1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_WW_CLASS(regulator_ww_class); 53 static DEFINE_MUTEX(regulator_nesting_mutex); 54 static DEFINE_MUTEX(regulator_list_mutex); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator *regulator); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static int regulator_balance_voltage(struct regulator_dev *rdev, 109 suspend_state_t state); 110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, 111 int min_uV, int max_uV, 112 suspend_state_t state); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 static void _regulator_put(struct regulator *regulator); 117 118 static const char *rdev_get_name(struct regulator_dev *rdev) 119 { 120 if (rdev->constraints && rdev->constraints->name) 121 return rdev->constraints->name; 122 else if (rdev->desc->name) 123 return rdev->desc->name; 124 else 125 return ""; 126 } 127 128 static bool have_full_constraints(void) 129 { 130 return has_full_constraints || of_have_populated_dt(); 131 } 132 133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 134 { 135 if (!rdev->constraints) { 136 rdev_err(rdev, "no constraints\n"); 137 return false; 138 } 139 140 if (rdev->constraints->valid_ops_mask & ops) 141 return true; 142 143 return false; 144 } 145 146 /** 147 * regulator_lock_nested - lock a single regulator 148 * @rdev: regulator source 149 * @ww_ctx: w/w mutex acquire context 150 * 151 * This function can be called many times by one task on 152 * a single regulator and its mutex will be locked only 153 * once. If a task, which is calling this function is other 154 * than the one, which initially locked the mutex, it will 155 * wait on mutex. 156 */ 157 static inline int regulator_lock_nested(struct regulator_dev *rdev, 158 struct ww_acquire_ctx *ww_ctx) 159 { 160 bool lock = false; 161 int ret = 0; 162 163 mutex_lock(®ulator_nesting_mutex); 164 165 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 166 if (rdev->mutex_owner == current) 167 rdev->ref_cnt++; 168 else 169 lock = true; 170 171 if (lock) { 172 mutex_unlock(®ulator_nesting_mutex); 173 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 174 mutex_lock(®ulator_nesting_mutex); 175 } 176 } else { 177 lock = true; 178 } 179 180 if (lock && ret != -EDEADLK) { 181 rdev->ref_cnt++; 182 rdev->mutex_owner = current; 183 } 184 185 mutex_unlock(®ulator_nesting_mutex); 186 187 return ret; 188 } 189 190 /** 191 * regulator_lock - lock a single regulator 192 * @rdev: regulator source 193 * 194 * This function can be called many times by one task on 195 * a single regulator and its mutex will be locked only 196 * once. If a task, which is calling this function is other 197 * than the one, which initially locked the mutex, it will 198 * wait on mutex. 199 */ 200 void regulator_lock(struct regulator_dev *rdev) 201 { 202 regulator_lock_nested(rdev, NULL); 203 } 204 EXPORT_SYMBOL_GPL(regulator_lock); 205 206 /** 207 * regulator_unlock - unlock a single regulator 208 * @rdev: regulator_source 209 * 210 * This function unlocks the mutex when the 211 * reference counter reaches 0. 212 */ 213 void regulator_unlock(struct regulator_dev *rdev) 214 { 215 mutex_lock(®ulator_nesting_mutex); 216 217 if (--rdev->ref_cnt == 0) { 218 rdev->mutex_owner = NULL; 219 ww_mutex_unlock(&rdev->mutex); 220 } 221 222 WARN_ON_ONCE(rdev->ref_cnt < 0); 223 224 mutex_unlock(®ulator_nesting_mutex); 225 } 226 EXPORT_SYMBOL_GPL(regulator_unlock); 227 228 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 229 { 230 struct regulator_dev *c_rdev; 231 int i; 232 233 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 234 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 235 236 if (rdev->supply->rdev == c_rdev) 237 return true; 238 } 239 240 return false; 241 } 242 243 static void regulator_unlock_recursive(struct regulator_dev *rdev, 244 unsigned int n_coupled) 245 { 246 struct regulator_dev *c_rdev; 247 int i; 248 249 for (i = n_coupled; i > 0; i--) { 250 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 251 252 if (!c_rdev) 253 continue; 254 255 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 256 regulator_unlock_recursive( 257 c_rdev->supply->rdev, 258 c_rdev->coupling_desc.n_coupled); 259 260 regulator_unlock(c_rdev); 261 } 262 } 263 264 static int regulator_lock_recursive(struct regulator_dev *rdev, 265 struct regulator_dev **new_contended_rdev, 266 struct regulator_dev **old_contended_rdev, 267 struct ww_acquire_ctx *ww_ctx) 268 { 269 struct regulator_dev *c_rdev; 270 int i, err; 271 272 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 273 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 274 275 if (!c_rdev) 276 continue; 277 278 if (c_rdev != *old_contended_rdev) { 279 err = regulator_lock_nested(c_rdev, ww_ctx); 280 if (err) { 281 if (err == -EDEADLK) { 282 *new_contended_rdev = c_rdev; 283 goto err_unlock; 284 } 285 286 /* shouldn't happen */ 287 WARN_ON_ONCE(err != -EALREADY); 288 } 289 } else { 290 *old_contended_rdev = NULL; 291 } 292 293 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 294 err = regulator_lock_recursive(c_rdev->supply->rdev, 295 new_contended_rdev, 296 old_contended_rdev, 297 ww_ctx); 298 if (err) { 299 regulator_unlock(c_rdev); 300 goto err_unlock; 301 } 302 } 303 } 304 305 return 0; 306 307 err_unlock: 308 regulator_unlock_recursive(rdev, i); 309 310 return err; 311 } 312 313 /** 314 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 315 * regulators 316 * @rdev: regulator source 317 * @ww_ctx: w/w mutex acquire context 318 * 319 * Unlock all regulators related with rdev by coupling or supplying. 320 */ 321 static void regulator_unlock_dependent(struct regulator_dev *rdev, 322 struct ww_acquire_ctx *ww_ctx) 323 { 324 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 325 ww_acquire_fini(ww_ctx); 326 } 327 328 /** 329 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 330 * @rdev: regulator source 331 * @ww_ctx: w/w mutex acquire context 332 * 333 * This function as a wrapper on regulator_lock_recursive(), which locks 334 * all regulators related with rdev by coupling or supplying. 335 */ 336 static void regulator_lock_dependent(struct regulator_dev *rdev, 337 struct ww_acquire_ctx *ww_ctx) 338 { 339 struct regulator_dev *new_contended_rdev = NULL; 340 struct regulator_dev *old_contended_rdev = NULL; 341 int err; 342 343 mutex_lock(®ulator_list_mutex); 344 345 ww_acquire_init(ww_ctx, ®ulator_ww_class); 346 347 do { 348 if (new_contended_rdev) { 349 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 350 old_contended_rdev = new_contended_rdev; 351 old_contended_rdev->ref_cnt++; 352 } 353 354 err = regulator_lock_recursive(rdev, 355 &new_contended_rdev, 356 &old_contended_rdev, 357 ww_ctx); 358 359 if (old_contended_rdev) 360 regulator_unlock(old_contended_rdev); 361 362 } while (err == -EDEADLK); 363 364 ww_acquire_done(ww_ctx); 365 366 mutex_unlock(®ulator_list_mutex); 367 } 368 369 /** 370 * of_get_child_regulator - get a child regulator device node 371 * based on supply name 372 * @parent: Parent device node 373 * @prop_name: Combination regulator supply name and "-supply" 374 * 375 * Traverse all child nodes. 376 * Extract the child regulator device node corresponding to the supply name. 377 * returns the device node corresponding to the regulator if found, else 378 * returns NULL. 379 */ 380 static struct device_node *of_get_child_regulator(struct device_node *parent, 381 const char *prop_name) 382 { 383 struct device_node *regnode = NULL; 384 struct device_node *child = NULL; 385 386 for_each_child_of_node(parent, child) { 387 regnode = of_parse_phandle(child, prop_name, 0); 388 389 if (!regnode) { 390 regnode = of_get_child_regulator(child, prop_name); 391 if (regnode) 392 return regnode; 393 } else { 394 return regnode; 395 } 396 } 397 return NULL; 398 } 399 400 /** 401 * of_get_regulator - get a regulator device node based on supply name 402 * @dev: Device pointer for the consumer (of regulator) device 403 * @supply: regulator supply name 404 * 405 * Extract the regulator device node corresponding to the supply name. 406 * returns the device node corresponding to the regulator if found, else 407 * returns NULL. 408 */ 409 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 410 { 411 struct device_node *regnode = NULL; 412 char prop_name[32]; /* 32 is max size of property name */ 413 414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 415 416 snprintf(prop_name, 32, "%s-supply", supply); 417 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 418 419 if (!regnode) { 420 regnode = of_get_child_regulator(dev->of_node, prop_name); 421 if (regnode) 422 return regnode; 423 424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 425 prop_name, dev->of_node); 426 return NULL; 427 } 428 return regnode; 429 } 430 431 /* Platform voltage constraint check */ 432 static int regulator_check_voltage(struct regulator_dev *rdev, 433 int *min_uV, int *max_uV) 434 { 435 BUG_ON(*min_uV > *max_uV); 436 437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 438 rdev_err(rdev, "voltage operation not allowed\n"); 439 return -EPERM; 440 } 441 442 if (*max_uV > rdev->constraints->max_uV) 443 *max_uV = rdev->constraints->max_uV; 444 if (*min_uV < rdev->constraints->min_uV) 445 *min_uV = rdev->constraints->min_uV; 446 447 if (*min_uV > *max_uV) { 448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 449 *min_uV, *max_uV); 450 return -EINVAL; 451 } 452 453 return 0; 454 } 455 456 /* return 0 if the state is valid */ 457 static int regulator_check_states(suspend_state_t state) 458 { 459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 460 } 461 462 /* Make sure we select a voltage that suits the needs of all 463 * regulator consumers 464 */ 465 static int regulator_check_consumers(struct regulator_dev *rdev, 466 int *min_uV, int *max_uV, 467 suspend_state_t state) 468 { 469 struct regulator *regulator; 470 struct regulator_voltage *voltage; 471 472 list_for_each_entry(regulator, &rdev->consumer_list, list) { 473 voltage = ®ulator->voltage[state]; 474 /* 475 * Assume consumers that didn't say anything are OK 476 * with anything in the constraint range. 477 */ 478 if (!voltage->min_uV && !voltage->max_uV) 479 continue; 480 481 if (*max_uV > voltage->max_uV) 482 *max_uV = voltage->max_uV; 483 if (*min_uV < voltage->min_uV) 484 *min_uV = voltage->min_uV; 485 } 486 487 if (*min_uV > *max_uV) { 488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 489 *min_uV, *max_uV); 490 return -EINVAL; 491 } 492 493 return 0; 494 } 495 496 /* current constraint check */ 497 static int regulator_check_current_limit(struct regulator_dev *rdev, 498 int *min_uA, int *max_uA) 499 { 500 BUG_ON(*min_uA > *max_uA); 501 502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 503 rdev_err(rdev, "current operation not allowed\n"); 504 return -EPERM; 505 } 506 507 if (*max_uA > rdev->constraints->max_uA) 508 *max_uA = rdev->constraints->max_uA; 509 if (*min_uA < rdev->constraints->min_uA) 510 *min_uA = rdev->constraints->min_uA; 511 512 if (*min_uA > *max_uA) { 513 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 514 *min_uA, *max_uA); 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 /* operating mode constraint check */ 522 static int regulator_mode_constrain(struct regulator_dev *rdev, 523 unsigned int *mode) 524 { 525 switch (*mode) { 526 case REGULATOR_MODE_FAST: 527 case REGULATOR_MODE_NORMAL: 528 case REGULATOR_MODE_IDLE: 529 case REGULATOR_MODE_STANDBY: 530 break; 531 default: 532 rdev_err(rdev, "invalid mode %x specified\n", *mode); 533 return -EINVAL; 534 } 535 536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 537 rdev_err(rdev, "mode operation not allowed\n"); 538 return -EPERM; 539 } 540 541 /* The modes are bitmasks, the most power hungry modes having 542 * the lowest values. If the requested mode isn't supported 543 * try higher modes. */ 544 while (*mode) { 545 if (rdev->constraints->valid_modes_mask & *mode) 546 return 0; 547 *mode /= 2; 548 } 549 550 return -EINVAL; 551 } 552 553 static inline struct regulator_state * 554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 555 { 556 if (rdev->constraints == NULL) 557 return NULL; 558 559 switch (state) { 560 case PM_SUSPEND_STANDBY: 561 return &rdev->constraints->state_standby; 562 case PM_SUSPEND_MEM: 563 return &rdev->constraints->state_mem; 564 case PM_SUSPEND_MAX: 565 return &rdev->constraints->state_disk; 566 default: 567 return NULL; 568 } 569 } 570 571 static ssize_t regulator_uV_show(struct device *dev, 572 struct device_attribute *attr, char *buf) 573 { 574 struct regulator_dev *rdev = dev_get_drvdata(dev); 575 ssize_t ret; 576 577 regulator_lock(rdev); 578 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 579 regulator_unlock(rdev); 580 581 return ret; 582 } 583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 584 585 static ssize_t regulator_uA_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct regulator_dev *rdev = dev_get_drvdata(dev); 589 590 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 591 } 592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 593 594 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 595 char *buf) 596 { 597 struct regulator_dev *rdev = dev_get_drvdata(dev); 598 599 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 600 } 601 static DEVICE_ATTR_RO(name); 602 603 static const char *regulator_opmode_to_str(int mode) 604 { 605 switch (mode) { 606 case REGULATOR_MODE_FAST: 607 return "fast"; 608 case REGULATOR_MODE_NORMAL: 609 return "normal"; 610 case REGULATOR_MODE_IDLE: 611 return "idle"; 612 case REGULATOR_MODE_STANDBY: 613 return "standby"; 614 } 615 return "unknown"; 616 } 617 618 static ssize_t regulator_print_opmode(char *buf, int mode) 619 { 620 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 621 } 622 623 static ssize_t regulator_opmode_show(struct device *dev, 624 struct device_attribute *attr, char *buf) 625 { 626 struct regulator_dev *rdev = dev_get_drvdata(dev); 627 628 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 629 } 630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 631 632 static ssize_t regulator_print_state(char *buf, int state) 633 { 634 if (state > 0) 635 return sprintf(buf, "enabled\n"); 636 else if (state == 0) 637 return sprintf(buf, "disabled\n"); 638 else 639 return sprintf(buf, "unknown\n"); 640 } 641 642 static ssize_t regulator_state_show(struct device *dev, 643 struct device_attribute *attr, char *buf) 644 { 645 struct regulator_dev *rdev = dev_get_drvdata(dev); 646 ssize_t ret; 647 648 regulator_lock(rdev); 649 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 650 regulator_unlock(rdev); 651 652 return ret; 653 } 654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 655 656 static ssize_t regulator_status_show(struct device *dev, 657 struct device_attribute *attr, char *buf) 658 { 659 struct regulator_dev *rdev = dev_get_drvdata(dev); 660 int status; 661 char *label; 662 663 status = rdev->desc->ops->get_status(rdev); 664 if (status < 0) 665 return status; 666 667 switch (status) { 668 case REGULATOR_STATUS_OFF: 669 label = "off"; 670 break; 671 case REGULATOR_STATUS_ON: 672 label = "on"; 673 break; 674 case REGULATOR_STATUS_ERROR: 675 label = "error"; 676 break; 677 case REGULATOR_STATUS_FAST: 678 label = "fast"; 679 break; 680 case REGULATOR_STATUS_NORMAL: 681 label = "normal"; 682 break; 683 case REGULATOR_STATUS_IDLE: 684 label = "idle"; 685 break; 686 case REGULATOR_STATUS_STANDBY: 687 label = "standby"; 688 break; 689 case REGULATOR_STATUS_BYPASS: 690 label = "bypass"; 691 break; 692 case REGULATOR_STATUS_UNDEFINED: 693 label = "undefined"; 694 break; 695 default: 696 return -ERANGE; 697 } 698 699 return sprintf(buf, "%s\n", label); 700 } 701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 702 703 static ssize_t regulator_min_uA_show(struct device *dev, 704 struct device_attribute *attr, char *buf) 705 { 706 struct regulator_dev *rdev = dev_get_drvdata(dev); 707 708 if (!rdev->constraints) 709 return sprintf(buf, "constraint not defined\n"); 710 711 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 712 } 713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 714 715 static ssize_t regulator_max_uA_show(struct device *dev, 716 struct device_attribute *attr, char *buf) 717 { 718 struct regulator_dev *rdev = dev_get_drvdata(dev); 719 720 if (!rdev->constraints) 721 return sprintf(buf, "constraint not defined\n"); 722 723 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 724 } 725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 726 727 static ssize_t regulator_min_uV_show(struct device *dev, 728 struct device_attribute *attr, char *buf) 729 { 730 struct regulator_dev *rdev = dev_get_drvdata(dev); 731 732 if (!rdev->constraints) 733 return sprintf(buf, "constraint not defined\n"); 734 735 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 736 } 737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 738 739 static ssize_t regulator_max_uV_show(struct device *dev, 740 struct device_attribute *attr, char *buf) 741 { 742 struct regulator_dev *rdev = dev_get_drvdata(dev); 743 744 if (!rdev->constraints) 745 return sprintf(buf, "constraint not defined\n"); 746 747 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 748 } 749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 750 751 static ssize_t regulator_total_uA_show(struct device *dev, 752 struct device_attribute *attr, char *buf) 753 { 754 struct regulator_dev *rdev = dev_get_drvdata(dev); 755 struct regulator *regulator; 756 int uA = 0; 757 758 regulator_lock(rdev); 759 list_for_each_entry(regulator, &rdev->consumer_list, list) { 760 if (regulator->enable_count) 761 uA += regulator->uA_load; 762 } 763 regulator_unlock(rdev); 764 return sprintf(buf, "%d\n", uA); 765 } 766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 767 768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 769 char *buf) 770 { 771 struct regulator_dev *rdev = dev_get_drvdata(dev); 772 return sprintf(buf, "%d\n", rdev->use_count); 773 } 774 static DEVICE_ATTR_RO(num_users); 775 776 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 777 char *buf) 778 { 779 struct regulator_dev *rdev = dev_get_drvdata(dev); 780 781 switch (rdev->desc->type) { 782 case REGULATOR_VOLTAGE: 783 return sprintf(buf, "voltage\n"); 784 case REGULATOR_CURRENT: 785 return sprintf(buf, "current\n"); 786 } 787 return sprintf(buf, "unknown\n"); 788 } 789 static DEVICE_ATTR_RO(type); 790 791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 792 struct device_attribute *attr, char *buf) 793 { 794 struct regulator_dev *rdev = dev_get_drvdata(dev); 795 796 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 797 } 798 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 799 regulator_suspend_mem_uV_show, NULL); 800 801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 802 struct device_attribute *attr, char *buf) 803 { 804 struct regulator_dev *rdev = dev_get_drvdata(dev); 805 806 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 807 } 808 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 809 regulator_suspend_disk_uV_show, NULL); 810 811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 817 } 818 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 819 regulator_suspend_standby_uV_show, NULL); 820 821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 return regulator_print_opmode(buf, 827 rdev->constraints->state_mem.mode); 828 } 829 static DEVICE_ATTR(suspend_mem_mode, 0444, 830 regulator_suspend_mem_mode_show, NULL); 831 832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 833 struct device_attribute *attr, char *buf) 834 { 835 struct regulator_dev *rdev = dev_get_drvdata(dev); 836 837 return regulator_print_opmode(buf, 838 rdev->constraints->state_disk.mode); 839 } 840 static DEVICE_ATTR(suspend_disk_mode, 0444, 841 regulator_suspend_disk_mode_show, NULL); 842 843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 844 struct device_attribute *attr, char *buf) 845 { 846 struct regulator_dev *rdev = dev_get_drvdata(dev); 847 848 return regulator_print_opmode(buf, 849 rdev->constraints->state_standby.mode); 850 } 851 static DEVICE_ATTR(suspend_standby_mode, 0444, 852 regulator_suspend_standby_mode_show, NULL); 853 854 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 855 struct device_attribute *attr, char *buf) 856 { 857 struct regulator_dev *rdev = dev_get_drvdata(dev); 858 859 return regulator_print_state(buf, 860 rdev->constraints->state_mem.enabled); 861 } 862 static DEVICE_ATTR(suspend_mem_state, 0444, 863 regulator_suspend_mem_state_show, NULL); 864 865 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 866 struct device_attribute *attr, char *buf) 867 { 868 struct regulator_dev *rdev = dev_get_drvdata(dev); 869 870 return regulator_print_state(buf, 871 rdev->constraints->state_disk.enabled); 872 } 873 static DEVICE_ATTR(suspend_disk_state, 0444, 874 regulator_suspend_disk_state_show, NULL); 875 876 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 877 struct device_attribute *attr, char *buf) 878 { 879 struct regulator_dev *rdev = dev_get_drvdata(dev); 880 881 return regulator_print_state(buf, 882 rdev->constraints->state_standby.enabled); 883 } 884 static DEVICE_ATTR(suspend_standby_state, 0444, 885 regulator_suspend_standby_state_show, NULL); 886 887 static ssize_t regulator_bypass_show(struct device *dev, 888 struct device_attribute *attr, char *buf) 889 { 890 struct regulator_dev *rdev = dev_get_drvdata(dev); 891 const char *report; 892 bool bypass; 893 int ret; 894 895 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 896 897 if (ret != 0) 898 report = "unknown"; 899 else if (bypass) 900 report = "enabled"; 901 else 902 report = "disabled"; 903 904 return sprintf(buf, "%s\n", report); 905 } 906 static DEVICE_ATTR(bypass, 0444, 907 regulator_bypass_show, NULL); 908 909 /* Calculate the new optimum regulator operating mode based on the new total 910 * consumer load. All locks held by caller */ 911 static int drms_uA_update(struct regulator_dev *rdev) 912 { 913 struct regulator *sibling; 914 int current_uA = 0, output_uV, input_uV, err; 915 unsigned int mode; 916 917 /* 918 * first check to see if we can set modes at all, otherwise just 919 * tell the consumer everything is OK. 920 */ 921 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 922 rdev_dbg(rdev, "DRMS operation not allowed\n"); 923 return 0; 924 } 925 926 if (!rdev->desc->ops->get_optimum_mode && 927 !rdev->desc->ops->set_load) 928 return 0; 929 930 if (!rdev->desc->ops->set_mode && 931 !rdev->desc->ops->set_load) 932 return -EINVAL; 933 934 /* calc total requested load */ 935 list_for_each_entry(sibling, &rdev->consumer_list, list) { 936 if (sibling->enable_count) 937 current_uA += sibling->uA_load; 938 } 939 940 current_uA += rdev->constraints->system_load; 941 942 if (rdev->desc->ops->set_load) { 943 /* set the optimum mode for our new total regulator load */ 944 err = rdev->desc->ops->set_load(rdev, current_uA); 945 if (err < 0) 946 rdev_err(rdev, "failed to set load %d\n", current_uA); 947 } else { 948 /* get output voltage */ 949 output_uV = _regulator_get_voltage(rdev); 950 if (output_uV <= 0) { 951 rdev_err(rdev, "invalid output voltage found\n"); 952 return -EINVAL; 953 } 954 955 /* get input voltage */ 956 input_uV = 0; 957 if (rdev->supply) 958 input_uV = regulator_get_voltage(rdev->supply); 959 if (input_uV <= 0) 960 input_uV = rdev->constraints->input_uV; 961 if (input_uV <= 0) { 962 rdev_err(rdev, "invalid input voltage found\n"); 963 return -EINVAL; 964 } 965 966 /* now get the optimum mode for our new total regulator load */ 967 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 968 output_uV, current_uA); 969 970 /* check the new mode is allowed */ 971 err = regulator_mode_constrain(rdev, &mode); 972 if (err < 0) { 973 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 974 current_uA, input_uV, output_uV); 975 return err; 976 } 977 978 err = rdev->desc->ops->set_mode(rdev, mode); 979 if (err < 0) 980 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 981 } 982 983 return err; 984 } 985 986 static int suspend_set_state(struct regulator_dev *rdev, 987 suspend_state_t state) 988 { 989 int ret = 0; 990 struct regulator_state *rstate; 991 992 rstate = regulator_get_suspend_state(rdev, state); 993 if (rstate == NULL) 994 return 0; 995 996 /* If we have no suspend mode configuration don't set anything; 997 * only warn if the driver implements set_suspend_voltage or 998 * set_suspend_mode callback. 999 */ 1000 if (rstate->enabled != ENABLE_IN_SUSPEND && 1001 rstate->enabled != DISABLE_IN_SUSPEND) { 1002 if (rdev->desc->ops->set_suspend_voltage || 1003 rdev->desc->ops->set_suspend_mode) 1004 rdev_warn(rdev, "No configuration\n"); 1005 return 0; 1006 } 1007 1008 if (rstate->enabled == ENABLE_IN_SUSPEND && 1009 rdev->desc->ops->set_suspend_enable) 1010 ret = rdev->desc->ops->set_suspend_enable(rdev); 1011 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1012 rdev->desc->ops->set_suspend_disable) 1013 ret = rdev->desc->ops->set_suspend_disable(rdev); 1014 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1015 ret = 0; 1016 1017 if (ret < 0) { 1018 rdev_err(rdev, "failed to enabled/disable\n"); 1019 return ret; 1020 } 1021 1022 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1023 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1024 if (ret < 0) { 1025 rdev_err(rdev, "failed to set voltage\n"); 1026 return ret; 1027 } 1028 } 1029 1030 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1031 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1032 if (ret < 0) { 1033 rdev_err(rdev, "failed to set mode\n"); 1034 return ret; 1035 } 1036 } 1037 1038 return ret; 1039 } 1040 1041 static void print_constraints(struct regulator_dev *rdev) 1042 { 1043 struct regulation_constraints *constraints = rdev->constraints; 1044 char buf[160] = ""; 1045 size_t len = sizeof(buf) - 1; 1046 int count = 0; 1047 int ret; 1048 1049 if (constraints->min_uV && constraints->max_uV) { 1050 if (constraints->min_uV == constraints->max_uV) 1051 count += scnprintf(buf + count, len - count, "%d mV ", 1052 constraints->min_uV / 1000); 1053 else 1054 count += scnprintf(buf + count, len - count, 1055 "%d <--> %d mV ", 1056 constraints->min_uV / 1000, 1057 constraints->max_uV / 1000); 1058 } 1059 1060 if (!constraints->min_uV || 1061 constraints->min_uV != constraints->max_uV) { 1062 ret = _regulator_get_voltage(rdev); 1063 if (ret > 0) 1064 count += scnprintf(buf + count, len - count, 1065 "at %d mV ", ret / 1000); 1066 } 1067 1068 if (constraints->uV_offset) 1069 count += scnprintf(buf + count, len - count, "%dmV offset ", 1070 constraints->uV_offset / 1000); 1071 1072 if (constraints->min_uA && constraints->max_uA) { 1073 if (constraints->min_uA == constraints->max_uA) 1074 count += scnprintf(buf + count, len - count, "%d mA ", 1075 constraints->min_uA / 1000); 1076 else 1077 count += scnprintf(buf + count, len - count, 1078 "%d <--> %d mA ", 1079 constraints->min_uA / 1000, 1080 constraints->max_uA / 1000); 1081 } 1082 1083 if (!constraints->min_uA || 1084 constraints->min_uA != constraints->max_uA) { 1085 ret = _regulator_get_current_limit(rdev); 1086 if (ret > 0) 1087 count += scnprintf(buf + count, len - count, 1088 "at %d mA ", ret / 1000); 1089 } 1090 1091 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1092 count += scnprintf(buf + count, len - count, "fast "); 1093 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1094 count += scnprintf(buf + count, len - count, "normal "); 1095 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1096 count += scnprintf(buf + count, len - count, "idle "); 1097 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1098 count += scnprintf(buf + count, len - count, "standby"); 1099 1100 if (!count) 1101 scnprintf(buf, len, "no parameters"); 1102 1103 rdev_dbg(rdev, "%s\n", buf); 1104 1105 if ((constraints->min_uV != constraints->max_uV) && 1106 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1107 rdev_warn(rdev, 1108 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1109 } 1110 1111 static int machine_constraints_voltage(struct regulator_dev *rdev, 1112 struct regulation_constraints *constraints) 1113 { 1114 const struct regulator_ops *ops = rdev->desc->ops; 1115 int ret; 1116 1117 /* do we need to apply the constraint voltage */ 1118 if (rdev->constraints->apply_uV && 1119 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1120 int target_min, target_max; 1121 int current_uV = _regulator_get_voltage(rdev); 1122 1123 if (current_uV == -ENOTRECOVERABLE) { 1124 /* This regulator can't be read and must be initialized */ 1125 rdev_info(rdev, "Setting %d-%duV\n", 1126 rdev->constraints->min_uV, 1127 rdev->constraints->max_uV); 1128 _regulator_do_set_voltage(rdev, 1129 rdev->constraints->min_uV, 1130 rdev->constraints->max_uV); 1131 current_uV = _regulator_get_voltage(rdev); 1132 } 1133 1134 if (current_uV < 0) { 1135 rdev_err(rdev, 1136 "failed to get the current voltage(%d)\n", 1137 current_uV); 1138 return current_uV; 1139 } 1140 1141 /* 1142 * If we're below the minimum voltage move up to the 1143 * minimum voltage, if we're above the maximum voltage 1144 * then move down to the maximum. 1145 */ 1146 target_min = current_uV; 1147 target_max = current_uV; 1148 1149 if (current_uV < rdev->constraints->min_uV) { 1150 target_min = rdev->constraints->min_uV; 1151 target_max = rdev->constraints->min_uV; 1152 } 1153 1154 if (current_uV > rdev->constraints->max_uV) { 1155 target_min = rdev->constraints->max_uV; 1156 target_max = rdev->constraints->max_uV; 1157 } 1158 1159 if (target_min != current_uV || target_max != current_uV) { 1160 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1161 current_uV, target_min, target_max); 1162 ret = _regulator_do_set_voltage( 1163 rdev, target_min, target_max); 1164 if (ret < 0) { 1165 rdev_err(rdev, 1166 "failed to apply %d-%duV constraint(%d)\n", 1167 target_min, target_max, ret); 1168 return ret; 1169 } 1170 } 1171 } 1172 1173 /* constrain machine-level voltage specs to fit 1174 * the actual range supported by this regulator. 1175 */ 1176 if (ops->list_voltage && rdev->desc->n_voltages) { 1177 int count = rdev->desc->n_voltages; 1178 int i; 1179 int min_uV = INT_MAX; 1180 int max_uV = INT_MIN; 1181 int cmin = constraints->min_uV; 1182 int cmax = constraints->max_uV; 1183 1184 /* it's safe to autoconfigure fixed-voltage supplies 1185 and the constraints are used by list_voltage. */ 1186 if (count == 1 && !cmin) { 1187 cmin = 1; 1188 cmax = INT_MAX; 1189 constraints->min_uV = cmin; 1190 constraints->max_uV = cmax; 1191 } 1192 1193 /* voltage constraints are optional */ 1194 if ((cmin == 0) && (cmax == 0)) 1195 return 0; 1196 1197 /* else require explicit machine-level constraints */ 1198 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1199 rdev_err(rdev, "invalid voltage constraints\n"); 1200 return -EINVAL; 1201 } 1202 1203 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1204 for (i = 0; i < count; i++) { 1205 int value; 1206 1207 value = ops->list_voltage(rdev, i); 1208 if (value <= 0) 1209 continue; 1210 1211 /* maybe adjust [min_uV..max_uV] */ 1212 if (value >= cmin && value < min_uV) 1213 min_uV = value; 1214 if (value <= cmax && value > max_uV) 1215 max_uV = value; 1216 } 1217 1218 /* final: [min_uV..max_uV] valid iff constraints valid */ 1219 if (max_uV < min_uV) { 1220 rdev_err(rdev, 1221 "unsupportable voltage constraints %u-%uuV\n", 1222 min_uV, max_uV); 1223 return -EINVAL; 1224 } 1225 1226 /* use regulator's subset of machine constraints */ 1227 if (constraints->min_uV < min_uV) { 1228 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1229 constraints->min_uV, min_uV); 1230 constraints->min_uV = min_uV; 1231 } 1232 if (constraints->max_uV > max_uV) { 1233 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1234 constraints->max_uV, max_uV); 1235 constraints->max_uV = max_uV; 1236 } 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int machine_constraints_current(struct regulator_dev *rdev, 1243 struct regulation_constraints *constraints) 1244 { 1245 const struct regulator_ops *ops = rdev->desc->ops; 1246 int ret; 1247 1248 if (!constraints->min_uA && !constraints->max_uA) 1249 return 0; 1250 1251 if (constraints->min_uA > constraints->max_uA) { 1252 rdev_err(rdev, "Invalid current constraints\n"); 1253 return -EINVAL; 1254 } 1255 1256 if (!ops->set_current_limit || !ops->get_current_limit) { 1257 rdev_warn(rdev, "Operation of current configuration missing\n"); 1258 return 0; 1259 } 1260 1261 /* Set regulator current in constraints range */ 1262 ret = ops->set_current_limit(rdev, constraints->min_uA, 1263 constraints->max_uA); 1264 if (ret < 0) { 1265 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1266 return ret; 1267 } 1268 1269 return 0; 1270 } 1271 1272 static int _regulator_do_enable(struct regulator_dev *rdev); 1273 1274 /** 1275 * set_machine_constraints - sets regulator constraints 1276 * @rdev: regulator source 1277 * @constraints: constraints to apply 1278 * 1279 * Allows platform initialisation code to define and constrain 1280 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1281 * Constraints *must* be set by platform code in order for some 1282 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1283 * set_mode. 1284 */ 1285 static int set_machine_constraints(struct regulator_dev *rdev, 1286 const struct regulation_constraints *constraints) 1287 { 1288 int ret = 0; 1289 const struct regulator_ops *ops = rdev->desc->ops; 1290 1291 if (constraints) 1292 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1293 GFP_KERNEL); 1294 else 1295 rdev->constraints = kzalloc(sizeof(*constraints), 1296 GFP_KERNEL); 1297 if (!rdev->constraints) 1298 return -ENOMEM; 1299 1300 ret = machine_constraints_voltage(rdev, rdev->constraints); 1301 if (ret != 0) 1302 return ret; 1303 1304 ret = machine_constraints_current(rdev, rdev->constraints); 1305 if (ret != 0) 1306 return ret; 1307 1308 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1309 ret = ops->set_input_current_limit(rdev, 1310 rdev->constraints->ilim_uA); 1311 if (ret < 0) { 1312 rdev_err(rdev, "failed to set input limit\n"); 1313 return ret; 1314 } 1315 } 1316 1317 /* do we need to setup our suspend state */ 1318 if (rdev->constraints->initial_state) { 1319 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1320 if (ret < 0) { 1321 rdev_err(rdev, "failed to set suspend state\n"); 1322 return ret; 1323 } 1324 } 1325 1326 if (rdev->constraints->initial_mode) { 1327 if (!ops->set_mode) { 1328 rdev_err(rdev, "no set_mode operation\n"); 1329 return -EINVAL; 1330 } 1331 1332 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1333 if (ret < 0) { 1334 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1335 return ret; 1336 } 1337 } else if (rdev->constraints->system_load) { 1338 /* 1339 * We'll only apply the initial system load if an 1340 * initial mode wasn't specified. 1341 */ 1342 drms_uA_update(rdev); 1343 } 1344 1345 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1346 && ops->set_ramp_delay) { 1347 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1348 if (ret < 0) { 1349 rdev_err(rdev, "failed to set ramp_delay\n"); 1350 return ret; 1351 } 1352 } 1353 1354 if (rdev->constraints->pull_down && ops->set_pull_down) { 1355 ret = ops->set_pull_down(rdev); 1356 if (ret < 0) { 1357 rdev_err(rdev, "failed to set pull down\n"); 1358 return ret; 1359 } 1360 } 1361 1362 if (rdev->constraints->soft_start && ops->set_soft_start) { 1363 ret = ops->set_soft_start(rdev); 1364 if (ret < 0) { 1365 rdev_err(rdev, "failed to set soft start\n"); 1366 return ret; 1367 } 1368 } 1369 1370 if (rdev->constraints->over_current_protection 1371 && ops->set_over_current_protection) { 1372 ret = ops->set_over_current_protection(rdev); 1373 if (ret < 0) { 1374 rdev_err(rdev, "failed to set over current protection\n"); 1375 return ret; 1376 } 1377 } 1378 1379 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1380 bool ad_state = (rdev->constraints->active_discharge == 1381 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1382 1383 ret = ops->set_active_discharge(rdev, ad_state); 1384 if (ret < 0) { 1385 rdev_err(rdev, "failed to set active discharge\n"); 1386 return ret; 1387 } 1388 } 1389 1390 /* If the constraints say the regulator should be on at this point 1391 * and we have control then make sure it is enabled. 1392 */ 1393 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1394 if (rdev->supply) { 1395 ret = regulator_enable(rdev->supply); 1396 if (ret < 0) { 1397 _regulator_put(rdev->supply); 1398 rdev->supply = NULL; 1399 return ret; 1400 } 1401 } 1402 1403 ret = _regulator_do_enable(rdev); 1404 if (ret < 0 && ret != -EINVAL) { 1405 rdev_err(rdev, "failed to enable\n"); 1406 return ret; 1407 } 1408 rdev->use_count++; 1409 } 1410 1411 print_constraints(rdev); 1412 return 0; 1413 } 1414 1415 /** 1416 * set_supply - set regulator supply regulator 1417 * @rdev: regulator name 1418 * @supply_rdev: supply regulator name 1419 * 1420 * Called by platform initialisation code to set the supply regulator for this 1421 * regulator. This ensures that a regulators supply will also be enabled by the 1422 * core if it's child is enabled. 1423 */ 1424 static int set_supply(struct regulator_dev *rdev, 1425 struct regulator_dev *supply_rdev) 1426 { 1427 int err; 1428 1429 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1430 1431 if (!try_module_get(supply_rdev->owner)) 1432 return -ENODEV; 1433 1434 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1435 if (rdev->supply == NULL) { 1436 err = -ENOMEM; 1437 return err; 1438 } 1439 supply_rdev->open_count++; 1440 1441 return 0; 1442 } 1443 1444 /** 1445 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1446 * @rdev: regulator source 1447 * @consumer_dev_name: dev_name() string for device supply applies to 1448 * @supply: symbolic name for supply 1449 * 1450 * Allows platform initialisation code to map physical regulator 1451 * sources to symbolic names for supplies for use by devices. Devices 1452 * should use these symbolic names to request regulators, avoiding the 1453 * need to provide board-specific regulator names as platform data. 1454 */ 1455 static int set_consumer_device_supply(struct regulator_dev *rdev, 1456 const char *consumer_dev_name, 1457 const char *supply) 1458 { 1459 struct regulator_map *node; 1460 int has_dev; 1461 1462 if (supply == NULL) 1463 return -EINVAL; 1464 1465 if (consumer_dev_name != NULL) 1466 has_dev = 1; 1467 else 1468 has_dev = 0; 1469 1470 list_for_each_entry(node, ®ulator_map_list, list) { 1471 if (node->dev_name && consumer_dev_name) { 1472 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1473 continue; 1474 } else if (node->dev_name || consumer_dev_name) { 1475 continue; 1476 } 1477 1478 if (strcmp(node->supply, supply) != 0) 1479 continue; 1480 1481 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1482 consumer_dev_name, 1483 dev_name(&node->regulator->dev), 1484 node->regulator->desc->name, 1485 supply, 1486 dev_name(&rdev->dev), rdev_get_name(rdev)); 1487 return -EBUSY; 1488 } 1489 1490 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1491 if (node == NULL) 1492 return -ENOMEM; 1493 1494 node->regulator = rdev; 1495 node->supply = supply; 1496 1497 if (has_dev) { 1498 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1499 if (node->dev_name == NULL) { 1500 kfree(node); 1501 return -ENOMEM; 1502 } 1503 } 1504 1505 list_add(&node->list, ®ulator_map_list); 1506 return 0; 1507 } 1508 1509 static void unset_regulator_supplies(struct regulator_dev *rdev) 1510 { 1511 struct regulator_map *node, *n; 1512 1513 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1514 if (rdev == node->regulator) { 1515 list_del(&node->list); 1516 kfree(node->dev_name); 1517 kfree(node); 1518 } 1519 } 1520 } 1521 1522 #ifdef CONFIG_DEBUG_FS 1523 static ssize_t constraint_flags_read_file(struct file *file, 1524 char __user *user_buf, 1525 size_t count, loff_t *ppos) 1526 { 1527 const struct regulator *regulator = file->private_data; 1528 const struct regulation_constraints *c = regulator->rdev->constraints; 1529 char *buf; 1530 ssize_t ret; 1531 1532 if (!c) 1533 return 0; 1534 1535 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1536 if (!buf) 1537 return -ENOMEM; 1538 1539 ret = snprintf(buf, PAGE_SIZE, 1540 "always_on: %u\n" 1541 "boot_on: %u\n" 1542 "apply_uV: %u\n" 1543 "ramp_disable: %u\n" 1544 "soft_start: %u\n" 1545 "pull_down: %u\n" 1546 "over_current_protection: %u\n", 1547 c->always_on, 1548 c->boot_on, 1549 c->apply_uV, 1550 c->ramp_disable, 1551 c->soft_start, 1552 c->pull_down, 1553 c->over_current_protection); 1554 1555 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1556 kfree(buf); 1557 1558 return ret; 1559 } 1560 1561 #endif 1562 1563 static const struct file_operations constraint_flags_fops = { 1564 #ifdef CONFIG_DEBUG_FS 1565 .open = simple_open, 1566 .read = constraint_flags_read_file, 1567 .llseek = default_llseek, 1568 #endif 1569 }; 1570 1571 #define REG_STR_SIZE 64 1572 1573 static struct regulator *create_regulator(struct regulator_dev *rdev, 1574 struct device *dev, 1575 const char *supply_name) 1576 { 1577 struct regulator *regulator; 1578 char buf[REG_STR_SIZE]; 1579 int err, size; 1580 1581 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1582 if (regulator == NULL) 1583 return NULL; 1584 1585 regulator_lock(rdev); 1586 regulator->rdev = rdev; 1587 list_add(®ulator->list, &rdev->consumer_list); 1588 1589 if (dev) { 1590 regulator->dev = dev; 1591 1592 /* Add a link to the device sysfs entry */ 1593 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1594 dev->kobj.name, supply_name); 1595 if (size >= REG_STR_SIZE) 1596 goto overflow_err; 1597 1598 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1599 if (regulator->supply_name == NULL) 1600 goto overflow_err; 1601 1602 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1603 buf); 1604 if (err) { 1605 rdev_dbg(rdev, "could not add device link %s err %d\n", 1606 dev->kobj.name, err); 1607 /* non-fatal */ 1608 } 1609 } else { 1610 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1611 if (regulator->supply_name == NULL) 1612 goto overflow_err; 1613 } 1614 1615 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1616 rdev->debugfs); 1617 if (!regulator->debugfs) { 1618 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1619 } else { 1620 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1621 ®ulator->uA_load); 1622 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1623 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1624 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1625 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1626 debugfs_create_file("constraint_flags", 0444, 1627 regulator->debugfs, regulator, 1628 &constraint_flags_fops); 1629 } 1630 1631 /* 1632 * Check now if the regulator is an always on regulator - if 1633 * it is then we don't need to do nearly so much work for 1634 * enable/disable calls. 1635 */ 1636 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1637 _regulator_is_enabled(rdev)) 1638 regulator->always_on = true; 1639 1640 regulator_unlock(rdev); 1641 return regulator; 1642 overflow_err: 1643 list_del(®ulator->list); 1644 kfree(regulator); 1645 regulator_unlock(rdev); 1646 return NULL; 1647 } 1648 1649 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1650 { 1651 if (rdev->constraints && rdev->constraints->enable_time) 1652 return rdev->constraints->enable_time; 1653 if (!rdev->desc->ops->enable_time) 1654 return rdev->desc->enable_time; 1655 return rdev->desc->ops->enable_time(rdev); 1656 } 1657 1658 static struct regulator_supply_alias *regulator_find_supply_alias( 1659 struct device *dev, const char *supply) 1660 { 1661 struct regulator_supply_alias *map; 1662 1663 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1664 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1665 return map; 1666 1667 return NULL; 1668 } 1669 1670 static void regulator_supply_alias(struct device **dev, const char **supply) 1671 { 1672 struct regulator_supply_alias *map; 1673 1674 map = regulator_find_supply_alias(*dev, *supply); 1675 if (map) { 1676 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1677 *supply, map->alias_supply, 1678 dev_name(map->alias_dev)); 1679 *dev = map->alias_dev; 1680 *supply = map->alias_supply; 1681 } 1682 } 1683 1684 static int regulator_match(struct device *dev, const void *data) 1685 { 1686 struct regulator_dev *r = dev_to_rdev(dev); 1687 1688 return strcmp(rdev_get_name(r), data) == 0; 1689 } 1690 1691 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1692 { 1693 struct device *dev; 1694 1695 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1696 1697 return dev ? dev_to_rdev(dev) : NULL; 1698 } 1699 1700 /** 1701 * regulator_dev_lookup - lookup a regulator device. 1702 * @dev: device for regulator "consumer". 1703 * @supply: Supply name or regulator ID. 1704 * 1705 * If successful, returns a struct regulator_dev that corresponds to the name 1706 * @supply and with the embedded struct device refcount incremented by one. 1707 * The refcount must be dropped by calling put_device(). 1708 * On failure one of the following ERR-PTR-encoded values is returned: 1709 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1710 * in the future. 1711 */ 1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1713 const char *supply) 1714 { 1715 struct regulator_dev *r = NULL; 1716 struct device_node *node; 1717 struct regulator_map *map; 1718 const char *devname = NULL; 1719 1720 regulator_supply_alias(&dev, &supply); 1721 1722 /* first do a dt based lookup */ 1723 if (dev && dev->of_node) { 1724 node = of_get_regulator(dev, supply); 1725 if (node) { 1726 r = of_find_regulator_by_node(node); 1727 if (r) 1728 return r; 1729 1730 /* 1731 * We have a node, but there is no device. 1732 * assume it has not registered yet. 1733 */ 1734 return ERR_PTR(-EPROBE_DEFER); 1735 } 1736 } 1737 1738 /* if not found, try doing it non-dt way */ 1739 if (dev) 1740 devname = dev_name(dev); 1741 1742 mutex_lock(®ulator_list_mutex); 1743 list_for_each_entry(map, ®ulator_map_list, list) { 1744 /* If the mapping has a device set up it must match */ 1745 if (map->dev_name && 1746 (!devname || strcmp(map->dev_name, devname))) 1747 continue; 1748 1749 if (strcmp(map->supply, supply) == 0 && 1750 get_device(&map->regulator->dev)) { 1751 r = map->regulator; 1752 break; 1753 } 1754 } 1755 mutex_unlock(®ulator_list_mutex); 1756 1757 if (r) 1758 return r; 1759 1760 r = regulator_lookup_by_name(supply); 1761 if (r) 1762 return r; 1763 1764 return ERR_PTR(-ENODEV); 1765 } 1766 1767 static int regulator_resolve_supply(struct regulator_dev *rdev) 1768 { 1769 struct regulator_dev *r; 1770 struct device *dev = rdev->dev.parent; 1771 int ret; 1772 1773 /* No supply to resolve? */ 1774 if (!rdev->supply_name) 1775 return 0; 1776 1777 /* Supply already resolved? */ 1778 if (rdev->supply) 1779 return 0; 1780 1781 r = regulator_dev_lookup(dev, rdev->supply_name); 1782 if (IS_ERR(r)) { 1783 ret = PTR_ERR(r); 1784 1785 /* Did the lookup explicitly defer for us? */ 1786 if (ret == -EPROBE_DEFER) 1787 return ret; 1788 1789 if (have_full_constraints()) { 1790 r = dummy_regulator_rdev; 1791 get_device(&r->dev); 1792 } else { 1793 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1794 rdev->supply_name, rdev->desc->name); 1795 return -EPROBE_DEFER; 1796 } 1797 } 1798 1799 /* 1800 * If the supply's parent device is not the same as the 1801 * regulator's parent device, then ensure the parent device 1802 * is bound before we resolve the supply, in case the parent 1803 * device get probe deferred and unregisters the supply. 1804 */ 1805 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1806 if (!device_is_bound(r->dev.parent)) { 1807 put_device(&r->dev); 1808 return -EPROBE_DEFER; 1809 } 1810 } 1811 1812 /* Recursively resolve the supply of the supply */ 1813 ret = regulator_resolve_supply(r); 1814 if (ret < 0) { 1815 put_device(&r->dev); 1816 return ret; 1817 } 1818 1819 ret = set_supply(rdev, r); 1820 if (ret < 0) { 1821 put_device(&r->dev); 1822 return ret; 1823 } 1824 1825 /* 1826 * In set_machine_constraints() we may have turned this regulator on 1827 * but we couldn't propagate to the supply if it hadn't been resolved 1828 * yet. Do it now. 1829 */ 1830 if (rdev->use_count) { 1831 ret = regulator_enable(rdev->supply); 1832 if (ret < 0) { 1833 _regulator_put(rdev->supply); 1834 rdev->supply = NULL; 1835 return ret; 1836 } 1837 } 1838 1839 return 0; 1840 } 1841 1842 /* Internal regulator request function */ 1843 struct regulator *_regulator_get(struct device *dev, const char *id, 1844 enum regulator_get_type get_type) 1845 { 1846 struct regulator_dev *rdev; 1847 struct regulator *regulator; 1848 const char *devname = dev ? dev_name(dev) : "deviceless"; 1849 int ret; 1850 1851 if (get_type >= MAX_GET_TYPE) { 1852 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1853 return ERR_PTR(-EINVAL); 1854 } 1855 1856 if (id == NULL) { 1857 pr_err("get() with no identifier\n"); 1858 return ERR_PTR(-EINVAL); 1859 } 1860 1861 rdev = regulator_dev_lookup(dev, id); 1862 if (IS_ERR(rdev)) { 1863 ret = PTR_ERR(rdev); 1864 1865 /* 1866 * If regulator_dev_lookup() fails with error other 1867 * than -ENODEV our job here is done, we simply return it. 1868 */ 1869 if (ret != -ENODEV) 1870 return ERR_PTR(ret); 1871 1872 if (!have_full_constraints()) { 1873 dev_warn(dev, 1874 "incomplete constraints, dummy supplies not allowed\n"); 1875 return ERR_PTR(-ENODEV); 1876 } 1877 1878 switch (get_type) { 1879 case NORMAL_GET: 1880 /* 1881 * Assume that a regulator is physically present and 1882 * enabled, even if it isn't hooked up, and just 1883 * provide a dummy. 1884 */ 1885 dev_warn(dev, 1886 "%s supply %s not found, using dummy regulator\n", 1887 devname, id); 1888 rdev = dummy_regulator_rdev; 1889 get_device(&rdev->dev); 1890 break; 1891 1892 case EXCLUSIVE_GET: 1893 dev_warn(dev, 1894 "dummy supplies not allowed for exclusive requests\n"); 1895 /* fall through */ 1896 1897 default: 1898 return ERR_PTR(-ENODEV); 1899 } 1900 } 1901 1902 if (rdev->exclusive) { 1903 regulator = ERR_PTR(-EPERM); 1904 put_device(&rdev->dev); 1905 return regulator; 1906 } 1907 1908 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1909 regulator = ERR_PTR(-EBUSY); 1910 put_device(&rdev->dev); 1911 return regulator; 1912 } 1913 1914 mutex_lock(®ulator_list_mutex); 1915 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1916 mutex_unlock(®ulator_list_mutex); 1917 1918 if (ret != 0) { 1919 regulator = ERR_PTR(-EPROBE_DEFER); 1920 put_device(&rdev->dev); 1921 return regulator; 1922 } 1923 1924 ret = regulator_resolve_supply(rdev); 1925 if (ret < 0) { 1926 regulator = ERR_PTR(ret); 1927 put_device(&rdev->dev); 1928 return regulator; 1929 } 1930 1931 if (!try_module_get(rdev->owner)) { 1932 regulator = ERR_PTR(-EPROBE_DEFER); 1933 put_device(&rdev->dev); 1934 return regulator; 1935 } 1936 1937 regulator = create_regulator(rdev, dev, id); 1938 if (regulator == NULL) { 1939 regulator = ERR_PTR(-ENOMEM); 1940 put_device(&rdev->dev); 1941 module_put(rdev->owner); 1942 return regulator; 1943 } 1944 1945 rdev->open_count++; 1946 if (get_type == EXCLUSIVE_GET) { 1947 rdev->exclusive = 1; 1948 1949 ret = _regulator_is_enabled(rdev); 1950 if (ret > 0) 1951 rdev->use_count = 1; 1952 else 1953 rdev->use_count = 0; 1954 } 1955 1956 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1957 1958 return regulator; 1959 } 1960 1961 /** 1962 * regulator_get - lookup and obtain a reference to a regulator. 1963 * @dev: device for regulator "consumer" 1964 * @id: Supply name or regulator ID. 1965 * 1966 * Returns a struct regulator corresponding to the regulator producer, 1967 * or IS_ERR() condition containing errno. 1968 * 1969 * Use of supply names configured via regulator_set_device_supply() is 1970 * strongly encouraged. It is recommended that the supply name used 1971 * should match the name used for the supply and/or the relevant 1972 * device pins in the datasheet. 1973 */ 1974 struct regulator *regulator_get(struct device *dev, const char *id) 1975 { 1976 return _regulator_get(dev, id, NORMAL_GET); 1977 } 1978 EXPORT_SYMBOL_GPL(regulator_get); 1979 1980 /** 1981 * regulator_get_exclusive - obtain exclusive access to a regulator. 1982 * @dev: device for regulator "consumer" 1983 * @id: Supply name or regulator ID. 1984 * 1985 * Returns a struct regulator corresponding to the regulator producer, 1986 * or IS_ERR() condition containing errno. Other consumers will be 1987 * unable to obtain this regulator while this reference is held and the 1988 * use count for the regulator will be initialised to reflect the current 1989 * state of the regulator. 1990 * 1991 * This is intended for use by consumers which cannot tolerate shared 1992 * use of the regulator such as those which need to force the 1993 * regulator off for correct operation of the hardware they are 1994 * controlling. 1995 * 1996 * Use of supply names configured via regulator_set_device_supply() is 1997 * strongly encouraged. It is recommended that the supply name used 1998 * should match the name used for the supply and/or the relevant 1999 * device pins in the datasheet. 2000 */ 2001 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2002 { 2003 return _regulator_get(dev, id, EXCLUSIVE_GET); 2004 } 2005 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2006 2007 /** 2008 * regulator_get_optional - obtain optional access to a regulator. 2009 * @dev: device for regulator "consumer" 2010 * @id: Supply name or regulator ID. 2011 * 2012 * Returns a struct regulator corresponding to the regulator producer, 2013 * or IS_ERR() condition containing errno. 2014 * 2015 * This is intended for use by consumers for devices which can have 2016 * some supplies unconnected in normal use, such as some MMC devices. 2017 * It can allow the regulator core to provide stub supplies for other 2018 * supplies requested using normal regulator_get() calls without 2019 * disrupting the operation of drivers that can handle absent 2020 * supplies. 2021 * 2022 * Use of supply names configured via regulator_set_device_supply() is 2023 * strongly encouraged. It is recommended that the supply name used 2024 * should match the name used for the supply and/or the relevant 2025 * device pins in the datasheet. 2026 */ 2027 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2028 { 2029 return _regulator_get(dev, id, OPTIONAL_GET); 2030 } 2031 EXPORT_SYMBOL_GPL(regulator_get_optional); 2032 2033 /* regulator_list_mutex lock held by regulator_put() */ 2034 static void _regulator_put(struct regulator *regulator) 2035 { 2036 struct regulator_dev *rdev; 2037 2038 if (IS_ERR_OR_NULL(regulator)) 2039 return; 2040 2041 lockdep_assert_held_once(®ulator_list_mutex); 2042 2043 /* Docs say you must disable before calling regulator_put() */ 2044 WARN_ON(regulator->enable_count); 2045 2046 rdev = regulator->rdev; 2047 2048 debugfs_remove_recursive(regulator->debugfs); 2049 2050 if (regulator->dev) { 2051 device_link_remove(regulator->dev, &rdev->dev); 2052 2053 /* remove any sysfs entries */ 2054 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2055 } 2056 2057 regulator_lock(rdev); 2058 list_del(®ulator->list); 2059 2060 rdev->open_count--; 2061 rdev->exclusive = 0; 2062 put_device(&rdev->dev); 2063 regulator_unlock(rdev); 2064 2065 kfree_const(regulator->supply_name); 2066 kfree(regulator); 2067 2068 module_put(rdev->owner); 2069 } 2070 2071 /** 2072 * regulator_put - "free" the regulator source 2073 * @regulator: regulator source 2074 * 2075 * Note: drivers must ensure that all regulator_enable calls made on this 2076 * regulator source are balanced by regulator_disable calls prior to calling 2077 * this function. 2078 */ 2079 void regulator_put(struct regulator *regulator) 2080 { 2081 mutex_lock(®ulator_list_mutex); 2082 _regulator_put(regulator); 2083 mutex_unlock(®ulator_list_mutex); 2084 } 2085 EXPORT_SYMBOL_GPL(regulator_put); 2086 2087 /** 2088 * regulator_register_supply_alias - Provide device alias for supply lookup 2089 * 2090 * @dev: device that will be given as the regulator "consumer" 2091 * @id: Supply name or regulator ID 2092 * @alias_dev: device that should be used to lookup the supply 2093 * @alias_id: Supply name or regulator ID that should be used to lookup the 2094 * supply 2095 * 2096 * All lookups for id on dev will instead be conducted for alias_id on 2097 * alias_dev. 2098 */ 2099 int regulator_register_supply_alias(struct device *dev, const char *id, 2100 struct device *alias_dev, 2101 const char *alias_id) 2102 { 2103 struct regulator_supply_alias *map; 2104 2105 map = regulator_find_supply_alias(dev, id); 2106 if (map) 2107 return -EEXIST; 2108 2109 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2110 if (!map) 2111 return -ENOMEM; 2112 2113 map->src_dev = dev; 2114 map->src_supply = id; 2115 map->alias_dev = alias_dev; 2116 map->alias_supply = alias_id; 2117 2118 list_add(&map->list, ®ulator_supply_alias_list); 2119 2120 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2121 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2122 2123 return 0; 2124 } 2125 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2126 2127 /** 2128 * regulator_unregister_supply_alias - Remove device alias 2129 * 2130 * @dev: device that will be given as the regulator "consumer" 2131 * @id: Supply name or regulator ID 2132 * 2133 * Remove a lookup alias if one exists for id on dev. 2134 */ 2135 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2136 { 2137 struct regulator_supply_alias *map; 2138 2139 map = regulator_find_supply_alias(dev, id); 2140 if (map) { 2141 list_del(&map->list); 2142 kfree(map); 2143 } 2144 } 2145 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2146 2147 /** 2148 * regulator_bulk_register_supply_alias - register multiple aliases 2149 * 2150 * @dev: device that will be given as the regulator "consumer" 2151 * @id: List of supply names or regulator IDs 2152 * @alias_dev: device that should be used to lookup the supply 2153 * @alias_id: List of supply names or regulator IDs that should be used to 2154 * lookup the supply 2155 * @num_id: Number of aliases to register 2156 * 2157 * @return 0 on success, an errno on failure. 2158 * 2159 * This helper function allows drivers to register several supply 2160 * aliases in one operation. If any of the aliases cannot be 2161 * registered any aliases that were registered will be removed 2162 * before returning to the caller. 2163 */ 2164 int regulator_bulk_register_supply_alias(struct device *dev, 2165 const char *const *id, 2166 struct device *alias_dev, 2167 const char *const *alias_id, 2168 int num_id) 2169 { 2170 int i; 2171 int ret; 2172 2173 for (i = 0; i < num_id; ++i) { 2174 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2175 alias_id[i]); 2176 if (ret < 0) 2177 goto err; 2178 } 2179 2180 return 0; 2181 2182 err: 2183 dev_err(dev, 2184 "Failed to create supply alias %s,%s -> %s,%s\n", 2185 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2186 2187 while (--i >= 0) 2188 regulator_unregister_supply_alias(dev, id[i]); 2189 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2193 2194 /** 2195 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2196 * 2197 * @dev: device that will be given as the regulator "consumer" 2198 * @id: List of supply names or regulator IDs 2199 * @num_id: Number of aliases to unregister 2200 * 2201 * This helper function allows drivers to unregister several supply 2202 * aliases in one operation. 2203 */ 2204 void regulator_bulk_unregister_supply_alias(struct device *dev, 2205 const char *const *id, 2206 int num_id) 2207 { 2208 int i; 2209 2210 for (i = 0; i < num_id; ++i) 2211 regulator_unregister_supply_alias(dev, id[i]); 2212 } 2213 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2214 2215 2216 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2217 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2218 const struct regulator_config *config) 2219 { 2220 struct regulator_enable_gpio *pin; 2221 struct gpio_desc *gpiod; 2222 2223 gpiod = config->ena_gpiod; 2224 2225 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2226 if (pin->gpiod == gpiod) { 2227 rdev_dbg(rdev, "GPIO is already used\n"); 2228 goto update_ena_gpio_to_rdev; 2229 } 2230 } 2231 2232 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2233 if (pin == NULL) 2234 return -ENOMEM; 2235 2236 pin->gpiod = gpiod; 2237 list_add(&pin->list, ®ulator_ena_gpio_list); 2238 2239 update_ena_gpio_to_rdev: 2240 pin->request_count++; 2241 rdev->ena_pin = pin; 2242 return 0; 2243 } 2244 2245 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2246 { 2247 struct regulator_enable_gpio *pin, *n; 2248 2249 if (!rdev->ena_pin) 2250 return; 2251 2252 /* Free the GPIO only in case of no use */ 2253 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2254 if (pin->gpiod == rdev->ena_pin->gpiod) { 2255 if (pin->request_count <= 1) { 2256 pin->request_count = 0; 2257 gpiod_put(pin->gpiod); 2258 list_del(&pin->list); 2259 kfree(pin); 2260 rdev->ena_pin = NULL; 2261 return; 2262 } else { 2263 pin->request_count--; 2264 } 2265 } 2266 } 2267 } 2268 2269 /** 2270 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2271 * @rdev: regulator_dev structure 2272 * @enable: enable GPIO at initial use? 2273 * 2274 * GPIO is enabled in case of initial use. (enable_count is 0) 2275 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2276 */ 2277 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2278 { 2279 struct regulator_enable_gpio *pin = rdev->ena_pin; 2280 2281 if (!pin) 2282 return -EINVAL; 2283 2284 if (enable) { 2285 /* Enable GPIO at initial use */ 2286 if (pin->enable_count == 0) 2287 gpiod_set_value_cansleep(pin->gpiod, 1); 2288 2289 pin->enable_count++; 2290 } else { 2291 if (pin->enable_count > 1) { 2292 pin->enable_count--; 2293 return 0; 2294 } 2295 2296 /* Disable GPIO if not used */ 2297 if (pin->enable_count <= 1) { 2298 gpiod_set_value_cansleep(pin->gpiod, 0); 2299 pin->enable_count = 0; 2300 } 2301 } 2302 2303 return 0; 2304 } 2305 2306 /** 2307 * _regulator_enable_delay - a delay helper function 2308 * @delay: time to delay in microseconds 2309 * 2310 * Delay for the requested amount of time as per the guidelines in: 2311 * 2312 * Documentation/timers/timers-howto.txt 2313 * 2314 * The assumption here is that regulators will never be enabled in 2315 * atomic context and therefore sleeping functions can be used. 2316 */ 2317 static void _regulator_enable_delay(unsigned int delay) 2318 { 2319 unsigned int ms = delay / 1000; 2320 unsigned int us = delay % 1000; 2321 2322 if (ms > 0) { 2323 /* 2324 * For small enough values, handle super-millisecond 2325 * delays in the usleep_range() call below. 2326 */ 2327 if (ms < 20) 2328 us += ms * 1000; 2329 else 2330 msleep(ms); 2331 } 2332 2333 /* 2334 * Give the scheduler some room to coalesce with any other 2335 * wakeup sources. For delays shorter than 10 us, don't even 2336 * bother setting up high-resolution timers and just busy- 2337 * loop. 2338 */ 2339 if (us >= 10) 2340 usleep_range(us, us + 100); 2341 else 2342 udelay(us); 2343 } 2344 2345 static int _regulator_do_enable(struct regulator_dev *rdev) 2346 { 2347 int ret, delay; 2348 2349 /* Query before enabling in case configuration dependent. */ 2350 ret = _regulator_get_enable_time(rdev); 2351 if (ret >= 0) { 2352 delay = ret; 2353 } else { 2354 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2355 delay = 0; 2356 } 2357 2358 trace_regulator_enable(rdev_get_name(rdev)); 2359 2360 if (rdev->desc->off_on_delay) { 2361 /* if needed, keep a distance of off_on_delay from last time 2362 * this regulator was disabled. 2363 */ 2364 unsigned long start_jiffy = jiffies; 2365 unsigned long intended, max_delay, remaining; 2366 2367 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2368 intended = rdev->last_off_jiffy + max_delay; 2369 2370 if (time_before(start_jiffy, intended)) { 2371 /* calc remaining jiffies to deal with one-time 2372 * timer wrapping. 2373 * in case of multiple timer wrapping, either it can be 2374 * detected by out-of-range remaining, or it cannot be 2375 * detected and we get a penalty of 2376 * _regulator_enable_delay(). 2377 */ 2378 remaining = intended - start_jiffy; 2379 if (remaining <= max_delay) 2380 _regulator_enable_delay( 2381 jiffies_to_usecs(remaining)); 2382 } 2383 } 2384 2385 if (rdev->ena_pin) { 2386 if (!rdev->ena_gpio_state) { 2387 ret = regulator_ena_gpio_ctrl(rdev, true); 2388 if (ret < 0) 2389 return ret; 2390 rdev->ena_gpio_state = 1; 2391 } 2392 } else if (rdev->desc->ops->enable) { 2393 ret = rdev->desc->ops->enable(rdev); 2394 if (ret < 0) 2395 return ret; 2396 } else { 2397 return -EINVAL; 2398 } 2399 2400 /* Allow the regulator to ramp; it would be useful to extend 2401 * this for bulk operations so that the regulators can ramp 2402 * together. */ 2403 trace_regulator_enable_delay(rdev_get_name(rdev)); 2404 2405 _regulator_enable_delay(delay); 2406 2407 trace_regulator_enable_complete(rdev_get_name(rdev)); 2408 2409 return 0; 2410 } 2411 2412 /** 2413 * _regulator_handle_consumer_enable - handle that a consumer enabled 2414 * @regulator: regulator source 2415 * 2416 * Some things on a regulator consumer (like the contribution towards total 2417 * load on the regulator) only have an effect when the consumer wants the 2418 * regulator enabled. Explained in example with two consumers of the same 2419 * regulator: 2420 * consumer A: set_load(100); => total load = 0 2421 * consumer A: regulator_enable(); => total load = 100 2422 * consumer B: set_load(1000); => total load = 100 2423 * consumer B: regulator_enable(); => total load = 1100 2424 * consumer A: regulator_disable(); => total_load = 1000 2425 * 2426 * This function (together with _regulator_handle_consumer_disable) is 2427 * responsible for keeping track of the refcount for a given regulator consumer 2428 * and applying / unapplying these things. 2429 * 2430 * Returns 0 upon no error; -error upon error. 2431 */ 2432 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2433 { 2434 struct regulator_dev *rdev = regulator->rdev; 2435 2436 lockdep_assert_held_once(&rdev->mutex.base); 2437 2438 regulator->enable_count++; 2439 if (regulator->uA_load && regulator->enable_count == 1) 2440 return drms_uA_update(rdev); 2441 2442 return 0; 2443 } 2444 2445 /** 2446 * _regulator_handle_consumer_disable - handle that a consumer disabled 2447 * @regulator: regulator source 2448 * 2449 * The opposite of _regulator_handle_consumer_enable(). 2450 * 2451 * Returns 0 upon no error; -error upon error. 2452 */ 2453 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2454 { 2455 struct regulator_dev *rdev = regulator->rdev; 2456 2457 lockdep_assert_held_once(&rdev->mutex.base); 2458 2459 if (!regulator->enable_count) { 2460 rdev_err(rdev, "Underflow of regulator enable count\n"); 2461 return -EINVAL; 2462 } 2463 2464 regulator->enable_count--; 2465 if (regulator->uA_load && regulator->enable_count == 0) 2466 return drms_uA_update(rdev); 2467 2468 return 0; 2469 } 2470 2471 /* locks held by regulator_enable() */ 2472 static int _regulator_enable(struct regulator *regulator) 2473 { 2474 struct regulator_dev *rdev = regulator->rdev; 2475 int ret; 2476 2477 lockdep_assert_held_once(&rdev->mutex.base); 2478 2479 if (rdev->use_count == 0 && rdev->supply) { 2480 ret = _regulator_enable(rdev->supply); 2481 if (ret < 0) 2482 return ret; 2483 } 2484 2485 /* balance only if there are regulators coupled */ 2486 if (rdev->coupling_desc.n_coupled > 1) { 2487 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2488 if (ret < 0) 2489 goto err_disable_supply; 2490 } 2491 2492 ret = _regulator_handle_consumer_enable(regulator); 2493 if (ret < 0) 2494 goto err_disable_supply; 2495 2496 if (rdev->use_count == 0) { 2497 /* The regulator may on if it's not switchable or left on */ 2498 ret = _regulator_is_enabled(rdev); 2499 if (ret == -EINVAL || ret == 0) { 2500 if (!regulator_ops_is_valid(rdev, 2501 REGULATOR_CHANGE_STATUS)) { 2502 ret = -EPERM; 2503 goto err_consumer_disable; 2504 } 2505 2506 ret = _regulator_do_enable(rdev); 2507 if (ret < 0) 2508 goto err_consumer_disable; 2509 2510 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2511 NULL); 2512 } else if (ret < 0) { 2513 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2514 goto err_consumer_disable; 2515 } 2516 /* Fallthrough on positive return values - already enabled */ 2517 } 2518 2519 rdev->use_count++; 2520 2521 return 0; 2522 2523 err_consumer_disable: 2524 _regulator_handle_consumer_disable(regulator); 2525 2526 err_disable_supply: 2527 if (rdev->use_count == 0 && rdev->supply) 2528 _regulator_disable(rdev->supply); 2529 2530 return ret; 2531 } 2532 2533 /** 2534 * regulator_enable - enable regulator output 2535 * @regulator: regulator source 2536 * 2537 * Request that the regulator be enabled with the regulator output at 2538 * the predefined voltage or current value. Calls to regulator_enable() 2539 * must be balanced with calls to regulator_disable(). 2540 * 2541 * NOTE: the output value can be set by other drivers, boot loader or may be 2542 * hardwired in the regulator. 2543 */ 2544 int regulator_enable(struct regulator *regulator) 2545 { 2546 struct regulator_dev *rdev = regulator->rdev; 2547 struct ww_acquire_ctx ww_ctx; 2548 int ret; 2549 2550 regulator_lock_dependent(rdev, &ww_ctx); 2551 ret = _regulator_enable(regulator); 2552 regulator_unlock_dependent(rdev, &ww_ctx); 2553 2554 return ret; 2555 } 2556 EXPORT_SYMBOL_GPL(regulator_enable); 2557 2558 static int _regulator_do_disable(struct regulator_dev *rdev) 2559 { 2560 int ret; 2561 2562 trace_regulator_disable(rdev_get_name(rdev)); 2563 2564 if (rdev->ena_pin) { 2565 if (rdev->ena_gpio_state) { 2566 ret = regulator_ena_gpio_ctrl(rdev, false); 2567 if (ret < 0) 2568 return ret; 2569 rdev->ena_gpio_state = 0; 2570 } 2571 2572 } else if (rdev->desc->ops->disable) { 2573 ret = rdev->desc->ops->disable(rdev); 2574 if (ret != 0) 2575 return ret; 2576 } 2577 2578 /* cares about last_off_jiffy only if off_on_delay is required by 2579 * device. 2580 */ 2581 if (rdev->desc->off_on_delay) 2582 rdev->last_off_jiffy = jiffies; 2583 2584 trace_regulator_disable_complete(rdev_get_name(rdev)); 2585 2586 return 0; 2587 } 2588 2589 /* locks held by regulator_disable() */ 2590 static int _regulator_disable(struct regulator *regulator) 2591 { 2592 struct regulator_dev *rdev = regulator->rdev; 2593 int ret = 0; 2594 2595 lockdep_assert_held_once(&rdev->mutex.base); 2596 2597 if (WARN(rdev->use_count <= 0, 2598 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2599 return -EIO; 2600 2601 /* are we the last user and permitted to disable ? */ 2602 if (rdev->use_count == 1 && 2603 (rdev->constraints && !rdev->constraints->always_on)) { 2604 2605 /* we are last user */ 2606 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2607 ret = _notifier_call_chain(rdev, 2608 REGULATOR_EVENT_PRE_DISABLE, 2609 NULL); 2610 if (ret & NOTIFY_STOP_MASK) 2611 return -EINVAL; 2612 2613 ret = _regulator_do_disable(rdev); 2614 if (ret < 0) { 2615 rdev_err(rdev, "failed to disable\n"); 2616 _notifier_call_chain(rdev, 2617 REGULATOR_EVENT_ABORT_DISABLE, 2618 NULL); 2619 return ret; 2620 } 2621 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2622 NULL); 2623 } 2624 2625 rdev->use_count = 0; 2626 } else if (rdev->use_count > 1) { 2627 rdev->use_count--; 2628 } 2629 2630 if (ret == 0) 2631 ret = _regulator_handle_consumer_disable(regulator); 2632 2633 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2634 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2635 2636 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2637 ret = _regulator_disable(rdev->supply); 2638 2639 return ret; 2640 } 2641 2642 /** 2643 * regulator_disable - disable regulator output 2644 * @regulator: regulator source 2645 * 2646 * Disable the regulator output voltage or current. Calls to 2647 * regulator_enable() must be balanced with calls to 2648 * regulator_disable(). 2649 * 2650 * NOTE: this will only disable the regulator output if no other consumer 2651 * devices have it enabled, the regulator device supports disabling and 2652 * machine constraints permit this operation. 2653 */ 2654 int regulator_disable(struct regulator *regulator) 2655 { 2656 struct regulator_dev *rdev = regulator->rdev; 2657 struct ww_acquire_ctx ww_ctx; 2658 int ret; 2659 2660 regulator_lock_dependent(rdev, &ww_ctx); 2661 ret = _regulator_disable(regulator); 2662 regulator_unlock_dependent(rdev, &ww_ctx); 2663 2664 return ret; 2665 } 2666 EXPORT_SYMBOL_GPL(regulator_disable); 2667 2668 /* locks held by regulator_force_disable() */ 2669 static int _regulator_force_disable(struct regulator_dev *rdev) 2670 { 2671 int ret = 0; 2672 2673 lockdep_assert_held_once(&rdev->mutex.base); 2674 2675 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2676 REGULATOR_EVENT_PRE_DISABLE, NULL); 2677 if (ret & NOTIFY_STOP_MASK) 2678 return -EINVAL; 2679 2680 ret = _regulator_do_disable(rdev); 2681 if (ret < 0) { 2682 rdev_err(rdev, "failed to force disable\n"); 2683 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2684 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2685 return ret; 2686 } 2687 2688 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2689 REGULATOR_EVENT_DISABLE, NULL); 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * regulator_force_disable - force disable regulator output 2696 * @regulator: regulator source 2697 * 2698 * Forcibly disable the regulator output voltage or current. 2699 * NOTE: this *will* disable the regulator output even if other consumer 2700 * devices have it enabled. This should be used for situations when device 2701 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2702 */ 2703 int regulator_force_disable(struct regulator *regulator) 2704 { 2705 struct regulator_dev *rdev = regulator->rdev; 2706 struct ww_acquire_ctx ww_ctx; 2707 int ret; 2708 2709 regulator_lock_dependent(rdev, &ww_ctx); 2710 2711 ret = _regulator_force_disable(regulator->rdev); 2712 2713 if (rdev->coupling_desc.n_coupled > 1) 2714 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2715 2716 if (regulator->uA_load) { 2717 regulator->uA_load = 0; 2718 ret = drms_uA_update(rdev); 2719 } 2720 2721 if (rdev->use_count != 0 && rdev->supply) 2722 _regulator_disable(rdev->supply); 2723 2724 regulator_unlock_dependent(rdev, &ww_ctx); 2725 2726 return ret; 2727 } 2728 EXPORT_SYMBOL_GPL(regulator_force_disable); 2729 2730 static void regulator_disable_work(struct work_struct *work) 2731 { 2732 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2733 disable_work.work); 2734 struct ww_acquire_ctx ww_ctx; 2735 int count, i, ret; 2736 struct regulator *regulator; 2737 int total_count = 0; 2738 2739 regulator_lock_dependent(rdev, &ww_ctx); 2740 2741 /* 2742 * Workqueue functions queue the new work instance while the previous 2743 * work instance is being processed. Cancel the queued work instance 2744 * as the work instance under processing does the job of the queued 2745 * work instance. 2746 */ 2747 cancel_delayed_work(&rdev->disable_work); 2748 2749 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2750 count = regulator->deferred_disables; 2751 2752 if (!count) 2753 continue; 2754 2755 total_count += count; 2756 regulator->deferred_disables = 0; 2757 2758 for (i = 0; i < count; i++) { 2759 ret = _regulator_disable(regulator); 2760 if (ret != 0) 2761 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2762 } 2763 } 2764 WARN_ON(!total_count); 2765 2766 if (rdev->coupling_desc.n_coupled > 1) 2767 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2768 2769 regulator_unlock_dependent(rdev, &ww_ctx); 2770 } 2771 2772 /** 2773 * regulator_disable_deferred - disable regulator output with delay 2774 * @regulator: regulator source 2775 * @ms: milliseconds until the regulator is disabled 2776 * 2777 * Execute regulator_disable() on the regulator after a delay. This 2778 * is intended for use with devices that require some time to quiesce. 2779 * 2780 * NOTE: this will only disable the regulator output if no other consumer 2781 * devices have it enabled, the regulator device supports disabling and 2782 * machine constraints permit this operation. 2783 */ 2784 int regulator_disable_deferred(struct regulator *regulator, int ms) 2785 { 2786 struct regulator_dev *rdev = regulator->rdev; 2787 2788 if (!ms) 2789 return regulator_disable(regulator); 2790 2791 regulator_lock(rdev); 2792 regulator->deferred_disables++; 2793 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2794 msecs_to_jiffies(ms)); 2795 regulator_unlock(rdev); 2796 2797 return 0; 2798 } 2799 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2800 2801 static int _regulator_is_enabled(struct regulator_dev *rdev) 2802 { 2803 /* A GPIO control always takes precedence */ 2804 if (rdev->ena_pin) 2805 return rdev->ena_gpio_state; 2806 2807 /* If we don't know then assume that the regulator is always on */ 2808 if (!rdev->desc->ops->is_enabled) 2809 return 1; 2810 2811 return rdev->desc->ops->is_enabled(rdev); 2812 } 2813 2814 static int _regulator_list_voltage(struct regulator_dev *rdev, 2815 unsigned selector, int lock) 2816 { 2817 const struct regulator_ops *ops = rdev->desc->ops; 2818 int ret; 2819 2820 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2821 return rdev->desc->fixed_uV; 2822 2823 if (ops->list_voltage) { 2824 if (selector >= rdev->desc->n_voltages) 2825 return -EINVAL; 2826 if (lock) 2827 regulator_lock(rdev); 2828 ret = ops->list_voltage(rdev, selector); 2829 if (lock) 2830 regulator_unlock(rdev); 2831 } else if (rdev->is_switch && rdev->supply) { 2832 ret = _regulator_list_voltage(rdev->supply->rdev, 2833 selector, lock); 2834 } else { 2835 return -EINVAL; 2836 } 2837 2838 if (ret > 0) { 2839 if (ret < rdev->constraints->min_uV) 2840 ret = 0; 2841 else if (ret > rdev->constraints->max_uV) 2842 ret = 0; 2843 } 2844 2845 return ret; 2846 } 2847 2848 /** 2849 * regulator_is_enabled - is the regulator output enabled 2850 * @regulator: regulator source 2851 * 2852 * Returns positive if the regulator driver backing the source/client 2853 * has requested that the device be enabled, zero if it hasn't, else a 2854 * negative errno code. 2855 * 2856 * Note that the device backing this regulator handle can have multiple 2857 * users, so it might be enabled even if regulator_enable() was never 2858 * called for this particular source. 2859 */ 2860 int regulator_is_enabled(struct regulator *regulator) 2861 { 2862 int ret; 2863 2864 if (regulator->always_on) 2865 return 1; 2866 2867 regulator_lock(regulator->rdev); 2868 ret = _regulator_is_enabled(regulator->rdev); 2869 regulator_unlock(regulator->rdev); 2870 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2874 2875 /** 2876 * regulator_count_voltages - count regulator_list_voltage() selectors 2877 * @regulator: regulator source 2878 * 2879 * Returns number of selectors, or negative errno. Selectors are 2880 * numbered starting at zero, and typically correspond to bitfields 2881 * in hardware registers. 2882 */ 2883 int regulator_count_voltages(struct regulator *regulator) 2884 { 2885 struct regulator_dev *rdev = regulator->rdev; 2886 2887 if (rdev->desc->n_voltages) 2888 return rdev->desc->n_voltages; 2889 2890 if (!rdev->is_switch || !rdev->supply) 2891 return -EINVAL; 2892 2893 return regulator_count_voltages(rdev->supply); 2894 } 2895 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2896 2897 /** 2898 * regulator_list_voltage - enumerate supported voltages 2899 * @regulator: regulator source 2900 * @selector: identify voltage to list 2901 * Context: can sleep 2902 * 2903 * Returns a voltage that can be passed to @regulator_set_voltage(), 2904 * zero if this selector code can't be used on this system, or a 2905 * negative errno. 2906 */ 2907 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2908 { 2909 return _regulator_list_voltage(regulator->rdev, selector, 1); 2910 } 2911 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2912 2913 /** 2914 * regulator_get_regmap - get the regulator's register map 2915 * @regulator: regulator source 2916 * 2917 * Returns the register map for the given regulator, or an ERR_PTR value 2918 * if the regulator doesn't use regmap. 2919 */ 2920 struct regmap *regulator_get_regmap(struct regulator *regulator) 2921 { 2922 struct regmap *map = regulator->rdev->regmap; 2923 2924 return map ? map : ERR_PTR(-EOPNOTSUPP); 2925 } 2926 2927 /** 2928 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2929 * @regulator: regulator source 2930 * @vsel_reg: voltage selector register, output parameter 2931 * @vsel_mask: mask for voltage selector bitfield, output parameter 2932 * 2933 * Returns the hardware register offset and bitmask used for setting the 2934 * regulator voltage. This might be useful when configuring voltage-scaling 2935 * hardware or firmware that can make I2C requests behind the kernel's back, 2936 * for example. 2937 * 2938 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2939 * and 0 is returned, otherwise a negative errno is returned. 2940 */ 2941 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2942 unsigned *vsel_reg, 2943 unsigned *vsel_mask) 2944 { 2945 struct regulator_dev *rdev = regulator->rdev; 2946 const struct regulator_ops *ops = rdev->desc->ops; 2947 2948 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2949 return -EOPNOTSUPP; 2950 2951 *vsel_reg = rdev->desc->vsel_reg; 2952 *vsel_mask = rdev->desc->vsel_mask; 2953 2954 return 0; 2955 } 2956 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2957 2958 /** 2959 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2960 * @regulator: regulator source 2961 * @selector: identify voltage to list 2962 * 2963 * Converts the selector to a hardware-specific voltage selector that can be 2964 * directly written to the regulator registers. The address of the voltage 2965 * register can be determined by calling @regulator_get_hardware_vsel_register. 2966 * 2967 * On error a negative errno is returned. 2968 */ 2969 int regulator_list_hardware_vsel(struct regulator *regulator, 2970 unsigned selector) 2971 { 2972 struct regulator_dev *rdev = regulator->rdev; 2973 const struct regulator_ops *ops = rdev->desc->ops; 2974 2975 if (selector >= rdev->desc->n_voltages) 2976 return -EINVAL; 2977 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2978 return -EOPNOTSUPP; 2979 2980 return selector; 2981 } 2982 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2983 2984 /** 2985 * regulator_get_linear_step - return the voltage step size between VSEL values 2986 * @regulator: regulator source 2987 * 2988 * Returns the voltage step size between VSEL values for linear 2989 * regulators, or return 0 if the regulator isn't a linear regulator. 2990 */ 2991 unsigned int regulator_get_linear_step(struct regulator *regulator) 2992 { 2993 struct regulator_dev *rdev = regulator->rdev; 2994 2995 return rdev->desc->uV_step; 2996 } 2997 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2998 2999 /** 3000 * regulator_is_supported_voltage - check if a voltage range can be supported 3001 * 3002 * @regulator: Regulator to check. 3003 * @min_uV: Minimum required voltage in uV. 3004 * @max_uV: Maximum required voltage in uV. 3005 * 3006 * Returns a boolean. 3007 */ 3008 int regulator_is_supported_voltage(struct regulator *regulator, 3009 int min_uV, int max_uV) 3010 { 3011 struct regulator_dev *rdev = regulator->rdev; 3012 int i, voltages, ret; 3013 3014 /* If we can't change voltage check the current voltage */ 3015 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3016 ret = regulator_get_voltage(regulator); 3017 if (ret >= 0) 3018 return min_uV <= ret && ret <= max_uV; 3019 else 3020 return ret; 3021 } 3022 3023 /* Any voltage within constrains range is fine? */ 3024 if (rdev->desc->continuous_voltage_range) 3025 return min_uV >= rdev->constraints->min_uV && 3026 max_uV <= rdev->constraints->max_uV; 3027 3028 ret = regulator_count_voltages(regulator); 3029 if (ret < 0) 3030 return 0; 3031 voltages = ret; 3032 3033 for (i = 0; i < voltages; i++) { 3034 ret = regulator_list_voltage(regulator, i); 3035 3036 if (ret >= min_uV && ret <= max_uV) 3037 return 1; 3038 } 3039 3040 return 0; 3041 } 3042 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3043 3044 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3045 int max_uV) 3046 { 3047 const struct regulator_desc *desc = rdev->desc; 3048 3049 if (desc->ops->map_voltage) 3050 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3051 3052 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3053 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3054 3055 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3056 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3057 3058 if (desc->ops->list_voltage == 3059 regulator_list_voltage_pickable_linear_range) 3060 return regulator_map_voltage_pickable_linear_range(rdev, 3061 min_uV, max_uV); 3062 3063 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3064 } 3065 3066 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3067 int min_uV, int max_uV, 3068 unsigned *selector) 3069 { 3070 struct pre_voltage_change_data data; 3071 int ret; 3072 3073 data.old_uV = _regulator_get_voltage(rdev); 3074 data.min_uV = min_uV; 3075 data.max_uV = max_uV; 3076 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3077 &data); 3078 if (ret & NOTIFY_STOP_MASK) 3079 return -EINVAL; 3080 3081 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3082 if (ret >= 0) 3083 return ret; 3084 3085 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3086 (void *)data.old_uV); 3087 3088 return ret; 3089 } 3090 3091 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3092 int uV, unsigned selector) 3093 { 3094 struct pre_voltage_change_data data; 3095 int ret; 3096 3097 data.old_uV = _regulator_get_voltage(rdev); 3098 data.min_uV = uV; 3099 data.max_uV = uV; 3100 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3101 &data); 3102 if (ret & NOTIFY_STOP_MASK) 3103 return -EINVAL; 3104 3105 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3106 if (ret >= 0) 3107 return ret; 3108 3109 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3110 (void *)data.old_uV); 3111 3112 return ret; 3113 } 3114 3115 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3116 int old_uV, int new_uV) 3117 { 3118 unsigned int ramp_delay = 0; 3119 3120 if (rdev->constraints->ramp_delay) 3121 ramp_delay = rdev->constraints->ramp_delay; 3122 else if (rdev->desc->ramp_delay) 3123 ramp_delay = rdev->desc->ramp_delay; 3124 else if (rdev->constraints->settling_time) 3125 return rdev->constraints->settling_time; 3126 else if (rdev->constraints->settling_time_up && 3127 (new_uV > old_uV)) 3128 return rdev->constraints->settling_time_up; 3129 else if (rdev->constraints->settling_time_down && 3130 (new_uV < old_uV)) 3131 return rdev->constraints->settling_time_down; 3132 3133 if (ramp_delay == 0) { 3134 rdev_dbg(rdev, "ramp_delay not set\n"); 3135 return 0; 3136 } 3137 3138 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3139 } 3140 3141 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3142 int min_uV, int max_uV) 3143 { 3144 int ret; 3145 int delay = 0; 3146 int best_val = 0; 3147 unsigned int selector; 3148 int old_selector = -1; 3149 const struct regulator_ops *ops = rdev->desc->ops; 3150 int old_uV = _regulator_get_voltage(rdev); 3151 3152 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3153 3154 min_uV += rdev->constraints->uV_offset; 3155 max_uV += rdev->constraints->uV_offset; 3156 3157 /* 3158 * If we can't obtain the old selector there is not enough 3159 * info to call set_voltage_time_sel(). 3160 */ 3161 if (_regulator_is_enabled(rdev) && 3162 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3163 old_selector = ops->get_voltage_sel(rdev); 3164 if (old_selector < 0) 3165 return old_selector; 3166 } 3167 3168 if (ops->set_voltage) { 3169 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3170 &selector); 3171 3172 if (ret >= 0) { 3173 if (ops->list_voltage) 3174 best_val = ops->list_voltage(rdev, 3175 selector); 3176 else 3177 best_val = _regulator_get_voltage(rdev); 3178 } 3179 3180 } else if (ops->set_voltage_sel) { 3181 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3182 if (ret >= 0) { 3183 best_val = ops->list_voltage(rdev, ret); 3184 if (min_uV <= best_val && max_uV >= best_val) { 3185 selector = ret; 3186 if (old_selector == selector) 3187 ret = 0; 3188 else 3189 ret = _regulator_call_set_voltage_sel( 3190 rdev, best_val, selector); 3191 } else { 3192 ret = -EINVAL; 3193 } 3194 } 3195 } else { 3196 ret = -EINVAL; 3197 } 3198 3199 if (ret) 3200 goto out; 3201 3202 if (ops->set_voltage_time_sel) { 3203 /* 3204 * Call set_voltage_time_sel if successfully obtained 3205 * old_selector 3206 */ 3207 if (old_selector >= 0 && old_selector != selector) 3208 delay = ops->set_voltage_time_sel(rdev, old_selector, 3209 selector); 3210 } else { 3211 if (old_uV != best_val) { 3212 if (ops->set_voltage_time) 3213 delay = ops->set_voltage_time(rdev, old_uV, 3214 best_val); 3215 else 3216 delay = _regulator_set_voltage_time(rdev, 3217 old_uV, 3218 best_val); 3219 } 3220 } 3221 3222 if (delay < 0) { 3223 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3224 delay = 0; 3225 } 3226 3227 /* Insert any necessary delays */ 3228 if (delay >= 1000) { 3229 mdelay(delay / 1000); 3230 udelay(delay % 1000); 3231 } else if (delay) { 3232 udelay(delay); 3233 } 3234 3235 if (best_val >= 0) { 3236 unsigned long data = best_val; 3237 3238 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3239 (void *)data); 3240 } 3241 3242 out: 3243 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3244 3245 return ret; 3246 } 3247 3248 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3249 int min_uV, int max_uV, suspend_state_t state) 3250 { 3251 struct regulator_state *rstate; 3252 int uV, sel; 3253 3254 rstate = regulator_get_suspend_state(rdev, state); 3255 if (rstate == NULL) 3256 return -EINVAL; 3257 3258 if (min_uV < rstate->min_uV) 3259 min_uV = rstate->min_uV; 3260 if (max_uV > rstate->max_uV) 3261 max_uV = rstate->max_uV; 3262 3263 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3264 if (sel < 0) 3265 return sel; 3266 3267 uV = rdev->desc->ops->list_voltage(rdev, sel); 3268 if (uV >= min_uV && uV <= max_uV) 3269 rstate->uV = uV; 3270 3271 return 0; 3272 } 3273 3274 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3275 int min_uV, int max_uV, 3276 suspend_state_t state) 3277 { 3278 struct regulator_dev *rdev = regulator->rdev; 3279 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3280 int ret = 0; 3281 int old_min_uV, old_max_uV; 3282 int current_uV; 3283 3284 /* If we're setting the same range as last time the change 3285 * should be a noop (some cpufreq implementations use the same 3286 * voltage for multiple frequencies, for example). 3287 */ 3288 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3289 goto out; 3290 3291 /* If we're trying to set a range that overlaps the current voltage, 3292 * return successfully even though the regulator does not support 3293 * changing the voltage. 3294 */ 3295 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3296 current_uV = _regulator_get_voltage(rdev); 3297 if (min_uV <= current_uV && current_uV <= max_uV) { 3298 voltage->min_uV = min_uV; 3299 voltage->max_uV = max_uV; 3300 goto out; 3301 } 3302 } 3303 3304 /* sanity check */ 3305 if (!rdev->desc->ops->set_voltage && 3306 !rdev->desc->ops->set_voltage_sel) { 3307 ret = -EINVAL; 3308 goto out; 3309 } 3310 3311 /* constraints check */ 3312 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3313 if (ret < 0) 3314 goto out; 3315 3316 /* restore original values in case of error */ 3317 old_min_uV = voltage->min_uV; 3318 old_max_uV = voltage->max_uV; 3319 voltage->min_uV = min_uV; 3320 voltage->max_uV = max_uV; 3321 3322 /* for not coupled regulators this will just set the voltage */ 3323 ret = regulator_balance_voltage(rdev, state); 3324 if (ret < 0) { 3325 voltage->min_uV = old_min_uV; 3326 voltage->max_uV = old_max_uV; 3327 } 3328 3329 out: 3330 return ret; 3331 } 3332 3333 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3334 int max_uV, suspend_state_t state) 3335 { 3336 int best_supply_uV = 0; 3337 int supply_change_uV = 0; 3338 int ret; 3339 3340 if (rdev->supply && 3341 regulator_ops_is_valid(rdev->supply->rdev, 3342 REGULATOR_CHANGE_VOLTAGE) && 3343 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3344 rdev->desc->ops->get_voltage_sel))) { 3345 int current_supply_uV; 3346 int selector; 3347 3348 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3349 if (selector < 0) { 3350 ret = selector; 3351 goto out; 3352 } 3353 3354 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3355 if (best_supply_uV < 0) { 3356 ret = best_supply_uV; 3357 goto out; 3358 } 3359 3360 best_supply_uV += rdev->desc->min_dropout_uV; 3361 3362 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 3363 if (current_supply_uV < 0) { 3364 ret = current_supply_uV; 3365 goto out; 3366 } 3367 3368 supply_change_uV = best_supply_uV - current_supply_uV; 3369 } 3370 3371 if (supply_change_uV > 0) { 3372 ret = regulator_set_voltage_unlocked(rdev->supply, 3373 best_supply_uV, INT_MAX, state); 3374 if (ret) { 3375 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3376 ret); 3377 goto out; 3378 } 3379 } 3380 3381 if (state == PM_SUSPEND_ON) 3382 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3383 else 3384 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3385 max_uV, state); 3386 if (ret < 0) 3387 goto out; 3388 3389 if (supply_change_uV < 0) { 3390 ret = regulator_set_voltage_unlocked(rdev->supply, 3391 best_supply_uV, INT_MAX, state); 3392 if (ret) 3393 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3394 ret); 3395 /* No need to fail here */ 3396 ret = 0; 3397 } 3398 3399 out: 3400 return ret; 3401 } 3402 3403 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3404 int *current_uV, int *min_uV) 3405 { 3406 struct regulation_constraints *constraints = rdev->constraints; 3407 3408 /* Limit voltage change only if necessary */ 3409 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3410 return 1; 3411 3412 if (*current_uV < 0) { 3413 *current_uV = _regulator_get_voltage(rdev); 3414 3415 if (*current_uV < 0) 3416 return *current_uV; 3417 } 3418 3419 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3420 return 1; 3421 3422 /* Clamp target voltage within the given step */ 3423 if (*current_uV < *min_uV) 3424 *min_uV = min(*current_uV + constraints->max_uV_step, 3425 *min_uV); 3426 else 3427 *min_uV = max(*current_uV - constraints->max_uV_step, 3428 *min_uV); 3429 3430 return 0; 3431 } 3432 3433 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3434 int *current_uV, 3435 int *min_uV, int *max_uV, 3436 suspend_state_t state, 3437 int n_coupled) 3438 { 3439 struct coupling_desc *c_desc = &rdev->coupling_desc; 3440 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3441 struct regulation_constraints *constraints = rdev->constraints; 3442 int max_spread = constraints->max_spread; 3443 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3444 int max_current_uV = 0, min_current_uV = INT_MAX; 3445 int highest_min_uV = 0, target_uV, possible_uV; 3446 int i, ret; 3447 bool done; 3448 3449 *current_uV = -1; 3450 3451 /* 3452 * If there are no coupled regulators, simply set the voltage 3453 * demanded by consumers. 3454 */ 3455 if (n_coupled == 1) { 3456 /* 3457 * If consumers don't provide any demands, set voltage 3458 * to min_uV 3459 */ 3460 desired_min_uV = constraints->min_uV; 3461 desired_max_uV = constraints->max_uV; 3462 3463 ret = regulator_check_consumers(rdev, 3464 &desired_min_uV, 3465 &desired_max_uV, state); 3466 if (ret < 0) 3467 return ret; 3468 3469 possible_uV = desired_min_uV; 3470 done = true; 3471 3472 goto finish; 3473 } 3474 3475 /* Find highest min desired voltage */ 3476 for (i = 0; i < n_coupled; i++) { 3477 int tmp_min = 0; 3478 int tmp_max = INT_MAX; 3479 3480 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3481 3482 ret = regulator_check_consumers(c_rdevs[i], 3483 &tmp_min, 3484 &tmp_max, state); 3485 if (ret < 0) 3486 return ret; 3487 3488 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3489 if (ret < 0) 3490 return ret; 3491 3492 highest_min_uV = max(highest_min_uV, tmp_min); 3493 3494 if (i == 0) { 3495 desired_min_uV = tmp_min; 3496 desired_max_uV = tmp_max; 3497 } 3498 } 3499 3500 /* 3501 * Let target_uV be equal to the desired one if possible. 3502 * If not, set it to minimum voltage, allowed by other coupled 3503 * regulators. 3504 */ 3505 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3506 3507 /* 3508 * Find min and max voltages, which currently aren't violating 3509 * max_spread. 3510 */ 3511 for (i = 1; i < n_coupled; i++) { 3512 int tmp_act; 3513 3514 if (!_regulator_is_enabled(c_rdevs[i])) 3515 continue; 3516 3517 tmp_act = _regulator_get_voltage(c_rdevs[i]); 3518 if (tmp_act < 0) 3519 return tmp_act; 3520 3521 min_current_uV = min(tmp_act, min_current_uV); 3522 max_current_uV = max(tmp_act, max_current_uV); 3523 } 3524 3525 /* There aren't any other regulators enabled */ 3526 if (max_current_uV == 0) { 3527 possible_uV = target_uV; 3528 } else { 3529 /* 3530 * Correct target voltage, so as it currently isn't 3531 * violating max_spread 3532 */ 3533 possible_uV = max(target_uV, max_current_uV - max_spread); 3534 possible_uV = min(possible_uV, min_current_uV + max_spread); 3535 } 3536 3537 if (possible_uV > desired_max_uV) 3538 return -EINVAL; 3539 3540 done = (possible_uV == target_uV); 3541 desired_min_uV = possible_uV; 3542 3543 finish: 3544 /* Apply max_uV_step constraint if necessary */ 3545 if (state == PM_SUSPEND_ON) { 3546 ret = regulator_limit_voltage_step(rdev, current_uV, 3547 &desired_min_uV); 3548 if (ret < 0) 3549 return ret; 3550 3551 if (ret == 0) 3552 done = false; 3553 } 3554 3555 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3556 if (n_coupled > 1 && *current_uV == -1) { 3557 3558 if (_regulator_is_enabled(rdev)) { 3559 ret = _regulator_get_voltage(rdev); 3560 if (ret < 0) 3561 return ret; 3562 3563 *current_uV = ret; 3564 } else { 3565 *current_uV = desired_min_uV; 3566 } 3567 } 3568 3569 *min_uV = desired_min_uV; 3570 *max_uV = desired_max_uV; 3571 3572 return done; 3573 } 3574 3575 static int regulator_balance_voltage(struct regulator_dev *rdev, 3576 suspend_state_t state) 3577 { 3578 struct regulator_dev **c_rdevs; 3579 struct regulator_dev *best_rdev; 3580 struct coupling_desc *c_desc = &rdev->coupling_desc; 3581 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3582 bool best_c_rdev_done, c_rdev_done[MAX_COUPLED]; 3583 unsigned int delta, best_delta; 3584 3585 c_rdevs = c_desc->coupled_rdevs; 3586 n_coupled = c_desc->n_coupled; 3587 3588 /* 3589 * If system is in a state other than PM_SUSPEND_ON, don't check 3590 * other coupled regulators. 3591 */ 3592 if (state != PM_SUSPEND_ON) 3593 n_coupled = 1; 3594 3595 if (c_desc->n_resolved < n_coupled) { 3596 rdev_err(rdev, "Not all coupled regulators registered\n"); 3597 return -EPERM; 3598 } 3599 3600 for (i = 0; i < n_coupled; i++) 3601 c_rdev_done[i] = false; 3602 3603 /* 3604 * Find the best possible voltage change on each loop. Leave the loop 3605 * if there isn't any possible change. 3606 */ 3607 do { 3608 best_c_rdev_done = false; 3609 best_delta = 0; 3610 best_min_uV = 0; 3611 best_max_uV = 0; 3612 best_c_rdev = 0; 3613 best_rdev = NULL; 3614 3615 /* 3616 * Find highest difference between optimal voltage 3617 * and current voltage. 3618 */ 3619 for (i = 0; i < n_coupled; i++) { 3620 /* 3621 * optimal_uV is the best voltage that can be set for 3622 * i-th regulator at the moment without violating 3623 * max_spread constraint in order to balance 3624 * the coupled voltages. 3625 */ 3626 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3627 3628 if (c_rdev_done[i]) 3629 continue; 3630 3631 ret = regulator_get_optimal_voltage(c_rdevs[i], 3632 ¤t_uV, 3633 &optimal_uV, 3634 &optimal_max_uV, 3635 state, n_coupled); 3636 if (ret < 0) 3637 goto out; 3638 3639 delta = abs(optimal_uV - current_uV); 3640 3641 if (delta && best_delta <= delta) { 3642 best_c_rdev_done = ret; 3643 best_delta = delta; 3644 best_rdev = c_rdevs[i]; 3645 best_min_uV = optimal_uV; 3646 best_max_uV = optimal_max_uV; 3647 best_c_rdev = i; 3648 } 3649 } 3650 3651 /* Nothing to change, return successfully */ 3652 if (!best_rdev) { 3653 ret = 0; 3654 goto out; 3655 } 3656 3657 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3658 best_max_uV, state); 3659 3660 if (ret < 0) 3661 goto out; 3662 3663 c_rdev_done[best_c_rdev] = best_c_rdev_done; 3664 3665 } while (n_coupled > 1); 3666 3667 out: 3668 return ret; 3669 } 3670 3671 /** 3672 * regulator_set_voltage - set regulator output voltage 3673 * @regulator: regulator source 3674 * @min_uV: Minimum required voltage in uV 3675 * @max_uV: Maximum acceptable voltage in uV 3676 * 3677 * Sets a voltage regulator to the desired output voltage. This can be set 3678 * during any regulator state. IOW, regulator can be disabled or enabled. 3679 * 3680 * If the regulator is enabled then the voltage will change to the new value 3681 * immediately otherwise if the regulator is disabled the regulator will 3682 * output at the new voltage when enabled. 3683 * 3684 * NOTE: If the regulator is shared between several devices then the lowest 3685 * request voltage that meets the system constraints will be used. 3686 * Regulator system constraints must be set for this regulator before 3687 * calling this function otherwise this call will fail. 3688 */ 3689 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3690 { 3691 struct ww_acquire_ctx ww_ctx; 3692 int ret; 3693 3694 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3695 3696 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3697 PM_SUSPEND_ON); 3698 3699 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3700 3701 return ret; 3702 } 3703 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3704 3705 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3706 suspend_state_t state, bool en) 3707 { 3708 struct regulator_state *rstate; 3709 3710 rstate = regulator_get_suspend_state(rdev, state); 3711 if (rstate == NULL) 3712 return -EINVAL; 3713 3714 if (!rstate->changeable) 3715 return -EPERM; 3716 3717 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3718 3719 return 0; 3720 } 3721 3722 int regulator_suspend_enable(struct regulator_dev *rdev, 3723 suspend_state_t state) 3724 { 3725 return regulator_suspend_toggle(rdev, state, true); 3726 } 3727 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3728 3729 int regulator_suspend_disable(struct regulator_dev *rdev, 3730 suspend_state_t state) 3731 { 3732 struct regulator *regulator; 3733 struct regulator_voltage *voltage; 3734 3735 /* 3736 * if any consumer wants this regulator device keeping on in 3737 * suspend states, don't set it as disabled. 3738 */ 3739 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3740 voltage = ®ulator->voltage[state]; 3741 if (voltage->min_uV || voltage->max_uV) 3742 return 0; 3743 } 3744 3745 return regulator_suspend_toggle(rdev, state, false); 3746 } 3747 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3748 3749 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3750 int min_uV, int max_uV, 3751 suspend_state_t state) 3752 { 3753 struct regulator_dev *rdev = regulator->rdev; 3754 struct regulator_state *rstate; 3755 3756 rstate = regulator_get_suspend_state(rdev, state); 3757 if (rstate == NULL) 3758 return -EINVAL; 3759 3760 if (rstate->min_uV == rstate->max_uV) { 3761 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3762 return -EPERM; 3763 } 3764 3765 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3766 } 3767 3768 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3769 int max_uV, suspend_state_t state) 3770 { 3771 struct ww_acquire_ctx ww_ctx; 3772 int ret; 3773 3774 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3775 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3776 return -EINVAL; 3777 3778 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3779 3780 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3781 max_uV, state); 3782 3783 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3784 3785 return ret; 3786 } 3787 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3788 3789 /** 3790 * regulator_set_voltage_time - get raise/fall time 3791 * @regulator: regulator source 3792 * @old_uV: starting voltage in microvolts 3793 * @new_uV: target voltage in microvolts 3794 * 3795 * Provided with the starting and ending voltage, this function attempts to 3796 * calculate the time in microseconds required to rise or fall to this new 3797 * voltage. 3798 */ 3799 int regulator_set_voltage_time(struct regulator *regulator, 3800 int old_uV, int new_uV) 3801 { 3802 struct regulator_dev *rdev = regulator->rdev; 3803 const struct regulator_ops *ops = rdev->desc->ops; 3804 int old_sel = -1; 3805 int new_sel = -1; 3806 int voltage; 3807 int i; 3808 3809 if (ops->set_voltage_time) 3810 return ops->set_voltage_time(rdev, old_uV, new_uV); 3811 else if (!ops->set_voltage_time_sel) 3812 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3813 3814 /* Currently requires operations to do this */ 3815 if (!ops->list_voltage || !rdev->desc->n_voltages) 3816 return -EINVAL; 3817 3818 for (i = 0; i < rdev->desc->n_voltages; i++) { 3819 /* We only look for exact voltage matches here */ 3820 voltage = regulator_list_voltage(regulator, i); 3821 if (voltage < 0) 3822 return -EINVAL; 3823 if (voltage == 0) 3824 continue; 3825 if (voltage == old_uV) 3826 old_sel = i; 3827 if (voltage == new_uV) 3828 new_sel = i; 3829 } 3830 3831 if (old_sel < 0 || new_sel < 0) 3832 return -EINVAL; 3833 3834 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3835 } 3836 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3837 3838 /** 3839 * regulator_set_voltage_time_sel - get raise/fall time 3840 * @rdev: regulator source device 3841 * @old_selector: selector for starting voltage 3842 * @new_selector: selector for target voltage 3843 * 3844 * Provided with the starting and target voltage selectors, this function 3845 * returns time in microseconds required to rise or fall to this new voltage 3846 * 3847 * Drivers providing ramp_delay in regulation_constraints can use this as their 3848 * set_voltage_time_sel() operation. 3849 */ 3850 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3851 unsigned int old_selector, 3852 unsigned int new_selector) 3853 { 3854 int old_volt, new_volt; 3855 3856 /* sanity check */ 3857 if (!rdev->desc->ops->list_voltage) 3858 return -EINVAL; 3859 3860 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3861 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3862 3863 if (rdev->desc->ops->set_voltage_time) 3864 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3865 new_volt); 3866 else 3867 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3868 } 3869 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3870 3871 /** 3872 * regulator_sync_voltage - re-apply last regulator output voltage 3873 * @regulator: regulator source 3874 * 3875 * Re-apply the last configured voltage. This is intended to be used 3876 * where some external control source the consumer is cooperating with 3877 * has caused the configured voltage to change. 3878 */ 3879 int regulator_sync_voltage(struct regulator *regulator) 3880 { 3881 struct regulator_dev *rdev = regulator->rdev; 3882 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3883 int ret, min_uV, max_uV; 3884 3885 regulator_lock(rdev); 3886 3887 if (!rdev->desc->ops->set_voltage && 3888 !rdev->desc->ops->set_voltage_sel) { 3889 ret = -EINVAL; 3890 goto out; 3891 } 3892 3893 /* This is only going to work if we've had a voltage configured. */ 3894 if (!voltage->min_uV && !voltage->max_uV) { 3895 ret = -EINVAL; 3896 goto out; 3897 } 3898 3899 min_uV = voltage->min_uV; 3900 max_uV = voltage->max_uV; 3901 3902 /* This should be a paranoia check... */ 3903 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3904 if (ret < 0) 3905 goto out; 3906 3907 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3908 if (ret < 0) 3909 goto out; 3910 3911 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3912 3913 out: 3914 regulator_unlock(rdev); 3915 return ret; 3916 } 3917 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3918 3919 static int _regulator_get_voltage(struct regulator_dev *rdev) 3920 { 3921 int sel, ret; 3922 bool bypassed; 3923 3924 if (rdev->desc->ops->get_bypass) { 3925 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3926 if (ret < 0) 3927 return ret; 3928 if (bypassed) { 3929 /* if bypassed the regulator must have a supply */ 3930 if (!rdev->supply) { 3931 rdev_err(rdev, 3932 "bypassed regulator has no supply!\n"); 3933 return -EPROBE_DEFER; 3934 } 3935 3936 return _regulator_get_voltage(rdev->supply->rdev); 3937 } 3938 } 3939 3940 if (rdev->desc->ops->get_voltage_sel) { 3941 sel = rdev->desc->ops->get_voltage_sel(rdev); 3942 if (sel < 0) 3943 return sel; 3944 ret = rdev->desc->ops->list_voltage(rdev, sel); 3945 } else if (rdev->desc->ops->get_voltage) { 3946 ret = rdev->desc->ops->get_voltage(rdev); 3947 } else if (rdev->desc->ops->list_voltage) { 3948 ret = rdev->desc->ops->list_voltage(rdev, 0); 3949 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3950 ret = rdev->desc->fixed_uV; 3951 } else if (rdev->supply) { 3952 ret = _regulator_get_voltage(rdev->supply->rdev); 3953 } else { 3954 return -EINVAL; 3955 } 3956 3957 if (ret < 0) 3958 return ret; 3959 return ret - rdev->constraints->uV_offset; 3960 } 3961 3962 /** 3963 * regulator_get_voltage - get regulator output voltage 3964 * @regulator: regulator source 3965 * 3966 * This returns the current regulator voltage in uV. 3967 * 3968 * NOTE: If the regulator is disabled it will return the voltage value. This 3969 * function should not be used to determine regulator state. 3970 */ 3971 int regulator_get_voltage(struct regulator *regulator) 3972 { 3973 struct ww_acquire_ctx ww_ctx; 3974 int ret; 3975 3976 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3977 ret = _regulator_get_voltage(regulator->rdev); 3978 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3979 3980 return ret; 3981 } 3982 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3983 3984 /** 3985 * regulator_set_current_limit - set regulator output current limit 3986 * @regulator: regulator source 3987 * @min_uA: Minimum supported current in uA 3988 * @max_uA: Maximum supported current in uA 3989 * 3990 * Sets current sink to the desired output current. This can be set during 3991 * any regulator state. IOW, regulator can be disabled or enabled. 3992 * 3993 * If the regulator is enabled then the current will change to the new value 3994 * immediately otherwise if the regulator is disabled the regulator will 3995 * output at the new current when enabled. 3996 * 3997 * NOTE: Regulator system constraints must be set for this regulator before 3998 * calling this function otherwise this call will fail. 3999 */ 4000 int regulator_set_current_limit(struct regulator *regulator, 4001 int min_uA, int max_uA) 4002 { 4003 struct regulator_dev *rdev = regulator->rdev; 4004 int ret; 4005 4006 regulator_lock(rdev); 4007 4008 /* sanity check */ 4009 if (!rdev->desc->ops->set_current_limit) { 4010 ret = -EINVAL; 4011 goto out; 4012 } 4013 4014 /* constraints check */ 4015 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4016 if (ret < 0) 4017 goto out; 4018 4019 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4020 out: 4021 regulator_unlock(rdev); 4022 return ret; 4023 } 4024 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4025 4026 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4027 { 4028 /* sanity check */ 4029 if (!rdev->desc->ops->get_current_limit) 4030 return -EINVAL; 4031 4032 return rdev->desc->ops->get_current_limit(rdev); 4033 } 4034 4035 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4036 { 4037 int ret; 4038 4039 regulator_lock(rdev); 4040 ret = _regulator_get_current_limit_unlocked(rdev); 4041 regulator_unlock(rdev); 4042 4043 return ret; 4044 } 4045 4046 /** 4047 * regulator_get_current_limit - get regulator output current 4048 * @regulator: regulator source 4049 * 4050 * This returns the current supplied by the specified current sink in uA. 4051 * 4052 * NOTE: If the regulator is disabled it will return the current value. This 4053 * function should not be used to determine regulator state. 4054 */ 4055 int regulator_get_current_limit(struct regulator *regulator) 4056 { 4057 return _regulator_get_current_limit(regulator->rdev); 4058 } 4059 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4060 4061 /** 4062 * regulator_set_mode - set regulator operating mode 4063 * @regulator: regulator source 4064 * @mode: operating mode - one of the REGULATOR_MODE constants 4065 * 4066 * Set regulator operating mode to increase regulator efficiency or improve 4067 * regulation performance. 4068 * 4069 * NOTE: Regulator system constraints must be set for this regulator before 4070 * calling this function otherwise this call will fail. 4071 */ 4072 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4073 { 4074 struct regulator_dev *rdev = regulator->rdev; 4075 int ret; 4076 int regulator_curr_mode; 4077 4078 regulator_lock(rdev); 4079 4080 /* sanity check */ 4081 if (!rdev->desc->ops->set_mode) { 4082 ret = -EINVAL; 4083 goto out; 4084 } 4085 4086 /* return if the same mode is requested */ 4087 if (rdev->desc->ops->get_mode) { 4088 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4089 if (regulator_curr_mode == mode) { 4090 ret = 0; 4091 goto out; 4092 } 4093 } 4094 4095 /* constraints check */ 4096 ret = regulator_mode_constrain(rdev, &mode); 4097 if (ret < 0) 4098 goto out; 4099 4100 ret = rdev->desc->ops->set_mode(rdev, mode); 4101 out: 4102 regulator_unlock(rdev); 4103 return ret; 4104 } 4105 EXPORT_SYMBOL_GPL(regulator_set_mode); 4106 4107 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4108 { 4109 /* sanity check */ 4110 if (!rdev->desc->ops->get_mode) 4111 return -EINVAL; 4112 4113 return rdev->desc->ops->get_mode(rdev); 4114 } 4115 4116 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4117 { 4118 int ret; 4119 4120 regulator_lock(rdev); 4121 ret = _regulator_get_mode_unlocked(rdev); 4122 regulator_unlock(rdev); 4123 4124 return ret; 4125 } 4126 4127 /** 4128 * regulator_get_mode - get regulator operating mode 4129 * @regulator: regulator source 4130 * 4131 * Get the current regulator operating mode. 4132 */ 4133 unsigned int regulator_get_mode(struct regulator *regulator) 4134 { 4135 return _regulator_get_mode(regulator->rdev); 4136 } 4137 EXPORT_SYMBOL_GPL(regulator_get_mode); 4138 4139 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4140 unsigned int *flags) 4141 { 4142 int ret; 4143 4144 regulator_lock(rdev); 4145 4146 /* sanity check */ 4147 if (!rdev->desc->ops->get_error_flags) { 4148 ret = -EINVAL; 4149 goto out; 4150 } 4151 4152 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4153 out: 4154 regulator_unlock(rdev); 4155 return ret; 4156 } 4157 4158 /** 4159 * regulator_get_error_flags - get regulator error information 4160 * @regulator: regulator source 4161 * @flags: pointer to store error flags 4162 * 4163 * Get the current regulator error information. 4164 */ 4165 int regulator_get_error_flags(struct regulator *regulator, 4166 unsigned int *flags) 4167 { 4168 return _regulator_get_error_flags(regulator->rdev, flags); 4169 } 4170 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4171 4172 /** 4173 * regulator_set_load - set regulator load 4174 * @regulator: regulator source 4175 * @uA_load: load current 4176 * 4177 * Notifies the regulator core of a new device load. This is then used by 4178 * DRMS (if enabled by constraints) to set the most efficient regulator 4179 * operating mode for the new regulator loading. 4180 * 4181 * Consumer devices notify their supply regulator of the maximum power 4182 * they will require (can be taken from device datasheet in the power 4183 * consumption tables) when they change operational status and hence power 4184 * state. Examples of operational state changes that can affect power 4185 * consumption are :- 4186 * 4187 * o Device is opened / closed. 4188 * o Device I/O is about to begin or has just finished. 4189 * o Device is idling in between work. 4190 * 4191 * This information is also exported via sysfs to userspace. 4192 * 4193 * DRMS will sum the total requested load on the regulator and change 4194 * to the most efficient operating mode if platform constraints allow. 4195 * 4196 * NOTE: when a regulator consumer requests to have a regulator 4197 * disabled then any load that consumer requested no longer counts 4198 * toward the total requested load. If the regulator is re-enabled 4199 * then the previously requested load will start counting again. 4200 * 4201 * If a regulator is an always-on regulator then an individual consumer's 4202 * load will still be removed if that consumer is fully disabled. 4203 * 4204 * On error a negative errno is returned. 4205 */ 4206 int regulator_set_load(struct regulator *regulator, int uA_load) 4207 { 4208 struct regulator_dev *rdev = regulator->rdev; 4209 int old_uA_load; 4210 int ret = 0; 4211 4212 regulator_lock(rdev); 4213 old_uA_load = regulator->uA_load; 4214 regulator->uA_load = uA_load; 4215 if (regulator->enable_count && old_uA_load != uA_load) { 4216 ret = drms_uA_update(rdev); 4217 if (ret < 0) 4218 regulator->uA_load = old_uA_load; 4219 } 4220 regulator_unlock(rdev); 4221 4222 return ret; 4223 } 4224 EXPORT_SYMBOL_GPL(regulator_set_load); 4225 4226 /** 4227 * regulator_allow_bypass - allow the regulator to go into bypass mode 4228 * 4229 * @regulator: Regulator to configure 4230 * @enable: enable or disable bypass mode 4231 * 4232 * Allow the regulator to go into bypass mode if all other consumers 4233 * for the regulator also enable bypass mode and the machine 4234 * constraints allow this. Bypass mode means that the regulator is 4235 * simply passing the input directly to the output with no regulation. 4236 */ 4237 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4238 { 4239 struct regulator_dev *rdev = regulator->rdev; 4240 int ret = 0; 4241 4242 if (!rdev->desc->ops->set_bypass) 4243 return 0; 4244 4245 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4246 return 0; 4247 4248 regulator_lock(rdev); 4249 4250 if (enable && !regulator->bypass) { 4251 rdev->bypass_count++; 4252 4253 if (rdev->bypass_count == rdev->open_count) { 4254 ret = rdev->desc->ops->set_bypass(rdev, enable); 4255 if (ret != 0) 4256 rdev->bypass_count--; 4257 } 4258 4259 } else if (!enable && regulator->bypass) { 4260 rdev->bypass_count--; 4261 4262 if (rdev->bypass_count != rdev->open_count) { 4263 ret = rdev->desc->ops->set_bypass(rdev, enable); 4264 if (ret != 0) 4265 rdev->bypass_count++; 4266 } 4267 } 4268 4269 if (ret == 0) 4270 regulator->bypass = enable; 4271 4272 regulator_unlock(rdev); 4273 4274 return ret; 4275 } 4276 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4277 4278 /** 4279 * regulator_register_notifier - register regulator event notifier 4280 * @regulator: regulator source 4281 * @nb: notifier block 4282 * 4283 * Register notifier block to receive regulator events. 4284 */ 4285 int regulator_register_notifier(struct regulator *regulator, 4286 struct notifier_block *nb) 4287 { 4288 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4289 nb); 4290 } 4291 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4292 4293 /** 4294 * regulator_unregister_notifier - unregister regulator event notifier 4295 * @regulator: regulator source 4296 * @nb: notifier block 4297 * 4298 * Unregister regulator event notifier block. 4299 */ 4300 int regulator_unregister_notifier(struct regulator *regulator, 4301 struct notifier_block *nb) 4302 { 4303 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4304 nb); 4305 } 4306 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4307 4308 /* notify regulator consumers and downstream regulator consumers. 4309 * Note mutex must be held by caller. 4310 */ 4311 static int _notifier_call_chain(struct regulator_dev *rdev, 4312 unsigned long event, void *data) 4313 { 4314 /* call rdev chain first */ 4315 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4316 } 4317 4318 /** 4319 * regulator_bulk_get - get multiple regulator consumers 4320 * 4321 * @dev: Device to supply 4322 * @num_consumers: Number of consumers to register 4323 * @consumers: Configuration of consumers; clients are stored here. 4324 * 4325 * @return 0 on success, an errno on failure. 4326 * 4327 * This helper function allows drivers to get several regulator 4328 * consumers in one operation. If any of the regulators cannot be 4329 * acquired then any regulators that were allocated will be freed 4330 * before returning to the caller. 4331 */ 4332 int regulator_bulk_get(struct device *dev, int num_consumers, 4333 struct regulator_bulk_data *consumers) 4334 { 4335 int i; 4336 int ret; 4337 4338 for (i = 0; i < num_consumers; i++) 4339 consumers[i].consumer = NULL; 4340 4341 for (i = 0; i < num_consumers; i++) { 4342 consumers[i].consumer = regulator_get(dev, 4343 consumers[i].supply); 4344 if (IS_ERR(consumers[i].consumer)) { 4345 ret = PTR_ERR(consumers[i].consumer); 4346 consumers[i].consumer = NULL; 4347 goto err; 4348 } 4349 } 4350 4351 return 0; 4352 4353 err: 4354 if (ret != -EPROBE_DEFER) 4355 dev_err(dev, "Failed to get supply '%s': %d\n", 4356 consumers[i].supply, ret); 4357 else 4358 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4359 consumers[i].supply); 4360 4361 while (--i >= 0) 4362 regulator_put(consumers[i].consumer); 4363 4364 return ret; 4365 } 4366 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4367 4368 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4369 { 4370 struct regulator_bulk_data *bulk = data; 4371 4372 bulk->ret = regulator_enable(bulk->consumer); 4373 } 4374 4375 /** 4376 * regulator_bulk_enable - enable multiple regulator consumers 4377 * 4378 * @num_consumers: Number of consumers 4379 * @consumers: Consumer data; clients are stored here. 4380 * @return 0 on success, an errno on failure 4381 * 4382 * This convenience API allows consumers to enable multiple regulator 4383 * clients in a single API call. If any consumers cannot be enabled 4384 * then any others that were enabled will be disabled again prior to 4385 * return. 4386 */ 4387 int regulator_bulk_enable(int num_consumers, 4388 struct regulator_bulk_data *consumers) 4389 { 4390 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4391 int i; 4392 int ret = 0; 4393 4394 for (i = 0; i < num_consumers; i++) { 4395 async_schedule_domain(regulator_bulk_enable_async, 4396 &consumers[i], &async_domain); 4397 } 4398 4399 async_synchronize_full_domain(&async_domain); 4400 4401 /* If any consumer failed we need to unwind any that succeeded */ 4402 for (i = 0; i < num_consumers; i++) { 4403 if (consumers[i].ret != 0) { 4404 ret = consumers[i].ret; 4405 goto err; 4406 } 4407 } 4408 4409 return 0; 4410 4411 err: 4412 for (i = 0; i < num_consumers; i++) { 4413 if (consumers[i].ret < 0) 4414 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4415 consumers[i].ret); 4416 else 4417 regulator_disable(consumers[i].consumer); 4418 } 4419 4420 return ret; 4421 } 4422 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4423 4424 /** 4425 * regulator_bulk_disable - disable multiple regulator consumers 4426 * 4427 * @num_consumers: Number of consumers 4428 * @consumers: Consumer data; clients are stored here. 4429 * @return 0 on success, an errno on failure 4430 * 4431 * This convenience API allows consumers to disable multiple regulator 4432 * clients in a single API call. If any consumers cannot be disabled 4433 * then any others that were disabled will be enabled again prior to 4434 * return. 4435 */ 4436 int regulator_bulk_disable(int num_consumers, 4437 struct regulator_bulk_data *consumers) 4438 { 4439 int i; 4440 int ret, r; 4441 4442 for (i = num_consumers - 1; i >= 0; --i) { 4443 ret = regulator_disable(consumers[i].consumer); 4444 if (ret != 0) 4445 goto err; 4446 } 4447 4448 return 0; 4449 4450 err: 4451 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4452 for (++i; i < num_consumers; ++i) { 4453 r = regulator_enable(consumers[i].consumer); 4454 if (r != 0) 4455 pr_err("Failed to re-enable %s: %d\n", 4456 consumers[i].supply, r); 4457 } 4458 4459 return ret; 4460 } 4461 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4462 4463 /** 4464 * regulator_bulk_force_disable - force disable multiple regulator consumers 4465 * 4466 * @num_consumers: Number of consumers 4467 * @consumers: Consumer data; clients are stored here. 4468 * @return 0 on success, an errno on failure 4469 * 4470 * This convenience API allows consumers to forcibly disable multiple regulator 4471 * clients in a single API call. 4472 * NOTE: This should be used for situations when device damage will 4473 * likely occur if the regulators are not disabled (e.g. over temp). 4474 * Although regulator_force_disable function call for some consumers can 4475 * return error numbers, the function is called for all consumers. 4476 */ 4477 int regulator_bulk_force_disable(int num_consumers, 4478 struct regulator_bulk_data *consumers) 4479 { 4480 int i; 4481 int ret = 0; 4482 4483 for (i = 0; i < num_consumers; i++) { 4484 consumers[i].ret = 4485 regulator_force_disable(consumers[i].consumer); 4486 4487 /* Store first error for reporting */ 4488 if (consumers[i].ret && !ret) 4489 ret = consumers[i].ret; 4490 } 4491 4492 return ret; 4493 } 4494 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4495 4496 /** 4497 * regulator_bulk_free - free multiple regulator consumers 4498 * 4499 * @num_consumers: Number of consumers 4500 * @consumers: Consumer data; clients are stored here. 4501 * 4502 * This convenience API allows consumers to free multiple regulator 4503 * clients in a single API call. 4504 */ 4505 void regulator_bulk_free(int num_consumers, 4506 struct regulator_bulk_data *consumers) 4507 { 4508 int i; 4509 4510 for (i = 0; i < num_consumers; i++) { 4511 regulator_put(consumers[i].consumer); 4512 consumers[i].consumer = NULL; 4513 } 4514 } 4515 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4516 4517 /** 4518 * regulator_notifier_call_chain - call regulator event notifier 4519 * @rdev: regulator source 4520 * @event: notifier block 4521 * @data: callback-specific data. 4522 * 4523 * Called by regulator drivers to notify clients a regulator event has 4524 * occurred. We also notify regulator clients downstream. 4525 * Note lock must be held by caller. 4526 */ 4527 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4528 unsigned long event, void *data) 4529 { 4530 lockdep_assert_held_once(&rdev->mutex.base); 4531 4532 _notifier_call_chain(rdev, event, data); 4533 return NOTIFY_DONE; 4534 4535 } 4536 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4537 4538 /** 4539 * regulator_mode_to_status - convert a regulator mode into a status 4540 * 4541 * @mode: Mode to convert 4542 * 4543 * Convert a regulator mode into a status. 4544 */ 4545 int regulator_mode_to_status(unsigned int mode) 4546 { 4547 switch (mode) { 4548 case REGULATOR_MODE_FAST: 4549 return REGULATOR_STATUS_FAST; 4550 case REGULATOR_MODE_NORMAL: 4551 return REGULATOR_STATUS_NORMAL; 4552 case REGULATOR_MODE_IDLE: 4553 return REGULATOR_STATUS_IDLE; 4554 case REGULATOR_MODE_STANDBY: 4555 return REGULATOR_STATUS_STANDBY; 4556 default: 4557 return REGULATOR_STATUS_UNDEFINED; 4558 } 4559 } 4560 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4561 4562 static struct attribute *regulator_dev_attrs[] = { 4563 &dev_attr_name.attr, 4564 &dev_attr_num_users.attr, 4565 &dev_attr_type.attr, 4566 &dev_attr_microvolts.attr, 4567 &dev_attr_microamps.attr, 4568 &dev_attr_opmode.attr, 4569 &dev_attr_state.attr, 4570 &dev_attr_status.attr, 4571 &dev_attr_bypass.attr, 4572 &dev_attr_requested_microamps.attr, 4573 &dev_attr_min_microvolts.attr, 4574 &dev_attr_max_microvolts.attr, 4575 &dev_attr_min_microamps.attr, 4576 &dev_attr_max_microamps.attr, 4577 &dev_attr_suspend_standby_state.attr, 4578 &dev_attr_suspend_mem_state.attr, 4579 &dev_attr_suspend_disk_state.attr, 4580 &dev_attr_suspend_standby_microvolts.attr, 4581 &dev_attr_suspend_mem_microvolts.attr, 4582 &dev_attr_suspend_disk_microvolts.attr, 4583 &dev_attr_suspend_standby_mode.attr, 4584 &dev_attr_suspend_mem_mode.attr, 4585 &dev_attr_suspend_disk_mode.attr, 4586 NULL 4587 }; 4588 4589 /* 4590 * To avoid cluttering sysfs (and memory) with useless state, only 4591 * create attributes that can be meaningfully displayed. 4592 */ 4593 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4594 struct attribute *attr, int idx) 4595 { 4596 struct device *dev = kobj_to_dev(kobj); 4597 struct regulator_dev *rdev = dev_to_rdev(dev); 4598 const struct regulator_ops *ops = rdev->desc->ops; 4599 umode_t mode = attr->mode; 4600 4601 /* these three are always present */ 4602 if (attr == &dev_attr_name.attr || 4603 attr == &dev_attr_num_users.attr || 4604 attr == &dev_attr_type.attr) 4605 return mode; 4606 4607 /* some attributes need specific methods to be displayed */ 4608 if (attr == &dev_attr_microvolts.attr) { 4609 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4610 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4611 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4612 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4613 return mode; 4614 return 0; 4615 } 4616 4617 if (attr == &dev_attr_microamps.attr) 4618 return ops->get_current_limit ? mode : 0; 4619 4620 if (attr == &dev_attr_opmode.attr) 4621 return ops->get_mode ? mode : 0; 4622 4623 if (attr == &dev_attr_state.attr) 4624 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4625 4626 if (attr == &dev_attr_status.attr) 4627 return ops->get_status ? mode : 0; 4628 4629 if (attr == &dev_attr_bypass.attr) 4630 return ops->get_bypass ? mode : 0; 4631 4632 /* constraints need specific supporting methods */ 4633 if (attr == &dev_attr_min_microvolts.attr || 4634 attr == &dev_attr_max_microvolts.attr) 4635 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4636 4637 if (attr == &dev_attr_min_microamps.attr || 4638 attr == &dev_attr_max_microamps.attr) 4639 return ops->set_current_limit ? mode : 0; 4640 4641 if (attr == &dev_attr_suspend_standby_state.attr || 4642 attr == &dev_attr_suspend_mem_state.attr || 4643 attr == &dev_attr_suspend_disk_state.attr) 4644 return mode; 4645 4646 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4647 attr == &dev_attr_suspend_mem_microvolts.attr || 4648 attr == &dev_attr_suspend_disk_microvolts.attr) 4649 return ops->set_suspend_voltage ? mode : 0; 4650 4651 if (attr == &dev_attr_suspend_standby_mode.attr || 4652 attr == &dev_attr_suspend_mem_mode.attr || 4653 attr == &dev_attr_suspend_disk_mode.attr) 4654 return ops->set_suspend_mode ? mode : 0; 4655 4656 return mode; 4657 } 4658 4659 static const struct attribute_group regulator_dev_group = { 4660 .attrs = regulator_dev_attrs, 4661 .is_visible = regulator_attr_is_visible, 4662 }; 4663 4664 static const struct attribute_group *regulator_dev_groups[] = { 4665 ®ulator_dev_group, 4666 NULL 4667 }; 4668 4669 static void regulator_dev_release(struct device *dev) 4670 { 4671 struct regulator_dev *rdev = dev_get_drvdata(dev); 4672 4673 kfree(rdev->constraints); 4674 of_node_put(rdev->dev.of_node); 4675 kfree(rdev); 4676 } 4677 4678 static void rdev_init_debugfs(struct regulator_dev *rdev) 4679 { 4680 struct device *parent = rdev->dev.parent; 4681 const char *rname = rdev_get_name(rdev); 4682 char name[NAME_MAX]; 4683 4684 /* Avoid duplicate debugfs directory names */ 4685 if (parent && rname == rdev->desc->name) { 4686 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4687 rname); 4688 rname = name; 4689 } 4690 4691 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4692 if (!rdev->debugfs) { 4693 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4694 return; 4695 } 4696 4697 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4698 &rdev->use_count); 4699 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4700 &rdev->open_count); 4701 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4702 &rdev->bypass_count); 4703 } 4704 4705 static int regulator_register_resolve_supply(struct device *dev, void *data) 4706 { 4707 struct regulator_dev *rdev = dev_to_rdev(dev); 4708 4709 if (regulator_resolve_supply(rdev)) 4710 rdev_dbg(rdev, "unable to resolve supply\n"); 4711 4712 return 0; 4713 } 4714 4715 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4716 { 4717 struct coupling_desc *c_desc = &rdev->coupling_desc; 4718 int n_coupled = c_desc->n_coupled; 4719 struct regulator_dev *c_rdev; 4720 int i; 4721 4722 for (i = 1; i < n_coupled; i++) { 4723 /* already resolved */ 4724 if (c_desc->coupled_rdevs[i]) 4725 continue; 4726 4727 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4728 4729 if (!c_rdev) 4730 continue; 4731 4732 regulator_lock(c_rdev); 4733 4734 c_desc->coupled_rdevs[i] = c_rdev; 4735 c_desc->n_resolved++; 4736 4737 regulator_unlock(c_rdev); 4738 4739 regulator_resolve_coupling(c_rdev); 4740 } 4741 } 4742 4743 static void regulator_remove_coupling(struct regulator_dev *rdev) 4744 { 4745 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4746 struct regulator_dev *__c_rdev, *c_rdev; 4747 unsigned int __n_coupled, n_coupled; 4748 int i, k; 4749 4750 n_coupled = c_desc->n_coupled; 4751 4752 for (i = 1; i < n_coupled; i++) { 4753 c_rdev = c_desc->coupled_rdevs[i]; 4754 4755 if (!c_rdev) 4756 continue; 4757 4758 regulator_lock(c_rdev); 4759 4760 __c_desc = &c_rdev->coupling_desc; 4761 __n_coupled = __c_desc->n_coupled; 4762 4763 for (k = 1; k < __n_coupled; k++) { 4764 __c_rdev = __c_desc->coupled_rdevs[k]; 4765 4766 if (__c_rdev == rdev) { 4767 __c_desc->coupled_rdevs[k] = NULL; 4768 __c_desc->n_resolved--; 4769 break; 4770 } 4771 } 4772 4773 regulator_unlock(c_rdev); 4774 4775 c_desc->coupled_rdevs[i] = NULL; 4776 c_desc->n_resolved--; 4777 } 4778 } 4779 4780 static int regulator_init_coupling(struct regulator_dev *rdev) 4781 { 4782 int n_phandles; 4783 4784 if (!IS_ENABLED(CONFIG_OF)) 4785 n_phandles = 0; 4786 else 4787 n_phandles = of_get_n_coupled(rdev); 4788 4789 if (n_phandles + 1 > MAX_COUPLED) { 4790 rdev_err(rdev, "too many regulators coupled\n"); 4791 return -EPERM; 4792 } 4793 4794 /* 4795 * Every regulator should always have coupling descriptor filled with 4796 * at least pointer to itself. 4797 */ 4798 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4799 rdev->coupling_desc.n_coupled = n_phandles + 1; 4800 rdev->coupling_desc.n_resolved++; 4801 4802 /* regulator isn't coupled */ 4803 if (n_phandles == 0) 4804 return 0; 4805 4806 /* regulator, which can't change its voltage, can't be coupled */ 4807 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 4808 rdev_err(rdev, "voltage operation not allowed\n"); 4809 return -EPERM; 4810 } 4811 4812 if (rdev->constraints->max_spread <= 0) { 4813 rdev_err(rdev, "wrong max_spread value\n"); 4814 return -EPERM; 4815 } 4816 4817 if (!of_check_coupling_data(rdev)) 4818 return -EPERM; 4819 4820 return 0; 4821 } 4822 4823 /** 4824 * regulator_register - register regulator 4825 * @regulator_desc: regulator to register 4826 * @cfg: runtime configuration for regulator 4827 * 4828 * Called by regulator drivers to register a regulator. 4829 * Returns a valid pointer to struct regulator_dev on success 4830 * or an ERR_PTR() on error. 4831 */ 4832 struct regulator_dev * 4833 regulator_register(const struct regulator_desc *regulator_desc, 4834 const struct regulator_config *cfg) 4835 { 4836 const struct regulation_constraints *constraints = NULL; 4837 const struct regulator_init_data *init_data; 4838 struct regulator_config *config = NULL; 4839 static atomic_t regulator_no = ATOMIC_INIT(-1); 4840 struct regulator_dev *rdev; 4841 bool dangling_cfg_gpiod = false; 4842 bool dangling_of_gpiod = false; 4843 struct device *dev; 4844 int ret, i; 4845 4846 if (cfg == NULL) 4847 return ERR_PTR(-EINVAL); 4848 if (cfg->ena_gpiod) 4849 dangling_cfg_gpiod = true; 4850 if (regulator_desc == NULL) { 4851 ret = -EINVAL; 4852 goto rinse; 4853 } 4854 4855 dev = cfg->dev; 4856 WARN_ON(!dev); 4857 4858 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 4859 ret = -EINVAL; 4860 goto rinse; 4861 } 4862 4863 if (regulator_desc->type != REGULATOR_VOLTAGE && 4864 regulator_desc->type != REGULATOR_CURRENT) { 4865 ret = -EINVAL; 4866 goto rinse; 4867 } 4868 4869 /* Only one of each should be implemented */ 4870 WARN_ON(regulator_desc->ops->get_voltage && 4871 regulator_desc->ops->get_voltage_sel); 4872 WARN_ON(regulator_desc->ops->set_voltage && 4873 regulator_desc->ops->set_voltage_sel); 4874 4875 /* If we're using selectors we must implement list_voltage. */ 4876 if (regulator_desc->ops->get_voltage_sel && 4877 !regulator_desc->ops->list_voltage) { 4878 ret = -EINVAL; 4879 goto rinse; 4880 } 4881 if (regulator_desc->ops->set_voltage_sel && 4882 !regulator_desc->ops->list_voltage) { 4883 ret = -EINVAL; 4884 goto rinse; 4885 } 4886 4887 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4888 if (rdev == NULL) { 4889 ret = -ENOMEM; 4890 goto rinse; 4891 } 4892 4893 /* 4894 * Duplicate the config so the driver could override it after 4895 * parsing init data. 4896 */ 4897 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4898 if (config == NULL) { 4899 kfree(rdev); 4900 ret = -ENOMEM; 4901 goto rinse; 4902 } 4903 4904 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4905 &rdev->dev.of_node); 4906 /* 4907 * We need to keep track of any GPIO descriptor coming from the 4908 * device tree until we have handled it over to the core. If the 4909 * config that was passed in to this function DOES NOT contain 4910 * a descriptor, and the config after this call DOES contain 4911 * a descriptor, we definitely got one from parsing the device 4912 * tree. 4913 */ 4914 if (!cfg->ena_gpiod && config->ena_gpiod) 4915 dangling_of_gpiod = true; 4916 if (!init_data) { 4917 init_data = config->init_data; 4918 rdev->dev.of_node = of_node_get(config->of_node); 4919 } 4920 4921 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 4922 rdev->reg_data = config->driver_data; 4923 rdev->owner = regulator_desc->owner; 4924 rdev->desc = regulator_desc; 4925 if (config->regmap) 4926 rdev->regmap = config->regmap; 4927 else if (dev_get_regmap(dev, NULL)) 4928 rdev->regmap = dev_get_regmap(dev, NULL); 4929 else if (dev->parent) 4930 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4931 INIT_LIST_HEAD(&rdev->consumer_list); 4932 INIT_LIST_HEAD(&rdev->list); 4933 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4934 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4935 4936 /* preform any regulator specific init */ 4937 if (init_data && init_data->regulator_init) { 4938 ret = init_data->regulator_init(rdev->reg_data); 4939 if (ret < 0) 4940 goto clean; 4941 } 4942 4943 if (config->ena_gpiod) { 4944 mutex_lock(®ulator_list_mutex); 4945 ret = regulator_ena_gpio_request(rdev, config); 4946 mutex_unlock(®ulator_list_mutex); 4947 if (ret != 0) { 4948 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 4949 ret); 4950 goto clean; 4951 } 4952 /* The regulator core took over the GPIO descriptor */ 4953 dangling_cfg_gpiod = false; 4954 dangling_of_gpiod = false; 4955 } 4956 4957 /* register with sysfs */ 4958 rdev->dev.class = ®ulator_class; 4959 rdev->dev.parent = dev; 4960 dev_set_name(&rdev->dev, "regulator.%lu", 4961 (unsigned long) atomic_inc_return(®ulator_no)); 4962 4963 /* set regulator constraints */ 4964 if (init_data) 4965 constraints = &init_data->constraints; 4966 4967 if (init_data && init_data->supply_regulator) 4968 rdev->supply_name = init_data->supply_regulator; 4969 else if (regulator_desc->supply_name) 4970 rdev->supply_name = regulator_desc->supply_name; 4971 4972 /* 4973 * Attempt to resolve the regulator supply, if specified, 4974 * but don't return an error if we fail because we will try 4975 * to resolve it again later as more regulators are added. 4976 */ 4977 if (regulator_resolve_supply(rdev)) 4978 rdev_dbg(rdev, "unable to resolve supply\n"); 4979 4980 ret = set_machine_constraints(rdev, constraints); 4981 if (ret < 0) 4982 goto wash; 4983 4984 ret = regulator_init_coupling(rdev); 4985 if (ret < 0) 4986 goto wash; 4987 4988 /* add consumers devices */ 4989 if (init_data) { 4990 mutex_lock(®ulator_list_mutex); 4991 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4992 ret = set_consumer_device_supply(rdev, 4993 init_data->consumer_supplies[i].dev_name, 4994 init_data->consumer_supplies[i].supply); 4995 if (ret < 0) { 4996 mutex_unlock(®ulator_list_mutex); 4997 dev_err(dev, "Failed to set supply %s\n", 4998 init_data->consumer_supplies[i].supply); 4999 goto unset_supplies; 5000 } 5001 } 5002 mutex_unlock(®ulator_list_mutex); 5003 } 5004 5005 if (!rdev->desc->ops->get_voltage && 5006 !rdev->desc->ops->list_voltage && 5007 !rdev->desc->fixed_uV) 5008 rdev->is_switch = true; 5009 5010 dev_set_drvdata(&rdev->dev, rdev); 5011 ret = device_register(&rdev->dev); 5012 if (ret != 0) { 5013 put_device(&rdev->dev); 5014 goto unset_supplies; 5015 } 5016 5017 rdev_init_debugfs(rdev); 5018 5019 /* try to resolve regulators coupling since a new one was registered */ 5020 mutex_lock(®ulator_list_mutex); 5021 regulator_resolve_coupling(rdev); 5022 mutex_unlock(®ulator_list_mutex); 5023 5024 /* try to resolve regulators supply since a new one was registered */ 5025 class_for_each_device(®ulator_class, NULL, NULL, 5026 regulator_register_resolve_supply); 5027 kfree(config); 5028 return rdev; 5029 5030 unset_supplies: 5031 mutex_lock(®ulator_list_mutex); 5032 unset_regulator_supplies(rdev); 5033 mutex_unlock(®ulator_list_mutex); 5034 wash: 5035 kfree(rdev->constraints); 5036 mutex_lock(®ulator_list_mutex); 5037 regulator_ena_gpio_free(rdev); 5038 mutex_unlock(®ulator_list_mutex); 5039 clean: 5040 if (dangling_of_gpiod) 5041 gpiod_put(config->ena_gpiod); 5042 kfree(rdev); 5043 kfree(config); 5044 rinse: 5045 if (dangling_cfg_gpiod) 5046 gpiod_put(cfg->ena_gpiod); 5047 return ERR_PTR(ret); 5048 } 5049 EXPORT_SYMBOL_GPL(regulator_register); 5050 5051 /** 5052 * regulator_unregister - unregister regulator 5053 * @rdev: regulator to unregister 5054 * 5055 * Called by regulator drivers to unregister a regulator. 5056 */ 5057 void regulator_unregister(struct regulator_dev *rdev) 5058 { 5059 if (rdev == NULL) 5060 return; 5061 5062 if (rdev->supply) { 5063 while (rdev->use_count--) 5064 regulator_disable(rdev->supply); 5065 regulator_put(rdev->supply); 5066 } 5067 5068 flush_work(&rdev->disable_work.work); 5069 5070 mutex_lock(®ulator_list_mutex); 5071 5072 debugfs_remove_recursive(rdev->debugfs); 5073 WARN_ON(rdev->open_count); 5074 regulator_remove_coupling(rdev); 5075 unset_regulator_supplies(rdev); 5076 list_del(&rdev->list); 5077 regulator_ena_gpio_free(rdev); 5078 device_unregister(&rdev->dev); 5079 5080 mutex_unlock(®ulator_list_mutex); 5081 } 5082 EXPORT_SYMBOL_GPL(regulator_unregister); 5083 5084 #ifdef CONFIG_SUSPEND 5085 /** 5086 * regulator_suspend - prepare regulators for system wide suspend 5087 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5088 * 5089 * Configure each regulator with it's suspend operating parameters for state. 5090 */ 5091 static int regulator_suspend(struct device *dev) 5092 { 5093 struct regulator_dev *rdev = dev_to_rdev(dev); 5094 suspend_state_t state = pm_suspend_target_state; 5095 int ret; 5096 5097 regulator_lock(rdev); 5098 ret = suspend_set_state(rdev, state); 5099 regulator_unlock(rdev); 5100 5101 return ret; 5102 } 5103 5104 static int regulator_resume(struct device *dev) 5105 { 5106 suspend_state_t state = pm_suspend_target_state; 5107 struct regulator_dev *rdev = dev_to_rdev(dev); 5108 struct regulator_state *rstate; 5109 int ret = 0; 5110 5111 rstate = regulator_get_suspend_state(rdev, state); 5112 if (rstate == NULL) 5113 return 0; 5114 5115 regulator_lock(rdev); 5116 5117 if (rdev->desc->ops->resume && 5118 (rstate->enabled == ENABLE_IN_SUSPEND || 5119 rstate->enabled == DISABLE_IN_SUSPEND)) 5120 ret = rdev->desc->ops->resume(rdev); 5121 5122 regulator_unlock(rdev); 5123 5124 return ret; 5125 } 5126 #else /* !CONFIG_SUSPEND */ 5127 5128 #define regulator_suspend NULL 5129 #define regulator_resume NULL 5130 5131 #endif /* !CONFIG_SUSPEND */ 5132 5133 #ifdef CONFIG_PM 5134 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5135 .suspend = regulator_suspend, 5136 .resume = regulator_resume, 5137 }; 5138 #endif 5139 5140 struct class regulator_class = { 5141 .name = "regulator", 5142 .dev_release = regulator_dev_release, 5143 .dev_groups = regulator_dev_groups, 5144 #ifdef CONFIG_PM 5145 .pm = ®ulator_pm_ops, 5146 #endif 5147 }; 5148 /** 5149 * regulator_has_full_constraints - the system has fully specified constraints 5150 * 5151 * Calling this function will cause the regulator API to disable all 5152 * regulators which have a zero use count and don't have an always_on 5153 * constraint in a late_initcall. 5154 * 5155 * The intention is that this will become the default behaviour in a 5156 * future kernel release so users are encouraged to use this facility 5157 * now. 5158 */ 5159 void regulator_has_full_constraints(void) 5160 { 5161 has_full_constraints = 1; 5162 } 5163 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5164 5165 /** 5166 * rdev_get_drvdata - get rdev regulator driver data 5167 * @rdev: regulator 5168 * 5169 * Get rdev regulator driver private data. This call can be used in the 5170 * regulator driver context. 5171 */ 5172 void *rdev_get_drvdata(struct regulator_dev *rdev) 5173 { 5174 return rdev->reg_data; 5175 } 5176 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5177 5178 /** 5179 * regulator_get_drvdata - get regulator driver data 5180 * @regulator: regulator 5181 * 5182 * Get regulator driver private data. This call can be used in the consumer 5183 * driver context when non API regulator specific functions need to be called. 5184 */ 5185 void *regulator_get_drvdata(struct regulator *regulator) 5186 { 5187 return regulator->rdev->reg_data; 5188 } 5189 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5190 5191 /** 5192 * regulator_set_drvdata - set regulator driver data 5193 * @regulator: regulator 5194 * @data: data 5195 */ 5196 void regulator_set_drvdata(struct regulator *regulator, void *data) 5197 { 5198 regulator->rdev->reg_data = data; 5199 } 5200 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5201 5202 /** 5203 * regulator_get_id - get regulator ID 5204 * @rdev: regulator 5205 */ 5206 int rdev_get_id(struct regulator_dev *rdev) 5207 { 5208 return rdev->desc->id; 5209 } 5210 EXPORT_SYMBOL_GPL(rdev_get_id); 5211 5212 struct device *rdev_get_dev(struct regulator_dev *rdev) 5213 { 5214 return &rdev->dev; 5215 } 5216 EXPORT_SYMBOL_GPL(rdev_get_dev); 5217 5218 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5219 { 5220 return rdev->regmap; 5221 } 5222 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5223 5224 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5225 { 5226 return reg_init_data->driver_data; 5227 } 5228 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5229 5230 #ifdef CONFIG_DEBUG_FS 5231 static int supply_map_show(struct seq_file *sf, void *data) 5232 { 5233 struct regulator_map *map; 5234 5235 list_for_each_entry(map, ®ulator_map_list, list) { 5236 seq_printf(sf, "%s -> %s.%s\n", 5237 rdev_get_name(map->regulator), map->dev_name, 5238 map->supply); 5239 } 5240 5241 return 0; 5242 } 5243 DEFINE_SHOW_ATTRIBUTE(supply_map); 5244 5245 struct summary_data { 5246 struct seq_file *s; 5247 struct regulator_dev *parent; 5248 int level; 5249 }; 5250 5251 static void regulator_summary_show_subtree(struct seq_file *s, 5252 struct regulator_dev *rdev, 5253 int level); 5254 5255 static int regulator_summary_show_children(struct device *dev, void *data) 5256 { 5257 struct regulator_dev *rdev = dev_to_rdev(dev); 5258 struct summary_data *summary_data = data; 5259 5260 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5261 regulator_summary_show_subtree(summary_data->s, rdev, 5262 summary_data->level + 1); 5263 5264 return 0; 5265 } 5266 5267 static void regulator_summary_show_subtree(struct seq_file *s, 5268 struct regulator_dev *rdev, 5269 int level) 5270 { 5271 struct regulation_constraints *c; 5272 struct regulator *consumer; 5273 struct summary_data summary_data; 5274 unsigned int opmode; 5275 5276 if (!rdev) 5277 return; 5278 5279 opmode = _regulator_get_mode_unlocked(rdev); 5280 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5281 level * 3 + 1, "", 5282 30 - level * 3, rdev_get_name(rdev), 5283 rdev->use_count, rdev->open_count, rdev->bypass_count, 5284 regulator_opmode_to_str(opmode)); 5285 5286 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 5287 seq_printf(s, "%5dmA ", 5288 _regulator_get_current_limit_unlocked(rdev) / 1000); 5289 5290 c = rdev->constraints; 5291 if (c) { 5292 switch (rdev->desc->type) { 5293 case REGULATOR_VOLTAGE: 5294 seq_printf(s, "%5dmV %5dmV ", 5295 c->min_uV / 1000, c->max_uV / 1000); 5296 break; 5297 case REGULATOR_CURRENT: 5298 seq_printf(s, "%5dmA %5dmA ", 5299 c->min_uA / 1000, c->max_uA / 1000); 5300 break; 5301 } 5302 } 5303 5304 seq_puts(s, "\n"); 5305 5306 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5307 if (consumer->dev && consumer->dev->class == ®ulator_class) 5308 continue; 5309 5310 seq_printf(s, "%*s%-*s ", 5311 (level + 1) * 3 + 1, "", 5312 30 - (level + 1) * 3, 5313 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5314 5315 switch (rdev->desc->type) { 5316 case REGULATOR_VOLTAGE: 5317 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5318 consumer->enable_count, 5319 consumer->uA_load / 1000, 5320 consumer->uA_load && !consumer->enable_count ? 5321 '*' : ' ', 5322 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5323 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5324 break; 5325 case REGULATOR_CURRENT: 5326 break; 5327 } 5328 5329 seq_puts(s, "\n"); 5330 } 5331 5332 summary_data.s = s; 5333 summary_data.level = level; 5334 summary_data.parent = rdev; 5335 5336 class_for_each_device(®ulator_class, NULL, &summary_data, 5337 regulator_summary_show_children); 5338 } 5339 5340 struct summary_lock_data { 5341 struct ww_acquire_ctx *ww_ctx; 5342 struct regulator_dev **new_contended_rdev; 5343 struct regulator_dev **old_contended_rdev; 5344 }; 5345 5346 static int regulator_summary_lock_one(struct device *dev, void *data) 5347 { 5348 struct regulator_dev *rdev = dev_to_rdev(dev); 5349 struct summary_lock_data *lock_data = data; 5350 int ret = 0; 5351 5352 if (rdev != *lock_data->old_contended_rdev) { 5353 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5354 5355 if (ret == -EDEADLK) 5356 *lock_data->new_contended_rdev = rdev; 5357 else 5358 WARN_ON_ONCE(ret); 5359 } else { 5360 *lock_data->old_contended_rdev = NULL; 5361 } 5362 5363 return ret; 5364 } 5365 5366 static int regulator_summary_unlock_one(struct device *dev, void *data) 5367 { 5368 struct regulator_dev *rdev = dev_to_rdev(dev); 5369 struct summary_lock_data *lock_data = data; 5370 5371 if (lock_data) { 5372 if (rdev == *lock_data->new_contended_rdev) 5373 return -EDEADLK; 5374 } 5375 5376 regulator_unlock(rdev); 5377 5378 return 0; 5379 } 5380 5381 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5382 struct regulator_dev **new_contended_rdev, 5383 struct regulator_dev **old_contended_rdev) 5384 { 5385 struct summary_lock_data lock_data; 5386 int ret; 5387 5388 lock_data.ww_ctx = ww_ctx; 5389 lock_data.new_contended_rdev = new_contended_rdev; 5390 lock_data.old_contended_rdev = old_contended_rdev; 5391 5392 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5393 regulator_summary_lock_one); 5394 if (ret) 5395 class_for_each_device(®ulator_class, NULL, &lock_data, 5396 regulator_summary_unlock_one); 5397 5398 return ret; 5399 } 5400 5401 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5402 { 5403 struct regulator_dev *new_contended_rdev = NULL; 5404 struct regulator_dev *old_contended_rdev = NULL; 5405 int err; 5406 5407 mutex_lock(®ulator_list_mutex); 5408 5409 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5410 5411 do { 5412 if (new_contended_rdev) { 5413 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5414 old_contended_rdev = new_contended_rdev; 5415 old_contended_rdev->ref_cnt++; 5416 } 5417 5418 err = regulator_summary_lock_all(ww_ctx, 5419 &new_contended_rdev, 5420 &old_contended_rdev); 5421 5422 if (old_contended_rdev) 5423 regulator_unlock(old_contended_rdev); 5424 5425 } while (err == -EDEADLK); 5426 5427 ww_acquire_done(ww_ctx); 5428 } 5429 5430 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5431 { 5432 class_for_each_device(®ulator_class, NULL, NULL, 5433 regulator_summary_unlock_one); 5434 ww_acquire_fini(ww_ctx); 5435 5436 mutex_unlock(®ulator_list_mutex); 5437 } 5438 5439 static int regulator_summary_show_roots(struct device *dev, void *data) 5440 { 5441 struct regulator_dev *rdev = dev_to_rdev(dev); 5442 struct seq_file *s = data; 5443 5444 if (!rdev->supply) 5445 regulator_summary_show_subtree(s, rdev, 0); 5446 5447 return 0; 5448 } 5449 5450 static int regulator_summary_show(struct seq_file *s, void *data) 5451 { 5452 struct ww_acquire_ctx ww_ctx; 5453 5454 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5455 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5456 5457 regulator_summary_lock(&ww_ctx); 5458 5459 class_for_each_device(®ulator_class, NULL, s, 5460 regulator_summary_show_roots); 5461 5462 regulator_summary_unlock(&ww_ctx); 5463 5464 return 0; 5465 } 5466 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5467 #endif /* CONFIG_DEBUG_FS */ 5468 5469 static int __init regulator_init(void) 5470 { 5471 int ret; 5472 5473 ret = class_register(®ulator_class); 5474 5475 debugfs_root = debugfs_create_dir("regulator", NULL); 5476 if (!debugfs_root) 5477 pr_warn("regulator: Failed to create debugfs directory\n"); 5478 5479 #ifdef CONFIG_DEBUG_FS 5480 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5481 &supply_map_fops); 5482 5483 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5484 NULL, ®ulator_summary_fops); 5485 #endif 5486 regulator_dummy_init(); 5487 5488 return ret; 5489 } 5490 5491 /* init early to allow our consumers to complete system booting */ 5492 core_initcall(regulator_init); 5493 5494 static int __init regulator_late_cleanup(struct device *dev, void *data) 5495 { 5496 struct regulator_dev *rdev = dev_to_rdev(dev); 5497 const struct regulator_ops *ops = rdev->desc->ops; 5498 struct regulation_constraints *c = rdev->constraints; 5499 int enabled, ret; 5500 5501 if (c && c->always_on) 5502 return 0; 5503 5504 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5505 return 0; 5506 5507 regulator_lock(rdev); 5508 5509 if (rdev->use_count) 5510 goto unlock; 5511 5512 /* If we can't read the status assume it's on. */ 5513 if (ops->is_enabled) 5514 enabled = ops->is_enabled(rdev); 5515 else 5516 enabled = 1; 5517 5518 if (!enabled) 5519 goto unlock; 5520 5521 if (have_full_constraints()) { 5522 /* We log since this may kill the system if it goes 5523 * wrong. */ 5524 rdev_info(rdev, "disabling\n"); 5525 ret = _regulator_do_disable(rdev); 5526 if (ret != 0) 5527 rdev_err(rdev, "couldn't disable: %d\n", ret); 5528 } else { 5529 /* The intention is that in future we will 5530 * assume that full constraints are provided 5531 * so warn even if we aren't going to do 5532 * anything here. 5533 */ 5534 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5535 } 5536 5537 unlock: 5538 regulator_unlock(rdev); 5539 5540 return 0; 5541 } 5542 5543 static int __init regulator_init_complete(void) 5544 { 5545 /* 5546 * Since DT doesn't provide an idiomatic mechanism for 5547 * enabling full constraints and since it's much more natural 5548 * with DT to provide them just assume that a DT enabled 5549 * system has full constraints. 5550 */ 5551 if (of_have_populated_dt()) 5552 has_full_constraints = true; 5553 5554 /* 5555 * Regulators may had failed to resolve their input supplies 5556 * when were registered, either because the input supply was 5557 * not registered yet or because its parent device was not 5558 * bound yet. So attempt to resolve the input supplies for 5559 * pending regulators before trying to disable unused ones. 5560 */ 5561 class_for_each_device(®ulator_class, NULL, NULL, 5562 regulator_register_resolve_supply); 5563 5564 /* If we have a full configuration then disable any regulators 5565 * we have permission to change the status for and which are 5566 * not in use or always_on. This is effectively the default 5567 * for DT and ACPI as they have full constraints. 5568 */ 5569 class_for_each_device(®ulator_class, NULL, NULL, 5570 regulator_late_cleanup); 5571 5572 return 0; 5573 } 5574 late_initcall_sync(regulator_init_complete); 5575