
622 {
623 	struct regulator_dev *rdev = dev_get_drvdata(dev);
624 
625 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 		regulator_suspend_disk_uV_show, NULL);
629 
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 				struct device_attribute *attr, char *buf)
632 {
633 	struct regulator_dev *rdev = dev_get_drvdata(dev);
634 
635 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 		regulator_suspend_standby_uV_show, NULL);
639 
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 				struct device_attribute *attr, char *buf)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 
645 	return regulator_print_opmode(buf,
646 		rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 		regulator_suspend_mem_mode_show, NULL);
650 
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 				struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 
656 	return regulator_print_opmode(buf,
657 		rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 		regulator_suspend_disk_mode_show, NULL);
661 
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 				struct device_attribute *attr, char *buf)
664 {
665 	struct regulator_dev *rdev = dev_get_drvdata(dev);
666 
667 	return regulator_print_opmode(buf,
668 		rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 		regulator_suspend_standby_mode_show, NULL);
672 
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 				   struct device_attribute *attr, char *buf)
675 {
676 	struct regulator_dev *rdev = dev_get_drvdata(dev);
677 
678 	return regulator_print_state(buf,
679 			rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 		regulator_suspend_mem_state_show, NULL);
683 
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 				   struct device_attribute *attr, char *buf)
686 {
687 	struct regulator_dev *rdev = dev_get_drvdata(dev);
688 
689 	return regulator_print_state(buf,
690 			rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 		regulator_suspend_disk_state_show, NULL);
694 
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 				   struct device_attribute *attr, char *buf)
697 {
698 	struct regulator_dev *rdev = dev_get_drvdata(dev);
699 
700 	return regulator_print_state(buf,
701 			rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 		regulator_suspend_standby_state_show, NULL);
705 
706 static ssize_t regulator_bypass_show(struct device *dev,
707 				     struct device_attribute *attr, char *buf)
708 {
709 	struct regulator_dev *rdev = dev_get_drvdata(dev);
710 	const char *report;
711 	bool bypass;
712 	int ret;
713 
714 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715 
716 	if (ret != 0)
717 		report = "unknown";
718 	else if (bypass)
719 		report = "enabled";
720 	else
721 		report = "disabled";
722 
723 	return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726 		   regulator_bypass_show, NULL);
727 
728 /* Calculate the new optimum regulator operating mode based on the new total
729  * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732 	struct regulator *sibling;
733 	int current_uA = 0, output_uV, input_uV, err;
734 	unsigned int mode;
735 
736 	lockdep_assert_held_once(&rdev->mutex);
737 
738 	/*
739 	 * first check to see if we can set modes at all, otherwise just
740 	 * tell the consumer everything is OK.
741 	 */
742 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 		return 0;
744 
745 	if (!rdev->desc->ops->get_optimum_mode &&
746 	    !rdev->desc->ops->set_load)
747 		return 0;
748 
749 	if (!rdev->desc->ops->set_mode &&
750 	    !rdev->desc->ops->set_load)
751 		return -EINVAL;
752 
753 	/* calc total requested load */
754 	list_for_each_entry(sibling, &rdev->consumer_list, list)
755 		current_uA += sibling->uA_load;
756 
757 	current_uA += rdev->constraints->system_load;
758 
759 	if (rdev->desc->ops->set_load) {
760 		/* set the optimum mode for our new total regulator load */
761 		err = rdev->desc->ops->set_load(rdev, current_uA);
762 		if (err < 0)
763 			rdev_err(rdev, "failed to set load %d\n", current_uA);
764 	} else {
765 		/* get output voltage */
766 		output_uV = _regulator_get_voltage(rdev);
767 		if (output_uV <= 0) {
768 			rdev_err(rdev, "invalid output voltage found\n");
769 			return -EINVAL;
770 		}
771 
772 		/* get input voltage */
773 		input_uV = 0;
774 		if (rdev->supply)
775 			input_uV = regulator_get_voltage(rdev->supply);
776 		if (input_uV <= 0)
777 			input_uV = rdev->constraints->input_uV;
778 		if (input_uV <= 0) {
779 			rdev_err(rdev, "invalid input voltage found\n");
780 			return -EINVAL;
781 		}
782 
783 		/* now get the optimum mode for our new total regulator load */
784 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 							 output_uV, current_uA);
786 
787 		/* check the new mode is allowed */
788 		err = regulator_mode_constrain(rdev, &mode);
789 		if (err < 0) {
790 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 				 current_uA, input_uV, output_uV);
792 			return err;
793 		}
794 
795 		err = rdev->desc->ops->set_mode(rdev, mode);
796 		if (err < 0)
797 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798 	}
799 
800 	return err;
801 }
802 
803 static int suspend_set_state(struct regulator_dev *rdev,
804 				    suspend_state_t state)
805 {
806 	int ret = 0;
807 	struct regulator_state *rstate;
808 
809 	rstate = regulator_get_suspend_state(rdev, state);
810 	if (rstate == NULL)
811 		return 0;
812 
813 	/* If we have no suspend mode configration don't set anything;
814 	 * only warn if the driver implements set_suspend_voltage or
815 	 * set_suspend_mode callback.
816 	 */
817 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 	    rstate->enabled != DISABLE_IN_SUSPEND) {
819 		if (rdev->desc->ops->set_suspend_voltage ||
820 		    rdev->desc->ops->set_suspend_mode)
821 			rdev_warn(rdev, "No configuration\n");
822 		return 0;
823 	}
824 
825 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 		rdev->desc->ops->set_suspend_enable)
827 		ret = rdev->desc->ops->set_suspend_enable(rdev);
828 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 		rdev->desc->ops->set_suspend_disable)
830 		ret = rdev->desc->ops->set_suspend_disable(rdev);
831 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 		ret = 0;
833 
834 	if (ret < 0) {
835 		rdev_err(rdev, "failed to enabled/disable\n");
836 		return ret;
837 	}
838 
839 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 		if (ret < 0) {
842 			rdev_err(rdev, "failed to set voltage\n");
843 			return ret;
844 		}
845 	}
846 
847 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 		if (ret < 0) {
850 			rdev_err(rdev, "failed to set mode\n");
851 			return ret;
852 		}
853 	}
854 
855 	return ret;
856 }
857 
858 static void print_constraints(struct regulator_dev *rdev)
859 {
860 	struct regulation_constraints *constraints = rdev->constraints;
861 	char buf[160] = "";
862 	size_t len = sizeof(buf) - 1;
863 	int count = 0;
864 	int ret;
865 
866 	if (constraints->min_uV && constraints->max_uV) {
867 		if (constraints->min_uV == constraints->max_uV)
868 			count += scnprintf(buf + count, len - count, "%d mV ",
869 					   constraints->min_uV / 1000);
870 		else
871 			count += scnprintf(buf + count, len - count,
872 					   "%d <--> %d mV ",
873 					   constraints->min_uV / 1000,
874 					   constraints->max_uV / 1000);
875 	}
876 
877 	if (!constraints->min_uV ||
878 	    constraints->min_uV != constraints->max_uV) {
879 		ret = _regulator_get_voltage(rdev);
880 		if (ret > 0)
881 			count += scnprintf(buf + count, len - count,
882 					   "at %d mV ", ret / 1000);
883 	}
884 
885 	if (constraints->uV_offset)
886 		count += scnprintf(buf + count, len - count, "%dmV offset ",
887 				   constraints->uV_offset / 1000);
888 
889 	if (constraints->min_uA && constraints->max_uA) {
890 		if (constraints->min_uA == constraints->max_uA)
891 			count += scnprintf(buf + count, len - count, "%d mA ",
892 					   constraints->min_uA / 1000);
893 		else
894 			count += scnprintf(buf + count, len - count,
895 					   "%d <--> %d mA ",
896 					   constraints->min_uA / 1000,
897 					   constraints->max_uA / 1000);
898 	}
899 
900 	if (!constraints->min_uA ||
901 	    constraints->min_uA != constraints->max_uA) {
902 		ret = _regulator_get_current_limit(rdev);
903 		if (ret > 0)
904 			count += scnprintf(buf + count, len - count,
905 					   "at %d mA ", ret / 1000);
906 	}
907 
908 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 		count += scnprintf(buf + count, len - count, "fast ");
910 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 		count += scnprintf(buf + count, len - count, "normal ");
912 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 		count += scnprintf(buf + count, len - count, "idle ");
914 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 		count += scnprintf(buf + count, len - count, "standby");
916 
917 	if (!count)
918 		scnprintf(buf, len, "no parameters");
919 
920 	rdev_dbg(rdev, "%s\n", buf);
921 
922 	if ((constraints->min_uV != constraints->max_uV) &&
923 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 		rdev_warn(rdev,
925 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927 
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 	struct regulation_constraints *constraints)
930 {
931 	const struct regulator_ops *ops = rdev->desc->ops;
932 	int ret;
933 
934 	/* do we need to apply the constraint voltage */
935 	if (rdev->constraints->apply_uV &&
936 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 		int target_min, target_max;
938 		int current_uV = _regulator_get_voltage(rdev);
939 
940 		if (current_uV == -ENOTRECOVERABLE) {
941 			/* This regulator can't be read and must be initted */
942 			rdev_info(rdev, "Setting %d-%duV\n",
943 				  rdev->constraints->min_uV,
944 				  rdev->constraints->max_uV);
945 			_regulator_do_set_voltage(rdev,
946 						  rdev->constraints->min_uV,
947 						  rdev->constraints->max_uV);
948 			current_uV = _regulator_get_voltage(rdev);
949 		}
950 
951 		if (current_uV < 0) {
952 			rdev_err(rdev,
953 				 "failed to get the current voltage(%d)\n",
954 				 current_uV);
955 			return current_uV;
956 		}
957 
958 		/*
959 		 * If we're below the minimum voltage move up to the
960 		 * minimum voltage, if we're above the maximum voltage
961 		 * then move down to the maximum.
962 		 */
963 		target_min = current_uV;
964 		target_max = current_uV;
965 
966 		if (current_uV < rdev->constraints->min_uV) {
967 			target_min = rdev->constraints->min_uV;
968 			target_max = rdev->constraints->min_uV;
969 		}
970 
971 		if (current_uV > rdev->constraints->max_uV) {
972 			target_min = rdev->constraints->max_uV;
973 			target_max = rdev->constraints->max_uV;
974 		}
975 
976 		if (target_min != current_uV || target_max != current_uV) {
977 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 				  current_uV, target_min, target_max);
979 			ret = _regulator_do_set_voltage(
980 				rdev, target_min, target_max);
981 			if (ret < 0) {
982 				rdev_err(rdev,
983 					"failed to apply %d-%duV constraint(%d)\n",
984 					target_min, target_max, ret);
985 				return ret;
986 			}
987 		}
988 	}
989 
990 	/* constrain machine-level voltage specs to fit
991 	 * the actual range supported by this regulator.
992 	 */
993 	if (ops->list_voltage && rdev->desc->n_voltages) {
994 		int	count = rdev->desc->n_voltages;
995 		int	i;
996 		int	min_uV = INT_MAX;
997 		int	max_uV = INT_MIN;
998 		int	cmin = constraints->min_uV;
999 		int	cmax = constraints->max_uV;
1000 
1001 		/* it's safe to autoconfigure fixed-voltage supplies
1002 		   and the constraints are used by list_voltage. */
1003 		if (count == 1 && !cmin) {
1004 			cmin = 1;
1005 			cmax = INT_MAX;
1006 			constraints->min_uV = cmin;
1007 			constraints->max_uV = cmax;
1008 		}
1009 
1010 		/* voltage constraints are optional */
1011 		if ((cmin == 0) && (cmax == 0))
1012 			return 0;
1013 
1014 		/* else require explicit machine-level constraints */
1015 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 			rdev_err(rdev, "invalid voltage constraints\n");
1017 			return -EINVAL;
1018 		}
1019 
1020 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 		for (i = 0; i < count; i++) {
1022 			int	value;
1023 
1024 			value = ops->list_voltage(rdev, i);
1025 			if (value <= 0)
1026 				continue;
1027 
1028 			/* maybe adjust [min_uV..max_uV] */
1029 			if (value >= cmin && value < min_uV)
1030 				min_uV = value;
1031 			if (value <= cmax && value > max_uV)
1032 				max_uV = value;
1033 		}
1034 
1035 		/* final: [min_uV..max_uV] valid iff constraints valid */
1036 		if (max_uV < min_uV) {
1037 			rdev_err(rdev,
1038 				 "unsupportable voltage constraints %u-%uuV\n",
1039 				 min_uV, max_uV);
1040 			return -EINVAL;
1041 		}
1042 
1043 		/* use regulator's subset of machine constraints */
1044 		if (constraints->min_uV < min_uV) {
1045 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 				 constraints->min_uV, min_uV);
1047 			constraints->min_uV = min_uV;
1048 		}
1049 		if (constraints->max_uV > max_uV) {
1050 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 				 constraints->max_uV, max_uV);
1052 			constraints->max_uV = max_uV;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 	struct regulation_constraints *constraints)
1061 {
1062 	const struct regulator_ops *ops = rdev->desc->ops;
1063 	int ret;
1064 
1065 	if (!constraints->min_uA && !constraints->max_uA)
1066 		return 0;
1067 
1068 	if (constraints->min_uA > constraints->max_uA) {
1069 		rdev_err(rdev, "Invalid current constraints\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	if (!ops->set_current_limit || !ops->get_current_limit) {
1074 		rdev_warn(rdev, "Operation of current configuration missing\n");
1075 		return 0;
1076 	}
1077 
1078 	/* Set regulator current in constraints range */
1079 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 			constraints->max_uA);
1081 	if (ret < 0) {
1082 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 		return ret;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090 
1091 /**
1092  * set_machine_constraints - sets regulator constraints
1093  * @rdev: regulator source
1094  * @constraints: constraints to apply
1095  *
1096  * Allows platform initialisation code to define and constrain
1097  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1098  * Constraints *must* be set by platform code in order for some
1099  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100  * set_mode.
1101  */
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103 	const struct regulation_constraints *constraints)
1104 {
1105 	int ret = 0;
1106 	const struct regulator_ops *ops = rdev->desc->ops;
1107 
1108 	if (constraints)
1109 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110 					    GFP_KERNEL);
1111 	else
1112 		rdev->constraints = kzalloc(sizeof(*constraints),
1113 					    GFP_KERNEL);
1114 	if (!rdev->constraints)
1115 		return -ENOMEM;
1116 
1117 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1118 	if (ret != 0)
1119 		return ret;
1120 
1121 	ret = machine_constraints_current(rdev, rdev->constraints);
1122 	if (ret != 0)
1123 		return ret;
1124 
1125 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126 		ret = ops->set_input_current_limit(rdev,
1127 						   rdev->constraints->ilim_uA);
1128 		if (ret < 0) {
1129 			rdev_err(rdev, "failed to set input limit\n");
1130 			return ret;
1131 		}
1132 	}
1133 
1134 	/* do we need to setup our suspend state */
1135 	if (rdev->constraints->initial_state) {
1136 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137 		if (ret < 0) {
1138 			rdev_err(rdev, "failed to set suspend state\n");
1139 			return ret;
1140 		}
1141 	}
1142 
1143 	if (rdev->constraints->initial_mode) {
1144 		if (!ops->set_mode) {
1145 			rdev_err(rdev, "no set_mode operation\n");
1146 			return -EINVAL;
1147 		}
1148 
1149 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150 		if (ret < 0) {
1151 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152 			return ret;
1153 		}
1154 	}
1155 
1156 	/* If the constraints say the regulator should be on at this point
1157 	 * and we have control then make sure it is enabled.
1158 	 */
1159 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160 		ret = _regulator_do_enable(rdev);
1161 		if (ret < 0 && ret != -EINVAL) {
1162 			rdev_err(rdev, "failed to enable\n");
1163 			return ret;
1164 		}
1165 	}
1166 
1167 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168 		&& ops->set_ramp_delay) {
1169 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170 		if (ret < 0) {
1171 			rdev_err(rdev, "failed to set ramp_delay\n");
1172 			return ret;
1173 		}
1174 	}
1175 
1176 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1177 		ret = ops->set_pull_down(rdev);
1178 		if (ret < 0) {
1179 			rdev_err(rdev, "failed to set pull down\n");
1180 			return ret;
1181 		}
1182 	}
1183 
1184 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1185 		ret = ops->set_soft_start(rdev);
1186 		if (ret < 0) {
1187 			rdev_err(rdev, "failed to set soft start\n");
1188 			return ret;
1189 		}
1190 	}
1191 
1192 	if (rdev->constraints->over_current_protection
1193 		&& ops->set_over_current_protection) {
1194 		ret = ops->set_over_current_protection(rdev);
1195 		if (ret < 0) {
1196 			rdev_err(rdev, "failed to set over current protection\n");
1197 			return ret;
1198 		}
1199 	}
1200 
1201 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202 		bool ad_state = (rdev->constraints->active_discharge ==
1203 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1204 
1205 		ret = ops->set_active_discharge(rdev, ad_state);
1206 		if (ret < 0) {
1207 			rdev_err(rdev, "failed to set active discharge\n");
1208 			return ret;
1209 		}
1210 	}
1211 
1212 	print_constraints(rdev);
1213 	return 0;
1214 }
1215 
1216 /**
1217  * set_supply - set regulator supply regulator
1218  * @rdev: regulator name
1219  * @supply_rdev: supply regulator name
1220  *
1221  * Called by platform initialisation code to set the supply regulator for this
1222  * regulator. This ensures that a regulators supply will also be enabled by the
1223  * core if it's child is enabled.
1224  */
1225 static int set_supply(struct regulator_dev *rdev,
1226 		      struct regulator_dev *supply_rdev)
1227 {
1228 	int err;
1229 
1230 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1231 
1232 	if (!try_module_get(supply_rdev->owner))
1233 		return -ENODEV;
1234 
1235 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236 	if (rdev->supply == NULL) {
1237 		err = -ENOMEM;
1238 		return err;
1239 	}
1240 	supply_rdev->open_count++;
1241 
1242 	return 0;
1243 }
1244 
1245 /**
1246  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247  * @rdev:         regulator source
1248  * @consumer_dev_name: dev_name() string for device supply applies to
1249  * @supply:       symbolic name for supply
1250  *
1251  * Allows platform initialisation code to map physical regulator
1252  * sources to symbolic names for supplies for use by devices.  Devices
1253  * should use these symbolic names to request regulators, avoiding the
1254  * need to provide board-specific regulator names as platform data.
1255  */
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257 				      const char *consumer_dev_name,
1258 				      const char *supply)
1259 {
1260 	struct regulator_map *node;
1261 	int has_dev;
1262 
1263 	if (supply == NULL)
1264 		return -EINVAL;
1265 
1266 	if (consumer_dev_name != NULL)
1267 		has_dev = 1;
1268 	else
1269 		has_dev = 0;
1270 
1271 	list_for_each_entry(node, &regulator_map_list, list) {
1272 		if (node->dev_name && consumer_dev_name) {
1273 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274 				continue;
1275 		} else if (node->dev_name || consumer_dev_name) {
1276 			continue;
1277 		}
1278 
1279 		if (strcmp(node->supply, supply) != 0)
1280 			continue;
1281 
1282 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283 			 consumer_dev_name,
1284 			 dev_name(&node->regulator->dev),
1285 			 node->regulator->desc->name,
1286 			 supply,
1287 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1288 		return -EBUSY;
1289 	}
1290 
1291 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292 	if (node == NULL)
1293 		return -ENOMEM;
1294 
1295 	node->regulator = rdev;
1296 	node->supply = supply;
1297 
1298 	if (has_dev) {
1299 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300 		if (node->dev_name == NULL) {
1301 			kfree(node);
1302 			return -ENOMEM;
1303 		}
1304 	}
1305 
1306 	list_add(&node->list, &regulator_map_list);
1307 	return 0;
1308 }
1309 
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1311 {
1312 	struct regulator_map *node, *n;
1313 
1314 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315 		if (rdev == node->regulator) {
1316 			list_del(&node->list);
1317 			kfree(node->dev_name);
1318 			kfree(node);
1319 		}
1320 	}
1321 }
1322 
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325 					  char __user *user_buf,
1326 					  size_t count, loff_t *ppos)
1327 {
1328 	const struct regulator *regulator = file->private_data;
1329 	const struct regulation_constraints *c = regulator->rdev->constraints;
1330 	char *buf;
1331 	ssize_t ret;
1332 
1333 	if (!c)
1334 		return 0;
1335 
1336 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337 	if (!buf)
1338 		return -ENOMEM;
1339 
1340 	ret = snprintf(buf, PAGE_SIZE,
1341 			"always_on: %u\n"
1342 			"boot_on: %u\n"
1343 			"apply_uV: %u\n"
1344 			"ramp_disable: %u\n"
1345 			"soft_start: %u\n"
1346 			"pull_down: %u\n"
1347 			"over_current_protection: %u\n",
1348 			c->always_on,
1349 			c->boot_on,
1350 			c->apply_uV,
1351 			c->ramp_disable,
1352 			c->soft_start,
1353 			c->pull_down,
1354 			c->over_current_protection);
1355 
1356 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357 	kfree(buf);
1358 
1359 	return ret;
1360 }
1361 
1362 #endif
1363 
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366 	.open = simple_open,
1367 	.read = constraint_flags_read_file,
1368 	.llseek = default_llseek,
1369 #endif
1370 };
1371 
1372 #define REG_STR_SIZE	64
1373 
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375 					  struct device *dev,
1376 					  const char *supply_name)
1377 {
1378 	struct regulator *regulator;
1379 	char buf[REG_STR_SIZE];
1380 	int err, size;
1381 
1382 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383 	if (regulator == NULL)
1384 		return NULL;
1385 
1386 	regulator_lock(rdev);
1387 	regulator->rdev = rdev;
1388 	list_add(&regulator->list, &rdev->consumer_list);
1389 
1390 	if (dev) {
1391 		regulator->dev = dev;
1392 
1393 		/* Add a link to the device sysfs entry */
1394 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395 				dev->kobj.name, supply_name);
1396 		if (size >= REG_STR_SIZE)
1397 			goto overflow_err;
1398 
1399 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400 		if (regulator->supply_name == NULL)
1401 			goto overflow_err;
1402 
1403 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404 					buf);
1405 		if (err) {
1406 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1407 				  dev->kobj.name, err);
1408 			/* non-fatal */
1409 		}
1410 	} else {
1411 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412 		if (regulator->supply_name == NULL)
1413 			goto overflow_err;
1414 	}
1415 
1416 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417 						rdev->debugfs);
1418 	if (!regulator->debugfs) {
1419 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420 	} else {
1421 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422 				   &regulator->uA_load);
1423 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427 		debugfs_create_file("constraint_flags", 0444,
1428 				    regulator->debugfs, regulator,
1429 				    &constraint_flags_fops);
1430 	}
1431 
1432 	/*
1433 	 * Check now if the regulator is an always on regulator - if
1434 	 * it is then we don't need to do nearly so much work for
1435 	 * enable/disable calls.
1436 	 */
1437 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438 	    _regulator_is_enabled(rdev))
1439 		regulator->always_on = true;
1440 
1441 	regulator_unlock(rdev);
1442 	return regulator;
1443 overflow_err:
1444 	list_del(&regulator->list);
1445 	kfree(regulator);
1446 	regulator_unlock(rdev);
1447 	return NULL;
1448 }
1449 
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1451 {
1452 	if (rdev->constraints && rdev->constraints->enable_time)
1453 		return rdev->constraints->enable_time;
1454 	if (!rdev->desc->ops->enable_time)
1455 		return rdev->desc->enable_time;
1456 	return rdev->desc->ops->enable_time(rdev);
1457 }
1458 
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460 		struct device *dev, const char *supply)
1461 {
1462 	struct regulator_supply_alias *map;
1463 
1464 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1465 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466 			return map;
1467 
1468 	return NULL;
1469 }
1470 
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1472 {
1473 	struct regulator_supply_alias *map;
1474 
1475 	map = regulator_find_supply_alias(*dev, *supply);
1476 	if (map) {
1477 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478 				*supply, map->alias_supply,
1479 				dev_name(map->alias_dev));
1480 		*dev = map->alias_dev;
1481 		*supply = map->alias_supply;
1482 	}
1483 }
1484 
1485 static int regulator_match(struct device *dev, const void *data)
1486 {
1487 	struct regulator_dev *r = dev_to_rdev(dev);
1488 
1489 	return strcmp(rdev_get_name(r), data) == 0;
1490 }
1491 
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1493 {
1494 	struct device *dev;
1495 
1496 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1497 
1498 	return dev ? dev_to_rdev(dev) : NULL;
1499 }
1500 
1501 /**
1502  * regulator_dev_lookup - lookup a regulator device.
1503  * @dev: device for regulator "consumer".
1504  * @supply: Supply name or regulator ID.
1505  *
1506  * If successful, returns a struct regulator_dev that corresponds to the name
1507  * @supply and with the embedded struct device refcount incremented by one.
1508  * The refcount must be dropped by calling put_device().
1509  * On failure one of the following ERR-PTR-encoded values is returned:
1510  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511  * in the future.
1512  */
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514 						  const char *supply)
1515 {
1516 	struct regulator_dev *r = NULL;
1517 	struct device_node *node;
1518 	struct regulator_map *map;
1519 	const char *devname = NULL;
1520 
1521 	regulator_supply_alias(&dev, &supply);
1522 
1523 	/* first do a dt based lookup */
1524 	if (dev && dev->of_node) {
1525 		node = of_get_regulator(dev, supply);
1526 		if (node) {
1527 			r = of_find_regulator_by_node(node);
1528 			if (r)
1529 				return r;
1530 
1531 			/*
1532 			 * We have a node, but there is no device.
1533 			 * assume it has not registered yet.
1534 			 */
1535 			return ERR_PTR(-EPROBE_DEFER);
1536 		}
1537 	}
1538 
1539 	/* if not found, try doing it non-dt way */
1540 	if (dev)
1541 		devname = dev_name(dev);
1542 
1543 	mutex_lock(&regulator_list_mutex);
1544 	list_for_each_entry(map, &regulator_map_list, list) {
1545 		/* If the mapping has a device set up it must match */
1546 		if (map->dev_name &&
1547 		    (!devname || strcmp(map->dev_name, devname)))
1548 			continue;
1549 
1550 		if (strcmp(map->supply, supply) == 0 &&
1551 		    get_device(&map->regulator->dev)) {
1552 			r = map->regulator;
1553 			break;
1554 		}
1555 	}
1556 	mutex_unlock(&regulator_list_mutex);
1557 
1558 	if (r)
1559 		return r;
1560 
1561 	r = regulator_lookup_by_name(supply);
1562 	if (r)
1563 		return r;
1564 
1565 	return ERR_PTR(-ENODEV);
1566 }
1567 
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1569 {
1570 	struct regulator_dev *r;
1571 	struct device *dev = rdev->dev.parent;
1572 	int ret;
1573 
1574 	/* No supply to resovle? */
1575 	if (!rdev->supply_name)
1576 		return 0;
1577 
1578 	/* Supply already resolved? */
1579 	if (rdev->supply)
1580 		return 0;
1581 
1582 	r = regulator_dev_lookup(dev, rdev->supply_name);
1583 	if (IS_ERR(r)) {
1584 		ret = PTR_ERR(r);
1585 
1586 		/* Did the lookup explicitly defer for us? */
1587 		if (ret == -EPROBE_DEFER)
1588 			return ret;
1589 
1590 		if (have_full_constraints()) {
1591 			r = dummy_regulator_rdev;
1592 			get_device(&r->dev);
1593 		} else {
1594 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595 				rdev->supply_name, rdev->desc->name);
1596 			return -EPROBE_DEFER;
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * If the supply's parent device is not the same as the
1602 	 * regulator's parent device, then ensure the parent device
1603 	 * is bound before we resolve the supply, in case the parent
1604 	 * device get probe deferred and unregisters the supply.
1605 	 */
1606 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607 		if (!device_is_bound(r->dev.parent)) {
1608 			put_device(&r->dev);
1609 			return -EPROBE_DEFER;
1610 		}
1611 	}
1612 
1613 	/* Recursively resolve the supply of the supply */
1614 	ret = regulator_resolve_supply(r);
1615 	if (ret < 0) {
1616 		put_device(&r->dev);
1617 		return ret;
1618 	}
1619 
1620 	ret = set_supply(rdev, r);
1621 	if (ret < 0) {
1622 		put_device(&r->dev);
1623 		return ret;
1624 	}
1625 
1626 	/* Cascade always-on state to supply */
1627 	if (_regulator_is_enabled(rdev)) {
1628 		ret = regulator_enable(rdev->supply);
1629 		if (ret < 0) {
1630 			_regulator_put(rdev->supply);
1631 			rdev->supply = NULL;
1632 			return ret;
1633 		}
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641 				 enum regulator_get_type get_type)
1642 {
1643 	struct regulator_dev *rdev;
1644 	struct regulator *regulator;
1645 	const char *devname = dev ? dev_name(dev) : "deviceless";
1646 	int ret;
1647 
1648 	if (get_type >= MAX_GET_TYPE) {
1649 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650 		return ERR_PTR(-EINVAL);
1651 	}
1652 
1653 	if (id == NULL) {
1654 		pr_err("get() with no identifier\n");
1655 		return ERR_PTR(-EINVAL);
1656 	}
1657 
1658 	rdev = regulator_dev_lookup(dev, id);
1659 	if (IS_ERR(rdev)) {
1660 		ret = PTR_ERR(rdev);
1661 
1662 		/*
1663 		 * If regulator_dev_lookup() fails with error other
1664 		 * than -ENODEV our job here is done, we simply return it.
1665 		 */
1666 		if (ret != -ENODEV)
1667 			return ERR_PTR(ret);
1668 
1669 		if (!have_full_constraints()) {
1670 			dev_warn(dev,
1671 				 "incomplete constraints, dummy supplies not allowed\n");
1672 			return ERR_PTR(-ENODEV);
1673 		}
1674 
1675 		switch (get_type) {
1676 		case NORMAL_GET:
1677 			/*
1678 			 * Assume that a regulator is physically present and
1679 			 * enabled, even if it isn't hooked up, and just
1680 			 * provide a dummy.
1681 			 */
1682 			dev_warn(dev,
1683 				 "%s supply %s not found, using dummy regulator\n",
1684 				 devname, id);
1685 			rdev = dummy_regulator_rdev;
1686 			get_device(&rdev->dev);
1687 			break;
1688 
1689 		case EXCLUSIVE_GET:
1690 			dev_warn(dev,
1691 				 "dummy supplies not allowed for exclusive requests\n");
1692 			/* fall through */
1693 
1694 		default:
1695 			return ERR_PTR(-ENODEV);
1696 		}
1697 	}
1698 
1699 	if (rdev->exclusive) {
1700 		regulator = ERR_PTR(-EPERM);
1701 		put_device(&rdev->dev);
1702 		return regulator;
1703 	}
1704 
1705 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706 		regulator = ERR_PTR(-EBUSY);
1707 		put_device(&rdev->dev);
1708 		return regulator;
1709 	}
1710 
1711 	ret = regulator_resolve_supply(rdev);
1712 	if (ret < 0) {
1713 		regulator = ERR_PTR(ret);
1714 		put_device(&rdev->dev);
1715 		return regulator;
1716 	}
1717 
1718 	if (!try_module_get(rdev->owner)) {
1719 		regulator = ERR_PTR(-EPROBE_DEFER);
1720 		put_device(&rdev->dev);
1721 		return regulator;
1722 	}
1723 
1724 	regulator = create_regulator(rdev, dev, id);
1725 	if (regulator == NULL) {
1726 		regulator = ERR_PTR(-ENOMEM);
1727 		put_device(&rdev->dev);
1728 		module_put(rdev->owner);
1729 		return regulator;
1730 	}
1731 
1732 	rdev->open_count++;
1733 	if (get_type == EXCLUSIVE_GET) {
1734 		rdev->exclusive = 1;
1735 
1736 		ret = _regulator_is_enabled(rdev);
1737 		if (ret > 0)
1738 			rdev->use_count = 1;
1739 		else
1740 			rdev->use_count = 0;
1741 	}
1742 
1743 	return regulator;
1744 }
1745 
1746 /**
1747  * regulator_get - lookup and obtain a reference to a regulator.
1748  * @dev: device for regulator "consumer"
1749  * @id: Supply name or regulator ID.
1750  *
1751  * Returns a struct regulator corresponding to the regulator producer,
1752  * or IS_ERR() condition containing errno.
1753  *
1754  * Use of supply names configured via regulator_set_device_supply() is
1755  * strongly encouraged.  It is recommended that the supply name used
1756  * should match the name used for the supply and/or the relevant
1757  * device pins in the datasheet.
1758  */
1759 struct regulator *regulator_get(struct device *dev, const char *id)
1760 {
1761 	return _regulator_get(dev, id, NORMAL_GET);
1762 }
1763 EXPORT_SYMBOL_GPL(regulator_get);
1764 
1765 /**
1766  * regulator_get_exclusive - obtain exclusive access to a regulator.
1767  * @dev: device for regulator "consumer"
1768  * @id: Supply name or regulator ID.
1769  *
1770  * Returns a struct regulator corresponding to the regulator producer,
1771  * or IS_ERR() condition containing errno.  Other consumers will be
1772  * unable to obtain this regulator while this reference is held and the
1773  * use count for the regulator will be initialised to reflect the current
1774  * state of the regulator.
1775  *
1776  * This is intended for use by consumers which cannot tolerate shared
1777  * use of the regulator such as those which need to force the
1778  * regulator off for correct operation of the hardware they are
1779  * controlling.
1780  *
1781  * Use of supply names configured via regulator_set_device_supply() is
1782  * strongly encouraged.  It is recommended that the supply name used
1783  * should match the name used for the supply and/or the relevant
1784  * device pins in the datasheet.
1785  */
1786 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1787 {
1788 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1791 
1792 /**
1793  * regulator_get_optional - obtain optional access to a regulator.
1794  * @dev: device for regulator "consumer"
1795  * @id: Supply name or regulator ID.
1796  *
1797  * Returns a struct regulator corresponding to the regulator producer,
1798  * or IS_ERR() condition containing errno.
1799  *
1800  * This is intended for use by consumers for devices which can have
1801  * some supplies unconnected in normal use, such as some MMC devices.
1802  * It can allow the regulator core to provide stub supplies for other
1803  * supplies requested using normal regulator_get() calls without
1804  * disrupting the operation of drivers that can handle absent
1805  * supplies.
1806  *
1807  * Use of supply names configured via regulator_set_device_supply() is
1808  * strongly encouraged.  It is recommended that the supply name used
1809  * should match the name used for the supply and/or the relevant
1810  * device pins in the datasheet.
1811  */
1812 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1813 {
1814 	return _regulator_get(dev, id, OPTIONAL_GET);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_get_optional);
1817 
1818 /* regulator_list_mutex lock held by regulator_put() */
1819 static void _regulator_put(struct regulator *regulator)
1820 {
1821 	struct regulator_dev *rdev;
1822 
1823 	if (IS_ERR_OR_NULL(regulator))
1824 		return;
1825 
1826 	lockdep_assert_held_once(&regulator_list_mutex);
1827 
1828 	rdev = regulator->rdev;
1829 
1830 	debugfs_remove_recursive(regulator->debugfs);
1831 
1832 	/* remove any sysfs entries */
1833 	if (regulator->dev)
1834 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1835 	regulator_lock(rdev);
1836 	list_del(&regulator->list);
1837 
1838 	rdev->open_count--;
1839 	rdev->exclusive = 0;
1840 	put_device(&rdev->dev);
1841 	regulator_unlock(rdev);
1842 
1843 	kfree_const(regulator->supply_name);
1844 	kfree(regulator);
1845 
1846 	module_put(rdev->owner);
1847 }
1848 
1849 /**
1850  * regulator_put - "free" the regulator source
1851  * @regulator: regulator source
1852  *
1853  * Note: drivers must ensure that all regulator_enable calls made on this
1854  * regulator source are balanced by regulator_disable calls prior to calling
1855  * this function.
1856  */
1857 void regulator_put(struct regulator *regulator)
1858 {
1859 	mutex_lock(&regulator_list_mutex);
1860 	_regulator_put(regulator);
1861 	mutex_unlock(&regulator_list_mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_put);
1864 
1865 /**
1866  * regulator_register_supply_alias - Provide device alias for supply lookup
1867  *
1868  * @dev: device that will be given as the regulator "consumer"
1869  * @id: Supply name or regulator ID
1870  * @alias_dev: device that should be used to lookup the supply
1871  * @alias_id: Supply name or regulator ID that should be used to lookup the
1872  * supply
1873  *
1874  * All lookups for id on dev will instead be conducted for alias_id on
1875  * alias_dev.
1876  */
1877 int regulator_register_supply_alias(struct device *dev, const char *id,
1878 				    struct device *alias_dev,
1879 				    const char *alias_id)
1880 {
1881 	struct regulator_supply_alias *map;
1882 
1883 	map = regulator_find_supply_alias(dev, id);
1884 	if (map)
1885 		return -EEXIST;
1886 
1887 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1888 	if (!map)
1889 		return -ENOMEM;
1890 
1891 	map->src_dev = dev;
1892 	map->src_supply = id;
1893 	map->alias_dev = alias_dev;
1894 	map->alias_supply = alias_id;
1895 
1896 	list_add(&map->list, &regulator_supply_alias_list);
1897 
1898 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1899 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1900 
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1904 
1905 /**
1906  * regulator_unregister_supply_alias - Remove device alias
1907  *
1908  * @dev: device that will be given as the regulator "consumer"
1909  * @id: Supply name or regulator ID
1910  *
1911  * Remove a lookup alias if one exists for id on dev.
1912  */
1913 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1914 {
1915 	struct regulator_supply_alias *map;
1916 
1917 	map = regulator_find_supply_alias(dev, id);
1918 	if (map) {
1919 		list_del(&map->list);
1920 		kfree(map);
1921 	}
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1924 
1925 /**
1926  * regulator_bulk_register_supply_alias - register multiple aliases
1927  *
1928  * @dev: device that will be given as the regulator "consumer"
1929  * @id: List of supply names or regulator IDs
1930  * @alias_dev: device that should be used to lookup the supply
1931  * @alias_id: List of supply names or regulator IDs that should be used to
1932  * lookup the supply
1933  * @num_id: Number of aliases to register
1934  *
1935  * @return 0 on success, an errno on failure.
1936  *
1937  * This helper function allows drivers to register several supply
1938  * aliases in one operation.  If any of the aliases cannot be
1939  * registered any aliases that were registered will be removed
1940  * before returning to the caller.
1941  */
1942 int regulator_bulk_register_supply_alias(struct device *dev,
1943 					 const char *const *id,
1944 					 struct device *alias_dev,
1945 					 const char *const *alias_id,
1946 					 int num_id)
1947 {
1948 	int i;
1949 	int ret;
1950 
1951 	for (i = 0; i < num_id; ++i) {
1952 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1953 						      alias_id[i]);
1954 		if (ret < 0)
1955 			goto err;
1956 	}
1957 
1958 	return 0;
1959 
1960 err:
1961 	dev_err(dev,
1962 		"Failed to create supply alias %s,%s -> %s,%s\n",
1963 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1964 
1965 	while (--i >= 0)
1966 		regulator_unregister_supply_alias(dev, id[i]);
1967 
1968 	return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1971 
1972 /**
1973  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1974  *
1975  * @dev: device that will be given as the regulator "consumer"
1976  * @id: List of supply names or regulator IDs
1977  * @num_id: Number of aliases to unregister
1978  *
1979  * This helper function allows drivers to unregister several supply
1980  * aliases in one operation.
1981  */
1982 void regulator_bulk_unregister_supply_alias(struct device *dev,
1983 					    const char *const *id,
1984 					    int num_id)
1985 {
1986 	int i;
1987 
1988 	for (i = 0; i < num_id; ++i)
1989 		regulator_unregister_supply_alias(dev, id[i]);
1990 }
1991 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1992 
1993 
1994 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1995 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1996 				const struct regulator_config *config)
1997 {
1998 	struct regulator_enable_gpio *pin;
1999 	struct gpio_desc *gpiod;
2000 	int ret;
2001 
2002 	if (config->ena_gpiod)
2003 		gpiod = config->ena_gpiod;
2004 	else
2005 		gpiod = gpio_to_desc(config->ena_gpio);
2006 
2007 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2008 		if (pin->gpiod == gpiod) {
2009 			rdev_dbg(rdev, "GPIO %d is already used\n",
2010 				config->ena_gpio);
2011 			goto update_ena_gpio_to_rdev;
2012 		}
2013 	}
2014 
2015 	if (!config->ena_gpiod) {
2016 		ret = gpio_request_one(config->ena_gpio,
2017 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
2018 				       rdev_get_name(rdev));
2019 		if (ret)
2020 			return ret;
2021 	}
2022 
2023 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2024 	if (pin == NULL) {
2025 		if (!config->ena_gpiod)
2026 			gpio_free(config->ena_gpio);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	pin->gpiod = gpiod;
2031 	pin->ena_gpio_invert = config->ena_gpio_invert;
2032 	list_add(&pin->list, &regulator_ena_gpio_list);
2033 
2034 update_ena_gpio_to_rdev:
2035 	pin->request_count++;
2036 	rdev->ena_pin = pin;
2037 	return 0;
2038 }
2039 
2040 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2041 {
2042 	struct regulator_enable_gpio *pin, *n;
2043 
2044 	if (!rdev->ena_pin)
2045 		return;
2046 
2047 	/* Free the GPIO only in case of no use */
2048 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2049 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2050 			if (pin->request_count <= 1) {
2051 				pin->request_count = 0;
2052 				gpiod_put(pin->gpiod);
2053 				list_del(&pin->list);
2054 				kfree(pin);
2055 				rdev->ena_pin = NULL;
2056 				return;
2057 			} else {
2058 				pin->request_count--;
2059 			}
2060 		}
2061 	}
2062 }
2063 
2064 /**
2065  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2066  * @rdev: regulator_dev structure
2067  * @enable: enable GPIO at initial use?
2068  *
2069  * GPIO is enabled in case of initial use. (enable_count is 0)
2070  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2071  */
2072 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2073 {
2074 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2075 
2076 	if (!pin)
2077 		return -EINVAL;
2078 
2079 	if (enable) {
2080 		/* Enable GPIO at initial use */
2081 		if (pin->enable_count == 0)
2082 			gpiod_set_value_cansleep(pin->gpiod,
2083 						 !pin->ena_gpio_invert);
2084 
2085 		pin->enable_count++;
2086 	} else {
2087 		if (pin->enable_count > 1) {
2088 			pin->enable_count--;
2089 			return 0;
2090 		}
2091 
2092 		/* Disable GPIO if not used */
2093 		if (pin->enable_count <= 1) {
2094 			gpiod_set_value_cansleep(pin->gpiod,
2095 						 pin->ena_gpio_invert);
2096 			pin->enable_count = 0;
2097 		}
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 /**
2104  * _regulator_enable_delay - a delay helper function
2105  * @delay: time to delay in microseconds
2106  *
2107  * Delay for the requested amount of time as per the guidelines in:
2108  *
2109  *     Documentation/timers/timers-howto.txt
2110  *
2111  * The assumption here is that regulators will never be enabled in
2112  * atomic context and therefore sleeping functions can be used.
2113  */
2114 static void _regulator_enable_delay(unsigned int delay)
2115 {
2116 	unsigned int ms = delay / 1000;
2117 	unsigned int us = delay % 1000;
2118 
2119 	if (ms > 0) {
2120 		/*
2121 		 * For small enough values, handle super-millisecond
2122 		 * delays in the usleep_range() call below.
2123 		 */
2124 		if (ms < 20)
2125 			us += ms * 1000;
2126 		else
2127 			msleep(ms);
2128 	}
2129 
2130 	/*
2131 	 * Give the scheduler some room to coalesce with any other
2132 	 * wakeup sources. For delays shorter than 10 us, don't even
2133 	 * bother setting up high-resolution timers and just busy-
2134 	 * loop.
2135 	 */
2136 	if (us >= 10)
2137 		usleep_range(us, us + 100);
2138 	else
2139 		udelay(us);
2140 }
2141 
2142 static int _regulator_do_enable(struct regulator_dev *rdev)
2143 {
2144 	int ret, delay;
2145 
2146 	/* Query before enabling in case configuration dependent.  */
2147 	ret = _regulator_get_enable_time(rdev);
2148 	if (ret >= 0) {
2149 		delay = ret;
2150 	} else {
2151 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2152 		delay = 0;
2153 	}
2154 
2155 	trace_regulator_enable(rdev_get_name(rdev));
2156 
2157 	if (rdev->desc->off_on_delay) {
2158 		/* if needed, keep a distance of off_on_delay from last time
2159 		 * this regulator was disabled.
2160 		 */
2161 		unsigned long start_jiffy = jiffies;
2162 		unsigned long intended, max_delay, remaining;
2163 
2164 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2165 		intended = rdev->last_off_jiffy + max_delay;
2166 
2167 		if (time_before(start_jiffy, intended)) {
2168 			/* calc remaining jiffies to deal with one-time
2169 			 * timer wrapping.
2170 			 * in case of multiple timer wrapping, either it can be
2171 			 * detected by out-of-range remaining, or it cannot be
2172 			 * detected and we gets a panelty of
2173 			 * _regulator_enable_delay().
2174 			 */
2175 			remaining = intended - start_jiffy;
2176 			if (remaining <= max_delay)
2177 				_regulator_enable_delay(
2178 						jiffies_to_usecs(remaining));
2179 		}
2180 	}
2181 
2182 	if (rdev->ena_pin) {
2183 		if (!rdev->ena_gpio_state) {
2184 			ret = regulator_ena_gpio_ctrl(rdev, true);
2185 			if (ret < 0)
2186 				return ret;
2187 			rdev->ena_gpio_state = 1;
2188 		}
2189 	} else if (rdev->desc->ops->enable) {
2190 		ret = rdev->desc->ops->enable(rdev);
2191 		if (ret < 0)
2192 			return ret;
2193 	} else {
2194 		return -EINVAL;
2195 	}
2196 
2197 	/* Allow the regulator to ramp; it would be useful to extend
2198 	 * this for bulk operations so that the regulators can ramp
2199 	 * together.  */
2200 	trace_regulator_enable_delay(rdev_get_name(rdev));
2201 
2202 	_regulator_enable_delay(delay);
2203 
2204 	trace_regulator_enable_complete(rdev_get_name(rdev));
2205 
2206 	return 0;
2207 }
2208 
2209 /* locks held by regulator_enable() */
2210 static int _regulator_enable(struct regulator_dev *rdev)
2211 {
2212 	int ret;
2213 
2214 	lockdep_assert_held_once(&rdev->mutex);
2215 
2216 	/* check voltage and requested load before enabling */
2217 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2218 		drms_uA_update(rdev);
2219 
2220 	if (rdev->use_count == 0) {
2221 		/* The regulator may on if it's not switchable or left on */
2222 		ret = _regulator_is_enabled(rdev);
2223 		if (ret == -EINVAL || ret == 0) {
2224 			if (!regulator_ops_is_valid(rdev,
2225 					REGULATOR_CHANGE_STATUS))
2226 				return -EPERM;
2227 
2228 			ret = _regulator_do_enable(rdev);
2229 			if (ret < 0)
2230 				return ret;
2231 
2232 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2233 					     NULL);
2234 		} else if (ret < 0) {
2235 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2236 			return ret;
2237 		}
2238 		/* Fallthrough on positive return values - already enabled */
2239 	}
2240 
2241 	rdev->use_count++;
2242 
2243 	return 0;
2244 }
2245 
2246 /**
2247  * regulator_enable - enable regulator output
2248  * @regulator: regulator source
2249  *
2250  * Request that the regulator be enabled with the regulator output at
2251  * the predefined voltage or current value.  Calls to regulator_enable()
2252  * must be balanced with calls to regulator_disable().
2253  *
2254  * NOTE: the output value can be set by other drivers, boot loader or may be
2255  * hardwired in the regulator.
2256  */
2257 int regulator_enable(struct regulator *regulator)
2258 {
2259 	struct regulator_dev *rdev = regulator->rdev;
2260 	int ret = 0;
2261 
2262 	if (regulator->always_on)
2263 		return 0;
2264 
2265 	if (rdev->supply) {
2266 		ret = regulator_enable(rdev->supply);
2267 		if (ret != 0)
2268 			return ret;
2269 	}
2270 
2271 	mutex_lock(&rdev->mutex);
2272 	ret = _regulator_enable(rdev);
2273 	mutex_unlock(&rdev->mutex);
2274 
2275 	if (ret != 0 && rdev->supply)
2276 		regulator_disable(rdev->supply);
2277 
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_enable);
2281 
2282 static int _regulator_do_disable(struct regulator_dev *rdev)
2283 {
2284 	int ret;
2285 
2286 	trace_regulator_disable(rdev_get_name(rdev));
2287 
2288 	if (rdev->ena_pin) {
2289 		if (rdev->ena_gpio_state) {
2290 			ret = regulator_ena_gpio_ctrl(rdev, false);
2291 			if (ret < 0)
2292 				return ret;
2293 			rdev->ena_gpio_state = 0;
2294 		}
2295 
2296 	} else if (rdev->desc->ops->disable) {
2297 		ret = rdev->desc->ops->disable(rdev);
2298 		if (ret != 0)
2299 			return ret;
2300 	}
2301 
2302 	/* cares about last_off_jiffy only if off_on_delay is required by
2303 	 * device.
2304 	 */
2305 	if (rdev->desc->off_on_delay)
2306 		rdev->last_off_jiffy = jiffies;
2307 
2308 	trace_regulator_disable_complete(rdev_get_name(rdev));
2309 
2310 	return 0;
2311 }
2312 
2313 /* locks held by regulator_disable() */
2314 static int _regulator_disable(struct regulator_dev *rdev)
2315 {
2316 	int ret = 0;
2317 
2318 	lockdep_assert_held_once(&rdev->mutex);
2319 
2320 	if (WARN(rdev->use_count <= 0,
2321 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2322 		return -EIO;
2323 
2324 	/* are we the last user and permitted to disable ? */
2325 	if (rdev->use_count == 1 &&
2326 	    (rdev->constraints && !rdev->constraints->always_on)) {
2327 
2328 		/* we are last user */
2329 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2330 			ret = _notifier_call_chain(rdev,
2331 						   REGULATOR_EVENT_PRE_DISABLE,
2332 						   NULL);
2333 			if (ret & NOTIFY_STOP_MASK)
2334 				return -EINVAL;
2335 
2336 			ret = _regulator_do_disable(rdev);
2337 			if (ret < 0) {
2338 				rdev_err(rdev, "failed to disable\n");
2339 				_notifier_call_chain(rdev,
2340 						REGULATOR_EVENT_ABORT_DISABLE,
2341 						NULL);
2342 				return ret;
2343 			}
2344 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2345 					NULL);
2346 		}
2347 
2348 		rdev->use_count = 0;
2349 	} else if (rdev->use_count > 1) {
2350 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2351 			drms_uA_update(rdev);
2352 
2353 		rdev->use_count--;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 /**
2360  * regulator_disable - disable regulator output
2361  * @regulator: regulator source
2362  *
2363  * Disable the regulator output voltage or current.  Calls to
2364  * regulator_enable() must be balanced with calls to
2365  * regulator_disable().
2366  *
2367  * NOTE: this will only disable the regulator output if no other consumer
2368  * devices have it enabled, the regulator device supports disabling and
2369  * machine constraints permit this operation.
2370  */
2371 int regulator_disable(struct regulator *regulator)
2372 {
2373 	struct regulator_dev *rdev = regulator->rdev;
2374 	int ret = 0;
2375 
2376 	if (regulator->always_on)
2377 		return 0;
2378 
2379 	mutex_lock(&rdev->mutex);
2380 	ret = _regulator_disable(rdev);
2381 	mutex_unlock(&rdev->mutex);
2382 
2383 	if (ret == 0 && rdev->supply)
2384 		regulator_disable(rdev->supply);
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_disable);
2389 
2390 /* locks held by regulator_force_disable() */
2391 static int _regulator_force_disable(struct regulator_dev *rdev)
2392 {
2393 	int ret = 0;
2394 
2395 	lockdep_assert_held_once(&rdev->mutex);
2396 
2397 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2398 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2399 	if (ret & NOTIFY_STOP_MASK)
2400 		return -EINVAL;
2401 
2402 	ret = _regulator_do_disable(rdev);
2403 	if (ret < 0) {
2404 		rdev_err(rdev, "failed to force disable\n");
2405 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2406 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2407 		return ret;
2408 	}
2409 
2410 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2411 			REGULATOR_EVENT_DISABLE, NULL);
2412 
2413 	return 0;
2414 }
2415 
2416 /**
2417  * regulator_force_disable - force disable regulator output
2418  * @regulator: regulator source
2419  *
2420  * Forcibly disable the regulator output voltage or current.
2421  * NOTE: this *will* disable the regulator output even if other consumer
2422  * devices have it enabled. This should be used for situations when device
2423  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2424  */
2425 int regulator_force_disable(struct regulator *regulator)
2426 {
2427 	struct regulator_dev *rdev = regulator->rdev;
2428 	int ret;
2429 
2430 	mutex_lock(&rdev->mutex);
2431 	regulator->uA_load = 0;
2432 	ret = _regulator_force_disable(regulator->rdev);
2433 	mutex_unlock(&rdev->mutex);
2434 
2435 	if (rdev->supply)
2436 		while (rdev->open_count--)
2437 			regulator_disable(rdev->supply);
2438 
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(regulator_force_disable);
2442 
2443 static void regulator_disable_work(struct work_struct *work)
2444 {
2445 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2446 						  disable_work.work);
2447 	int count, i, ret;
2448 
2449 	regulator_lock(rdev);
2450 
2451 	BUG_ON(!rdev->deferred_disables);
2452 
2453 	count = rdev->deferred_disables;
2454 	rdev->deferred_disables = 0;
2455 
2456 	/*
2457 	 * Workqueue functions queue the new work instance while the previous
2458 	 * work instance is being processed. Cancel the queued work instance
2459 	 * as the work instance under processing does the job of the queued
2460 	 * work instance.
2461 	 */
2462 	cancel_delayed_work(&rdev->disable_work);
2463 
2464 	for (i = 0; i < count; i++) {
2465 		ret = _regulator_disable(rdev);
2466 		if (ret != 0)
2467 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2468 	}
2469 
2470 	regulator_unlock(rdev);
2471 
2472 	if (rdev->supply) {
2473 		for (i = 0; i < count; i++) {
2474 			ret = regulator_disable(rdev->supply);
2475 			if (ret != 0) {
2476 				rdev_err(rdev,
2477 					 "Supply disable failed: %d\n", ret);
2478 			}
2479 		}
2480 	}
2481 }
2482 
2483 /**
2484  * regulator_disable_deferred - disable regulator output with delay
2485  * @regulator: regulator source
2486  * @ms: miliseconds until the regulator is disabled
2487  *
2488  * Execute regulator_disable() on the regulator after a delay.  This
2489  * is intended for use with devices that require some time to quiesce.
2490  *
2491  * NOTE: this will only disable the regulator output if no other consumer
2492  * devices have it enabled, the regulator device supports disabling and
2493  * machine constraints permit this operation.
2494  */
2495 int regulator_disable_deferred(struct regulator *regulator, int ms)
2496 {
2497 	struct regulator_dev *rdev = regulator->rdev;
2498 
2499 	if (regulator->always_on)
2500 		return 0;
2501 
2502 	if (!ms)
2503 		return regulator_disable(regulator);
2504 
2505 	regulator_lock(rdev);
2506 	rdev->deferred_disables++;
2507 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2508 			 msecs_to_jiffies(ms));
2509 	regulator_unlock(rdev);
2510 
2511 	return 0;
2512 }
2513 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2514 
2515 static int _regulator_is_enabled(struct regulator_dev *rdev)
2516 {
2517 	/* A GPIO control always takes precedence */
2518 	if (rdev->ena_pin)
2519 		return rdev->ena_gpio_state;
2520 
2521 	/* If we don't know then assume that the regulator is always on */
2522 	if (!rdev->desc->ops->is_enabled)
2523 		return 1;
2524 
2525 	return rdev->desc->ops->is_enabled(rdev);
2526 }
2527 
2528 static int _regulator_list_voltage(struct regulator_dev *rdev,
2529 				   unsigned selector, int lock)
2530 {
2531 	const struct regulator_ops *ops = rdev->desc->ops;
2532 	int ret;
2533 
2534 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2535 		return rdev->desc->fixed_uV;
2536 
2537 	if (ops->list_voltage) {
2538 		if (selector >= rdev->desc->n_voltages)
2539 			return -EINVAL;
2540 		if (lock)
2541 			regulator_lock(rdev);
2542 		ret = ops->list_voltage(rdev, selector);
2543 		if (lock)
2544 			regulator_unlock(rdev);
2545 	} else if (rdev->is_switch && rdev->supply) {
2546 		ret = _regulator_list_voltage(rdev->supply->rdev,
2547 					      selector, lock);
2548 	} else {
2549 		return -EINVAL;
2550 	}
2551 
2552 	if (ret > 0) {
2553 		if (ret < rdev->constraints->min_uV)
2554 			ret = 0;
2555 		else if (ret > rdev->constraints->max_uV)
2556 			ret = 0;
2557 	}
2558 
2559 	return ret;
2560 }
2561 
2562 /**
2563  * regulator_is_enabled - is the regulator output enabled
2564  * @regulator: regulator source
2565  *
2566  * Returns positive if the regulator driver backing the source/client
2567  * has requested that the device be enabled, zero if it hasn't, else a
2568  * negative errno code.
2569  *
2570  * Note that the device backing this regulator handle can have multiple
2571  * users, so it might be enabled even if regulator_enable() was never
2572  * called for this particular source.
2573  */
2574 int regulator_is_enabled(struct regulator *regulator)
2575 {
2576 	int ret;
2577 
2578 	if (regulator->always_on)
2579 		return 1;
2580 
2581 	mutex_lock(&regulator->rdev->mutex);
2582 	ret = _regulator_is_enabled(regulator->rdev);
2583 	mutex_unlock(&regulator->rdev->mutex);
2584 
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2588 
2589 /**
2590  * regulator_count_voltages - count regulator_list_voltage() selectors
2591  * @regulator: regulator source
2592  *
2593  * Returns number of selectors, or negative errno.  Selectors are
2594  * numbered starting at zero, and typically correspond to bitfields
2595  * in hardware registers.
2596  */
2597 int regulator_count_voltages(struct regulator *regulator)
2598 {
2599 	struct regulator_dev	*rdev = regulator->rdev;
2600 
2601 	if (rdev->desc->n_voltages)
2602 		return rdev->desc->n_voltages;
2603 
2604 	if (!rdev->is_switch || !rdev->supply)
2605 		return -EINVAL;
2606 
2607 	return regulator_count_voltages(rdev->supply);
2608 }
2609 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2610 
2611 /**
2612  * regulator_list_voltage - enumerate supported voltages
2613  * @regulator: regulator source
2614  * @selector: identify voltage to list
2615  * Context: can sleep
2616  *
2617  * Returns a voltage that can be passed to @regulator_set_voltage(),
2618  * zero if this selector code can't be used on this system, or a
2619  * negative errno.
2620  */
2621 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2622 {
2623 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2624 }
2625 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2626 
2627 /**
2628  * regulator_get_regmap - get the regulator's register map
2629  * @regulator: regulator source
2630  *
2631  * Returns the register map for the given regulator, or an ERR_PTR value
2632  * if the regulator doesn't use regmap.
2633  */
2634 struct regmap *regulator_get_regmap(struct regulator *regulator)
2635 {
2636 	struct regmap *map = regulator->rdev->regmap;
2637 
2638 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2639 }
2640 
2641 /**
2642  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2643  * @regulator: regulator source
2644  * @vsel_reg: voltage selector register, output parameter
2645  * @vsel_mask: mask for voltage selector bitfield, output parameter
2646  *
2647  * Returns the hardware register offset and bitmask used for setting the
2648  * regulator voltage. This might be useful when configuring voltage-scaling
2649  * hardware or firmware that can make I2C requests behind the kernel's back,
2650  * for example.
2651  *
2652  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2653  * and 0 is returned, otherwise a negative errno is returned.
2654  */
2655 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2656 					 unsigned *vsel_reg,
2657 					 unsigned *vsel_mask)
2658 {
2659 	struct regulator_dev *rdev = regulator->rdev;
2660 	const struct regulator_ops *ops = rdev->desc->ops;
2661 
2662 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2663 		return -EOPNOTSUPP;
2664 
2665 	*vsel_reg = rdev->desc->vsel_reg;
2666 	*vsel_mask = rdev->desc->vsel_mask;
2667 
2668 	 return 0;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2671 
2672 /**
2673  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2674  * @regulator: regulator source
2675  * @selector: identify voltage to list
2676  *
2677  * Converts the selector to a hardware-specific voltage selector that can be
2678  * directly written to the regulator registers. The address of the voltage
2679  * register can be determined by calling @regulator_get_hardware_vsel_register.
2680  *
2681  * On error a negative errno is returned.
2682  */
2683 int regulator_list_hardware_vsel(struct regulator *regulator,
2684 				 unsigned selector)
2685 {
2686 	struct regulator_dev *rdev = regulator->rdev;
2687 	const struct regulator_ops *ops = rdev->desc->ops;
2688 
2689 	if (selector >= rdev->desc->n_voltages)
2690 		return -EINVAL;
2691 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2692 		return -EOPNOTSUPP;
2693 
2694 	return selector;
2695 }
2696 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2697 
2698 /**
2699  * regulator_get_linear_step - return the voltage step size between VSEL values
2700  * @regulator: regulator source
2701  *
2702  * Returns the voltage step size between VSEL values for linear
2703  * regulators, or return 0 if the regulator isn't a linear regulator.
2704  */
2705 unsigned int regulator_get_linear_step(struct regulator *regulator)
2706 {
2707 	struct regulator_dev *rdev = regulator->rdev;
2708 
2709 	return rdev->desc->uV_step;
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2712 
2713 /**
2714  * regulator_is_supported_voltage - check if a voltage range can be supported
2715  *
2716  * @regulator: Regulator to check.
2717  * @min_uV: Minimum required voltage in uV.
2718  * @max_uV: Maximum required voltage in uV.
2719  *
2720  * Returns a boolean or a negative error code.
2721  */
2722 int regulator_is_supported_voltage(struct regulator *regulator,
2723 				   int min_uV, int max_uV)
2724 {
2725 	struct regulator_dev *rdev = regulator->rdev;
2726 	int i, voltages, ret;
2727 
2728 	/* If we can't change voltage check the current voltage */
2729 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2730 		ret = regulator_get_voltage(regulator);
2731 		if (ret >= 0)
2732 			return min_uV <= ret && ret <= max_uV;
2733 		else
2734 			return ret;
2735 	}
2736 
2737 	/* Any voltage within constrains range is fine? */
2738 	if (rdev->desc->continuous_voltage_range)
2739 		return min_uV >= rdev->constraints->min_uV &&
2740 				max_uV <= rdev->constraints->max_uV;
2741 
2742 	ret = regulator_count_voltages(regulator);
2743 	if (ret < 0)
2744 		return ret;
2745 	voltages = ret;
2746 
2747 	for (i = 0; i < voltages; i++) {
2748 		ret = regulator_list_voltage(regulator, i);
2749 
2750 		if (ret >= min_uV && ret <= max_uV)
2751 			return 1;
2752 	}
2753 
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2757 
2758 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2759 				 int max_uV)
2760 {
2761 	const struct regulator_desc *desc = rdev->desc;
2762 
2763 	if (desc->ops->map_voltage)
2764 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2765 
2766 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2767 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2768 
2769 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2770 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2771 
2772 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2773 }
2774 
2775 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2776 				       int min_uV, int max_uV,
2777 				       unsigned *selector)
2778 {
2779 	struct pre_voltage_change_data data;
2780 	int ret;
2781 
2782 	data.old_uV = _regulator_get_voltage(rdev);
2783 	data.min_uV = min_uV;
2784 	data.max_uV = max_uV;
2785 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2786 				   &data);
2787 	if (ret & NOTIFY_STOP_MASK)
2788 		return -EINVAL;
2789 
2790 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2791 	if (ret >= 0)
2792 		return ret;
2793 
2794 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2795 			     (void *)data.old_uV);
2796 
2797 	return ret;
2798 }
2799 
2800 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2801 					   int uV, unsigned selector)
2802 {
2803 	struct pre_voltage_change_data data;
2804 	int ret;
2805 
2806 	data.old_uV = _regulator_get_voltage(rdev);
2807 	data.min_uV = uV;
2808 	data.max_uV = uV;
2809 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2810 				   &data);
2811 	if (ret & NOTIFY_STOP_MASK)
2812 		return -EINVAL;
2813 
2814 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2815 	if (ret >= 0)
2816 		return ret;
2817 
2818 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2819 			     (void *)data.old_uV);
2820 
2821 	return ret;
2822 }
2823 
2824 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2825 				       int old_uV, int new_uV)
2826 {
2827 	unsigned int ramp_delay = 0;
2828 
2829 	if (rdev->constraints->ramp_delay)
2830 		ramp_delay = rdev->constraints->ramp_delay;
2831 	else if (rdev->desc->ramp_delay)
2832 		ramp_delay = rdev->desc->ramp_delay;
2833 	else if (rdev->constraints->settling_time)
2834 		return rdev->constraints->settling_time;
2835 	else if (rdev->constraints->settling_time_up &&
2836 		 (new_uV > old_uV))
2837 		return rdev->constraints->settling_time_up;
2838 	else if (rdev->constraints->settling_time_down &&
2839 		 (new_uV < old_uV))
2840 		return rdev->constraints->settling_time_down;
2841 
2842 	if (ramp_delay == 0) {
2843 		rdev_dbg(rdev, "ramp_delay not set\n");
2844 		return 0;
2845 	}
2846 
2847 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2848 }
2849 
2850 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2851 				     int min_uV, int max_uV)
2852 {
2853 	int ret;
2854 	int delay = 0;
2855 	int best_val = 0;
2856 	unsigned int selector;
2857 	int old_selector = -1;
2858 	const struct regulator_ops *ops = rdev->desc->ops;
2859 	int old_uV = _regulator_get_voltage(rdev);
2860 
2861 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2862 
2863 	min_uV += rdev->constraints->uV_offset;
2864 	max_uV += rdev->constraints->uV_offset;
2865 
2866 	/*
2867 	 * If we can't obtain the old selector there is not enough
2868 	 * info to call set_voltage_time_sel().
2869 	 */
2870 	if (_regulator_is_enabled(rdev) &&
2871 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2872 		old_selector = ops->get_voltage_sel(rdev);
2873 		if (old_selector < 0)
2874 			return old_selector;
2875 	}
2876 
2877 	if (ops->set_voltage) {
2878 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2879 						  &selector);
2880 
2881 		if (ret >= 0) {
2882 			if (ops->list_voltage)
2883 				best_val = ops->list_voltage(rdev,
2884 							     selector);
2885 			else
2886 				best_val = _regulator_get_voltage(rdev);
2887 		}
2888 
2889 	} else if (ops->set_voltage_sel) {
2890 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2891 		if (ret >= 0) {
2892 			best_val = ops->list_voltage(rdev, ret);
2893 			if (min_uV <= best_val && max_uV >= best_val) {
2894 				selector = ret;
2895 				if (old_selector == selector)
2896 					ret = 0;
2897 				else
2898 					ret = _regulator_call_set_voltage_sel(
2899 						rdev, best_val, selector);
2900 			} else {
2901 				ret = -EINVAL;
2902 			}
2903 		}
2904 	} else {
2905 		ret = -EINVAL;
2906 	}
2907 
2908 	if (ret)
2909 		goto out;
2910 
2911 	if (ops->set_voltage_time_sel) {
2912 		/*
2913 		 * Call set_voltage_time_sel if successfully obtained
2914 		 * old_selector
2915 		 */
2916 		if (old_selector >= 0 && old_selector != selector)
2917 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2918 							  selector);
2919 	} else {
2920 		if (old_uV != best_val) {
2921 			if (ops->set_voltage_time)
2922 				delay = ops->set_voltage_time(rdev, old_uV,
2923 							      best_val);
2924 			else
2925 				delay = _regulator_set_voltage_time(rdev,
2926 								    old_uV,
2927 								    best_val);
2928 		}
2929 	}
2930 
2931 	if (delay < 0) {
2932 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2933 		delay = 0;
2934 	}
2935 
2936 	/* Insert any necessary delays */
2937 	if (delay >= 1000) {
2938 		mdelay(delay / 1000);
2939 		udelay(delay % 1000);
2940 	} else if (delay) {
2941 		udelay(delay);
2942 	}
2943 
2944 	if (best_val >= 0) {
2945 		unsigned long data = best_val;
2946 
2947 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2948 				     (void *)data);
2949 	}
2950 
2951 out:
2952 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2953 
2954 	return ret;
2955 }
2956 
2957 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2958 				  int min_uV, int max_uV, suspend_state_t state)
2959 {
2960 	struct regulator_state *rstate;
2961 	int uV, sel;
2962 
2963 	rstate = regulator_get_suspend_state(rdev, state);
2964 	if (rstate == NULL)
2965 		return -EINVAL;
2966 
2967 	if (min_uV < rstate->min_uV)
2968 		min_uV = rstate->min_uV;
2969 	if (max_uV > rstate->max_uV)
2970 		max_uV = rstate->max_uV;
2971 
2972 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
2973 	if (sel < 0)
2974 		return sel;
2975 
2976 	uV = rdev->desc->ops->list_voltage(rdev, sel);
2977 	if (uV >= min_uV && uV <= max_uV)
2978 		rstate->uV = uV;
2979 
2980 	return 0;
2981 }
2982 
2983 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2984 					  int min_uV, int max_uV,
2985 					  suspend_state_t state)
2986 {
2987 	struct regulator_dev *rdev = regulator->rdev;
2988 	struct regulator_voltage *voltage = &regulator->voltage[state];
2989 	int ret = 0;
2990 	int old_min_uV, old_max_uV;
2991 	int current_uV;
2992 	int best_supply_uV = 0;
2993 	int supply_change_uV = 0;
2994 
2995 	/* If we're setting the same range as last time the change
2996 	 * should be a noop (some cpufreq implementations use the same
2997 	 * voltage for multiple frequencies, for example).
2998 	 */
2999 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3000 		goto out;
3001 
3002 	/* If we're trying to set a range that overlaps the current voltage,
3003 	 * return successfully even though the regulator does not support
3004 	 * changing the voltage.
3005 	 */
3006 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3007 		current_uV = _regulator_get_voltage(rdev);
3008 		if (min_uV <= current_uV && current_uV <= max_uV) {
3009 			voltage->min_uV = min_uV;
3010 			voltage->max_uV = max_uV;
3011 			goto out;
3012 		}
3013 	}
3014 
3015 	/* sanity check */
3016 	if (!rdev->desc->ops->set_voltage &&
3017 	    !rdev->desc->ops->set_voltage_sel) {
3018 		ret = -EINVAL;
3019 		goto out;
3020 	}
3021 
3022 	/* constraints check */
3023 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3024 	if (ret < 0)
3025 		goto out;
3026 
3027 	/* restore original values in case of error */
3028 	old_min_uV = voltage->min_uV;
3029 	old_max_uV = voltage->max_uV;
3030 	voltage->min_uV = min_uV;
3031 	voltage->max_uV = max_uV;
3032 
3033 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3034 	if (ret < 0)
3035 		goto out2;
3036 
3037 	if (rdev->supply &&
3038 	    regulator_ops_is_valid(rdev->supply->rdev,
3039 				   REGULATOR_CHANGE_VOLTAGE) &&
3040 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3041 					   rdev->desc->ops->get_voltage_sel))) {
3042 		int current_supply_uV;
3043 		int selector;
3044 
3045 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3046 		if (selector < 0) {
3047 			ret = selector;
3048 			goto out2;
3049 		}
3050 
3051 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3052 		if (best_supply_uV < 0) {
3053 			ret = best_supply_uV;
3054 			goto out2;
3055 		}
3056 
3057 		best_supply_uV += rdev->desc->min_dropout_uV;
3058 
3059 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3060 		if (current_supply_uV < 0) {
3061 			ret = current_supply_uV;
3062 			goto out2;
3063 		}
3064 
3065 		supply_change_uV = best_supply_uV - current_supply_uV;
3066 	}
3067 
3068 	if (supply_change_uV > 0) {
3069 		ret = regulator_set_voltage_unlocked(rdev->supply,
3070 				best_supply_uV, INT_MAX, state);
3071 		if (ret) {
3072 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3073 					ret);
3074 			goto out2;
3075 		}
3076 	}
3077 
3078 	if (state == PM_SUSPEND_ON)
3079 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3080 	else
3081 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3082 							max_uV, state);
3083 	if (ret < 0)
3084 		goto out2;
3085 
3086 	if (supply_change_uV < 0) {
3087 		ret = regulator_set_voltage_unlocked(rdev->supply,
3088 				best_supply_uV, INT_MAX, state);
3089 		if (ret)
3090 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3091 					ret);
3092 		/* No need to fail here */
3093 		ret = 0;
3094 	}
3095 
3096 out:
3097 	return ret;
3098 out2:
3099 	voltage->min_uV = old_min_uV;
3100 	voltage->max_uV = old_max_uV;
3101 
3102 	return ret;
3103 }
3104 
3105 /**
3106  * regulator_set_voltage - set regulator output voltage
3107  * @regulator: regulator source
3108  * @min_uV: Minimum required voltage in uV
3109  * @max_uV: Maximum acceptable voltage in uV
3110  *
3111  * Sets a voltage regulator to the desired output voltage. This can be set
3112  * during any regulator state. IOW, regulator can be disabled or enabled.
3113  *
3114  * If the regulator is enabled then the voltage will change to the new value
3115  * immediately otherwise if the regulator is disabled the regulator will
3116  * output at the new voltage when enabled.
3117  *
3118  * NOTE: If the regulator is shared between several devices then the lowest
3119  * request voltage that meets the system constraints will be used.
3120  * Regulator system constraints must be set for this regulator before
3121  * calling this function otherwise this call will fail.
3122  */
3123 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3124 {
3125 	int ret = 0;
3126 
3127 	regulator_lock_supply(regulator->rdev);
3128 
3129 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3130 					     PM_SUSPEND_ON);
3131 
3132 	regulator_unlock_supply(regulator->rdev);
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3137 
3138 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3139 					   suspend_state_t state, bool en)
3140 {
3141 	struct regulator_state *rstate;
3142 
3143 	rstate = regulator_get_suspend_state(rdev, state);
3144 	if (rstate == NULL)
3145 		return -EINVAL;
3146 
3147 	if (!rstate->changeable)
3148 		return -EPERM;
3149 
3150 	rstate->enabled = en;
3151 
3152 	return 0;
3153 }
3154 
3155 int regulator_suspend_enable(struct regulator_dev *rdev,
3156 				    suspend_state_t state)
3157 {
3158 	return regulator_suspend_toggle(rdev, state, true);
3159 }
3160 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3161 
3162 int regulator_suspend_disable(struct regulator_dev *rdev,
3163 				     suspend_state_t state)
3164 {
3165 	struct regulator *regulator;
3166 	struct regulator_voltage *voltage;
3167 
3168 	/*
3169 	 * if any consumer wants this regulator device keeping on in
3170 	 * suspend states, don't set it as disabled.
3171 	 */
3172 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3173 		voltage = &regulator->voltage[state];
3174 		if (voltage->min_uV || voltage->max_uV)
3175 			return 0;
3176 	}
3177 
3178 	return regulator_suspend_toggle(rdev, state, false);
3179 }
3180 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3181 
3182 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3183 					  int min_uV, int max_uV,
3184 					  suspend_state_t state)
3185 {
3186 	struct regulator_dev *rdev = regulator->rdev;
3187 	struct regulator_state *rstate;
3188 
3189 	rstate = regulator_get_suspend_state(rdev, state);
3190 	if (rstate == NULL)
3191 		return -EINVAL;
3192 
3193 	if (rstate->min_uV == rstate->max_uV) {
3194 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3195 		return -EPERM;
3196 	}
3197 
3198 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3199 }
3200 
3201 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3202 				  int max_uV, suspend_state_t state)
3203 {
3204 	int ret = 0;
3205 
3206 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3207 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3208 		return -EINVAL;
3209 
3210 	regulator_lock_supply(regulator->rdev);
3211 
3212 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3213 					     max_uV, state);
3214 
3215 	regulator_unlock_supply(regulator->rdev);
3216 
3217 	return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3220 
3221 /**
3222  * regulator_set_voltage_time - get raise/fall time
3223  * @regulator: regulator source
3224  * @old_uV: starting voltage in microvolts
3225  * @new_uV: target voltage in microvolts
3226  *
3227  * Provided with the starting and ending voltage, this function attempts to
3228  * calculate the time in microseconds required to rise or fall to this new
3229  * voltage.
3230  */
3231 int regulator_set_voltage_time(struct regulator *regulator,
3232 			       int old_uV, int new_uV)
3233 {
3234 	struct regulator_dev *rdev = regulator->rdev;
3235 	const struct regulator_ops *ops = rdev->desc->ops;
3236 	int old_sel = -1;
3237 	int new_sel = -1;
3238 	int voltage;
3239 	int i;
3240 
3241 	if (ops->set_voltage_time)
3242 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3243 	else if (!ops->set_voltage_time_sel)
3244 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3245 
3246 	/* Currently requires operations to do this */
3247 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3248 		return -EINVAL;
3249 
3250 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3251 		/* We only look for exact voltage matches here */
3252 		voltage = regulator_list_voltage(regulator, i);
3253 		if (voltage < 0)
3254 			return -EINVAL;
3255 		if (voltage == 0)
3256 			continue;
3257 		if (voltage == old_uV)
3258 			old_sel = i;
3259 		if (voltage == new_uV)
3260 			new_sel = i;
3261 	}
3262 
3263 	if (old_sel < 0 || new_sel < 0)
3264 		return -EINVAL;
3265 
3266 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3267 }
3268 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3269 
3270 /**
3271  * regulator_set_voltage_time_sel - get raise/fall time
3272  * @rdev: regulator source device
3273  * @old_selector: selector for starting voltage
3274  * @new_selector: selector for target voltage
3275  *
3276  * Provided with the starting and target voltage selectors, this function
3277  * returns time in microseconds required to rise or fall to this new voltage
3278  *
3279  * Drivers providing ramp_delay in regulation_constraints can use this as their
3280  * set_voltage_time_sel() operation.
3281  */
3282 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3283 				   unsigned int old_selector,
3284 				   unsigned int new_selector)
3285 {
3286 	int old_volt, new_volt;
3287 
3288 	/* sanity check */
3289 	if (!rdev->desc->ops->list_voltage)
3290 		return -EINVAL;
3291 
3292 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3293 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3294 
3295 	if (rdev->desc->ops->set_voltage_time)
3296 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3297 							 new_volt);
3298 	else
3299 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3302 
3303 /**
3304  * regulator_sync_voltage - re-apply last regulator output voltage
3305  * @regulator: regulator source
3306  *
3307  * Re-apply the last configured voltage.  This is intended to be used
3308  * where some external control source the consumer is cooperating with
3309  * has caused the configured voltage to change.
3310  */
3311 int regulator_sync_voltage(struct regulator *regulator)
3312 {
3313 	struct regulator_dev *rdev = regulator->rdev;
3314 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3315 	int ret, min_uV, max_uV;
3316 
3317 	regulator_lock(rdev);
3318 
3319 	if (!rdev->desc->ops->set_voltage &&
3320 	    !rdev->desc->ops->set_voltage_sel) {
3321 		ret = -EINVAL;
3322 		goto out;
3323 	}
3324 
3325 	/* This is only going to work if we've had a voltage configured. */
3326 	if (!voltage->min_uV && !voltage->max_uV) {
3327 		ret = -EINVAL;
3328 		goto out;
3329 	}
3330 
3331 	min_uV = voltage->min_uV;
3332 	max_uV = voltage->max_uV;
3333 
3334 	/* This should be a paranoia check... */
3335 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3336 	if (ret < 0)
3337 		goto out;
3338 
3339 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3340 	if (ret < 0)
3341 		goto out;
3342 
3343 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3344 
3345 out:
3346 	regulator_unlock(rdev);
3347 	return ret;
3348 }
3349 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3350 
3351 static int _regulator_get_voltage(struct regulator_dev *rdev)
3352 {
3353 	int sel, ret;
3354 	bool bypassed;
3355 
3356 	if (rdev->desc->ops->get_bypass) {
3357 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3358 		if (ret < 0)
3359 			return ret;
3360 		if (bypassed) {
3361 			/* if bypassed the regulator must have a supply */
3362 			if (!rdev->supply) {
3363 				rdev_err(rdev,
3364 					 "bypassed regulator has no supply!\n");
3365 				return -EPROBE_DEFER;
3366 			}
3367 
3368 			return _regulator_get_voltage(rdev->supply->rdev);
3369 		}
3370 	}
3371 
3372 	if (rdev->desc->ops->get_voltage_sel) {
3373 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3374 		if (sel < 0)
3375 			return sel;
3376 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3377 	} else if (rdev->desc->ops->get_voltage) {
3378 		ret = rdev->desc->ops->get_voltage(rdev);
3379 	} else if (rdev->desc->ops->list_voltage) {
3380 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3381 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3382 		ret = rdev->desc->fixed_uV;
3383 	} else if (rdev->supply) {
3384 		ret = _regulator_get_voltage(rdev->supply->rdev);
3385 	} else {
3386 		return -EINVAL;
3387 	}
3388 
3389 	if (ret < 0)
3390 		return ret;
3391 	return ret - rdev->constraints->uV_offset;
3392 }
3393 
3394 /**
3395  * regulator_get_voltage - get regulator output voltage
3396  * @regulator: regulator source
3397  *
3398  * This returns the current regulator voltage in uV.
3399  *
3400  * NOTE: If the regulator is disabled it will return the voltage value. This
3401  * function should not be used to determine regulator state.
3402  */
3403 int regulator_get_voltage(struct regulator *regulator)
3404 {
3405 	int ret;
3406 
3407 	regulator_lock_supply(regulator->rdev);
3408 
3409 	ret = _regulator_get_voltage(regulator->rdev);
3410 
3411 	regulator_unlock_supply(regulator->rdev);
3412 
3413 	return ret;
3414 }
3415 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3416 
3417 /**
3418  * regulator_set_current_limit - set regulator output current limit
3419  * @regulator: regulator source
3420  * @min_uA: Minimum supported current in uA
3421  * @max_uA: Maximum supported current in uA
3422  *
3423  * Sets current sink to the desired output current. This can be set during
3424  * any regulator state. IOW, regulator can be disabled or enabled.
3425  *
3426  * If the regulator is enabled then the current will change to the new value
3427  * immediately otherwise if the regulator is disabled the regulator will
3428  * output at the new current when enabled.
3429  *
3430  * NOTE: Regulator system constraints must be set for this regulator before
3431  * calling this function otherwise this call will fail.
3432  */
3433 int regulator_set_current_limit(struct regulator *regulator,
3434 			       int min_uA, int max_uA)
3435 {
3436 	struct regulator_dev *rdev = regulator->rdev;
3437 	int ret;
3438 
3439 	regulator_lock(rdev);
3440 
3441 	/* sanity check */
3442 	if (!rdev->desc->ops->set_current_limit) {
3443 		ret = -EINVAL;
3444 		goto out;
3445 	}
3446 
3447 	/* constraints check */
3448 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3449 	if (ret < 0)
3450 		goto out;
3451 
3452 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3453 out:
3454 	regulator_unlock(rdev);
3455 	return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3458 
3459 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3460 {
3461 	int ret;
3462 
3463 	regulator_lock(rdev);
3464 
3465 	/* sanity check */
3466 	if (!rdev->desc->ops->get_current_limit) {
3467 		ret = -EINVAL;
3468 		goto out;
3469 	}
3470 
3471 	ret = rdev->desc->ops->get_current_limit(rdev);
3472 out:
3473 	regulator_unlock(rdev);
3474 	return ret;
3475 }
3476 
3477 /**
3478  * regulator_get_current_limit - get regulator output current
3479  * @regulator: regulator source
3480  *
3481  * This returns the current supplied by the specified current sink in uA.
3482  *
3483  * NOTE: If the regulator is disabled it will return the current value. This
3484  * function should not be used to determine regulator state.
3485  */
3486 int regulator_get_current_limit(struct regulator *regulator)
3487 {
3488 	return _regulator_get_current_limit(regulator->rdev);
3489 }
3490 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3491 
3492 /**
3493  * regulator_set_mode - set regulator operating mode
3494  * @regulator: regulator source
3495  * @mode: operating mode - one of the REGULATOR_MODE constants
3496  *
3497  * Set regulator operating mode to increase regulator efficiency or improve
3498  * regulation performance.
3499  *
3500  * NOTE: Regulator system constraints must be set for this regulator before
3501  * calling this function otherwise this call will fail.
3502  */
3503 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3504 {
3505 	struct regulator_dev *rdev = regulator->rdev;
3506 	int ret;
3507 	int regulator_curr_mode;
3508 
3509 	regulator_lock(rdev);
3510 
3511 	/* sanity check */
3512 	if (!rdev->desc->ops->set_mode) {
3513 		ret = -EINVAL;
3514 		goto out;
3515 	}
3516 
3517 	/* return if the same mode is requested */
3518 	if (rdev->desc->ops->get_mode) {
3519 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3520 		if (regulator_curr_mode == mode) {
3521 			ret = 0;
3522 			goto out;
3523 		}
3524 	}
3525 
3526 	/* constraints check */
3527 	ret = regulator_mode_constrain(rdev, &mode);
3528 	if (ret < 0)
3529 		goto out;
3530 
3531 	ret = rdev->desc->ops->set_mode(rdev, mode);
3532 out:
3533 	regulator_unlock(rdev);
3534 	return ret;
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_set_mode);
3537 
3538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3539 {
3540 	int ret;
3541 
3542 	regulator_lock(rdev);
3543 
3544 	/* sanity check */
3545 	if (!rdev->desc->ops->get_mode) {
3546 		ret = -EINVAL;
3547 		goto out;
3548 	}
3549 
3550 	ret = rdev->desc->ops->get_mode(rdev);
3551 out:
3552 	regulator_unlock(rdev);
3553 	return ret;
3554 }
3555 
3556 /**
3557  * regulator_get_mode - get regulator operating mode
3558  * @regulator: regulator source
3559  *
3560  * Get the current regulator operating mode.
3561  */
3562 unsigned int regulator_get_mode(struct regulator *regulator)
3563 {
3564 	return _regulator_get_mode(regulator->rdev);
3565 }
3566 EXPORT_SYMBOL_GPL(regulator_get_mode);
3567 
3568 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3569 					unsigned int *flags)
3570 {
3571 	int ret;
3572 
3573 	regulator_lock(rdev);
3574 
3575 	/* sanity check */
3576 	if (!rdev->desc->ops->get_error_flags) {
3577 		ret = -EINVAL;
3578 		goto out;
3579 	}
3580 
3581 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3582 out:
3583 	regulator_unlock(rdev);
3584 	return ret;
3585 }
3586 
3587 /**
3588  * regulator_get_error_flags - get regulator error information
3589  * @regulator: regulator source
3590  * @flags: pointer to store error flags
3591  *
3592  * Get the current regulator error information.
3593  */
3594 int regulator_get_error_flags(struct regulator *regulator,
3595 				unsigned int *flags)
3596 {
3597 	return _regulator_get_error_flags(regulator->rdev, flags);
3598 }
3599 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3600 
3601 /**
3602  * regulator_set_load - set regulator load
3603  * @regulator: regulator source
3604  * @uA_load: load current
3605  *
3606  * Notifies the regulator core of a new device load. This is then used by
3607  * DRMS (if enabled by constraints) to set the most efficient regulator
3608  * operating mode for the new regulator loading.
3609  *
3610  * Consumer devices notify their supply regulator of the maximum power
3611  * they will require (can be taken from device datasheet in the power
3612  * consumption tables) when they change operational status and hence power
3613  * state. Examples of operational state changes that can affect power
3614  * consumption are :-
3615  *
3616  *    o Device is opened / closed.
3617  *    o Device I/O is about to begin or has just finished.
3618  *    o Device is idling in between work.
3619  *
3620  * This information is also exported via sysfs to userspace.
3621  *
3622  * DRMS will sum the total requested load on the regulator and change
3623  * to the most efficient operating mode if platform constraints allow.
3624  *
3625  * On error a negative errno is returned.
3626  */
3627 int regulator_set_load(struct regulator *regulator, int uA_load)
3628 {
3629 	struct regulator_dev *rdev = regulator->rdev;
3630 	int ret;
3631 
3632 	regulator_lock(rdev);
3633 	regulator->uA_load = uA_load;
3634 	ret = drms_uA_update(rdev);
3635 	regulator_unlock(rdev);
3636 
3637 	return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(regulator_set_load);
3640 
3641 /**
3642  * regulator_allow_bypass - allow the regulator to go into bypass mode
3643  *
3644  * @regulator: Regulator to configure
3645  * @enable: enable or disable bypass mode
3646  *
3647  * Allow the regulator to go into bypass mode if all other consumers
3648  * for the regulator also enable bypass mode and the machine
3649  * constraints allow this.  Bypass mode means that the regulator is
3650  * simply passing the input directly to the output with no regulation.
3651  */
3652 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3653 {
3654 	struct regulator_dev *rdev = regulator->rdev;
3655 	int ret = 0;
3656 
3657 	if (!rdev->desc->ops->set_bypass)
3658 		return 0;
3659 
3660 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3661 		return 0;
3662 
3663 	regulator_lock(rdev);
3664 
3665 	if (enable && !regulator->bypass) {
3666 		rdev->bypass_count++;
3667 
3668 		if (rdev->bypass_count == rdev->open_count) {
3669 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3670 			if (ret != 0)
3671 				rdev->bypass_count--;
3672 		}
3673 
3674 	} else if (!enable && regulator->bypass) {
3675 		rdev->bypass_count--;
3676 
3677 		if (rdev->bypass_count != rdev->open_count) {
3678 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3679 			if (ret != 0)
3680 				rdev->bypass_count++;
3681 		}
3682 	}
3683 
3684 	if (ret == 0)
3685 		regulator->bypass = enable;
3686 
3687 	regulator_unlock(rdev);
3688 
3689 	return ret;
3690 }
3691 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3692 
3693 /**
3694  * regulator_register_notifier - register regulator event notifier
3695  * @regulator: regulator source
3696  * @nb: notifier block
3697  *
3698  * Register notifier block to receive regulator events.
3699  */
3700 int regulator_register_notifier(struct regulator *regulator,
3701 			      struct notifier_block *nb)
3702 {
3703 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3704 						nb);
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3707 
3708 /**
3709  * regulator_unregister_notifier - unregister regulator event notifier
3710  * @regulator: regulator source
3711  * @nb: notifier block
3712  *
3713  * Unregister regulator event notifier block.
3714  */
3715 int regulator_unregister_notifier(struct regulator *regulator,
3716 				struct notifier_block *nb)
3717 {
3718 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3719 						  nb);
3720 }
3721 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3722 
3723 /* notify regulator consumers and downstream regulator consumers.
3724  * Note mutex must be held by caller.
3725  */
3726 static int _notifier_call_chain(struct regulator_dev *rdev,
3727 				  unsigned long event, void *data)
3728 {
3729 	/* call rdev chain first */
3730 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3731 }
3732 
3733 /**
3734  * regulator_bulk_get - get multiple regulator consumers
3735  *
3736  * @dev:           Device to supply
3737  * @num_consumers: Number of consumers to register
3738  * @consumers:     Configuration of consumers; clients are stored here.
3739  *
3740  * @return 0 on success, an errno on failure.
3741  *
3742  * This helper function allows drivers to get several regulator
3743  * consumers in one operation.  If any of the regulators cannot be
3744  * acquired then any regulators that were allocated will be freed
3745  * before returning to the caller.
3746  */
3747 int regulator_bulk_get(struct device *dev, int num_consumers,
3748 		       struct regulator_bulk_data *consumers)
3749 {
3750 	int i;
3751 	int ret;
3752 
3753 	for (i = 0; i < num_consumers; i++)
3754 		consumers[i].consumer = NULL;
3755 
3756 	for (i = 0; i < num_consumers; i++) {
3757 		consumers[i].consumer = regulator_get(dev,
3758 						      consumers[i].supply);
3759 		if (IS_ERR(consumers[i].consumer)) {
3760 			ret = PTR_ERR(consumers[i].consumer);
3761 			dev_err(dev, "Failed to get supply '%s': %d\n",
3762 				consumers[i].supply, ret);
3763 			consumers[i].consumer = NULL;
3764 			goto err;
3765 		}
3766 	}
3767 
3768 	return 0;
3769 
3770 err:
3771 	while (--i >= 0)
3772 		regulator_put(consumers[i].consumer);
3773 
3774 	return ret;
3775 }
3776 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3777 
3778 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3779 {
3780 	struct regulator_bulk_data *bulk = data;
3781 
3782 	bulk->ret = regulator_enable(bulk->consumer);
3783 }
3784 
3785 /**
3786  * regulator_bulk_enable - enable multiple regulator consumers
3787  *
3788  * @num_consumers: Number of consumers
3789  * @consumers:     Consumer data; clients are stored here.
3790  * @return         0 on success, an errno on failure
3791  *
3792  * This convenience API allows consumers to enable multiple regulator
3793  * clients in a single API call.  If any consumers cannot be enabled
3794  * then any others that were enabled will be disabled again prior to
3795  * return.
3796  */
3797 int regulator_bulk_enable(int num_consumers,
3798 			  struct regulator_bulk_data *consumers)
3799 {
3800 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3801 	int i;
3802 	int ret = 0;
3803 
3804 	for (i = 0; i < num_consumers; i++) {
3805 		if (consumers[i].consumer->always_on)
3806 			consumers[i].ret = 0;
3807 		else
3808 			async_schedule_domain(regulator_bulk_enable_async,
3809 					      &consumers[i], &async_domain);
3810 	}
3811 
3812 	async_synchronize_full_domain(&async_domain);
3813 
3814 	/* If any consumer failed we need to unwind any that succeeded */
3815 	for (i = 0; i < num_consumers; i++) {
3816 		if (consumers[i].ret != 0) {
3817 			ret = consumers[i].ret;
3818 			goto err;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 
3824 err:
3825 	for (i = 0; i < num_consumers; i++) {
3826 		if (consumers[i].ret < 0)
3827 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3828 			       consumers[i].ret);
3829 		else
3830 			regulator_disable(consumers[i].consumer);
3831 	}
3832 
3833 	return ret;
3834 }
3835 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3836 
3837 /**
3838  * regulator_bulk_disable - disable multiple regulator consumers
3839  *
3840  * @num_consumers: Number of consumers
3841  * @consumers:     Consumer data; clients are stored here.
3842  * @return         0 on success, an errno on failure
3843  *
3844  * This convenience API allows consumers to disable multiple regulator
3845  * clients in a single API call.  If any consumers cannot be disabled
3846  * then any others that were disabled will be enabled again prior to
3847  * return.
3848  */
3849 int regulator_bulk_disable(int num_consumers,
3850 			   struct regulator_bulk_data *consumers)
3851 {
3852 	int i;
3853 	int ret, r;
3854 
3855 	for (i = num_consumers - 1; i >= 0; --i) {
3856 		ret = regulator_disable(consumers[i].consumer);
3857 		if (ret != 0)
3858 			goto err;
3859 	}
3860 
3861 	return 0;
3862 
3863 err:
3864 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3865 	for (++i; i < num_consumers; ++i) {
3866 		r = regulator_enable(consumers[i].consumer);
3867 		if (r != 0)
3868 			pr_err("Failed to re-enable %s: %d\n",
3869 			       consumers[i].supply, r);
3870 	}
3871 
3872 	return ret;
3873 }
3874 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3875 
3876 /**
3877  * regulator_bulk_force_disable - force disable multiple regulator consumers
3878  *
3879  * @num_consumers: Number of consumers
3880  * @consumers:     Consumer data; clients are stored here.
3881  * @return         0 on success, an errno on failure
3882  *
3883  * This convenience API allows consumers to forcibly disable multiple regulator
3884  * clients in a single API call.
3885  * NOTE: This should be used for situations when device damage will
3886  * likely occur if the regulators are not disabled (e.g. over temp).
3887  * Although regulator_force_disable function call for some consumers can
3888  * return error numbers, the function is called for all consumers.
3889  */
3890 int regulator_bulk_force_disable(int num_consumers,
3891 			   struct regulator_bulk_data *consumers)
3892 {
3893 	int i;
3894 	int ret = 0;
3895 
3896 	for (i = 0; i < num_consumers; i++) {
3897 		consumers[i].ret =
3898 			    regulator_force_disable(consumers[i].consumer);
3899 
3900 		/* Store first error for reporting */
3901 		if (consumers[i].ret && !ret)
3902 			ret = consumers[i].ret;
3903 	}
3904 
3905 	return ret;
3906 }
3907 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3908 
3909 /**
3910  * regulator_bulk_free - free multiple regulator consumers
3911  *
3912  * @num_consumers: Number of consumers
3913  * @consumers:     Consumer data; clients are stored here.
3914  *
3915  * This convenience API allows consumers to free multiple regulator
3916  * clients in a single API call.
3917  */
3918 void regulator_bulk_free(int num_consumers,
3919 			 struct regulator_bulk_data *consumers)
3920 {
3921 	int i;
3922 
3923 	for (i = 0; i < num_consumers; i++) {
3924 		regulator_put(consumers[i].consumer);
3925 		consumers[i].consumer = NULL;
3926 	}
3927 }
3928 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3929 
3930 /**
3931  * regulator_notifier_call_chain - call regulator event notifier
3932  * @rdev: regulator source
3933  * @event: notifier block
3934  * @data: callback-specific data.
3935  *
3936  * Called by regulator drivers to notify clients a regulator event has
3937  * occurred. We also notify regulator clients downstream.
3938  * Note lock must be held by caller.
3939  */
3940 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3941 				  unsigned long event, void *data)
3942 {
3943 	lockdep_assert_held_once(&rdev->mutex);
3944 
3945 	_notifier_call_chain(rdev, event, data);
3946 	return NOTIFY_DONE;
3947 
3948 }
3949 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3950 
3951 /**
3952  * regulator_mode_to_status - convert a regulator mode into a status
3953  *
3954  * @mode: Mode to convert
3955  *
3956  * Convert a regulator mode into a status.
3957  */
3958 int regulator_mode_to_status(unsigned int mode)
3959 {
3960 	switch (mode) {
3961 	case REGULATOR_MODE_FAST:
3962 		return REGULATOR_STATUS_FAST;
3963 	case REGULATOR_MODE_NORMAL:
3964 		return REGULATOR_STATUS_NORMAL;
3965 	case REGULATOR_MODE_IDLE:
3966 		return REGULATOR_STATUS_IDLE;
3967 	case REGULATOR_MODE_STANDBY:
3968 		return REGULATOR_STATUS_STANDBY;
3969 	default:
3970 		return REGULATOR_STATUS_UNDEFINED;
3971 	}
3972 }
3973 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3974 
3975 static struct attribute *regulator_dev_attrs[] = {
3976 	&dev_attr_name.attr,
3977 	&dev_attr_num_users.attr,
3978 	&dev_attr_type.attr,
3979 	&dev_attr_microvolts.attr,
3980 	&dev_attr_microamps.attr,
3981 	&dev_attr_opmode.attr,
3982 	&dev_attr_state.attr,
3983 	&dev_attr_status.attr,
3984 	&dev_attr_bypass.attr,
3985 	&dev_attr_requested_microamps.attr,
3986 	&dev_attr_min_microvolts.attr,
3987 	&dev_attr_max_microvolts.attr,
3988 	&dev_attr_min_microamps.attr,
3989 	&dev_attr_max_microamps.attr,
3990 	&dev_attr_suspend_standby_state.attr,
3991 	&dev_attr_suspend_mem_state.attr,
3992 	&dev_attr_suspend_disk_state.attr,
3993 	&dev_attr_suspend_standby_microvolts.attr,
3994 	&dev_attr_suspend_mem_microvolts.attr,
3995 	&dev_attr_suspend_disk_microvolts.attr,
3996 	&dev_attr_suspend_standby_mode.attr,
3997 	&dev_attr_suspend_mem_mode.attr,
3998 	&dev_attr_suspend_disk_mode.attr,
3999 	NULL
4000 };
4001 
4002 /*
4003  * To avoid cluttering sysfs (and memory) with useless state, only
4004  * create attributes that can be meaningfully displayed.
4005  */
4006 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4007 					 struct attribute *attr, int idx)
4008 {
4009 	struct device *dev = kobj_to_dev(kobj);
4010 	struct regulator_dev *rdev = dev_to_rdev(dev);
4011 	const struct regulator_ops *ops = rdev->desc->ops;
4012 	umode_t mode = attr->mode;
4013 
4014 	/* these three are always present */
4015 	if (attr == &dev_attr_name.attr ||
4016 	    attr == &dev_attr_num_users.attr ||
4017 	    attr == &dev_attr_type.attr)
4018 		return mode;
4019 
4020 	/* some attributes need specific methods to be displayed */
4021 	if (attr == &dev_attr_microvolts.attr) {
4022 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4023 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4024 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4025 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4026 			return mode;
4027 		return 0;
4028 	}
4029 
4030 	if (attr == &dev_attr_microamps.attr)
4031 		return ops->get_current_limit ? mode : 0;
4032 
4033 	if (attr == &dev_attr_opmode.attr)
4034 		return ops->get_mode ? mode : 0;
4035 
4036 	if (attr == &dev_attr_state.attr)
4037 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4038 
4039 	if (attr == &dev_attr_status.attr)
4040 		return ops->get_status ? mode : 0;
4041 
4042 	if (attr == &dev_attr_bypass.attr)
4043 		return ops->get_bypass ? mode : 0;
4044 
4045 	/* some attributes are type-specific */
4046 	if (attr == &dev_attr_requested_microamps.attr)
4047 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4048 
4049 	/* constraints need specific supporting methods */
4050 	if (attr == &dev_attr_min_microvolts.attr ||
4051 	    attr == &dev_attr_max_microvolts.attr)
4052 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4053 
4054 	if (attr == &dev_attr_min_microamps.attr ||
4055 	    attr == &dev_attr_max_microamps.attr)
4056 		return ops->set_current_limit ? mode : 0;
4057 
4058 	if (attr == &dev_attr_suspend_standby_state.attr ||
4059 	    attr == &dev_attr_suspend_mem_state.attr ||
4060 	    attr == &dev_attr_suspend_disk_state.attr)
4061 		return mode;
4062 
4063 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4064 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4065 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4066 		return ops->set_suspend_voltage ? mode : 0;
4067 
4068 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4069 	    attr == &dev_attr_suspend_mem_mode.attr ||
4070 	    attr == &dev_attr_suspend_disk_mode.attr)
4071 		return ops->set_suspend_mode ? mode : 0;
4072 
4073 	return mode;
4074 }
4075 
4076 static const struct attribute_group regulator_dev_group = {
4077 	.attrs = regulator_dev_attrs,
4078 	.is_visible = regulator_attr_is_visible,
4079 };
4080 
4081 static const struct attribute_group *regulator_dev_groups[] = {
4082 	&regulator_dev_group,
4083 	NULL
4084 };
4085 
4086 static void regulator_dev_release(struct device *dev)
4087 {
4088 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4089 
4090 	kfree(rdev->constraints);
4091 	of_node_put(rdev->dev.of_node);
4092 	kfree(rdev);
4093 }
4094 
4095 static void rdev_init_debugfs(struct regulator_dev *rdev)
4096 {
4097 	struct device *parent = rdev->dev.parent;
4098 	const char *rname = rdev_get_name(rdev);
4099 	char name[NAME_MAX];
4100 
4101 	/* Avoid duplicate debugfs directory names */
4102 	if (parent && rname == rdev->desc->name) {
4103 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4104 			 rname);
4105 		rname = name;
4106 	}
4107 
4108 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4109 	if (!rdev->debugfs) {
4110 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4111 		return;
4112 	}
4113 
4114 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4115 			   &rdev->use_count);
4116 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4117 			   &rdev->open_count);
4118 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4119 			   &rdev->bypass_count);
4120 }
4121 
4122 static int regulator_register_resolve_supply(struct device *dev, void *data)
4123 {
4124 	struct regulator_dev *rdev = dev_to_rdev(dev);
4125 
4126 	if (regulator_resolve_supply(rdev))
4127 		rdev_dbg(rdev, "unable to resolve supply\n");
4128 
4129 	return 0;
4130 }
4131 
4132 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4133 {
4134 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4135 	int n_coupled = c_desc->n_coupled;
4136 	struct regulator_dev *c_rdev;
4137 	int i;
4138 
4139 	for (i = 1; i < n_coupled; i++) {
4140 		/* already resolved */
4141 		if (c_desc->coupled_rdevs[i])
4142 			continue;
4143 
4144 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4145 
4146 		if (c_rdev) {
4147 			c_desc->coupled_rdevs[i] = c_rdev;
4148 			c_desc->n_resolved++;
4149 		}
4150 	}
4151 
4152 	if (rdev->coupling_desc.n_resolved < n_coupled)
4153 		return -1;
4154 	else
4155 		return 0;
4156 }
4157 
4158 static int regulator_register_fill_coupling_array(struct device *dev,
4159 						  void *data)
4160 {
4161 	struct regulator_dev *rdev = dev_to_rdev(dev);
4162 
4163 	if (!IS_ENABLED(CONFIG_OF))
4164 		return 0;
4165 
4166 	if (regulator_fill_coupling_array(rdev))
4167 		rdev_dbg(rdev, "unable to resolve coupling\n");
4168 
4169 	return 0;
4170 }
4171 
4172 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4173 {
4174 	int n_phandles;
4175 
4176 	if (!IS_ENABLED(CONFIG_OF))
4177 		n_phandles = 0;
4178 	else
4179 		n_phandles = of_get_n_coupled(rdev);
4180 
4181 	if (n_phandles + 1 > MAX_COUPLED) {
4182 		rdev_err(rdev, "too many regulators coupled\n");
4183 		return -EPERM;
4184 	}
4185 
4186 	/*
4187 	 * Every regulator should always have coupling descriptor filled with
4188 	 * at least pointer to itself.
4189 	 */
4190 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4191 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4192 	rdev->coupling_desc.n_resolved++;
4193 
4194 	/* regulator isn't coupled */
4195 	if (n_phandles == 0)
4196 		return 0;
4197 
4198 	/* regulator, which can't change its voltage, can't be coupled */
4199 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4200 		rdev_err(rdev, "voltage operation not allowed\n");
4201 		return -EPERM;
4202 	}
4203 
4204 	if (rdev->constraints->max_spread <= 0) {
4205 		rdev_err(rdev, "wrong max_spread value\n");
4206 		return -EPERM;
4207 	}
4208 
4209 	if (!of_check_coupling_data(rdev))
4210 		return -EPERM;
4211 
4212 	/*
4213 	 * After everything has been checked, try to fill rdevs array
4214 	 * with pointers to regulators parsed from device tree. If some
4215 	 * regulators are not registered yet, retry in late init call
4216 	 */
4217 	regulator_fill_coupling_array(rdev);
4218 
4219 	return 0;
4220 }
4221 
4222 /**
4223  * regulator_register - register regulator
4224  * @regulator_desc: regulator to register
4225  * @cfg: runtime configuration for regulator
4226  *
4227  * Called by regulator drivers to register a regulator.
4228  * Returns a valid pointer to struct regulator_dev on success
4229  * or an ERR_PTR() on error.
4230  */
4231 struct regulator_dev *
4232 regulator_register(const struct regulator_desc *regulator_desc,
4233 		   const struct regulator_config *cfg)
4234 {
4235 	const struct regulation_constraints *constraints = NULL;
4236 	const struct regulator_init_data *init_data;
4237 	struct regulator_config *config = NULL;
4238 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4239 	struct regulator_dev *rdev;
4240 	struct device *dev;
4241 	int ret, i;
4242 
4243 	if (regulator_desc == NULL || cfg == NULL)
4244 		return ERR_PTR(-EINVAL);
4245 
4246 	dev = cfg->dev;
4247 	WARN_ON(!dev);
4248 
4249 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4250 		return ERR_PTR(-EINVAL);
4251 
4252 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4253 	    regulator_desc->type != REGULATOR_CURRENT)
4254 		return ERR_PTR(-EINVAL);
4255 
4256 	/* Only one of each should be implemented */
4257 	WARN_ON(regulator_desc->ops->get_voltage &&
4258 		regulator_desc->ops->get_voltage_sel);
4259 	WARN_ON(regulator_desc->ops->set_voltage &&
4260 		regulator_desc->ops->set_voltage_sel);
4261 
4262 	/* If we're using selectors we must implement list_voltage. */
4263 	if (regulator_desc->ops->get_voltage_sel &&
4264 	    !regulator_desc->ops->list_voltage) {
4265 		return ERR_PTR(-EINVAL);
4266 	}
4267 	if (regulator_desc->ops->set_voltage_sel &&
4268 	    !regulator_desc->ops->list_voltage) {
4269 		return ERR_PTR(-EINVAL);
4270 	}
4271 
4272 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4273 	if (rdev == NULL)
4274 		return ERR_PTR(-ENOMEM);
4275 
4276 	/*
4277 	 * Duplicate the config so the driver could override it after
4278 	 * parsing init data.
4279 	 */
4280 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4281 	if (config == NULL) {
4282 		kfree(rdev);
4283 		return ERR_PTR(-ENOMEM);
4284 	}
4285 
4286 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4287 					       &rdev->dev.of_node);
4288 	if (!init_data) {
4289 		init_data = config->init_data;
4290 		rdev->dev.of_node = of_node_get(config->of_node);
4291 	}
4292 
4293 	mutex_init(&rdev->mutex);
4294 	rdev->reg_data = config->driver_data;
4295 	rdev->owner = regulator_desc->owner;
4296 	rdev->desc = regulator_desc;
4297 	if (config->regmap)
4298 		rdev->regmap = config->regmap;
4299 	else if (dev_get_regmap(dev, NULL))
4300 		rdev->regmap = dev_get_regmap(dev, NULL);
4301 	else if (dev->parent)
4302 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4303 	INIT_LIST_HEAD(&rdev->consumer_list);
4304 	INIT_LIST_HEAD(&rdev->list);
4305 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4306 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4307 
4308 	/* preform any regulator specific init */
4309 	if (init_data && init_data->regulator_init) {
4310 		ret = init_data->regulator_init(rdev->reg_data);
4311 		if (ret < 0)
4312 			goto clean;
4313 	}
4314 
4315 	if (config->ena_gpiod ||
4316 	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4317 	     gpio_is_valid(config->ena_gpio))) {
4318 		mutex_lock(&regulator_list_mutex);
4319 		ret = regulator_ena_gpio_request(rdev, config);
4320 		mutex_unlock(&regulator_list_mutex);
4321 		if (ret != 0) {
4322 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4323 				 config->ena_gpio, ret);
4324 			goto clean;
4325 		}
4326 	}
4327 
4328 	/* register with sysfs */
4329 	rdev->dev.class = &regulator_class;
4330 	rdev->dev.parent = dev;
4331 	dev_set_name(&rdev->dev, "regulator.%lu",
4332 		    (unsigned long) atomic_inc_return(&regulator_no));
4333 
4334 	/* set regulator constraints */
4335 	if (init_data)
4336 		constraints = &init_data->constraints;
4337 
4338 	if (init_data && init_data->supply_regulator)
4339 		rdev->supply_name = init_data->supply_regulator;
4340 	else if (regulator_desc->supply_name)
4341 		rdev->supply_name = regulator_desc->supply_name;
4342 
4343 	/*
4344 	 * Attempt to resolve the regulator supply, if specified,
4345 	 * but don't return an error if we fail because we will try
4346 	 * to resolve it again later as more regulators are added.
4347 	 */
4348 	if (regulator_resolve_supply(rdev))
4349 		rdev_dbg(rdev, "unable to resolve supply\n");
4350 
4351 	ret = set_machine_constraints(rdev, constraints);
4352 	if (ret < 0)
4353 		goto wash;
4354 
4355 	mutex_lock(&regulator_list_mutex);
4356 	ret = regulator_resolve_coupling(rdev);
4357 	mutex_unlock(&regulator_list_mutex);
4358 
4359 	if (ret != 0)
4360 		goto wash;
4361 
4362 	/* add consumers devices */
4363 	if (init_data) {
4364 		mutex_lock(&regulator_list_mutex);
4365 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4366 			ret = set_consumer_device_supply(rdev,
4367 				init_data->consumer_supplies[i].dev_name,
4368 				init_data->consumer_supplies[i].supply);
4369 			if (ret < 0) {
4370 				mutex_unlock(&regulator_list_mutex);
4371 				dev_err(dev, "Failed to set supply %s\n",
4372 					init_data->consumer_supplies[i].supply);
4373 				goto unset_supplies;
4374 			}
4375 		}
4376 		mutex_unlock(&regulator_list_mutex);
4377 	}
4378 
4379 	if (!rdev->desc->ops->get_voltage &&
4380 	    !rdev->desc->ops->list_voltage &&
4381 	    !rdev->desc->fixed_uV)
4382 		rdev->is_switch = true;
4383 
4384 	ret = device_register(&rdev->dev);
4385 	if (ret != 0) {
4386 		put_device(&rdev->dev);
4387 		goto unset_supplies;
4388 	}
4389 
4390 	dev_set_drvdata(&rdev->dev, rdev);
4391 	rdev_init_debugfs(rdev);
4392 
4393 	/* try to resolve regulators supply since a new one was registered */
4394 	class_for_each_device(&regulator_class, NULL, NULL,
4395 			      regulator_register_resolve_supply);
4396 	kfree(config);
4397 	return rdev;
4398 
4399 unset_supplies:
4400 	mutex_lock(&regulator_list_mutex);
4401 	unset_regulator_supplies(rdev);
4402 	mutex_unlock(&regulator_list_mutex);
4403 wash:
4404 	kfree(rdev->constraints);
4405 	mutex_lock(&regulator_list_mutex);
4406 	regulator_ena_gpio_free(rdev);
4407 	mutex_unlock(&regulator_list_mutex);
4408 clean:
4409 	kfree(rdev);
4410 	kfree(config);
4411 	return ERR_PTR(ret);
4412 }
4413 EXPORT_SYMBOL_GPL(regulator_register);
4414 
4415 /**
4416  * regulator_unregister - unregister regulator
4417  * @rdev: regulator to unregister
4418  *
4419  * Called by regulator drivers to unregister a regulator.
4420  */
4421 void regulator_unregister(struct regulator_dev *rdev)
4422 {
4423 	if (rdev == NULL)
4424 		return;
4425 
4426 	if (rdev->supply) {
4427 		while (rdev->use_count--)
4428 			regulator_disable(rdev->supply);
4429 		regulator_put(rdev->supply);
4430 	}
4431 	mutex_lock(&regulator_list_mutex);
4432 	debugfs_remove_recursive(rdev->debugfs);
4433 	flush_work(&rdev->disable_work.work);
4434 	WARN_ON(rdev->open_count);
4435 	unset_regulator_supplies(rdev);
4436 	list_del(&rdev->list);
4437 	regulator_ena_gpio_free(rdev);
4438 	mutex_unlock(&regulator_list_mutex);
4439 	device_unregister(&rdev->dev);
4440 }
4441 EXPORT_SYMBOL_GPL(regulator_unregister);
4442 
4443 #ifdef CONFIG_SUSPEND
4444 static int _regulator_suspend_late(struct device *dev, void *data)
4445 {
4446 	struct regulator_dev *rdev = dev_to_rdev(dev);
4447 	suspend_state_t *state = data;
4448 	int ret;
4449 
4450 	regulator_lock(rdev);
4451 	ret = suspend_set_state(rdev, *state);
4452 	regulator_unlock(rdev);
4453 
4454 	return ret;
4455 }
4456 
4457 /**
4458  * regulator_suspend_late - prepare regulators for system wide suspend
4459  * @state: system suspend state
4460  *
4461  * Configure each regulator with it's suspend operating parameters for state.
4462  */
4463 static int regulator_suspend_late(struct device *dev)
4464 {
4465 	suspend_state_t state = pm_suspend_target_state;
4466 
4467 	return class_for_each_device(&regulator_class, NULL, &state,
4468 				     _regulator_suspend_late);
4469 }
4470 
4471 static int _regulator_resume_early(struct device *dev, void *data)
4472 {
4473 	int ret = 0;
4474 	struct regulator_dev *rdev = dev_to_rdev(dev);
4475 	suspend_state_t *state = data;
4476 	struct regulator_state *rstate;
4477 
4478 	rstate = regulator_get_suspend_state(rdev, *state);
4479 	if (rstate == NULL)
4480 		return 0;
4481 
4482 	regulator_lock(rdev);
4483 
4484 	if (rdev->desc->ops->resume_early &&
4485 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4486 	     rstate->enabled == DISABLE_IN_SUSPEND))
4487 		ret = rdev->desc->ops->resume_early(rdev);
4488 
4489 	regulator_unlock(rdev);
4490 
4491 	return ret;
4492 }
4493 
4494 static int regulator_resume_early(struct device *dev)
4495 {
4496 	suspend_state_t state = pm_suspend_target_state;
4497 
4498 	return class_for_each_device(&regulator_class, NULL, &state,
4499 				     _regulator_resume_early);
4500 }
4501 
4502 #else /* !CONFIG_SUSPEND */
4503 
4504 #define regulator_suspend_late	NULL
4505 #define regulator_resume_early	NULL
4506 
4507 #endif /* !CONFIG_SUSPEND */
4508 
4509 #ifdef CONFIG_PM
4510 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4511 	.suspend_late	= regulator_suspend_late,
4512 	.resume_early	= regulator_resume_early,
4513 };
4514 #endif
4515 
4516 struct class regulator_class = {
4517 	.name = "regulator",
4518 	.dev_release = regulator_dev_release,
4519 	.dev_groups = regulator_dev_groups,
4520 #ifdef CONFIG_PM
4521 	.pm = &regulator_pm_ops,
4522 #endif
4523 };
4524 /**
4525  * regulator_has_full_constraints - the system has fully specified constraints
4526  *
4527  * Calling this function will cause the regulator API to disable all
4528  * regulators which have a zero use count and don't have an always_on
4529  * constraint in a late_initcall.
4530  *
4531  * The intention is that this will become the default behaviour in a
4532  * future kernel release so users are encouraged to use this facility
4533  * now.
4534  */
4535 void regulator_has_full_constraints(void)
4536 {
4537 	has_full_constraints = 1;
4538 }
4539 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4540 
4541 /**
4542  * rdev_get_drvdata - get rdev regulator driver data
4543  * @rdev: regulator
4544  *
4545  * Get rdev regulator driver private data. This call can be used in the
4546  * regulator driver context.
4547  */
4548 void *rdev_get_drvdata(struct regulator_dev *rdev)
4549 {
4550 	return rdev->reg_data;
4551 }
4552 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4553 
4554 /**
4555  * regulator_get_drvdata - get regulator driver data
4556  * @regulator: regulator
4557  *
4558  * Get regulator driver private data. This call can be used in the consumer
4559  * driver context when non API regulator specific functions need to be called.
4560  */
4561 void *regulator_get_drvdata(struct regulator *regulator)
4562 {
4563 	return regulator->rdev->reg_data;
4564 }
4565 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4566 
4567 /**
4568  * regulator_set_drvdata - set regulator driver data
4569  * @regulator: regulator
4570  * @data: data
4571  */
4572 void regulator_set_drvdata(struct regulator *regulator, void *data)
4573 {
4574 	regulator->rdev->reg_data = data;
4575 }
4576 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4577 
4578 /**
4579  * regulator_get_id - get regulator ID
4580  * @rdev: regulator
4581  */
4582 int rdev_get_id(struct regulator_dev *rdev)
4583 {
4584 	return rdev->desc->id;
4585 }
4586 EXPORT_SYMBOL_GPL(rdev_get_id);
4587 
4588 struct device *rdev_get_dev(struct regulator_dev *rdev)
4589 {
4590 	return &rdev->dev;
4591 }
4592 EXPORT_SYMBOL_GPL(rdev_get_dev);
4593 
4594 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4595 {
4596 	return reg_init_data->driver_data;
4597 }
4598 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4599 
4600 #ifdef CONFIG_DEBUG_FS
4601 static int supply_map_show(struct seq_file *sf, void *data)
4602 {
4603 	struct regulator_map *map;
4604 
4605 	list_for_each_entry(map, &regulator_map_list, list) {
4606 		seq_printf(sf, "%s -> %s.%s\n",
4607 				rdev_get_name(map->regulator), map->dev_name,
4608 				map->supply);
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 static int supply_map_open(struct inode *inode, struct file *file)
4615 {
4616 	return single_open(file, supply_map_show, inode->i_private);
4617 }
4618 #endif
4619 
4620 static const struct file_operations supply_map_fops = {
4621 #ifdef CONFIG_DEBUG_FS
4622 	.open = supply_map_open,
4623 	.read = seq_read,
4624 	.llseek = seq_lseek,
4625 	.release = single_release,
4626 #endif
4627 };
4628 
4629 #ifdef CONFIG_DEBUG_FS
4630 struct summary_data {
4631 	struct seq_file *s;
4632 	struct regulator_dev *parent;
4633 	int level;
4634 };
4635 
4636 static void regulator_summary_show_subtree(struct seq_file *s,
4637 					   struct regulator_dev *rdev,
4638 					   int level);
4639 
4640 static int regulator_summary_show_children(struct device *dev, void *data)
4641 {
4642 	struct regulator_dev *rdev = dev_to_rdev(dev);
4643 	struct summary_data *summary_data = data;
4644 
4645 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4646 		regulator_summary_show_subtree(summary_data->s, rdev,
4647 					       summary_data->level + 1);
4648 
4649 	return 0;
4650 }
4651 
4652 static void regulator_summary_show_subtree(struct seq_file *s,
4653 					   struct regulator_dev *rdev,
4654 					   int level)
4655 {
4656 	struct regulation_constraints *c;
4657 	struct regulator *consumer;
4658 	struct summary_data summary_data;
4659 
4660 	if (!rdev)
4661 		return;
4662 
4663 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4664 		   level * 3 + 1, "",
4665 		   30 - level * 3, rdev_get_name(rdev),
4666 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4667 
4668 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4669 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4670 
4671 	c = rdev->constraints;
4672 	if (c) {
4673 		switch (rdev->desc->type) {
4674 		case REGULATOR_VOLTAGE:
4675 			seq_printf(s, "%5dmV %5dmV ",
4676 				   c->min_uV / 1000, c->max_uV / 1000);
4677 			break;
4678 		case REGULATOR_CURRENT:
4679 			seq_printf(s, "%5dmA %5dmA ",
4680 				   c->min_uA / 1000, c->max_uA / 1000);
4681 			break;
4682 		}
4683 	}
4684 
4685 	seq_puts(s, "\n");
4686 
4687 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4688 		if (consumer->dev && consumer->dev->class == &regulator_class)
4689 			continue;
4690 
4691 		seq_printf(s, "%*s%-*s ",
4692 			   (level + 1) * 3 + 1, "",
4693 			   30 - (level + 1) * 3,
4694 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4695 
4696 		switch (rdev->desc->type) {
4697 		case REGULATOR_VOLTAGE:
4698 			seq_printf(s, "%37dmV %5dmV",
4699 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4700 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4701 			break;
4702 		case REGULATOR_CURRENT:
4703 			break;
4704 		}
4705 
4706 		seq_puts(s, "\n");
4707 	}
4708 
4709 	summary_data.s = s;
4710 	summary_data.level = level;
4711 	summary_data.parent = rdev;
4712 
4713 	class_for_each_device(&regulator_class, NULL, &summary_data,
4714 			      regulator_summary_show_children);
4715 }
4716 
4717 static int regulator_summary_show_roots(struct device *dev, void *data)
4718 {
4719 	struct regulator_dev *rdev = dev_to_rdev(dev);
4720 	struct seq_file *s = data;
4721 
4722 	if (!rdev->supply)
4723 		regulator_summary_show_subtree(s, rdev, 0);
4724 
4725 	return 0;
4726 }
4727 
4728 static int regulator_summary_show(struct seq_file *s, void *data)
4729 {
4730 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4731 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4732 
4733 	class_for_each_device(&regulator_class, NULL, s,
4734 			      regulator_summary_show_roots);
4735 
4736 	return 0;
4737 }
4738 
4739 static int regulator_summary_open(struct inode *inode, struct file *file)
4740 {
4741 	return single_open(file, regulator_summary_show, inode->i_private);
4742 }
4743 #endif
4744 
4745 static const struct file_operations regulator_summary_fops = {
4746 #ifdef CONFIG_DEBUG_FS
4747 	.open		= regulator_summary_open,
4748 	.read		= seq_read,
4749 	.llseek		= seq_lseek,
4750 	.release	= single_release,
4751 #endif
4752 };
4753 
4754 static int __init regulator_init(void)
4755 {
4756 	int ret;
4757 
4758 	ret = class_register(&regulator_class);
4759 
4760 	debugfs_root = debugfs_create_dir("regulator", NULL);
4761 	if (!debugfs_root)
4762 		pr_warn("regulator: Failed to create debugfs directory\n");
4763 
4764 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4765 			    &supply_map_fops);
4766 
4767 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4768 			    NULL, &regulator_summary_fops);
4769 
4770 	regulator_dummy_init();
4771 
4772 	return ret;
4773 }
4774 
4775 /* init early to allow our consumers to complete system booting */
4776 core_initcall(regulator_init);
4777 
4778 static int __init regulator_late_cleanup(struct device *dev, void *data)
4779 {
4780 	struct regulator_dev *rdev = dev_to_rdev(dev);
4781 	const struct regulator_ops *ops = rdev->desc->ops;
4782 	struct regulation_constraints *c = rdev->constraints;
4783 	int enabled, ret;
4784 
4785 	if (c && c->always_on)
4786 		return 0;
4787 
4788 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4789 		return 0;
4790 
4791 	regulator_lock(rdev);
4792 
4793 	if (rdev->use_count)
4794 		goto unlock;
4795 
4796 	/* If we can't read the status assume it's on. */
4797 	if (ops->is_enabled)
4798 		enabled = ops->is_enabled(rdev);
4799 	else
4800 		enabled = 1;
4801 
4802 	if (!enabled)
4803 		goto unlock;
4804 
4805 	if (have_full_constraints()) {
4806 		/* We log since this may kill the system if it goes
4807 		 * wrong. */
4808 		rdev_info(rdev, "disabling\n");
4809 		ret = _regulator_do_disable(rdev);
4810 		if (ret != 0)
4811 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4812 	} else {
4813 		/* The intention is that in future we will
4814 		 * assume that full constraints are provided
4815 		 * so warn even if we aren't going to do
4816 		 * anything here.
4817 		 */
4818 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4819 	}
4820 
4821 unlock:
4822 	regulator_unlock(rdev);
4823 
4824 	return 0;
4825 }
4826 
4827 static int __init regulator_init_complete(void)
4828 {
4829 	/*
4830 	 * Since DT doesn't provide an idiomatic mechanism for
4831 	 * enabling full constraints and since it's much more natural
4832 	 * with DT to provide them just assume that a DT enabled
4833 	 * system has full constraints.
4834 	 */
4835 	if (of_have_populated_dt())
4836 		has_full_constraints = true;
4837 
4838 	/*
4839 	 * Regulators may had failed to resolve their input supplies
4840 	 * when were registered, either because the input supply was
4841 	 * not registered yet or because its parent device was not
4842 	 * bound yet. So attempt to resolve the input supplies for
4843 	 * pending regulators before trying to disable unused ones.
4844 	 */
4845 	class_for_each_device(&regulator_class, NULL, NULL,
4846 			      regulator_register_resolve_supply);
4847 
4848 	/* If we have a full configuration then disable any regulators
4849 	 * we have permission to change the status for and which are
4850 	 * not in use or always_on.  This is effectively the default
4851 	 * for DT and ACPI as they have full constraints.
4852 	 */
4853 	class_for_each_device(&regulator_class, NULL, NULL,
4854 			      regulator_late_cleanup);
4855 
4856 	class_for_each_device(&regulator_class, NULL, NULL,
4857 			      regulator_register_fill_coupling_array);
4858 
4859 	return 0;
4860 }
4861 late_initcall_sync(regulator_init_complete);
4862