xref: /openbmc/linux/drivers/regulator/core.c (revision f7777dcc)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57 
58 static struct dentry *debugfs_root;
59 
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66 	struct list_head list;
67 	const char *dev_name;   /* The dev_name() for the consumer */
68 	const char *supply;
69 	struct regulator_dev *regulator;
70 };
71 
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78 	struct list_head list;
79 	int gpio;
80 	u32 enable_count;	/* a number of enabled shared GPIO */
81 	u32 request_count;	/* a number of requested shared GPIO */
82 	unsigned int ena_gpio_invert:1;
83 };
84 
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91 	struct device *dev;
92 	struct list_head list;
93 	unsigned int always_on:1;
94 	unsigned int bypass:1;
95 	int uA_load;
96 	int min_uV;
97 	int max_uV;
98 	char *supply_name;
99 	struct device_attribute dev_attr;
100 	struct regulator_dev *rdev;
101 	struct dentry *debugfs;
102 };
103 
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 				  unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 				     int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 					  struct device *dev,
115 					  const char *supply_name);
116 
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 	if (rdev->constraints && rdev->constraints->name)
120 		return rdev->constraints->name;
121 	else if (rdev->desc->name)
122 		return rdev->desc->name;
123 	else
124 		return "";
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 			 char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334 
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 	switch (mode) {
338 	case REGULATOR_MODE_FAST:
339 		return sprintf(buf, "fast\n");
340 	case REGULATOR_MODE_NORMAL:
341 		return sprintf(buf, "normal\n");
342 	case REGULATOR_MODE_IDLE:
343 		return sprintf(buf, "idle\n");
344 	case REGULATOR_MODE_STANDBY:
345 		return sprintf(buf, "standby\n");
346 	}
347 	return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_opmode_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 	if (state > 0)
362 		return sprintf(buf, "enabled\n");
363 	else if (state == 0)
364 		return sprintf(buf, "disabled\n");
365 	else
366 		return sprintf(buf, "unknown\n");
367 }
368 
369 static ssize_t regulator_state_show(struct device *dev,
370 				   struct device_attribute *attr, char *buf)
371 {
372 	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 	ssize_t ret;
374 
375 	mutex_lock(&rdev->mutex);
376 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 	mutex_unlock(&rdev->mutex);
378 
379 	return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 
383 static ssize_t regulator_status_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	int status;
388 	char *label;
389 
390 	status = rdev->desc->ops->get_status(rdev);
391 	if (status < 0)
392 		return status;
393 
394 	switch (status) {
395 	case REGULATOR_STATUS_OFF:
396 		label = "off";
397 		break;
398 	case REGULATOR_STATUS_ON:
399 		label = "on";
400 		break;
401 	case REGULATOR_STATUS_ERROR:
402 		label = "error";
403 		break;
404 	case REGULATOR_STATUS_FAST:
405 		label = "fast";
406 		break;
407 	case REGULATOR_STATUS_NORMAL:
408 		label = "normal";
409 		break;
410 	case REGULATOR_STATUS_IDLE:
411 		label = "idle";
412 		break;
413 	case REGULATOR_STATUS_STANDBY:
414 		label = "standby";
415 		break;
416 	case REGULATOR_STATUS_BYPASS:
417 		label = "bypass";
418 		break;
419 	case REGULATOR_STATUS_UNDEFINED:
420 		label = "undefined";
421 		break;
422 	default:
423 		return -ERANGE;
424 	}
425 
426 	return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 				    struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	if (!rdev->constraints)
436 		return sprintf(buf, "constraint not defined\n");
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 				    struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 
447 	if (!rdev->constraints)
448 		return sprintf(buf, "constraint not defined\n");
449 
450 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	struct regulator *regulator;
483 	int uA = 0;
484 
485 	mutex_lock(&rdev->mutex);
486 	list_for_each_entry(regulator, &rdev->consumer_list, list)
487 		uA += regulator->uA_load;
488 	mutex_unlock(&rdev->mutex);
489 	return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 			      char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 	return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500 
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 			 char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515 
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 		regulator_suspend_mem_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 		regulator_suspend_disk_uV_show, NULL);
535 
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 				struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 		regulator_suspend_standby_uV_show, NULL);
545 
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 				struct device_attribute *attr, char *buf)
548 {
549 	struct regulator_dev *rdev = dev_get_drvdata(dev);
550 
551 	return regulator_print_opmode(buf,
552 		rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 		regulator_suspend_mem_mode_show, NULL);
556 
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 				struct device_attribute *attr, char *buf)
559 {
560 	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 
562 	return regulator_print_opmode(buf,
563 		rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 		regulator_suspend_disk_mode_show, NULL);
567 
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 
573 	return regulator_print_opmode(buf,
574 		rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 		regulator_suspend_standby_mode_show, NULL);
578 
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 				   struct device_attribute *attr, char *buf)
581 {
582 	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 
584 	return regulator_print_state(buf,
585 			rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 		regulator_suspend_mem_state_show, NULL);
589 
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 				   struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_state(buf,
596 			rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 		regulator_suspend_disk_state_show, NULL);
600 
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 				   struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_state(buf,
607 			rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 		regulator_suspend_standby_state_show, NULL);
611 
612 static ssize_t regulator_bypass_show(struct device *dev,
613 				     struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 	const char *report;
617 	bool bypass;
618 	int ret;
619 
620 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621 
622 	if (ret != 0)
623 		report = "unknown";
624 	else if (bypass)
625 		report = "enabled";
626 	else
627 		report = "disabled";
628 
629 	return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 		   regulator_bypass_show, NULL);
633 
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639 	&dev_attr_name.attr,
640 	&dev_attr_num_users.attr,
641 	&dev_attr_type.attr,
642 	NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645 
646 static void regulator_dev_release(struct device *dev)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 	kfree(rdev);
650 }
651 
652 static struct class regulator_class = {
653 	.name = "regulator",
654 	.dev_release = regulator_dev_release,
655 	.dev_groups = regulator_dev_groups,
656 };
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	err = regulator_check_drms(rdev);
667 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 	    (!rdev->desc->ops->get_voltage &&
669 	     !rdev->desc->ops->get_voltage_sel) ||
670 	    !rdev->desc->ops->set_mode)
671 		return;
672 
673 	/* get output voltage */
674 	output_uV = _regulator_get_voltage(rdev);
675 	if (output_uV <= 0)
676 		return;
677 
678 	/* get input voltage */
679 	input_uV = 0;
680 	if (rdev->supply)
681 		input_uV = regulator_get_voltage(rdev->supply);
682 	if (input_uV <= 0)
683 		input_uV = rdev->constraints->input_uV;
684 	if (input_uV <= 0)
685 		return;
686 
687 	/* calc total requested load */
688 	list_for_each_entry(sibling, &rdev->consumer_list, list)
689 		current_uA += sibling->uA_load;
690 
691 	/* now get the optimum mode for our new total regulator load */
692 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 						  output_uV, current_uA);
694 
695 	/* check the new mode is allowed */
696 	err = regulator_mode_constrain(rdev, &mode);
697 	if (err == 0)
698 		rdev->desc->ops->set_mode(rdev, mode);
699 }
700 
701 static int suspend_set_state(struct regulator_dev *rdev,
702 	struct regulator_state *rstate)
703 {
704 	int ret = 0;
705 
706 	/* If we have no suspend mode configration don't set anything;
707 	 * only warn if the driver implements set_suspend_voltage or
708 	 * set_suspend_mode callback.
709 	 */
710 	if (!rstate->enabled && !rstate->disabled) {
711 		if (rdev->desc->ops->set_suspend_voltage ||
712 		    rdev->desc->ops->set_suspend_mode)
713 			rdev_warn(rdev, "No configuration\n");
714 		return 0;
715 	}
716 
717 	if (rstate->enabled && rstate->disabled) {
718 		rdev_err(rdev, "invalid configuration\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 		ret = rdev->desc->ops->set_suspend_enable(rdev);
724 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 		ret = 0;
728 
729 	if (ret < 0) {
730 		rdev_err(rdev, "failed to enabled/disable\n");
731 		return ret;
732 	}
733 
734 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 		if (ret < 0) {
737 			rdev_err(rdev, "failed to set voltage\n");
738 			return ret;
739 		}
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set mode\n");
746 			return ret;
747 		}
748 	}
749 	return ret;
750 }
751 
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 	if (!rdev->constraints)
756 		return -EINVAL;
757 
758 	switch (state) {
759 	case PM_SUSPEND_STANDBY:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_standby);
762 	case PM_SUSPEND_MEM:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_mem);
765 	case PM_SUSPEND_MAX:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_disk);
768 	default:
769 		return -EINVAL;
770 	}
771 }
772 
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 	struct regulation_constraints *constraints = rdev->constraints;
776 	char buf[80] = "";
777 	int count = 0;
778 	int ret;
779 
780 	if (constraints->min_uV && constraints->max_uV) {
781 		if (constraints->min_uV == constraints->max_uV)
782 			count += sprintf(buf + count, "%d mV ",
783 					 constraints->min_uV / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mV ",
786 					 constraints->min_uV / 1000,
787 					 constraints->max_uV / 1000);
788 	}
789 
790 	if (!constraints->min_uV ||
791 	    constraints->min_uV != constraints->max_uV) {
792 		ret = _regulator_get_voltage(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 	}
796 
797 	if (constraints->uV_offset)
798 		count += sprintf(buf, "%dmV offset ",
799 				 constraints->uV_offset / 1000);
800 
801 	if (constraints->min_uA && constraints->max_uA) {
802 		if (constraints->min_uA == constraints->max_uA)
803 			count += sprintf(buf + count, "%d mA ",
804 					 constraints->min_uA / 1000);
805 		else
806 			count += sprintf(buf + count, "%d <--> %d mA ",
807 					 constraints->min_uA / 1000,
808 					 constraints->max_uA / 1000);
809 	}
810 
811 	if (!constraints->min_uA ||
812 	    constraints->min_uA != constraints->max_uA) {
813 		ret = _regulator_get_current_limit(rdev);
814 		if (ret > 0)
815 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 	}
817 
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 		count += sprintf(buf + count, "fast ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 		count += sprintf(buf + count, "normal ");
822 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 		count += sprintf(buf + count, "idle ");
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 		count += sprintf(buf + count, "standby");
826 
827 	if (!count)
828 		sprintf(buf, "no parameters");
829 
830 	rdev_info(rdev, "%s\n", buf);
831 
832 	if ((constraints->min_uV != constraints->max_uV) &&
833 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 		rdev_warn(rdev,
835 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837 
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 	struct regulation_constraints *constraints)
840 {
841 	struct regulator_ops *ops = rdev->desc->ops;
842 	int ret;
843 
844 	/* do we need to apply the constraint voltage */
845 	if (rdev->constraints->apply_uV &&
846 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 		ret = _regulator_do_set_voltage(rdev,
848 						rdev->constraints->min_uV,
849 						rdev->constraints->max_uV);
850 		if (ret < 0) {
851 			rdev_err(rdev, "failed to apply %duV constraint\n",
852 				 rdev->constraints->min_uV);
853 			return ret;
854 		}
855 	}
856 
857 	/* constrain machine-level voltage specs to fit
858 	 * the actual range supported by this regulator.
859 	 */
860 	if (ops->list_voltage && rdev->desc->n_voltages) {
861 		int	count = rdev->desc->n_voltages;
862 		int	i;
863 		int	min_uV = INT_MAX;
864 		int	max_uV = INT_MIN;
865 		int	cmin = constraints->min_uV;
866 		int	cmax = constraints->max_uV;
867 
868 		/* it's safe to autoconfigure fixed-voltage supplies
869 		   and the constraints are used by list_voltage. */
870 		if (count == 1 && !cmin) {
871 			cmin = 1;
872 			cmax = INT_MAX;
873 			constraints->min_uV = cmin;
874 			constraints->max_uV = cmax;
875 		}
876 
877 		/* voltage constraints are optional */
878 		if ((cmin == 0) && (cmax == 0))
879 			return 0;
880 
881 		/* else require explicit machine-level constraints */
882 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 			rdev_err(rdev, "invalid voltage constraints\n");
884 			return -EINVAL;
885 		}
886 
887 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 		for (i = 0; i < count; i++) {
889 			int	value;
890 
891 			value = ops->list_voltage(rdev, i);
892 			if (value <= 0)
893 				continue;
894 
895 			/* maybe adjust [min_uV..max_uV] */
896 			if (value >= cmin && value < min_uV)
897 				min_uV = value;
898 			if (value <= cmax && value > max_uV)
899 				max_uV = value;
900 		}
901 
902 		/* final: [min_uV..max_uV] valid iff constraints valid */
903 		if (max_uV < min_uV) {
904 			rdev_err(rdev,
905 				 "unsupportable voltage constraints %u-%uuV\n",
906 				 min_uV, max_uV);
907 			return -EINVAL;
908 		}
909 
910 		/* use regulator's subset of machine constraints */
911 		if (constraints->min_uV < min_uV) {
912 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 				 constraints->min_uV, min_uV);
914 			constraints->min_uV = min_uV;
915 		}
916 		if (constraints->max_uV > max_uV) {
917 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 				 constraints->max_uV, max_uV);
919 			constraints->max_uV = max_uV;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938 	const struct regulation_constraints *constraints)
939 {
940 	int ret = 0;
941 	struct regulator_ops *ops = rdev->desc->ops;
942 
943 	if (constraints)
944 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945 					    GFP_KERNEL);
946 	else
947 		rdev->constraints = kzalloc(sizeof(*constraints),
948 					    GFP_KERNEL);
949 	if (!rdev->constraints)
950 		return -ENOMEM;
951 
952 	ret = machine_constraints_voltage(rdev, rdev->constraints);
953 	if (ret != 0)
954 		goto out;
955 
956 	/* do we need to setup our suspend state */
957 	if (rdev->constraints->initial_state) {
958 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959 		if (ret < 0) {
960 			rdev_err(rdev, "failed to set suspend state\n");
961 			goto out;
962 		}
963 	}
964 
965 	if (rdev->constraints->initial_mode) {
966 		if (!ops->set_mode) {
967 			rdev_err(rdev, "no set_mode operation\n");
968 			ret = -EINVAL;
969 			goto out;
970 		}
971 
972 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973 		if (ret < 0) {
974 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975 			goto out;
976 		}
977 	}
978 
979 	/* If the constraints say the regulator should be on at this point
980 	 * and we have control then make sure it is enabled.
981 	 */
982 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983 	    ops->enable) {
984 		ret = ops->enable(rdev);
985 		if (ret < 0) {
986 			rdev_err(rdev, "failed to enable\n");
987 			goto out;
988 		}
989 	}
990 
991 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
992 		&& ops->set_ramp_delay) {
993 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
994 		if (ret < 0) {
995 			rdev_err(rdev, "failed to set ramp_delay\n");
996 			goto out;
997 		}
998 	}
999 
1000 	print_constraints(rdev);
1001 	return 0;
1002 out:
1003 	kfree(rdev->constraints);
1004 	rdev->constraints = NULL;
1005 	return ret;
1006 }
1007 
1008 /**
1009  * set_supply - set regulator supply regulator
1010  * @rdev: regulator name
1011  * @supply_rdev: supply regulator name
1012  *
1013  * Called by platform initialisation code to set the supply regulator for this
1014  * regulator. This ensures that a regulators supply will also be enabled by the
1015  * core if it's child is enabled.
1016  */
1017 static int set_supply(struct regulator_dev *rdev,
1018 		      struct regulator_dev *supply_rdev)
1019 {
1020 	int err;
1021 
1022 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1023 
1024 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1025 	if (rdev->supply == NULL) {
1026 		err = -ENOMEM;
1027 		return err;
1028 	}
1029 	supply_rdev->open_count++;
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036  * @rdev:         regulator source
1037  * @consumer_dev_name: dev_name() string for device supply applies to
1038  * @supply:       symbolic name for supply
1039  *
1040  * Allows platform initialisation code to map physical regulator
1041  * sources to symbolic names for supplies for use by devices.  Devices
1042  * should use these symbolic names to request regulators, avoiding the
1043  * need to provide board-specific regulator names as platform data.
1044  */
1045 static int set_consumer_device_supply(struct regulator_dev *rdev,
1046 				      const char *consumer_dev_name,
1047 				      const char *supply)
1048 {
1049 	struct regulator_map *node;
1050 	int has_dev;
1051 
1052 	if (supply == NULL)
1053 		return -EINVAL;
1054 
1055 	if (consumer_dev_name != NULL)
1056 		has_dev = 1;
1057 	else
1058 		has_dev = 0;
1059 
1060 	list_for_each_entry(node, &regulator_map_list, list) {
1061 		if (node->dev_name && consumer_dev_name) {
1062 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1063 				continue;
1064 		} else if (node->dev_name || consumer_dev_name) {
1065 			continue;
1066 		}
1067 
1068 		if (strcmp(node->supply, supply) != 0)
1069 			continue;
1070 
1071 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1072 			 consumer_dev_name,
1073 			 dev_name(&node->regulator->dev),
1074 			 node->regulator->desc->name,
1075 			 supply,
1076 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1077 		return -EBUSY;
1078 	}
1079 
1080 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1081 	if (node == NULL)
1082 		return -ENOMEM;
1083 
1084 	node->regulator = rdev;
1085 	node->supply = supply;
1086 
1087 	if (has_dev) {
1088 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1089 		if (node->dev_name == NULL) {
1090 			kfree(node);
1091 			return -ENOMEM;
1092 		}
1093 	}
1094 
1095 	list_add(&node->list, &regulator_map_list);
1096 	return 0;
1097 }
1098 
1099 static void unset_regulator_supplies(struct regulator_dev *rdev)
1100 {
1101 	struct regulator_map *node, *n;
1102 
1103 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1104 		if (rdev == node->regulator) {
1105 			list_del(&node->list);
1106 			kfree(node->dev_name);
1107 			kfree(node);
1108 		}
1109 	}
1110 }
1111 
1112 #define REG_STR_SIZE	64
1113 
1114 static struct regulator *create_regulator(struct regulator_dev *rdev,
1115 					  struct device *dev,
1116 					  const char *supply_name)
1117 {
1118 	struct regulator *regulator;
1119 	char buf[REG_STR_SIZE];
1120 	int err, size;
1121 
1122 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1123 	if (regulator == NULL)
1124 		return NULL;
1125 
1126 	mutex_lock(&rdev->mutex);
1127 	regulator->rdev = rdev;
1128 	list_add(&regulator->list, &rdev->consumer_list);
1129 
1130 	if (dev) {
1131 		regulator->dev = dev;
1132 
1133 		/* Add a link to the device sysfs entry */
1134 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1135 				 dev->kobj.name, supply_name);
1136 		if (size >= REG_STR_SIZE)
1137 			goto overflow_err;
1138 
1139 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1140 		if (regulator->supply_name == NULL)
1141 			goto overflow_err;
1142 
1143 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1144 					buf);
1145 		if (err) {
1146 			rdev_warn(rdev, "could not add device link %s err %d\n",
1147 				  dev->kobj.name, err);
1148 			/* non-fatal */
1149 		}
1150 	} else {
1151 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1152 		if (regulator->supply_name == NULL)
1153 			goto overflow_err;
1154 	}
1155 
1156 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1157 						rdev->debugfs);
1158 	if (!regulator->debugfs) {
1159 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1160 	} else {
1161 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1162 				   &regulator->uA_load);
1163 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1164 				   &regulator->min_uV);
1165 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1166 				   &regulator->max_uV);
1167 	}
1168 
1169 	/*
1170 	 * Check now if the regulator is an always on regulator - if
1171 	 * it is then we don't need to do nearly so much work for
1172 	 * enable/disable calls.
1173 	 */
1174 	if (!_regulator_can_change_status(rdev) &&
1175 	    _regulator_is_enabled(rdev))
1176 		regulator->always_on = true;
1177 
1178 	mutex_unlock(&rdev->mutex);
1179 	return regulator;
1180 overflow_err:
1181 	list_del(&regulator->list);
1182 	kfree(regulator);
1183 	mutex_unlock(&rdev->mutex);
1184 	return NULL;
1185 }
1186 
1187 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1188 {
1189 	if (!rdev->desc->ops->enable_time)
1190 		return rdev->desc->enable_time;
1191 	return rdev->desc->ops->enable_time(rdev);
1192 }
1193 
1194 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1195 						  const char *supply,
1196 						  int *ret)
1197 {
1198 	struct regulator_dev *r;
1199 	struct device_node *node;
1200 	struct regulator_map *map;
1201 	const char *devname = NULL;
1202 
1203 	/* first do a dt based lookup */
1204 	if (dev && dev->of_node) {
1205 		node = of_get_regulator(dev, supply);
1206 		if (node) {
1207 			list_for_each_entry(r, &regulator_list, list)
1208 				if (r->dev.parent &&
1209 					node == r->dev.of_node)
1210 					return r;
1211 		} else {
1212 			/*
1213 			 * If we couldn't even get the node then it's
1214 			 * not just that the device didn't register
1215 			 * yet, there's no node and we'll never
1216 			 * succeed.
1217 			 */
1218 			*ret = -ENODEV;
1219 		}
1220 	}
1221 
1222 	/* if not found, try doing it non-dt way */
1223 	if (dev)
1224 		devname = dev_name(dev);
1225 
1226 	list_for_each_entry(r, &regulator_list, list)
1227 		if (strcmp(rdev_get_name(r), supply) == 0)
1228 			return r;
1229 
1230 	list_for_each_entry(map, &regulator_map_list, list) {
1231 		/* If the mapping has a device set up it must match */
1232 		if (map->dev_name &&
1233 		    (!devname || strcmp(map->dev_name, devname)))
1234 			continue;
1235 
1236 		if (strcmp(map->supply, supply) == 0)
1237 			return map->regulator;
1238 	}
1239 
1240 
1241 	return NULL;
1242 }
1243 
1244 /* Internal regulator request function */
1245 static struct regulator *_regulator_get(struct device *dev, const char *id,
1246 					bool exclusive)
1247 {
1248 	struct regulator_dev *rdev;
1249 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1250 	const char *devname = NULL;
1251 	int ret = 0;
1252 
1253 	if (id == NULL) {
1254 		pr_err("get() with no identifier\n");
1255 		return regulator;
1256 	}
1257 
1258 	if (dev)
1259 		devname = dev_name(dev);
1260 
1261 	mutex_lock(&regulator_list_mutex);
1262 
1263 	rdev = regulator_dev_lookup(dev, id, &ret);
1264 	if (rdev)
1265 		goto found;
1266 
1267 	/*
1268 	 * If we have return value from dev_lookup fail, we do not expect to
1269 	 * succeed, so, quit with appropriate error value
1270 	 */
1271 	if (ret) {
1272 		regulator = ERR_PTR(ret);
1273 		goto out;
1274 	}
1275 
1276 	if (board_wants_dummy_regulator) {
1277 		rdev = dummy_regulator_rdev;
1278 		goto found;
1279 	}
1280 
1281 #ifdef CONFIG_REGULATOR_DUMMY
1282 	if (!devname)
1283 		devname = "deviceless";
1284 
1285 	/* If the board didn't flag that it was fully constrained then
1286 	 * substitute in a dummy regulator so consumers can continue.
1287 	 */
1288 	if (!has_full_constraints) {
1289 		pr_warn("%s supply %s not found, using dummy regulator\n",
1290 			devname, id);
1291 		rdev = dummy_regulator_rdev;
1292 		goto found;
1293 	}
1294 #endif
1295 
1296 	mutex_unlock(&regulator_list_mutex);
1297 	return regulator;
1298 
1299 found:
1300 	if (rdev->exclusive) {
1301 		regulator = ERR_PTR(-EPERM);
1302 		goto out;
1303 	}
1304 
1305 	if (exclusive && rdev->open_count) {
1306 		regulator = ERR_PTR(-EBUSY);
1307 		goto out;
1308 	}
1309 
1310 	if (!try_module_get(rdev->owner))
1311 		goto out;
1312 
1313 	regulator = create_regulator(rdev, dev, id);
1314 	if (regulator == NULL) {
1315 		regulator = ERR_PTR(-ENOMEM);
1316 		module_put(rdev->owner);
1317 		goto out;
1318 	}
1319 
1320 	rdev->open_count++;
1321 	if (exclusive) {
1322 		rdev->exclusive = 1;
1323 
1324 		ret = _regulator_is_enabled(rdev);
1325 		if (ret > 0)
1326 			rdev->use_count = 1;
1327 		else
1328 			rdev->use_count = 0;
1329 	}
1330 
1331 out:
1332 	mutex_unlock(&regulator_list_mutex);
1333 
1334 	return regulator;
1335 }
1336 
1337 /**
1338  * regulator_get - lookup and obtain a reference to a regulator.
1339  * @dev: device for regulator "consumer"
1340  * @id: Supply name or regulator ID.
1341  *
1342  * Returns a struct regulator corresponding to the regulator producer,
1343  * or IS_ERR() condition containing errno.
1344  *
1345  * Use of supply names configured via regulator_set_device_supply() is
1346  * strongly encouraged.  It is recommended that the supply name used
1347  * should match the name used for the supply and/or the relevant
1348  * device pins in the datasheet.
1349  */
1350 struct regulator *regulator_get(struct device *dev, const char *id)
1351 {
1352 	return _regulator_get(dev, id, false);
1353 }
1354 EXPORT_SYMBOL_GPL(regulator_get);
1355 
1356 static void devm_regulator_release(struct device *dev, void *res)
1357 {
1358 	regulator_put(*(struct regulator **)res);
1359 }
1360 
1361 /**
1362  * devm_regulator_get - Resource managed regulator_get()
1363  * @dev: device for regulator "consumer"
1364  * @id: Supply name or regulator ID.
1365  *
1366  * Managed regulator_get(). Regulators returned from this function are
1367  * automatically regulator_put() on driver detach. See regulator_get() for more
1368  * information.
1369  */
1370 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1371 {
1372 	struct regulator **ptr, *regulator;
1373 
1374 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1375 	if (!ptr)
1376 		return ERR_PTR(-ENOMEM);
1377 
1378 	regulator = regulator_get(dev, id);
1379 	if (!IS_ERR(regulator)) {
1380 		*ptr = regulator;
1381 		devres_add(dev, ptr);
1382 	} else {
1383 		devres_free(ptr);
1384 	}
1385 
1386 	return regulator;
1387 }
1388 EXPORT_SYMBOL_GPL(devm_regulator_get);
1389 
1390 /**
1391  * regulator_get_exclusive - obtain exclusive access to a regulator.
1392  * @dev: device for regulator "consumer"
1393  * @id: Supply name or regulator ID.
1394  *
1395  * Returns a struct regulator corresponding to the regulator producer,
1396  * or IS_ERR() condition containing errno.  Other consumers will be
1397  * unable to obtain this reference is held and the use count for the
1398  * regulator will be initialised to reflect the current state of the
1399  * regulator.
1400  *
1401  * This is intended for use by consumers which cannot tolerate shared
1402  * use of the regulator such as those which need to force the
1403  * regulator off for correct operation of the hardware they are
1404  * controlling.
1405  *
1406  * Use of supply names configured via regulator_set_device_supply() is
1407  * strongly encouraged.  It is recommended that the supply name used
1408  * should match the name used for the supply and/or the relevant
1409  * device pins in the datasheet.
1410  */
1411 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1412 {
1413 	return _regulator_get(dev, id, true);
1414 }
1415 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1416 
1417 /**
1418  * regulator_get_optional - obtain optional access to a regulator.
1419  * @dev: device for regulator "consumer"
1420  * @id: Supply name or regulator ID.
1421  *
1422  * Returns a struct regulator corresponding to the regulator producer,
1423  * or IS_ERR() condition containing errno.  Other consumers will be
1424  * unable to obtain this reference is held and the use count for the
1425  * regulator will be initialised to reflect the current state of the
1426  * regulator.
1427  *
1428  * This is intended for use by consumers for devices which can have
1429  * some supplies unconnected in normal use, such as some MMC devices.
1430  * It can allow the regulator core to provide stub supplies for other
1431  * supplies requested using normal regulator_get() calls without
1432  * disrupting the operation of drivers that can handle absent
1433  * supplies.
1434  *
1435  * Use of supply names configured via regulator_set_device_supply() is
1436  * strongly encouraged.  It is recommended that the supply name used
1437  * should match the name used for the supply and/or the relevant
1438  * device pins in the datasheet.
1439  */
1440 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1441 {
1442 	return _regulator_get(dev, id, 0);
1443 }
1444 EXPORT_SYMBOL_GPL(regulator_get_optional);
1445 
1446 /**
1447  * devm_regulator_get_optional - Resource managed regulator_get_optional()
1448  * @dev: device for regulator "consumer"
1449  * @id: Supply name or regulator ID.
1450  *
1451  * Managed regulator_get_optional(). Regulators returned from this
1452  * function are automatically regulator_put() on driver detach. See
1453  * regulator_get_optional() for more information.
1454  */
1455 struct regulator *devm_regulator_get_optional(struct device *dev,
1456 					      const char *id)
1457 {
1458 	struct regulator **ptr, *regulator;
1459 
1460 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1461 	if (!ptr)
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	regulator = regulator_get_optional(dev, id);
1465 	if (!IS_ERR(regulator)) {
1466 		*ptr = regulator;
1467 		devres_add(dev, ptr);
1468 	} else {
1469 		devres_free(ptr);
1470 	}
1471 
1472 	return regulator;
1473 }
1474 EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1475 
1476 /* Locks held by regulator_put() */
1477 static void _regulator_put(struct regulator *regulator)
1478 {
1479 	struct regulator_dev *rdev;
1480 
1481 	if (regulator == NULL || IS_ERR(regulator))
1482 		return;
1483 
1484 	rdev = regulator->rdev;
1485 
1486 	debugfs_remove_recursive(regulator->debugfs);
1487 
1488 	/* remove any sysfs entries */
1489 	if (regulator->dev)
1490 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1491 	kfree(regulator->supply_name);
1492 	list_del(&regulator->list);
1493 	kfree(regulator);
1494 
1495 	rdev->open_count--;
1496 	rdev->exclusive = 0;
1497 
1498 	module_put(rdev->owner);
1499 }
1500 
1501 /**
1502  * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1503  * @dev: device for regulator "consumer"
1504  * @id: Supply name or regulator ID.
1505  *
1506  * Managed regulator_get_exclusive(). Regulators returned from this function
1507  * are automatically regulator_put() on driver detach. See regulator_get() for
1508  * more information.
1509  */
1510 struct regulator *devm_regulator_get_exclusive(struct device *dev,
1511 					       const char *id)
1512 {
1513 	struct regulator **ptr, *regulator;
1514 
1515 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1516 	if (!ptr)
1517 		return ERR_PTR(-ENOMEM);
1518 
1519 	regulator = _regulator_get(dev, id, 1);
1520 	if (!IS_ERR(regulator)) {
1521 		*ptr = regulator;
1522 		devres_add(dev, ptr);
1523 	} else {
1524 		devres_free(ptr);
1525 	}
1526 
1527 	return regulator;
1528 }
1529 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1530 
1531 /**
1532  * regulator_put - "free" the regulator source
1533  * @regulator: regulator source
1534  *
1535  * Note: drivers must ensure that all regulator_enable calls made on this
1536  * regulator source are balanced by regulator_disable calls prior to calling
1537  * this function.
1538  */
1539 void regulator_put(struct regulator *regulator)
1540 {
1541 	mutex_lock(&regulator_list_mutex);
1542 	_regulator_put(regulator);
1543 	mutex_unlock(&regulator_list_mutex);
1544 }
1545 EXPORT_SYMBOL_GPL(regulator_put);
1546 
1547 static int devm_regulator_match(struct device *dev, void *res, void *data)
1548 {
1549 	struct regulator **r = res;
1550 	if (!r || !*r) {
1551 		WARN_ON(!r || !*r);
1552 		return 0;
1553 	}
1554 	return *r == data;
1555 }
1556 
1557 /**
1558  * devm_regulator_put - Resource managed regulator_put()
1559  * @regulator: regulator to free
1560  *
1561  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1562  * this function will not need to be called and the resource management
1563  * code will ensure that the resource is freed.
1564  */
1565 void devm_regulator_put(struct regulator *regulator)
1566 {
1567 	int rc;
1568 
1569 	rc = devres_release(regulator->dev, devm_regulator_release,
1570 			    devm_regulator_match, regulator);
1571 	if (rc != 0)
1572 		WARN_ON(rc);
1573 }
1574 EXPORT_SYMBOL_GPL(devm_regulator_put);
1575 
1576 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1577 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1578 				const struct regulator_config *config)
1579 {
1580 	struct regulator_enable_gpio *pin;
1581 	int ret;
1582 
1583 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1584 		if (pin->gpio == config->ena_gpio) {
1585 			rdev_dbg(rdev, "GPIO %d is already used\n",
1586 				config->ena_gpio);
1587 			goto update_ena_gpio_to_rdev;
1588 		}
1589 	}
1590 
1591 	ret = gpio_request_one(config->ena_gpio,
1592 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1593 				rdev_get_name(rdev));
1594 	if (ret)
1595 		return ret;
1596 
1597 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1598 	if (pin == NULL) {
1599 		gpio_free(config->ena_gpio);
1600 		return -ENOMEM;
1601 	}
1602 
1603 	pin->gpio = config->ena_gpio;
1604 	pin->ena_gpio_invert = config->ena_gpio_invert;
1605 	list_add(&pin->list, &regulator_ena_gpio_list);
1606 
1607 update_ena_gpio_to_rdev:
1608 	pin->request_count++;
1609 	rdev->ena_pin = pin;
1610 	return 0;
1611 }
1612 
1613 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1614 {
1615 	struct regulator_enable_gpio *pin, *n;
1616 
1617 	if (!rdev->ena_pin)
1618 		return;
1619 
1620 	/* Free the GPIO only in case of no use */
1621 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1622 		if (pin->gpio == rdev->ena_pin->gpio) {
1623 			if (pin->request_count <= 1) {
1624 				pin->request_count = 0;
1625 				gpio_free(pin->gpio);
1626 				list_del(&pin->list);
1627 				kfree(pin);
1628 			} else {
1629 				pin->request_count--;
1630 			}
1631 		}
1632 	}
1633 }
1634 
1635 /**
1636  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1637  * @rdev: regulator_dev structure
1638  * @enable: enable GPIO at initial use?
1639  *
1640  * GPIO is enabled in case of initial use. (enable_count is 0)
1641  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1642  */
1643 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1644 {
1645 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1646 
1647 	if (!pin)
1648 		return -EINVAL;
1649 
1650 	if (enable) {
1651 		/* Enable GPIO at initial use */
1652 		if (pin->enable_count == 0)
1653 			gpio_set_value_cansleep(pin->gpio,
1654 						!pin->ena_gpio_invert);
1655 
1656 		pin->enable_count++;
1657 	} else {
1658 		if (pin->enable_count > 1) {
1659 			pin->enable_count--;
1660 			return 0;
1661 		}
1662 
1663 		/* Disable GPIO if not used */
1664 		if (pin->enable_count <= 1) {
1665 			gpio_set_value_cansleep(pin->gpio,
1666 						pin->ena_gpio_invert);
1667 			pin->enable_count = 0;
1668 		}
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 static int _regulator_do_enable(struct regulator_dev *rdev)
1675 {
1676 	int ret, delay;
1677 
1678 	/* Query before enabling in case configuration dependent.  */
1679 	ret = _regulator_get_enable_time(rdev);
1680 	if (ret >= 0) {
1681 		delay = ret;
1682 	} else {
1683 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1684 		delay = 0;
1685 	}
1686 
1687 	trace_regulator_enable(rdev_get_name(rdev));
1688 
1689 	if (rdev->ena_pin) {
1690 		ret = regulator_ena_gpio_ctrl(rdev, true);
1691 		if (ret < 0)
1692 			return ret;
1693 		rdev->ena_gpio_state = 1;
1694 	} else if (rdev->desc->ops->enable) {
1695 		ret = rdev->desc->ops->enable(rdev);
1696 		if (ret < 0)
1697 			return ret;
1698 	} else {
1699 		return -EINVAL;
1700 	}
1701 
1702 	/* Allow the regulator to ramp; it would be useful to extend
1703 	 * this for bulk operations so that the regulators can ramp
1704 	 * together.  */
1705 	trace_regulator_enable_delay(rdev_get_name(rdev));
1706 
1707 	if (delay >= 1000) {
1708 		mdelay(delay / 1000);
1709 		udelay(delay % 1000);
1710 	} else if (delay) {
1711 		udelay(delay);
1712 	}
1713 
1714 	trace_regulator_enable_complete(rdev_get_name(rdev));
1715 
1716 	return 0;
1717 }
1718 
1719 /* locks held by regulator_enable() */
1720 static int _regulator_enable(struct regulator_dev *rdev)
1721 {
1722 	int ret;
1723 
1724 	/* check voltage and requested load before enabling */
1725 	if (rdev->constraints &&
1726 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1727 		drms_uA_update(rdev);
1728 
1729 	if (rdev->use_count == 0) {
1730 		/* The regulator may on if it's not switchable or left on */
1731 		ret = _regulator_is_enabled(rdev);
1732 		if (ret == -EINVAL || ret == 0) {
1733 			if (!_regulator_can_change_status(rdev))
1734 				return -EPERM;
1735 
1736 			ret = _regulator_do_enable(rdev);
1737 			if (ret < 0)
1738 				return ret;
1739 
1740 		} else if (ret < 0) {
1741 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1742 			return ret;
1743 		}
1744 		/* Fallthrough on positive return values - already enabled */
1745 	}
1746 
1747 	rdev->use_count++;
1748 
1749 	return 0;
1750 }
1751 
1752 /**
1753  * regulator_enable - enable regulator output
1754  * @regulator: regulator source
1755  *
1756  * Request that the regulator be enabled with the regulator output at
1757  * the predefined voltage or current value.  Calls to regulator_enable()
1758  * must be balanced with calls to regulator_disable().
1759  *
1760  * NOTE: the output value can be set by other drivers, boot loader or may be
1761  * hardwired in the regulator.
1762  */
1763 int regulator_enable(struct regulator *regulator)
1764 {
1765 	struct regulator_dev *rdev = regulator->rdev;
1766 	int ret = 0;
1767 
1768 	if (regulator->always_on)
1769 		return 0;
1770 
1771 	if (rdev->supply) {
1772 		ret = regulator_enable(rdev->supply);
1773 		if (ret != 0)
1774 			return ret;
1775 	}
1776 
1777 	mutex_lock(&rdev->mutex);
1778 	ret = _regulator_enable(rdev);
1779 	mutex_unlock(&rdev->mutex);
1780 
1781 	if (ret != 0 && rdev->supply)
1782 		regulator_disable(rdev->supply);
1783 
1784 	return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_enable);
1787 
1788 static int _regulator_do_disable(struct regulator_dev *rdev)
1789 {
1790 	int ret;
1791 
1792 	trace_regulator_disable(rdev_get_name(rdev));
1793 
1794 	if (rdev->ena_pin) {
1795 		ret = regulator_ena_gpio_ctrl(rdev, false);
1796 		if (ret < 0)
1797 			return ret;
1798 		rdev->ena_gpio_state = 0;
1799 
1800 	} else if (rdev->desc->ops->disable) {
1801 		ret = rdev->desc->ops->disable(rdev);
1802 		if (ret != 0)
1803 			return ret;
1804 	}
1805 
1806 	trace_regulator_disable_complete(rdev_get_name(rdev));
1807 
1808 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1809 			     NULL);
1810 	return 0;
1811 }
1812 
1813 /* locks held by regulator_disable() */
1814 static int _regulator_disable(struct regulator_dev *rdev)
1815 {
1816 	int ret = 0;
1817 
1818 	if (WARN(rdev->use_count <= 0,
1819 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1820 		return -EIO;
1821 
1822 	/* are we the last user and permitted to disable ? */
1823 	if (rdev->use_count == 1 &&
1824 	    (rdev->constraints && !rdev->constraints->always_on)) {
1825 
1826 		/* we are last user */
1827 		if (_regulator_can_change_status(rdev)) {
1828 			ret = _regulator_do_disable(rdev);
1829 			if (ret < 0) {
1830 				rdev_err(rdev, "failed to disable\n");
1831 				return ret;
1832 			}
1833 		}
1834 
1835 		rdev->use_count = 0;
1836 	} else if (rdev->use_count > 1) {
1837 
1838 		if (rdev->constraints &&
1839 			(rdev->constraints->valid_ops_mask &
1840 			REGULATOR_CHANGE_DRMS))
1841 			drms_uA_update(rdev);
1842 
1843 		rdev->use_count--;
1844 	}
1845 
1846 	return ret;
1847 }
1848 
1849 /**
1850  * regulator_disable - disable regulator output
1851  * @regulator: regulator source
1852  *
1853  * Disable the regulator output voltage or current.  Calls to
1854  * regulator_enable() must be balanced with calls to
1855  * regulator_disable().
1856  *
1857  * NOTE: this will only disable the regulator output if no other consumer
1858  * devices have it enabled, the regulator device supports disabling and
1859  * machine constraints permit this operation.
1860  */
1861 int regulator_disable(struct regulator *regulator)
1862 {
1863 	struct regulator_dev *rdev = regulator->rdev;
1864 	int ret = 0;
1865 
1866 	if (regulator->always_on)
1867 		return 0;
1868 
1869 	mutex_lock(&rdev->mutex);
1870 	ret = _regulator_disable(rdev);
1871 	mutex_unlock(&rdev->mutex);
1872 
1873 	if (ret == 0 && rdev->supply)
1874 		regulator_disable(rdev->supply);
1875 
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(regulator_disable);
1879 
1880 /* locks held by regulator_force_disable() */
1881 static int _regulator_force_disable(struct regulator_dev *rdev)
1882 {
1883 	int ret = 0;
1884 
1885 	/* force disable */
1886 	if (rdev->desc->ops->disable) {
1887 		/* ah well, who wants to live forever... */
1888 		ret = rdev->desc->ops->disable(rdev);
1889 		if (ret < 0) {
1890 			rdev_err(rdev, "failed to force disable\n");
1891 			return ret;
1892 		}
1893 		/* notify other consumers that power has been forced off */
1894 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1895 			REGULATOR_EVENT_DISABLE, NULL);
1896 	}
1897 
1898 	return ret;
1899 }
1900 
1901 /**
1902  * regulator_force_disable - force disable regulator output
1903  * @regulator: regulator source
1904  *
1905  * Forcibly disable the regulator output voltage or current.
1906  * NOTE: this *will* disable the regulator output even if other consumer
1907  * devices have it enabled. This should be used for situations when device
1908  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1909  */
1910 int regulator_force_disable(struct regulator *regulator)
1911 {
1912 	struct regulator_dev *rdev = regulator->rdev;
1913 	int ret;
1914 
1915 	mutex_lock(&rdev->mutex);
1916 	regulator->uA_load = 0;
1917 	ret = _regulator_force_disable(regulator->rdev);
1918 	mutex_unlock(&rdev->mutex);
1919 
1920 	if (rdev->supply)
1921 		while (rdev->open_count--)
1922 			regulator_disable(rdev->supply);
1923 
1924 	return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(regulator_force_disable);
1927 
1928 static void regulator_disable_work(struct work_struct *work)
1929 {
1930 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1931 						  disable_work.work);
1932 	int count, i, ret;
1933 
1934 	mutex_lock(&rdev->mutex);
1935 
1936 	BUG_ON(!rdev->deferred_disables);
1937 
1938 	count = rdev->deferred_disables;
1939 	rdev->deferred_disables = 0;
1940 
1941 	for (i = 0; i < count; i++) {
1942 		ret = _regulator_disable(rdev);
1943 		if (ret != 0)
1944 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1945 	}
1946 
1947 	mutex_unlock(&rdev->mutex);
1948 
1949 	if (rdev->supply) {
1950 		for (i = 0; i < count; i++) {
1951 			ret = regulator_disable(rdev->supply);
1952 			if (ret != 0) {
1953 				rdev_err(rdev,
1954 					 "Supply disable failed: %d\n", ret);
1955 			}
1956 		}
1957 	}
1958 }
1959 
1960 /**
1961  * regulator_disable_deferred - disable regulator output with delay
1962  * @regulator: regulator source
1963  * @ms: miliseconds until the regulator is disabled
1964  *
1965  * Execute regulator_disable() on the regulator after a delay.  This
1966  * is intended for use with devices that require some time to quiesce.
1967  *
1968  * NOTE: this will only disable the regulator output if no other consumer
1969  * devices have it enabled, the regulator device supports disabling and
1970  * machine constraints permit this operation.
1971  */
1972 int regulator_disable_deferred(struct regulator *regulator, int ms)
1973 {
1974 	struct regulator_dev *rdev = regulator->rdev;
1975 	int ret;
1976 
1977 	if (regulator->always_on)
1978 		return 0;
1979 
1980 	if (!ms)
1981 		return regulator_disable(regulator);
1982 
1983 	mutex_lock(&rdev->mutex);
1984 	rdev->deferred_disables++;
1985 	mutex_unlock(&rdev->mutex);
1986 
1987 	ret = queue_delayed_work(system_power_efficient_wq,
1988 				 &rdev->disable_work,
1989 				 msecs_to_jiffies(ms));
1990 	if (ret < 0)
1991 		return ret;
1992 	else
1993 		return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1996 
1997 static int _regulator_is_enabled(struct regulator_dev *rdev)
1998 {
1999 	/* A GPIO control always takes precedence */
2000 	if (rdev->ena_pin)
2001 		return rdev->ena_gpio_state;
2002 
2003 	/* If we don't know then assume that the regulator is always on */
2004 	if (!rdev->desc->ops->is_enabled)
2005 		return 1;
2006 
2007 	return rdev->desc->ops->is_enabled(rdev);
2008 }
2009 
2010 /**
2011  * regulator_is_enabled - is the regulator output enabled
2012  * @regulator: regulator source
2013  *
2014  * Returns positive if the regulator driver backing the source/client
2015  * has requested that the device be enabled, zero if it hasn't, else a
2016  * negative errno code.
2017  *
2018  * Note that the device backing this regulator handle can have multiple
2019  * users, so it might be enabled even if regulator_enable() was never
2020  * called for this particular source.
2021  */
2022 int regulator_is_enabled(struct regulator *regulator)
2023 {
2024 	int ret;
2025 
2026 	if (regulator->always_on)
2027 		return 1;
2028 
2029 	mutex_lock(&regulator->rdev->mutex);
2030 	ret = _regulator_is_enabled(regulator->rdev);
2031 	mutex_unlock(&regulator->rdev->mutex);
2032 
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2036 
2037 /**
2038  * regulator_can_change_voltage - check if regulator can change voltage
2039  * @regulator: regulator source
2040  *
2041  * Returns positive if the regulator driver backing the source/client
2042  * can change its voltage, false otherwise. Usefull for detecting fixed
2043  * or dummy regulators and disabling voltage change logic in the client
2044  * driver.
2045  */
2046 int regulator_can_change_voltage(struct regulator *regulator)
2047 {
2048 	struct regulator_dev	*rdev = regulator->rdev;
2049 
2050 	if (rdev->constraints &&
2051 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2052 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2053 			return 1;
2054 
2055 		if (rdev->desc->continuous_voltage_range &&
2056 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2057 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2058 			return 1;
2059 	}
2060 
2061 	return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2064 
2065 /**
2066  * regulator_count_voltages - count regulator_list_voltage() selectors
2067  * @regulator: regulator source
2068  *
2069  * Returns number of selectors, or negative errno.  Selectors are
2070  * numbered starting at zero, and typically correspond to bitfields
2071  * in hardware registers.
2072  */
2073 int regulator_count_voltages(struct regulator *regulator)
2074 {
2075 	struct regulator_dev	*rdev = regulator->rdev;
2076 
2077 	return rdev->desc->n_voltages ? : -EINVAL;
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2080 
2081 /**
2082  * regulator_list_voltage - enumerate supported voltages
2083  * @regulator: regulator source
2084  * @selector: identify voltage to list
2085  * Context: can sleep
2086  *
2087  * Returns a voltage that can be passed to @regulator_set_voltage(),
2088  * zero if this selector code can't be used on this system, or a
2089  * negative errno.
2090  */
2091 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2092 {
2093 	struct regulator_dev	*rdev = regulator->rdev;
2094 	struct regulator_ops	*ops = rdev->desc->ops;
2095 	int			ret;
2096 
2097 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2098 		return -EINVAL;
2099 
2100 	mutex_lock(&rdev->mutex);
2101 	ret = ops->list_voltage(rdev, selector);
2102 	mutex_unlock(&rdev->mutex);
2103 
2104 	if (ret > 0) {
2105 		if (ret < rdev->constraints->min_uV)
2106 			ret = 0;
2107 		else if (ret > rdev->constraints->max_uV)
2108 			ret = 0;
2109 	}
2110 
2111 	return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2114 
2115 /**
2116  * regulator_get_linear_step - return the voltage step size between VSEL values
2117  * @regulator: regulator source
2118  *
2119  * Returns the voltage step size between VSEL values for linear
2120  * regulators, or return 0 if the regulator isn't a linear regulator.
2121  */
2122 unsigned int regulator_get_linear_step(struct regulator *regulator)
2123 {
2124 	struct regulator_dev *rdev = regulator->rdev;
2125 
2126 	return rdev->desc->uV_step;
2127 }
2128 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2129 
2130 /**
2131  * regulator_is_supported_voltage - check if a voltage range can be supported
2132  *
2133  * @regulator: Regulator to check.
2134  * @min_uV: Minimum required voltage in uV.
2135  * @max_uV: Maximum required voltage in uV.
2136  *
2137  * Returns a boolean or a negative error code.
2138  */
2139 int regulator_is_supported_voltage(struct regulator *regulator,
2140 				   int min_uV, int max_uV)
2141 {
2142 	struct regulator_dev *rdev = regulator->rdev;
2143 	int i, voltages, ret;
2144 
2145 	/* If we can't change voltage check the current voltage */
2146 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147 		ret = regulator_get_voltage(regulator);
2148 		if (ret >= 0)
2149 			return (min_uV <= ret && ret <= max_uV);
2150 		else
2151 			return ret;
2152 	}
2153 
2154 	/* Any voltage within constrains range is fine? */
2155 	if (rdev->desc->continuous_voltage_range)
2156 		return min_uV >= rdev->constraints->min_uV &&
2157 				max_uV <= rdev->constraints->max_uV;
2158 
2159 	ret = regulator_count_voltages(regulator);
2160 	if (ret < 0)
2161 		return ret;
2162 	voltages = ret;
2163 
2164 	for (i = 0; i < voltages; i++) {
2165 		ret = regulator_list_voltage(regulator, i);
2166 
2167 		if (ret >= min_uV && ret <= max_uV)
2168 			return 1;
2169 	}
2170 
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2174 
2175 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2176 				     int min_uV, int max_uV)
2177 {
2178 	int ret;
2179 	int delay = 0;
2180 	int best_val = 0;
2181 	unsigned int selector;
2182 	int old_selector = -1;
2183 
2184 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2185 
2186 	min_uV += rdev->constraints->uV_offset;
2187 	max_uV += rdev->constraints->uV_offset;
2188 
2189 	/*
2190 	 * If we can't obtain the old selector there is not enough
2191 	 * info to call set_voltage_time_sel().
2192 	 */
2193 	if (_regulator_is_enabled(rdev) &&
2194 	    rdev->desc->ops->set_voltage_time_sel &&
2195 	    rdev->desc->ops->get_voltage_sel) {
2196 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2197 		if (old_selector < 0)
2198 			return old_selector;
2199 	}
2200 
2201 	if (rdev->desc->ops->set_voltage) {
2202 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2203 						   &selector);
2204 
2205 		if (ret >= 0) {
2206 			if (rdev->desc->ops->list_voltage)
2207 				best_val = rdev->desc->ops->list_voltage(rdev,
2208 									 selector);
2209 			else
2210 				best_val = _regulator_get_voltage(rdev);
2211 		}
2212 
2213 	} else if (rdev->desc->ops->set_voltage_sel) {
2214 		if (rdev->desc->ops->map_voltage) {
2215 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2216 							   max_uV);
2217 		} else {
2218 			if (rdev->desc->ops->list_voltage ==
2219 			    regulator_list_voltage_linear)
2220 				ret = regulator_map_voltage_linear(rdev,
2221 								min_uV, max_uV);
2222 			else
2223 				ret = regulator_map_voltage_iterate(rdev,
2224 								min_uV, max_uV);
2225 		}
2226 
2227 		if (ret >= 0) {
2228 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2229 			if (min_uV <= best_val && max_uV >= best_val) {
2230 				selector = ret;
2231 				if (old_selector == selector)
2232 					ret = 0;
2233 				else
2234 					ret = rdev->desc->ops->set_voltage_sel(
2235 								rdev, ret);
2236 			} else {
2237 				ret = -EINVAL;
2238 			}
2239 		}
2240 	} else {
2241 		ret = -EINVAL;
2242 	}
2243 
2244 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2245 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2246 		&& old_selector != selector) {
2247 
2248 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2249 						old_selector, selector);
2250 		if (delay < 0) {
2251 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2252 				  delay);
2253 			delay = 0;
2254 		}
2255 
2256 		/* Insert any necessary delays */
2257 		if (delay >= 1000) {
2258 			mdelay(delay / 1000);
2259 			udelay(delay % 1000);
2260 		} else if (delay) {
2261 			udelay(delay);
2262 		}
2263 	}
2264 
2265 	if (ret == 0 && best_val >= 0) {
2266 		unsigned long data = best_val;
2267 
2268 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2269 				     (void *)data);
2270 	}
2271 
2272 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2273 
2274 	return ret;
2275 }
2276 
2277 /**
2278  * regulator_set_voltage - set regulator output voltage
2279  * @regulator: regulator source
2280  * @min_uV: Minimum required voltage in uV
2281  * @max_uV: Maximum acceptable voltage in uV
2282  *
2283  * Sets a voltage regulator to the desired output voltage. This can be set
2284  * during any regulator state. IOW, regulator can be disabled or enabled.
2285  *
2286  * If the regulator is enabled then the voltage will change to the new value
2287  * immediately otherwise if the regulator is disabled the regulator will
2288  * output at the new voltage when enabled.
2289  *
2290  * NOTE: If the regulator is shared between several devices then the lowest
2291  * request voltage that meets the system constraints will be used.
2292  * Regulator system constraints must be set for this regulator before
2293  * calling this function otherwise this call will fail.
2294  */
2295 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2296 {
2297 	struct regulator_dev *rdev = regulator->rdev;
2298 	int ret = 0;
2299 	int old_min_uV, old_max_uV;
2300 
2301 	mutex_lock(&rdev->mutex);
2302 
2303 	/* If we're setting the same range as last time the change
2304 	 * should be a noop (some cpufreq implementations use the same
2305 	 * voltage for multiple frequencies, for example).
2306 	 */
2307 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2308 		goto out;
2309 
2310 	/* sanity check */
2311 	if (!rdev->desc->ops->set_voltage &&
2312 	    !rdev->desc->ops->set_voltage_sel) {
2313 		ret = -EINVAL;
2314 		goto out;
2315 	}
2316 
2317 	/* constraints check */
2318 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2319 	if (ret < 0)
2320 		goto out;
2321 
2322 	/* restore original values in case of error */
2323 	old_min_uV = regulator->min_uV;
2324 	old_max_uV = regulator->max_uV;
2325 	regulator->min_uV = min_uV;
2326 	regulator->max_uV = max_uV;
2327 
2328 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2329 	if (ret < 0)
2330 		goto out2;
2331 
2332 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2333 	if (ret < 0)
2334 		goto out2;
2335 
2336 out:
2337 	mutex_unlock(&rdev->mutex);
2338 	return ret;
2339 out2:
2340 	regulator->min_uV = old_min_uV;
2341 	regulator->max_uV = old_max_uV;
2342 	mutex_unlock(&rdev->mutex);
2343 	return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2346 
2347 /**
2348  * regulator_set_voltage_time - get raise/fall time
2349  * @regulator: regulator source
2350  * @old_uV: starting voltage in microvolts
2351  * @new_uV: target voltage in microvolts
2352  *
2353  * Provided with the starting and ending voltage, this function attempts to
2354  * calculate the time in microseconds required to rise or fall to this new
2355  * voltage.
2356  */
2357 int regulator_set_voltage_time(struct regulator *regulator,
2358 			       int old_uV, int new_uV)
2359 {
2360 	struct regulator_dev	*rdev = regulator->rdev;
2361 	struct regulator_ops	*ops = rdev->desc->ops;
2362 	int old_sel = -1;
2363 	int new_sel = -1;
2364 	int voltage;
2365 	int i;
2366 
2367 	/* Currently requires operations to do this */
2368 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2369 	    || !rdev->desc->n_voltages)
2370 		return -EINVAL;
2371 
2372 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2373 		/* We only look for exact voltage matches here */
2374 		voltage = regulator_list_voltage(regulator, i);
2375 		if (voltage < 0)
2376 			return -EINVAL;
2377 		if (voltage == 0)
2378 			continue;
2379 		if (voltage == old_uV)
2380 			old_sel = i;
2381 		if (voltage == new_uV)
2382 			new_sel = i;
2383 	}
2384 
2385 	if (old_sel < 0 || new_sel < 0)
2386 		return -EINVAL;
2387 
2388 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2391 
2392 /**
2393  * regulator_set_voltage_time_sel - get raise/fall time
2394  * @rdev: regulator source device
2395  * @old_selector: selector for starting voltage
2396  * @new_selector: selector for target voltage
2397  *
2398  * Provided with the starting and target voltage selectors, this function
2399  * returns time in microseconds required to rise or fall to this new voltage
2400  *
2401  * Drivers providing ramp_delay in regulation_constraints can use this as their
2402  * set_voltage_time_sel() operation.
2403  */
2404 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2405 				   unsigned int old_selector,
2406 				   unsigned int new_selector)
2407 {
2408 	unsigned int ramp_delay = 0;
2409 	int old_volt, new_volt;
2410 
2411 	if (rdev->constraints->ramp_delay)
2412 		ramp_delay = rdev->constraints->ramp_delay;
2413 	else if (rdev->desc->ramp_delay)
2414 		ramp_delay = rdev->desc->ramp_delay;
2415 
2416 	if (ramp_delay == 0) {
2417 		rdev_warn(rdev, "ramp_delay not set\n");
2418 		return 0;
2419 	}
2420 
2421 	/* sanity check */
2422 	if (!rdev->desc->ops->list_voltage)
2423 		return -EINVAL;
2424 
2425 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2426 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2427 
2428 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2431 
2432 /**
2433  * regulator_sync_voltage - re-apply last regulator output voltage
2434  * @regulator: regulator source
2435  *
2436  * Re-apply the last configured voltage.  This is intended to be used
2437  * where some external control source the consumer is cooperating with
2438  * has caused the configured voltage to change.
2439  */
2440 int regulator_sync_voltage(struct regulator *regulator)
2441 {
2442 	struct regulator_dev *rdev = regulator->rdev;
2443 	int ret, min_uV, max_uV;
2444 
2445 	mutex_lock(&rdev->mutex);
2446 
2447 	if (!rdev->desc->ops->set_voltage &&
2448 	    !rdev->desc->ops->set_voltage_sel) {
2449 		ret = -EINVAL;
2450 		goto out;
2451 	}
2452 
2453 	/* This is only going to work if we've had a voltage configured. */
2454 	if (!regulator->min_uV && !regulator->max_uV) {
2455 		ret = -EINVAL;
2456 		goto out;
2457 	}
2458 
2459 	min_uV = regulator->min_uV;
2460 	max_uV = regulator->max_uV;
2461 
2462 	/* This should be a paranoia check... */
2463 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2464 	if (ret < 0)
2465 		goto out;
2466 
2467 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2468 	if (ret < 0)
2469 		goto out;
2470 
2471 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2472 
2473 out:
2474 	mutex_unlock(&rdev->mutex);
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2478 
2479 static int _regulator_get_voltage(struct regulator_dev *rdev)
2480 {
2481 	int sel, ret;
2482 
2483 	if (rdev->desc->ops->get_voltage_sel) {
2484 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2485 		if (sel < 0)
2486 			return sel;
2487 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2488 	} else if (rdev->desc->ops->get_voltage) {
2489 		ret = rdev->desc->ops->get_voltage(rdev);
2490 	} else if (rdev->desc->ops->list_voltage) {
2491 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2492 	} else {
2493 		return -EINVAL;
2494 	}
2495 
2496 	if (ret < 0)
2497 		return ret;
2498 	return ret - rdev->constraints->uV_offset;
2499 }
2500 
2501 /**
2502  * regulator_get_voltage - get regulator output voltage
2503  * @regulator: regulator source
2504  *
2505  * This returns the current regulator voltage in uV.
2506  *
2507  * NOTE: If the regulator is disabled it will return the voltage value. This
2508  * function should not be used to determine regulator state.
2509  */
2510 int regulator_get_voltage(struct regulator *regulator)
2511 {
2512 	int ret;
2513 
2514 	mutex_lock(&regulator->rdev->mutex);
2515 
2516 	ret = _regulator_get_voltage(regulator->rdev);
2517 
2518 	mutex_unlock(&regulator->rdev->mutex);
2519 
2520 	return ret;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2523 
2524 /**
2525  * regulator_set_current_limit - set regulator output current limit
2526  * @regulator: regulator source
2527  * @min_uA: Minimum supported current in uA
2528  * @max_uA: Maximum supported current in uA
2529  *
2530  * Sets current sink to the desired output current. This can be set during
2531  * any regulator state. IOW, regulator can be disabled or enabled.
2532  *
2533  * If the regulator is enabled then the current will change to the new value
2534  * immediately otherwise if the regulator is disabled the regulator will
2535  * output at the new current when enabled.
2536  *
2537  * NOTE: Regulator system constraints must be set for this regulator before
2538  * calling this function otherwise this call will fail.
2539  */
2540 int regulator_set_current_limit(struct regulator *regulator,
2541 			       int min_uA, int max_uA)
2542 {
2543 	struct regulator_dev *rdev = regulator->rdev;
2544 	int ret;
2545 
2546 	mutex_lock(&rdev->mutex);
2547 
2548 	/* sanity check */
2549 	if (!rdev->desc->ops->set_current_limit) {
2550 		ret = -EINVAL;
2551 		goto out;
2552 	}
2553 
2554 	/* constraints check */
2555 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2556 	if (ret < 0)
2557 		goto out;
2558 
2559 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2560 out:
2561 	mutex_unlock(&rdev->mutex);
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2565 
2566 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2567 {
2568 	int ret;
2569 
2570 	mutex_lock(&rdev->mutex);
2571 
2572 	/* sanity check */
2573 	if (!rdev->desc->ops->get_current_limit) {
2574 		ret = -EINVAL;
2575 		goto out;
2576 	}
2577 
2578 	ret = rdev->desc->ops->get_current_limit(rdev);
2579 out:
2580 	mutex_unlock(&rdev->mutex);
2581 	return ret;
2582 }
2583 
2584 /**
2585  * regulator_get_current_limit - get regulator output current
2586  * @regulator: regulator source
2587  *
2588  * This returns the current supplied by the specified current sink in uA.
2589  *
2590  * NOTE: If the regulator is disabled it will return the current value. This
2591  * function should not be used to determine regulator state.
2592  */
2593 int regulator_get_current_limit(struct regulator *regulator)
2594 {
2595 	return _regulator_get_current_limit(regulator->rdev);
2596 }
2597 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2598 
2599 /**
2600  * regulator_set_mode - set regulator operating mode
2601  * @regulator: regulator source
2602  * @mode: operating mode - one of the REGULATOR_MODE constants
2603  *
2604  * Set regulator operating mode to increase regulator efficiency or improve
2605  * regulation performance.
2606  *
2607  * NOTE: Regulator system constraints must be set for this regulator before
2608  * calling this function otherwise this call will fail.
2609  */
2610 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2611 {
2612 	struct regulator_dev *rdev = regulator->rdev;
2613 	int ret;
2614 	int regulator_curr_mode;
2615 
2616 	mutex_lock(&rdev->mutex);
2617 
2618 	/* sanity check */
2619 	if (!rdev->desc->ops->set_mode) {
2620 		ret = -EINVAL;
2621 		goto out;
2622 	}
2623 
2624 	/* return if the same mode is requested */
2625 	if (rdev->desc->ops->get_mode) {
2626 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2627 		if (regulator_curr_mode == mode) {
2628 			ret = 0;
2629 			goto out;
2630 		}
2631 	}
2632 
2633 	/* constraints check */
2634 	ret = regulator_mode_constrain(rdev, &mode);
2635 	if (ret < 0)
2636 		goto out;
2637 
2638 	ret = rdev->desc->ops->set_mode(rdev, mode);
2639 out:
2640 	mutex_unlock(&rdev->mutex);
2641 	return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(regulator_set_mode);
2644 
2645 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2646 {
2647 	int ret;
2648 
2649 	mutex_lock(&rdev->mutex);
2650 
2651 	/* sanity check */
2652 	if (!rdev->desc->ops->get_mode) {
2653 		ret = -EINVAL;
2654 		goto out;
2655 	}
2656 
2657 	ret = rdev->desc->ops->get_mode(rdev);
2658 out:
2659 	mutex_unlock(&rdev->mutex);
2660 	return ret;
2661 }
2662 
2663 /**
2664  * regulator_get_mode - get regulator operating mode
2665  * @regulator: regulator source
2666  *
2667  * Get the current regulator operating mode.
2668  */
2669 unsigned int regulator_get_mode(struct regulator *regulator)
2670 {
2671 	return _regulator_get_mode(regulator->rdev);
2672 }
2673 EXPORT_SYMBOL_GPL(regulator_get_mode);
2674 
2675 /**
2676  * regulator_set_optimum_mode - set regulator optimum operating mode
2677  * @regulator: regulator source
2678  * @uA_load: load current
2679  *
2680  * Notifies the regulator core of a new device load. This is then used by
2681  * DRMS (if enabled by constraints) to set the most efficient regulator
2682  * operating mode for the new regulator loading.
2683  *
2684  * Consumer devices notify their supply regulator of the maximum power
2685  * they will require (can be taken from device datasheet in the power
2686  * consumption tables) when they change operational status and hence power
2687  * state. Examples of operational state changes that can affect power
2688  * consumption are :-
2689  *
2690  *    o Device is opened / closed.
2691  *    o Device I/O is about to begin or has just finished.
2692  *    o Device is idling in between work.
2693  *
2694  * This information is also exported via sysfs to userspace.
2695  *
2696  * DRMS will sum the total requested load on the regulator and change
2697  * to the most efficient operating mode if platform constraints allow.
2698  *
2699  * Returns the new regulator mode or error.
2700  */
2701 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2702 {
2703 	struct regulator_dev *rdev = regulator->rdev;
2704 	struct regulator *consumer;
2705 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2706 	unsigned int mode;
2707 
2708 	if (rdev->supply)
2709 		input_uV = regulator_get_voltage(rdev->supply);
2710 
2711 	mutex_lock(&rdev->mutex);
2712 
2713 	/*
2714 	 * first check to see if we can set modes at all, otherwise just
2715 	 * tell the consumer everything is OK.
2716 	 */
2717 	regulator->uA_load = uA_load;
2718 	ret = regulator_check_drms(rdev);
2719 	if (ret < 0) {
2720 		ret = 0;
2721 		goto out;
2722 	}
2723 
2724 	if (!rdev->desc->ops->get_optimum_mode)
2725 		goto out;
2726 
2727 	/*
2728 	 * we can actually do this so any errors are indicators of
2729 	 * potential real failure.
2730 	 */
2731 	ret = -EINVAL;
2732 
2733 	if (!rdev->desc->ops->set_mode)
2734 		goto out;
2735 
2736 	/* get output voltage */
2737 	output_uV = _regulator_get_voltage(rdev);
2738 	if (output_uV <= 0) {
2739 		rdev_err(rdev, "invalid output voltage found\n");
2740 		goto out;
2741 	}
2742 
2743 	/* No supply? Use constraint voltage */
2744 	if (input_uV <= 0)
2745 		input_uV = rdev->constraints->input_uV;
2746 	if (input_uV <= 0) {
2747 		rdev_err(rdev, "invalid input voltage found\n");
2748 		goto out;
2749 	}
2750 
2751 	/* calc total requested load for this regulator */
2752 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2753 		total_uA_load += consumer->uA_load;
2754 
2755 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2756 						 input_uV, output_uV,
2757 						 total_uA_load);
2758 	ret = regulator_mode_constrain(rdev, &mode);
2759 	if (ret < 0) {
2760 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2761 			 total_uA_load, input_uV, output_uV);
2762 		goto out;
2763 	}
2764 
2765 	ret = rdev->desc->ops->set_mode(rdev, mode);
2766 	if (ret < 0) {
2767 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2768 		goto out;
2769 	}
2770 	ret = mode;
2771 out:
2772 	mutex_unlock(&rdev->mutex);
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2776 
2777 /**
2778  * regulator_allow_bypass - allow the regulator to go into bypass mode
2779  *
2780  * @regulator: Regulator to configure
2781  * @enable: enable or disable bypass mode
2782  *
2783  * Allow the regulator to go into bypass mode if all other consumers
2784  * for the regulator also enable bypass mode and the machine
2785  * constraints allow this.  Bypass mode means that the regulator is
2786  * simply passing the input directly to the output with no regulation.
2787  */
2788 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2789 {
2790 	struct regulator_dev *rdev = regulator->rdev;
2791 	int ret = 0;
2792 
2793 	if (!rdev->desc->ops->set_bypass)
2794 		return 0;
2795 
2796 	if (rdev->constraints &&
2797 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2798 		return 0;
2799 
2800 	mutex_lock(&rdev->mutex);
2801 
2802 	if (enable && !regulator->bypass) {
2803 		rdev->bypass_count++;
2804 
2805 		if (rdev->bypass_count == rdev->open_count) {
2806 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2807 			if (ret != 0)
2808 				rdev->bypass_count--;
2809 		}
2810 
2811 	} else if (!enable && regulator->bypass) {
2812 		rdev->bypass_count--;
2813 
2814 		if (rdev->bypass_count != rdev->open_count) {
2815 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2816 			if (ret != 0)
2817 				rdev->bypass_count++;
2818 		}
2819 	}
2820 
2821 	if (ret == 0)
2822 		regulator->bypass = enable;
2823 
2824 	mutex_unlock(&rdev->mutex);
2825 
2826 	return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2829 
2830 /**
2831  * regulator_register_notifier - register regulator event notifier
2832  * @regulator: regulator source
2833  * @nb: notifier block
2834  *
2835  * Register notifier block to receive regulator events.
2836  */
2837 int regulator_register_notifier(struct regulator *regulator,
2838 			      struct notifier_block *nb)
2839 {
2840 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2841 						nb);
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2844 
2845 /**
2846  * regulator_unregister_notifier - unregister regulator event notifier
2847  * @regulator: regulator source
2848  * @nb: notifier block
2849  *
2850  * Unregister regulator event notifier block.
2851  */
2852 int regulator_unregister_notifier(struct regulator *regulator,
2853 				struct notifier_block *nb)
2854 {
2855 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2856 						  nb);
2857 }
2858 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2859 
2860 /* notify regulator consumers and downstream regulator consumers.
2861  * Note mutex must be held by caller.
2862  */
2863 static void _notifier_call_chain(struct regulator_dev *rdev,
2864 				  unsigned long event, void *data)
2865 {
2866 	/* call rdev chain first */
2867 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2868 }
2869 
2870 /**
2871  * regulator_bulk_get - get multiple regulator consumers
2872  *
2873  * @dev:           Device to supply
2874  * @num_consumers: Number of consumers to register
2875  * @consumers:     Configuration of consumers; clients are stored here.
2876  *
2877  * @return 0 on success, an errno on failure.
2878  *
2879  * This helper function allows drivers to get several regulator
2880  * consumers in one operation.  If any of the regulators cannot be
2881  * acquired then any regulators that were allocated will be freed
2882  * before returning to the caller.
2883  */
2884 int regulator_bulk_get(struct device *dev, int num_consumers,
2885 		       struct regulator_bulk_data *consumers)
2886 {
2887 	int i;
2888 	int ret;
2889 
2890 	for (i = 0; i < num_consumers; i++)
2891 		consumers[i].consumer = NULL;
2892 
2893 	for (i = 0; i < num_consumers; i++) {
2894 		consumers[i].consumer = regulator_get(dev,
2895 						      consumers[i].supply);
2896 		if (IS_ERR(consumers[i].consumer)) {
2897 			ret = PTR_ERR(consumers[i].consumer);
2898 			dev_err(dev, "Failed to get supply '%s': %d\n",
2899 				consumers[i].supply, ret);
2900 			consumers[i].consumer = NULL;
2901 			goto err;
2902 		}
2903 	}
2904 
2905 	return 0;
2906 
2907 err:
2908 	while (--i >= 0)
2909 		regulator_put(consumers[i].consumer);
2910 
2911 	return ret;
2912 }
2913 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2914 
2915 /**
2916  * devm_regulator_bulk_get - managed get multiple regulator consumers
2917  *
2918  * @dev:           Device to supply
2919  * @num_consumers: Number of consumers to register
2920  * @consumers:     Configuration of consumers; clients are stored here.
2921  *
2922  * @return 0 on success, an errno on failure.
2923  *
2924  * This helper function allows drivers to get several regulator
2925  * consumers in one operation with management, the regulators will
2926  * automatically be freed when the device is unbound.  If any of the
2927  * regulators cannot be acquired then any regulators that were
2928  * allocated will be freed before returning to the caller.
2929  */
2930 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2931 			    struct regulator_bulk_data *consumers)
2932 {
2933 	int i;
2934 	int ret;
2935 
2936 	for (i = 0; i < num_consumers; i++)
2937 		consumers[i].consumer = NULL;
2938 
2939 	for (i = 0; i < num_consumers; i++) {
2940 		consumers[i].consumer = devm_regulator_get(dev,
2941 							   consumers[i].supply);
2942 		if (IS_ERR(consumers[i].consumer)) {
2943 			ret = PTR_ERR(consumers[i].consumer);
2944 			dev_err(dev, "Failed to get supply '%s': %d\n",
2945 				consumers[i].supply, ret);
2946 			consumers[i].consumer = NULL;
2947 			goto err;
2948 		}
2949 	}
2950 
2951 	return 0;
2952 
2953 err:
2954 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2955 		devm_regulator_put(consumers[i].consumer);
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2960 
2961 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2962 {
2963 	struct regulator_bulk_data *bulk = data;
2964 
2965 	bulk->ret = regulator_enable(bulk->consumer);
2966 }
2967 
2968 /**
2969  * regulator_bulk_enable - enable multiple regulator consumers
2970  *
2971  * @num_consumers: Number of consumers
2972  * @consumers:     Consumer data; clients are stored here.
2973  * @return         0 on success, an errno on failure
2974  *
2975  * This convenience API allows consumers to enable multiple regulator
2976  * clients in a single API call.  If any consumers cannot be enabled
2977  * then any others that were enabled will be disabled again prior to
2978  * return.
2979  */
2980 int regulator_bulk_enable(int num_consumers,
2981 			  struct regulator_bulk_data *consumers)
2982 {
2983 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2984 	int i;
2985 	int ret = 0;
2986 
2987 	for (i = 0; i < num_consumers; i++) {
2988 		if (consumers[i].consumer->always_on)
2989 			consumers[i].ret = 0;
2990 		else
2991 			async_schedule_domain(regulator_bulk_enable_async,
2992 					      &consumers[i], &async_domain);
2993 	}
2994 
2995 	async_synchronize_full_domain(&async_domain);
2996 
2997 	/* If any consumer failed we need to unwind any that succeeded */
2998 	for (i = 0; i < num_consumers; i++) {
2999 		if (consumers[i].ret != 0) {
3000 			ret = consumers[i].ret;
3001 			goto err;
3002 		}
3003 	}
3004 
3005 	return 0;
3006 
3007 err:
3008 	for (i = 0; i < num_consumers; i++) {
3009 		if (consumers[i].ret < 0)
3010 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3011 			       consumers[i].ret);
3012 		else
3013 			regulator_disable(consumers[i].consumer);
3014 	}
3015 
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3019 
3020 /**
3021  * regulator_bulk_disable - disable multiple regulator consumers
3022  *
3023  * @num_consumers: Number of consumers
3024  * @consumers:     Consumer data; clients are stored here.
3025  * @return         0 on success, an errno on failure
3026  *
3027  * This convenience API allows consumers to disable multiple regulator
3028  * clients in a single API call.  If any consumers cannot be disabled
3029  * then any others that were disabled will be enabled again prior to
3030  * return.
3031  */
3032 int regulator_bulk_disable(int num_consumers,
3033 			   struct regulator_bulk_data *consumers)
3034 {
3035 	int i;
3036 	int ret, r;
3037 
3038 	for (i = num_consumers - 1; i >= 0; --i) {
3039 		ret = regulator_disable(consumers[i].consumer);
3040 		if (ret != 0)
3041 			goto err;
3042 	}
3043 
3044 	return 0;
3045 
3046 err:
3047 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3048 	for (++i; i < num_consumers; ++i) {
3049 		r = regulator_enable(consumers[i].consumer);
3050 		if (r != 0)
3051 			pr_err("Failed to reename %s: %d\n",
3052 			       consumers[i].supply, r);
3053 	}
3054 
3055 	return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3058 
3059 /**
3060  * regulator_bulk_force_disable - force disable multiple regulator consumers
3061  *
3062  * @num_consumers: Number of consumers
3063  * @consumers:     Consumer data; clients are stored here.
3064  * @return         0 on success, an errno on failure
3065  *
3066  * This convenience API allows consumers to forcibly disable multiple regulator
3067  * clients in a single API call.
3068  * NOTE: This should be used for situations when device damage will
3069  * likely occur if the regulators are not disabled (e.g. over temp).
3070  * Although regulator_force_disable function call for some consumers can
3071  * return error numbers, the function is called for all consumers.
3072  */
3073 int regulator_bulk_force_disable(int num_consumers,
3074 			   struct regulator_bulk_data *consumers)
3075 {
3076 	int i;
3077 	int ret;
3078 
3079 	for (i = 0; i < num_consumers; i++)
3080 		consumers[i].ret =
3081 			    regulator_force_disable(consumers[i].consumer);
3082 
3083 	for (i = 0; i < num_consumers; i++) {
3084 		if (consumers[i].ret != 0) {
3085 			ret = consumers[i].ret;
3086 			goto out;
3087 		}
3088 	}
3089 
3090 	return 0;
3091 out:
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3095 
3096 /**
3097  * regulator_bulk_free - free multiple regulator consumers
3098  *
3099  * @num_consumers: Number of consumers
3100  * @consumers:     Consumer data; clients are stored here.
3101  *
3102  * This convenience API allows consumers to free multiple regulator
3103  * clients in a single API call.
3104  */
3105 void regulator_bulk_free(int num_consumers,
3106 			 struct regulator_bulk_data *consumers)
3107 {
3108 	int i;
3109 
3110 	for (i = 0; i < num_consumers; i++) {
3111 		regulator_put(consumers[i].consumer);
3112 		consumers[i].consumer = NULL;
3113 	}
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3116 
3117 /**
3118  * regulator_notifier_call_chain - call regulator event notifier
3119  * @rdev: regulator source
3120  * @event: notifier block
3121  * @data: callback-specific data.
3122  *
3123  * Called by regulator drivers to notify clients a regulator event has
3124  * occurred. We also notify regulator clients downstream.
3125  * Note lock must be held by caller.
3126  */
3127 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3128 				  unsigned long event, void *data)
3129 {
3130 	_notifier_call_chain(rdev, event, data);
3131 	return NOTIFY_DONE;
3132 
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3135 
3136 /**
3137  * regulator_mode_to_status - convert a regulator mode into a status
3138  *
3139  * @mode: Mode to convert
3140  *
3141  * Convert a regulator mode into a status.
3142  */
3143 int regulator_mode_to_status(unsigned int mode)
3144 {
3145 	switch (mode) {
3146 	case REGULATOR_MODE_FAST:
3147 		return REGULATOR_STATUS_FAST;
3148 	case REGULATOR_MODE_NORMAL:
3149 		return REGULATOR_STATUS_NORMAL;
3150 	case REGULATOR_MODE_IDLE:
3151 		return REGULATOR_STATUS_IDLE;
3152 	case REGULATOR_MODE_STANDBY:
3153 		return REGULATOR_STATUS_STANDBY;
3154 	default:
3155 		return REGULATOR_STATUS_UNDEFINED;
3156 	}
3157 }
3158 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3159 
3160 /*
3161  * To avoid cluttering sysfs (and memory) with useless state, only
3162  * create attributes that can be meaningfully displayed.
3163  */
3164 static int add_regulator_attributes(struct regulator_dev *rdev)
3165 {
3166 	struct device		*dev = &rdev->dev;
3167 	struct regulator_ops	*ops = rdev->desc->ops;
3168 	int			status = 0;
3169 
3170 	/* some attributes need specific methods to be displayed */
3171 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3172 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3173 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3174 		status = device_create_file(dev, &dev_attr_microvolts);
3175 		if (status < 0)
3176 			return status;
3177 	}
3178 	if (ops->get_current_limit) {
3179 		status = device_create_file(dev, &dev_attr_microamps);
3180 		if (status < 0)
3181 			return status;
3182 	}
3183 	if (ops->get_mode) {
3184 		status = device_create_file(dev, &dev_attr_opmode);
3185 		if (status < 0)
3186 			return status;
3187 	}
3188 	if (rdev->ena_pin || ops->is_enabled) {
3189 		status = device_create_file(dev, &dev_attr_state);
3190 		if (status < 0)
3191 			return status;
3192 	}
3193 	if (ops->get_status) {
3194 		status = device_create_file(dev, &dev_attr_status);
3195 		if (status < 0)
3196 			return status;
3197 	}
3198 	if (ops->get_bypass) {
3199 		status = device_create_file(dev, &dev_attr_bypass);
3200 		if (status < 0)
3201 			return status;
3202 	}
3203 
3204 	/* some attributes are type-specific */
3205 	if (rdev->desc->type == REGULATOR_CURRENT) {
3206 		status = device_create_file(dev, &dev_attr_requested_microamps);
3207 		if (status < 0)
3208 			return status;
3209 	}
3210 
3211 	/* all the other attributes exist to support constraints;
3212 	 * don't show them if there are no constraints, or if the
3213 	 * relevant supporting methods are missing.
3214 	 */
3215 	if (!rdev->constraints)
3216 		return status;
3217 
3218 	/* constraints need specific supporting methods */
3219 	if (ops->set_voltage || ops->set_voltage_sel) {
3220 		status = device_create_file(dev, &dev_attr_min_microvolts);
3221 		if (status < 0)
3222 			return status;
3223 		status = device_create_file(dev, &dev_attr_max_microvolts);
3224 		if (status < 0)
3225 			return status;
3226 	}
3227 	if (ops->set_current_limit) {
3228 		status = device_create_file(dev, &dev_attr_min_microamps);
3229 		if (status < 0)
3230 			return status;
3231 		status = device_create_file(dev, &dev_attr_max_microamps);
3232 		if (status < 0)
3233 			return status;
3234 	}
3235 
3236 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3237 	if (status < 0)
3238 		return status;
3239 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3240 	if (status < 0)
3241 		return status;
3242 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3243 	if (status < 0)
3244 		return status;
3245 
3246 	if (ops->set_suspend_voltage) {
3247 		status = device_create_file(dev,
3248 				&dev_attr_suspend_standby_microvolts);
3249 		if (status < 0)
3250 			return status;
3251 		status = device_create_file(dev,
3252 				&dev_attr_suspend_mem_microvolts);
3253 		if (status < 0)
3254 			return status;
3255 		status = device_create_file(dev,
3256 				&dev_attr_suspend_disk_microvolts);
3257 		if (status < 0)
3258 			return status;
3259 	}
3260 
3261 	if (ops->set_suspend_mode) {
3262 		status = device_create_file(dev,
3263 				&dev_attr_suspend_standby_mode);
3264 		if (status < 0)
3265 			return status;
3266 		status = device_create_file(dev,
3267 				&dev_attr_suspend_mem_mode);
3268 		if (status < 0)
3269 			return status;
3270 		status = device_create_file(dev,
3271 				&dev_attr_suspend_disk_mode);
3272 		if (status < 0)
3273 			return status;
3274 	}
3275 
3276 	return status;
3277 }
3278 
3279 static void rdev_init_debugfs(struct regulator_dev *rdev)
3280 {
3281 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3282 	if (!rdev->debugfs) {
3283 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3284 		return;
3285 	}
3286 
3287 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3288 			   &rdev->use_count);
3289 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3290 			   &rdev->open_count);
3291 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3292 			   &rdev->bypass_count);
3293 }
3294 
3295 /**
3296  * regulator_register - register regulator
3297  * @regulator_desc: regulator to register
3298  * @config: runtime configuration for regulator
3299  *
3300  * Called by regulator drivers to register a regulator.
3301  * Returns a valid pointer to struct regulator_dev on success
3302  * or an ERR_PTR() on error.
3303  */
3304 struct regulator_dev *
3305 regulator_register(const struct regulator_desc *regulator_desc,
3306 		   const struct regulator_config *config)
3307 {
3308 	const struct regulation_constraints *constraints = NULL;
3309 	const struct regulator_init_data *init_data;
3310 	static atomic_t regulator_no = ATOMIC_INIT(0);
3311 	struct regulator_dev *rdev;
3312 	struct device *dev;
3313 	int ret, i;
3314 	const char *supply = NULL;
3315 
3316 	if (regulator_desc == NULL || config == NULL)
3317 		return ERR_PTR(-EINVAL);
3318 
3319 	dev = config->dev;
3320 	WARN_ON(!dev);
3321 
3322 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3323 		return ERR_PTR(-EINVAL);
3324 
3325 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3326 	    regulator_desc->type != REGULATOR_CURRENT)
3327 		return ERR_PTR(-EINVAL);
3328 
3329 	/* Only one of each should be implemented */
3330 	WARN_ON(regulator_desc->ops->get_voltage &&
3331 		regulator_desc->ops->get_voltage_sel);
3332 	WARN_ON(regulator_desc->ops->set_voltage &&
3333 		regulator_desc->ops->set_voltage_sel);
3334 
3335 	/* If we're using selectors we must implement list_voltage. */
3336 	if (regulator_desc->ops->get_voltage_sel &&
3337 	    !regulator_desc->ops->list_voltage) {
3338 		return ERR_PTR(-EINVAL);
3339 	}
3340 	if (regulator_desc->ops->set_voltage_sel &&
3341 	    !regulator_desc->ops->list_voltage) {
3342 		return ERR_PTR(-EINVAL);
3343 	}
3344 
3345 	init_data = config->init_data;
3346 
3347 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3348 	if (rdev == NULL)
3349 		return ERR_PTR(-ENOMEM);
3350 
3351 	mutex_lock(&regulator_list_mutex);
3352 
3353 	mutex_init(&rdev->mutex);
3354 	rdev->reg_data = config->driver_data;
3355 	rdev->owner = regulator_desc->owner;
3356 	rdev->desc = regulator_desc;
3357 	if (config->regmap)
3358 		rdev->regmap = config->regmap;
3359 	else if (dev_get_regmap(dev, NULL))
3360 		rdev->regmap = dev_get_regmap(dev, NULL);
3361 	else if (dev->parent)
3362 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3363 	INIT_LIST_HEAD(&rdev->consumer_list);
3364 	INIT_LIST_HEAD(&rdev->list);
3365 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3366 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3367 
3368 	/* preform any regulator specific init */
3369 	if (init_data && init_data->regulator_init) {
3370 		ret = init_data->regulator_init(rdev->reg_data);
3371 		if (ret < 0)
3372 			goto clean;
3373 	}
3374 
3375 	/* register with sysfs */
3376 	rdev->dev.class = &regulator_class;
3377 	rdev->dev.of_node = config->of_node;
3378 	rdev->dev.parent = dev;
3379 	dev_set_name(&rdev->dev, "regulator.%d",
3380 		     atomic_inc_return(&regulator_no) - 1);
3381 	ret = device_register(&rdev->dev);
3382 	if (ret != 0) {
3383 		put_device(&rdev->dev);
3384 		goto clean;
3385 	}
3386 
3387 	dev_set_drvdata(&rdev->dev, rdev);
3388 
3389 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3390 		ret = regulator_ena_gpio_request(rdev, config);
3391 		if (ret != 0) {
3392 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3393 				 config->ena_gpio, ret);
3394 			goto wash;
3395 		}
3396 
3397 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3398 			rdev->ena_gpio_state = 1;
3399 
3400 		if (config->ena_gpio_invert)
3401 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3402 	}
3403 
3404 	/* set regulator constraints */
3405 	if (init_data)
3406 		constraints = &init_data->constraints;
3407 
3408 	ret = set_machine_constraints(rdev, constraints);
3409 	if (ret < 0)
3410 		goto scrub;
3411 
3412 	/* add attributes supported by this regulator */
3413 	ret = add_regulator_attributes(rdev);
3414 	if (ret < 0)
3415 		goto scrub;
3416 
3417 	if (init_data && init_data->supply_regulator)
3418 		supply = init_data->supply_regulator;
3419 	else if (regulator_desc->supply_name)
3420 		supply = regulator_desc->supply_name;
3421 
3422 	if (supply) {
3423 		struct regulator_dev *r;
3424 
3425 		r = regulator_dev_lookup(dev, supply, &ret);
3426 
3427 		if (ret == -ENODEV) {
3428 			/*
3429 			 * No supply was specified for this regulator and
3430 			 * there will never be one.
3431 			 */
3432 			ret = 0;
3433 			goto add_dev;
3434 		} else if (!r) {
3435 			dev_err(dev, "Failed to find supply %s\n", supply);
3436 			ret = -EPROBE_DEFER;
3437 			goto scrub;
3438 		}
3439 
3440 		ret = set_supply(rdev, r);
3441 		if (ret < 0)
3442 			goto scrub;
3443 
3444 		/* Enable supply if rail is enabled */
3445 		if (_regulator_is_enabled(rdev)) {
3446 			ret = regulator_enable(rdev->supply);
3447 			if (ret < 0)
3448 				goto scrub;
3449 		}
3450 	}
3451 
3452 add_dev:
3453 	/* add consumers devices */
3454 	if (init_data) {
3455 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3456 			ret = set_consumer_device_supply(rdev,
3457 				init_data->consumer_supplies[i].dev_name,
3458 				init_data->consumer_supplies[i].supply);
3459 			if (ret < 0) {
3460 				dev_err(dev, "Failed to set supply %s\n",
3461 					init_data->consumer_supplies[i].supply);
3462 				goto unset_supplies;
3463 			}
3464 		}
3465 	}
3466 
3467 	list_add(&rdev->list, &regulator_list);
3468 
3469 	rdev_init_debugfs(rdev);
3470 out:
3471 	mutex_unlock(&regulator_list_mutex);
3472 	return rdev;
3473 
3474 unset_supplies:
3475 	unset_regulator_supplies(rdev);
3476 
3477 scrub:
3478 	if (rdev->supply)
3479 		_regulator_put(rdev->supply);
3480 	regulator_ena_gpio_free(rdev);
3481 	kfree(rdev->constraints);
3482 wash:
3483 	device_unregister(&rdev->dev);
3484 	/* device core frees rdev */
3485 	rdev = ERR_PTR(ret);
3486 	goto out;
3487 
3488 clean:
3489 	kfree(rdev);
3490 	rdev = ERR_PTR(ret);
3491 	goto out;
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_register);
3494 
3495 /**
3496  * regulator_unregister - unregister regulator
3497  * @rdev: regulator to unregister
3498  *
3499  * Called by regulator drivers to unregister a regulator.
3500  */
3501 void regulator_unregister(struct regulator_dev *rdev)
3502 {
3503 	if (rdev == NULL)
3504 		return;
3505 
3506 	if (rdev->supply) {
3507 		while (rdev->use_count--)
3508 			regulator_disable(rdev->supply);
3509 		regulator_put(rdev->supply);
3510 	}
3511 	mutex_lock(&regulator_list_mutex);
3512 	debugfs_remove_recursive(rdev->debugfs);
3513 	flush_work(&rdev->disable_work.work);
3514 	WARN_ON(rdev->open_count);
3515 	unset_regulator_supplies(rdev);
3516 	list_del(&rdev->list);
3517 	kfree(rdev->constraints);
3518 	regulator_ena_gpio_free(rdev);
3519 	device_unregister(&rdev->dev);
3520 	mutex_unlock(&regulator_list_mutex);
3521 }
3522 EXPORT_SYMBOL_GPL(regulator_unregister);
3523 
3524 /**
3525  * regulator_suspend_prepare - prepare regulators for system wide suspend
3526  * @state: system suspend state
3527  *
3528  * Configure each regulator with it's suspend operating parameters for state.
3529  * This will usually be called by machine suspend code prior to supending.
3530  */
3531 int regulator_suspend_prepare(suspend_state_t state)
3532 {
3533 	struct regulator_dev *rdev;
3534 	int ret = 0;
3535 
3536 	/* ON is handled by regulator active state */
3537 	if (state == PM_SUSPEND_ON)
3538 		return -EINVAL;
3539 
3540 	mutex_lock(&regulator_list_mutex);
3541 	list_for_each_entry(rdev, &regulator_list, list) {
3542 
3543 		mutex_lock(&rdev->mutex);
3544 		ret = suspend_prepare(rdev, state);
3545 		mutex_unlock(&rdev->mutex);
3546 
3547 		if (ret < 0) {
3548 			rdev_err(rdev, "failed to prepare\n");
3549 			goto out;
3550 		}
3551 	}
3552 out:
3553 	mutex_unlock(&regulator_list_mutex);
3554 	return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3557 
3558 /**
3559  * regulator_suspend_finish - resume regulators from system wide suspend
3560  *
3561  * Turn on regulators that might be turned off by regulator_suspend_prepare
3562  * and that should be turned on according to the regulators properties.
3563  */
3564 int regulator_suspend_finish(void)
3565 {
3566 	struct regulator_dev *rdev;
3567 	int ret = 0, error;
3568 
3569 	mutex_lock(&regulator_list_mutex);
3570 	list_for_each_entry(rdev, &regulator_list, list) {
3571 		struct regulator_ops *ops = rdev->desc->ops;
3572 
3573 		mutex_lock(&rdev->mutex);
3574 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3575 				ops->enable) {
3576 			error = ops->enable(rdev);
3577 			if (error)
3578 				ret = error;
3579 		} else {
3580 			if (!has_full_constraints)
3581 				goto unlock;
3582 			if (!ops->disable)
3583 				goto unlock;
3584 			if (!_regulator_is_enabled(rdev))
3585 				goto unlock;
3586 
3587 			error = ops->disable(rdev);
3588 			if (error)
3589 				ret = error;
3590 		}
3591 unlock:
3592 		mutex_unlock(&rdev->mutex);
3593 	}
3594 	mutex_unlock(&regulator_list_mutex);
3595 	return ret;
3596 }
3597 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3598 
3599 /**
3600  * regulator_has_full_constraints - the system has fully specified constraints
3601  *
3602  * Calling this function will cause the regulator API to disable all
3603  * regulators which have a zero use count and don't have an always_on
3604  * constraint in a late_initcall.
3605  *
3606  * The intention is that this will become the default behaviour in a
3607  * future kernel release so users are encouraged to use this facility
3608  * now.
3609  */
3610 void regulator_has_full_constraints(void)
3611 {
3612 	has_full_constraints = 1;
3613 }
3614 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3615 
3616 /**
3617  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3618  *
3619  * Calling this function will cause the regulator API to provide a
3620  * dummy regulator to consumers if no physical regulator is found,
3621  * allowing most consumers to proceed as though a regulator were
3622  * configured.  This allows systems such as those with software
3623  * controllable regulators for the CPU core only to be brought up more
3624  * readily.
3625  */
3626 void regulator_use_dummy_regulator(void)
3627 {
3628 	board_wants_dummy_regulator = true;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3631 
3632 /**
3633  * rdev_get_drvdata - get rdev regulator driver data
3634  * @rdev: regulator
3635  *
3636  * Get rdev regulator driver private data. This call can be used in the
3637  * regulator driver context.
3638  */
3639 void *rdev_get_drvdata(struct regulator_dev *rdev)
3640 {
3641 	return rdev->reg_data;
3642 }
3643 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3644 
3645 /**
3646  * regulator_get_drvdata - get regulator driver data
3647  * @regulator: regulator
3648  *
3649  * Get regulator driver private data. This call can be used in the consumer
3650  * driver context when non API regulator specific functions need to be called.
3651  */
3652 void *regulator_get_drvdata(struct regulator *regulator)
3653 {
3654 	return regulator->rdev->reg_data;
3655 }
3656 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3657 
3658 /**
3659  * regulator_set_drvdata - set regulator driver data
3660  * @regulator: regulator
3661  * @data: data
3662  */
3663 void regulator_set_drvdata(struct regulator *regulator, void *data)
3664 {
3665 	regulator->rdev->reg_data = data;
3666 }
3667 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3668 
3669 /**
3670  * regulator_get_id - get regulator ID
3671  * @rdev: regulator
3672  */
3673 int rdev_get_id(struct regulator_dev *rdev)
3674 {
3675 	return rdev->desc->id;
3676 }
3677 EXPORT_SYMBOL_GPL(rdev_get_id);
3678 
3679 struct device *rdev_get_dev(struct regulator_dev *rdev)
3680 {
3681 	return &rdev->dev;
3682 }
3683 EXPORT_SYMBOL_GPL(rdev_get_dev);
3684 
3685 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3686 {
3687 	return reg_init_data->driver_data;
3688 }
3689 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3690 
3691 #ifdef CONFIG_DEBUG_FS
3692 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3693 				    size_t count, loff_t *ppos)
3694 {
3695 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3696 	ssize_t len, ret = 0;
3697 	struct regulator_map *map;
3698 
3699 	if (!buf)
3700 		return -ENOMEM;
3701 
3702 	list_for_each_entry(map, &regulator_map_list, list) {
3703 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3704 			       "%s -> %s.%s\n",
3705 			       rdev_get_name(map->regulator), map->dev_name,
3706 			       map->supply);
3707 		if (len >= 0)
3708 			ret += len;
3709 		if (ret > PAGE_SIZE) {
3710 			ret = PAGE_SIZE;
3711 			break;
3712 		}
3713 	}
3714 
3715 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3716 
3717 	kfree(buf);
3718 
3719 	return ret;
3720 }
3721 #endif
3722 
3723 static const struct file_operations supply_map_fops = {
3724 #ifdef CONFIG_DEBUG_FS
3725 	.read = supply_map_read_file,
3726 	.llseek = default_llseek,
3727 #endif
3728 };
3729 
3730 static int __init regulator_init(void)
3731 {
3732 	int ret;
3733 
3734 	ret = class_register(&regulator_class);
3735 
3736 	debugfs_root = debugfs_create_dir("regulator", NULL);
3737 	if (!debugfs_root)
3738 		pr_warn("regulator: Failed to create debugfs directory\n");
3739 
3740 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3741 			    &supply_map_fops);
3742 
3743 	regulator_dummy_init();
3744 
3745 	return ret;
3746 }
3747 
3748 /* init early to allow our consumers to complete system booting */
3749 core_initcall(regulator_init);
3750 
3751 static int __init regulator_init_complete(void)
3752 {
3753 	struct regulator_dev *rdev;
3754 	struct regulator_ops *ops;
3755 	struct regulation_constraints *c;
3756 	int enabled, ret;
3757 
3758 	/*
3759 	 * Since DT doesn't provide an idiomatic mechanism for
3760 	 * enabling full constraints and since it's much more natural
3761 	 * with DT to provide them just assume that a DT enabled
3762 	 * system has full constraints.
3763 	 */
3764 	if (of_have_populated_dt())
3765 		has_full_constraints = true;
3766 
3767 	mutex_lock(&regulator_list_mutex);
3768 
3769 	/* If we have a full configuration then disable any regulators
3770 	 * which are not in use or always_on.  This will become the
3771 	 * default behaviour in the future.
3772 	 */
3773 	list_for_each_entry(rdev, &regulator_list, list) {
3774 		ops = rdev->desc->ops;
3775 		c = rdev->constraints;
3776 
3777 		if (!ops->disable || (c && c->always_on))
3778 			continue;
3779 
3780 		mutex_lock(&rdev->mutex);
3781 
3782 		if (rdev->use_count)
3783 			goto unlock;
3784 
3785 		/* If we can't read the status assume it's on. */
3786 		if (ops->is_enabled)
3787 			enabled = ops->is_enabled(rdev);
3788 		else
3789 			enabled = 1;
3790 
3791 		if (!enabled)
3792 			goto unlock;
3793 
3794 		if (has_full_constraints) {
3795 			/* We log since this may kill the system if it
3796 			 * goes wrong. */
3797 			rdev_info(rdev, "disabling\n");
3798 			ret = ops->disable(rdev);
3799 			if (ret != 0) {
3800 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3801 			}
3802 		} else {
3803 			/* The intention is that in future we will
3804 			 * assume that full constraints are provided
3805 			 * so warn even if we aren't going to do
3806 			 * anything here.
3807 			 */
3808 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3809 		}
3810 
3811 unlock:
3812 		mutex_unlock(&rdev->mutex);
3813 	}
3814 
3815 	mutex_unlock(&regulator_list_mutex);
3816 
3817 	return 0;
3818 }
3819 late_initcall(regulator_init_complete);
3820