xref: /openbmc/linux/drivers/regulator/core.c (revision f4fc91af)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 	struct regulator_dev *c_rdev;
222 	int i;
223 
224 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226 
227 		if (rdev->supply->rdev == c_rdev)
228 			return true;
229 	}
230 
231 	return false;
232 }
233 
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 				       unsigned int n_coupled)
236 {
237 	struct regulator_dev *c_rdev, *supply_rdev;
238 	int i, supply_n_coupled;
239 
240 	for (i = n_coupled; i > 0; i--) {
241 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 
243 		if (!c_rdev)
244 			continue;
245 
246 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 			supply_rdev = c_rdev->supply->rdev;
248 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249 
250 			regulator_unlock_recursive(supply_rdev,
251 						   supply_n_coupled);
252 		}
253 
254 		regulator_unlock(c_rdev);
255 	}
256 }
257 
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 				    struct regulator_dev **new_contended_rdev,
260 				    struct regulator_dev **old_contended_rdev,
261 				    struct ww_acquire_ctx *ww_ctx)
262 {
263 	struct regulator_dev *c_rdev;
264 	int i, err;
265 
266 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268 
269 		if (!c_rdev)
270 			continue;
271 
272 		if (c_rdev != *old_contended_rdev) {
273 			err = regulator_lock_nested(c_rdev, ww_ctx);
274 			if (err) {
275 				if (err == -EDEADLK) {
276 					*new_contended_rdev = c_rdev;
277 					goto err_unlock;
278 				}
279 
280 				/* shouldn't happen */
281 				WARN_ON_ONCE(err != -EALREADY);
282 			}
283 		} else {
284 			*old_contended_rdev = NULL;
285 		}
286 
287 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 			err = regulator_lock_recursive(c_rdev->supply->rdev,
289 						       new_contended_rdev,
290 						       old_contended_rdev,
291 						       ww_ctx);
292 			if (err) {
293 				regulator_unlock(c_rdev);
294 				goto err_unlock;
295 			}
296 		}
297 	}
298 
299 	return 0;
300 
301 err_unlock:
302 	regulator_unlock_recursive(rdev, i);
303 
304 	return err;
305 }
306 
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *				regulators
310  * @rdev:			regulator source
311  * @ww_ctx:			w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 				       struct ww_acquire_ctx *ww_ctx)
317 {
318 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 	ww_acquire_fini(ww_ctx);
320 }
321 
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:			regulator source
325  * @ww_ctx:			w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 				     struct ww_acquire_ctx *ww_ctx)
332 {
333 	struct regulator_dev *new_contended_rdev = NULL;
334 	struct regulator_dev *old_contended_rdev = NULL;
335 	int err;
336 
337 	mutex_lock(&regulator_list_mutex);
338 
339 	ww_acquire_init(ww_ctx, &regulator_ww_class);
340 
341 	do {
342 		if (new_contended_rdev) {
343 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 			old_contended_rdev = new_contended_rdev;
345 			old_contended_rdev->ref_cnt++;
346 		}
347 
348 		err = regulator_lock_recursive(rdev,
349 					       &new_contended_rdev,
350 					       &old_contended_rdev,
351 					       ww_ctx);
352 
353 		if (old_contended_rdev)
354 			regulator_unlock(old_contended_rdev);
355 
356 	} while (err == -EDEADLK);
357 
358 	ww_acquire_done(ww_ctx);
359 
360 	mutex_unlock(&regulator_list_mutex);
361 }
362 
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 						  const char *prop_name)
376 {
377 	struct device_node *regnode = NULL;
378 	struct device_node *child = NULL;
379 
380 	for_each_child_of_node(parent, child) {
381 		regnode = of_parse_phandle(child, prop_name, 0);
382 
383 		if (!regnode) {
384 			regnode = of_get_child_regulator(child, prop_name);
385 			if (regnode)
386 				goto err_node_put;
387 		} else {
388 			goto err_node_put;
389 		}
390 	}
391 	return NULL;
392 
393 err_node_put:
394 	of_node_put(child);
395 	return regnode;
396 }
397 
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 	struct device_node *regnode = NULL;
410 	char prop_name[64]; /* 64 is max size of property name */
411 
412 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413 
414 	snprintf(prop_name, 64, "%s-supply", supply);
415 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416 
417 	if (!regnode) {
418 		regnode = of_get_child_regulator(dev->of_node, prop_name);
419 		if (regnode)
420 			return regnode;
421 
422 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 				prop_name, dev->of_node);
424 		return NULL;
425 	}
426 	return regnode;
427 }
428 
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 			    int *min_uV, int *max_uV)
432 {
433 	BUG_ON(*min_uV > *max_uV);
434 
435 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 		rdev_err(rdev, "voltage operation not allowed\n");
437 		return -EPERM;
438 	}
439 
440 	if (*max_uV > rdev->constraints->max_uV)
441 		*max_uV = rdev->constraints->max_uV;
442 	if (*min_uV < rdev->constraints->min_uV)
443 		*min_uV = rdev->constraints->min_uV;
444 
445 	if (*min_uV > *max_uV) {
446 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 			 *min_uV, *max_uV);
448 		return -EINVAL;
449 	}
450 
451 	return 0;
452 }
453 
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459 
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 			      int *min_uV, int *max_uV,
465 			      suspend_state_t state)
466 {
467 	struct regulator *regulator;
468 	struct regulator_voltage *voltage;
469 
470 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 		voltage = &regulator->voltage[state];
472 		/*
473 		 * Assume consumers that didn't say anything are OK
474 		 * with anything in the constraint range.
475 		 */
476 		if (!voltage->min_uV && !voltage->max_uV)
477 			continue;
478 
479 		if (*max_uV > voltage->max_uV)
480 			*max_uV = voltage->max_uV;
481 		if (*min_uV < voltage->min_uV)
482 			*min_uV = voltage->min_uV;
483 	}
484 
485 	if (*min_uV > *max_uV) {
486 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 			*min_uV, *max_uV);
488 		return -EINVAL;
489 	}
490 
491 	return 0;
492 }
493 
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 					int *min_uA, int *max_uA)
497 {
498 	BUG_ON(*min_uA > *max_uA);
499 
500 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 		rdev_err(rdev, "current operation not allowed\n");
502 		return -EPERM;
503 	}
504 
505 	if (*max_uA > rdev->constraints->max_uA)
506 		*max_uA = rdev->constraints->max_uA;
507 	if (*min_uA < rdev->constraints->min_uA)
508 		*min_uA = rdev->constraints->min_uA;
509 
510 	if (*min_uA > *max_uA) {
511 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 			 *min_uA, *max_uA);
513 		return -EINVAL;
514 	}
515 
516 	return 0;
517 }
518 
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 				    unsigned int *mode)
522 {
523 	switch (*mode) {
524 	case REGULATOR_MODE_FAST:
525 	case REGULATOR_MODE_NORMAL:
526 	case REGULATOR_MODE_IDLE:
527 	case REGULATOR_MODE_STANDBY:
528 		break;
529 	default:
530 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 		return -EINVAL;
532 	}
533 
534 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 		rdev_err(rdev, "mode operation not allowed\n");
536 		return -EPERM;
537 	}
538 
539 	/* The modes are bitmasks, the most power hungry modes having
540 	 * the lowest values. If the requested mode isn't supported
541 	 * try higher modes. */
542 	while (*mode) {
543 		if (rdev->constraints->valid_modes_mask & *mode)
544 			return 0;
545 		*mode /= 2;
546 	}
547 
548 	return -EINVAL;
549 }
550 
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 	if (rdev->constraints == NULL)
555 		return NULL;
556 
557 	switch (state) {
558 	case PM_SUSPEND_STANDBY:
559 		return &rdev->constraints->state_standby;
560 	case PM_SUSPEND_MEM:
561 		return &rdev->constraints->state_mem;
562 	case PM_SUSPEND_MAX:
563 		return &rdev->constraints->state_disk;
564 	default:
565 		return NULL;
566 	}
567 }
568 
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 	const struct regulator_state *rstate;
573 
574 	rstate = regulator_get_suspend_state(rdev, state);
575 	if (rstate == NULL)
576 		return NULL;
577 
578 	/* If we have no suspend mode configuration don't set anything;
579 	 * only warn if the driver implements set_suspend_voltage or
580 	 * set_suspend_mode callback.
581 	 */
582 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 	    rstate->enabled != DISABLE_IN_SUSPEND) {
584 		if (rdev->desc->ops->set_suspend_voltage ||
585 		    rdev->desc->ops->set_suspend_mode)
586 			rdev_warn(rdev, "No configuration\n");
587 		return NULL;
588 	}
589 
590 	return rstate;
591 }
592 
593 static ssize_t regulator_uV_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 	int uV;
598 
599 	regulator_lock(rdev);
600 	uV = regulator_get_voltage_rdev(rdev);
601 	regulator_unlock(rdev);
602 
603 	if (uV < 0)
604 		return uV;
605 	return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 
609 static ssize_t regulator_uA_show(struct device *dev,
610 				struct device_attribute *attr, char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 
614 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617 
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 			 char *buf)
620 {
621 	struct regulator_dev *rdev = dev_get_drvdata(dev);
622 
623 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626 
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 	switch (mode) {
630 	case REGULATOR_MODE_FAST:
631 		return "fast";
632 	case REGULATOR_MODE_NORMAL:
633 		return "normal";
634 	case REGULATOR_MODE_IDLE:
635 		return "idle";
636 	case REGULATOR_MODE_STANDBY:
637 		return "standby";
638 	}
639 	return "unknown";
640 }
641 
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646 
647 static ssize_t regulator_opmode_show(struct device *dev,
648 				    struct device_attribute *attr, char *buf)
649 {
650 	struct regulator_dev *rdev = dev_get_drvdata(dev);
651 
652 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655 
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 	if (state > 0)
659 		return sprintf(buf, "enabled\n");
660 	else if (state == 0)
661 		return sprintf(buf, "disabled\n");
662 	else
663 		return sprintf(buf, "unknown\n");
664 }
665 
666 static ssize_t regulator_state_show(struct device *dev,
667 				   struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	ssize_t ret;
671 
672 	regulator_lock(rdev);
673 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 	regulator_unlock(rdev);
675 
676 	return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679 
680 static ssize_t regulator_status_show(struct device *dev,
681 				   struct device_attribute *attr, char *buf)
682 {
683 	struct regulator_dev *rdev = dev_get_drvdata(dev);
684 	int status;
685 	char *label;
686 
687 	status = rdev->desc->ops->get_status(rdev);
688 	if (status < 0)
689 		return status;
690 
691 	switch (status) {
692 	case REGULATOR_STATUS_OFF:
693 		label = "off";
694 		break;
695 	case REGULATOR_STATUS_ON:
696 		label = "on";
697 		break;
698 	case REGULATOR_STATUS_ERROR:
699 		label = "error";
700 		break;
701 	case REGULATOR_STATUS_FAST:
702 		label = "fast";
703 		break;
704 	case REGULATOR_STATUS_NORMAL:
705 		label = "normal";
706 		break;
707 	case REGULATOR_STATUS_IDLE:
708 		label = "idle";
709 		break;
710 	case REGULATOR_STATUS_STANDBY:
711 		label = "standby";
712 		break;
713 	case REGULATOR_STATUS_BYPASS:
714 		label = "bypass";
715 		break;
716 	case REGULATOR_STATUS_UNDEFINED:
717 		label = "undefined";
718 		break;
719 	default:
720 		return -ERANGE;
721 	}
722 
723 	return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726 
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 				    struct device_attribute *attr, char *buf)
729 {
730 	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 
732 	if (!rdev->constraints)
733 		return sprintf(buf, "constraint not defined\n");
734 
735 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 				    struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 
744 	if (!rdev->constraints)
745 		return sprintf(buf, "constraint not defined\n");
746 
747 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 				    struct device_attribute *attr, char *buf)
753 {
754 	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 
756 	if (!rdev->constraints)
757 		return sprintf(buf, "constraint not defined\n");
758 
759 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 				    struct device_attribute *attr, char *buf)
765 {
766 	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 
768 	if (!rdev->constraints)
769 		return sprintf(buf, "constraint not defined\n");
770 
771 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 				      struct device_attribute *attr, char *buf)
777 {
778 	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 	struct regulator *regulator;
780 	int uA = 0;
781 
782 	regulator_lock(rdev);
783 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 		if (regulator->enable_count)
785 			uA += regulator->uA_load;
786 	}
787 	regulator_unlock(rdev);
788 	return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791 
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 			      char *buf)
794 {
795 	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 	return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799 
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 			 char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	switch (rdev->desc->type) {
806 	case REGULATOR_VOLTAGE:
807 		return sprintf(buf, "voltage\n");
808 	case REGULATOR_CURRENT:
809 		return sprintf(buf, "current\n");
810 	}
811 	return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814 
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 				struct device_attribute *attr, char *buf)
817 {
818 	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 		regulator_suspend_mem_uV_show, NULL);
824 
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 				struct device_attribute *attr, char *buf)
827 {
828 	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 
830 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 		regulator_suspend_disk_uV_show, NULL);
834 
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 				struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 
840 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 		regulator_suspend_standby_uV_show, NULL);
844 
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 				struct device_attribute *attr, char *buf)
847 {
848 	struct regulator_dev *rdev = dev_get_drvdata(dev);
849 
850 	return regulator_print_opmode(buf,
851 		rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 		regulator_suspend_mem_mode_show, NULL);
855 
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 				struct device_attribute *attr, char *buf)
858 {
859 	struct regulator_dev *rdev = dev_get_drvdata(dev);
860 
861 	return regulator_print_opmode(buf,
862 		rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 		regulator_suspend_disk_mode_show, NULL);
866 
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 				struct device_attribute *attr, char *buf)
869 {
870 	struct regulator_dev *rdev = dev_get_drvdata(dev);
871 
872 	return regulator_print_opmode(buf,
873 		rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 		regulator_suspend_standby_mode_show, NULL);
877 
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 				   struct device_attribute *attr, char *buf)
880 {
881 	struct regulator_dev *rdev = dev_get_drvdata(dev);
882 
883 	return regulator_print_state(buf,
884 			rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 		regulator_suspend_mem_state_show, NULL);
888 
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 				   struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 
894 	return regulator_print_state(buf,
895 			rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 		regulator_suspend_disk_state_show, NULL);
899 
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 				   struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_state(buf,
906 			rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 		regulator_suspend_standby_state_show, NULL);
910 
911 static ssize_t regulator_bypass_show(struct device *dev,
912 				     struct device_attribute *attr, char *buf)
913 {
914 	struct regulator_dev *rdev = dev_get_drvdata(dev);
915 	const char *report;
916 	bool bypass;
917 	int ret;
918 
919 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920 
921 	if (ret != 0)
922 		report = "unknown";
923 	else if (bypass)
924 		report = "enabled";
925 	else
926 		report = "disabled";
927 
928 	return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 		   regulator_bypass_show, NULL);
932 
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 	struct regulator *sibling;
938 	int current_uA = 0, output_uV, input_uV, err;
939 	unsigned int mode;
940 
941 	/*
942 	 * first check to see if we can set modes at all, otherwise just
943 	 * tell the consumer everything is OK.
944 	 */
945 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 		rdev_dbg(rdev, "DRMS operation not allowed\n");
947 		return 0;
948 	}
949 
950 	if (!rdev->desc->ops->get_optimum_mode &&
951 	    !rdev->desc->ops->set_load)
952 		return 0;
953 
954 	if (!rdev->desc->ops->set_mode &&
955 	    !rdev->desc->ops->set_load)
956 		return -EINVAL;
957 
958 	/* calc total requested load */
959 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 		if (sibling->enable_count)
961 			current_uA += sibling->uA_load;
962 	}
963 
964 	current_uA += rdev->constraints->system_load;
965 
966 	if (rdev->desc->ops->set_load) {
967 		/* set the optimum mode for our new total regulator load */
968 		err = rdev->desc->ops->set_load(rdev, current_uA);
969 		if (err < 0)
970 			rdev_err(rdev, "failed to set load %d: %pe\n",
971 				 current_uA, ERR_PTR(err));
972 	} else {
973 		/* get output voltage */
974 		output_uV = regulator_get_voltage_rdev(rdev);
975 		if (output_uV <= 0) {
976 			rdev_err(rdev, "invalid output voltage found\n");
977 			return -EINVAL;
978 		}
979 
980 		/* get input voltage */
981 		input_uV = 0;
982 		if (rdev->supply)
983 			input_uV = regulator_get_voltage(rdev->supply);
984 		if (input_uV <= 0)
985 			input_uV = rdev->constraints->input_uV;
986 		if (input_uV <= 0) {
987 			rdev_err(rdev, "invalid input voltage found\n");
988 			return -EINVAL;
989 		}
990 
991 		/* now get the optimum mode for our new total regulator load */
992 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 							 output_uV, current_uA);
994 
995 		/* check the new mode is allowed */
996 		err = regulator_mode_constrain(rdev, &mode);
997 		if (err < 0) {
998 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 			return err;
1001 		}
1002 
1003 		err = rdev->desc->ops->set_mode(rdev, mode);
1004 		if (err < 0)
1005 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 				 mode, ERR_PTR(err));
1007 	}
1008 
1009 	return err;
1010 }
1011 
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 			       const struct regulator_state *rstate)
1014 {
1015 	int ret = 0;
1016 
1017 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 		rdev->desc->ops->set_suspend_enable)
1019 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 		rdev->desc->ops->set_suspend_disable)
1022 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 		ret = 0;
1025 
1026 	if (ret < 0) {
1027 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 		return ret;
1029 	}
1030 
1031 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 		if (ret < 0) {
1034 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 			return ret;
1036 		}
1037 	}
1038 
1039 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 		if (ret < 0) {
1042 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 			return ret;
1044 		}
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 	const struct regulator_state *rstate;
1053 
1054 	rstate = regulator_get_suspend_state_check(rdev,
1055 			rdev->constraints->initial_state);
1056 	if (!rstate)
1057 		return 0;
1058 
1059 	return __suspend_set_state(rdev, rstate);
1060 }
1061 
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 	struct regulation_constraints *constraints = rdev->constraints;
1066 	char buf[160] = "";
1067 	size_t len = sizeof(buf) - 1;
1068 	int count = 0;
1069 	int ret;
1070 
1071 	if (constraints->min_uV && constraints->max_uV) {
1072 		if (constraints->min_uV == constraints->max_uV)
1073 			count += scnprintf(buf + count, len - count, "%d mV ",
1074 					   constraints->min_uV / 1000);
1075 		else
1076 			count += scnprintf(buf + count, len - count,
1077 					   "%d <--> %d mV ",
1078 					   constraints->min_uV / 1000,
1079 					   constraints->max_uV / 1000);
1080 	}
1081 
1082 	if (!constraints->min_uV ||
1083 	    constraints->min_uV != constraints->max_uV) {
1084 		ret = regulator_get_voltage_rdev(rdev);
1085 		if (ret > 0)
1086 			count += scnprintf(buf + count, len - count,
1087 					   "at %d mV ", ret / 1000);
1088 	}
1089 
1090 	if (constraints->uV_offset)
1091 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 				   constraints->uV_offset / 1000);
1093 
1094 	if (constraints->min_uA && constraints->max_uA) {
1095 		if (constraints->min_uA == constraints->max_uA)
1096 			count += scnprintf(buf + count, len - count, "%d mA ",
1097 					   constraints->min_uA / 1000);
1098 		else
1099 			count += scnprintf(buf + count, len - count,
1100 					   "%d <--> %d mA ",
1101 					   constraints->min_uA / 1000,
1102 					   constraints->max_uA / 1000);
1103 	}
1104 
1105 	if (!constraints->min_uA ||
1106 	    constraints->min_uA != constraints->max_uA) {
1107 		ret = _regulator_get_current_limit(rdev);
1108 		if (ret > 0)
1109 			count += scnprintf(buf + count, len - count,
1110 					   "at %d mA ", ret / 1000);
1111 	}
1112 
1113 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 		count += scnprintf(buf + count, len - count, "fast ");
1115 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 		count += scnprintf(buf + count, len - count, "normal ");
1117 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 		count += scnprintf(buf + count, len - count, "idle ");
1119 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 		count += scnprintf(buf + count, len - count, "standby ");
1121 
1122 	if (!count)
1123 		count = scnprintf(buf, len, "no parameters");
1124 	else
1125 		--count;
1126 
1127 	count += scnprintf(buf + count, len - count, ", %s",
1128 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129 
1130 	rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 
1140 	print_constraints_debug(rdev);
1141 
1142 	if ((constraints->min_uV != constraints->max_uV) &&
1143 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 		rdev_warn(rdev,
1145 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147 
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 	struct regulation_constraints *constraints)
1150 {
1151 	const struct regulator_ops *ops = rdev->desc->ops;
1152 	int ret;
1153 
1154 	/* do we need to apply the constraint voltage */
1155 	if (rdev->constraints->apply_uV &&
1156 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 		int target_min, target_max;
1158 		int current_uV = regulator_get_voltage_rdev(rdev);
1159 
1160 		if (current_uV == -ENOTRECOVERABLE) {
1161 			/* This regulator can't be read and must be initialized */
1162 			rdev_info(rdev, "Setting %d-%duV\n",
1163 				  rdev->constraints->min_uV,
1164 				  rdev->constraints->max_uV);
1165 			_regulator_do_set_voltage(rdev,
1166 						  rdev->constraints->min_uV,
1167 						  rdev->constraints->max_uV);
1168 			current_uV = regulator_get_voltage_rdev(rdev);
1169 		}
1170 
1171 		if (current_uV < 0) {
1172 			rdev_err(rdev,
1173 				 "failed to get the current voltage: %pe\n",
1174 				 ERR_PTR(current_uV));
1175 			return current_uV;
1176 		}
1177 
1178 		/*
1179 		 * If we're below the minimum voltage move up to the
1180 		 * minimum voltage, if we're above the maximum voltage
1181 		 * then move down to the maximum.
1182 		 */
1183 		target_min = current_uV;
1184 		target_max = current_uV;
1185 
1186 		if (current_uV < rdev->constraints->min_uV) {
1187 			target_min = rdev->constraints->min_uV;
1188 			target_max = rdev->constraints->min_uV;
1189 		}
1190 
1191 		if (current_uV > rdev->constraints->max_uV) {
1192 			target_min = rdev->constraints->max_uV;
1193 			target_max = rdev->constraints->max_uV;
1194 		}
1195 
1196 		if (target_min != current_uV || target_max != current_uV) {
1197 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 				  current_uV, target_min, target_max);
1199 			ret = _regulator_do_set_voltage(
1200 				rdev, target_min, target_max);
1201 			if (ret < 0) {
1202 				rdev_err(rdev,
1203 					"failed to apply %d-%duV constraint: %pe\n",
1204 					target_min, target_max, ERR_PTR(ret));
1205 				return ret;
1206 			}
1207 		}
1208 	}
1209 
1210 	/* constrain machine-level voltage specs to fit
1211 	 * the actual range supported by this regulator.
1212 	 */
1213 	if (ops->list_voltage && rdev->desc->n_voltages) {
1214 		int	count = rdev->desc->n_voltages;
1215 		int	i;
1216 		int	min_uV = INT_MAX;
1217 		int	max_uV = INT_MIN;
1218 		int	cmin = constraints->min_uV;
1219 		int	cmax = constraints->max_uV;
1220 
1221 		/* it's safe to autoconfigure fixed-voltage supplies
1222 		   and the constraints are used by list_voltage. */
1223 		if (count == 1 && !cmin) {
1224 			cmin = 1;
1225 			cmax = INT_MAX;
1226 			constraints->min_uV = cmin;
1227 			constraints->max_uV = cmax;
1228 		}
1229 
1230 		/* voltage constraints are optional */
1231 		if ((cmin == 0) && (cmax == 0))
1232 			return 0;
1233 
1234 		/* else require explicit machine-level constraints */
1235 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 			rdev_err(rdev, "invalid voltage constraints\n");
1237 			return -EINVAL;
1238 		}
1239 
1240 		/* no need to loop voltages if range is continuous */
1241 		if (rdev->desc->continuous_voltage_range)
1242 			return 0;
1243 
1244 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 		for (i = 0; i < count; i++) {
1246 			int	value;
1247 
1248 			value = ops->list_voltage(rdev, i);
1249 			if (value <= 0)
1250 				continue;
1251 
1252 			/* maybe adjust [min_uV..max_uV] */
1253 			if (value >= cmin && value < min_uV)
1254 				min_uV = value;
1255 			if (value <= cmax && value > max_uV)
1256 				max_uV = value;
1257 		}
1258 
1259 		/* final: [min_uV..max_uV] valid iff constraints valid */
1260 		if (max_uV < min_uV) {
1261 			rdev_err(rdev,
1262 				 "unsupportable voltage constraints %u-%uuV\n",
1263 				 min_uV, max_uV);
1264 			return -EINVAL;
1265 		}
1266 
1267 		/* use regulator's subset of machine constraints */
1268 		if (constraints->min_uV < min_uV) {
1269 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 				 constraints->min_uV, min_uV);
1271 			constraints->min_uV = min_uV;
1272 		}
1273 		if (constraints->max_uV > max_uV) {
1274 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 				 constraints->max_uV, max_uV);
1276 			constraints->max_uV = max_uV;
1277 		}
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 	struct regulation_constraints *constraints)
1285 {
1286 	const struct regulator_ops *ops = rdev->desc->ops;
1287 	int ret;
1288 
1289 	if (!constraints->min_uA && !constraints->max_uA)
1290 		return 0;
1291 
1292 	if (constraints->min_uA > constraints->max_uA) {
1293 		rdev_err(rdev, "Invalid current constraints\n");
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (!ops->set_current_limit || !ops->get_current_limit) {
1298 		rdev_warn(rdev, "Operation of current configuration missing\n");
1299 		return 0;
1300 	}
1301 
1302 	/* Set regulator current in constraints range */
1303 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 			constraints->max_uA);
1305 	if (ret < 0) {
1306 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314 
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  * @constraints: constraints to apply
1319  *
1320  * Allows platform initialisation code to define and constrain
1321  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1322  * Constraints *must* be set by platform code in order for some
1323  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1324  * set_mode.
1325  */
1326 static int set_machine_constraints(struct regulator_dev *rdev,
1327 	const struct regulation_constraints *constraints)
1328 {
1329 	int ret = 0;
1330 	const struct regulator_ops *ops = rdev->desc->ops;
1331 
1332 	if (constraints)
1333 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1334 					    GFP_KERNEL);
1335 	else
1336 		rdev->constraints = kzalloc(sizeof(*constraints),
1337 					    GFP_KERNEL);
1338 	if (!rdev->constraints)
1339 		return -ENOMEM;
1340 
1341 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1342 	if (ret != 0)
1343 		return ret;
1344 
1345 	ret = machine_constraints_current(rdev, rdev->constraints);
1346 	if (ret != 0)
1347 		return ret;
1348 
1349 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1350 		ret = ops->set_input_current_limit(rdev,
1351 						   rdev->constraints->ilim_uA);
1352 		if (ret < 0) {
1353 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1354 			return ret;
1355 		}
1356 	}
1357 
1358 	/* do we need to setup our suspend state */
1359 	if (rdev->constraints->initial_state) {
1360 		ret = suspend_set_initial_state(rdev);
1361 		if (ret < 0) {
1362 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1363 			return ret;
1364 		}
1365 	}
1366 
1367 	if (rdev->constraints->initial_mode) {
1368 		if (!ops->set_mode) {
1369 			rdev_err(rdev, "no set_mode operation\n");
1370 			return -EINVAL;
1371 		}
1372 
1373 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1374 		if (ret < 0) {
1375 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1376 			return ret;
1377 		}
1378 	} else if (rdev->constraints->system_load) {
1379 		/*
1380 		 * We'll only apply the initial system load if an
1381 		 * initial mode wasn't specified.
1382 		 */
1383 		drms_uA_update(rdev);
1384 	}
1385 
1386 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1387 		&& ops->set_ramp_delay) {
1388 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1389 		if (ret < 0) {
1390 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1391 			return ret;
1392 		}
1393 	}
1394 
1395 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1396 		ret = ops->set_pull_down(rdev);
1397 		if (ret < 0) {
1398 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1399 			return ret;
1400 		}
1401 	}
1402 
1403 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1404 		ret = ops->set_soft_start(rdev);
1405 		if (ret < 0) {
1406 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1407 			return ret;
1408 		}
1409 	}
1410 
1411 	if (rdev->constraints->over_current_protection
1412 		&& ops->set_over_current_protection) {
1413 		ret = ops->set_over_current_protection(rdev);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1416 				 ERR_PTR(ret));
1417 			return ret;
1418 		}
1419 	}
1420 
1421 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1422 		bool ad_state = (rdev->constraints->active_discharge ==
1423 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1424 
1425 		ret = ops->set_active_discharge(rdev, ad_state);
1426 		if (ret < 0) {
1427 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1428 			return ret;
1429 		}
1430 	}
1431 
1432 	/* If the constraints say the regulator should be on at this point
1433 	 * and we have control then make sure it is enabled.
1434 	 */
1435 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1436 		if (rdev->supply) {
1437 			ret = regulator_enable(rdev->supply);
1438 			if (ret < 0) {
1439 				_regulator_put(rdev->supply);
1440 				rdev->supply = NULL;
1441 				return ret;
1442 			}
1443 		}
1444 
1445 		ret = _regulator_do_enable(rdev);
1446 		if (ret < 0 && ret != -EINVAL) {
1447 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1448 			return ret;
1449 		}
1450 
1451 		if (rdev->constraints->always_on)
1452 			rdev->use_count++;
1453 	}
1454 
1455 	print_constraints(rdev);
1456 	return 0;
1457 }
1458 
1459 /**
1460  * set_supply - set regulator supply regulator
1461  * @rdev: regulator name
1462  * @supply_rdev: supply regulator name
1463  *
1464  * Called by platform initialisation code to set the supply regulator for this
1465  * regulator. This ensures that a regulators supply will also be enabled by the
1466  * core if it's child is enabled.
1467  */
1468 static int set_supply(struct regulator_dev *rdev,
1469 		      struct regulator_dev *supply_rdev)
1470 {
1471 	int err;
1472 
1473 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1474 
1475 	if (!try_module_get(supply_rdev->owner))
1476 		return -ENODEV;
1477 
1478 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479 	if (rdev->supply == NULL) {
1480 		err = -ENOMEM;
1481 		return err;
1482 	}
1483 	supply_rdev->open_count++;
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490  * @rdev:         regulator source
1491  * @consumer_dev_name: dev_name() string for device supply applies to
1492  * @supply:       symbolic name for supply
1493  *
1494  * Allows platform initialisation code to map physical regulator
1495  * sources to symbolic names for supplies for use by devices.  Devices
1496  * should use these symbolic names to request regulators, avoiding the
1497  * need to provide board-specific regulator names as platform data.
1498  */
1499 static int set_consumer_device_supply(struct regulator_dev *rdev,
1500 				      const char *consumer_dev_name,
1501 				      const char *supply)
1502 {
1503 	struct regulator_map *node, *new_node;
1504 	int has_dev;
1505 
1506 	if (supply == NULL)
1507 		return -EINVAL;
1508 
1509 	if (consumer_dev_name != NULL)
1510 		has_dev = 1;
1511 	else
1512 		has_dev = 0;
1513 
1514 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1515 	if (new_node == NULL)
1516 		return -ENOMEM;
1517 
1518 	new_node->regulator = rdev;
1519 	new_node->supply = supply;
1520 
1521 	if (has_dev) {
1522 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1523 		if (new_node->dev_name == NULL) {
1524 			kfree(new_node);
1525 			return -ENOMEM;
1526 		}
1527 	}
1528 
1529 	mutex_lock(&regulator_list_mutex);
1530 	list_for_each_entry(node, &regulator_map_list, list) {
1531 		if (node->dev_name && consumer_dev_name) {
1532 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1533 				continue;
1534 		} else if (node->dev_name || consumer_dev_name) {
1535 			continue;
1536 		}
1537 
1538 		if (strcmp(node->supply, supply) != 0)
1539 			continue;
1540 
1541 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1542 			 consumer_dev_name,
1543 			 dev_name(&node->regulator->dev),
1544 			 node->regulator->desc->name,
1545 			 supply,
1546 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1547 		goto fail;
1548 	}
1549 
1550 	list_add(&new_node->list, &regulator_map_list);
1551 	mutex_unlock(&regulator_list_mutex);
1552 
1553 	return 0;
1554 
1555 fail:
1556 	mutex_unlock(&regulator_list_mutex);
1557 	kfree(new_node->dev_name);
1558 	kfree(new_node);
1559 	return -EBUSY;
1560 }
1561 
1562 static void unset_regulator_supplies(struct regulator_dev *rdev)
1563 {
1564 	struct regulator_map *node, *n;
1565 
1566 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1567 		if (rdev == node->regulator) {
1568 			list_del(&node->list);
1569 			kfree(node->dev_name);
1570 			kfree(node);
1571 		}
1572 	}
1573 }
1574 
1575 #ifdef CONFIG_DEBUG_FS
1576 static ssize_t constraint_flags_read_file(struct file *file,
1577 					  char __user *user_buf,
1578 					  size_t count, loff_t *ppos)
1579 {
1580 	const struct regulator *regulator = file->private_data;
1581 	const struct regulation_constraints *c = regulator->rdev->constraints;
1582 	char *buf;
1583 	ssize_t ret;
1584 
1585 	if (!c)
1586 		return 0;
1587 
1588 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1589 	if (!buf)
1590 		return -ENOMEM;
1591 
1592 	ret = snprintf(buf, PAGE_SIZE,
1593 			"always_on: %u\n"
1594 			"boot_on: %u\n"
1595 			"apply_uV: %u\n"
1596 			"ramp_disable: %u\n"
1597 			"soft_start: %u\n"
1598 			"pull_down: %u\n"
1599 			"over_current_protection: %u\n",
1600 			c->always_on,
1601 			c->boot_on,
1602 			c->apply_uV,
1603 			c->ramp_disable,
1604 			c->soft_start,
1605 			c->pull_down,
1606 			c->over_current_protection);
1607 
1608 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1609 	kfree(buf);
1610 
1611 	return ret;
1612 }
1613 
1614 #endif
1615 
1616 static const struct file_operations constraint_flags_fops = {
1617 #ifdef CONFIG_DEBUG_FS
1618 	.open = simple_open,
1619 	.read = constraint_flags_read_file,
1620 	.llseek = default_llseek,
1621 #endif
1622 };
1623 
1624 #define REG_STR_SIZE	64
1625 
1626 static struct regulator *create_regulator(struct regulator_dev *rdev,
1627 					  struct device *dev,
1628 					  const char *supply_name)
1629 {
1630 	struct regulator *regulator;
1631 	int err;
1632 
1633 	if (dev) {
1634 		char buf[REG_STR_SIZE];
1635 		int size;
1636 
1637 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1638 				dev->kobj.name, supply_name);
1639 		if (size >= REG_STR_SIZE)
1640 			return NULL;
1641 
1642 		supply_name = kstrdup(buf, GFP_KERNEL);
1643 		if (supply_name == NULL)
1644 			return NULL;
1645 	} else {
1646 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1647 		if (supply_name == NULL)
1648 			return NULL;
1649 	}
1650 
1651 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652 	if (regulator == NULL) {
1653 		kfree(supply_name);
1654 		return NULL;
1655 	}
1656 
1657 	regulator->rdev = rdev;
1658 	regulator->supply_name = supply_name;
1659 
1660 	regulator_lock(rdev);
1661 	list_add(&regulator->list, &rdev->consumer_list);
1662 	regulator_unlock(rdev);
1663 
1664 	if (dev) {
1665 		regulator->dev = dev;
1666 
1667 		/* Add a link to the device sysfs entry */
1668 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669 					       supply_name);
1670 		if (err) {
1671 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1672 				  dev->kobj.name, ERR_PTR(err));
1673 			/* non-fatal */
1674 		}
1675 	}
1676 
1677 	regulator->debugfs = debugfs_create_dir(supply_name,
1678 						rdev->debugfs);
1679 	if (!regulator->debugfs) {
1680 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681 	} else {
1682 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1683 				   &regulator->uA_load);
1684 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688 		debugfs_create_file("constraint_flags", 0444,
1689 				    regulator->debugfs, regulator,
1690 				    &constraint_flags_fops);
1691 	}
1692 
1693 	/*
1694 	 * Check now if the regulator is an always on regulator - if
1695 	 * it is then we don't need to do nearly so much work for
1696 	 * enable/disable calls.
1697 	 */
1698 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699 	    _regulator_is_enabled(rdev))
1700 		regulator->always_on = true;
1701 
1702 	return regulator;
1703 }
1704 
1705 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1706 {
1707 	if (rdev->constraints && rdev->constraints->enable_time)
1708 		return rdev->constraints->enable_time;
1709 	if (rdev->desc->ops->enable_time)
1710 		return rdev->desc->ops->enable_time(rdev);
1711 	return rdev->desc->enable_time;
1712 }
1713 
1714 static struct regulator_supply_alias *regulator_find_supply_alias(
1715 		struct device *dev, const char *supply)
1716 {
1717 	struct regulator_supply_alias *map;
1718 
1719 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1720 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1721 			return map;
1722 
1723 	return NULL;
1724 }
1725 
1726 static void regulator_supply_alias(struct device **dev, const char **supply)
1727 {
1728 	struct regulator_supply_alias *map;
1729 
1730 	map = regulator_find_supply_alias(*dev, *supply);
1731 	if (map) {
1732 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1733 				*supply, map->alias_supply,
1734 				dev_name(map->alias_dev));
1735 		*dev = map->alias_dev;
1736 		*supply = map->alias_supply;
1737 	}
1738 }
1739 
1740 static int regulator_match(struct device *dev, const void *data)
1741 {
1742 	struct regulator_dev *r = dev_to_rdev(dev);
1743 
1744 	return strcmp(rdev_get_name(r), data) == 0;
1745 }
1746 
1747 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1748 {
1749 	struct device *dev;
1750 
1751 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1752 
1753 	return dev ? dev_to_rdev(dev) : NULL;
1754 }
1755 
1756 /**
1757  * regulator_dev_lookup - lookup a regulator device.
1758  * @dev: device for regulator "consumer".
1759  * @supply: Supply name or regulator ID.
1760  *
1761  * If successful, returns a struct regulator_dev that corresponds to the name
1762  * @supply and with the embedded struct device refcount incremented by one.
1763  * The refcount must be dropped by calling put_device().
1764  * On failure one of the following ERR-PTR-encoded values is returned:
1765  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1766  * in the future.
1767  */
1768 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769 						  const char *supply)
1770 {
1771 	struct regulator_dev *r = NULL;
1772 	struct device_node *node;
1773 	struct regulator_map *map;
1774 	const char *devname = NULL;
1775 
1776 	regulator_supply_alias(&dev, &supply);
1777 
1778 	/* first do a dt based lookup */
1779 	if (dev && dev->of_node) {
1780 		node = of_get_regulator(dev, supply);
1781 		if (node) {
1782 			r = of_find_regulator_by_node(node);
1783 			if (r)
1784 				return r;
1785 
1786 			/*
1787 			 * We have a node, but there is no device.
1788 			 * assume it has not registered yet.
1789 			 */
1790 			return ERR_PTR(-EPROBE_DEFER);
1791 		}
1792 	}
1793 
1794 	/* if not found, try doing it non-dt way */
1795 	if (dev)
1796 		devname = dev_name(dev);
1797 
1798 	mutex_lock(&regulator_list_mutex);
1799 	list_for_each_entry(map, &regulator_map_list, list) {
1800 		/* If the mapping has a device set up it must match */
1801 		if (map->dev_name &&
1802 		    (!devname || strcmp(map->dev_name, devname)))
1803 			continue;
1804 
1805 		if (strcmp(map->supply, supply) == 0 &&
1806 		    get_device(&map->regulator->dev)) {
1807 			r = map->regulator;
1808 			break;
1809 		}
1810 	}
1811 	mutex_unlock(&regulator_list_mutex);
1812 
1813 	if (r)
1814 		return r;
1815 
1816 	r = regulator_lookup_by_name(supply);
1817 	if (r)
1818 		return r;
1819 
1820 	return ERR_PTR(-ENODEV);
1821 }
1822 
1823 static int regulator_resolve_supply(struct regulator_dev *rdev)
1824 {
1825 	struct regulator_dev *r;
1826 	struct device *dev = rdev->dev.parent;
1827 	int ret;
1828 
1829 	/* No supply to resolve? */
1830 	if (!rdev->supply_name)
1831 		return 0;
1832 
1833 	/* Supply already resolved? */
1834 	if (rdev->supply)
1835 		return 0;
1836 
1837 	r = regulator_dev_lookup(dev, rdev->supply_name);
1838 	if (IS_ERR(r)) {
1839 		ret = PTR_ERR(r);
1840 
1841 		/* Did the lookup explicitly defer for us? */
1842 		if (ret == -EPROBE_DEFER)
1843 			return ret;
1844 
1845 		if (have_full_constraints()) {
1846 			r = dummy_regulator_rdev;
1847 			get_device(&r->dev);
1848 		} else {
1849 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1850 				rdev->supply_name, rdev->desc->name);
1851 			return -EPROBE_DEFER;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * If the supply's parent device is not the same as the
1857 	 * regulator's parent device, then ensure the parent device
1858 	 * is bound before we resolve the supply, in case the parent
1859 	 * device get probe deferred and unregisters the supply.
1860 	 */
1861 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1862 		if (!device_is_bound(r->dev.parent)) {
1863 			put_device(&r->dev);
1864 			return -EPROBE_DEFER;
1865 		}
1866 	}
1867 
1868 	/* Recursively resolve the supply of the supply */
1869 	ret = regulator_resolve_supply(r);
1870 	if (ret < 0) {
1871 		put_device(&r->dev);
1872 		return ret;
1873 	}
1874 
1875 	ret = set_supply(rdev, r);
1876 	if (ret < 0) {
1877 		put_device(&r->dev);
1878 		return ret;
1879 	}
1880 
1881 	/*
1882 	 * In set_machine_constraints() we may have turned this regulator on
1883 	 * but we couldn't propagate to the supply if it hadn't been resolved
1884 	 * yet.  Do it now.
1885 	 */
1886 	if (rdev->use_count) {
1887 		ret = regulator_enable(rdev->supply);
1888 		if (ret < 0) {
1889 			_regulator_put(rdev->supply);
1890 			rdev->supply = NULL;
1891 			return ret;
1892 		}
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 /* Internal regulator request function */
1899 struct regulator *_regulator_get(struct device *dev, const char *id,
1900 				 enum regulator_get_type get_type)
1901 {
1902 	struct regulator_dev *rdev;
1903 	struct regulator *regulator;
1904 	struct device_link *link;
1905 	int ret;
1906 
1907 	if (get_type >= MAX_GET_TYPE) {
1908 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1909 		return ERR_PTR(-EINVAL);
1910 	}
1911 
1912 	if (id == NULL) {
1913 		pr_err("get() with no identifier\n");
1914 		return ERR_PTR(-EINVAL);
1915 	}
1916 
1917 	rdev = regulator_dev_lookup(dev, id);
1918 	if (IS_ERR(rdev)) {
1919 		ret = PTR_ERR(rdev);
1920 
1921 		/*
1922 		 * If regulator_dev_lookup() fails with error other
1923 		 * than -ENODEV our job here is done, we simply return it.
1924 		 */
1925 		if (ret != -ENODEV)
1926 			return ERR_PTR(ret);
1927 
1928 		if (!have_full_constraints()) {
1929 			dev_warn(dev,
1930 				 "incomplete constraints, dummy supplies not allowed\n");
1931 			return ERR_PTR(-ENODEV);
1932 		}
1933 
1934 		switch (get_type) {
1935 		case NORMAL_GET:
1936 			/*
1937 			 * Assume that a regulator is physically present and
1938 			 * enabled, even if it isn't hooked up, and just
1939 			 * provide a dummy.
1940 			 */
1941 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1942 			rdev = dummy_regulator_rdev;
1943 			get_device(&rdev->dev);
1944 			break;
1945 
1946 		case EXCLUSIVE_GET:
1947 			dev_warn(dev,
1948 				 "dummy supplies not allowed for exclusive requests\n");
1949 			fallthrough;
1950 
1951 		default:
1952 			return ERR_PTR(-ENODEV);
1953 		}
1954 	}
1955 
1956 	if (rdev->exclusive) {
1957 		regulator = ERR_PTR(-EPERM);
1958 		put_device(&rdev->dev);
1959 		return regulator;
1960 	}
1961 
1962 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1963 		regulator = ERR_PTR(-EBUSY);
1964 		put_device(&rdev->dev);
1965 		return regulator;
1966 	}
1967 
1968 	mutex_lock(&regulator_list_mutex);
1969 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1970 	mutex_unlock(&regulator_list_mutex);
1971 
1972 	if (ret != 0) {
1973 		regulator = ERR_PTR(-EPROBE_DEFER);
1974 		put_device(&rdev->dev);
1975 		return regulator;
1976 	}
1977 
1978 	ret = regulator_resolve_supply(rdev);
1979 	if (ret < 0) {
1980 		regulator = ERR_PTR(ret);
1981 		put_device(&rdev->dev);
1982 		return regulator;
1983 	}
1984 
1985 	if (!try_module_get(rdev->owner)) {
1986 		regulator = ERR_PTR(-EPROBE_DEFER);
1987 		put_device(&rdev->dev);
1988 		return regulator;
1989 	}
1990 
1991 	regulator = create_regulator(rdev, dev, id);
1992 	if (regulator == NULL) {
1993 		regulator = ERR_PTR(-ENOMEM);
1994 		module_put(rdev->owner);
1995 		put_device(&rdev->dev);
1996 		return regulator;
1997 	}
1998 
1999 	rdev->open_count++;
2000 	if (get_type == EXCLUSIVE_GET) {
2001 		rdev->exclusive = 1;
2002 
2003 		ret = _regulator_is_enabled(rdev);
2004 		if (ret > 0)
2005 			rdev->use_count = 1;
2006 		else
2007 			rdev->use_count = 0;
2008 	}
2009 
2010 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2011 	if (!IS_ERR_OR_NULL(link))
2012 		regulator->device_link = true;
2013 
2014 	return regulator;
2015 }
2016 
2017 /**
2018  * regulator_get - lookup and obtain a reference to a regulator.
2019  * @dev: device for regulator "consumer"
2020  * @id: Supply name or regulator ID.
2021  *
2022  * Returns a struct regulator corresponding to the regulator producer,
2023  * or IS_ERR() condition containing errno.
2024  *
2025  * Use of supply names configured via regulator_set_device_supply() is
2026  * strongly encouraged.  It is recommended that the supply name used
2027  * should match the name used for the supply and/or the relevant
2028  * device pins in the datasheet.
2029  */
2030 struct regulator *regulator_get(struct device *dev, const char *id)
2031 {
2032 	return _regulator_get(dev, id, NORMAL_GET);
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_get);
2035 
2036 /**
2037  * regulator_get_exclusive - obtain exclusive access to a regulator.
2038  * @dev: device for regulator "consumer"
2039  * @id: Supply name or regulator ID.
2040  *
2041  * Returns a struct regulator corresponding to the regulator producer,
2042  * or IS_ERR() condition containing errno.  Other consumers will be
2043  * unable to obtain this regulator while this reference is held and the
2044  * use count for the regulator will be initialised to reflect the current
2045  * state of the regulator.
2046  *
2047  * This is intended for use by consumers which cannot tolerate shared
2048  * use of the regulator such as those which need to force the
2049  * regulator off for correct operation of the hardware they are
2050  * controlling.
2051  *
2052  * Use of supply names configured via regulator_set_device_supply() is
2053  * strongly encouraged.  It is recommended that the supply name used
2054  * should match the name used for the supply and/or the relevant
2055  * device pins in the datasheet.
2056  */
2057 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2058 {
2059 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2062 
2063 /**
2064  * regulator_get_optional - obtain optional access to a regulator.
2065  * @dev: device for regulator "consumer"
2066  * @id: Supply name or regulator ID.
2067  *
2068  * Returns a struct regulator corresponding to the regulator producer,
2069  * or IS_ERR() condition containing errno.
2070  *
2071  * This is intended for use by consumers for devices which can have
2072  * some supplies unconnected in normal use, such as some MMC devices.
2073  * It can allow the regulator core to provide stub supplies for other
2074  * supplies requested using normal regulator_get() calls without
2075  * disrupting the operation of drivers that can handle absent
2076  * supplies.
2077  *
2078  * Use of supply names configured via regulator_set_device_supply() is
2079  * strongly encouraged.  It is recommended that the supply name used
2080  * should match the name used for the supply and/or the relevant
2081  * device pins in the datasheet.
2082  */
2083 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2084 {
2085 	return _regulator_get(dev, id, OPTIONAL_GET);
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_get_optional);
2088 
2089 static void destroy_regulator(struct regulator *regulator)
2090 {
2091 	struct regulator_dev *rdev = regulator->rdev;
2092 
2093 	debugfs_remove_recursive(regulator->debugfs);
2094 
2095 	if (regulator->dev) {
2096 		if (regulator->device_link)
2097 			device_link_remove(regulator->dev, &rdev->dev);
2098 
2099 		/* remove any sysfs entries */
2100 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2101 	}
2102 
2103 	regulator_lock(rdev);
2104 	list_del(&regulator->list);
2105 
2106 	rdev->open_count--;
2107 	rdev->exclusive = 0;
2108 	regulator_unlock(rdev);
2109 
2110 	kfree_const(regulator->supply_name);
2111 	kfree(regulator);
2112 }
2113 
2114 /* regulator_list_mutex lock held by regulator_put() */
2115 static void _regulator_put(struct regulator *regulator)
2116 {
2117 	struct regulator_dev *rdev;
2118 
2119 	if (IS_ERR_OR_NULL(regulator))
2120 		return;
2121 
2122 	lockdep_assert_held_once(&regulator_list_mutex);
2123 
2124 	/* Docs say you must disable before calling regulator_put() */
2125 	WARN_ON(regulator->enable_count);
2126 
2127 	rdev = regulator->rdev;
2128 
2129 	destroy_regulator(regulator);
2130 
2131 	module_put(rdev->owner);
2132 	put_device(&rdev->dev);
2133 }
2134 
2135 /**
2136  * regulator_put - "free" the regulator source
2137  * @regulator: regulator source
2138  *
2139  * Note: drivers must ensure that all regulator_enable calls made on this
2140  * regulator source are balanced by regulator_disable calls prior to calling
2141  * this function.
2142  */
2143 void regulator_put(struct regulator *regulator)
2144 {
2145 	mutex_lock(&regulator_list_mutex);
2146 	_regulator_put(regulator);
2147 	mutex_unlock(&regulator_list_mutex);
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_put);
2150 
2151 /**
2152  * regulator_register_supply_alias - Provide device alias for supply lookup
2153  *
2154  * @dev: device that will be given as the regulator "consumer"
2155  * @id: Supply name or regulator ID
2156  * @alias_dev: device that should be used to lookup the supply
2157  * @alias_id: Supply name or regulator ID that should be used to lookup the
2158  * supply
2159  *
2160  * All lookups for id on dev will instead be conducted for alias_id on
2161  * alias_dev.
2162  */
2163 int regulator_register_supply_alias(struct device *dev, const char *id,
2164 				    struct device *alias_dev,
2165 				    const char *alias_id)
2166 {
2167 	struct regulator_supply_alias *map;
2168 
2169 	map = regulator_find_supply_alias(dev, id);
2170 	if (map)
2171 		return -EEXIST;
2172 
2173 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2174 	if (!map)
2175 		return -ENOMEM;
2176 
2177 	map->src_dev = dev;
2178 	map->src_supply = id;
2179 	map->alias_dev = alias_dev;
2180 	map->alias_supply = alias_id;
2181 
2182 	list_add(&map->list, &regulator_supply_alias_list);
2183 
2184 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2185 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2186 
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2190 
2191 /**
2192  * regulator_unregister_supply_alias - Remove device alias
2193  *
2194  * @dev: device that will be given as the regulator "consumer"
2195  * @id: Supply name or regulator ID
2196  *
2197  * Remove a lookup alias if one exists for id on dev.
2198  */
2199 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2200 {
2201 	struct regulator_supply_alias *map;
2202 
2203 	map = regulator_find_supply_alias(dev, id);
2204 	if (map) {
2205 		list_del(&map->list);
2206 		kfree(map);
2207 	}
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2210 
2211 /**
2212  * regulator_bulk_register_supply_alias - register multiple aliases
2213  *
2214  * @dev: device that will be given as the regulator "consumer"
2215  * @id: List of supply names or regulator IDs
2216  * @alias_dev: device that should be used to lookup the supply
2217  * @alias_id: List of supply names or regulator IDs that should be used to
2218  * lookup the supply
2219  * @num_id: Number of aliases to register
2220  *
2221  * @return 0 on success, an errno on failure.
2222  *
2223  * This helper function allows drivers to register several supply
2224  * aliases in one operation.  If any of the aliases cannot be
2225  * registered any aliases that were registered will be removed
2226  * before returning to the caller.
2227  */
2228 int regulator_bulk_register_supply_alias(struct device *dev,
2229 					 const char *const *id,
2230 					 struct device *alias_dev,
2231 					 const char *const *alias_id,
2232 					 int num_id)
2233 {
2234 	int i;
2235 	int ret;
2236 
2237 	for (i = 0; i < num_id; ++i) {
2238 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2239 						      alias_id[i]);
2240 		if (ret < 0)
2241 			goto err;
2242 	}
2243 
2244 	return 0;
2245 
2246 err:
2247 	dev_err(dev,
2248 		"Failed to create supply alias %s,%s -> %s,%s\n",
2249 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2250 
2251 	while (--i >= 0)
2252 		regulator_unregister_supply_alias(dev, id[i]);
2253 
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2257 
2258 /**
2259  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2260  *
2261  * @dev: device that will be given as the regulator "consumer"
2262  * @id: List of supply names or regulator IDs
2263  * @num_id: Number of aliases to unregister
2264  *
2265  * This helper function allows drivers to unregister several supply
2266  * aliases in one operation.
2267  */
2268 void regulator_bulk_unregister_supply_alias(struct device *dev,
2269 					    const char *const *id,
2270 					    int num_id)
2271 {
2272 	int i;
2273 
2274 	for (i = 0; i < num_id; ++i)
2275 		regulator_unregister_supply_alias(dev, id[i]);
2276 }
2277 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2278 
2279 
2280 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2281 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2282 				const struct regulator_config *config)
2283 {
2284 	struct regulator_enable_gpio *pin, *new_pin;
2285 	struct gpio_desc *gpiod;
2286 
2287 	gpiod = config->ena_gpiod;
2288 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2289 
2290 	mutex_lock(&regulator_list_mutex);
2291 
2292 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2293 		if (pin->gpiod == gpiod) {
2294 			rdev_dbg(rdev, "GPIO is already used\n");
2295 			goto update_ena_gpio_to_rdev;
2296 		}
2297 	}
2298 
2299 	if (new_pin == NULL) {
2300 		mutex_unlock(&regulator_list_mutex);
2301 		return -ENOMEM;
2302 	}
2303 
2304 	pin = new_pin;
2305 	new_pin = NULL;
2306 
2307 	pin->gpiod = gpiod;
2308 	list_add(&pin->list, &regulator_ena_gpio_list);
2309 
2310 update_ena_gpio_to_rdev:
2311 	pin->request_count++;
2312 	rdev->ena_pin = pin;
2313 
2314 	mutex_unlock(&regulator_list_mutex);
2315 	kfree(new_pin);
2316 
2317 	return 0;
2318 }
2319 
2320 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2321 {
2322 	struct regulator_enable_gpio *pin, *n;
2323 
2324 	if (!rdev->ena_pin)
2325 		return;
2326 
2327 	/* Free the GPIO only in case of no use */
2328 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2329 		if (pin != rdev->ena_pin)
2330 			continue;
2331 
2332 		if (--pin->request_count)
2333 			break;
2334 
2335 		gpiod_put(pin->gpiod);
2336 		list_del(&pin->list);
2337 		kfree(pin);
2338 		break;
2339 	}
2340 
2341 	rdev->ena_pin = NULL;
2342 }
2343 
2344 /**
2345  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2346  * @rdev: regulator_dev structure
2347  * @enable: enable GPIO at initial use?
2348  *
2349  * GPIO is enabled in case of initial use. (enable_count is 0)
2350  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2351  */
2352 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2353 {
2354 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2355 
2356 	if (!pin)
2357 		return -EINVAL;
2358 
2359 	if (enable) {
2360 		/* Enable GPIO at initial use */
2361 		if (pin->enable_count == 0)
2362 			gpiod_set_value_cansleep(pin->gpiod, 1);
2363 
2364 		pin->enable_count++;
2365 	} else {
2366 		if (pin->enable_count > 1) {
2367 			pin->enable_count--;
2368 			return 0;
2369 		}
2370 
2371 		/* Disable GPIO if not used */
2372 		if (pin->enable_count <= 1) {
2373 			gpiod_set_value_cansleep(pin->gpiod, 0);
2374 			pin->enable_count = 0;
2375 		}
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 /**
2382  * _regulator_enable_delay - a delay helper function
2383  * @delay: time to delay in microseconds
2384  *
2385  * Delay for the requested amount of time as per the guidelines in:
2386  *
2387  *     Documentation/timers/timers-howto.rst
2388  *
2389  * The assumption here is that regulators will never be enabled in
2390  * atomic context and therefore sleeping functions can be used.
2391  */
2392 static void _regulator_enable_delay(unsigned int delay)
2393 {
2394 	unsigned int ms = delay / 1000;
2395 	unsigned int us = delay % 1000;
2396 
2397 	if (ms > 0) {
2398 		/*
2399 		 * For small enough values, handle super-millisecond
2400 		 * delays in the usleep_range() call below.
2401 		 */
2402 		if (ms < 20)
2403 			us += ms * 1000;
2404 		else
2405 			msleep(ms);
2406 	}
2407 
2408 	/*
2409 	 * Give the scheduler some room to coalesce with any other
2410 	 * wakeup sources. For delays shorter than 10 us, don't even
2411 	 * bother setting up high-resolution timers and just busy-
2412 	 * loop.
2413 	 */
2414 	if (us >= 10)
2415 		usleep_range(us, us + 100);
2416 	else
2417 		udelay(us);
2418 }
2419 
2420 /**
2421  * _regulator_check_status_enabled
2422  *
2423  * A helper function to check if the regulator status can be interpreted
2424  * as 'regulator is enabled'.
2425  * @rdev: the regulator device to check
2426  *
2427  * Return:
2428  * * 1			- if status shows regulator is in enabled state
2429  * * 0			- if not enabled state
2430  * * Error Value	- as received from ops->get_status()
2431  */
2432 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2433 {
2434 	int ret = rdev->desc->ops->get_status(rdev);
2435 
2436 	if (ret < 0) {
2437 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2438 		return ret;
2439 	}
2440 
2441 	switch (ret) {
2442 	case REGULATOR_STATUS_OFF:
2443 	case REGULATOR_STATUS_ERROR:
2444 	case REGULATOR_STATUS_UNDEFINED:
2445 		return 0;
2446 	default:
2447 		return 1;
2448 	}
2449 }
2450 
2451 static int _regulator_do_enable(struct regulator_dev *rdev)
2452 {
2453 	int ret, delay;
2454 
2455 	/* Query before enabling in case configuration dependent.  */
2456 	ret = _regulator_get_enable_time(rdev);
2457 	if (ret >= 0) {
2458 		delay = ret;
2459 	} else {
2460 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2461 		delay = 0;
2462 	}
2463 
2464 	trace_regulator_enable(rdev_get_name(rdev));
2465 
2466 	if (rdev->desc->off_on_delay) {
2467 		/* if needed, keep a distance of off_on_delay from last time
2468 		 * this regulator was disabled.
2469 		 */
2470 		unsigned long start_jiffy = jiffies;
2471 		unsigned long intended, max_delay, remaining;
2472 
2473 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2474 		intended = rdev->last_off_jiffy + max_delay;
2475 
2476 		if (time_before(start_jiffy, intended)) {
2477 			/* calc remaining jiffies to deal with one-time
2478 			 * timer wrapping.
2479 			 * in case of multiple timer wrapping, either it can be
2480 			 * detected by out-of-range remaining, or it cannot be
2481 			 * detected and we get a penalty of
2482 			 * _regulator_enable_delay().
2483 			 */
2484 			remaining = intended - start_jiffy;
2485 			if (remaining <= max_delay)
2486 				_regulator_enable_delay(
2487 						jiffies_to_usecs(remaining));
2488 		}
2489 	}
2490 
2491 	if (rdev->ena_pin) {
2492 		if (!rdev->ena_gpio_state) {
2493 			ret = regulator_ena_gpio_ctrl(rdev, true);
2494 			if (ret < 0)
2495 				return ret;
2496 			rdev->ena_gpio_state = 1;
2497 		}
2498 	} else if (rdev->desc->ops->enable) {
2499 		ret = rdev->desc->ops->enable(rdev);
2500 		if (ret < 0)
2501 			return ret;
2502 	} else {
2503 		return -EINVAL;
2504 	}
2505 
2506 	/* Allow the regulator to ramp; it would be useful to extend
2507 	 * this for bulk operations so that the regulators can ramp
2508 	 * together.  */
2509 	trace_regulator_enable_delay(rdev_get_name(rdev));
2510 
2511 	/* If poll_enabled_time is set, poll upto the delay calculated
2512 	 * above, delaying poll_enabled_time uS to check if the regulator
2513 	 * actually got enabled.
2514 	 * If the regulator isn't enabled after enable_delay has
2515 	 * expired, return -ETIMEDOUT.
2516 	 */
2517 	if (rdev->desc->poll_enabled_time) {
2518 		unsigned int time_remaining = delay;
2519 
2520 		while (time_remaining > 0) {
2521 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2522 
2523 			if (rdev->desc->ops->get_status) {
2524 				ret = _regulator_check_status_enabled(rdev);
2525 				if (ret < 0)
2526 					return ret;
2527 				else if (ret)
2528 					break;
2529 			} else if (rdev->desc->ops->is_enabled(rdev))
2530 				break;
2531 
2532 			time_remaining -= rdev->desc->poll_enabled_time;
2533 		}
2534 
2535 		if (time_remaining <= 0) {
2536 			rdev_err(rdev, "Enabled check timed out\n");
2537 			return -ETIMEDOUT;
2538 		}
2539 	} else {
2540 		_regulator_enable_delay(delay);
2541 	}
2542 
2543 	trace_regulator_enable_complete(rdev_get_name(rdev));
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * _regulator_handle_consumer_enable - handle that a consumer enabled
2550  * @regulator: regulator source
2551  *
2552  * Some things on a regulator consumer (like the contribution towards total
2553  * load on the regulator) only have an effect when the consumer wants the
2554  * regulator enabled.  Explained in example with two consumers of the same
2555  * regulator:
2556  *   consumer A: set_load(100);       => total load = 0
2557  *   consumer A: regulator_enable();  => total load = 100
2558  *   consumer B: set_load(1000);      => total load = 100
2559  *   consumer B: regulator_enable();  => total load = 1100
2560  *   consumer A: regulator_disable(); => total_load = 1000
2561  *
2562  * This function (together with _regulator_handle_consumer_disable) is
2563  * responsible for keeping track of the refcount for a given regulator consumer
2564  * and applying / unapplying these things.
2565  *
2566  * Returns 0 upon no error; -error upon error.
2567  */
2568 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2569 {
2570 	struct regulator_dev *rdev = regulator->rdev;
2571 
2572 	lockdep_assert_held_once(&rdev->mutex.base);
2573 
2574 	regulator->enable_count++;
2575 	if (regulator->uA_load && regulator->enable_count == 1)
2576 		return drms_uA_update(rdev);
2577 
2578 	return 0;
2579 }
2580 
2581 /**
2582  * _regulator_handle_consumer_disable - handle that a consumer disabled
2583  * @regulator: regulator source
2584  *
2585  * The opposite of _regulator_handle_consumer_enable().
2586  *
2587  * Returns 0 upon no error; -error upon error.
2588  */
2589 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2590 {
2591 	struct regulator_dev *rdev = regulator->rdev;
2592 
2593 	lockdep_assert_held_once(&rdev->mutex.base);
2594 
2595 	if (!regulator->enable_count) {
2596 		rdev_err(rdev, "Underflow of regulator enable count\n");
2597 		return -EINVAL;
2598 	}
2599 
2600 	regulator->enable_count--;
2601 	if (regulator->uA_load && regulator->enable_count == 0)
2602 		return drms_uA_update(rdev);
2603 
2604 	return 0;
2605 }
2606 
2607 /* locks held by regulator_enable() */
2608 static int _regulator_enable(struct regulator *regulator)
2609 {
2610 	struct regulator_dev *rdev = regulator->rdev;
2611 	int ret;
2612 
2613 	lockdep_assert_held_once(&rdev->mutex.base);
2614 
2615 	if (rdev->use_count == 0 && rdev->supply) {
2616 		ret = _regulator_enable(rdev->supply);
2617 		if (ret < 0)
2618 			return ret;
2619 	}
2620 
2621 	/* balance only if there are regulators coupled */
2622 	if (rdev->coupling_desc.n_coupled > 1) {
2623 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2624 		if (ret < 0)
2625 			goto err_disable_supply;
2626 	}
2627 
2628 	ret = _regulator_handle_consumer_enable(regulator);
2629 	if (ret < 0)
2630 		goto err_disable_supply;
2631 
2632 	if (rdev->use_count == 0) {
2633 		/* The regulator may on if it's not switchable or left on */
2634 		ret = _regulator_is_enabled(rdev);
2635 		if (ret == -EINVAL || ret == 0) {
2636 			if (!regulator_ops_is_valid(rdev,
2637 					REGULATOR_CHANGE_STATUS)) {
2638 				ret = -EPERM;
2639 				goto err_consumer_disable;
2640 			}
2641 
2642 			ret = _regulator_do_enable(rdev);
2643 			if (ret < 0)
2644 				goto err_consumer_disable;
2645 
2646 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2647 					     NULL);
2648 		} else if (ret < 0) {
2649 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2650 			goto err_consumer_disable;
2651 		}
2652 		/* Fallthrough on positive return values - already enabled */
2653 	}
2654 
2655 	rdev->use_count++;
2656 
2657 	return 0;
2658 
2659 err_consumer_disable:
2660 	_regulator_handle_consumer_disable(regulator);
2661 
2662 err_disable_supply:
2663 	if (rdev->use_count == 0 && rdev->supply)
2664 		_regulator_disable(rdev->supply);
2665 
2666 	return ret;
2667 }
2668 
2669 /**
2670  * regulator_enable - enable regulator output
2671  * @regulator: regulator source
2672  *
2673  * Request that the regulator be enabled with the regulator output at
2674  * the predefined voltage or current value.  Calls to regulator_enable()
2675  * must be balanced with calls to regulator_disable().
2676  *
2677  * NOTE: the output value can be set by other drivers, boot loader or may be
2678  * hardwired in the regulator.
2679  */
2680 int regulator_enable(struct regulator *regulator)
2681 {
2682 	struct regulator_dev *rdev = regulator->rdev;
2683 	struct ww_acquire_ctx ww_ctx;
2684 	int ret;
2685 
2686 	regulator_lock_dependent(rdev, &ww_ctx);
2687 	ret = _regulator_enable(regulator);
2688 	regulator_unlock_dependent(rdev, &ww_ctx);
2689 
2690 	return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_enable);
2693 
2694 static int _regulator_do_disable(struct regulator_dev *rdev)
2695 {
2696 	int ret;
2697 
2698 	trace_regulator_disable(rdev_get_name(rdev));
2699 
2700 	if (rdev->ena_pin) {
2701 		if (rdev->ena_gpio_state) {
2702 			ret = regulator_ena_gpio_ctrl(rdev, false);
2703 			if (ret < 0)
2704 				return ret;
2705 			rdev->ena_gpio_state = 0;
2706 		}
2707 
2708 	} else if (rdev->desc->ops->disable) {
2709 		ret = rdev->desc->ops->disable(rdev);
2710 		if (ret != 0)
2711 			return ret;
2712 	}
2713 
2714 	/* cares about last_off_jiffy only if off_on_delay is required by
2715 	 * device.
2716 	 */
2717 	if (rdev->desc->off_on_delay)
2718 		rdev->last_off_jiffy = jiffies;
2719 
2720 	trace_regulator_disable_complete(rdev_get_name(rdev));
2721 
2722 	return 0;
2723 }
2724 
2725 /* locks held by regulator_disable() */
2726 static int _regulator_disable(struct regulator *regulator)
2727 {
2728 	struct regulator_dev *rdev = regulator->rdev;
2729 	int ret = 0;
2730 
2731 	lockdep_assert_held_once(&rdev->mutex.base);
2732 
2733 	if (WARN(rdev->use_count <= 0,
2734 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2735 		return -EIO;
2736 
2737 	/* are we the last user and permitted to disable ? */
2738 	if (rdev->use_count == 1 &&
2739 	    (rdev->constraints && !rdev->constraints->always_on)) {
2740 
2741 		/* we are last user */
2742 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2743 			ret = _notifier_call_chain(rdev,
2744 						   REGULATOR_EVENT_PRE_DISABLE,
2745 						   NULL);
2746 			if (ret & NOTIFY_STOP_MASK)
2747 				return -EINVAL;
2748 
2749 			ret = _regulator_do_disable(rdev);
2750 			if (ret < 0) {
2751 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2752 				_notifier_call_chain(rdev,
2753 						REGULATOR_EVENT_ABORT_DISABLE,
2754 						NULL);
2755 				return ret;
2756 			}
2757 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2758 					NULL);
2759 		}
2760 
2761 		rdev->use_count = 0;
2762 	} else if (rdev->use_count > 1) {
2763 		rdev->use_count--;
2764 	}
2765 
2766 	if (ret == 0)
2767 		ret = _regulator_handle_consumer_disable(regulator);
2768 
2769 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2770 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2771 
2772 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2773 		ret = _regulator_disable(rdev->supply);
2774 
2775 	return ret;
2776 }
2777 
2778 /**
2779  * regulator_disable - disable regulator output
2780  * @regulator: regulator source
2781  *
2782  * Disable the regulator output voltage or current.  Calls to
2783  * regulator_enable() must be balanced with calls to
2784  * regulator_disable().
2785  *
2786  * NOTE: this will only disable the regulator output if no other consumer
2787  * devices have it enabled, the regulator device supports disabling and
2788  * machine constraints permit this operation.
2789  */
2790 int regulator_disable(struct regulator *regulator)
2791 {
2792 	struct regulator_dev *rdev = regulator->rdev;
2793 	struct ww_acquire_ctx ww_ctx;
2794 	int ret;
2795 
2796 	regulator_lock_dependent(rdev, &ww_ctx);
2797 	ret = _regulator_disable(regulator);
2798 	regulator_unlock_dependent(rdev, &ww_ctx);
2799 
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_disable);
2803 
2804 /* locks held by regulator_force_disable() */
2805 static int _regulator_force_disable(struct regulator_dev *rdev)
2806 {
2807 	int ret = 0;
2808 
2809 	lockdep_assert_held_once(&rdev->mutex.base);
2810 
2811 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2812 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2813 	if (ret & NOTIFY_STOP_MASK)
2814 		return -EINVAL;
2815 
2816 	ret = _regulator_do_disable(rdev);
2817 	if (ret < 0) {
2818 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2819 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2820 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2821 		return ret;
2822 	}
2823 
2824 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2825 			REGULATOR_EVENT_DISABLE, NULL);
2826 
2827 	return 0;
2828 }
2829 
2830 /**
2831  * regulator_force_disable - force disable regulator output
2832  * @regulator: regulator source
2833  *
2834  * Forcibly disable the regulator output voltage or current.
2835  * NOTE: this *will* disable the regulator output even if other consumer
2836  * devices have it enabled. This should be used for situations when device
2837  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2838  */
2839 int regulator_force_disable(struct regulator *regulator)
2840 {
2841 	struct regulator_dev *rdev = regulator->rdev;
2842 	struct ww_acquire_ctx ww_ctx;
2843 	int ret;
2844 
2845 	regulator_lock_dependent(rdev, &ww_ctx);
2846 
2847 	ret = _regulator_force_disable(regulator->rdev);
2848 
2849 	if (rdev->coupling_desc.n_coupled > 1)
2850 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2851 
2852 	if (regulator->uA_load) {
2853 		regulator->uA_load = 0;
2854 		ret = drms_uA_update(rdev);
2855 	}
2856 
2857 	if (rdev->use_count != 0 && rdev->supply)
2858 		_regulator_disable(rdev->supply);
2859 
2860 	regulator_unlock_dependent(rdev, &ww_ctx);
2861 
2862 	return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(regulator_force_disable);
2865 
2866 static void regulator_disable_work(struct work_struct *work)
2867 {
2868 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2869 						  disable_work.work);
2870 	struct ww_acquire_ctx ww_ctx;
2871 	int count, i, ret;
2872 	struct regulator *regulator;
2873 	int total_count = 0;
2874 
2875 	regulator_lock_dependent(rdev, &ww_ctx);
2876 
2877 	/*
2878 	 * Workqueue functions queue the new work instance while the previous
2879 	 * work instance is being processed. Cancel the queued work instance
2880 	 * as the work instance under processing does the job of the queued
2881 	 * work instance.
2882 	 */
2883 	cancel_delayed_work(&rdev->disable_work);
2884 
2885 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2886 		count = regulator->deferred_disables;
2887 
2888 		if (!count)
2889 			continue;
2890 
2891 		total_count += count;
2892 		regulator->deferred_disables = 0;
2893 
2894 		for (i = 0; i < count; i++) {
2895 			ret = _regulator_disable(regulator);
2896 			if (ret != 0)
2897 				rdev_err(rdev, "Deferred disable failed: %pe\n",
2898 					 ERR_PTR(ret));
2899 		}
2900 	}
2901 	WARN_ON(!total_count);
2902 
2903 	if (rdev->coupling_desc.n_coupled > 1)
2904 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 
2906 	regulator_unlock_dependent(rdev, &ww_ctx);
2907 }
2908 
2909 /**
2910  * regulator_disable_deferred - disable regulator output with delay
2911  * @regulator: regulator source
2912  * @ms: milliseconds until the regulator is disabled
2913  *
2914  * Execute regulator_disable() on the regulator after a delay.  This
2915  * is intended for use with devices that require some time to quiesce.
2916  *
2917  * NOTE: this will only disable the regulator output if no other consumer
2918  * devices have it enabled, the regulator device supports disabling and
2919  * machine constraints permit this operation.
2920  */
2921 int regulator_disable_deferred(struct regulator *regulator, int ms)
2922 {
2923 	struct regulator_dev *rdev = regulator->rdev;
2924 
2925 	if (!ms)
2926 		return regulator_disable(regulator);
2927 
2928 	regulator_lock(rdev);
2929 	regulator->deferred_disables++;
2930 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2931 			 msecs_to_jiffies(ms));
2932 	regulator_unlock(rdev);
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2937 
2938 static int _regulator_is_enabled(struct regulator_dev *rdev)
2939 {
2940 	/* A GPIO control always takes precedence */
2941 	if (rdev->ena_pin)
2942 		return rdev->ena_gpio_state;
2943 
2944 	/* If we don't know then assume that the regulator is always on */
2945 	if (!rdev->desc->ops->is_enabled)
2946 		return 1;
2947 
2948 	return rdev->desc->ops->is_enabled(rdev);
2949 }
2950 
2951 static int _regulator_list_voltage(struct regulator_dev *rdev,
2952 				   unsigned selector, int lock)
2953 {
2954 	const struct regulator_ops *ops = rdev->desc->ops;
2955 	int ret;
2956 
2957 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2958 		return rdev->desc->fixed_uV;
2959 
2960 	if (ops->list_voltage) {
2961 		if (selector >= rdev->desc->n_voltages)
2962 			return -EINVAL;
2963 		if (lock)
2964 			regulator_lock(rdev);
2965 		ret = ops->list_voltage(rdev, selector);
2966 		if (lock)
2967 			regulator_unlock(rdev);
2968 	} else if (rdev->is_switch && rdev->supply) {
2969 		ret = _regulator_list_voltage(rdev->supply->rdev,
2970 					      selector, lock);
2971 	} else {
2972 		return -EINVAL;
2973 	}
2974 
2975 	if (ret > 0) {
2976 		if (ret < rdev->constraints->min_uV)
2977 			ret = 0;
2978 		else if (ret > rdev->constraints->max_uV)
2979 			ret = 0;
2980 	}
2981 
2982 	return ret;
2983 }
2984 
2985 /**
2986  * regulator_is_enabled - is the regulator output enabled
2987  * @regulator: regulator source
2988  *
2989  * Returns positive if the regulator driver backing the source/client
2990  * has requested that the device be enabled, zero if it hasn't, else a
2991  * negative errno code.
2992  *
2993  * Note that the device backing this regulator handle can have multiple
2994  * users, so it might be enabled even if regulator_enable() was never
2995  * called for this particular source.
2996  */
2997 int regulator_is_enabled(struct regulator *regulator)
2998 {
2999 	int ret;
3000 
3001 	if (regulator->always_on)
3002 		return 1;
3003 
3004 	regulator_lock(regulator->rdev);
3005 	ret = _regulator_is_enabled(regulator->rdev);
3006 	regulator_unlock(regulator->rdev);
3007 
3008 	return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3011 
3012 /**
3013  * regulator_count_voltages - count regulator_list_voltage() selectors
3014  * @regulator: regulator source
3015  *
3016  * Returns number of selectors, or negative errno.  Selectors are
3017  * numbered starting at zero, and typically correspond to bitfields
3018  * in hardware registers.
3019  */
3020 int regulator_count_voltages(struct regulator *regulator)
3021 {
3022 	struct regulator_dev	*rdev = regulator->rdev;
3023 
3024 	if (rdev->desc->n_voltages)
3025 		return rdev->desc->n_voltages;
3026 
3027 	if (!rdev->is_switch || !rdev->supply)
3028 		return -EINVAL;
3029 
3030 	return regulator_count_voltages(rdev->supply);
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3033 
3034 /**
3035  * regulator_list_voltage - enumerate supported voltages
3036  * @regulator: regulator source
3037  * @selector: identify voltage to list
3038  * Context: can sleep
3039  *
3040  * Returns a voltage that can be passed to @regulator_set_voltage(),
3041  * zero if this selector code can't be used on this system, or a
3042  * negative errno.
3043  */
3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3045 {
3046 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3049 
3050 /**
3051  * regulator_get_regmap - get the regulator's register map
3052  * @regulator: regulator source
3053  *
3054  * Returns the register map for the given regulator, or an ERR_PTR value
3055  * if the regulator doesn't use regmap.
3056  */
3057 struct regmap *regulator_get_regmap(struct regulator *regulator)
3058 {
3059 	struct regmap *map = regulator->rdev->regmap;
3060 
3061 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3062 }
3063 
3064 /**
3065  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3066  * @regulator: regulator source
3067  * @vsel_reg: voltage selector register, output parameter
3068  * @vsel_mask: mask for voltage selector bitfield, output parameter
3069  *
3070  * Returns the hardware register offset and bitmask used for setting the
3071  * regulator voltage. This might be useful when configuring voltage-scaling
3072  * hardware or firmware that can make I2C requests behind the kernel's back,
3073  * for example.
3074  *
3075  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3076  * and 0 is returned, otherwise a negative errno is returned.
3077  */
3078 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3079 					 unsigned *vsel_reg,
3080 					 unsigned *vsel_mask)
3081 {
3082 	struct regulator_dev *rdev = regulator->rdev;
3083 	const struct regulator_ops *ops = rdev->desc->ops;
3084 
3085 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3086 		return -EOPNOTSUPP;
3087 
3088 	*vsel_reg = rdev->desc->vsel_reg;
3089 	*vsel_mask = rdev->desc->vsel_mask;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3094 
3095 /**
3096  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3097  * @regulator: regulator source
3098  * @selector: identify voltage to list
3099  *
3100  * Converts the selector to a hardware-specific voltage selector that can be
3101  * directly written to the regulator registers. The address of the voltage
3102  * register can be determined by calling @regulator_get_hardware_vsel_register.
3103  *
3104  * On error a negative errno is returned.
3105  */
3106 int regulator_list_hardware_vsel(struct regulator *regulator,
3107 				 unsigned selector)
3108 {
3109 	struct regulator_dev *rdev = regulator->rdev;
3110 	const struct regulator_ops *ops = rdev->desc->ops;
3111 
3112 	if (selector >= rdev->desc->n_voltages)
3113 		return -EINVAL;
3114 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3115 		return -EOPNOTSUPP;
3116 
3117 	return selector;
3118 }
3119 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3120 
3121 /**
3122  * regulator_get_linear_step - return the voltage step size between VSEL values
3123  * @regulator: regulator source
3124  *
3125  * Returns the voltage step size between VSEL values for linear
3126  * regulators, or return 0 if the regulator isn't a linear regulator.
3127  */
3128 unsigned int regulator_get_linear_step(struct regulator *regulator)
3129 {
3130 	struct regulator_dev *rdev = regulator->rdev;
3131 
3132 	return rdev->desc->uV_step;
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3135 
3136 /**
3137  * regulator_is_supported_voltage - check if a voltage range can be supported
3138  *
3139  * @regulator: Regulator to check.
3140  * @min_uV: Minimum required voltage in uV.
3141  * @max_uV: Maximum required voltage in uV.
3142  *
3143  * Returns a boolean.
3144  */
3145 int regulator_is_supported_voltage(struct regulator *regulator,
3146 				   int min_uV, int max_uV)
3147 {
3148 	struct regulator_dev *rdev = regulator->rdev;
3149 	int i, voltages, ret;
3150 
3151 	/* If we can't change voltage check the current voltage */
3152 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3153 		ret = regulator_get_voltage(regulator);
3154 		if (ret >= 0)
3155 			return min_uV <= ret && ret <= max_uV;
3156 		else
3157 			return ret;
3158 	}
3159 
3160 	/* Any voltage within constrains range is fine? */
3161 	if (rdev->desc->continuous_voltage_range)
3162 		return min_uV >= rdev->constraints->min_uV &&
3163 				max_uV <= rdev->constraints->max_uV;
3164 
3165 	ret = regulator_count_voltages(regulator);
3166 	if (ret < 0)
3167 		return 0;
3168 	voltages = ret;
3169 
3170 	for (i = 0; i < voltages; i++) {
3171 		ret = regulator_list_voltage(regulator, i);
3172 
3173 		if (ret >= min_uV && ret <= max_uV)
3174 			return 1;
3175 	}
3176 
3177 	return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3180 
3181 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3182 				 int max_uV)
3183 {
3184 	const struct regulator_desc *desc = rdev->desc;
3185 
3186 	if (desc->ops->map_voltage)
3187 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3188 
3189 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3190 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3191 
3192 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3193 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3194 
3195 	if (desc->ops->list_voltage ==
3196 		regulator_list_voltage_pickable_linear_range)
3197 		return regulator_map_voltage_pickable_linear_range(rdev,
3198 							min_uV, max_uV);
3199 
3200 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3201 }
3202 
3203 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3204 				       int min_uV, int max_uV,
3205 				       unsigned *selector)
3206 {
3207 	struct pre_voltage_change_data data;
3208 	int ret;
3209 
3210 	data.old_uV = regulator_get_voltage_rdev(rdev);
3211 	data.min_uV = min_uV;
3212 	data.max_uV = max_uV;
3213 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3214 				   &data);
3215 	if (ret & NOTIFY_STOP_MASK)
3216 		return -EINVAL;
3217 
3218 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3219 	if (ret >= 0)
3220 		return ret;
3221 
3222 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3223 			     (void *)data.old_uV);
3224 
3225 	return ret;
3226 }
3227 
3228 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3229 					   int uV, unsigned selector)
3230 {
3231 	struct pre_voltage_change_data data;
3232 	int ret;
3233 
3234 	data.old_uV = regulator_get_voltage_rdev(rdev);
3235 	data.min_uV = uV;
3236 	data.max_uV = uV;
3237 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238 				   &data);
3239 	if (ret & NOTIFY_STOP_MASK)
3240 		return -EINVAL;
3241 
3242 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3243 	if (ret >= 0)
3244 		return ret;
3245 
3246 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247 			     (void *)data.old_uV);
3248 
3249 	return ret;
3250 }
3251 
3252 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3253 					   int uV, int new_selector)
3254 {
3255 	const struct regulator_ops *ops = rdev->desc->ops;
3256 	int diff, old_sel, curr_sel, ret;
3257 
3258 	/* Stepping is only needed if the regulator is enabled. */
3259 	if (!_regulator_is_enabled(rdev))
3260 		goto final_set;
3261 
3262 	if (!ops->get_voltage_sel)
3263 		return -EINVAL;
3264 
3265 	old_sel = ops->get_voltage_sel(rdev);
3266 	if (old_sel < 0)
3267 		return old_sel;
3268 
3269 	diff = new_selector - old_sel;
3270 	if (diff == 0)
3271 		return 0; /* No change needed. */
3272 
3273 	if (diff > 0) {
3274 		/* Stepping up. */
3275 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3276 		     curr_sel < new_selector;
3277 		     curr_sel += rdev->desc->vsel_step) {
3278 			/*
3279 			 * Call the callback directly instead of using
3280 			 * _regulator_call_set_voltage_sel() as we don't
3281 			 * want to notify anyone yet. Same in the branch
3282 			 * below.
3283 			 */
3284 			ret = ops->set_voltage_sel(rdev, curr_sel);
3285 			if (ret)
3286 				goto try_revert;
3287 		}
3288 	} else {
3289 		/* Stepping down. */
3290 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3291 		     curr_sel > new_selector;
3292 		     curr_sel -= rdev->desc->vsel_step) {
3293 			ret = ops->set_voltage_sel(rdev, curr_sel);
3294 			if (ret)
3295 				goto try_revert;
3296 		}
3297 	}
3298 
3299 final_set:
3300 	/* The final selector will trigger the notifiers. */
3301 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3302 
3303 try_revert:
3304 	/*
3305 	 * At least try to return to the previous voltage if setting a new
3306 	 * one failed.
3307 	 */
3308 	(void)ops->set_voltage_sel(rdev, old_sel);
3309 	return ret;
3310 }
3311 
3312 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3313 				       int old_uV, int new_uV)
3314 {
3315 	unsigned int ramp_delay = 0;
3316 
3317 	if (rdev->constraints->ramp_delay)
3318 		ramp_delay = rdev->constraints->ramp_delay;
3319 	else if (rdev->desc->ramp_delay)
3320 		ramp_delay = rdev->desc->ramp_delay;
3321 	else if (rdev->constraints->settling_time)
3322 		return rdev->constraints->settling_time;
3323 	else if (rdev->constraints->settling_time_up &&
3324 		 (new_uV > old_uV))
3325 		return rdev->constraints->settling_time_up;
3326 	else if (rdev->constraints->settling_time_down &&
3327 		 (new_uV < old_uV))
3328 		return rdev->constraints->settling_time_down;
3329 
3330 	if (ramp_delay == 0) {
3331 		rdev_dbg(rdev, "ramp_delay not set\n");
3332 		return 0;
3333 	}
3334 
3335 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3336 }
3337 
3338 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3339 				     int min_uV, int max_uV)
3340 {
3341 	int ret;
3342 	int delay = 0;
3343 	int best_val = 0;
3344 	unsigned int selector;
3345 	int old_selector = -1;
3346 	const struct regulator_ops *ops = rdev->desc->ops;
3347 	int old_uV = regulator_get_voltage_rdev(rdev);
3348 
3349 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3350 
3351 	min_uV += rdev->constraints->uV_offset;
3352 	max_uV += rdev->constraints->uV_offset;
3353 
3354 	/*
3355 	 * If we can't obtain the old selector there is not enough
3356 	 * info to call set_voltage_time_sel().
3357 	 */
3358 	if (_regulator_is_enabled(rdev) &&
3359 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3360 		old_selector = ops->get_voltage_sel(rdev);
3361 		if (old_selector < 0)
3362 			return old_selector;
3363 	}
3364 
3365 	if (ops->set_voltage) {
3366 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3367 						  &selector);
3368 
3369 		if (ret >= 0) {
3370 			if (ops->list_voltage)
3371 				best_val = ops->list_voltage(rdev,
3372 							     selector);
3373 			else
3374 				best_val = regulator_get_voltage_rdev(rdev);
3375 		}
3376 
3377 	} else if (ops->set_voltage_sel) {
3378 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3379 		if (ret >= 0) {
3380 			best_val = ops->list_voltage(rdev, ret);
3381 			if (min_uV <= best_val && max_uV >= best_val) {
3382 				selector = ret;
3383 				if (old_selector == selector)
3384 					ret = 0;
3385 				else if (rdev->desc->vsel_step)
3386 					ret = _regulator_set_voltage_sel_step(
3387 						rdev, best_val, selector);
3388 				else
3389 					ret = _regulator_call_set_voltage_sel(
3390 						rdev, best_val, selector);
3391 			} else {
3392 				ret = -EINVAL;
3393 			}
3394 		}
3395 	} else {
3396 		ret = -EINVAL;
3397 	}
3398 
3399 	if (ret)
3400 		goto out;
3401 
3402 	if (ops->set_voltage_time_sel) {
3403 		/*
3404 		 * Call set_voltage_time_sel if successfully obtained
3405 		 * old_selector
3406 		 */
3407 		if (old_selector >= 0 && old_selector != selector)
3408 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3409 							  selector);
3410 	} else {
3411 		if (old_uV != best_val) {
3412 			if (ops->set_voltage_time)
3413 				delay = ops->set_voltage_time(rdev, old_uV,
3414 							      best_val);
3415 			else
3416 				delay = _regulator_set_voltage_time(rdev,
3417 								    old_uV,
3418 								    best_val);
3419 		}
3420 	}
3421 
3422 	if (delay < 0) {
3423 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3424 		delay = 0;
3425 	}
3426 
3427 	/* Insert any necessary delays */
3428 	if (delay >= 1000) {
3429 		mdelay(delay / 1000);
3430 		udelay(delay % 1000);
3431 	} else if (delay) {
3432 		udelay(delay);
3433 	}
3434 
3435 	if (best_val >= 0) {
3436 		unsigned long data = best_val;
3437 
3438 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3439 				     (void *)data);
3440 	}
3441 
3442 out:
3443 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3444 
3445 	return ret;
3446 }
3447 
3448 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3449 				  int min_uV, int max_uV, suspend_state_t state)
3450 {
3451 	struct regulator_state *rstate;
3452 	int uV, sel;
3453 
3454 	rstate = regulator_get_suspend_state(rdev, state);
3455 	if (rstate == NULL)
3456 		return -EINVAL;
3457 
3458 	if (min_uV < rstate->min_uV)
3459 		min_uV = rstate->min_uV;
3460 	if (max_uV > rstate->max_uV)
3461 		max_uV = rstate->max_uV;
3462 
3463 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3464 	if (sel < 0)
3465 		return sel;
3466 
3467 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3468 	if (uV >= min_uV && uV <= max_uV)
3469 		rstate->uV = uV;
3470 
3471 	return 0;
3472 }
3473 
3474 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3475 					  int min_uV, int max_uV,
3476 					  suspend_state_t state)
3477 {
3478 	struct regulator_dev *rdev = regulator->rdev;
3479 	struct regulator_voltage *voltage = &regulator->voltage[state];
3480 	int ret = 0;
3481 	int old_min_uV, old_max_uV;
3482 	int current_uV;
3483 
3484 	/* If we're setting the same range as last time the change
3485 	 * should be a noop (some cpufreq implementations use the same
3486 	 * voltage for multiple frequencies, for example).
3487 	 */
3488 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3489 		goto out;
3490 
3491 	/* If we're trying to set a range that overlaps the current voltage,
3492 	 * return successfully even though the regulator does not support
3493 	 * changing the voltage.
3494 	 */
3495 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3496 		current_uV = regulator_get_voltage_rdev(rdev);
3497 		if (min_uV <= current_uV && current_uV <= max_uV) {
3498 			voltage->min_uV = min_uV;
3499 			voltage->max_uV = max_uV;
3500 			goto out;
3501 		}
3502 	}
3503 
3504 	/* sanity check */
3505 	if (!rdev->desc->ops->set_voltage &&
3506 	    !rdev->desc->ops->set_voltage_sel) {
3507 		ret = -EINVAL;
3508 		goto out;
3509 	}
3510 
3511 	/* constraints check */
3512 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3513 	if (ret < 0)
3514 		goto out;
3515 
3516 	/* restore original values in case of error */
3517 	old_min_uV = voltage->min_uV;
3518 	old_max_uV = voltage->max_uV;
3519 	voltage->min_uV = min_uV;
3520 	voltage->max_uV = max_uV;
3521 
3522 	/* for not coupled regulators this will just set the voltage */
3523 	ret = regulator_balance_voltage(rdev, state);
3524 	if (ret < 0) {
3525 		voltage->min_uV = old_min_uV;
3526 		voltage->max_uV = old_max_uV;
3527 	}
3528 
3529 out:
3530 	return ret;
3531 }
3532 
3533 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3534 			       int max_uV, suspend_state_t state)
3535 {
3536 	int best_supply_uV = 0;
3537 	int supply_change_uV = 0;
3538 	int ret;
3539 
3540 	if (rdev->supply &&
3541 	    regulator_ops_is_valid(rdev->supply->rdev,
3542 				   REGULATOR_CHANGE_VOLTAGE) &&
3543 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3544 					   rdev->desc->ops->get_voltage_sel))) {
3545 		int current_supply_uV;
3546 		int selector;
3547 
3548 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3549 		if (selector < 0) {
3550 			ret = selector;
3551 			goto out;
3552 		}
3553 
3554 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3555 		if (best_supply_uV < 0) {
3556 			ret = best_supply_uV;
3557 			goto out;
3558 		}
3559 
3560 		best_supply_uV += rdev->desc->min_dropout_uV;
3561 
3562 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3563 		if (current_supply_uV < 0) {
3564 			ret = current_supply_uV;
3565 			goto out;
3566 		}
3567 
3568 		supply_change_uV = best_supply_uV - current_supply_uV;
3569 	}
3570 
3571 	if (supply_change_uV > 0) {
3572 		ret = regulator_set_voltage_unlocked(rdev->supply,
3573 				best_supply_uV, INT_MAX, state);
3574 		if (ret) {
3575 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3576 				ERR_PTR(ret));
3577 			goto out;
3578 		}
3579 	}
3580 
3581 	if (state == PM_SUSPEND_ON)
3582 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3583 	else
3584 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3585 							max_uV, state);
3586 	if (ret < 0)
3587 		goto out;
3588 
3589 	if (supply_change_uV < 0) {
3590 		ret = regulator_set_voltage_unlocked(rdev->supply,
3591 				best_supply_uV, INT_MAX, state);
3592 		if (ret)
3593 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3594 				 ERR_PTR(ret));
3595 		/* No need to fail here */
3596 		ret = 0;
3597 	}
3598 
3599 out:
3600 	return ret;
3601 }
3602 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3603 
3604 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3605 					int *current_uV, int *min_uV)
3606 {
3607 	struct regulation_constraints *constraints = rdev->constraints;
3608 
3609 	/* Limit voltage change only if necessary */
3610 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3611 		return 1;
3612 
3613 	if (*current_uV < 0) {
3614 		*current_uV = regulator_get_voltage_rdev(rdev);
3615 
3616 		if (*current_uV < 0)
3617 			return *current_uV;
3618 	}
3619 
3620 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3621 		return 1;
3622 
3623 	/* Clamp target voltage within the given step */
3624 	if (*current_uV < *min_uV)
3625 		*min_uV = min(*current_uV + constraints->max_uV_step,
3626 			      *min_uV);
3627 	else
3628 		*min_uV = max(*current_uV - constraints->max_uV_step,
3629 			      *min_uV);
3630 
3631 	return 0;
3632 }
3633 
3634 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3635 					 int *current_uV,
3636 					 int *min_uV, int *max_uV,
3637 					 suspend_state_t state,
3638 					 int n_coupled)
3639 {
3640 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3641 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3642 	struct regulation_constraints *constraints = rdev->constraints;
3643 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3644 	int max_current_uV = 0, min_current_uV = INT_MAX;
3645 	int highest_min_uV = 0, target_uV, possible_uV;
3646 	int i, ret, max_spread;
3647 	bool done;
3648 
3649 	*current_uV = -1;
3650 
3651 	/*
3652 	 * If there are no coupled regulators, simply set the voltage
3653 	 * demanded by consumers.
3654 	 */
3655 	if (n_coupled == 1) {
3656 		/*
3657 		 * If consumers don't provide any demands, set voltage
3658 		 * to min_uV
3659 		 */
3660 		desired_min_uV = constraints->min_uV;
3661 		desired_max_uV = constraints->max_uV;
3662 
3663 		ret = regulator_check_consumers(rdev,
3664 						&desired_min_uV,
3665 						&desired_max_uV, state);
3666 		if (ret < 0)
3667 			return ret;
3668 
3669 		possible_uV = desired_min_uV;
3670 		done = true;
3671 
3672 		goto finish;
3673 	}
3674 
3675 	/* Find highest min desired voltage */
3676 	for (i = 0; i < n_coupled; i++) {
3677 		int tmp_min = 0;
3678 		int tmp_max = INT_MAX;
3679 
3680 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3681 
3682 		ret = regulator_check_consumers(c_rdevs[i],
3683 						&tmp_min,
3684 						&tmp_max, state);
3685 		if (ret < 0)
3686 			return ret;
3687 
3688 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3689 		if (ret < 0)
3690 			return ret;
3691 
3692 		highest_min_uV = max(highest_min_uV, tmp_min);
3693 
3694 		if (i == 0) {
3695 			desired_min_uV = tmp_min;
3696 			desired_max_uV = tmp_max;
3697 		}
3698 	}
3699 
3700 	max_spread = constraints->max_spread[0];
3701 
3702 	/*
3703 	 * Let target_uV be equal to the desired one if possible.
3704 	 * If not, set it to minimum voltage, allowed by other coupled
3705 	 * regulators.
3706 	 */
3707 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3708 
3709 	/*
3710 	 * Find min and max voltages, which currently aren't violating
3711 	 * max_spread.
3712 	 */
3713 	for (i = 1; i < n_coupled; i++) {
3714 		int tmp_act;
3715 
3716 		if (!_regulator_is_enabled(c_rdevs[i]))
3717 			continue;
3718 
3719 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3720 		if (tmp_act < 0)
3721 			return tmp_act;
3722 
3723 		min_current_uV = min(tmp_act, min_current_uV);
3724 		max_current_uV = max(tmp_act, max_current_uV);
3725 	}
3726 
3727 	/* There aren't any other regulators enabled */
3728 	if (max_current_uV == 0) {
3729 		possible_uV = target_uV;
3730 	} else {
3731 		/*
3732 		 * Correct target voltage, so as it currently isn't
3733 		 * violating max_spread
3734 		 */
3735 		possible_uV = max(target_uV, max_current_uV - max_spread);
3736 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3737 	}
3738 
3739 	if (possible_uV > desired_max_uV)
3740 		return -EINVAL;
3741 
3742 	done = (possible_uV == target_uV);
3743 	desired_min_uV = possible_uV;
3744 
3745 finish:
3746 	/* Apply max_uV_step constraint if necessary */
3747 	if (state == PM_SUSPEND_ON) {
3748 		ret = regulator_limit_voltage_step(rdev, current_uV,
3749 						   &desired_min_uV);
3750 		if (ret < 0)
3751 			return ret;
3752 
3753 		if (ret == 0)
3754 			done = false;
3755 	}
3756 
3757 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3758 	if (n_coupled > 1 && *current_uV == -1) {
3759 
3760 		if (_regulator_is_enabled(rdev)) {
3761 			ret = regulator_get_voltage_rdev(rdev);
3762 			if (ret < 0)
3763 				return ret;
3764 
3765 			*current_uV = ret;
3766 		} else {
3767 			*current_uV = desired_min_uV;
3768 		}
3769 	}
3770 
3771 	*min_uV = desired_min_uV;
3772 	*max_uV = desired_max_uV;
3773 
3774 	return done;
3775 }
3776 
3777 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3778 				 suspend_state_t state, bool skip_coupled)
3779 {
3780 	struct regulator_dev **c_rdevs;
3781 	struct regulator_dev *best_rdev;
3782 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3783 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3784 	unsigned int delta, best_delta;
3785 	unsigned long c_rdev_done = 0;
3786 	bool best_c_rdev_done;
3787 
3788 	c_rdevs = c_desc->coupled_rdevs;
3789 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3790 
3791 	/*
3792 	 * Find the best possible voltage change on each loop. Leave the loop
3793 	 * if there isn't any possible change.
3794 	 */
3795 	do {
3796 		best_c_rdev_done = false;
3797 		best_delta = 0;
3798 		best_min_uV = 0;
3799 		best_max_uV = 0;
3800 		best_c_rdev = 0;
3801 		best_rdev = NULL;
3802 
3803 		/*
3804 		 * Find highest difference between optimal voltage
3805 		 * and current voltage.
3806 		 */
3807 		for (i = 0; i < n_coupled; i++) {
3808 			/*
3809 			 * optimal_uV is the best voltage that can be set for
3810 			 * i-th regulator at the moment without violating
3811 			 * max_spread constraint in order to balance
3812 			 * the coupled voltages.
3813 			 */
3814 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3815 
3816 			if (test_bit(i, &c_rdev_done))
3817 				continue;
3818 
3819 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3820 							    &current_uV,
3821 							    &optimal_uV,
3822 							    &optimal_max_uV,
3823 							    state, n_coupled);
3824 			if (ret < 0)
3825 				goto out;
3826 
3827 			delta = abs(optimal_uV - current_uV);
3828 
3829 			if (delta && best_delta <= delta) {
3830 				best_c_rdev_done = ret;
3831 				best_delta = delta;
3832 				best_rdev = c_rdevs[i];
3833 				best_min_uV = optimal_uV;
3834 				best_max_uV = optimal_max_uV;
3835 				best_c_rdev = i;
3836 			}
3837 		}
3838 
3839 		/* Nothing to change, return successfully */
3840 		if (!best_rdev) {
3841 			ret = 0;
3842 			goto out;
3843 		}
3844 
3845 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3846 						 best_max_uV, state);
3847 
3848 		if (ret < 0)
3849 			goto out;
3850 
3851 		if (best_c_rdev_done)
3852 			set_bit(best_c_rdev, &c_rdev_done);
3853 
3854 	} while (n_coupled > 1);
3855 
3856 out:
3857 	return ret;
3858 }
3859 
3860 static int regulator_balance_voltage(struct regulator_dev *rdev,
3861 				     suspend_state_t state)
3862 {
3863 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3864 	struct regulator_coupler *coupler = c_desc->coupler;
3865 	bool skip_coupled = false;
3866 
3867 	/*
3868 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3869 	 * other coupled regulators.
3870 	 */
3871 	if (state != PM_SUSPEND_ON)
3872 		skip_coupled = true;
3873 
3874 	if (c_desc->n_resolved < c_desc->n_coupled) {
3875 		rdev_err(rdev, "Not all coupled regulators registered\n");
3876 		return -EPERM;
3877 	}
3878 
3879 	/* Invoke custom balancer for customized couplers */
3880 	if (coupler && coupler->balance_voltage)
3881 		return coupler->balance_voltage(coupler, rdev, state);
3882 
3883 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3884 }
3885 
3886 /**
3887  * regulator_set_voltage - set regulator output voltage
3888  * @regulator: regulator source
3889  * @min_uV: Minimum required voltage in uV
3890  * @max_uV: Maximum acceptable voltage in uV
3891  *
3892  * Sets a voltage regulator to the desired output voltage. This can be set
3893  * during any regulator state. IOW, regulator can be disabled or enabled.
3894  *
3895  * If the regulator is enabled then the voltage will change to the new value
3896  * immediately otherwise if the regulator is disabled the regulator will
3897  * output at the new voltage when enabled.
3898  *
3899  * NOTE: If the regulator is shared between several devices then the lowest
3900  * request voltage that meets the system constraints will be used.
3901  * Regulator system constraints must be set for this regulator before
3902  * calling this function otherwise this call will fail.
3903  */
3904 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3905 {
3906 	struct ww_acquire_ctx ww_ctx;
3907 	int ret;
3908 
3909 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3910 
3911 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3912 					     PM_SUSPEND_ON);
3913 
3914 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3915 
3916 	return ret;
3917 }
3918 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3919 
3920 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3921 					   suspend_state_t state, bool en)
3922 {
3923 	struct regulator_state *rstate;
3924 
3925 	rstate = regulator_get_suspend_state(rdev, state);
3926 	if (rstate == NULL)
3927 		return -EINVAL;
3928 
3929 	if (!rstate->changeable)
3930 		return -EPERM;
3931 
3932 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3933 
3934 	return 0;
3935 }
3936 
3937 int regulator_suspend_enable(struct regulator_dev *rdev,
3938 				    suspend_state_t state)
3939 {
3940 	return regulator_suspend_toggle(rdev, state, true);
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3943 
3944 int regulator_suspend_disable(struct regulator_dev *rdev,
3945 				     suspend_state_t state)
3946 {
3947 	struct regulator *regulator;
3948 	struct regulator_voltage *voltage;
3949 
3950 	/*
3951 	 * if any consumer wants this regulator device keeping on in
3952 	 * suspend states, don't set it as disabled.
3953 	 */
3954 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3955 		voltage = &regulator->voltage[state];
3956 		if (voltage->min_uV || voltage->max_uV)
3957 			return 0;
3958 	}
3959 
3960 	return regulator_suspend_toggle(rdev, state, false);
3961 }
3962 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3963 
3964 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3965 					  int min_uV, int max_uV,
3966 					  suspend_state_t state)
3967 {
3968 	struct regulator_dev *rdev = regulator->rdev;
3969 	struct regulator_state *rstate;
3970 
3971 	rstate = regulator_get_suspend_state(rdev, state);
3972 	if (rstate == NULL)
3973 		return -EINVAL;
3974 
3975 	if (rstate->min_uV == rstate->max_uV) {
3976 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3977 		return -EPERM;
3978 	}
3979 
3980 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3981 }
3982 
3983 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3984 				  int max_uV, suspend_state_t state)
3985 {
3986 	struct ww_acquire_ctx ww_ctx;
3987 	int ret;
3988 
3989 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3990 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3991 		return -EINVAL;
3992 
3993 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3994 
3995 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3996 					     max_uV, state);
3997 
3998 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3999 
4000 	return ret;
4001 }
4002 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4003 
4004 /**
4005  * regulator_set_voltage_time - get raise/fall time
4006  * @regulator: regulator source
4007  * @old_uV: starting voltage in microvolts
4008  * @new_uV: target voltage in microvolts
4009  *
4010  * Provided with the starting and ending voltage, this function attempts to
4011  * calculate the time in microseconds required to rise or fall to this new
4012  * voltage.
4013  */
4014 int regulator_set_voltage_time(struct regulator *regulator,
4015 			       int old_uV, int new_uV)
4016 {
4017 	struct regulator_dev *rdev = regulator->rdev;
4018 	const struct regulator_ops *ops = rdev->desc->ops;
4019 	int old_sel = -1;
4020 	int new_sel = -1;
4021 	int voltage;
4022 	int i;
4023 
4024 	if (ops->set_voltage_time)
4025 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4026 	else if (!ops->set_voltage_time_sel)
4027 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4028 
4029 	/* Currently requires operations to do this */
4030 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4031 		return -EINVAL;
4032 
4033 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4034 		/* We only look for exact voltage matches here */
4035 		voltage = regulator_list_voltage(regulator, i);
4036 		if (voltage < 0)
4037 			return -EINVAL;
4038 		if (voltage == 0)
4039 			continue;
4040 		if (voltage == old_uV)
4041 			old_sel = i;
4042 		if (voltage == new_uV)
4043 			new_sel = i;
4044 	}
4045 
4046 	if (old_sel < 0 || new_sel < 0)
4047 		return -EINVAL;
4048 
4049 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4050 }
4051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4052 
4053 /**
4054  * regulator_set_voltage_time_sel - get raise/fall time
4055  * @rdev: regulator source device
4056  * @old_selector: selector for starting voltage
4057  * @new_selector: selector for target voltage
4058  *
4059  * Provided with the starting and target voltage selectors, this function
4060  * returns time in microseconds required to rise or fall to this new voltage
4061  *
4062  * Drivers providing ramp_delay in regulation_constraints can use this as their
4063  * set_voltage_time_sel() operation.
4064  */
4065 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4066 				   unsigned int old_selector,
4067 				   unsigned int new_selector)
4068 {
4069 	int old_volt, new_volt;
4070 
4071 	/* sanity check */
4072 	if (!rdev->desc->ops->list_voltage)
4073 		return -EINVAL;
4074 
4075 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4076 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4077 
4078 	if (rdev->desc->ops->set_voltage_time)
4079 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4080 							 new_volt);
4081 	else
4082 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4085 
4086 /**
4087  * regulator_sync_voltage - re-apply last regulator output voltage
4088  * @regulator: regulator source
4089  *
4090  * Re-apply the last configured voltage.  This is intended to be used
4091  * where some external control source the consumer is cooperating with
4092  * has caused the configured voltage to change.
4093  */
4094 int regulator_sync_voltage(struct regulator *regulator)
4095 {
4096 	struct regulator_dev *rdev = regulator->rdev;
4097 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4098 	int ret, min_uV, max_uV;
4099 
4100 	regulator_lock(rdev);
4101 
4102 	if (!rdev->desc->ops->set_voltage &&
4103 	    !rdev->desc->ops->set_voltage_sel) {
4104 		ret = -EINVAL;
4105 		goto out;
4106 	}
4107 
4108 	/* This is only going to work if we've had a voltage configured. */
4109 	if (!voltage->min_uV && !voltage->max_uV) {
4110 		ret = -EINVAL;
4111 		goto out;
4112 	}
4113 
4114 	min_uV = voltage->min_uV;
4115 	max_uV = voltage->max_uV;
4116 
4117 	/* This should be a paranoia check... */
4118 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4119 	if (ret < 0)
4120 		goto out;
4121 
4122 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4123 	if (ret < 0)
4124 		goto out;
4125 
4126 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4127 
4128 out:
4129 	regulator_unlock(rdev);
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4133 
4134 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4135 {
4136 	int sel, ret;
4137 	bool bypassed;
4138 
4139 	if (rdev->desc->ops->get_bypass) {
4140 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4141 		if (ret < 0)
4142 			return ret;
4143 		if (bypassed) {
4144 			/* if bypassed the regulator must have a supply */
4145 			if (!rdev->supply) {
4146 				rdev_err(rdev,
4147 					 "bypassed regulator has no supply!\n");
4148 				return -EPROBE_DEFER;
4149 			}
4150 
4151 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4152 		}
4153 	}
4154 
4155 	if (rdev->desc->ops->get_voltage_sel) {
4156 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4157 		if (sel < 0)
4158 			return sel;
4159 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4160 	} else if (rdev->desc->ops->get_voltage) {
4161 		ret = rdev->desc->ops->get_voltage(rdev);
4162 	} else if (rdev->desc->ops->list_voltage) {
4163 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4164 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4165 		ret = rdev->desc->fixed_uV;
4166 	} else if (rdev->supply) {
4167 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4168 	} else {
4169 		return -EINVAL;
4170 	}
4171 
4172 	if (ret < 0)
4173 		return ret;
4174 	return ret - rdev->constraints->uV_offset;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177 
4178 /**
4179  * regulator_get_voltage - get regulator output voltage
4180  * @regulator: regulator source
4181  *
4182  * This returns the current regulator voltage in uV.
4183  *
4184  * NOTE: If the regulator is disabled it will return the voltage value. This
4185  * function should not be used to determine regulator state.
4186  */
4187 int regulator_get_voltage(struct regulator *regulator)
4188 {
4189 	struct ww_acquire_ctx ww_ctx;
4190 	int ret;
4191 
4192 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193 	ret = regulator_get_voltage_rdev(regulator->rdev);
4194 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195 
4196 	return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199 
4200 /**
4201  * regulator_set_current_limit - set regulator output current limit
4202  * @regulator: regulator source
4203  * @min_uA: Minimum supported current in uA
4204  * @max_uA: Maximum supported current in uA
4205  *
4206  * Sets current sink to the desired output current. This can be set during
4207  * any regulator state. IOW, regulator can be disabled or enabled.
4208  *
4209  * If the regulator is enabled then the current will change to the new value
4210  * immediately otherwise if the regulator is disabled the regulator will
4211  * output at the new current when enabled.
4212  *
4213  * NOTE: Regulator system constraints must be set for this regulator before
4214  * calling this function otherwise this call will fail.
4215  */
4216 int regulator_set_current_limit(struct regulator *regulator,
4217 			       int min_uA, int max_uA)
4218 {
4219 	struct regulator_dev *rdev = regulator->rdev;
4220 	int ret;
4221 
4222 	regulator_lock(rdev);
4223 
4224 	/* sanity check */
4225 	if (!rdev->desc->ops->set_current_limit) {
4226 		ret = -EINVAL;
4227 		goto out;
4228 	}
4229 
4230 	/* constraints check */
4231 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232 	if (ret < 0)
4233 		goto out;
4234 
4235 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236 out:
4237 	regulator_unlock(rdev);
4238 	return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241 
4242 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243 {
4244 	/* sanity check */
4245 	if (!rdev->desc->ops->get_current_limit)
4246 		return -EINVAL;
4247 
4248 	return rdev->desc->ops->get_current_limit(rdev);
4249 }
4250 
4251 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252 {
4253 	int ret;
4254 
4255 	regulator_lock(rdev);
4256 	ret = _regulator_get_current_limit_unlocked(rdev);
4257 	regulator_unlock(rdev);
4258 
4259 	return ret;
4260 }
4261 
4262 /**
4263  * regulator_get_current_limit - get regulator output current
4264  * @regulator: regulator source
4265  *
4266  * This returns the current supplied by the specified current sink in uA.
4267  *
4268  * NOTE: If the regulator is disabled it will return the current value. This
4269  * function should not be used to determine regulator state.
4270  */
4271 int regulator_get_current_limit(struct regulator *regulator)
4272 {
4273 	return _regulator_get_current_limit(regulator->rdev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276 
4277 /**
4278  * regulator_set_mode - set regulator operating mode
4279  * @regulator: regulator source
4280  * @mode: operating mode - one of the REGULATOR_MODE constants
4281  *
4282  * Set regulator operating mode to increase regulator efficiency or improve
4283  * regulation performance.
4284  *
4285  * NOTE: Regulator system constraints must be set for this regulator before
4286  * calling this function otherwise this call will fail.
4287  */
4288 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289 {
4290 	struct regulator_dev *rdev = regulator->rdev;
4291 	int ret;
4292 	int regulator_curr_mode;
4293 
4294 	regulator_lock(rdev);
4295 
4296 	/* sanity check */
4297 	if (!rdev->desc->ops->set_mode) {
4298 		ret = -EINVAL;
4299 		goto out;
4300 	}
4301 
4302 	/* return if the same mode is requested */
4303 	if (rdev->desc->ops->get_mode) {
4304 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305 		if (regulator_curr_mode == mode) {
4306 			ret = 0;
4307 			goto out;
4308 		}
4309 	}
4310 
4311 	/* constraints check */
4312 	ret = regulator_mode_constrain(rdev, &mode);
4313 	if (ret < 0)
4314 		goto out;
4315 
4316 	ret = rdev->desc->ops->set_mode(rdev, mode);
4317 out:
4318 	regulator_unlock(rdev);
4319 	return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_mode);
4322 
4323 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324 {
4325 	/* sanity check */
4326 	if (!rdev->desc->ops->get_mode)
4327 		return -EINVAL;
4328 
4329 	return rdev->desc->ops->get_mode(rdev);
4330 }
4331 
4332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333 {
4334 	int ret;
4335 
4336 	regulator_lock(rdev);
4337 	ret = _regulator_get_mode_unlocked(rdev);
4338 	regulator_unlock(rdev);
4339 
4340 	return ret;
4341 }
4342 
4343 /**
4344  * regulator_get_mode - get regulator operating mode
4345  * @regulator: regulator source
4346  *
4347  * Get the current regulator operating mode.
4348  */
4349 unsigned int regulator_get_mode(struct regulator *regulator)
4350 {
4351 	return _regulator_get_mode(regulator->rdev);
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_mode);
4354 
4355 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356 					unsigned int *flags)
4357 {
4358 	int ret;
4359 
4360 	regulator_lock(rdev);
4361 
4362 	/* sanity check */
4363 	if (!rdev->desc->ops->get_error_flags) {
4364 		ret = -EINVAL;
4365 		goto out;
4366 	}
4367 
4368 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369 out:
4370 	regulator_unlock(rdev);
4371 	return ret;
4372 }
4373 
4374 /**
4375  * regulator_get_error_flags - get regulator error information
4376  * @regulator: regulator source
4377  * @flags: pointer to store error flags
4378  *
4379  * Get the current regulator error information.
4380  */
4381 int regulator_get_error_flags(struct regulator *regulator,
4382 				unsigned int *flags)
4383 {
4384 	return _regulator_get_error_flags(regulator->rdev, flags);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387 
4388 /**
4389  * regulator_set_load - set regulator load
4390  * @regulator: regulator source
4391  * @uA_load: load current
4392  *
4393  * Notifies the regulator core of a new device load. This is then used by
4394  * DRMS (if enabled by constraints) to set the most efficient regulator
4395  * operating mode for the new regulator loading.
4396  *
4397  * Consumer devices notify their supply regulator of the maximum power
4398  * they will require (can be taken from device datasheet in the power
4399  * consumption tables) when they change operational status and hence power
4400  * state. Examples of operational state changes that can affect power
4401  * consumption are :-
4402  *
4403  *    o Device is opened / closed.
4404  *    o Device I/O is about to begin or has just finished.
4405  *    o Device is idling in between work.
4406  *
4407  * This information is also exported via sysfs to userspace.
4408  *
4409  * DRMS will sum the total requested load on the regulator and change
4410  * to the most efficient operating mode if platform constraints allow.
4411  *
4412  * NOTE: when a regulator consumer requests to have a regulator
4413  * disabled then any load that consumer requested no longer counts
4414  * toward the total requested load.  If the regulator is re-enabled
4415  * then the previously requested load will start counting again.
4416  *
4417  * If a regulator is an always-on regulator then an individual consumer's
4418  * load will still be removed if that consumer is fully disabled.
4419  *
4420  * On error a negative errno is returned.
4421  */
4422 int regulator_set_load(struct regulator *regulator, int uA_load)
4423 {
4424 	struct regulator_dev *rdev = regulator->rdev;
4425 	int old_uA_load;
4426 	int ret = 0;
4427 
4428 	regulator_lock(rdev);
4429 	old_uA_load = regulator->uA_load;
4430 	regulator->uA_load = uA_load;
4431 	if (regulator->enable_count && old_uA_load != uA_load) {
4432 		ret = drms_uA_update(rdev);
4433 		if (ret < 0)
4434 			regulator->uA_load = old_uA_load;
4435 	}
4436 	regulator_unlock(rdev);
4437 
4438 	return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(regulator_set_load);
4441 
4442 /**
4443  * regulator_allow_bypass - allow the regulator to go into bypass mode
4444  *
4445  * @regulator: Regulator to configure
4446  * @enable: enable or disable bypass mode
4447  *
4448  * Allow the regulator to go into bypass mode if all other consumers
4449  * for the regulator also enable bypass mode and the machine
4450  * constraints allow this.  Bypass mode means that the regulator is
4451  * simply passing the input directly to the output with no regulation.
4452  */
4453 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454 {
4455 	struct regulator_dev *rdev = regulator->rdev;
4456 	const char *name = rdev_get_name(rdev);
4457 	int ret = 0;
4458 
4459 	if (!rdev->desc->ops->set_bypass)
4460 		return 0;
4461 
4462 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463 		return 0;
4464 
4465 	regulator_lock(rdev);
4466 
4467 	if (enable && !regulator->bypass) {
4468 		rdev->bypass_count++;
4469 
4470 		if (rdev->bypass_count == rdev->open_count) {
4471 			trace_regulator_bypass_enable(name);
4472 
4473 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4474 			if (ret != 0)
4475 				rdev->bypass_count--;
4476 			else
4477 				trace_regulator_bypass_enable_complete(name);
4478 		}
4479 
4480 	} else if (!enable && regulator->bypass) {
4481 		rdev->bypass_count--;
4482 
4483 		if (rdev->bypass_count != rdev->open_count) {
4484 			trace_regulator_bypass_disable(name);
4485 
4486 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4487 			if (ret != 0)
4488 				rdev->bypass_count++;
4489 			else
4490 				trace_regulator_bypass_disable_complete(name);
4491 		}
4492 	}
4493 
4494 	if (ret == 0)
4495 		regulator->bypass = enable;
4496 
4497 	regulator_unlock(rdev);
4498 
4499 	return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502 
4503 /**
4504  * regulator_register_notifier - register regulator event notifier
4505  * @regulator: regulator source
4506  * @nb: notifier block
4507  *
4508  * Register notifier block to receive regulator events.
4509  */
4510 int regulator_register_notifier(struct regulator *regulator,
4511 			      struct notifier_block *nb)
4512 {
4513 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4514 						nb);
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517 
4518 /**
4519  * regulator_unregister_notifier - unregister regulator event notifier
4520  * @regulator: regulator source
4521  * @nb: notifier block
4522  *
4523  * Unregister regulator event notifier block.
4524  */
4525 int regulator_unregister_notifier(struct regulator *regulator,
4526 				struct notifier_block *nb)
4527 {
4528 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4529 						  nb);
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532 
4533 /* notify regulator consumers and downstream regulator consumers.
4534  * Note mutex must be held by caller.
4535  */
4536 static int _notifier_call_chain(struct regulator_dev *rdev,
4537 				  unsigned long event, void *data)
4538 {
4539 	/* call rdev chain first */
4540 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541 }
4542 
4543 /**
4544  * regulator_bulk_get - get multiple regulator consumers
4545  *
4546  * @dev:           Device to supply
4547  * @num_consumers: Number of consumers to register
4548  * @consumers:     Configuration of consumers; clients are stored here.
4549  *
4550  * @return 0 on success, an errno on failure.
4551  *
4552  * This helper function allows drivers to get several regulator
4553  * consumers in one operation.  If any of the regulators cannot be
4554  * acquired then any regulators that were allocated will be freed
4555  * before returning to the caller.
4556  */
4557 int regulator_bulk_get(struct device *dev, int num_consumers,
4558 		       struct regulator_bulk_data *consumers)
4559 {
4560 	int i;
4561 	int ret;
4562 
4563 	for (i = 0; i < num_consumers; i++)
4564 		consumers[i].consumer = NULL;
4565 
4566 	for (i = 0; i < num_consumers; i++) {
4567 		consumers[i].consumer = regulator_get(dev,
4568 						      consumers[i].supply);
4569 		if (IS_ERR(consumers[i].consumer)) {
4570 			ret = PTR_ERR(consumers[i].consumer);
4571 			consumers[i].consumer = NULL;
4572 			goto err;
4573 		}
4574 	}
4575 
4576 	return 0;
4577 
4578 err:
4579 	if (ret != -EPROBE_DEFER)
4580 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4581 			consumers[i].supply, ERR_PTR(ret));
4582 	else
4583 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584 			consumers[i].supply);
4585 
4586 	while (--i >= 0)
4587 		regulator_put(consumers[i].consumer);
4588 
4589 	return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592 
4593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594 {
4595 	struct regulator_bulk_data *bulk = data;
4596 
4597 	bulk->ret = regulator_enable(bulk->consumer);
4598 }
4599 
4600 /**
4601  * regulator_bulk_enable - enable multiple regulator consumers
4602  *
4603  * @num_consumers: Number of consumers
4604  * @consumers:     Consumer data; clients are stored here.
4605  * @return         0 on success, an errno on failure
4606  *
4607  * This convenience API allows consumers to enable multiple regulator
4608  * clients in a single API call.  If any consumers cannot be enabled
4609  * then any others that were enabled will be disabled again prior to
4610  * return.
4611  */
4612 int regulator_bulk_enable(int num_consumers,
4613 			  struct regulator_bulk_data *consumers)
4614 {
4615 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616 	int i;
4617 	int ret = 0;
4618 
4619 	for (i = 0; i < num_consumers; i++) {
4620 		async_schedule_domain(regulator_bulk_enable_async,
4621 				      &consumers[i], &async_domain);
4622 	}
4623 
4624 	async_synchronize_full_domain(&async_domain);
4625 
4626 	/* If any consumer failed we need to unwind any that succeeded */
4627 	for (i = 0; i < num_consumers; i++) {
4628 		if (consumers[i].ret != 0) {
4629 			ret = consumers[i].ret;
4630 			goto err;
4631 		}
4632 	}
4633 
4634 	return 0;
4635 
4636 err:
4637 	for (i = 0; i < num_consumers; i++) {
4638 		if (consumers[i].ret < 0)
4639 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640 			       ERR_PTR(consumers[i].ret));
4641 		else
4642 			regulator_disable(consumers[i].consumer);
4643 	}
4644 
4645 	return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648 
4649 /**
4650  * regulator_bulk_disable - disable multiple regulator consumers
4651  *
4652  * @num_consumers: Number of consumers
4653  * @consumers:     Consumer data; clients are stored here.
4654  * @return         0 on success, an errno on failure
4655  *
4656  * This convenience API allows consumers to disable multiple regulator
4657  * clients in a single API call.  If any consumers cannot be disabled
4658  * then any others that were disabled will be enabled again prior to
4659  * return.
4660  */
4661 int regulator_bulk_disable(int num_consumers,
4662 			   struct regulator_bulk_data *consumers)
4663 {
4664 	int i;
4665 	int ret, r;
4666 
4667 	for (i = num_consumers - 1; i >= 0; --i) {
4668 		ret = regulator_disable(consumers[i].consumer);
4669 		if (ret != 0)
4670 			goto err;
4671 	}
4672 
4673 	return 0;
4674 
4675 err:
4676 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677 	for (++i; i < num_consumers; ++i) {
4678 		r = regulator_enable(consumers[i].consumer);
4679 		if (r != 0)
4680 			pr_err("Failed to re-enable %s: %pe\n",
4681 			       consumers[i].supply, ERR_PTR(r));
4682 	}
4683 
4684 	return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687 
4688 /**
4689  * regulator_bulk_force_disable - force disable multiple regulator consumers
4690  *
4691  * @num_consumers: Number of consumers
4692  * @consumers:     Consumer data; clients are stored here.
4693  * @return         0 on success, an errno on failure
4694  *
4695  * This convenience API allows consumers to forcibly disable multiple regulator
4696  * clients in a single API call.
4697  * NOTE: This should be used for situations when device damage will
4698  * likely occur if the regulators are not disabled (e.g. over temp).
4699  * Although regulator_force_disable function call for some consumers can
4700  * return error numbers, the function is called for all consumers.
4701  */
4702 int regulator_bulk_force_disable(int num_consumers,
4703 			   struct regulator_bulk_data *consumers)
4704 {
4705 	int i;
4706 	int ret = 0;
4707 
4708 	for (i = 0; i < num_consumers; i++) {
4709 		consumers[i].ret =
4710 			    regulator_force_disable(consumers[i].consumer);
4711 
4712 		/* Store first error for reporting */
4713 		if (consumers[i].ret && !ret)
4714 			ret = consumers[i].ret;
4715 	}
4716 
4717 	return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720 
4721 /**
4722  * regulator_bulk_free - free multiple regulator consumers
4723  *
4724  * @num_consumers: Number of consumers
4725  * @consumers:     Consumer data; clients are stored here.
4726  *
4727  * This convenience API allows consumers to free multiple regulator
4728  * clients in a single API call.
4729  */
4730 void regulator_bulk_free(int num_consumers,
4731 			 struct regulator_bulk_data *consumers)
4732 {
4733 	int i;
4734 
4735 	for (i = 0; i < num_consumers; i++) {
4736 		regulator_put(consumers[i].consumer);
4737 		consumers[i].consumer = NULL;
4738 	}
4739 }
4740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741 
4742 /**
4743  * regulator_notifier_call_chain - call regulator event notifier
4744  * @rdev: regulator source
4745  * @event: notifier block
4746  * @data: callback-specific data.
4747  *
4748  * Called by regulator drivers to notify clients a regulator event has
4749  * occurred.
4750  */
4751 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752 				  unsigned long event, void *data)
4753 {
4754 	_notifier_call_chain(rdev, event, data);
4755 	return NOTIFY_DONE;
4756 
4757 }
4758 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759 
4760 /**
4761  * regulator_mode_to_status - convert a regulator mode into a status
4762  *
4763  * @mode: Mode to convert
4764  *
4765  * Convert a regulator mode into a status.
4766  */
4767 int regulator_mode_to_status(unsigned int mode)
4768 {
4769 	switch (mode) {
4770 	case REGULATOR_MODE_FAST:
4771 		return REGULATOR_STATUS_FAST;
4772 	case REGULATOR_MODE_NORMAL:
4773 		return REGULATOR_STATUS_NORMAL;
4774 	case REGULATOR_MODE_IDLE:
4775 		return REGULATOR_STATUS_IDLE;
4776 	case REGULATOR_MODE_STANDBY:
4777 		return REGULATOR_STATUS_STANDBY;
4778 	default:
4779 		return REGULATOR_STATUS_UNDEFINED;
4780 	}
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783 
4784 static struct attribute *regulator_dev_attrs[] = {
4785 	&dev_attr_name.attr,
4786 	&dev_attr_num_users.attr,
4787 	&dev_attr_type.attr,
4788 	&dev_attr_microvolts.attr,
4789 	&dev_attr_microamps.attr,
4790 	&dev_attr_opmode.attr,
4791 	&dev_attr_state.attr,
4792 	&dev_attr_status.attr,
4793 	&dev_attr_bypass.attr,
4794 	&dev_attr_requested_microamps.attr,
4795 	&dev_attr_min_microvolts.attr,
4796 	&dev_attr_max_microvolts.attr,
4797 	&dev_attr_min_microamps.attr,
4798 	&dev_attr_max_microamps.attr,
4799 	&dev_attr_suspend_standby_state.attr,
4800 	&dev_attr_suspend_mem_state.attr,
4801 	&dev_attr_suspend_disk_state.attr,
4802 	&dev_attr_suspend_standby_microvolts.attr,
4803 	&dev_attr_suspend_mem_microvolts.attr,
4804 	&dev_attr_suspend_disk_microvolts.attr,
4805 	&dev_attr_suspend_standby_mode.attr,
4806 	&dev_attr_suspend_mem_mode.attr,
4807 	&dev_attr_suspend_disk_mode.attr,
4808 	NULL
4809 };
4810 
4811 /*
4812  * To avoid cluttering sysfs (and memory) with useless state, only
4813  * create attributes that can be meaningfully displayed.
4814  */
4815 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816 					 struct attribute *attr, int idx)
4817 {
4818 	struct device *dev = kobj_to_dev(kobj);
4819 	struct regulator_dev *rdev = dev_to_rdev(dev);
4820 	const struct regulator_ops *ops = rdev->desc->ops;
4821 	umode_t mode = attr->mode;
4822 
4823 	/* these three are always present */
4824 	if (attr == &dev_attr_name.attr ||
4825 	    attr == &dev_attr_num_users.attr ||
4826 	    attr == &dev_attr_type.attr)
4827 		return mode;
4828 
4829 	/* some attributes need specific methods to be displayed */
4830 	if (attr == &dev_attr_microvolts.attr) {
4831 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835 			return mode;
4836 		return 0;
4837 	}
4838 
4839 	if (attr == &dev_attr_microamps.attr)
4840 		return ops->get_current_limit ? mode : 0;
4841 
4842 	if (attr == &dev_attr_opmode.attr)
4843 		return ops->get_mode ? mode : 0;
4844 
4845 	if (attr == &dev_attr_state.attr)
4846 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847 
4848 	if (attr == &dev_attr_status.attr)
4849 		return ops->get_status ? mode : 0;
4850 
4851 	if (attr == &dev_attr_bypass.attr)
4852 		return ops->get_bypass ? mode : 0;
4853 
4854 	/* constraints need specific supporting methods */
4855 	if (attr == &dev_attr_min_microvolts.attr ||
4856 	    attr == &dev_attr_max_microvolts.attr)
4857 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858 
4859 	if (attr == &dev_attr_min_microamps.attr ||
4860 	    attr == &dev_attr_max_microamps.attr)
4861 		return ops->set_current_limit ? mode : 0;
4862 
4863 	if (attr == &dev_attr_suspend_standby_state.attr ||
4864 	    attr == &dev_attr_suspend_mem_state.attr ||
4865 	    attr == &dev_attr_suspend_disk_state.attr)
4866 		return mode;
4867 
4868 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4870 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4871 		return ops->set_suspend_voltage ? mode : 0;
4872 
4873 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4874 	    attr == &dev_attr_suspend_mem_mode.attr ||
4875 	    attr == &dev_attr_suspend_disk_mode.attr)
4876 		return ops->set_suspend_mode ? mode : 0;
4877 
4878 	return mode;
4879 }
4880 
4881 static const struct attribute_group regulator_dev_group = {
4882 	.attrs = regulator_dev_attrs,
4883 	.is_visible = regulator_attr_is_visible,
4884 };
4885 
4886 static const struct attribute_group *regulator_dev_groups[] = {
4887 	&regulator_dev_group,
4888 	NULL
4889 };
4890 
4891 static void regulator_dev_release(struct device *dev)
4892 {
4893 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4894 
4895 	kfree(rdev->constraints);
4896 	of_node_put(rdev->dev.of_node);
4897 	kfree(rdev);
4898 }
4899 
4900 static void rdev_init_debugfs(struct regulator_dev *rdev)
4901 {
4902 	struct device *parent = rdev->dev.parent;
4903 	const char *rname = rdev_get_name(rdev);
4904 	char name[NAME_MAX];
4905 
4906 	/* Avoid duplicate debugfs directory names */
4907 	if (parent && rname == rdev->desc->name) {
4908 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909 			 rname);
4910 		rname = name;
4911 	}
4912 
4913 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914 	if (!rdev->debugfs) {
4915 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4916 		return;
4917 	}
4918 
4919 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920 			   &rdev->use_count);
4921 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922 			   &rdev->open_count);
4923 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924 			   &rdev->bypass_count);
4925 }
4926 
4927 static int regulator_register_resolve_supply(struct device *dev, void *data)
4928 {
4929 	struct regulator_dev *rdev = dev_to_rdev(dev);
4930 
4931 	if (regulator_resolve_supply(rdev))
4932 		rdev_dbg(rdev, "unable to resolve supply\n");
4933 
4934 	return 0;
4935 }
4936 
4937 int regulator_coupler_register(struct regulator_coupler *coupler)
4938 {
4939 	mutex_lock(&regulator_list_mutex);
4940 	list_add_tail(&coupler->list, &regulator_coupler_list);
4941 	mutex_unlock(&regulator_list_mutex);
4942 
4943 	return 0;
4944 }
4945 
4946 static struct regulator_coupler *
4947 regulator_find_coupler(struct regulator_dev *rdev)
4948 {
4949 	struct regulator_coupler *coupler;
4950 	int err;
4951 
4952 	/*
4953 	 * Note that regulators are appended to the list and the generic
4954 	 * coupler is registered first, hence it will be attached at last
4955 	 * if nobody cared.
4956 	 */
4957 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4958 		err = coupler->attach_regulator(coupler, rdev);
4959 		if (!err) {
4960 			if (!coupler->balance_voltage &&
4961 			    rdev->coupling_desc.n_coupled > 2)
4962 				goto err_unsupported;
4963 
4964 			return coupler;
4965 		}
4966 
4967 		if (err < 0)
4968 			return ERR_PTR(err);
4969 
4970 		if (err == 1)
4971 			continue;
4972 
4973 		break;
4974 	}
4975 
4976 	return ERR_PTR(-EINVAL);
4977 
4978 err_unsupported:
4979 	if (coupler->detach_regulator)
4980 		coupler->detach_regulator(coupler, rdev);
4981 
4982 	rdev_err(rdev,
4983 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4984 
4985 	return ERR_PTR(-EPERM);
4986 }
4987 
4988 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989 {
4990 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4992 	int n_coupled = c_desc->n_coupled;
4993 	struct regulator_dev *c_rdev;
4994 	int i;
4995 
4996 	for (i = 1; i < n_coupled; i++) {
4997 		/* already resolved */
4998 		if (c_desc->coupled_rdevs[i])
4999 			continue;
5000 
5001 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002 
5003 		if (!c_rdev)
5004 			continue;
5005 
5006 		if (c_rdev->coupling_desc.coupler != coupler) {
5007 			rdev_err(rdev, "coupler mismatch with %s\n",
5008 				 rdev_get_name(c_rdev));
5009 			return;
5010 		}
5011 
5012 		c_desc->coupled_rdevs[i] = c_rdev;
5013 		c_desc->n_resolved++;
5014 
5015 		regulator_resolve_coupling(c_rdev);
5016 	}
5017 }
5018 
5019 static void regulator_remove_coupling(struct regulator_dev *rdev)
5020 {
5021 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023 	struct regulator_dev *__c_rdev, *c_rdev;
5024 	unsigned int __n_coupled, n_coupled;
5025 	int i, k;
5026 	int err;
5027 
5028 	n_coupled = c_desc->n_coupled;
5029 
5030 	for (i = 1; i < n_coupled; i++) {
5031 		c_rdev = c_desc->coupled_rdevs[i];
5032 
5033 		if (!c_rdev)
5034 			continue;
5035 
5036 		regulator_lock(c_rdev);
5037 
5038 		__c_desc = &c_rdev->coupling_desc;
5039 		__n_coupled = __c_desc->n_coupled;
5040 
5041 		for (k = 1; k < __n_coupled; k++) {
5042 			__c_rdev = __c_desc->coupled_rdevs[k];
5043 
5044 			if (__c_rdev == rdev) {
5045 				__c_desc->coupled_rdevs[k] = NULL;
5046 				__c_desc->n_resolved--;
5047 				break;
5048 			}
5049 		}
5050 
5051 		regulator_unlock(c_rdev);
5052 
5053 		c_desc->coupled_rdevs[i] = NULL;
5054 		c_desc->n_resolved--;
5055 	}
5056 
5057 	if (coupler && coupler->detach_regulator) {
5058 		err = coupler->detach_regulator(coupler, rdev);
5059 		if (err)
5060 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061 				 ERR_PTR(err));
5062 	}
5063 
5064 	kfree(rdev->coupling_desc.coupled_rdevs);
5065 	rdev->coupling_desc.coupled_rdevs = NULL;
5066 }
5067 
5068 static int regulator_init_coupling(struct regulator_dev *rdev)
5069 {
5070 	struct regulator_dev **coupled;
5071 	int err, n_phandles;
5072 
5073 	if (!IS_ENABLED(CONFIG_OF))
5074 		n_phandles = 0;
5075 	else
5076 		n_phandles = of_get_n_coupled(rdev);
5077 
5078 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079 	if (!coupled)
5080 		return -ENOMEM;
5081 
5082 	rdev->coupling_desc.coupled_rdevs = coupled;
5083 
5084 	/*
5085 	 * Every regulator should always have coupling descriptor filled with
5086 	 * at least pointer to itself.
5087 	 */
5088 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5090 	rdev->coupling_desc.n_resolved++;
5091 
5092 	/* regulator isn't coupled */
5093 	if (n_phandles == 0)
5094 		return 0;
5095 
5096 	if (!of_check_coupling_data(rdev))
5097 		return -EPERM;
5098 
5099 	mutex_lock(&regulator_list_mutex);
5100 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101 	mutex_unlock(&regulator_list_mutex);
5102 
5103 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5104 		err = PTR_ERR(rdev->coupling_desc.coupler);
5105 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106 		return err;
5107 	}
5108 
5109 	return 0;
5110 }
5111 
5112 static int generic_coupler_attach(struct regulator_coupler *coupler,
5113 				  struct regulator_dev *rdev)
5114 {
5115 	if (rdev->coupling_desc.n_coupled > 2) {
5116 		rdev_err(rdev,
5117 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5118 		return -EPERM;
5119 	}
5120 
5121 	if (!rdev->constraints->always_on) {
5122 		rdev_err(rdev,
5123 			 "Coupling of a non always-on regulator is unimplemented\n");
5124 		return -ENOTSUPP;
5125 	}
5126 
5127 	return 0;
5128 }
5129 
5130 static struct regulator_coupler generic_regulator_coupler = {
5131 	.attach_regulator = generic_coupler_attach,
5132 };
5133 
5134 /**
5135  * regulator_register - register regulator
5136  * @regulator_desc: regulator to register
5137  * @cfg: runtime configuration for regulator
5138  *
5139  * Called by regulator drivers to register a regulator.
5140  * Returns a valid pointer to struct regulator_dev on success
5141  * or an ERR_PTR() on error.
5142  */
5143 struct regulator_dev *
5144 regulator_register(const struct regulator_desc *regulator_desc,
5145 		   const struct regulator_config *cfg)
5146 {
5147 	const struct regulation_constraints *constraints = NULL;
5148 	const struct regulator_init_data *init_data;
5149 	struct regulator_config *config = NULL;
5150 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5151 	struct regulator_dev *rdev;
5152 	bool dangling_cfg_gpiod = false;
5153 	bool dangling_of_gpiod = false;
5154 	struct device *dev;
5155 	int ret, i;
5156 
5157 	if (cfg == NULL)
5158 		return ERR_PTR(-EINVAL);
5159 	if (cfg->ena_gpiod)
5160 		dangling_cfg_gpiod = true;
5161 	if (regulator_desc == NULL) {
5162 		ret = -EINVAL;
5163 		goto rinse;
5164 	}
5165 
5166 	dev = cfg->dev;
5167 	WARN_ON(!dev);
5168 
5169 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5170 		ret = -EINVAL;
5171 		goto rinse;
5172 	}
5173 
5174 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5175 	    regulator_desc->type != REGULATOR_CURRENT) {
5176 		ret = -EINVAL;
5177 		goto rinse;
5178 	}
5179 
5180 	/* Only one of each should be implemented */
5181 	WARN_ON(regulator_desc->ops->get_voltage &&
5182 		regulator_desc->ops->get_voltage_sel);
5183 	WARN_ON(regulator_desc->ops->set_voltage &&
5184 		regulator_desc->ops->set_voltage_sel);
5185 
5186 	/* If we're using selectors we must implement list_voltage. */
5187 	if (regulator_desc->ops->get_voltage_sel &&
5188 	    !regulator_desc->ops->list_voltage) {
5189 		ret = -EINVAL;
5190 		goto rinse;
5191 	}
5192 	if (regulator_desc->ops->set_voltage_sel &&
5193 	    !regulator_desc->ops->list_voltage) {
5194 		ret = -EINVAL;
5195 		goto rinse;
5196 	}
5197 
5198 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5199 	if (rdev == NULL) {
5200 		ret = -ENOMEM;
5201 		goto rinse;
5202 	}
5203 	device_initialize(&rdev->dev);
5204 
5205 	/*
5206 	 * Duplicate the config so the driver could override it after
5207 	 * parsing init data.
5208 	 */
5209 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5210 	if (config == NULL) {
5211 		ret = -ENOMEM;
5212 		goto clean;
5213 	}
5214 
5215 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5216 					       &rdev->dev.of_node);
5217 
5218 	/*
5219 	 * Sometimes not all resources are probed already so we need to take
5220 	 * that into account. This happens most the time if the ena_gpiod comes
5221 	 * from a gpio extender or something else.
5222 	 */
5223 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5224 		ret = -EPROBE_DEFER;
5225 		goto clean;
5226 	}
5227 
5228 	/*
5229 	 * We need to keep track of any GPIO descriptor coming from the
5230 	 * device tree until we have handled it over to the core. If the
5231 	 * config that was passed in to this function DOES NOT contain
5232 	 * a descriptor, and the config after this call DOES contain
5233 	 * a descriptor, we definitely got one from parsing the device
5234 	 * tree.
5235 	 */
5236 	if (!cfg->ena_gpiod && config->ena_gpiod)
5237 		dangling_of_gpiod = true;
5238 	if (!init_data) {
5239 		init_data = config->init_data;
5240 		rdev->dev.of_node = of_node_get(config->of_node);
5241 	}
5242 
5243 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5244 	rdev->reg_data = config->driver_data;
5245 	rdev->owner = regulator_desc->owner;
5246 	rdev->desc = regulator_desc;
5247 	if (config->regmap)
5248 		rdev->regmap = config->regmap;
5249 	else if (dev_get_regmap(dev, NULL))
5250 		rdev->regmap = dev_get_regmap(dev, NULL);
5251 	else if (dev->parent)
5252 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5253 	INIT_LIST_HEAD(&rdev->consumer_list);
5254 	INIT_LIST_HEAD(&rdev->list);
5255 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5256 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5257 
5258 	/* preform any regulator specific init */
5259 	if (init_data && init_data->regulator_init) {
5260 		ret = init_data->regulator_init(rdev->reg_data);
5261 		if (ret < 0)
5262 			goto clean;
5263 	}
5264 
5265 	if (config->ena_gpiod) {
5266 		ret = regulator_ena_gpio_request(rdev, config);
5267 		if (ret != 0) {
5268 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5269 				 ERR_PTR(ret));
5270 			goto clean;
5271 		}
5272 		/* The regulator core took over the GPIO descriptor */
5273 		dangling_cfg_gpiod = false;
5274 		dangling_of_gpiod = false;
5275 	}
5276 
5277 	/* register with sysfs */
5278 	rdev->dev.class = &regulator_class;
5279 	rdev->dev.parent = dev;
5280 	dev_set_name(&rdev->dev, "regulator.%lu",
5281 		    (unsigned long) atomic_inc_return(&regulator_no));
5282 	dev_set_drvdata(&rdev->dev, rdev);
5283 
5284 	/* set regulator constraints */
5285 	if (init_data)
5286 		constraints = &init_data->constraints;
5287 
5288 	if (init_data && init_data->supply_regulator)
5289 		rdev->supply_name = init_data->supply_regulator;
5290 	else if (regulator_desc->supply_name)
5291 		rdev->supply_name = regulator_desc->supply_name;
5292 
5293 	ret = set_machine_constraints(rdev, constraints);
5294 	if (ret == -EPROBE_DEFER) {
5295 		/* Regulator might be in bypass mode and so needs its supply
5296 		 * to set the constraints */
5297 		/* FIXME: this currently triggers a chicken-and-egg problem
5298 		 * when creating -SUPPLY symlink in sysfs to a regulator
5299 		 * that is just being created */
5300 		ret = regulator_resolve_supply(rdev);
5301 		if (!ret)
5302 			ret = set_machine_constraints(rdev, constraints);
5303 		else
5304 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5305 				 ERR_PTR(ret));
5306 	}
5307 	if (ret < 0)
5308 		goto wash;
5309 
5310 	ret = regulator_init_coupling(rdev);
5311 	if (ret < 0)
5312 		goto wash;
5313 
5314 	/* add consumers devices */
5315 	if (init_data) {
5316 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5317 			ret = set_consumer_device_supply(rdev,
5318 				init_data->consumer_supplies[i].dev_name,
5319 				init_data->consumer_supplies[i].supply);
5320 			if (ret < 0) {
5321 				dev_err(dev, "Failed to set supply %s\n",
5322 					init_data->consumer_supplies[i].supply);
5323 				goto unset_supplies;
5324 			}
5325 		}
5326 	}
5327 
5328 	if (!rdev->desc->ops->get_voltage &&
5329 	    !rdev->desc->ops->list_voltage &&
5330 	    !rdev->desc->fixed_uV)
5331 		rdev->is_switch = true;
5332 
5333 	ret = device_add(&rdev->dev);
5334 	if (ret != 0)
5335 		goto unset_supplies;
5336 
5337 	rdev_init_debugfs(rdev);
5338 
5339 	/* try to resolve regulators coupling since a new one was registered */
5340 	mutex_lock(&regulator_list_mutex);
5341 	regulator_resolve_coupling(rdev);
5342 	mutex_unlock(&regulator_list_mutex);
5343 
5344 	/* try to resolve regulators supply since a new one was registered */
5345 	class_for_each_device(&regulator_class, NULL, NULL,
5346 			      regulator_register_resolve_supply);
5347 	kfree(config);
5348 	return rdev;
5349 
5350 unset_supplies:
5351 	mutex_lock(&regulator_list_mutex);
5352 	unset_regulator_supplies(rdev);
5353 	regulator_remove_coupling(rdev);
5354 	mutex_unlock(&regulator_list_mutex);
5355 wash:
5356 	kfree(rdev->coupling_desc.coupled_rdevs);
5357 	mutex_lock(&regulator_list_mutex);
5358 	regulator_ena_gpio_free(rdev);
5359 	mutex_unlock(&regulator_list_mutex);
5360 clean:
5361 	if (dangling_of_gpiod)
5362 		gpiod_put(config->ena_gpiod);
5363 	kfree(config);
5364 	put_device(&rdev->dev);
5365 rinse:
5366 	if (dangling_cfg_gpiod)
5367 		gpiod_put(cfg->ena_gpiod);
5368 	return ERR_PTR(ret);
5369 }
5370 EXPORT_SYMBOL_GPL(regulator_register);
5371 
5372 /**
5373  * regulator_unregister - unregister regulator
5374  * @rdev: regulator to unregister
5375  *
5376  * Called by regulator drivers to unregister a regulator.
5377  */
5378 void regulator_unregister(struct regulator_dev *rdev)
5379 {
5380 	if (rdev == NULL)
5381 		return;
5382 
5383 	if (rdev->supply) {
5384 		while (rdev->use_count--)
5385 			regulator_disable(rdev->supply);
5386 		regulator_put(rdev->supply);
5387 	}
5388 
5389 	flush_work(&rdev->disable_work.work);
5390 
5391 	mutex_lock(&regulator_list_mutex);
5392 
5393 	debugfs_remove_recursive(rdev->debugfs);
5394 	WARN_ON(rdev->open_count);
5395 	regulator_remove_coupling(rdev);
5396 	unset_regulator_supplies(rdev);
5397 	list_del(&rdev->list);
5398 	regulator_ena_gpio_free(rdev);
5399 	device_unregister(&rdev->dev);
5400 
5401 	mutex_unlock(&regulator_list_mutex);
5402 }
5403 EXPORT_SYMBOL_GPL(regulator_unregister);
5404 
5405 #ifdef CONFIG_SUSPEND
5406 /**
5407  * regulator_suspend - prepare regulators for system wide suspend
5408  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5409  *
5410  * Configure each regulator with it's suspend operating parameters for state.
5411  */
5412 static int regulator_suspend(struct device *dev)
5413 {
5414 	struct regulator_dev *rdev = dev_to_rdev(dev);
5415 	suspend_state_t state = pm_suspend_target_state;
5416 	int ret;
5417 	const struct regulator_state *rstate;
5418 
5419 	rstate = regulator_get_suspend_state_check(rdev, state);
5420 	if (!rstate)
5421 		return 0;
5422 
5423 	regulator_lock(rdev);
5424 	ret = __suspend_set_state(rdev, rstate);
5425 	regulator_unlock(rdev);
5426 
5427 	return ret;
5428 }
5429 
5430 static int regulator_resume(struct device *dev)
5431 {
5432 	suspend_state_t state = pm_suspend_target_state;
5433 	struct regulator_dev *rdev = dev_to_rdev(dev);
5434 	struct regulator_state *rstate;
5435 	int ret = 0;
5436 
5437 	rstate = regulator_get_suspend_state(rdev, state);
5438 	if (rstate == NULL)
5439 		return 0;
5440 
5441 	/* Avoid grabbing the lock if we don't need to */
5442 	if (!rdev->desc->ops->resume)
5443 		return 0;
5444 
5445 	regulator_lock(rdev);
5446 
5447 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5448 	    rstate->enabled == DISABLE_IN_SUSPEND)
5449 		ret = rdev->desc->ops->resume(rdev);
5450 
5451 	regulator_unlock(rdev);
5452 
5453 	return ret;
5454 }
5455 #else /* !CONFIG_SUSPEND */
5456 
5457 #define regulator_suspend	NULL
5458 #define regulator_resume	NULL
5459 
5460 #endif /* !CONFIG_SUSPEND */
5461 
5462 #ifdef CONFIG_PM
5463 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5464 	.suspend	= regulator_suspend,
5465 	.resume		= regulator_resume,
5466 };
5467 #endif
5468 
5469 struct class regulator_class = {
5470 	.name = "regulator",
5471 	.dev_release = regulator_dev_release,
5472 	.dev_groups = regulator_dev_groups,
5473 #ifdef CONFIG_PM
5474 	.pm = &regulator_pm_ops,
5475 #endif
5476 };
5477 /**
5478  * regulator_has_full_constraints - the system has fully specified constraints
5479  *
5480  * Calling this function will cause the regulator API to disable all
5481  * regulators which have a zero use count and don't have an always_on
5482  * constraint in a late_initcall.
5483  *
5484  * The intention is that this will become the default behaviour in a
5485  * future kernel release so users are encouraged to use this facility
5486  * now.
5487  */
5488 void regulator_has_full_constraints(void)
5489 {
5490 	has_full_constraints = 1;
5491 }
5492 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5493 
5494 /**
5495  * rdev_get_drvdata - get rdev regulator driver data
5496  * @rdev: regulator
5497  *
5498  * Get rdev regulator driver private data. This call can be used in the
5499  * regulator driver context.
5500  */
5501 void *rdev_get_drvdata(struct regulator_dev *rdev)
5502 {
5503 	return rdev->reg_data;
5504 }
5505 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5506 
5507 /**
5508  * regulator_get_drvdata - get regulator driver data
5509  * @regulator: regulator
5510  *
5511  * Get regulator driver private data. This call can be used in the consumer
5512  * driver context when non API regulator specific functions need to be called.
5513  */
5514 void *regulator_get_drvdata(struct regulator *regulator)
5515 {
5516 	return regulator->rdev->reg_data;
5517 }
5518 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5519 
5520 /**
5521  * regulator_set_drvdata - set regulator driver data
5522  * @regulator: regulator
5523  * @data: data
5524  */
5525 void regulator_set_drvdata(struct regulator *regulator, void *data)
5526 {
5527 	regulator->rdev->reg_data = data;
5528 }
5529 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5530 
5531 /**
5532  * regulator_get_id - get regulator ID
5533  * @rdev: regulator
5534  */
5535 int rdev_get_id(struct regulator_dev *rdev)
5536 {
5537 	return rdev->desc->id;
5538 }
5539 EXPORT_SYMBOL_GPL(rdev_get_id);
5540 
5541 struct device *rdev_get_dev(struct regulator_dev *rdev)
5542 {
5543 	return &rdev->dev;
5544 }
5545 EXPORT_SYMBOL_GPL(rdev_get_dev);
5546 
5547 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5548 {
5549 	return rdev->regmap;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5552 
5553 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5554 {
5555 	return reg_init_data->driver_data;
5556 }
5557 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5558 
5559 #ifdef CONFIG_DEBUG_FS
5560 static int supply_map_show(struct seq_file *sf, void *data)
5561 {
5562 	struct regulator_map *map;
5563 
5564 	list_for_each_entry(map, &regulator_map_list, list) {
5565 		seq_printf(sf, "%s -> %s.%s\n",
5566 				rdev_get_name(map->regulator), map->dev_name,
5567 				map->supply);
5568 	}
5569 
5570 	return 0;
5571 }
5572 DEFINE_SHOW_ATTRIBUTE(supply_map);
5573 
5574 struct summary_data {
5575 	struct seq_file *s;
5576 	struct regulator_dev *parent;
5577 	int level;
5578 };
5579 
5580 static void regulator_summary_show_subtree(struct seq_file *s,
5581 					   struct regulator_dev *rdev,
5582 					   int level);
5583 
5584 static int regulator_summary_show_children(struct device *dev, void *data)
5585 {
5586 	struct regulator_dev *rdev = dev_to_rdev(dev);
5587 	struct summary_data *summary_data = data;
5588 
5589 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5590 		regulator_summary_show_subtree(summary_data->s, rdev,
5591 					       summary_data->level + 1);
5592 
5593 	return 0;
5594 }
5595 
5596 static void regulator_summary_show_subtree(struct seq_file *s,
5597 					   struct regulator_dev *rdev,
5598 					   int level)
5599 {
5600 	struct regulation_constraints *c;
5601 	struct regulator *consumer;
5602 	struct summary_data summary_data;
5603 	unsigned int opmode;
5604 
5605 	if (!rdev)
5606 		return;
5607 
5608 	opmode = _regulator_get_mode_unlocked(rdev);
5609 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5610 		   level * 3 + 1, "",
5611 		   30 - level * 3, rdev_get_name(rdev),
5612 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5613 		   regulator_opmode_to_str(opmode));
5614 
5615 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5616 	seq_printf(s, "%5dmA ",
5617 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5618 
5619 	c = rdev->constraints;
5620 	if (c) {
5621 		switch (rdev->desc->type) {
5622 		case REGULATOR_VOLTAGE:
5623 			seq_printf(s, "%5dmV %5dmV ",
5624 				   c->min_uV / 1000, c->max_uV / 1000);
5625 			break;
5626 		case REGULATOR_CURRENT:
5627 			seq_printf(s, "%5dmA %5dmA ",
5628 				   c->min_uA / 1000, c->max_uA / 1000);
5629 			break;
5630 		}
5631 	}
5632 
5633 	seq_puts(s, "\n");
5634 
5635 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5636 		if (consumer->dev && consumer->dev->class == &regulator_class)
5637 			continue;
5638 
5639 		seq_printf(s, "%*s%-*s ",
5640 			   (level + 1) * 3 + 1, "",
5641 			   30 - (level + 1) * 3,
5642 			   consumer->supply_name ? consumer->supply_name :
5643 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5644 
5645 		switch (rdev->desc->type) {
5646 		case REGULATOR_VOLTAGE:
5647 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5648 				   consumer->enable_count,
5649 				   consumer->uA_load / 1000,
5650 				   consumer->uA_load && !consumer->enable_count ?
5651 				   '*' : ' ',
5652 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5653 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5654 			break;
5655 		case REGULATOR_CURRENT:
5656 			break;
5657 		}
5658 
5659 		seq_puts(s, "\n");
5660 	}
5661 
5662 	summary_data.s = s;
5663 	summary_data.level = level;
5664 	summary_data.parent = rdev;
5665 
5666 	class_for_each_device(&regulator_class, NULL, &summary_data,
5667 			      regulator_summary_show_children);
5668 }
5669 
5670 struct summary_lock_data {
5671 	struct ww_acquire_ctx *ww_ctx;
5672 	struct regulator_dev **new_contended_rdev;
5673 	struct regulator_dev **old_contended_rdev;
5674 };
5675 
5676 static int regulator_summary_lock_one(struct device *dev, void *data)
5677 {
5678 	struct regulator_dev *rdev = dev_to_rdev(dev);
5679 	struct summary_lock_data *lock_data = data;
5680 	int ret = 0;
5681 
5682 	if (rdev != *lock_data->old_contended_rdev) {
5683 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5684 
5685 		if (ret == -EDEADLK)
5686 			*lock_data->new_contended_rdev = rdev;
5687 		else
5688 			WARN_ON_ONCE(ret);
5689 	} else {
5690 		*lock_data->old_contended_rdev = NULL;
5691 	}
5692 
5693 	return ret;
5694 }
5695 
5696 static int regulator_summary_unlock_one(struct device *dev, void *data)
5697 {
5698 	struct regulator_dev *rdev = dev_to_rdev(dev);
5699 	struct summary_lock_data *lock_data = data;
5700 
5701 	if (lock_data) {
5702 		if (rdev == *lock_data->new_contended_rdev)
5703 			return -EDEADLK;
5704 	}
5705 
5706 	regulator_unlock(rdev);
5707 
5708 	return 0;
5709 }
5710 
5711 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5712 				      struct regulator_dev **new_contended_rdev,
5713 				      struct regulator_dev **old_contended_rdev)
5714 {
5715 	struct summary_lock_data lock_data;
5716 	int ret;
5717 
5718 	lock_data.ww_ctx = ww_ctx;
5719 	lock_data.new_contended_rdev = new_contended_rdev;
5720 	lock_data.old_contended_rdev = old_contended_rdev;
5721 
5722 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5723 				    regulator_summary_lock_one);
5724 	if (ret)
5725 		class_for_each_device(&regulator_class, NULL, &lock_data,
5726 				      regulator_summary_unlock_one);
5727 
5728 	return ret;
5729 }
5730 
5731 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5732 {
5733 	struct regulator_dev *new_contended_rdev = NULL;
5734 	struct regulator_dev *old_contended_rdev = NULL;
5735 	int err;
5736 
5737 	mutex_lock(&regulator_list_mutex);
5738 
5739 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5740 
5741 	do {
5742 		if (new_contended_rdev) {
5743 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5744 			old_contended_rdev = new_contended_rdev;
5745 			old_contended_rdev->ref_cnt++;
5746 		}
5747 
5748 		err = regulator_summary_lock_all(ww_ctx,
5749 						 &new_contended_rdev,
5750 						 &old_contended_rdev);
5751 
5752 		if (old_contended_rdev)
5753 			regulator_unlock(old_contended_rdev);
5754 
5755 	} while (err == -EDEADLK);
5756 
5757 	ww_acquire_done(ww_ctx);
5758 }
5759 
5760 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5761 {
5762 	class_for_each_device(&regulator_class, NULL, NULL,
5763 			      regulator_summary_unlock_one);
5764 	ww_acquire_fini(ww_ctx);
5765 
5766 	mutex_unlock(&regulator_list_mutex);
5767 }
5768 
5769 static int regulator_summary_show_roots(struct device *dev, void *data)
5770 {
5771 	struct regulator_dev *rdev = dev_to_rdev(dev);
5772 	struct seq_file *s = data;
5773 
5774 	if (!rdev->supply)
5775 		regulator_summary_show_subtree(s, rdev, 0);
5776 
5777 	return 0;
5778 }
5779 
5780 static int regulator_summary_show(struct seq_file *s, void *data)
5781 {
5782 	struct ww_acquire_ctx ww_ctx;
5783 
5784 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5785 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5786 
5787 	regulator_summary_lock(&ww_ctx);
5788 
5789 	class_for_each_device(&regulator_class, NULL, s,
5790 			      regulator_summary_show_roots);
5791 
5792 	regulator_summary_unlock(&ww_ctx);
5793 
5794 	return 0;
5795 }
5796 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5797 #endif /* CONFIG_DEBUG_FS */
5798 
5799 static int __init regulator_init(void)
5800 {
5801 	int ret;
5802 
5803 	ret = class_register(&regulator_class);
5804 
5805 	debugfs_root = debugfs_create_dir("regulator", NULL);
5806 	if (!debugfs_root)
5807 		pr_warn("regulator: Failed to create debugfs directory\n");
5808 
5809 #ifdef CONFIG_DEBUG_FS
5810 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5811 			    &supply_map_fops);
5812 
5813 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5814 			    NULL, &regulator_summary_fops);
5815 #endif
5816 	regulator_dummy_init();
5817 
5818 	regulator_coupler_register(&generic_regulator_coupler);
5819 
5820 	return ret;
5821 }
5822 
5823 /* init early to allow our consumers to complete system booting */
5824 core_initcall(regulator_init);
5825 
5826 static int regulator_late_cleanup(struct device *dev, void *data)
5827 {
5828 	struct regulator_dev *rdev = dev_to_rdev(dev);
5829 	const struct regulator_ops *ops = rdev->desc->ops;
5830 	struct regulation_constraints *c = rdev->constraints;
5831 	int enabled, ret;
5832 
5833 	if (c && c->always_on)
5834 		return 0;
5835 
5836 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5837 		return 0;
5838 
5839 	regulator_lock(rdev);
5840 
5841 	if (rdev->use_count)
5842 		goto unlock;
5843 
5844 	/* If we can't read the status assume it's on. */
5845 	if (ops->is_enabled)
5846 		enabled = ops->is_enabled(rdev);
5847 	else
5848 		enabled = 1;
5849 
5850 	if (!enabled)
5851 		goto unlock;
5852 
5853 	if (have_full_constraints()) {
5854 		/* We log since this may kill the system if it goes
5855 		 * wrong. */
5856 		rdev_info(rdev, "disabling\n");
5857 		ret = _regulator_do_disable(rdev);
5858 		if (ret != 0)
5859 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5860 	} else {
5861 		/* The intention is that in future we will
5862 		 * assume that full constraints are provided
5863 		 * so warn even if we aren't going to do
5864 		 * anything here.
5865 		 */
5866 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5867 	}
5868 
5869 unlock:
5870 	regulator_unlock(rdev);
5871 
5872 	return 0;
5873 }
5874 
5875 static void regulator_init_complete_work_function(struct work_struct *work)
5876 {
5877 	/*
5878 	 * Regulators may had failed to resolve their input supplies
5879 	 * when were registered, either because the input supply was
5880 	 * not registered yet or because its parent device was not
5881 	 * bound yet. So attempt to resolve the input supplies for
5882 	 * pending regulators before trying to disable unused ones.
5883 	 */
5884 	class_for_each_device(&regulator_class, NULL, NULL,
5885 			      regulator_register_resolve_supply);
5886 
5887 	/* If we have a full configuration then disable any regulators
5888 	 * we have permission to change the status for and which are
5889 	 * not in use or always_on.  This is effectively the default
5890 	 * for DT and ACPI as they have full constraints.
5891 	 */
5892 	class_for_each_device(&regulator_class, NULL, NULL,
5893 			      regulator_late_cleanup);
5894 }
5895 
5896 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5897 			    regulator_init_complete_work_function);
5898 
5899 static int __init regulator_init_complete(void)
5900 {
5901 	/*
5902 	 * Since DT doesn't provide an idiomatic mechanism for
5903 	 * enabling full constraints and since it's much more natural
5904 	 * with DT to provide them just assume that a DT enabled
5905 	 * system has full constraints.
5906 	 */
5907 	if (of_have_populated_dt())
5908 		has_full_constraints = true;
5909 
5910 	/*
5911 	 * We punt completion for an arbitrary amount of time since
5912 	 * systems like distros will load many drivers from userspace
5913 	 * so consumers might not always be ready yet, this is
5914 	 * particularly an issue with laptops where this might bounce
5915 	 * the display off then on.  Ideally we'd get a notification
5916 	 * from userspace when this happens but we don't so just wait
5917 	 * a bit and hope we waited long enough.  It'd be better if
5918 	 * we'd only do this on systems that need it, and a kernel
5919 	 * command line option might be useful.
5920 	 */
5921 	schedule_delayed_work(&regulator_init_complete_work,
5922 			      msecs_to_jiffies(30000));
5923 
5924 	return 0;
5925 }
5926 late_initcall_sync(regulator_init_complete);
5927