1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static LIST_HEAD(regulator_ena_gpio_list); 55 static bool has_full_constraints; 56 static bool board_wants_dummy_regulator; 57 58 static struct dentry *debugfs_root; 59 60 /* 61 * struct regulator_map 62 * 63 * Used to provide symbolic supply names to devices. 64 */ 65 struct regulator_map { 66 struct list_head list; 67 const char *dev_name; /* The dev_name() for the consumer */ 68 const char *supply; 69 struct regulator_dev *regulator; 70 }; 71 72 /* 73 * struct regulator_enable_gpio 74 * 75 * Management for shared enable GPIO pin 76 */ 77 struct regulator_enable_gpio { 78 struct list_head list; 79 int gpio; 80 u32 enable_count; /* a number of enabled shared GPIO */ 81 u32 request_count; /* a number of requested shared GPIO */ 82 unsigned int ena_gpio_invert:1; 83 }; 84 85 /* 86 * struct regulator 87 * 88 * One for each consumer device. 89 */ 90 struct regulator { 91 struct device *dev; 92 struct list_head list; 93 unsigned int always_on:1; 94 unsigned int bypass:1; 95 int uA_load; 96 int min_uV; 97 int max_uV; 98 char *supply_name; 99 struct device_attribute dev_attr; 100 struct regulator_dev *rdev; 101 struct dentry *debugfs; 102 }; 103 104 static int _regulator_is_enabled(struct regulator_dev *rdev); 105 static int _regulator_disable(struct regulator_dev *rdev); 106 static int _regulator_get_voltage(struct regulator_dev *rdev); 107 static int _regulator_get_current_limit(struct regulator_dev *rdev); 108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 109 static void _notifier_call_chain(struct regulator_dev *rdev, 110 unsigned long event, void *data); 111 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 112 int min_uV, int max_uV); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 117 static const char *rdev_get_name(struct regulator_dev *rdev) 118 { 119 if (rdev->constraints && rdev->constraints->name) 120 return rdev->constraints->name; 121 else if (rdev->desc->name) 122 return rdev->desc->name; 123 else 124 return ""; 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 static DEVICE_ATTR_RO(name); 334 335 static ssize_t regulator_print_opmode(char *buf, int mode) 336 { 337 switch (mode) { 338 case REGULATOR_MODE_FAST: 339 return sprintf(buf, "fast\n"); 340 case REGULATOR_MODE_NORMAL: 341 return sprintf(buf, "normal\n"); 342 case REGULATOR_MODE_IDLE: 343 return sprintf(buf, "idle\n"); 344 case REGULATOR_MODE_STANDBY: 345 return sprintf(buf, "standby\n"); 346 } 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_opmode_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 356 } 357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 358 359 static ssize_t regulator_print_state(char *buf, int state) 360 { 361 if (state > 0) 362 return sprintf(buf, "enabled\n"); 363 else if (state == 0) 364 return sprintf(buf, "disabled\n"); 365 else 366 return sprintf(buf, "unknown\n"); 367 } 368 369 static ssize_t regulator_state_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct regulator_dev *rdev = dev_get_drvdata(dev); 373 ssize_t ret; 374 375 mutex_lock(&rdev->mutex); 376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 377 mutex_unlock(&rdev->mutex); 378 379 return ret; 380 } 381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 382 383 static ssize_t regulator_status_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 int status; 388 char *label; 389 390 status = rdev->desc->ops->get_status(rdev); 391 if (status < 0) 392 return status; 393 394 switch (status) { 395 case REGULATOR_STATUS_OFF: 396 label = "off"; 397 break; 398 case REGULATOR_STATUS_ON: 399 label = "on"; 400 break; 401 case REGULATOR_STATUS_ERROR: 402 label = "error"; 403 break; 404 case REGULATOR_STATUS_FAST: 405 label = "fast"; 406 break; 407 case REGULATOR_STATUS_NORMAL: 408 label = "normal"; 409 break; 410 case REGULATOR_STATUS_IDLE: 411 label = "idle"; 412 break; 413 case REGULATOR_STATUS_STANDBY: 414 label = "standby"; 415 break; 416 case REGULATOR_STATUS_BYPASS: 417 label = "bypass"; 418 break; 419 case REGULATOR_STATUS_UNDEFINED: 420 label = "undefined"; 421 break; 422 default: 423 return -ERANGE; 424 } 425 426 return sprintf(buf, "%s\n", label); 427 } 428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 429 430 static ssize_t regulator_min_uA_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 if (!rdev->constraints) 436 return sprintf(buf, "constraint not defined\n"); 437 438 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 439 } 440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 441 442 static ssize_t regulator_max_uA_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct regulator_dev *rdev = dev_get_drvdata(dev); 446 447 if (!rdev->constraints) 448 return sprintf(buf, "constraint not defined\n"); 449 450 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 451 } 452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 453 454 static ssize_t regulator_min_uV_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 463 } 464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 465 466 static ssize_t regulator_max_uV_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 475 } 476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 477 478 static ssize_t regulator_total_uA_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 struct regulator *regulator; 483 int uA = 0; 484 485 mutex_lock(&rdev->mutex); 486 list_for_each_entry(regulator, &rdev->consumer_list, list) 487 uA += regulator->uA_load; 488 mutex_unlock(&rdev->mutex); 489 return sprintf(buf, "%d\n", uA); 490 } 491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 492 493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 494 char *buf) 495 { 496 struct regulator_dev *rdev = dev_get_drvdata(dev); 497 return sprintf(buf, "%d\n", rdev->use_count); 498 } 499 static DEVICE_ATTR_RO(num_users); 500 501 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 506 switch (rdev->desc->type) { 507 case REGULATOR_VOLTAGE: 508 return sprintf(buf, "voltage\n"); 509 case REGULATOR_CURRENT: 510 return sprintf(buf, "current\n"); 511 } 512 return sprintf(buf, "unknown\n"); 513 } 514 static DEVICE_ATTR_RO(type); 515 516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 522 } 523 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 524 regulator_suspend_mem_uV_show, NULL); 525 526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 532 } 533 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 534 regulator_suspend_disk_uV_show, NULL); 535 536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 542 } 543 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 544 regulator_suspend_standby_uV_show, NULL); 545 546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct regulator_dev *rdev = dev_get_drvdata(dev); 550 551 return regulator_print_opmode(buf, 552 rdev->constraints->state_mem.mode); 553 } 554 static DEVICE_ATTR(suspend_mem_mode, 0444, 555 regulator_suspend_mem_mode_show, NULL); 556 557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct regulator_dev *rdev = dev_get_drvdata(dev); 561 562 return regulator_print_opmode(buf, 563 rdev->constraints->state_disk.mode); 564 } 565 static DEVICE_ATTR(suspend_disk_mode, 0444, 566 regulator_suspend_disk_mode_show, NULL); 567 568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 569 struct device_attribute *attr, char *buf) 570 { 571 struct regulator_dev *rdev = dev_get_drvdata(dev); 572 573 return regulator_print_opmode(buf, 574 rdev->constraints->state_standby.mode); 575 } 576 static DEVICE_ATTR(suspend_standby_mode, 0444, 577 regulator_suspend_standby_mode_show, NULL); 578 579 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct regulator_dev *rdev = dev_get_drvdata(dev); 583 584 return regulator_print_state(buf, 585 rdev->constraints->state_mem.enabled); 586 } 587 static DEVICE_ATTR(suspend_mem_state, 0444, 588 regulator_suspend_mem_state_show, NULL); 589 590 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_state(buf, 596 rdev->constraints->state_disk.enabled); 597 } 598 static DEVICE_ATTR(suspend_disk_state, 0444, 599 regulator_suspend_disk_state_show, NULL); 600 601 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_state(buf, 607 rdev->constraints->state_standby.enabled); 608 } 609 static DEVICE_ATTR(suspend_standby_state, 0444, 610 regulator_suspend_standby_state_show, NULL); 611 612 static ssize_t regulator_bypass_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 const char *report; 617 bool bypass; 618 int ret; 619 620 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 621 622 if (ret != 0) 623 report = "unknown"; 624 else if (bypass) 625 report = "enabled"; 626 else 627 report = "disabled"; 628 629 return sprintf(buf, "%s\n", report); 630 } 631 static DEVICE_ATTR(bypass, 0444, 632 regulator_bypass_show, NULL); 633 634 /* 635 * These are the only attributes are present for all regulators. 636 * Other attributes are a function of regulator functionality. 637 */ 638 static struct attribute *regulator_dev_attrs[] = { 639 &dev_attr_name.attr, 640 &dev_attr_num_users.attr, 641 &dev_attr_type.attr, 642 NULL, 643 }; 644 ATTRIBUTE_GROUPS(regulator_dev); 645 646 static void regulator_dev_release(struct device *dev) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 kfree(rdev); 650 } 651 652 static struct class regulator_class = { 653 .name = "regulator", 654 .dev_release = regulator_dev_release, 655 .dev_groups = regulator_dev_groups, 656 }; 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static void drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 err = regulator_check_drms(rdev); 667 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 668 (!rdev->desc->ops->get_voltage && 669 !rdev->desc->ops->get_voltage_sel) || 670 !rdev->desc->ops->set_mode) 671 return; 672 673 /* get output voltage */ 674 output_uV = _regulator_get_voltage(rdev); 675 if (output_uV <= 0) 676 return; 677 678 /* get input voltage */ 679 input_uV = 0; 680 if (rdev->supply) 681 input_uV = regulator_get_voltage(rdev->supply); 682 if (input_uV <= 0) 683 input_uV = rdev->constraints->input_uV; 684 if (input_uV <= 0) 685 return; 686 687 /* calc total requested load */ 688 list_for_each_entry(sibling, &rdev->consumer_list, list) 689 current_uA += sibling->uA_load; 690 691 /* now get the optimum mode for our new total regulator load */ 692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 693 output_uV, current_uA); 694 695 /* check the new mode is allowed */ 696 err = regulator_mode_constrain(rdev, &mode); 697 if (err == 0) 698 rdev->desc->ops->set_mode(rdev, mode); 699 } 700 701 static int suspend_set_state(struct regulator_dev *rdev, 702 struct regulator_state *rstate) 703 { 704 int ret = 0; 705 706 /* If we have no suspend mode configration don't set anything; 707 * only warn if the driver implements set_suspend_voltage or 708 * set_suspend_mode callback. 709 */ 710 if (!rstate->enabled && !rstate->disabled) { 711 if (rdev->desc->ops->set_suspend_voltage || 712 rdev->desc->ops->set_suspend_mode) 713 rdev_warn(rdev, "No configuration\n"); 714 return 0; 715 } 716 717 if (rstate->enabled && rstate->disabled) { 718 rdev_err(rdev, "invalid configuration\n"); 719 return -EINVAL; 720 } 721 722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 723 ret = rdev->desc->ops->set_suspend_enable(rdev); 724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 725 ret = rdev->desc->ops->set_suspend_disable(rdev); 726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 727 ret = 0; 728 729 if (ret < 0) { 730 rdev_err(rdev, "failed to enabled/disable\n"); 731 return ret; 732 } 733 734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 736 if (ret < 0) { 737 rdev_err(rdev, "failed to set voltage\n"); 738 return ret; 739 } 740 } 741 742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set mode\n"); 746 return ret; 747 } 748 } 749 return ret; 750 } 751 752 /* locks held by caller */ 753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 754 { 755 if (!rdev->constraints) 756 return -EINVAL; 757 758 switch (state) { 759 case PM_SUSPEND_STANDBY: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_standby); 762 case PM_SUSPEND_MEM: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_mem); 765 case PM_SUSPEND_MAX: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_disk); 768 default: 769 return -EINVAL; 770 } 771 } 772 773 static void print_constraints(struct regulator_dev *rdev) 774 { 775 struct regulation_constraints *constraints = rdev->constraints; 776 char buf[80] = ""; 777 int count = 0; 778 int ret; 779 780 if (constraints->min_uV && constraints->max_uV) { 781 if (constraints->min_uV == constraints->max_uV) 782 count += sprintf(buf + count, "%d mV ", 783 constraints->min_uV / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mV ", 786 constraints->min_uV / 1000, 787 constraints->max_uV / 1000); 788 } 789 790 if (!constraints->min_uV || 791 constraints->min_uV != constraints->max_uV) { 792 ret = _regulator_get_voltage(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mV ", ret / 1000); 795 } 796 797 if (constraints->uV_offset) 798 count += sprintf(buf, "%dmV offset ", 799 constraints->uV_offset / 1000); 800 801 if (constraints->min_uA && constraints->max_uA) { 802 if (constraints->min_uA == constraints->max_uA) 803 count += sprintf(buf + count, "%d mA ", 804 constraints->min_uA / 1000); 805 else 806 count += sprintf(buf + count, "%d <--> %d mA ", 807 constraints->min_uA / 1000, 808 constraints->max_uA / 1000); 809 } 810 811 if (!constraints->min_uA || 812 constraints->min_uA != constraints->max_uA) { 813 ret = _regulator_get_current_limit(rdev); 814 if (ret > 0) 815 count += sprintf(buf + count, "at %d mA ", ret / 1000); 816 } 817 818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 819 count += sprintf(buf + count, "fast "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 821 count += sprintf(buf + count, "normal "); 822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 823 count += sprintf(buf + count, "idle "); 824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 825 count += sprintf(buf + count, "standby"); 826 827 if (!count) 828 sprintf(buf, "no parameters"); 829 830 rdev_info(rdev, "%s\n", buf); 831 832 if ((constraints->min_uV != constraints->max_uV) && 833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 834 rdev_warn(rdev, 835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 836 } 837 838 static int machine_constraints_voltage(struct regulator_dev *rdev, 839 struct regulation_constraints *constraints) 840 { 841 struct regulator_ops *ops = rdev->desc->ops; 842 int ret; 843 844 /* do we need to apply the constraint voltage */ 845 if (rdev->constraints->apply_uV && 846 rdev->constraints->min_uV == rdev->constraints->max_uV) { 847 ret = _regulator_do_set_voltage(rdev, 848 rdev->constraints->min_uV, 849 rdev->constraints->max_uV); 850 if (ret < 0) { 851 rdev_err(rdev, "failed to apply %duV constraint\n", 852 rdev->constraints->min_uV); 853 return ret; 854 } 855 } 856 857 /* constrain machine-level voltage specs to fit 858 * the actual range supported by this regulator. 859 */ 860 if (ops->list_voltage && rdev->desc->n_voltages) { 861 int count = rdev->desc->n_voltages; 862 int i; 863 int min_uV = INT_MAX; 864 int max_uV = INT_MIN; 865 int cmin = constraints->min_uV; 866 int cmax = constraints->max_uV; 867 868 /* it's safe to autoconfigure fixed-voltage supplies 869 and the constraints are used by list_voltage. */ 870 if (count == 1 && !cmin) { 871 cmin = 1; 872 cmax = INT_MAX; 873 constraints->min_uV = cmin; 874 constraints->max_uV = cmax; 875 } 876 877 /* voltage constraints are optional */ 878 if ((cmin == 0) && (cmax == 0)) 879 return 0; 880 881 /* else require explicit machine-level constraints */ 882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 883 rdev_err(rdev, "invalid voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 888 for (i = 0; i < count; i++) { 889 int value; 890 891 value = ops->list_voltage(rdev, i); 892 if (value <= 0) 893 continue; 894 895 /* maybe adjust [min_uV..max_uV] */ 896 if (value >= cmin && value < min_uV) 897 min_uV = value; 898 if (value <= cmax && value > max_uV) 899 max_uV = value; 900 } 901 902 /* final: [min_uV..max_uV] valid iff constraints valid */ 903 if (max_uV < min_uV) { 904 rdev_err(rdev, 905 "unsupportable voltage constraints %u-%uuV\n", 906 min_uV, max_uV); 907 return -EINVAL; 908 } 909 910 /* use regulator's subset of machine constraints */ 911 if (constraints->min_uV < min_uV) { 912 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 913 constraints->min_uV, min_uV); 914 constraints->min_uV = min_uV; 915 } 916 if (constraints->max_uV > max_uV) { 917 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 918 constraints->max_uV, max_uV); 919 constraints->max_uV = max_uV; 920 } 921 } 922 923 return 0; 924 } 925 926 /** 927 * set_machine_constraints - sets regulator constraints 928 * @rdev: regulator source 929 * @constraints: constraints to apply 930 * 931 * Allows platform initialisation code to define and constrain 932 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 933 * Constraints *must* be set by platform code in order for some 934 * regulator operations to proceed i.e. set_voltage, set_current_limit, 935 * set_mode. 936 */ 937 static int set_machine_constraints(struct regulator_dev *rdev, 938 const struct regulation_constraints *constraints) 939 { 940 int ret = 0; 941 struct regulator_ops *ops = rdev->desc->ops; 942 943 if (constraints) 944 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 945 GFP_KERNEL); 946 else 947 rdev->constraints = kzalloc(sizeof(*constraints), 948 GFP_KERNEL); 949 if (!rdev->constraints) 950 return -ENOMEM; 951 952 ret = machine_constraints_voltage(rdev, rdev->constraints); 953 if (ret != 0) 954 goto out; 955 956 /* do we need to setup our suspend state */ 957 if (rdev->constraints->initial_state) { 958 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 959 if (ret < 0) { 960 rdev_err(rdev, "failed to set suspend state\n"); 961 goto out; 962 } 963 } 964 965 if (rdev->constraints->initial_mode) { 966 if (!ops->set_mode) { 967 rdev_err(rdev, "no set_mode operation\n"); 968 ret = -EINVAL; 969 goto out; 970 } 971 972 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 973 if (ret < 0) { 974 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 975 goto out; 976 } 977 } 978 979 /* If the constraints say the regulator should be on at this point 980 * and we have control then make sure it is enabled. 981 */ 982 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 983 ops->enable) { 984 ret = ops->enable(rdev); 985 if (ret < 0) { 986 rdev_err(rdev, "failed to enable\n"); 987 goto out; 988 } 989 } 990 991 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 992 && ops->set_ramp_delay) { 993 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 994 if (ret < 0) { 995 rdev_err(rdev, "failed to set ramp_delay\n"); 996 goto out; 997 } 998 } 999 1000 print_constraints(rdev); 1001 return 0; 1002 out: 1003 kfree(rdev->constraints); 1004 rdev->constraints = NULL; 1005 return ret; 1006 } 1007 1008 /** 1009 * set_supply - set regulator supply regulator 1010 * @rdev: regulator name 1011 * @supply_rdev: supply regulator name 1012 * 1013 * Called by platform initialisation code to set the supply regulator for this 1014 * regulator. This ensures that a regulators supply will also be enabled by the 1015 * core if it's child is enabled. 1016 */ 1017 static int set_supply(struct regulator_dev *rdev, 1018 struct regulator_dev *supply_rdev) 1019 { 1020 int err; 1021 1022 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1023 1024 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1025 if (rdev->supply == NULL) { 1026 err = -ENOMEM; 1027 return err; 1028 } 1029 supply_rdev->open_count++; 1030 1031 return 0; 1032 } 1033 1034 /** 1035 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1036 * @rdev: regulator source 1037 * @consumer_dev_name: dev_name() string for device supply applies to 1038 * @supply: symbolic name for supply 1039 * 1040 * Allows platform initialisation code to map physical regulator 1041 * sources to symbolic names for supplies for use by devices. Devices 1042 * should use these symbolic names to request regulators, avoiding the 1043 * need to provide board-specific regulator names as platform data. 1044 */ 1045 static int set_consumer_device_supply(struct regulator_dev *rdev, 1046 const char *consumer_dev_name, 1047 const char *supply) 1048 { 1049 struct regulator_map *node; 1050 int has_dev; 1051 1052 if (supply == NULL) 1053 return -EINVAL; 1054 1055 if (consumer_dev_name != NULL) 1056 has_dev = 1; 1057 else 1058 has_dev = 0; 1059 1060 list_for_each_entry(node, ®ulator_map_list, list) { 1061 if (node->dev_name && consumer_dev_name) { 1062 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1063 continue; 1064 } else if (node->dev_name || consumer_dev_name) { 1065 continue; 1066 } 1067 1068 if (strcmp(node->supply, supply) != 0) 1069 continue; 1070 1071 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1072 consumer_dev_name, 1073 dev_name(&node->regulator->dev), 1074 node->regulator->desc->name, 1075 supply, 1076 dev_name(&rdev->dev), rdev_get_name(rdev)); 1077 return -EBUSY; 1078 } 1079 1080 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1081 if (node == NULL) 1082 return -ENOMEM; 1083 1084 node->regulator = rdev; 1085 node->supply = supply; 1086 1087 if (has_dev) { 1088 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1089 if (node->dev_name == NULL) { 1090 kfree(node); 1091 return -ENOMEM; 1092 } 1093 } 1094 1095 list_add(&node->list, ®ulator_map_list); 1096 return 0; 1097 } 1098 1099 static void unset_regulator_supplies(struct regulator_dev *rdev) 1100 { 1101 struct regulator_map *node, *n; 1102 1103 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1104 if (rdev == node->regulator) { 1105 list_del(&node->list); 1106 kfree(node->dev_name); 1107 kfree(node); 1108 } 1109 } 1110 } 1111 1112 #define REG_STR_SIZE 64 1113 1114 static struct regulator *create_regulator(struct regulator_dev *rdev, 1115 struct device *dev, 1116 const char *supply_name) 1117 { 1118 struct regulator *regulator; 1119 char buf[REG_STR_SIZE]; 1120 int err, size; 1121 1122 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1123 if (regulator == NULL) 1124 return NULL; 1125 1126 mutex_lock(&rdev->mutex); 1127 regulator->rdev = rdev; 1128 list_add(®ulator->list, &rdev->consumer_list); 1129 1130 if (dev) { 1131 regulator->dev = dev; 1132 1133 /* Add a link to the device sysfs entry */ 1134 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1135 dev->kobj.name, supply_name); 1136 if (size >= REG_STR_SIZE) 1137 goto overflow_err; 1138 1139 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1140 if (regulator->supply_name == NULL) 1141 goto overflow_err; 1142 1143 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1144 buf); 1145 if (err) { 1146 rdev_warn(rdev, "could not add device link %s err %d\n", 1147 dev->kobj.name, err); 1148 /* non-fatal */ 1149 } 1150 } else { 1151 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1152 if (regulator->supply_name == NULL) 1153 goto overflow_err; 1154 } 1155 1156 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1157 rdev->debugfs); 1158 if (!regulator->debugfs) { 1159 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1160 } else { 1161 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1162 ®ulator->uA_load); 1163 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1164 ®ulator->min_uV); 1165 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1166 ®ulator->max_uV); 1167 } 1168 1169 /* 1170 * Check now if the regulator is an always on regulator - if 1171 * it is then we don't need to do nearly so much work for 1172 * enable/disable calls. 1173 */ 1174 if (!_regulator_can_change_status(rdev) && 1175 _regulator_is_enabled(rdev)) 1176 regulator->always_on = true; 1177 1178 mutex_unlock(&rdev->mutex); 1179 return regulator; 1180 overflow_err: 1181 list_del(®ulator->list); 1182 kfree(regulator); 1183 mutex_unlock(&rdev->mutex); 1184 return NULL; 1185 } 1186 1187 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1188 { 1189 if (!rdev->desc->ops->enable_time) 1190 return rdev->desc->enable_time; 1191 return rdev->desc->ops->enable_time(rdev); 1192 } 1193 1194 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1195 const char *supply, 1196 int *ret) 1197 { 1198 struct regulator_dev *r; 1199 struct device_node *node; 1200 struct regulator_map *map; 1201 const char *devname = NULL; 1202 1203 /* first do a dt based lookup */ 1204 if (dev && dev->of_node) { 1205 node = of_get_regulator(dev, supply); 1206 if (node) { 1207 list_for_each_entry(r, ®ulator_list, list) 1208 if (r->dev.parent && 1209 node == r->dev.of_node) 1210 return r; 1211 } else { 1212 /* 1213 * If we couldn't even get the node then it's 1214 * not just that the device didn't register 1215 * yet, there's no node and we'll never 1216 * succeed. 1217 */ 1218 *ret = -ENODEV; 1219 } 1220 } 1221 1222 /* if not found, try doing it non-dt way */ 1223 if (dev) 1224 devname = dev_name(dev); 1225 1226 list_for_each_entry(r, ®ulator_list, list) 1227 if (strcmp(rdev_get_name(r), supply) == 0) 1228 return r; 1229 1230 list_for_each_entry(map, ®ulator_map_list, list) { 1231 /* If the mapping has a device set up it must match */ 1232 if (map->dev_name && 1233 (!devname || strcmp(map->dev_name, devname))) 1234 continue; 1235 1236 if (strcmp(map->supply, supply) == 0) 1237 return map->regulator; 1238 } 1239 1240 1241 return NULL; 1242 } 1243 1244 /* Internal regulator request function */ 1245 static struct regulator *_regulator_get(struct device *dev, const char *id, 1246 bool exclusive) 1247 { 1248 struct regulator_dev *rdev; 1249 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1250 const char *devname = NULL; 1251 int ret = 0; 1252 1253 if (id == NULL) { 1254 pr_err("get() with no identifier\n"); 1255 return regulator; 1256 } 1257 1258 if (dev) 1259 devname = dev_name(dev); 1260 1261 mutex_lock(®ulator_list_mutex); 1262 1263 rdev = regulator_dev_lookup(dev, id, &ret); 1264 if (rdev) 1265 goto found; 1266 1267 /* 1268 * If we have return value from dev_lookup fail, we do not expect to 1269 * succeed, so, quit with appropriate error value 1270 */ 1271 if (ret) { 1272 regulator = ERR_PTR(ret); 1273 goto out; 1274 } 1275 1276 if (board_wants_dummy_regulator) { 1277 rdev = dummy_regulator_rdev; 1278 goto found; 1279 } 1280 1281 #ifdef CONFIG_REGULATOR_DUMMY 1282 if (!devname) 1283 devname = "deviceless"; 1284 1285 /* If the board didn't flag that it was fully constrained then 1286 * substitute in a dummy regulator so consumers can continue. 1287 */ 1288 if (!has_full_constraints) { 1289 pr_warn("%s supply %s not found, using dummy regulator\n", 1290 devname, id); 1291 rdev = dummy_regulator_rdev; 1292 goto found; 1293 } 1294 #endif 1295 1296 mutex_unlock(®ulator_list_mutex); 1297 return regulator; 1298 1299 found: 1300 if (rdev->exclusive) { 1301 regulator = ERR_PTR(-EPERM); 1302 goto out; 1303 } 1304 1305 if (exclusive && rdev->open_count) { 1306 regulator = ERR_PTR(-EBUSY); 1307 goto out; 1308 } 1309 1310 if (!try_module_get(rdev->owner)) 1311 goto out; 1312 1313 regulator = create_regulator(rdev, dev, id); 1314 if (regulator == NULL) { 1315 regulator = ERR_PTR(-ENOMEM); 1316 module_put(rdev->owner); 1317 goto out; 1318 } 1319 1320 rdev->open_count++; 1321 if (exclusive) { 1322 rdev->exclusive = 1; 1323 1324 ret = _regulator_is_enabled(rdev); 1325 if (ret > 0) 1326 rdev->use_count = 1; 1327 else 1328 rdev->use_count = 0; 1329 } 1330 1331 out: 1332 mutex_unlock(®ulator_list_mutex); 1333 1334 return regulator; 1335 } 1336 1337 /** 1338 * regulator_get - lookup and obtain a reference to a regulator. 1339 * @dev: device for regulator "consumer" 1340 * @id: Supply name or regulator ID. 1341 * 1342 * Returns a struct regulator corresponding to the regulator producer, 1343 * or IS_ERR() condition containing errno. 1344 * 1345 * Use of supply names configured via regulator_set_device_supply() is 1346 * strongly encouraged. It is recommended that the supply name used 1347 * should match the name used for the supply and/or the relevant 1348 * device pins in the datasheet. 1349 */ 1350 struct regulator *regulator_get(struct device *dev, const char *id) 1351 { 1352 return _regulator_get(dev, id, false); 1353 } 1354 EXPORT_SYMBOL_GPL(regulator_get); 1355 1356 static void devm_regulator_release(struct device *dev, void *res) 1357 { 1358 regulator_put(*(struct regulator **)res); 1359 } 1360 1361 /** 1362 * devm_regulator_get - Resource managed regulator_get() 1363 * @dev: device for regulator "consumer" 1364 * @id: Supply name or regulator ID. 1365 * 1366 * Managed regulator_get(). Regulators returned from this function are 1367 * automatically regulator_put() on driver detach. See regulator_get() for more 1368 * information. 1369 */ 1370 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1371 { 1372 struct regulator **ptr, *regulator; 1373 1374 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1375 if (!ptr) 1376 return ERR_PTR(-ENOMEM); 1377 1378 regulator = regulator_get(dev, id); 1379 if (!IS_ERR(regulator)) { 1380 *ptr = regulator; 1381 devres_add(dev, ptr); 1382 } else { 1383 devres_free(ptr); 1384 } 1385 1386 return regulator; 1387 } 1388 EXPORT_SYMBOL_GPL(devm_regulator_get); 1389 1390 /** 1391 * regulator_get_exclusive - obtain exclusive access to a regulator. 1392 * @dev: device for regulator "consumer" 1393 * @id: Supply name or regulator ID. 1394 * 1395 * Returns a struct regulator corresponding to the regulator producer, 1396 * or IS_ERR() condition containing errno. Other consumers will be 1397 * unable to obtain this reference is held and the use count for the 1398 * regulator will be initialised to reflect the current state of the 1399 * regulator. 1400 * 1401 * This is intended for use by consumers which cannot tolerate shared 1402 * use of the regulator such as those which need to force the 1403 * regulator off for correct operation of the hardware they are 1404 * controlling. 1405 * 1406 * Use of supply names configured via regulator_set_device_supply() is 1407 * strongly encouraged. It is recommended that the supply name used 1408 * should match the name used for the supply and/or the relevant 1409 * device pins in the datasheet. 1410 */ 1411 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1412 { 1413 return _regulator_get(dev, id, true); 1414 } 1415 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1416 1417 /** 1418 * regulator_get_optional - obtain optional access to a regulator. 1419 * @dev: device for regulator "consumer" 1420 * @id: Supply name or regulator ID. 1421 * 1422 * Returns a struct regulator corresponding to the regulator producer, 1423 * or IS_ERR() condition containing errno. Other consumers will be 1424 * unable to obtain this reference is held and the use count for the 1425 * regulator will be initialised to reflect the current state of the 1426 * regulator. 1427 * 1428 * This is intended for use by consumers for devices which can have 1429 * some supplies unconnected in normal use, such as some MMC devices. 1430 * It can allow the regulator core to provide stub supplies for other 1431 * supplies requested using normal regulator_get() calls without 1432 * disrupting the operation of drivers that can handle absent 1433 * supplies. 1434 * 1435 * Use of supply names configured via regulator_set_device_supply() is 1436 * strongly encouraged. It is recommended that the supply name used 1437 * should match the name used for the supply and/or the relevant 1438 * device pins in the datasheet. 1439 */ 1440 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1441 { 1442 return _regulator_get(dev, id, 0); 1443 } 1444 EXPORT_SYMBOL_GPL(regulator_get_optional); 1445 1446 /** 1447 * devm_regulator_get_optional - Resource managed regulator_get_optional() 1448 * @dev: device for regulator "consumer" 1449 * @id: Supply name or regulator ID. 1450 * 1451 * Managed regulator_get_optional(). Regulators returned from this 1452 * function are automatically regulator_put() on driver detach. See 1453 * regulator_get_optional() for more information. 1454 */ 1455 struct regulator *devm_regulator_get_optional(struct device *dev, 1456 const char *id) 1457 { 1458 struct regulator **ptr, *regulator; 1459 1460 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1461 if (!ptr) 1462 return ERR_PTR(-ENOMEM); 1463 1464 regulator = regulator_get_optional(dev, id); 1465 if (!IS_ERR(regulator)) { 1466 *ptr = regulator; 1467 devres_add(dev, ptr); 1468 } else { 1469 devres_free(ptr); 1470 } 1471 1472 return regulator; 1473 } 1474 EXPORT_SYMBOL_GPL(devm_regulator_get_optional); 1475 1476 /* Locks held by regulator_put() */ 1477 static void _regulator_put(struct regulator *regulator) 1478 { 1479 struct regulator_dev *rdev; 1480 1481 if (regulator == NULL || IS_ERR(regulator)) 1482 return; 1483 1484 rdev = regulator->rdev; 1485 1486 debugfs_remove_recursive(regulator->debugfs); 1487 1488 /* remove any sysfs entries */ 1489 if (regulator->dev) 1490 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1491 kfree(regulator->supply_name); 1492 list_del(®ulator->list); 1493 kfree(regulator); 1494 1495 rdev->open_count--; 1496 rdev->exclusive = 0; 1497 1498 module_put(rdev->owner); 1499 } 1500 1501 /** 1502 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive() 1503 * @dev: device for regulator "consumer" 1504 * @id: Supply name or regulator ID. 1505 * 1506 * Managed regulator_get_exclusive(). Regulators returned from this function 1507 * are automatically regulator_put() on driver detach. See regulator_get() for 1508 * more information. 1509 */ 1510 struct regulator *devm_regulator_get_exclusive(struct device *dev, 1511 const char *id) 1512 { 1513 struct regulator **ptr, *regulator; 1514 1515 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1516 if (!ptr) 1517 return ERR_PTR(-ENOMEM); 1518 1519 regulator = _regulator_get(dev, id, 1); 1520 if (!IS_ERR(regulator)) { 1521 *ptr = regulator; 1522 devres_add(dev, ptr); 1523 } else { 1524 devres_free(ptr); 1525 } 1526 1527 return regulator; 1528 } 1529 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive); 1530 1531 /** 1532 * regulator_put - "free" the regulator source 1533 * @regulator: regulator source 1534 * 1535 * Note: drivers must ensure that all regulator_enable calls made on this 1536 * regulator source are balanced by regulator_disable calls prior to calling 1537 * this function. 1538 */ 1539 void regulator_put(struct regulator *regulator) 1540 { 1541 mutex_lock(®ulator_list_mutex); 1542 _regulator_put(regulator); 1543 mutex_unlock(®ulator_list_mutex); 1544 } 1545 EXPORT_SYMBOL_GPL(regulator_put); 1546 1547 static int devm_regulator_match(struct device *dev, void *res, void *data) 1548 { 1549 struct regulator **r = res; 1550 if (!r || !*r) { 1551 WARN_ON(!r || !*r); 1552 return 0; 1553 } 1554 return *r == data; 1555 } 1556 1557 /** 1558 * devm_regulator_put - Resource managed regulator_put() 1559 * @regulator: regulator to free 1560 * 1561 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1562 * this function will not need to be called and the resource management 1563 * code will ensure that the resource is freed. 1564 */ 1565 void devm_regulator_put(struct regulator *regulator) 1566 { 1567 int rc; 1568 1569 rc = devres_release(regulator->dev, devm_regulator_release, 1570 devm_regulator_match, regulator); 1571 if (rc != 0) 1572 WARN_ON(rc); 1573 } 1574 EXPORT_SYMBOL_GPL(devm_regulator_put); 1575 1576 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1577 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1578 const struct regulator_config *config) 1579 { 1580 struct regulator_enable_gpio *pin; 1581 int ret; 1582 1583 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1584 if (pin->gpio == config->ena_gpio) { 1585 rdev_dbg(rdev, "GPIO %d is already used\n", 1586 config->ena_gpio); 1587 goto update_ena_gpio_to_rdev; 1588 } 1589 } 1590 1591 ret = gpio_request_one(config->ena_gpio, 1592 GPIOF_DIR_OUT | config->ena_gpio_flags, 1593 rdev_get_name(rdev)); 1594 if (ret) 1595 return ret; 1596 1597 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1598 if (pin == NULL) { 1599 gpio_free(config->ena_gpio); 1600 return -ENOMEM; 1601 } 1602 1603 pin->gpio = config->ena_gpio; 1604 pin->ena_gpio_invert = config->ena_gpio_invert; 1605 list_add(&pin->list, ®ulator_ena_gpio_list); 1606 1607 update_ena_gpio_to_rdev: 1608 pin->request_count++; 1609 rdev->ena_pin = pin; 1610 return 0; 1611 } 1612 1613 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1614 { 1615 struct regulator_enable_gpio *pin, *n; 1616 1617 if (!rdev->ena_pin) 1618 return; 1619 1620 /* Free the GPIO only in case of no use */ 1621 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1622 if (pin->gpio == rdev->ena_pin->gpio) { 1623 if (pin->request_count <= 1) { 1624 pin->request_count = 0; 1625 gpio_free(pin->gpio); 1626 list_del(&pin->list); 1627 kfree(pin); 1628 } else { 1629 pin->request_count--; 1630 } 1631 } 1632 } 1633 } 1634 1635 /** 1636 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1637 * @rdev: regulator_dev structure 1638 * @enable: enable GPIO at initial use? 1639 * 1640 * GPIO is enabled in case of initial use. (enable_count is 0) 1641 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1642 */ 1643 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1644 { 1645 struct regulator_enable_gpio *pin = rdev->ena_pin; 1646 1647 if (!pin) 1648 return -EINVAL; 1649 1650 if (enable) { 1651 /* Enable GPIO at initial use */ 1652 if (pin->enable_count == 0) 1653 gpio_set_value_cansleep(pin->gpio, 1654 !pin->ena_gpio_invert); 1655 1656 pin->enable_count++; 1657 } else { 1658 if (pin->enable_count > 1) { 1659 pin->enable_count--; 1660 return 0; 1661 } 1662 1663 /* Disable GPIO if not used */ 1664 if (pin->enable_count <= 1) { 1665 gpio_set_value_cansleep(pin->gpio, 1666 pin->ena_gpio_invert); 1667 pin->enable_count = 0; 1668 } 1669 } 1670 1671 return 0; 1672 } 1673 1674 static int _regulator_do_enable(struct regulator_dev *rdev) 1675 { 1676 int ret, delay; 1677 1678 /* Query before enabling in case configuration dependent. */ 1679 ret = _regulator_get_enable_time(rdev); 1680 if (ret >= 0) { 1681 delay = ret; 1682 } else { 1683 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1684 delay = 0; 1685 } 1686 1687 trace_regulator_enable(rdev_get_name(rdev)); 1688 1689 if (rdev->ena_pin) { 1690 ret = regulator_ena_gpio_ctrl(rdev, true); 1691 if (ret < 0) 1692 return ret; 1693 rdev->ena_gpio_state = 1; 1694 } else if (rdev->desc->ops->enable) { 1695 ret = rdev->desc->ops->enable(rdev); 1696 if (ret < 0) 1697 return ret; 1698 } else { 1699 return -EINVAL; 1700 } 1701 1702 /* Allow the regulator to ramp; it would be useful to extend 1703 * this for bulk operations so that the regulators can ramp 1704 * together. */ 1705 trace_regulator_enable_delay(rdev_get_name(rdev)); 1706 1707 if (delay >= 1000) { 1708 mdelay(delay / 1000); 1709 udelay(delay % 1000); 1710 } else if (delay) { 1711 udelay(delay); 1712 } 1713 1714 trace_regulator_enable_complete(rdev_get_name(rdev)); 1715 1716 return 0; 1717 } 1718 1719 /* locks held by regulator_enable() */ 1720 static int _regulator_enable(struct regulator_dev *rdev) 1721 { 1722 int ret; 1723 1724 /* check voltage and requested load before enabling */ 1725 if (rdev->constraints && 1726 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1727 drms_uA_update(rdev); 1728 1729 if (rdev->use_count == 0) { 1730 /* The regulator may on if it's not switchable or left on */ 1731 ret = _regulator_is_enabled(rdev); 1732 if (ret == -EINVAL || ret == 0) { 1733 if (!_regulator_can_change_status(rdev)) 1734 return -EPERM; 1735 1736 ret = _regulator_do_enable(rdev); 1737 if (ret < 0) 1738 return ret; 1739 1740 } else if (ret < 0) { 1741 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1742 return ret; 1743 } 1744 /* Fallthrough on positive return values - already enabled */ 1745 } 1746 1747 rdev->use_count++; 1748 1749 return 0; 1750 } 1751 1752 /** 1753 * regulator_enable - enable regulator output 1754 * @regulator: regulator source 1755 * 1756 * Request that the regulator be enabled with the regulator output at 1757 * the predefined voltage or current value. Calls to regulator_enable() 1758 * must be balanced with calls to regulator_disable(). 1759 * 1760 * NOTE: the output value can be set by other drivers, boot loader or may be 1761 * hardwired in the regulator. 1762 */ 1763 int regulator_enable(struct regulator *regulator) 1764 { 1765 struct regulator_dev *rdev = regulator->rdev; 1766 int ret = 0; 1767 1768 if (regulator->always_on) 1769 return 0; 1770 1771 if (rdev->supply) { 1772 ret = regulator_enable(rdev->supply); 1773 if (ret != 0) 1774 return ret; 1775 } 1776 1777 mutex_lock(&rdev->mutex); 1778 ret = _regulator_enable(rdev); 1779 mutex_unlock(&rdev->mutex); 1780 1781 if (ret != 0 && rdev->supply) 1782 regulator_disable(rdev->supply); 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL_GPL(regulator_enable); 1787 1788 static int _regulator_do_disable(struct regulator_dev *rdev) 1789 { 1790 int ret; 1791 1792 trace_regulator_disable(rdev_get_name(rdev)); 1793 1794 if (rdev->ena_pin) { 1795 ret = regulator_ena_gpio_ctrl(rdev, false); 1796 if (ret < 0) 1797 return ret; 1798 rdev->ena_gpio_state = 0; 1799 1800 } else if (rdev->desc->ops->disable) { 1801 ret = rdev->desc->ops->disable(rdev); 1802 if (ret != 0) 1803 return ret; 1804 } 1805 1806 trace_regulator_disable_complete(rdev_get_name(rdev)); 1807 1808 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1809 NULL); 1810 return 0; 1811 } 1812 1813 /* locks held by regulator_disable() */ 1814 static int _regulator_disable(struct regulator_dev *rdev) 1815 { 1816 int ret = 0; 1817 1818 if (WARN(rdev->use_count <= 0, 1819 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1820 return -EIO; 1821 1822 /* are we the last user and permitted to disable ? */ 1823 if (rdev->use_count == 1 && 1824 (rdev->constraints && !rdev->constraints->always_on)) { 1825 1826 /* we are last user */ 1827 if (_regulator_can_change_status(rdev)) { 1828 ret = _regulator_do_disable(rdev); 1829 if (ret < 0) { 1830 rdev_err(rdev, "failed to disable\n"); 1831 return ret; 1832 } 1833 } 1834 1835 rdev->use_count = 0; 1836 } else if (rdev->use_count > 1) { 1837 1838 if (rdev->constraints && 1839 (rdev->constraints->valid_ops_mask & 1840 REGULATOR_CHANGE_DRMS)) 1841 drms_uA_update(rdev); 1842 1843 rdev->use_count--; 1844 } 1845 1846 return ret; 1847 } 1848 1849 /** 1850 * regulator_disable - disable regulator output 1851 * @regulator: regulator source 1852 * 1853 * Disable the regulator output voltage or current. Calls to 1854 * regulator_enable() must be balanced with calls to 1855 * regulator_disable(). 1856 * 1857 * NOTE: this will only disable the regulator output if no other consumer 1858 * devices have it enabled, the regulator device supports disabling and 1859 * machine constraints permit this operation. 1860 */ 1861 int regulator_disable(struct regulator *regulator) 1862 { 1863 struct regulator_dev *rdev = regulator->rdev; 1864 int ret = 0; 1865 1866 if (regulator->always_on) 1867 return 0; 1868 1869 mutex_lock(&rdev->mutex); 1870 ret = _regulator_disable(rdev); 1871 mutex_unlock(&rdev->mutex); 1872 1873 if (ret == 0 && rdev->supply) 1874 regulator_disable(rdev->supply); 1875 1876 return ret; 1877 } 1878 EXPORT_SYMBOL_GPL(regulator_disable); 1879 1880 /* locks held by regulator_force_disable() */ 1881 static int _regulator_force_disable(struct regulator_dev *rdev) 1882 { 1883 int ret = 0; 1884 1885 /* force disable */ 1886 if (rdev->desc->ops->disable) { 1887 /* ah well, who wants to live forever... */ 1888 ret = rdev->desc->ops->disable(rdev); 1889 if (ret < 0) { 1890 rdev_err(rdev, "failed to force disable\n"); 1891 return ret; 1892 } 1893 /* notify other consumers that power has been forced off */ 1894 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1895 REGULATOR_EVENT_DISABLE, NULL); 1896 } 1897 1898 return ret; 1899 } 1900 1901 /** 1902 * regulator_force_disable - force disable regulator output 1903 * @regulator: regulator source 1904 * 1905 * Forcibly disable the regulator output voltage or current. 1906 * NOTE: this *will* disable the regulator output even if other consumer 1907 * devices have it enabled. This should be used for situations when device 1908 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1909 */ 1910 int regulator_force_disable(struct regulator *regulator) 1911 { 1912 struct regulator_dev *rdev = regulator->rdev; 1913 int ret; 1914 1915 mutex_lock(&rdev->mutex); 1916 regulator->uA_load = 0; 1917 ret = _regulator_force_disable(regulator->rdev); 1918 mutex_unlock(&rdev->mutex); 1919 1920 if (rdev->supply) 1921 while (rdev->open_count--) 1922 regulator_disable(rdev->supply); 1923 1924 return ret; 1925 } 1926 EXPORT_SYMBOL_GPL(regulator_force_disable); 1927 1928 static void regulator_disable_work(struct work_struct *work) 1929 { 1930 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1931 disable_work.work); 1932 int count, i, ret; 1933 1934 mutex_lock(&rdev->mutex); 1935 1936 BUG_ON(!rdev->deferred_disables); 1937 1938 count = rdev->deferred_disables; 1939 rdev->deferred_disables = 0; 1940 1941 for (i = 0; i < count; i++) { 1942 ret = _regulator_disable(rdev); 1943 if (ret != 0) 1944 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1945 } 1946 1947 mutex_unlock(&rdev->mutex); 1948 1949 if (rdev->supply) { 1950 for (i = 0; i < count; i++) { 1951 ret = regulator_disable(rdev->supply); 1952 if (ret != 0) { 1953 rdev_err(rdev, 1954 "Supply disable failed: %d\n", ret); 1955 } 1956 } 1957 } 1958 } 1959 1960 /** 1961 * regulator_disable_deferred - disable regulator output with delay 1962 * @regulator: regulator source 1963 * @ms: miliseconds until the regulator is disabled 1964 * 1965 * Execute regulator_disable() on the regulator after a delay. This 1966 * is intended for use with devices that require some time to quiesce. 1967 * 1968 * NOTE: this will only disable the regulator output if no other consumer 1969 * devices have it enabled, the regulator device supports disabling and 1970 * machine constraints permit this operation. 1971 */ 1972 int regulator_disable_deferred(struct regulator *regulator, int ms) 1973 { 1974 struct regulator_dev *rdev = regulator->rdev; 1975 int ret; 1976 1977 if (regulator->always_on) 1978 return 0; 1979 1980 if (!ms) 1981 return regulator_disable(regulator); 1982 1983 mutex_lock(&rdev->mutex); 1984 rdev->deferred_disables++; 1985 mutex_unlock(&rdev->mutex); 1986 1987 ret = queue_delayed_work(system_power_efficient_wq, 1988 &rdev->disable_work, 1989 msecs_to_jiffies(ms)); 1990 if (ret < 0) 1991 return ret; 1992 else 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1996 1997 static int _regulator_is_enabled(struct regulator_dev *rdev) 1998 { 1999 /* A GPIO control always takes precedence */ 2000 if (rdev->ena_pin) 2001 return rdev->ena_gpio_state; 2002 2003 /* If we don't know then assume that the regulator is always on */ 2004 if (!rdev->desc->ops->is_enabled) 2005 return 1; 2006 2007 return rdev->desc->ops->is_enabled(rdev); 2008 } 2009 2010 /** 2011 * regulator_is_enabled - is the regulator output enabled 2012 * @regulator: regulator source 2013 * 2014 * Returns positive if the regulator driver backing the source/client 2015 * has requested that the device be enabled, zero if it hasn't, else a 2016 * negative errno code. 2017 * 2018 * Note that the device backing this regulator handle can have multiple 2019 * users, so it might be enabled even if regulator_enable() was never 2020 * called for this particular source. 2021 */ 2022 int regulator_is_enabled(struct regulator *regulator) 2023 { 2024 int ret; 2025 2026 if (regulator->always_on) 2027 return 1; 2028 2029 mutex_lock(®ulator->rdev->mutex); 2030 ret = _regulator_is_enabled(regulator->rdev); 2031 mutex_unlock(®ulator->rdev->mutex); 2032 2033 return ret; 2034 } 2035 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2036 2037 /** 2038 * regulator_can_change_voltage - check if regulator can change voltage 2039 * @regulator: regulator source 2040 * 2041 * Returns positive if the regulator driver backing the source/client 2042 * can change its voltage, false otherwise. Usefull for detecting fixed 2043 * or dummy regulators and disabling voltage change logic in the client 2044 * driver. 2045 */ 2046 int regulator_can_change_voltage(struct regulator *regulator) 2047 { 2048 struct regulator_dev *rdev = regulator->rdev; 2049 2050 if (rdev->constraints && 2051 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2052 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2053 return 1; 2054 2055 if (rdev->desc->continuous_voltage_range && 2056 rdev->constraints->min_uV && rdev->constraints->max_uV && 2057 rdev->constraints->min_uV != rdev->constraints->max_uV) 2058 return 1; 2059 } 2060 2061 return 0; 2062 } 2063 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2064 2065 /** 2066 * regulator_count_voltages - count regulator_list_voltage() selectors 2067 * @regulator: regulator source 2068 * 2069 * Returns number of selectors, or negative errno. Selectors are 2070 * numbered starting at zero, and typically correspond to bitfields 2071 * in hardware registers. 2072 */ 2073 int regulator_count_voltages(struct regulator *regulator) 2074 { 2075 struct regulator_dev *rdev = regulator->rdev; 2076 2077 return rdev->desc->n_voltages ? : -EINVAL; 2078 } 2079 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2080 2081 /** 2082 * regulator_list_voltage - enumerate supported voltages 2083 * @regulator: regulator source 2084 * @selector: identify voltage to list 2085 * Context: can sleep 2086 * 2087 * Returns a voltage that can be passed to @regulator_set_voltage(), 2088 * zero if this selector code can't be used on this system, or a 2089 * negative errno. 2090 */ 2091 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2092 { 2093 struct regulator_dev *rdev = regulator->rdev; 2094 struct regulator_ops *ops = rdev->desc->ops; 2095 int ret; 2096 2097 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2098 return -EINVAL; 2099 2100 mutex_lock(&rdev->mutex); 2101 ret = ops->list_voltage(rdev, selector); 2102 mutex_unlock(&rdev->mutex); 2103 2104 if (ret > 0) { 2105 if (ret < rdev->constraints->min_uV) 2106 ret = 0; 2107 else if (ret > rdev->constraints->max_uV) 2108 ret = 0; 2109 } 2110 2111 return ret; 2112 } 2113 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2114 2115 /** 2116 * regulator_get_linear_step - return the voltage step size between VSEL values 2117 * @regulator: regulator source 2118 * 2119 * Returns the voltage step size between VSEL values for linear 2120 * regulators, or return 0 if the regulator isn't a linear regulator. 2121 */ 2122 unsigned int regulator_get_linear_step(struct regulator *regulator) 2123 { 2124 struct regulator_dev *rdev = regulator->rdev; 2125 2126 return rdev->desc->uV_step; 2127 } 2128 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2129 2130 /** 2131 * regulator_is_supported_voltage - check if a voltage range can be supported 2132 * 2133 * @regulator: Regulator to check. 2134 * @min_uV: Minimum required voltage in uV. 2135 * @max_uV: Maximum required voltage in uV. 2136 * 2137 * Returns a boolean or a negative error code. 2138 */ 2139 int regulator_is_supported_voltage(struct regulator *regulator, 2140 int min_uV, int max_uV) 2141 { 2142 struct regulator_dev *rdev = regulator->rdev; 2143 int i, voltages, ret; 2144 2145 /* If we can't change voltage check the current voltage */ 2146 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2147 ret = regulator_get_voltage(regulator); 2148 if (ret >= 0) 2149 return (min_uV <= ret && ret <= max_uV); 2150 else 2151 return ret; 2152 } 2153 2154 /* Any voltage within constrains range is fine? */ 2155 if (rdev->desc->continuous_voltage_range) 2156 return min_uV >= rdev->constraints->min_uV && 2157 max_uV <= rdev->constraints->max_uV; 2158 2159 ret = regulator_count_voltages(regulator); 2160 if (ret < 0) 2161 return ret; 2162 voltages = ret; 2163 2164 for (i = 0; i < voltages; i++) { 2165 ret = regulator_list_voltage(regulator, i); 2166 2167 if (ret >= min_uV && ret <= max_uV) 2168 return 1; 2169 } 2170 2171 return 0; 2172 } 2173 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2174 2175 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2176 int min_uV, int max_uV) 2177 { 2178 int ret; 2179 int delay = 0; 2180 int best_val = 0; 2181 unsigned int selector; 2182 int old_selector = -1; 2183 2184 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2185 2186 min_uV += rdev->constraints->uV_offset; 2187 max_uV += rdev->constraints->uV_offset; 2188 2189 /* 2190 * If we can't obtain the old selector there is not enough 2191 * info to call set_voltage_time_sel(). 2192 */ 2193 if (_regulator_is_enabled(rdev) && 2194 rdev->desc->ops->set_voltage_time_sel && 2195 rdev->desc->ops->get_voltage_sel) { 2196 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2197 if (old_selector < 0) 2198 return old_selector; 2199 } 2200 2201 if (rdev->desc->ops->set_voltage) { 2202 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2203 &selector); 2204 2205 if (ret >= 0) { 2206 if (rdev->desc->ops->list_voltage) 2207 best_val = rdev->desc->ops->list_voltage(rdev, 2208 selector); 2209 else 2210 best_val = _regulator_get_voltage(rdev); 2211 } 2212 2213 } else if (rdev->desc->ops->set_voltage_sel) { 2214 if (rdev->desc->ops->map_voltage) { 2215 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2216 max_uV); 2217 } else { 2218 if (rdev->desc->ops->list_voltage == 2219 regulator_list_voltage_linear) 2220 ret = regulator_map_voltage_linear(rdev, 2221 min_uV, max_uV); 2222 else 2223 ret = regulator_map_voltage_iterate(rdev, 2224 min_uV, max_uV); 2225 } 2226 2227 if (ret >= 0) { 2228 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2229 if (min_uV <= best_val && max_uV >= best_val) { 2230 selector = ret; 2231 if (old_selector == selector) 2232 ret = 0; 2233 else 2234 ret = rdev->desc->ops->set_voltage_sel( 2235 rdev, ret); 2236 } else { 2237 ret = -EINVAL; 2238 } 2239 } 2240 } else { 2241 ret = -EINVAL; 2242 } 2243 2244 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2245 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2246 && old_selector != selector) { 2247 2248 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2249 old_selector, selector); 2250 if (delay < 0) { 2251 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2252 delay); 2253 delay = 0; 2254 } 2255 2256 /* Insert any necessary delays */ 2257 if (delay >= 1000) { 2258 mdelay(delay / 1000); 2259 udelay(delay % 1000); 2260 } else if (delay) { 2261 udelay(delay); 2262 } 2263 } 2264 2265 if (ret == 0 && best_val >= 0) { 2266 unsigned long data = best_val; 2267 2268 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2269 (void *)data); 2270 } 2271 2272 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2273 2274 return ret; 2275 } 2276 2277 /** 2278 * regulator_set_voltage - set regulator output voltage 2279 * @regulator: regulator source 2280 * @min_uV: Minimum required voltage in uV 2281 * @max_uV: Maximum acceptable voltage in uV 2282 * 2283 * Sets a voltage regulator to the desired output voltage. This can be set 2284 * during any regulator state. IOW, regulator can be disabled or enabled. 2285 * 2286 * If the regulator is enabled then the voltage will change to the new value 2287 * immediately otherwise if the regulator is disabled the regulator will 2288 * output at the new voltage when enabled. 2289 * 2290 * NOTE: If the regulator is shared between several devices then the lowest 2291 * request voltage that meets the system constraints will be used. 2292 * Regulator system constraints must be set for this regulator before 2293 * calling this function otherwise this call will fail. 2294 */ 2295 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2296 { 2297 struct regulator_dev *rdev = regulator->rdev; 2298 int ret = 0; 2299 int old_min_uV, old_max_uV; 2300 2301 mutex_lock(&rdev->mutex); 2302 2303 /* If we're setting the same range as last time the change 2304 * should be a noop (some cpufreq implementations use the same 2305 * voltage for multiple frequencies, for example). 2306 */ 2307 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2308 goto out; 2309 2310 /* sanity check */ 2311 if (!rdev->desc->ops->set_voltage && 2312 !rdev->desc->ops->set_voltage_sel) { 2313 ret = -EINVAL; 2314 goto out; 2315 } 2316 2317 /* constraints check */ 2318 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2319 if (ret < 0) 2320 goto out; 2321 2322 /* restore original values in case of error */ 2323 old_min_uV = regulator->min_uV; 2324 old_max_uV = regulator->max_uV; 2325 regulator->min_uV = min_uV; 2326 regulator->max_uV = max_uV; 2327 2328 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2329 if (ret < 0) 2330 goto out2; 2331 2332 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2333 if (ret < 0) 2334 goto out2; 2335 2336 out: 2337 mutex_unlock(&rdev->mutex); 2338 return ret; 2339 out2: 2340 regulator->min_uV = old_min_uV; 2341 regulator->max_uV = old_max_uV; 2342 mutex_unlock(&rdev->mutex); 2343 return ret; 2344 } 2345 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2346 2347 /** 2348 * regulator_set_voltage_time - get raise/fall time 2349 * @regulator: regulator source 2350 * @old_uV: starting voltage in microvolts 2351 * @new_uV: target voltage in microvolts 2352 * 2353 * Provided with the starting and ending voltage, this function attempts to 2354 * calculate the time in microseconds required to rise or fall to this new 2355 * voltage. 2356 */ 2357 int regulator_set_voltage_time(struct regulator *regulator, 2358 int old_uV, int new_uV) 2359 { 2360 struct regulator_dev *rdev = regulator->rdev; 2361 struct regulator_ops *ops = rdev->desc->ops; 2362 int old_sel = -1; 2363 int new_sel = -1; 2364 int voltage; 2365 int i; 2366 2367 /* Currently requires operations to do this */ 2368 if (!ops->list_voltage || !ops->set_voltage_time_sel 2369 || !rdev->desc->n_voltages) 2370 return -EINVAL; 2371 2372 for (i = 0; i < rdev->desc->n_voltages; i++) { 2373 /* We only look for exact voltage matches here */ 2374 voltage = regulator_list_voltage(regulator, i); 2375 if (voltage < 0) 2376 return -EINVAL; 2377 if (voltage == 0) 2378 continue; 2379 if (voltage == old_uV) 2380 old_sel = i; 2381 if (voltage == new_uV) 2382 new_sel = i; 2383 } 2384 2385 if (old_sel < 0 || new_sel < 0) 2386 return -EINVAL; 2387 2388 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2389 } 2390 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2391 2392 /** 2393 * regulator_set_voltage_time_sel - get raise/fall time 2394 * @rdev: regulator source device 2395 * @old_selector: selector for starting voltage 2396 * @new_selector: selector for target voltage 2397 * 2398 * Provided with the starting and target voltage selectors, this function 2399 * returns time in microseconds required to rise or fall to this new voltage 2400 * 2401 * Drivers providing ramp_delay in regulation_constraints can use this as their 2402 * set_voltage_time_sel() operation. 2403 */ 2404 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2405 unsigned int old_selector, 2406 unsigned int new_selector) 2407 { 2408 unsigned int ramp_delay = 0; 2409 int old_volt, new_volt; 2410 2411 if (rdev->constraints->ramp_delay) 2412 ramp_delay = rdev->constraints->ramp_delay; 2413 else if (rdev->desc->ramp_delay) 2414 ramp_delay = rdev->desc->ramp_delay; 2415 2416 if (ramp_delay == 0) { 2417 rdev_warn(rdev, "ramp_delay not set\n"); 2418 return 0; 2419 } 2420 2421 /* sanity check */ 2422 if (!rdev->desc->ops->list_voltage) 2423 return -EINVAL; 2424 2425 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2426 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2427 2428 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2429 } 2430 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2431 2432 /** 2433 * regulator_sync_voltage - re-apply last regulator output voltage 2434 * @regulator: regulator source 2435 * 2436 * Re-apply the last configured voltage. This is intended to be used 2437 * where some external control source the consumer is cooperating with 2438 * has caused the configured voltage to change. 2439 */ 2440 int regulator_sync_voltage(struct regulator *regulator) 2441 { 2442 struct regulator_dev *rdev = regulator->rdev; 2443 int ret, min_uV, max_uV; 2444 2445 mutex_lock(&rdev->mutex); 2446 2447 if (!rdev->desc->ops->set_voltage && 2448 !rdev->desc->ops->set_voltage_sel) { 2449 ret = -EINVAL; 2450 goto out; 2451 } 2452 2453 /* This is only going to work if we've had a voltage configured. */ 2454 if (!regulator->min_uV && !regulator->max_uV) { 2455 ret = -EINVAL; 2456 goto out; 2457 } 2458 2459 min_uV = regulator->min_uV; 2460 max_uV = regulator->max_uV; 2461 2462 /* This should be a paranoia check... */ 2463 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2464 if (ret < 0) 2465 goto out; 2466 2467 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2468 if (ret < 0) 2469 goto out; 2470 2471 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2472 2473 out: 2474 mutex_unlock(&rdev->mutex); 2475 return ret; 2476 } 2477 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2478 2479 static int _regulator_get_voltage(struct regulator_dev *rdev) 2480 { 2481 int sel, ret; 2482 2483 if (rdev->desc->ops->get_voltage_sel) { 2484 sel = rdev->desc->ops->get_voltage_sel(rdev); 2485 if (sel < 0) 2486 return sel; 2487 ret = rdev->desc->ops->list_voltage(rdev, sel); 2488 } else if (rdev->desc->ops->get_voltage) { 2489 ret = rdev->desc->ops->get_voltage(rdev); 2490 } else if (rdev->desc->ops->list_voltage) { 2491 ret = rdev->desc->ops->list_voltage(rdev, 0); 2492 } else { 2493 return -EINVAL; 2494 } 2495 2496 if (ret < 0) 2497 return ret; 2498 return ret - rdev->constraints->uV_offset; 2499 } 2500 2501 /** 2502 * regulator_get_voltage - get regulator output voltage 2503 * @regulator: regulator source 2504 * 2505 * This returns the current regulator voltage in uV. 2506 * 2507 * NOTE: If the regulator is disabled it will return the voltage value. This 2508 * function should not be used to determine regulator state. 2509 */ 2510 int regulator_get_voltage(struct regulator *regulator) 2511 { 2512 int ret; 2513 2514 mutex_lock(®ulator->rdev->mutex); 2515 2516 ret = _regulator_get_voltage(regulator->rdev); 2517 2518 mutex_unlock(®ulator->rdev->mutex); 2519 2520 return ret; 2521 } 2522 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2523 2524 /** 2525 * regulator_set_current_limit - set regulator output current limit 2526 * @regulator: regulator source 2527 * @min_uA: Minimum supported current in uA 2528 * @max_uA: Maximum supported current in uA 2529 * 2530 * Sets current sink to the desired output current. This can be set during 2531 * any regulator state. IOW, regulator can be disabled or enabled. 2532 * 2533 * If the regulator is enabled then the current will change to the new value 2534 * immediately otherwise if the regulator is disabled the regulator will 2535 * output at the new current when enabled. 2536 * 2537 * NOTE: Regulator system constraints must be set for this regulator before 2538 * calling this function otherwise this call will fail. 2539 */ 2540 int regulator_set_current_limit(struct regulator *regulator, 2541 int min_uA, int max_uA) 2542 { 2543 struct regulator_dev *rdev = regulator->rdev; 2544 int ret; 2545 2546 mutex_lock(&rdev->mutex); 2547 2548 /* sanity check */ 2549 if (!rdev->desc->ops->set_current_limit) { 2550 ret = -EINVAL; 2551 goto out; 2552 } 2553 2554 /* constraints check */ 2555 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2556 if (ret < 0) 2557 goto out; 2558 2559 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2560 out: 2561 mutex_unlock(&rdev->mutex); 2562 return ret; 2563 } 2564 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2565 2566 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2567 { 2568 int ret; 2569 2570 mutex_lock(&rdev->mutex); 2571 2572 /* sanity check */ 2573 if (!rdev->desc->ops->get_current_limit) { 2574 ret = -EINVAL; 2575 goto out; 2576 } 2577 2578 ret = rdev->desc->ops->get_current_limit(rdev); 2579 out: 2580 mutex_unlock(&rdev->mutex); 2581 return ret; 2582 } 2583 2584 /** 2585 * regulator_get_current_limit - get regulator output current 2586 * @regulator: regulator source 2587 * 2588 * This returns the current supplied by the specified current sink in uA. 2589 * 2590 * NOTE: If the regulator is disabled it will return the current value. This 2591 * function should not be used to determine regulator state. 2592 */ 2593 int regulator_get_current_limit(struct regulator *regulator) 2594 { 2595 return _regulator_get_current_limit(regulator->rdev); 2596 } 2597 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2598 2599 /** 2600 * regulator_set_mode - set regulator operating mode 2601 * @regulator: regulator source 2602 * @mode: operating mode - one of the REGULATOR_MODE constants 2603 * 2604 * Set regulator operating mode to increase regulator efficiency or improve 2605 * regulation performance. 2606 * 2607 * NOTE: Regulator system constraints must be set for this regulator before 2608 * calling this function otherwise this call will fail. 2609 */ 2610 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2611 { 2612 struct regulator_dev *rdev = regulator->rdev; 2613 int ret; 2614 int regulator_curr_mode; 2615 2616 mutex_lock(&rdev->mutex); 2617 2618 /* sanity check */ 2619 if (!rdev->desc->ops->set_mode) { 2620 ret = -EINVAL; 2621 goto out; 2622 } 2623 2624 /* return if the same mode is requested */ 2625 if (rdev->desc->ops->get_mode) { 2626 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2627 if (regulator_curr_mode == mode) { 2628 ret = 0; 2629 goto out; 2630 } 2631 } 2632 2633 /* constraints check */ 2634 ret = regulator_mode_constrain(rdev, &mode); 2635 if (ret < 0) 2636 goto out; 2637 2638 ret = rdev->desc->ops->set_mode(rdev, mode); 2639 out: 2640 mutex_unlock(&rdev->mutex); 2641 return ret; 2642 } 2643 EXPORT_SYMBOL_GPL(regulator_set_mode); 2644 2645 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2646 { 2647 int ret; 2648 2649 mutex_lock(&rdev->mutex); 2650 2651 /* sanity check */ 2652 if (!rdev->desc->ops->get_mode) { 2653 ret = -EINVAL; 2654 goto out; 2655 } 2656 2657 ret = rdev->desc->ops->get_mode(rdev); 2658 out: 2659 mutex_unlock(&rdev->mutex); 2660 return ret; 2661 } 2662 2663 /** 2664 * regulator_get_mode - get regulator operating mode 2665 * @regulator: regulator source 2666 * 2667 * Get the current regulator operating mode. 2668 */ 2669 unsigned int regulator_get_mode(struct regulator *regulator) 2670 { 2671 return _regulator_get_mode(regulator->rdev); 2672 } 2673 EXPORT_SYMBOL_GPL(regulator_get_mode); 2674 2675 /** 2676 * regulator_set_optimum_mode - set regulator optimum operating mode 2677 * @regulator: regulator source 2678 * @uA_load: load current 2679 * 2680 * Notifies the regulator core of a new device load. This is then used by 2681 * DRMS (if enabled by constraints) to set the most efficient regulator 2682 * operating mode for the new regulator loading. 2683 * 2684 * Consumer devices notify their supply regulator of the maximum power 2685 * they will require (can be taken from device datasheet in the power 2686 * consumption tables) when they change operational status and hence power 2687 * state. Examples of operational state changes that can affect power 2688 * consumption are :- 2689 * 2690 * o Device is opened / closed. 2691 * o Device I/O is about to begin or has just finished. 2692 * o Device is idling in between work. 2693 * 2694 * This information is also exported via sysfs to userspace. 2695 * 2696 * DRMS will sum the total requested load on the regulator and change 2697 * to the most efficient operating mode if platform constraints allow. 2698 * 2699 * Returns the new regulator mode or error. 2700 */ 2701 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2702 { 2703 struct regulator_dev *rdev = regulator->rdev; 2704 struct regulator *consumer; 2705 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2706 unsigned int mode; 2707 2708 if (rdev->supply) 2709 input_uV = regulator_get_voltage(rdev->supply); 2710 2711 mutex_lock(&rdev->mutex); 2712 2713 /* 2714 * first check to see if we can set modes at all, otherwise just 2715 * tell the consumer everything is OK. 2716 */ 2717 regulator->uA_load = uA_load; 2718 ret = regulator_check_drms(rdev); 2719 if (ret < 0) { 2720 ret = 0; 2721 goto out; 2722 } 2723 2724 if (!rdev->desc->ops->get_optimum_mode) 2725 goto out; 2726 2727 /* 2728 * we can actually do this so any errors are indicators of 2729 * potential real failure. 2730 */ 2731 ret = -EINVAL; 2732 2733 if (!rdev->desc->ops->set_mode) 2734 goto out; 2735 2736 /* get output voltage */ 2737 output_uV = _regulator_get_voltage(rdev); 2738 if (output_uV <= 0) { 2739 rdev_err(rdev, "invalid output voltage found\n"); 2740 goto out; 2741 } 2742 2743 /* No supply? Use constraint voltage */ 2744 if (input_uV <= 0) 2745 input_uV = rdev->constraints->input_uV; 2746 if (input_uV <= 0) { 2747 rdev_err(rdev, "invalid input voltage found\n"); 2748 goto out; 2749 } 2750 2751 /* calc total requested load for this regulator */ 2752 list_for_each_entry(consumer, &rdev->consumer_list, list) 2753 total_uA_load += consumer->uA_load; 2754 2755 mode = rdev->desc->ops->get_optimum_mode(rdev, 2756 input_uV, output_uV, 2757 total_uA_load); 2758 ret = regulator_mode_constrain(rdev, &mode); 2759 if (ret < 0) { 2760 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2761 total_uA_load, input_uV, output_uV); 2762 goto out; 2763 } 2764 2765 ret = rdev->desc->ops->set_mode(rdev, mode); 2766 if (ret < 0) { 2767 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2768 goto out; 2769 } 2770 ret = mode; 2771 out: 2772 mutex_unlock(&rdev->mutex); 2773 return ret; 2774 } 2775 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2776 2777 /** 2778 * regulator_allow_bypass - allow the regulator to go into bypass mode 2779 * 2780 * @regulator: Regulator to configure 2781 * @enable: enable or disable bypass mode 2782 * 2783 * Allow the regulator to go into bypass mode if all other consumers 2784 * for the regulator also enable bypass mode and the machine 2785 * constraints allow this. Bypass mode means that the regulator is 2786 * simply passing the input directly to the output with no regulation. 2787 */ 2788 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2789 { 2790 struct regulator_dev *rdev = regulator->rdev; 2791 int ret = 0; 2792 2793 if (!rdev->desc->ops->set_bypass) 2794 return 0; 2795 2796 if (rdev->constraints && 2797 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2798 return 0; 2799 2800 mutex_lock(&rdev->mutex); 2801 2802 if (enable && !regulator->bypass) { 2803 rdev->bypass_count++; 2804 2805 if (rdev->bypass_count == rdev->open_count) { 2806 ret = rdev->desc->ops->set_bypass(rdev, enable); 2807 if (ret != 0) 2808 rdev->bypass_count--; 2809 } 2810 2811 } else if (!enable && regulator->bypass) { 2812 rdev->bypass_count--; 2813 2814 if (rdev->bypass_count != rdev->open_count) { 2815 ret = rdev->desc->ops->set_bypass(rdev, enable); 2816 if (ret != 0) 2817 rdev->bypass_count++; 2818 } 2819 } 2820 2821 if (ret == 0) 2822 regulator->bypass = enable; 2823 2824 mutex_unlock(&rdev->mutex); 2825 2826 return ret; 2827 } 2828 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2829 2830 /** 2831 * regulator_register_notifier - register regulator event notifier 2832 * @regulator: regulator source 2833 * @nb: notifier block 2834 * 2835 * Register notifier block to receive regulator events. 2836 */ 2837 int regulator_register_notifier(struct regulator *regulator, 2838 struct notifier_block *nb) 2839 { 2840 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2841 nb); 2842 } 2843 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2844 2845 /** 2846 * regulator_unregister_notifier - unregister regulator event notifier 2847 * @regulator: regulator source 2848 * @nb: notifier block 2849 * 2850 * Unregister regulator event notifier block. 2851 */ 2852 int regulator_unregister_notifier(struct regulator *regulator, 2853 struct notifier_block *nb) 2854 { 2855 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2856 nb); 2857 } 2858 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2859 2860 /* notify regulator consumers and downstream regulator consumers. 2861 * Note mutex must be held by caller. 2862 */ 2863 static void _notifier_call_chain(struct regulator_dev *rdev, 2864 unsigned long event, void *data) 2865 { 2866 /* call rdev chain first */ 2867 blocking_notifier_call_chain(&rdev->notifier, event, data); 2868 } 2869 2870 /** 2871 * regulator_bulk_get - get multiple regulator consumers 2872 * 2873 * @dev: Device to supply 2874 * @num_consumers: Number of consumers to register 2875 * @consumers: Configuration of consumers; clients are stored here. 2876 * 2877 * @return 0 on success, an errno on failure. 2878 * 2879 * This helper function allows drivers to get several regulator 2880 * consumers in one operation. If any of the regulators cannot be 2881 * acquired then any regulators that were allocated will be freed 2882 * before returning to the caller. 2883 */ 2884 int regulator_bulk_get(struct device *dev, int num_consumers, 2885 struct regulator_bulk_data *consumers) 2886 { 2887 int i; 2888 int ret; 2889 2890 for (i = 0; i < num_consumers; i++) 2891 consumers[i].consumer = NULL; 2892 2893 for (i = 0; i < num_consumers; i++) { 2894 consumers[i].consumer = regulator_get(dev, 2895 consumers[i].supply); 2896 if (IS_ERR(consumers[i].consumer)) { 2897 ret = PTR_ERR(consumers[i].consumer); 2898 dev_err(dev, "Failed to get supply '%s': %d\n", 2899 consumers[i].supply, ret); 2900 consumers[i].consumer = NULL; 2901 goto err; 2902 } 2903 } 2904 2905 return 0; 2906 2907 err: 2908 while (--i >= 0) 2909 regulator_put(consumers[i].consumer); 2910 2911 return ret; 2912 } 2913 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2914 2915 /** 2916 * devm_regulator_bulk_get - managed get multiple regulator consumers 2917 * 2918 * @dev: Device to supply 2919 * @num_consumers: Number of consumers to register 2920 * @consumers: Configuration of consumers; clients are stored here. 2921 * 2922 * @return 0 on success, an errno on failure. 2923 * 2924 * This helper function allows drivers to get several regulator 2925 * consumers in one operation with management, the regulators will 2926 * automatically be freed when the device is unbound. If any of the 2927 * regulators cannot be acquired then any regulators that were 2928 * allocated will be freed before returning to the caller. 2929 */ 2930 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2931 struct regulator_bulk_data *consumers) 2932 { 2933 int i; 2934 int ret; 2935 2936 for (i = 0; i < num_consumers; i++) 2937 consumers[i].consumer = NULL; 2938 2939 for (i = 0; i < num_consumers; i++) { 2940 consumers[i].consumer = devm_regulator_get(dev, 2941 consumers[i].supply); 2942 if (IS_ERR(consumers[i].consumer)) { 2943 ret = PTR_ERR(consumers[i].consumer); 2944 dev_err(dev, "Failed to get supply '%s': %d\n", 2945 consumers[i].supply, ret); 2946 consumers[i].consumer = NULL; 2947 goto err; 2948 } 2949 } 2950 2951 return 0; 2952 2953 err: 2954 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2955 devm_regulator_put(consumers[i].consumer); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2960 2961 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2962 { 2963 struct regulator_bulk_data *bulk = data; 2964 2965 bulk->ret = regulator_enable(bulk->consumer); 2966 } 2967 2968 /** 2969 * regulator_bulk_enable - enable multiple regulator consumers 2970 * 2971 * @num_consumers: Number of consumers 2972 * @consumers: Consumer data; clients are stored here. 2973 * @return 0 on success, an errno on failure 2974 * 2975 * This convenience API allows consumers to enable multiple regulator 2976 * clients in a single API call. If any consumers cannot be enabled 2977 * then any others that were enabled will be disabled again prior to 2978 * return. 2979 */ 2980 int regulator_bulk_enable(int num_consumers, 2981 struct regulator_bulk_data *consumers) 2982 { 2983 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 2984 int i; 2985 int ret = 0; 2986 2987 for (i = 0; i < num_consumers; i++) { 2988 if (consumers[i].consumer->always_on) 2989 consumers[i].ret = 0; 2990 else 2991 async_schedule_domain(regulator_bulk_enable_async, 2992 &consumers[i], &async_domain); 2993 } 2994 2995 async_synchronize_full_domain(&async_domain); 2996 2997 /* If any consumer failed we need to unwind any that succeeded */ 2998 for (i = 0; i < num_consumers; i++) { 2999 if (consumers[i].ret != 0) { 3000 ret = consumers[i].ret; 3001 goto err; 3002 } 3003 } 3004 3005 return 0; 3006 3007 err: 3008 for (i = 0; i < num_consumers; i++) { 3009 if (consumers[i].ret < 0) 3010 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3011 consumers[i].ret); 3012 else 3013 regulator_disable(consumers[i].consumer); 3014 } 3015 3016 return ret; 3017 } 3018 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3019 3020 /** 3021 * regulator_bulk_disable - disable multiple regulator consumers 3022 * 3023 * @num_consumers: Number of consumers 3024 * @consumers: Consumer data; clients are stored here. 3025 * @return 0 on success, an errno on failure 3026 * 3027 * This convenience API allows consumers to disable multiple regulator 3028 * clients in a single API call. If any consumers cannot be disabled 3029 * then any others that were disabled will be enabled again prior to 3030 * return. 3031 */ 3032 int regulator_bulk_disable(int num_consumers, 3033 struct regulator_bulk_data *consumers) 3034 { 3035 int i; 3036 int ret, r; 3037 3038 for (i = num_consumers - 1; i >= 0; --i) { 3039 ret = regulator_disable(consumers[i].consumer); 3040 if (ret != 0) 3041 goto err; 3042 } 3043 3044 return 0; 3045 3046 err: 3047 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3048 for (++i; i < num_consumers; ++i) { 3049 r = regulator_enable(consumers[i].consumer); 3050 if (r != 0) 3051 pr_err("Failed to reename %s: %d\n", 3052 consumers[i].supply, r); 3053 } 3054 3055 return ret; 3056 } 3057 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3058 3059 /** 3060 * regulator_bulk_force_disable - force disable multiple regulator consumers 3061 * 3062 * @num_consumers: Number of consumers 3063 * @consumers: Consumer data; clients are stored here. 3064 * @return 0 on success, an errno on failure 3065 * 3066 * This convenience API allows consumers to forcibly disable multiple regulator 3067 * clients in a single API call. 3068 * NOTE: This should be used for situations when device damage will 3069 * likely occur if the regulators are not disabled (e.g. over temp). 3070 * Although regulator_force_disable function call for some consumers can 3071 * return error numbers, the function is called for all consumers. 3072 */ 3073 int regulator_bulk_force_disable(int num_consumers, 3074 struct regulator_bulk_data *consumers) 3075 { 3076 int i; 3077 int ret; 3078 3079 for (i = 0; i < num_consumers; i++) 3080 consumers[i].ret = 3081 regulator_force_disable(consumers[i].consumer); 3082 3083 for (i = 0; i < num_consumers; i++) { 3084 if (consumers[i].ret != 0) { 3085 ret = consumers[i].ret; 3086 goto out; 3087 } 3088 } 3089 3090 return 0; 3091 out: 3092 return ret; 3093 } 3094 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3095 3096 /** 3097 * regulator_bulk_free - free multiple regulator consumers 3098 * 3099 * @num_consumers: Number of consumers 3100 * @consumers: Consumer data; clients are stored here. 3101 * 3102 * This convenience API allows consumers to free multiple regulator 3103 * clients in a single API call. 3104 */ 3105 void regulator_bulk_free(int num_consumers, 3106 struct regulator_bulk_data *consumers) 3107 { 3108 int i; 3109 3110 for (i = 0; i < num_consumers; i++) { 3111 regulator_put(consumers[i].consumer); 3112 consumers[i].consumer = NULL; 3113 } 3114 } 3115 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3116 3117 /** 3118 * regulator_notifier_call_chain - call regulator event notifier 3119 * @rdev: regulator source 3120 * @event: notifier block 3121 * @data: callback-specific data. 3122 * 3123 * Called by regulator drivers to notify clients a regulator event has 3124 * occurred. We also notify regulator clients downstream. 3125 * Note lock must be held by caller. 3126 */ 3127 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3128 unsigned long event, void *data) 3129 { 3130 _notifier_call_chain(rdev, event, data); 3131 return NOTIFY_DONE; 3132 3133 } 3134 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3135 3136 /** 3137 * regulator_mode_to_status - convert a regulator mode into a status 3138 * 3139 * @mode: Mode to convert 3140 * 3141 * Convert a regulator mode into a status. 3142 */ 3143 int regulator_mode_to_status(unsigned int mode) 3144 { 3145 switch (mode) { 3146 case REGULATOR_MODE_FAST: 3147 return REGULATOR_STATUS_FAST; 3148 case REGULATOR_MODE_NORMAL: 3149 return REGULATOR_STATUS_NORMAL; 3150 case REGULATOR_MODE_IDLE: 3151 return REGULATOR_STATUS_IDLE; 3152 case REGULATOR_MODE_STANDBY: 3153 return REGULATOR_STATUS_STANDBY; 3154 default: 3155 return REGULATOR_STATUS_UNDEFINED; 3156 } 3157 } 3158 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3159 3160 /* 3161 * To avoid cluttering sysfs (and memory) with useless state, only 3162 * create attributes that can be meaningfully displayed. 3163 */ 3164 static int add_regulator_attributes(struct regulator_dev *rdev) 3165 { 3166 struct device *dev = &rdev->dev; 3167 struct regulator_ops *ops = rdev->desc->ops; 3168 int status = 0; 3169 3170 /* some attributes need specific methods to be displayed */ 3171 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3172 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3173 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3174 status = device_create_file(dev, &dev_attr_microvolts); 3175 if (status < 0) 3176 return status; 3177 } 3178 if (ops->get_current_limit) { 3179 status = device_create_file(dev, &dev_attr_microamps); 3180 if (status < 0) 3181 return status; 3182 } 3183 if (ops->get_mode) { 3184 status = device_create_file(dev, &dev_attr_opmode); 3185 if (status < 0) 3186 return status; 3187 } 3188 if (rdev->ena_pin || ops->is_enabled) { 3189 status = device_create_file(dev, &dev_attr_state); 3190 if (status < 0) 3191 return status; 3192 } 3193 if (ops->get_status) { 3194 status = device_create_file(dev, &dev_attr_status); 3195 if (status < 0) 3196 return status; 3197 } 3198 if (ops->get_bypass) { 3199 status = device_create_file(dev, &dev_attr_bypass); 3200 if (status < 0) 3201 return status; 3202 } 3203 3204 /* some attributes are type-specific */ 3205 if (rdev->desc->type == REGULATOR_CURRENT) { 3206 status = device_create_file(dev, &dev_attr_requested_microamps); 3207 if (status < 0) 3208 return status; 3209 } 3210 3211 /* all the other attributes exist to support constraints; 3212 * don't show them if there are no constraints, or if the 3213 * relevant supporting methods are missing. 3214 */ 3215 if (!rdev->constraints) 3216 return status; 3217 3218 /* constraints need specific supporting methods */ 3219 if (ops->set_voltage || ops->set_voltage_sel) { 3220 status = device_create_file(dev, &dev_attr_min_microvolts); 3221 if (status < 0) 3222 return status; 3223 status = device_create_file(dev, &dev_attr_max_microvolts); 3224 if (status < 0) 3225 return status; 3226 } 3227 if (ops->set_current_limit) { 3228 status = device_create_file(dev, &dev_attr_min_microamps); 3229 if (status < 0) 3230 return status; 3231 status = device_create_file(dev, &dev_attr_max_microamps); 3232 if (status < 0) 3233 return status; 3234 } 3235 3236 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3237 if (status < 0) 3238 return status; 3239 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3240 if (status < 0) 3241 return status; 3242 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3243 if (status < 0) 3244 return status; 3245 3246 if (ops->set_suspend_voltage) { 3247 status = device_create_file(dev, 3248 &dev_attr_suspend_standby_microvolts); 3249 if (status < 0) 3250 return status; 3251 status = device_create_file(dev, 3252 &dev_attr_suspend_mem_microvolts); 3253 if (status < 0) 3254 return status; 3255 status = device_create_file(dev, 3256 &dev_attr_suspend_disk_microvolts); 3257 if (status < 0) 3258 return status; 3259 } 3260 3261 if (ops->set_suspend_mode) { 3262 status = device_create_file(dev, 3263 &dev_attr_suspend_standby_mode); 3264 if (status < 0) 3265 return status; 3266 status = device_create_file(dev, 3267 &dev_attr_suspend_mem_mode); 3268 if (status < 0) 3269 return status; 3270 status = device_create_file(dev, 3271 &dev_attr_suspend_disk_mode); 3272 if (status < 0) 3273 return status; 3274 } 3275 3276 return status; 3277 } 3278 3279 static void rdev_init_debugfs(struct regulator_dev *rdev) 3280 { 3281 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3282 if (!rdev->debugfs) { 3283 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3284 return; 3285 } 3286 3287 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3288 &rdev->use_count); 3289 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3290 &rdev->open_count); 3291 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3292 &rdev->bypass_count); 3293 } 3294 3295 /** 3296 * regulator_register - register regulator 3297 * @regulator_desc: regulator to register 3298 * @config: runtime configuration for regulator 3299 * 3300 * Called by regulator drivers to register a regulator. 3301 * Returns a valid pointer to struct regulator_dev on success 3302 * or an ERR_PTR() on error. 3303 */ 3304 struct regulator_dev * 3305 regulator_register(const struct regulator_desc *regulator_desc, 3306 const struct regulator_config *config) 3307 { 3308 const struct regulation_constraints *constraints = NULL; 3309 const struct regulator_init_data *init_data; 3310 static atomic_t regulator_no = ATOMIC_INIT(0); 3311 struct regulator_dev *rdev; 3312 struct device *dev; 3313 int ret, i; 3314 const char *supply = NULL; 3315 3316 if (regulator_desc == NULL || config == NULL) 3317 return ERR_PTR(-EINVAL); 3318 3319 dev = config->dev; 3320 WARN_ON(!dev); 3321 3322 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3323 return ERR_PTR(-EINVAL); 3324 3325 if (regulator_desc->type != REGULATOR_VOLTAGE && 3326 regulator_desc->type != REGULATOR_CURRENT) 3327 return ERR_PTR(-EINVAL); 3328 3329 /* Only one of each should be implemented */ 3330 WARN_ON(regulator_desc->ops->get_voltage && 3331 regulator_desc->ops->get_voltage_sel); 3332 WARN_ON(regulator_desc->ops->set_voltage && 3333 regulator_desc->ops->set_voltage_sel); 3334 3335 /* If we're using selectors we must implement list_voltage. */ 3336 if (regulator_desc->ops->get_voltage_sel && 3337 !regulator_desc->ops->list_voltage) { 3338 return ERR_PTR(-EINVAL); 3339 } 3340 if (regulator_desc->ops->set_voltage_sel && 3341 !regulator_desc->ops->list_voltage) { 3342 return ERR_PTR(-EINVAL); 3343 } 3344 3345 init_data = config->init_data; 3346 3347 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3348 if (rdev == NULL) 3349 return ERR_PTR(-ENOMEM); 3350 3351 mutex_lock(®ulator_list_mutex); 3352 3353 mutex_init(&rdev->mutex); 3354 rdev->reg_data = config->driver_data; 3355 rdev->owner = regulator_desc->owner; 3356 rdev->desc = regulator_desc; 3357 if (config->regmap) 3358 rdev->regmap = config->regmap; 3359 else if (dev_get_regmap(dev, NULL)) 3360 rdev->regmap = dev_get_regmap(dev, NULL); 3361 else if (dev->parent) 3362 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3363 INIT_LIST_HEAD(&rdev->consumer_list); 3364 INIT_LIST_HEAD(&rdev->list); 3365 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3366 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3367 3368 /* preform any regulator specific init */ 3369 if (init_data && init_data->regulator_init) { 3370 ret = init_data->regulator_init(rdev->reg_data); 3371 if (ret < 0) 3372 goto clean; 3373 } 3374 3375 /* register with sysfs */ 3376 rdev->dev.class = ®ulator_class; 3377 rdev->dev.of_node = config->of_node; 3378 rdev->dev.parent = dev; 3379 dev_set_name(&rdev->dev, "regulator.%d", 3380 atomic_inc_return(®ulator_no) - 1); 3381 ret = device_register(&rdev->dev); 3382 if (ret != 0) { 3383 put_device(&rdev->dev); 3384 goto clean; 3385 } 3386 3387 dev_set_drvdata(&rdev->dev, rdev); 3388 3389 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3390 ret = regulator_ena_gpio_request(rdev, config); 3391 if (ret != 0) { 3392 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3393 config->ena_gpio, ret); 3394 goto wash; 3395 } 3396 3397 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3398 rdev->ena_gpio_state = 1; 3399 3400 if (config->ena_gpio_invert) 3401 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3402 } 3403 3404 /* set regulator constraints */ 3405 if (init_data) 3406 constraints = &init_data->constraints; 3407 3408 ret = set_machine_constraints(rdev, constraints); 3409 if (ret < 0) 3410 goto scrub; 3411 3412 /* add attributes supported by this regulator */ 3413 ret = add_regulator_attributes(rdev); 3414 if (ret < 0) 3415 goto scrub; 3416 3417 if (init_data && init_data->supply_regulator) 3418 supply = init_data->supply_regulator; 3419 else if (regulator_desc->supply_name) 3420 supply = regulator_desc->supply_name; 3421 3422 if (supply) { 3423 struct regulator_dev *r; 3424 3425 r = regulator_dev_lookup(dev, supply, &ret); 3426 3427 if (ret == -ENODEV) { 3428 /* 3429 * No supply was specified for this regulator and 3430 * there will never be one. 3431 */ 3432 ret = 0; 3433 goto add_dev; 3434 } else if (!r) { 3435 dev_err(dev, "Failed to find supply %s\n", supply); 3436 ret = -EPROBE_DEFER; 3437 goto scrub; 3438 } 3439 3440 ret = set_supply(rdev, r); 3441 if (ret < 0) 3442 goto scrub; 3443 3444 /* Enable supply if rail is enabled */ 3445 if (_regulator_is_enabled(rdev)) { 3446 ret = regulator_enable(rdev->supply); 3447 if (ret < 0) 3448 goto scrub; 3449 } 3450 } 3451 3452 add_dev: 3453 /* add consumers devices */ 3454 if (init_data) { 3455 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3456 ret = set_consumer_device_supply(rdev, 3457 init_data->consumer_supplies[i].dev_name, 3458 init_data->consumer_supplies[i].supply); 3459 if (ret < 0) { 3460 dev_err(dev, "Failed to set supply %s\n", 3461 init_data->consumer_supplies[i].supply); 3462 goto unset_supplies; 3463 } 3464 } 3465 } 3466 3467 list_add(&rdev->list, ®ulator_list); 3468 3469 rdev_init_debugfs(rdev); 3470 out: 3471 mutex_unlock(®ulator_list_mutex); 3472 return rdev; 3473 3474 unset_supplies: 3475 unset_regulator_supplies(rdev); 3476 3477 scrub: 3478 if (rdev->supply) 3479 _regulator_put(rdev->supply); 3480 regulator_ena_gpio_free(rdev); 3481 kfree(rdev->constraints); 3482 wash: 3483 device_unregister(&rdev->dev); 3484 /* device core frees rdev */ 3485 rdev = ERR_PTR(ret); 3486 goto out; 3487 3488 clean: 3489 kfree(rdev); 3490 rdev = ERR_PTR(ret); 3491 goto out; 3492 } 3493 EXPORT_SYMBOL_GPL(regulator_register); 3494 3495 /** 3496 * regulator_unregister - unregister regulator 3497 * @rdev: regulator to unregister 3498 * 3499 * Called by regulator drivers to unregister a regulator. 3500 */ 3501 void regulator_unregister(struct regulator_dev *rdev) 3502 { 3503 if (rdev == NULL) 3504 return; 3505 3506 if (rdev->supply) { 3507 while (rdev->use_count--) 3508 regulator_disable(rdev->supply); 3509 regulator_put(rdev->supply); 3510 } 3511 mutex_lock(®ulator_list_mutex); 3512 debugfs_remove_recursive(rdev->debugfs); 3513 flush_work(&rdev->disable_work.work); 3514 WARN_ON(rdev->open_count); 3515 unset_regulator_supplies(rdev); 3516 list_del(&rdev->list); 3517 kfree(rdev->constraints); 3518 regulator_ena_gpio_free(rdev); 3519 device_unregister(&rdev->dev); 3520 mutex_unlock(®ulator_list_mutex); 3521 } 3522 EXPORT_SYMBOL_GPL(regulator_unregister); 3523 3524 /** 3525 * regulator_suspend_prepare - prepare regulators for system wide suspend 3526 * @state: system suspend state 3527 * 3528 * Configure each regulator with it's suspend operating parameters for state. 3529 * This will usually be called by machine suspend code prior to supending. 3530 */ 3531 int regulator_suspend_prepare(suspend_state_t state) 3532 { 3533 struct regulator_dev *rdev; 3534 int ret = 0; 3535 3536 /* ON is handled by regulator active state */ 3537 if (state == PM_SUSPEND_ON) 3538 return -EINVAL; 3539 3540 mutex_lock(®ulator_list_mutex); 3541 list_for_each_entry(rdev, ®ulator_list, list) { 3542 3543 mutex_lock(&rdev->mutex); 3544 ret = suspend_prepare(rdev, state); 3545 mutex_unlock(&rdev->mutex); 3546 3547 if (ret < 0) { 3548 rdev_err(rdev, "failed to prepare\n"); 3549 goto out; 3550 } 3551 } 3552 out: 3553 mutex_unlock(®ulator_list_mutex); 3554 return ret; 3555 } 3556 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3557 3558 /** 3559 * regulator_suspend_finish - resume regulators from system wide suspend 3560 * 3561 * Turn on regulators that might be turned off by regulator_suspend_prepare 3562 * and that should be turned on according to the regulators properties. 3563 */ 3564 int regulator_suspend_finish(void) 3565 { 3566 struct regulator_dev *rdev; 3567 int ret = 0, error; 3568 3569 mutex_lock(®ulator_list_mutex); 3570 list_for_each_entry(rdev, ®ulator_list, list) { 3571 struct regulator_ops *ops = rdev->desc->ops; 3572 3573 mutex_lock(&rdev->mutex); 3574 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3575 ops->enable) { 3576 error = ops->enable(rdev); 3577 if (error) 3578 ret = error; 3579 } else { 3580 if (!has_full_constraints) 3581 goto unlock; 3582 if (!ops->disable) 3583 goto unlock; 3584 if (!_regulator_is_enabled(rdev)) 3585 goto unlock; 3586 3587 error = ops->disable(rdev); 3588 if (error) 3589 ret = error; 3590 } 3591 unlock: 3592 mutex_unlock(&rdev->mutex); 3593 } 3594 mutex_unlock(®ulator_list_mutex); 3595 return ret; 3596 } 3597 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3598 3599 /** 3600 * regulator_has_full_constraints - the system has fully specified constraints 3601 * 3602 * Calling this function will cause the regulator API to disable all 3603 * regulators which have a zero use count and don't have an always_on 3604 * constraint in a late_initcall. 3605 * 3606 * The intention is that this will become the default behaviour in a 3607 * future kernel release so users are encouraged to use this facility 3608 * now. 3609 */ 3610 void regulator_has_full_constraints(void) 3611 { 3612 has_full_constraints = 1; 3613 } 3614 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3615 3616 /** 3617 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3618 * 3619 * Calling this function will cause the regulator API to provide a 3620 * dummy regulator to consumers if no physical regulator is found, 3621 * allowing most consumers to proceed as though a regulator were 3622 * configured. This allows systems such as those with software 3623 * controllable regulators for the CPU core only to be brought up more 3624 * readily. 3625 */ 3626 void regulator_use_dummy_regulator(void) 3627 { 3628 board_wants_dummy_regulator = true; 3629 } 3630 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3631 3632 /** 3633 * rdev_get_drvdata - get rdev regulator driver data 3634 * @rdev: regulator 3635 * 3636 * Get rdev regulator driver private data. This call can be used in the 3637 * regulator driver context. 3638 */ 3639 void *rdev_get_drvdata(struct regulator_dev *rdev) 3640 { 3641 return rdev->reg_data; 3642 } 3643 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3644 3645 /** 3646 * regulator_get_drvdata - get regulator driver data 3647 * @regulator: regulator 3648 * 3649 * Get regulator driver private data. This call can be used in the consumer 3650 * driver context when non API regulator specific functions need to be called. 3651 */ 3652 void *regulator_get_drvdata(struct regulator *regulator) 3653 { 3654 return regulator->rdev->reg_data; 3655 } 3656 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3657 3658 /** 3659 * regulator_set_drvdata - set regulator driver data 3660 * @regulator: regulator 3661 * @data: data 3662 */ 3663 void regulator_set_drvdata(struct regulator *regulator, void *data) 3664 { 3665 regulator->rdev->reg_data = data; 3666 } 3667 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3668 3669 /** 3670 * regulator_get_id - get regulator ID 3671 * @rdev: regulator 3672 */ 3673 int rdev_get_id(struct regulator_dev *rdev) 3674 { 3675 return rdev->desc->id; 3676 } 3677 EXPORT_SYMBOL_GPL(rdev_get_id); 3678 3679 struct device *rdev_get_dev(struct regulator_dev *rdev) 3680 { 3681 return &rdev->dev; 3682 } 3683 EXPORT_SYMBOL_GPL(rdev_get_dev); 3684 3685 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3686 { 3687 return reg_init_data->driver_data; 3688 } 3689 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3690 3691 #ifdef CONFIG_DEBUG_FS 3692 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3693 size_t count, loff_t *ppos) 3694 { 3695 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3696 ssize_t len, ret = 0; 3697 struct regulator_map *map; 3698 3699 if (!buf) 3700 return -ENOMEM; 3701 3702 list_for_each_entry(map, ®ulator_map_list, list) { 3703 len = snprintf(buf + ret, PAGE_SIZE - ret, 3704 "%s -> %s.%s\n", 3705 rdev_get_name(map->regulator), map->dev_name, 3706 map->supply); 3707 if (len >= 0) 3708 ret += len; 3709 if (ret > PAGE_SIZE) { 3710 ret = PAGE_SIZE; 3711 break; 3712 } 3713 } 3714 3715 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3716 3717 kfree(buf); 3718 3719 return ret; 3720 } 3721 #endif 3722 3723 static const struct file_operations supply_map_fops = { 3724 #ifdef CONFIG_DEBUG_FS 3725 .read = supply_map_read_file, 3726 .llseek = default_llseek, 3727 #endif 3728 }; 3729 3730 static int __init regulator_init(void) 3731 { 3732 int ret; 3733 3734 ret = class_register(®ulator_class); 3735 3736 debugfs_root = debugfs_create_dir("regulator", NULL); 3737 if (!debugfs_root) 3738 pr_warn("regulator: Failed to create debugfs directory\n"); 3739 3740 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3741 &supply_map_fops); 3742 3743 regulator_dummy_init(); 3744 3745 return ret; 3746 } 3747 3748 /* init early to allow our consumers to complete system booting */ 3749 core_initcall(regulator_init); 3750 3751 static int __init regulator_init_complete(void) 3752 { 3753 struct regulator_dev *rdev; 3754 struct regulator_ops *ops; 3755 struct regulation_constraints *c; 3756 int enabled, ret; 3757 3758 /* 3759 * Since DT doesn't provide an idiomatic mechanism for 3760 * enabling full constraints and since it's much more natural 3761 * with DT to provide them just assume that a DT enabled 3762 * system has full constraints. 3763 */ 3764 if (of_have_populated_dt()) 3765 has_full_constraints = true; 3766 3767 mutex_lock(®ulator_list_mutex); 3768 3769 /* If we have a full configuration then disable any regulators 3770 * which are not in use or always_on. This will become the 3771 * default behaviour in the future. 3772 */ 3773 list_for_each_entry(rdev, ®ulator_list, list) { 3774 ops = rdev->desc->ops; 3775 c = rdev->constraints; 3776 3777 if (!ops->disable || (c && c->always_on)) 3778 continue; 3779 3780 mutex_lock(&rdev->mutex); 3781 3782 if (rdev->use_count) 3783 goto unlock; 3784 3785 /* If we can't read the status assume it's on. */ 3786 if (ops->is_enabled) 3787 enabled = ops->is_enabled(rdev); 3788 else 3789 enabled = 1; 3790 3791 if (!enabled) 3792 goto unlock; 3793 3794 if (has_full_constraints) { 3795 /* We log since this may kill the system if it 3796 * goes wrong. */ 3797 rdev_info(rdev, "disabling\n"); 3798 ret = ops->disable(rdev); 3799 if (ret != 0) { 3800 rdev_err(rdev, "couldn't disable: %d\n", ret); 3801 } 3802 } else { 3803 /* The intention is that in future we will 3804 * assume that full constraints are provided 3805 * so warn even if we aren't going to do 3806 * anything here. 3807 */ 3808 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3809 } 3810 3811 unlock: 3812 mutex_unlock(&rdev->mutex); 3813 } 3814 3815 mutex_unlock(®ulator_list_mutex); 3816 3817 return 0; 3818 } 3819 late_initcall(regulator_init_complete); 3820