1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 static DEFINE_WW_CLASS(regulator_ww_class); 37 static DEFINE_MUTEX(regulator_nesting_mutex); 38 static DEFINE_MUTEX(regulator_list_mutex); 39 static LIST_HEAD(regulator_map_list); 40 static LIST_HEAD(regulator_ena_gpio_list); 41 static LIST_HEAD(regulator_supply_alias_list); 42 static LIST_HEAD(regulator_coupler_list); 43 static bool has_full_constraints; 44 45 static struct dentry *debugfs_root; 46 47 /* 48 * struct regulator_map 49 * 50 * Used to provide symbolic supply names to devices. 51 */ 52 struct regulator_map { 53 struct list_head list; 54 const char *dev_name; /* The dev_name() for the consumer */ 55 const char *supply; 56 struct regulator_dev *regulator; 57 }; 58 59 /* 60 * struct regulator_enable_gpio 61 * 62 * Management for shared enable GPIO pin 63 */ 64 struct regulator_enable_gpio { 65 struct list_head list; 66 struct gpio_desc *gpiod; 67 u32 enable_count; /* a number of enabled shared GPIO */ 68 u32 request_count; /* a number of requested shared GPIO */ 69 }; 70 71 /* 72 * struct regulator_supply_alias 73 * 74 * Used to map lookups for a supply onto an alternative device. 75 */ 76 struct regulator_supply_alias { 77 struct list_head list; 78 struct device *src_dev; 79 const char *src_supply; 80 struct device *alias_dev; 81 const char *alias_supply; 82 }; 83 84 static int _regulator_is_enabled(struct regulator_dev *rdev); 85 static int _regulator_disable(struct regulator *regulator); 86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 87 static int _regulator_get_current_limit(struct regulator_dev *rdev); 88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 89 static int _notifier_call_chain(struct regulator_dev *rdev, 90 unsigned long event, void *data); 91 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 92 int min_uV, int max_uV); 93 static int regulator_balance_voltage(struct regulator_dev *rdev, 94 suspend_state_t state); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 static void destroy_regulator(struct regulator *regulator); 99 static void _regulator_put(struct regulator *regulator); 100 101 const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 EXPORT_SYMBOL_GPL(rdev_get_name); 111 112 static bool have_full_constraints(void) 113 { 114 return has_full_constraints || of_have_populated_dt(); 115 } 116 117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 118 { 119 if (!rdev->constraints) { 120 rdev_err(rdev, "no constraints\n"); 121 return false; 122 } 123 124 if (rdev->constraints->valid_ops_mask & ops) 125 return true; 126 127 return false; 128 } 129 130 /** 131 * regulator_lock_nested - lock a single regulator 132 * @rdev: regulator source 133 * @ww_ctx: w/w mutex acquire context 134 * 135 * This function can be called many times by one task on 136 * a single regulator and its mutex will be locked only 137 * once. If a task, which is calling this function is other 138 * than the one, which initially locked the mutex, it will 139 * wait on mutex. 140 */ 141 static inline int regulator_lock_nested(struct regulator_dev *rdev, 142 struct ww_acquire_ctx *ww_ctx) 143 { 144 bool lock = false; 145 int ret = 0; 146 147 mutex_lock(®ulator_nesting_mutex); 148 149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 150 if (rdev->mutex_owner == current) 151 rdev->ref_cnt++; 152 else 153 lock = true; 154 155 if (lock) { 156 mutex_unlock(®ulator_nesting_mutex); 157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 158 mutex_lock(®ulator_nesting_mutex); 159 } 160 } else { 161 lock = true; 162 } 163 164 if (lock && ret != -EDEADLK) { 165 rdev->ref_cnt++; 166 rdev->mutex_owner = current; 167 } 168 169 mutex_unlock(®ulator_nesting_mutex); 170 171 return ret; 172 } 173 174 /** 175 * regulator_lock - lock a single regulator 176 * @rdev: regulator source 177 * 178 * This function can be called many times by one task on 179 * a single regulator and its mutex will be locked only 180 * once. If a task, which is calling this function is other 181 * than the one, which initially locked the mutex, it will 182 * wait on mutex. 183 */ 184 static void regulator_lock(struct regulator_dev *rdev) 185 { 186 regulator_lock_nested(rdev, NULL); 187 } 188 189 /** 190 * regulator_unlock - unlock a single regulator 191 * @rdev: regulator_source 192 * 193 * This function unlocks the mutex when the 194 * reference counter reaches 0. 195 */ 196 static void regulator_unlock(struct regulator_dev *rdev) 197 { 198 mutex_lock(®ulator_nesting_mutex); 199 200 if (--rdev->ref_cnt == 0) { 201 rdev->mutex_owner = NULL; 202 ww_mutex_unlock(&rdev->mutex); 203 } 204 205 WARN_ON_ONCE(rdev->ref_cnt < 0); 206 207 mutex_unlock(®ulator_nesting_mutex); 208 } 209 210 /** 211 * regulator_lock_two - lock two regulators 212 * @rdev1: first regulator 213 * @rdev2: second regulator 214 * @ww_ctx: w/w mutex acquire context 215 * 216 * Locks both rdevs using the regulator_ww_class. 217 */ 218 static void regulator_lock_two(struct regulator_dev *rdev1, 219 struct regulator_dev *rdev2, 220 struct ww_acquire_ctx *ww_ctx) 221 { 222 struct regulator_dev *held, *contended; 223 int ret; 224 225 ww_acquire_init(ww_ctx, ®ulator_ww_class); 226 227 /* Try to just grab both of them */ 228 ret = regulator_lock_nested(rdev1, ww_ctx); 229 WARN_ON(ret); 230 ret = regulator_lock_nested(rdev2, ww_ctx); 231 if (ret != -EDEADLOCK) { 232 WARN_ON(ret); 233 goto exit; 234 } 235 236 held = rdev1; 237 contended = rdev2; 238 while (true) { 239 regulator_unlock(held); 240 241 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 242 contended->ref_cnt++; 243 contended->mutex_owner = current; 244 swap(held, contended); 245 ret = regulator_lock_nested(contended, ww_ctx); 246 247 if (ret != -EDEADLOCK) { 248 WARN_ON(ret); 249 break; 250 } 251 } 252 253 exit: 254 ww_acquire_done(ww_ctx); 255 } 256 257 /** 258 * regulator_unlock_two - unlock two regulators 259 * @rdev1: first regulator 260 * @rdev2: second regulator 261 * @ww_ctx: w/w mutex acquire context 262 * 263 * The inverse of regulator_lock_two(). 264 */ 265 266 static void regulator_unlock_two(struct regulator_dev *rdev1, 267 struct regulator_dev *rdev2, 268 struct ww_acquire_ctx *ww_ctx) 269 { 270 regulator_unlock(rdev2); 271 regulator_unlock(rdev1); 272 ww_acquire_fini(ww_ctx); 273 } 274 275 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 276 { 277 struct regulator_dev *c_rdev; 278 int i; 279 280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 281 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 282 283 if (rdev->supply->rdev == c_rdev) 284 return true; 285 } 286 287 return false; 288 } 289 290 static void regulator_unlock_recursive(struct regulator_dev *rdev, 291 unsigned int n_coupled) 292 { 293 struct regulator_dev *c_rdev, *supply_rdev; 294 int i, supply_n_coupled; 295 296 for (i = n_coupled; i > 0; i--) { 297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 298 299 if (!c_rdev) 300 continue; 301 302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 303 supply_rdev = c_rdev->supply->rdev; 304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 305 306 regulator_unlock_recursive(supply_rdev, 307 supply_n_coupled); 308 } 309 310 regulator_unlock(c_rdev); 311 } 312 } 313 314 static int regulator_lock_recursive(struct regulator_dev *rdev, 315 struct regulator_dev **new_contended_rdev, 316 struct regulator_dev **old_contended_rdev, 317 struct ww_acquire_ctx *ww_ctx) 318 { 319 struct regulator_dev *c_rdev; 320 int i, err; 321 322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 323 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 324 325 if (!c_rdev) 326 continue; 327 328 if (c_rdev != *old_contended_rdev) { 329 err = regulator_lock_nested(c_rdev, ww_ctx); 330 if (err) { 331 if (err == -EDEADLK) { 332 *new_contended_rdev = c_rdev; 333 goto err_unlock; 334 } 335 336 /* shouldn't happen */ 337 WARN_ON_ONCE(err != -EALREADY); 338 } 339 } else { 340 *old_contended_rdev = NULL; 341 } 342 343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 344 err = regulator_lock_recursive(c_rdev->supply->rdev, 345 new_contended_rdev, 346 old_contended_rdev, 347 ww_ctx); 348 if (err) { 349 regulator_unlock(c_rdev); 350 goto err_unlock; 351 } 352 } 353 } 354 355 return 0; 356 357 err_unlock: 358 regulator_unlock_recursive(rdev, i); 359 360 return err; 361 } 362 363 /** 364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 365 * regulators 366 * @rdev: regulator source 367 * @ww_ctx: w/w mutex acquire context 368 * 369 * Unlock all regulators related with rdev by coupling or supplying. 370 */ 371 static void regulator_unlock_dependent(struct regulator_dev *rdev, 372 struct ww_acquire_ctx *ww_ctx) 373 { 374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 375 ww_acquire_fini(ww_ctx); 376 } 377 378 /** 379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 380 * @rdev: regulator source 381 * @ww_ctx: w/w mutex acquire context 382 * 383 * This function as a wrapper on regulator_lock_recursive(), which locks 384 * all regulators related with rdev by coupling or supplying. 385 */ 386 static void regulator_lock_dependent(struct regulator_dev *rdev, 387 struct ww_acquire_ctx *ww_ctx) 388 { 389 struct regulator_dev *new_contended_rdev = NULL; 390 struct regulator_dev *old_contended_rdev = NULL; 391 int err; 392 393 mutex_lock(®ulator_list_mutex); 394 395 ww_acquire_init(ww_ctx, ®ulator_ww_class); 396 397 do { 398 if (new_contended_rdev) { 399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 400 old_contended_rdev = new_contended_rdev; 401 old_contended_rdev->ref_cnt++; 402 old_contended_rdev->mutex_owner = current; 403 } 404 405 err = regulator_lock_recursive(rdev, 406 &new_contended_rdev, 407 &old_contended_rdev, 408 ww_ctx); 409 410 if (old_contended_rdev) 411 regulator_unlock(old_contended_rdev); 412 413 } while (err == -EDEADLK); 414 415 ww_acquire_done(ww_ctx); 416 417 mutex_unlock(®ulator_list_mutex); 418 } 419 420 /** 421 * of_get_child_regulator - get a child regulator device node 422 * based on supply name 423 * @parent: Parent device node 424 * @prop_name: Combination regulator supply name and "-supply" 425 * 426 * Traverse all child nodes. 427 * Extract the child regulator device node corresponding to the supply name. 428 * returns the device node corresponding to the regulator if found, else 429 * returns NULL. 430 */ 431 static struct device_node *of_get_child_regulator(struct device_node *parent, 432 const char *prop_name) 433 { 434 struct device_node *regnode = NULL; 435 struct device_node *child = NULL; 436 437 for_each_child_of_node(parent, child) { 438 regnode = of_parse_phandle(child, prop_name, 0); 439 440 if (!regnode) { 441 regnode = of_get_child_regulator(child, prop_name); 442 if (regnode) 443 goto err_node_put; 444 } else { 445 goto err_node_put; 446 } 447 } 448 return NULL; 449 450 err_node_put: 451 of_node_put(child); 452 return regnode; 453 } 454 455 /** 456 * of_get_regulator - get a regulator device node based on supply name 457 * @dev: Device pointer for the consumer (of regulator) device 458 * @supply: regulator supply name 459 * 460 * Extract the regulator device node corresponding to the supply name. 461 * returns the device node corresponding to the regulator if found, else 462 * returns NULL. 463 */ 464 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 465 { 466 struct device_node *regnode = NULL; 467 char prop_name[64]; /* 64 is max size of property name */ 468 469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 470 471 snprintf(prop_name, 64, "%s-supply", supply); 472 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 473 474 if (!regnode) { 475 regnode = of_get_child_regulator(dev->of_node, prop_name); 476 if (regnode) 477 return regnode; 478 479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 480 prop_name, dev->of_node); 481 return NULL; 482 } 483 return regnode; 484 } 485 486 /* Platform voltage constraint check */ 487 int regulator_check_voltage(struct regulator_dev *rdev, 488 int *min_uV, int *max_uV) 489 { 490 BUG_ON(*min_uV > *max_uV); 491 492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 493 rdev_err(rdev, "voltage operation not allowed\n"); 494 return -EPERM; 495 } 496 497 if (*max_uV > rdev->constraints->max_uV) 498 *max_uV = rdev->constraints->max_uV; 499 if (*min_uV < rdev->constraints->min_uV) 500 *min_uV = rdev->constraints->min_uV; 501 502 if (*min_uV > *max_uV) { 503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 504 *min_uV, *max_uV); 505 return -EINVAL; 506 } 507 508 return 0; 509 } 510 511 /* return 0 if the state is valid */ 512 static int regulator_check_states(suspend_state_t state) 513 { 514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 515 } 516 517 /* Make sure we select a voltage that suits the needs of all 518 * regulator consumers 519 */ 520 int regulator_check_consumers(struct regulator_dev *rdev, 521 int *min_uV, int *max_uV, 522 suspend_state_t state) 523 { 524 struct regulator *regulator; 525 struct regulator_voltage *voltage; 526 527 list_for_each_entry(regulator, &rdev->consumer_list, list) { 528 voltage = ®ulator->voltage[state]; 529 /* 530 * Assume consumers that didn't say anything are OK 531 * with anything in the constraint range. 532 */ 533 if (!voltage->min_uV && !voltage->max_uV) 534 continue; 535 536 if (*max_uV > voltage->max_uV) 537 *max_uV = voltage->max_uV; 538 if (*min_uV < voltage->min_uV) 539 *min_uV = voltage->min_uV; 540 } 541 542 if (*min_uV > *max_uV) { 543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 544 *min_uV, *max_uV); 545 return -EINVAL; 546 } 547 548 return 0; 549 } 550 551 /* current constraint check */ 552 static int regulator_check_current_limit(struct regulator_dev *rdev, 553 int *min_uA, int *max_uA) 554 { 555 BUG_ON(*min_uA > *max_uA); 556 557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 558 rdev_err(rdev, "current operation not allowed\n"); 559 return -EPERM; 560 } 561 562 if (*max_uA > rdev->constraints->max_uA) 563 *max_uA = rdev->constraints->max_uA; 564 if (*min_uA < rdev->constraints->min_uA) 565 *min_uA = rdev->constraints->min_uA; 566 567 if (*min_uA > *max_uA) { 568 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 569 *min_uA, *max_uA); 570 return -EINVAL; 571 } 572 573 return 0; 574 } 575 576 /* operating mode constraint check */ 577 static int regulator_mode_constrain(struct regulator_dev *rdev, 578 unsigned int *mode) 579 { 580 switch (*mode) { 581 case REGULATOR_MODE_FAST: 582 case REGULATOR_MODE_NORMAL: 583 case REGULATOR_MODE_IDLE: 584 case REGULATOR_MODE_STANDBY: 585 break; 586 default: 587 rdev_err(rdev, "invalid mode %x specified\n", *mode); 588 return -EINVAL; 589 } 590 591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 592 rdev_err(rdev, "mode operation not allowed\n"); 593 return -EPERM; 594 } 595 596 /* The modes are bitmasks, the most power hungry modes having 597 * the lowest values. If the requested mode isn't supported 598 * try higher modes. 599 */ 600 while (*mode) { 601 if (rdev->constraints->valid_modes_mask & *mode) 602 return 0; 603 *mode /= 2; 604 } 605 606 return -EINVAL; 607 } 608 609 static inline struct regulator_state * 610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 611 { 612 if (rdev->constraints == NULL) 613 return NULL; 614 615 switch (state) { 616 case PM_SUSPEND_STANDBY: 617 return &rdev->constraints->state_standby; 618 case PM_SUSPEND_MEM: 619 return &rdev->constraints->state_mem; 620 case PM_SUSPEND_MAX: 621 return &rdev->constraints->state_disk; 622 default: 623 return NULL; 624 } 625 } 626 627 static const struct regulator_state * 628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 629 { 630 const struct regulator_state *rstate; 631 632 rstate = regulator_get_suspend_state(rdev, state); 633 if (rstate == NULL) 634 return NULL; 635 636 /* If we have no suspend mode configuration don't set anything; 637 * only warn if the driver implements set_suspend_voltage or 638 * set_suspend_mode callback. 639 */ 640 if (rstate->enabled != ENABLE_IN_SUSPEND && 641 rstate->enabled != DISABLE_IN_SUSPEND) { 642 if (rdev->desc->ops->set_suspend_voltage || 643 rdev->desc->ops->set_suspend_mode) 644 rdev_warn(rdev, "No configuration\n"); 645 return NULL; 646 } 647 648 return rstate; 649 } 650 651 static ssize_t microvolts_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 int uV; 656 657 regulator_lock(rdev); 658 uV = regulator_get_voltage_rdev(rdev); 659 regulator_unlock(rdev); 660 661 if (uV < 0) 662 return uV; 663 return sprintf(buf, "%d\n", uV); 664 } 665 static DEVICE_ATTR_RO(microvolts); 666 667 static ssize_t microamps_show(struct device *dev, 668 struct device_attribute *attr, char *buf) 669 { 670 struct regulator_dev *rdev = dev_get_drvdata(dev); 671 672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 673 } 674 static DEVICE_ATTR_RO(microamps); 675 676 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 677 char *buf) 678 { 679 struct regulator_dev *rdev = dev_get_drvdata(dev); 680 681 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 682 } 683 static DEVICE_ATTR_RO(name); 684 685 static const char *regulator_opmode_to_str(int mode) 686 { 687 switch (mode) { 688 case REGULATOR_MODE_FAST: 689 return "fast"; 690 case REGULATOR_MODE_NORMAL: 691 return "normal"; 692 case REGULATOR_MODE_IDLE: 693 return "idle"; 694 case REGULATOR_MODE_STANDBY: 695 return "standby"; 696 } 697 return "unknown"; 698 } 699 700 static ssize_t regulator_print_opmode(char *buf, int mode) 701 { 702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 703 } 704 705 static ssize_t opmode_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 struct regulator_dev *rdev = dev_get_drvdata(dev); 709 710 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 711 } 712 static DEVICE_ATTR_RO(opmode); 713 714 static ssize_t regulator_print_state(char *buf, int state) 715 { 716 if (state > 0) 717 return sprintf(buf, "enabled\n"); 718 else if (state == 0) 719 return sprintf(buf, "disabled\n"); 720 else 721 return sprintf(buf, "unknown\n"); 722 } 723 724 static ssize_t state_show(struct device *dev, 725 struct device_attribute *attr, char *buf) 726 { 727 struct regulator_dev *rdev = dev_get_drvdata(dev); 728 ssize_t ret; 729 730 regulator_lock(rdev); 731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 732 regulator_unlock(rdev); 733 734 return ret; 735 } 736 static DEVICE_ATTR_RO(state); 737 738 static ssize_t status_show(struct device *dev, 739 struct device_attribute *attr, char *buf) 740 { 741 struct regulator_dev *rdev = dev_get_drvdata(dev); 742 int status; 743 char *label; 744 745 status = rdev->desc->ops->get_status(rdev); 746 if (status < 0) 747 return status; 748 749 switch (status) { 750 case REGULATOR_STATUS_OFF: 751 label = "off"; 752 break; 753 case REGULATOR_STATUS_ON: 754 label = "on"; 755 break; 756 case REGULATOR_STATUS_ERROR: 757 label = "error"; 758 break; 759 case REGULATOR_STATUS_FAST: 760 label = "fast"; 761 break; 762 case REGULATOR_STATUS_NORMAL: 763 label = "normal"; 764 break; 765 case REGULATOR_STATUS_IDLE: 766 label = "idle"; 767 break; 768 case REGULATOR_STATUS_STANDBY: 769 label = "standby"; 770 break; 771 case REGULATOR_STATUS_BYPASS: 772 label = "bypass"; 773 break; 774 case REGULATOR_STATUS_UNDEFINED: 775 label = "undefined"; 776 break; 777 default: 778 return -ERANGE; 779 } 780 781 return sprintf(buf, "%s\n", label); 782 } 783 static DEVICE_ATTR_RO(status); 784 785 static ssize_t min_microamps_show(struct device *dev, 786 struct device_attribute *attr, char *buf) 787 { 788 struct regulator_dev *rdev = dev_get_drvdata(dev); 789 790 if (!rdev->constraints) 791 return sprintf(buf, "constraint not defined\n"); 792 793 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 794 } 795 static DEVICE_ATTR_RO(min_microamps); 796 797 static ssize_t max_microamps_show(struct device *dev, 798 struct device_attribute *attr, char *buf) 799 { 800 struct regulator_dev *rdev = dev_get_drvdata(dev); 801 802 if (!rdev->constraints) 803 return sprintf(buf, "constraint not defined\n"); 804 805 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 806 } 807 static DEVICE_ATTR_RO(max_microamps); 808 809 static ssize_t min_microvolts_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 if (!rdev->constraints) 815 return sprintf(buf, "constraint not defined\n"); 816 817 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 818 } 819 static DEVICE_ATTR_RO(min_microvolts); 820 821 static ssize_t max_microvolts_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 if (!rdev->constraints) 827 return sprintf(buf, "constraint not defined\n"); 828 829 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 830 } 831 static DEVICE_ATTR_RO(max_microvolts); 832 833 static ssize_t requested_microamps_show(struct device *dev, 834 struct device_attribute *attr, char *buf) 835 { 836 struct regulator_dev *rdev = dev_get_drvdata(dev); 837 struct regulator *regulator; 838 int uA = 0; 839 840 regulator_lock(rdev); 841 list_for_each_entry(regulator, &rdev->consumer_list, list) { 842 if (regulator->enable_count) 843 uA += regulator->uA_load; 844 } 845 regulator_unlock(rdev); 846 return sprintf(buf, "%d\n", uA); 847 } 848 static DEVICE_ATTR_RO(requested_microamps); 849 850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 851 char *buf) 852 { 853 struct regulator_dev *rdev = dev_get_drvdata(dev); 854 return sprintf(buf, "%d\n", rdev->use_count); 855 } 856 static DEVICE_ATTR_RO(num_users); 857 858 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 859 char *buf) 860 { 861 struct regulator_dev *rdev = dev_get_drvdata(dev); 862 863 switch (rdev->desc->type) { 864 case REGULATOR_VOLTAGE: 865 return sprintf(buf, "voltage\n"); 866 case REGULATOR_CURRENT: 867 return sprintf(buf, "current\n"); 868 } 869 return sprintf(buf, "unknown\n"); 870 } 871 static DEVICE_ATTR_RO(type); 872 873 static ssize_t suspend_mem_microvolts_show(struct device *dev, 874 struct device_attribute *attr, char *buf) 875 { 876 struct regulator_dev *rdev = dev_get_drvdata(dev); 877 878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 879 } 880 static DEVICE_ATTR_RO(suspend_mem_microvolts); 881 882 static ssize_t suspend_disk_microvolts_show(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 struct regulator_dev *rdev = dev_get_drvdata(dev); 886 887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 888 } 889 static DEVICE_ATTR_RO(suspend_disk_microvolts); 890 891 static ssize_t suspend_standby_microvolts_show(struct device *dev, 892 struct device_attribute *attr, char *buf) 893 { 894 struct regulator_dev *rdev = dev_get_drvdata(dev); 895 896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 897 } 898 static DEVICE_ATTR_RO(suspend_standby_microvolts); 899 900 static ssize_t suspend_mem_mode_show(struct device *dev, 901 struct device_attribute *attr, char *buf) 902 { 903 struct regulator_dev *rdev = dev_get_drvdata(dev); 904 905 return regulator_print_opmode(buf, 906 rdev->constraints->state_mem.mode); 907 } 908 static DEVICE_ATTR_RO(suspend_mem_mode); 909 910 static ssize_t suspend_disk_mode_show(struct device *dev, 911 struct device_attribute *attr, char *buf) 912 { 913 struct regulator_dev *rdev = dev_get_drvdata(dev); 914 915 return regulator_print_opmode(buf, 916 rdev->constraints->state_disk.mode); 917 } 918 static DEVICE_ATTR_RO(suspend_disk_mode); 919 920 static ssize_t suspend_standby_mode_show(struct device *dev, 921 struct device_attribute *attr, char *buf) 922 { 923 struct regulator_dev *rdev = dev_get_drvdata(dev); 924 925 return regulator_print_opmode(buf, 926 rdev->constraints->state_standby.mode); 927 } 928 static DEVICE_ATTR_RO(suspend_standby_mode); 929 930 static ssize_t suspend_mem_state_show(struct device *dev, 931 struct device_attribute *attr, char *buf) 932 { 933 struct regulator_dev *rdev = dev_get_drvdata(dev); 934 935 return regulator_print_state(buf, 936 rdev->constraints->state_mem.enabled); 937 } 938 static DEVICE_ATTR_RO(suspend_mem_state); 939 940 static ssize_t suspend_disk_state_show(struct device *dev, 941 struct device_attribute *attr, char *buf) 942 { 943 struct regulator_dev *rdev = dev_get_drvdata(dev); 944 945 return regulator_print_state(buf, 946 rdev->constraints->state_disk.enabled); 947 } 948 static DEVICE_ATTR_RO(suspend_disk_state); 949 950 static ssize_t suspend_standby_state_show(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 struct regulator_dev *rdev = dev_get_drvdata(dev); 954 955 return regulator_print_state(buf, 956 rdev->constraints->state_standby.enabled); 957 } 958 static DEVICE_ATTR_RO(suspend_standby_state); 959 960 static ssize_t bypass_show(struct device *dev, 961 struct device_attribute *attr, char *buf) 962 { 963 struct regulator_dev *rdev = dev_get_drvdata(dev); 964 const char *report; 965 bool bypass; 966 int ret; 967 968 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 969 970 if (ret != 0) 971 report = "unknown"; 972 else if (bypass) 973 report = "enabled"; 974 else 975 report = "disabled"; 976 977 return sprintf(buf, "%s\n", report); 978 } 979 static DEVICE_ATTR_RO(bypass); 980 981 #define REGULATOR_ERROR_ATTR(name, bit) \ 982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 983 char *buf) \ 984 { \ 985 int ret; \ 986 unsigned int flags; \ 987 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 988 ret = _regulator_get_error_flags(rdev, &flags); \ 989 if (ret) \ 990 return ret; \ 991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 992 } \ 993 static DEVICE_ATTR_RO(name) 994 995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1004 1005 /* Calculate the new optimum regulator operating mode based on the new total 1006 * consumer load. All locks held by caller 1007 */ 1008 static int drms_uA_update(struct regulator_dev *rdev) 1009 { 1010 struct regulator *sibling; 1011 int current_uA = 0, output_uV, input_uV, err; 1012 unsigned int mode; 1013 1014 /* 1015 * first check to see if we can set modes at all, otherwise just 1016 * tell the consumer everything is OK. 1017 */ 1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1019 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1020 return 0; 1021 } 1022 1023 if (!rdev->desc->ops->get_optimum_mode && 1024 !rdev->desc->ops->set_load) 1025 return 0; 1026 1027 if (!rdev->desc->ops->set_mode && 1028 !rdev->desc->ops->set_load) 1029 return -EINVAL; 1030 1031 /* calc total requested load */ 1032 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1033 if (sibling->enable_count) 1034 current_uA += sibling->uA_load; 1035 } 1036 1037 current_uA += rdev->constraints->system_load; 1038 1039 if (rdev->desc->ops->set_load) { 1040 /* set the optimum mode for our new total regulator load */ 1041 err = rdev->desc->ops->set_load(rdev, current_uA); 1042 if (err < 0) 1043 rdev_err(rdev, "failed to set load %d: %pe\n", 1044 current_uA, ERR_PTR(err)); 1045 } else { 1046 /* 1047 * Unfortunately in some cases the constraints->valid_ops has 1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1049 * That's not really legit but we won't consider it a fatal 1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1051 * wasn't set. 1052 */ 1053 if (!rdev->constraints->valid_modes_mask) { 1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1055 return 0; 1056 } 1057 1058 /* get output voltage */ 1059 output_uV = regulator_get_voltage_rdev(rdev); 1060 1061 /* 1062 * Don't return an error; if regulator driver cares about 1063 * output_uV then it's up to the driver to validate. 1064 */ 1065 if (output_uV <= 0) 1066 rdev_dbg(rdev, "invalid output voltage found\n"); 1067 1068 /* get input voltage */ 1069 input_uV = 0; 1070 if (rdev->supply) 1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1072 if (input_uV <= 0) 1073 input_uV = rdev->constraints->input_uV; 1074 1075 /* 1076 * Don't return an error; if regulator driver cares about 1077 * input_uV then it's up to the driver to validate. 1078 */ 1079 if (input_uV <= 0) 1080 rdev_dbg(rdev, "invalid input voltage found\n"); 1081 1082 /* now get the optimum mode for our new total regulator load */ 1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1084 output_uV, current_uA); 1085 1086 /* check the new mode is allowed */ 1087 err = regulator_mode_constrain(rdev, &mode); 1088 if (err < 0) { 1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1090 current_uA, input_uV, output_uV, ERR_PTR(err)); 1091 return err; 1092 } 1093 1094 err = rdev->desc->ops->set_mode(rdev, mode); 1095 if (err < 0) 1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1097 mode, ERR_PTR(err)); 1098 } 1099 1100 return err; 1101 } 1102 1103 static int __suspend_set_state(struct regulator_dev *rdev, 1104 const struct regulator_state *rstate) 1105 { 1106 int ret = 0; 1107 1108 if (rstate->enabled == ENABLE_IN_SUSPEND && 1109 rdev->desc->ops->set_suspend_enable) 1110 ret = rdev->desc->ops->set_suspend_enable(rdev); 1111 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1112 rdev->desc->ops->set_suspend_disable) 1113 ret = rdev->desc->ops->set_suspend_disable(rdev); 1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1115 ret = 0; 1116 1117 if (ret < 0) { 1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1119 return ret; 1120 } 1121 1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1124 if (ret < 0) { 1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1126 return ret; 1127 } 1128 } 1129 1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1132 if (ret < 0) { 1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1134 return ret; 1135 } 1136 } 1137 1138 return ret; 1139 } 1140 1141 static int suspend_set_initial_state(struct regulator_dev *rdev) 1142 { 1143 const struct regulator_state *rstate; 1144 1145 rstate = regulator_get_suspend_state_check(rdev, 1146 rdev->constraints->initial_state); 1147 if (!rstate) 1148 return 0; 1149 1150 return __suspend_set_state(rdev, rstate); 1151 } 1152 1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1154 static void print_constraints_debug(struct regulator_dev *rdev) 1155 { 1156 struct regulation_constraints *constraints = rdev->constraints; 1157 char buf[160] = ""; 1158 size_t len = sizeof(buf) - 1; 1159 int count = 0; 1160 int ret; 1161 1162 if (constraints->min_uV && constraints->max_uV) { 1163 if (constraints->min_uV == constraints->max_uV) 1164 count += scnprintf(buf + count, len - count, "%d mV ", 1165 constraints->min_uV / 1000); 1166 else 1167 count += scnprintf(buf + count, len - count, 1168 "%d <--> %d mV ", 1169 constraints->min_uV / 1000, 1170 constraints->max_uV / 1000); 1171 } 1172 1173 if (!constraints->min_uV || 1174 constraints->min_uV != constraints->max_uV) { 1175 ret = regulator_get_voltage_rdev(rdev); 1176 if (ret > 0) 1177 count += scnprintf(buf + count, len - count, 1178 "at %d mV ", ret / 1000); 1179 } 1180 1181 if (constraints->uV_offset) 1182 count += scnprintf(buf + count, len - count, "%dmV offset ", 1183 constraints->uV_offset / 1000); 1184 1185 if (constraints->min_uA && constraints->max_uA) { 1186 if (constraints->min_uA == constraints->max_uA) 1187 count += scnprintf(buf + count, len - count, "%d mA ", 1188 constraints->min_uA / 1000); 1189 else 1190 count += scnprintf(buf + count, len - count, 1191 "%d <--> %d mA ", 1192 constraints->min_uA / 1000, 1193 constraints->max_uA / 1000); 1194 } 1195 1196 if (!constraints->min_uA || 1197 constraints->min_uA != constraints->max_uA) { 1198 ret = _regulator_get_current_limit(rdev); 1199 if (ret > 0) 1200 count += scnprintf(buf + count, len - count, 1201 "at %d mA ", ret / 1000); 1202 } 1203 1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1205 count += scnprintf(buf + count, len - count, "fast "); 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1207 count += scnprintf(buf + count, len - count, "normal "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1209 count += scnprintf(buf + count, len - count, "idle "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1211 count += scnprintf(buf + count, len - count, "standby "); 1212 1213 if (!count) 1214 count = scnprintf(buf, len, "no parameters"); 1215 else 1216 --count; 1217 1218 count += scnprintf(buf + count, len - count, ", %s", 1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1220 1221 rdev_dbg(rdev, "%s\n", buf); 1222 } 1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 1227 static void print_constraints(struct regulator_dev *rdev) 1228 { 1229 struct regulation_constraints *constraints = rdev->constraints; 1230 1231 print_constraints_debug(rdev); 1232 1233 if ((constraints->min_uV != constraints->max_uV) && 1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1235 rdev_warn(rdev, 1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1237 } 1238 1239 static int machine_constraints_voltage(struct regulator_dev *rdev, 1240 struct regulation_constraints *constraints) 1241 { 1242 const struct regulator_ops *ops = rdev->desc->ops; 1243 int ret; 1244 1245 /* do we need to apply the constraint voltage */ 1246 if (rdev->constraints->apply_uV && 1247 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1248 int target_min, target_max; 1249 int current_uV = regulator_get_voltage_rdev(rdev); 1250 1251 if (current_uV == -ENOTRECOVERABLE) { 1252 /* This regulator can't be read and must be initialized */ 1253 rdev_info(rdev, "Setting %d-%duV\n", 1254 rdev->constraints->min_uV, 1255 rdev->constraints->max_uV); 1256 _regulator_do_set_voltage(rdev, 1257 rdev->constraints->min_uV, 1258 rdev->constraints->max_uV); 1259 current_uV = regulator_get_voltage_rdev(rdev); 1260 } 1261 1262 if (current_uV < 0) { 1263 if (current_uV != -EPROBE_DEFER) 1264 rdev_err(rdev, 1265 "failed to get the current voltage: %pe\n", 1266 ERR_PTR(current_uV)); 1267 return current_uV; 1268 } 1269 1270 /* 1271 * If we're below the minimum voltage move up to the 1272 * minimum voltage, if we're above the maximum voltage 1273 * then move down to the maximum. 1274 */ 1275 target_min = current_uV; 1276 target_max = current_uV; 1277 1278 if (current_uV < rdev->constraints->min_uV) { 1279 target_min = rdev->constraints->min_uV; 1280 target_max = rdev->constraints->min_uV; 1281 } 1282 1283 if (current_uV > rdev->constraints->max_uV) { 1284 target_min = rdev->constraints->max_uV; 1285 target_max = rdev->constraints->max_uV; 1286 } 1287 1288 if (target_min != current_uV || target_max != current_uV) { 1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1290 current_uV, target_min, target_max); 1291 ret = _regulator_do_set_voltage( 1292 rdev, target_min, target_max); 1293 if (ret < 0) { 1294 rdev_err(rdev, 1295 "failed to apply %d-%duV constraint: %pe\n", 1296 target_min, target_max, ERR_PTR(ret)); 1297 return ret; 1298 } 1299 } 1300 } 1301 1302 /* constrain machine-level voltage specs to fit 1303 * the actual range supported by this regulator. 1304 */ 1305 if (ops->list_voltage && rdev->desc->n_voltages) { 1306 int count = rdev->desc->n_voltages; 1307 int i; 1308 int min_uV = INT_MAX; 1309 int max_uV = INT_MIN; 1310 int cmin = constraints->min_uV; 1311 int cmax = constraints->max_uV; 1312 1313 /* it's safe to autoconfigure fixed-voltage supplies 1314 * and the constraints are used by list_voltage. 1315 */ 1316 if (count == 1 && !cmin) { 1317 cmin = 1; 1318 cmax = INT_MAX; 1319 constraints->min_uV = cmin; 1320 constraints->max_uV = cmax; 1321 } 1322 1323 /* voltage constraints are optional */ 1324 if ((cmin == 0) && (cmax == 0)) 1325 return 0; 1326 1327 /* else require explicit machine-level constraints */ 1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1329 rdev_err(rdev, "invalid voltage constraints\n"); 1330 return -EINVAL; 1331 } 1332 1333 /* no need to loop voltages if range is continuous */ 1334 if (rdev->desc->continuous_voltage_range) 1335 return 0; 1336 1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1338 for (i = 0; i < count; i++) { 1339 int value; 1340 1341 value = ops->list_voltage(rdev, i); 1342 if (value <= 0) 1343 continue; 1344 1345 /* maybe adjust [min_uV..max_uV] */ 1346 if (value >= cmin && value < min_uV) 1347 min_uV = value; 1348 if (value <= cmax && value > max_uV) 1349 max_uV = value; 1350 } 1351 1352 /* final: [min_uV..max_uV] valid iff constraints valid */ 1353 if (max_uV < min_uV) { 1354 rdev_err(rdev, 1355 "unsupportable voltage constraints %u-%uuV\n", 1356 min_uV, max_uV); 1357 return -EINVAL; 1358 } 1359 1360 /* use regulator's subset of machine constraints */ 1361 if (constraints->min_uV < min_uV) { 1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1363 constraints->min_uV, min_uV); 1364 constraints->min_uV = min_uV; 1365 } 1366 if (constraints->max_uV > max_uV) { 1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1368 constraints->max_uV, max_uV); 1369 constraints->max_uV = max_uV; 1370 } 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int machine_constraints_current(struct regulator_dev *rdev, 1377 struct regulation_constraints *constraints) 1378 { 1379 const struct regulator_ops *ops = rdev->desc->ops; 1380 int ret; 1381 1382 if (!constraints->min_uA && !constraints->max_uA) 1383 return 0; 1384 1385 if (constraints->min_uA > constraints->max_uA) { 1386 rdev_err(rdev, "Invalid current constraints\n"); 1387 return -EINVAL; 1388 } 1389 1390 if (!ops->set_current_limit || !ops->get_current_limit) { 1391 rdev_warn(rdev, "Operation of current configuration missing\n"); 1392 return 0; 1393 } 1394 1395 /* Set regulator current in constraints range */ 1396 ret = ops->set_current_limit(rdev, constraints->min_uA, 1397 constraints->max_uA); 1398 if (ret < 0) { 1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1400 return ret; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int _regulator_do_enable(struct regulator_dev *rdev); 1407 1408 static int notif_set_limit(struct regulator_dev *rdev, 1409 int (*set)(struct regulator_dev *, int, int, bool), 1410 int limit, int severity) 1411 { 1412 bool enable; 1413 1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1415 enable = false; 1416 limit = 0; 1417 } else { 1418 enable = true; 1419 } 1420 1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1422 limit = 0; 1423 1424 return set(rdev, limit, severity, enable); 1425 } 1426 1427 static int handle_notify_limits(struct regulator_dev *rdev, 1428 int (*set)(struct regulator_dev *, int, int, bool), 1429 struct notification_limit *limits) 1430 { 1431 int ret = 0; 1432 1433 if (!set) 1434 return -EOPNOTSUPP; 1435 1436 if (limits->prot) 1437 ret = notif_set_limit(rdev, set, limits->prot, 1438 REGULATOR_SEVERITY_PROT); 1439 if (ret) 1440 return ret; 1441 1442 if (limits->err) 1443 ret = notif_set_limit(rdev, set, limits->err, 1444 REGULATOR_SEVERITY_ERR); 1445 if (ret) 1446 return ret; 1447 1448 if (limits->warn) 1449 ret = notif_set_limit(rdev, set, limits->warn, 1450 REGULATOR_SEVERITY_WARN); 1451 1452 return ret; 1453 } 1454 /** 1455 * set_machine_constraints - sets regulator constraints 1456 * @rdev: regulator source 1457 * 1458 * Allows platform initialisation code to define and constrain 1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1460 * Constraints *must* be set by platform code in order for some 1461 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1462 * set_mode. 1463 */ 1464 static int set_machine_constraints(struct regulator_dev *rdev) 1465 { 1466 int ret = 0; 1467 const struct regulator_ops *ops = rdev->desc->ops; 1468 1469 ret = machine_constraints_voltage(rdev, rdev->constraints); 1470 if (ret != 0) 1471 return ret; 1472 1473 ret = machine_constraints_current(rdev, rdev->constraints); 1474 if (ret != 0) 1475 return ret; 1476 1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1478 ret = ops->set_input_current_limit(rdev, 1479 rdev->constraints->ilim_uA); 1480 if (ret < 0) { 1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1482 return ret; 1483 } 1484 } 1485 1486 /* do we need to setup our suspend state */ 1487 if (rdev->constraints->initial_state) { 1488 ret = suspend_set_initial_state(rdev); 1489 if (ret < 0) { 1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1491 return ret; 1492 } 1493 } 1494 1495 if (rdev->constraints->initial_mode) { 1496 if (!ops->set_mode) { 1497 rdev_err(rdev, "no set_mode operation\n"); 1498 return -EINVAL; 1499 } 1500 1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1502 if (ret < 0) { 1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1504 return ret; 1505 } 1506 } else if (rdev->constraints->system_load) { 1507 /* 1508 * We'll only apply the initial system load if an 1509 * initial mode wasn't specified. 1510 */ 1511 drms_uA_update(rdev); 1512 } 1513 1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1515 && ops->set_ramp_delay) { 1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1517 if (ret < 0) { 1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1519 return ret; 1520 } 1521 } 1522 1523 if (rdev->constraints->pull_down && ops->set_pull_down) { 1524 ret = ops->set_pull_down(rdev); 1525 if (ret < 0) { 1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1527 return ret; 1528 } 1529 } 1530 1531 if (rdev->constraints->soft_start && ops->set_soft_start) { 1532 ret = ops->set_soft_start(rdev); 1533 if (ret < 0) { 1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1535 return ret; 1536 } 1537 } 1538 1539 /* 1540 * Existing logic does not warn if over_current_protection is given as 1541 * a constraint but driver does not support that. I think we should 1542 * warn about this type of issues as it is possible someone changes 1543 * PMIC on board to another type - and the another PMIC's driver does 1544 * not support setting protection. Board composer may happily believe 1545 * the DT limits are respected - especially if the new PMIC HW also 1546 * supports protection but the driver does not. I won't change the logic 1547 * without hearing more experienced opinion on this though. 1548 * 1549 * If warning is seen as a good idea then we can merge handling the 1550 * over-curret protection and detection and get rid of this special 1551 * handling. 1552 */ 1553 if (rdev->constraints->over_current_protection 1554 && ops->set_over_current_protection) { 1555 int lim = rdev->constraints->over_curr_limits.prot; 1556 1557 ret = ops->set_over_current_protection(rdev, lim, 1558 REGULATOR_SEVERITY_PROT, 1559 true); 1560 if (ret < 0) { 1561 rdev_err(rdev, "failed to set over current protection: %pe\n", 1562 ERR_PTR(ret)); 1563 return ret; 1564 } 1565 } 1566 1567 if (rdev->constraints->over_current_detection) 1568 ret = handle_notify_limits(rdev, 1569 ops->set_over_current_protection, 1570 &rdev->constraints->over_curr_limits); 1571 if (ret) { 1572 if (ret != -EOPNOTSUPP) { 1573 rdev_err(rdev, "failed to set over current limits: %pe\n", 1574 ERR_PTR(ret)); 1575 return ret; 1576 } 1577 rdev_warn(rdev, 1578 "IC does not support requested over-current limits\n"); 1579 } 1580 1581 if (rdev->constraints->over_voltage_detection) 1582 ret = handle_notify_limits(rdev, 1583 ops->set_over_voltage_protection, 1584 &rdev->constraints->over_voltage_limits); 1585 if (ret) { 1586 if (ret != -EOPNOTSUPP) { 1587 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1588 ERR_PTR(ret)); 1589 return ret; 1590 } 1591 rdev_warn(rdev, 1592 "IC does not support requested over voltage limits\n"); 1593 } 1594 1595 if (rdev->constraints->under_voltage_detection) 1596 ret = handle_notify_limits(rdev, 1597 ops->set_under_voltage_protection, 1598 &rdev->constraints->under_voltage_limits); 1599 if (ret) { 1600 if (ret != -EOPNOTSUPP) { 1601 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1602 ERR_PTR(ret)); 1603 return ret; 1604 } 1605 rdev_warn(rdev, 1606 "IC does not support requested under voltage limits\n"); 1607 } 1608 1609 if (rdev->constraints->over_temp_detection) 1610 ret = handle_notify_limits(rdev, 1611 ops->set_thermal_protection, 1612 &rdev->constraints->temp_limits); 1613 if (ret) { 1614 if (ret != -EOPNOTSUPP) { 1615 rdev_err(rdev, "failed to set temperature limits %pe\n", 1616 ERR_PTR(ret)); 1617 return ret; 1618 } 1619 rdev_warn(rdev, 1620 "IC does not support requested temperature limits\n"); 1621 } 1622 1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1624 bool ad_state = (rdev->constraints->active_discharge == 1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1626 1627 ret = ops->set_active_discharge(rdev, ad_state); 1628 if (ret < 0) { 1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1630 return ret; 1631 } 1632 } 1633 1634 /* 1635 * If there is no mechanism for controlling the regulator then 1636 * flag it as always_on so we don't end up duplicating checks 1637 * for this so much. Note that we could control the state of 1638 * a supply to control the output on a regulator that has no 1639 * direct control. 1640 */ 1641 if (!rdev->ena_pin && !ops->enable) { 1642 if (rdev->supply_name && !rdev->supply) 1643 return -EPROBE_DEFER; 1644 1645 if (rdev->supply) 1646 rdev->constraints->always_on = 1647 rdev->supply->rdev->constraints->always_on; 1648 else 1649 rdev->constraints->always_on = true; 1650 } 1651 1652 /* If the constraints say the regulator should be on at this point 1653 * and we have control then make sure it is enabled. 1654 */ 1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1656 /* If we want to enable this regulator, make sure that we know 1657 * the supplying regulator. 1658 */ 1659 if (rdev->supply_name && !rdev->supply) 1660 return -EPROBE_DEFER; 1661 1662 /* If supplying regulator has already been enabled, 1663 * it's not intended to have use_count increment 1664 * when rdev is only boot-on. 1665 */ 1666 if (rdev->supply && 1667 (rdev->constraints->always_on || 1668 !regulator_is_enabled(rdev->supply))) { 1669 ret = regulator_enable(rdev->supply); 1670 if (ret < 0) { 1671 _regulator_put(rdev->supply); 1672 rdev->supply = NULL; 1673 return ret; 1674 } 1675 } 1676 1677 ret = _regulator_do_enable(rdev); 1678 if (ret < 0 && ret != -EINVAL) { 1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1680 return ret; 1681 } 1682 1683 if (rdev->constraints->always_on) 1684 rdev->use_count++; 1685 } else if (rdev->desc->off_on_delay) { 1686 rdev->last_off = ktime_get(); 1687 } 1688 1689 print_constraints(rdev); 1690 return 0; 1691 } 1692 1693 /** 1694 * set_supply - set regulator supply regulator 1695 * @rdev: regulator (locked) 1696 * @supply_rdev: supply regulator (locked)) 1697 * 1698 * Called by platform initialisation code to set the supply regulator for this 1699 * regulator. This ensures that a regulators supply will also be enabled by the 1700 * core if it's child is enabled. 1701 */ 1702 static int set_supply(struct regulator_dev *rdev, 1703 struct regulator_dev *supply_rdev) 1704 { 1705 int err; 1706 1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1708 1709 if (!try_module_get(supply_rdev->owner)) 1710 return -ENODEV; 1711 1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1713 if (rdev->supply == NULL) { 1714 module_put(supply_rdev->owner); 1715 err = -ENOMEM; 1716 return err; 1717 } 1718 supply_rdev->open_count++; 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1725 * @rdev: regulator source 1726 * @consumer_dev_name: dev_name() string for device supply applies to 1727 * @supply: symbolic name for supply 1728 * 1729 * Allows platform initialisation code to map physical regulator 1730 * sources to symbolic names for supplies for use by devices. Devices 1731 * should use these symbolic names to request regulators, avoiding the 1732 * need to provide board-specific regulator names as platform data. 1733 */ 1734 static int set_consumer_device_supply(struct regulator_dev *rdev, 1735 const char *consumer_dev_name, 1736 const char *supply) 1737 { 1738 struct regulator_map *node, *new_node; 1739 int has_dev; 1740 1741 if (supply == NULL) 1742 return -EINVAL; 1743 1744 if (consumer_dev_name != NULL) 1745 has_dev = 1; 1746 else 1747 has_dev = 0; 1748 1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1750 if (new_node == NULL) 1751 return -ENOMEM; 1752 1753 new_node->regulator = rdev; 1754 new_node->supply = supply; 1755 1756 if (has_dev) { 1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1758 if (new_node->dev_name == NULL) { 1759 kfree(new_node); 1760 return -ENOMEM; 1761 } 1762 } 1763 1764 mutex_lock(®ulator_list_mutex); 1765 list_for_each_entry(node, ®ulator_map_list, list) { 1766 if (node->dev_name && consumer_dev_name) { 1767 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1768 continue; 1769 } else if (node->dev_name || consumer_dev_name) { 1770 continue; 1771 } 1772 1773 if (strcmp(node->supply, supply) != 0) 1774 continue; 1775 1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1777 consumer_dev_name, 1778 dev_name(&node->regulator->dev), 1779 node->regulator->desc->name, 1780 supply, 1781 dev_name(&rdev->dev), rdev_get_name(rdev)); 1782 goto fail; 1783 } 1784 1785 list_add(&new_node->list, ®ulator_map_list); 1786 mutex_unlock(®ulator_list_mutex); 1787 1788 return 0; 1789 1790 fail: 1791 mutex_unlock(®ulator_list_mutex); 1792 kfree(new_node->dev_name); 1793 kfree(new_node); 1794 return -EBUSY; 1795 } 1796 1797 static void unset_regulator_supplies(struct regulator_dev *rdev) 1798 { 1799 struct regulator_map *node, *n; 1800 1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1802 if (rdev == node->regulator) { 1803 list_del(&node->list); 1804 kfree(node->dev_name); 1805 kfree(node); 1806 } 1807 } 1808 } 1809 1810 #ifdef CONFIG_DEBUG_FS 1811 static ssize_t constraint_flags_read_file(struct file *file, 1812 char __user *user_buf, 1813 size_t count, loff_t *ppos) 1814 { 1815 const struct regulator *regulator = file->private_data; 1816 const struct regulation_constraints *c = regulator->rdev->constraints; 1817 char *buf; 1818 ssize_t ret; 1819 1820 if (!c) 1821 return 0; 1822 1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1824 if (!buf) 1825 return -ENOMEM; 1826 1827 ret = snprintf(buf, PAGE_SIZE, 1828 "always_on: %u\n" 1829 "boot_on: %u\n" 1830 "apply_uV: %u\n" 1831 "ramp_disable: %u\n" 1832 "soft_start: %u\n" 1833 "pull_down: %u\n" 1834 "over_current_protection: %u\n", 1835 c->always_on, 1836 c->boot_on, 1837 c->apply_uV, 1838 c->ramp_disable, 1839 c->soft_start, 1840 c->pull_down, 1841 c->over_current_protection); 1842 1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1844 kfree(buf); 1845 1846 return ret; 1847 } 1848 1849 #endif 1850 1851 static const struct file_operations constraint_flags_fops = { 1852 #ifdef CONFIG_DEBUG_FS 1853 .open = simple_open, 1854 .read = constraint_flags_read_file, 1855 .llseek = default_llseek, 1856 #endif 1857 }; 1858 1859 #define REG_STR_SIZE 64 1860 1861 static struct regulator *create_regulator(struct regulator_dev *rdev, 1862 struct device *dev, 1863 const char *supply_name) 1864 { 1865 struct regulator *regulator; 1866 int err = 0; 1867 1868 lockdep_assert_held_once(&rdev->mutex.base); 1869 1870 if (dev) { 1871 char buf[REG_STR_SIZE]; 1872 int size; 1873 1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1875 dev->kobj.name, supply_name); 1876 if (size >= REG_STR_SIZE) 1877 return NULL; 1878 1879 supply_name = kstrdup(buf, GFP_KERNEL); 1880 if (supply_name == NULL) 1881 return NULL; 1882 } else { 1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1884 if (supply_name == NULL) 1885 return NULL; 1886 } 1887 1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1889 if (regulator == NULL) { 1890 kfree_const(supply_name); 1891 return NULL; 1892 } 1893 1894 regulator->rdev = rdev; 1895 regulator->supply_name = supply_name; 1896 1897 list_add(®ulator->list, &rdev->consumer_list); 1898 1899 if (dev) { 1900 regulator->dev = dev; 1901 1902 /* Add a link to the device sysfs entry */ 1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1904 supply_name); 1905 if (err) { 1906 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1907 dev->kobj.name, ERR_PTR(err)); 1908 /* non-fatal */ 1909 } 1910 } 1911 1912 if (err != -EEXIST) 1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1914 if (!regulator->debugfs) { 1915 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1916 } else { 1917 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1918 ®ulator->uA_load); 1919 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1920 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1921 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1922 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1923 debugfs_create_file("constraint_flags", 0444, 1924 regulator->debugfs, regulator, 1925 &constraint_flags_fops); 1926 } 1927 1928 /* 1929 * Check now if the regulator is an always on regulator - if 1930 * it is then we don't need to do nearly so much work for 1931 * enable/disable calls. 1932 */ 1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1934 _regulator_is_enabled(rdev)) 1935 regulator->always_on = true; 1936 1937 return regulator; 1938 } 1939 1940 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1941 { 1942 if (rdev->constraints && rdev->constraints->enable_time) 1943 return rdev->constraints->enable_time; 1944 if (rdev->desc->ops->enable_time) 1945 return rdev->desc->ops->enable_time(rdev); 1946 return rdev->desc->enable_time; 1947 } 1948 1949 static struct regulator_supply_alias *regulator_find_supply_alias( 1950 struct device *dev, const char *supply) 1951 { 1952 struct regulator_supply_alias *map; 1953 1954 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1956 return map; 1957 1958 return NULL; 1959 } 1960 1961 static void regulator_supply_alias(struct device **dev, const char **supply) 1962 { 1963 struct regulator_supply_alias *map; 1964 1965 map = regulator_find_supply_alias(*dev, *supply); 1966 if (map) { 1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1968 *supply, map->alias_supply, 1969 dev_name(map->alias_dev)); 1970 *dev = map->alias_dev; 1971 *supply = map->alias_supply; 1972 } 1973 } 1974 1975 static int regulator_match(struct device *dev, const void *data) 1976 { 1977 struct regulator_dev *r = dev_to_rdev(dev); 1978 1979 return strcmp(rdev_get_name(r), data) == 0; 1980 } 1981 1982 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1983 { 1984 struct device *dev; 1985 1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1987 1988 return dev ? dev_to_rdev(dev) : NULL; 1989 } 1990 1991 /** 1992 * regulator_dev_lookup - lookup a regulator device. 1993 * @dev: device for regulator "consumer". 1994 * @supply: Supply name or regulator ID. 1995 * 1996 * If successful, returns a struct regulator_dev that corresponds to the name 1997 * @supply and with the embedded struct device refcount incremented by one. 1998 * The refcount must be dropped by calling put_device(). 1999 * On failure one of the following ERR-PTR-encoded values is returned: 2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 2001 * in the future. 2002 */ 2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2004 const char *supply) 2005 { 2006 struct regulator_dev *r = NULL; 2007 struct device_node *node; 2008 struct regulator_map *map; 2009 const char *devname = NULL; 2010 2011 regulator_supply_alias(&dev, &supply); 2012 2013 /* first do a dt based lookup */ 2014 if (dev && dev->of_node) { 2015 node = of_get_regulator(dev, supply); 2016 if (node) { 2017 r = of_find_regulator_by_node(node); 2018 of_node_put(node); 2019 if (r) 2020 return r; 2021 2022 /* 2023 * We have a node, but there is no device. 2024 * assume it has not registered yet. 2025 */ 2026 return ERR_PTR(-EPROBE_DEFER); 2027 } 2028 } 2029 2030 /* if not found, try doing it non-dt way */ 2031 if (dev) 2032 devname = dev_name(dev); 2033 2034 mutex_lock(®ulator_list_mutex); 2035 list_for_each_entry(map, ®ulator_map_list, list) { 2036 /* If the mapping has a device set up it must match */ 2037 if (map->dev_name && 2038 (!devname || strcmp(map->dev_name, devname))) 2039 continue; 2040 2041 if (strcmp(map->supply, supply) == 0 && 2042 get_device(&map->regulator->dev)) { 2043 r = map->regulator; 2044 break; 2045 } 2046 } 2047 mutex_unlock(®ulator_list_mutex); 2048 2049 if (r) 2050 return r; 2051 2052 r = regulator_lookup_by_name(supply); 2053 if (r) 2054 return r; 2055 2056 return ERR_PTR(-ENODEV); 2057 } 2058 2059 static int regulator_resolve_supply(struct regulator_dev *rdev) 2060 { 2061 struct regulator_dev *r; 2062 struct device *dev = rdev->dev.parent; 2063 struct ww_acquire_ctx ww_ctx; 2064 int ret = 0; 2065 2066 /* No supply to resolve? */ 2067 if (!rdev->supply_name) 2068 return 0; 2069 2070 /* Supply already resolved? (fast-path without locking contention) */ 2071 if (rdev->supply) 2072 return 0; 2073 2074 r = regulator_dev_lookup(dev, rdev->supply_name); 2075 if (IS_ERR(r)) { 2076 ret = PTR_ERR(r); 2077 2078 /* Did the lookup explicitly defer for us? */ 2079 if (ret == -EPROBE_DEFER) 2080 goto out; 2081 2082 if (have_full_constraints()) { 2083 r = dummy_regulator_rdev; 2084 get_device(&r->dev); 2085 } else { 2086 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2087 rdev->supply_name, rdev->desc->name); 2088 ret = -EPROBE_DEFER; 2089 goto out; 2090 } 2091 } 2092 2093 if (r == rdev) { 2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2095 rdev->desc->name, rdev->supply_name); 2096 if (!have_full_constraints()) { 2097 ret = -EINVAL; 2098 goto out; 2099 } 2100 r = dummy_regulator_rdev; 2101 get_device(&r->dev); 2102 } 2103 2104 /* 2105 * If the supply's parent device is not the same as the 2106 * regulator's parent device, then ensure the parent device 2107 * is bound before we resolve the supply, in case the parent 2108 * device get probe deferred and unregisters the supply. 2109 */ 2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2111 if (!device_is_bound(r->dev.parent)) { 2112 put_device(&r->dev); 2113 ret = -EPROBE_DEFER; 2114 goto out; 2115 } 2116 } 2117 2118 /* Recursively resolve the supply of the supply */ 2119 ret = regulator_resolve_supply(r); 2120 if (ret < 0) { 2121 put_device(&r->dev); 2122 goto out; 2123 } 2124 2125 /* 2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2127 * between rdev->supply null check and setting rdev->supply in 2128 * set_supply() from concurrent tasks. 2129 */ 2130 regulator_lock_two(rdev, r, &ww_ctx); 2131 2132 /* Supply just resolved by a concurrent task? */ 2133 if (rdev->supply) { 2134 regulator_unlock_two(rdev, r, &ww_ctx); 2135 put_device(&r->dev); 2136 goto out; 2137 } 2138 2139 ret = set_supply(rdev, r); 2140 if (ret < 0) { 2141 regulator_unlock_two(rdev, r, &ww_ctx); 2142 put_device(&r->dev); 2143 goto out; 2144 } 2145 2146 regulator_unlock_two(rdev, r, &ww_ctx); 2147 2148 /* 2149 * In set_machine_constraints() we may have turned this regulator on 2150 * but we couldn't propagate to the supply if it hadn't been resolved 2151 * yet. Do it now. 2152 */ 2153 if (rdev->use_count) { 2154 ret = regulator_enable(rdev->supply); 2155 if (ret < 0) { 2156 _regulator_put(rdev->supply); 2157 rdev->supply = NULL; 2158 goto out; 2159 } 2160 } 2161 2162 out: 2163 return ret; 2164 } 2165 2166 /* Internal regulator request function */ 2167 struct regulator *_regulator_get(struct device *dev, const char *id, 2168 enum regulator_get_type get_type) 2169 { 2170 struct regulator_dev *rdev; 2171 struct regulator *regulator; 2172 struct device_link *link; 2173 int ret; 2174 2175 if (get_type >= MAX_GET_TYPE) { 2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2177 return ERR_PTR(-EINVAL); 2178 } 2179 2180 if (id == NULL) { 2181 pr_err("get() with no identifier\n"); 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 rdev = regulator_dev_lookup(dev, id); 2186 if (IS_ERR(rdev)) { 2187 ret = PTR_ERR(rdev); 2188 2189 /* 2190 * If regulator_dev_lookup() fails with error other 2191 * than -ENODEV our job here is done, we simply return it. 2192 */ 2193 if (ret != -ENODEV) 2194 return ERR_PTR(ret); 2195 2196 if (!have_full_constraints()) { 2197 dev_warn(dev, 2198 "incomplete constraints, dummy supplies not allowed\n"); 2199 return ERR_PTR(-ENODEV); 2200 } 2201 2202 switch (get_type) { 2203 case NORMAL_GET: 2204 /* 2205 * Assume that a regulator is physically present and 2206 * enabled, even if it isn't hooked up, and just 2207 * provide a dummy. 2208 */ 2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2210 rdev = dummy_regulator_rdev; 2211 get_device(&rdev->dev); 2212 break; 2213 2214 case EXCLUSIVE_GET: 2215 dev_warn(dev, 2216 "dummy supplies not allowed for exclusive requests\n"); 2217 fallthrough; 2218 2219 default: 2220 return ERR_PTR(-ENODEV); 2221 } 2222 } 2223 2224 if (rdev->exclusive) { 2225 regulator = ERR_PTR(-EPERM); 2226 put_device(&rdev->dev); 2227 return regulator; 2228 } 2229 2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2231 regulator = ERR_PTR(-EBUSY); 2232 put_device(&rdev->dev); 2233 return regulator; 2234 } 2235 2236 mutex_lock(®ulator_list_mutex); 2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2238 mutex_unlock(®ulator_list_mutex); 2239 2240 if (ret != 0) { 2241 regulator = ERR_PTR(-EPROBE_DEFER); 2242 put_device(&rdev->dev); 2243 return regulator; 2244 } 2245 2246 ret = regulator_resolve_supply(rdev); 2247 if (ret < 0) { 2248 regulator = ERR_PTR(ret); 2249 put_device(&rdev->dev); 2250 return regulator; 2251 } 2252 2253 if (!try_module_get(rdev->owner)) { 2254 regulator = ERR_PTR(-EPROBE_DEFER); 2255 put_device(&rdev->dev); 2256 return regulator; 2257 } 2258 2259 regulator_lock(rdev); 2260 regulator = create_regulator(rdev, dev, id); 2261 regulator_unlock(rdev); 2262 if (regulator == NULL) { 2263 regulator = ERR_PTR(-ENOMEM); 2264 module_put(rdev->owner); 2265 put_device(&rdev->dev); 2266 return regulator; 2267 } 2268 2269 rdev->open_count++; 2270 if (get_type == EXCLUSIVE_GET) { 2271 rdev->exclusive = 1; 2272 2273 ret = _regulator_is_enabled(rdev); 2274 if (ret > 0) { 2275 rdev->use_count = 1; 2276 regulator->enable_count = 1; 2277 } else { 2278 rdev->use_count = 0; 2279 regulator->enable_count = 0; 2280 } 2281 } 2282 2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2284 if (!IS_ERR_OR_NULL(link)) 2285 regulator->device_link = true; 2286 2287 return regulator; 2288 } 2289 2290 /** 2291 * regulator_get - lookup and obtain a reference to a regulator. 2292 * @dev: device for regulator "consumer" 2293 * @id: Supply name or regulator ID. 2294 * 2295 * Returns a struct regulator corresponding to the regulator producer, 2296 * or IS_ERR() condition containing errno. 2297 * 2298 * Use of supply names configured via set_consumer_device_supply() is 2299 * strongly encouraged. It is recommended that the supply name used 2300 * should match the name used for the supply and/or the relevant 2301 * device pins in the datasheet. 2302 */ 2303 struct regulator *regulator_get(struct device *dev, const char *id) 2304 { 2305 return _regulator_get(dev, id, NORMAL_GET); 2306 } 2307 EXPORT_SYMBOL_GPL(regulator_get); 2308 2309 /** 2310 * regulator_get_exclusive - obtain exclusive access to a regulator. 2311 * @dev: device for regulator "consumer" 2312 * @id: Supply name or regulator ID. 2313 * 2314 * Returns a struct regulator corresponding to the regulator producer, 2315 * or IS_ERR() condition containing errno. Other consumers will be 2316 * unable to obtain this regulator while this reference is held and the 2317 * use count for the regulator will be initialised to reflect the current 2318 * state of the regulator. 2319 * 2320 * This is intended for use by consumers which cannot tolerate shared 2321 * use of the regulator such as those which need to force the 2322 * regulator off for correct operation of the hardware they are 2323 * controlling. 2324 * 2325 * Use of supply names configured via set_consumer_device_supply() is 2326 * strongly encouraged. It is recommended that the supply name used 2327 * should match the name used for the supply and/or the relevant 2328 * device pins in the datasheet. 2329 */ 2330 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2331 { 2332 return _regulator_get(dev, id, EXCLUSIVE_GET); 2333 } 2334 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2335 2336 /** 2337 * regulator_get_optional - obtain optional access to a regulator. 2338 * @dev: device for regulator "consumer" 2339 * @id: Supply name or regulator ID. 2340 * 2341 * Returns a struct regulator corresponding to the regulator producer, 2342 * or IS_ERR() condition containing errno. 2343 * 2344 * This is intended for use by consumers for devices which can have 2345 * some supplies unconnected in normal use, such as some MMC devices. 2346 * It can allow the regulator core to provide stub supplies for other 2347 * supplies requested using normal regulator_get() calls without 2348 * disrupting the operation of drivers that can handle absent 2349 * supplies. 2350 * 2351 * Use of supply names configured via set_consumer_device_supply() is 2352 * strongly encouraged. It is recommended that the supply name used 2353 * should match the name used for the supply and/or the relevant 2354 * device pins in the datasheet. 2355 */ 2356 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2357 { 2358 return _regulator_get(dev, id, OPTIONAL_GET); 2359 } 2360 EXPORT_SYMBOL_GPL(regulator_get_optional); 2361 2362 static void destroy_regulator(struct regulator *regulator) 2363 { 2364 struct regulator_dev *rdev = regulator->rdev; 2365 2366 debugfs_remove_recursive(regulator->debugfs); 2367 2368 if (regulator->dev) { 2369 if (regulator->device_link) 2370 device_link_remove(regulator->dev, &rdev->dev); 2371 2372 /* remove any sysfs entries */ 2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2374 } 2375 2376 regulator_lock(rdev); 2377 list_del(®ulator->list); 2378 2379 rdev->open_count--; 2380 rdev->exclusive = 0; 2381 regulator_unlock(rdev); 2382 2383 kfree_const(regulator->supply_name); 2384 kfree(regulator); 2385 } 2386 2387 /* regulator_list_mutex lock held by regulator_put() */ 2388 static void _regulator_put(struct regulator *regulator) 2389 { 2390 struct regulator_dev *rdev; 2391 2392 if (IS_ERR_OR_NULL(regulator)) 2393 return; 2394 2395 lockdep_assert_held_once(®ulator_list_mutex); 2396 2397 /* Docs say you must disable before calling regulator_put() */ 2398 WARN_ON(regulator->enable_count); 2399 2400 rdev = regulator->rdev; 2401 2402 destroy_regulator(regulator); 2403 2404 module_put(rdev->owner); 2405 put_device(&rdev->dev); 2406 } 2407 2408 /** 2409 * regulator_put - "free" the regulator source 2410 * @regulator: regulator source 2411 * 2412 * Note: drivers must ensure that all regulator_enable calls made on this 2413 * regulator source are balanced by regulator_disable calls prior to calling 2414 * this function. 2415 */ 2416 void regulator_put(struct regulator *regulator) 2417 { 2418 mutex_lock(®ulator_list_mutex); 2419 _regulator_put(regulator); 2420 mutex_unlock(®ulator_list_mutex); 2421 } 2422 EXPORT_SYMBOL_GPL(regulator_put); 2423 2424 /** 2425 * regulator_register_supply_alias - Provide device alias for supply lookup 2426 * 2427 * @dev: device that will be given as the regulator "consumer" 2428 * @id: Supply name or regulator ID 2429 * @alias_dev: device that should be used to lookup the supply 2430 * @alias_id: Supply name or regulator ID that should be used to lookup the 2431 * supply 2432 * 2433 * All lookups for id on dev will instead be conducted for alias_id on 2434 * alias_dev. 2435 */ 2436 int regulator_register_supply_alias(struct device *dev, const char *id, 2437 struct device *alias_dev, 2438 const char *alias_id) 2439 { 2440 struct regulator_supply_alias *map; 2441 2442 map = regulator_find_supply_alias(dev, id); 2443 if (map) 2444 return -EEXIST; 2445 2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2447 if (!map) 2448 return -ENOMEM; 2449 2450 map->src_dev = dev; 2451 map->src_supply = id; 2452 map->alias_dev = alias_dev; 2453 map->alias_supply = alias_id; 2454 2455 list_add(&map->list, ®ulator_supply_alias_list); 2456 2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2458 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2463 2464 /** 2465 * regulator_unregister_supply_alias - Remove device alias 2466 * 2467 * @dev: device that will be given as the regulator "consumer" 2468 * @id: Supply name or regulator ID 2469 * 2470 * Remove a lookup alias if one exists for id on dev. 2471 */ 2472 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2473 { 2474 struct regulator_supply_alias *map; 2475 2476 map = regulator_find_supply_alias(dev, id); 2477 if (map) { 2478 list_del(&map->list); 2479 kfree(map); 2480 } 2481 } 2482 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2483 2484 /** 2485 * regulator_bulk_register_supply_alias - register multiple aliases 2486 * 2487 * @dev: device that will be given as the regulator "consumer" 2488 * @id: List of supply names or regulator IDs 2489 * @alias_dev: device that should be used to lookup the supply 2490 * @alias_id: List of supply names or regulator IDs that should be used to 2491 * lookup the supply 2492 * @num_id: Number of aliases to register 2493 * 2494 * @return 0 on success, an errno on failure. 2495 * 2496 * This helper function allows drivers to register several supply 2497 * aliases in one operation. If any of the aliases cannot be 2498 * registered any aliases that were registered will be removed 2499 * before returning to the caller. 2500 */ 2501 int regulator_bulk_register_supply_alias(struct device *dev, 2502 const char *const *id, 2503 struct device *alias_dev, 2504 const char *const *alias_id, 2505 int num_id) 2506 { 2507 int i; 2508 int ret; 2509 2510 for (i = 0; i < num_id; ++i) { 2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2512 alias_id[i]); 2513 if (ret < 0) 2514 goto err; 2515 } 2516 2517 return 0; 2518 2519 err: 2520 dev_err(dev, 2521 "Failed to create supply alias %s,%s -> %s,%s\n", 2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2523 2524 while (--i >= 0) 2525 regulator_unregister_supply_alias(dev, id[i]); 2526 2527 return ret; 2528 } 2529 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2530 2531 /** 2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2533 * 2534 * @dev: device that will be given as the regulator "consumer" 2535 * @id: List of supply names or regulator IDs 2536 * @num_id: Number of aliases to unregister 2537 * 2538 * This helper function allows drivers to unregister several supply 2539 * aliases in one operation. 2540 */ 2541 void regulator_bulk_unregister_supply_alias(struct device *dev, 2542 const char *const *id, 2543 int num_id) 2544 { 2545 int i; 2546 2547 for (i = 0; i < num_id; ++i) 2548 regulator_unregister_supply_alias(dev, id[i]); 2549 } 2550 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2551 2552 2553 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2554 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2555 const struct regulator_config *config) 2556 { 2557 struct regulator_enable_gpio *pin, *new_pin; 2558 struct gpio_desc *gpiod; 2559 2560 gpiod = config->ena_gpiod; 2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2562 2563 mutex_lock(®ulator_list_mutex); 2564 2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2566 if (pin->gpiod == gpiod) { 2567 rdev_dbg(rdev, "GPIO is already used\n"); 2568 goto update_ena_gpio_to_rdev; 2569 } 2570 } 2571 2572 if (new_pin == NULL) { 2573 mutex_unlock(®ulator_list_mutex); 2574 return -ENOMEM; 2575 } 2576 2577 pin = new_pin; 2578 new_pin = NULL; 2579 2580 pin->gpiod = gpiod; 2581 list_add(&pin->list, ®ulator_ena_gpio_list); 2582 2583 update_ena_gpio_to_rdev: 2584 pin->request_count++; 2585 rdev->ena_pin = pin; 2586 2587 mutex_unlock(®ulator_list_mutex); 2588 kfree(new_pin); 2589 2590 return 0; 2591 } 2592 2593 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2594 { 2595 struct regulator_enable_gpio *pin, *n; 2596 2597 if (!rdev->ena_pin) 2598 return; 2599 2600 /* Free the GPIO only in case of no use */ 2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2602 if (pin != rdev->ena_pin) 2603 continue; 2604 2605 if (--pin->request_count) 2606 break; 2607 2608 gpiod_put(pin->gpiod); 2609 list_del(&pin->list); 2610 kfree(pin); 2611 break; 2612 } 2613 2614 rdev->ena_pin = NULL; 2615 } 2616 2617 /** 2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2619 * @rdev: regulator_dev structure 2620 * @enable: enable GPIO at initial use? 2621 * 2622 * GPIO is enabled in case of initial use. (enable_count is 0) 2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2624 */ 2625 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2626 { 2627 struct regulator_enable_gpio *pin = rdev->ena_pin; 2628 2629 if (!pin) 2630 return -EINVAL; 2631 2632 if (enable) { 2633 /* Enable GPIO at initial use */ 2634 if (pin->enable_count == 0) 2635 gpiod_set_value_cansleep(pin->gpiod, 1); 2636 2637 pin->enable_count++; 2638 } else { 2639 if (pin->enable_count > 1) { 2640 pin->enable_count--; 2641 return 0; 2642 } 2643 2644 /* Disable GPIO if not used */ 2645 if (pin->enable_count <= 1) { 2646 gpiod_set_value_cansleep(pin->gpiod, 0); 2647 pin->enable_count = 0; 2648 } 2649 } 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * _regulator_delay_helper - a delay helper function 2656 * @delay: time to delay in microseconds 2657 * 2658 * Delay for the requested amount of time as per the guidelines in: 2659 * 2660 * Documentation/timers/timers-howto.rst 2661 * 2662 * The assumption here is that these regulator operations will never used in 2663 * atomic context and therefore sleeping functions can be used. 2664 */ 2665 static void _regulator_delay_helper(unsigned int delay) 2666 { 2667 unsigned int ms = delay / 1000; 2668 unsigned int us = delay % 1000; 2669 2670 if (ms > 0) { 2671 /* 2672 * For small enough values, handle super-millisecond 2673 * delays in the usleep_range() call below. 2674 */ 2675 if (ms < 20) 2676 us += ms * 1000; 2677 else 2678 msleep(ms); 2679 } 2680 2681 /* 2682 * Give the scheduler some room to coalesce with any other 2683 * wakeup sources. For delays shorter than 10 us, don't even 2684 * bother setting up high-resolution timers and just busy- 2685 * loop. 2686 */ 2687 if (us >= 10) 2688 usleep_range(us, us + 100); 2689 else 2690 udelay(us); 2691 } 2692 2693 /** 2694 * _regulator_check_status_enabled 2695 * 2696 * A helper function to check if the regulator status can be interpreted 2697 * as 'regulator is enabled'. 2698 * @rdev: the regulator device to check 2699 * 2700 * Return: 2701 * * 1 - if status shows regulator is in enabled state 2702 * * 0 - if not enabled state 2703 * * Error Value - as received from ops->get_status() 2704 */ 2705 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2706 { 2707 int ret = rdev->desc->ops->get_status(rdev); 2708 2709 if (ret < 0) { 2710 rdev_info(rdev, "get_status returned error: %d\n", ret); 2711 return ret; 2712 } 2713 2714 switch (ret) { 2715 case REGULATOR_STATUS_OFF: 2716 case REGULATOR_STATUS_ERROR: 2717 case REGULATOR_STATUS_UNDEFINED: 2718 return 0; 2719 default: 2720 return 1; 2721 } 2722 } 2723 2724 static int _regulator_do_enable(struct regulator_dev *rdev) 2725 { 2726 int ret, delay; 2727 2728 /* Query before enabling in case configuration dependent. */ 2729 ret = _regulator_get_enable_time(rdev); 2730 if (ret >= 0) { 2731 delay = ret; 2732 } else { 2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2734 delay = 0; 2735 } 2736 2737 trace_regulator_enable(rdev_get_name(rdev)); 2738 2739 if (rdev->desc->off_on_delay) { 2740 /* if needed, keep a distance of off_on_delay from last time 2741 * this regulator was disabled. 2742 */ 2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2745 2746 if (remaining > 0) 2747 _regulator_delay_helper(remaining); 2748 } 2749 2750 if (rdev->ena_pin) { 2751 if (!rdev->ena_gpio_state) { 2752 ret = regulator_ena_gpio_ctrl(rdev, true); 2753 if (ret < 0) 2754 return ret; 2755 rdev->ena_gpio_state = 1; 2756 } 2757 } else if (rdev->desc->ops->enable) { 2758 ret = rdev->desc->ops->enable(rdev); 2759 if (ret < 0) 2760 return ret; 2761 } else { 2762 return -EINVAL; 2763 } 2764 2765 /* Allow the regulator to ramp; it would be useful to extend 2766 * this for bulk operations so that the regulators can ramp 2767 * together. 2768 */ 2769 trace_regulator_enable_delay(rdev_get_name(rdev)); 2770 2771 /* If poll_enabled_time is set, poll upto the delay calculated 2772 * above, delaying poll_enabled_time uS to check if the regulator 2773 * actually got enabled. 2774 * If the regulator isn't enabled after our delay helper has expired, 2775 * return -ETIMEDOUT. 2776 */ 2777 if (rdev->desc->poll_enabled_time) { 2778 int time_remaining = delay; 2779 2780 while (time_remaining > 0) { 2781 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2782 2783 if (rdev->desc->ops->get_status) { 2784 ret = _regulator_check_status_enabled(rdev); 2785 if (ret < 0) 2786 return ret; 2787 else if (ret) 2788 break; 2789 } else if (rdev->desc->ops->is_enabled(rdev)) 2790 break; 2791 2792 time_remaining -= rdev->desc->poll_enabled_time; 2793 } 2794 2795 if (time_remaining <= 0) { 2796 rdev_err(rdev, "Enabled check timed out\n"); 2797 return -ETIMEDOUT; 2798 } 2799 } else { 2800 _regulator_delay_helper(delay); 2801 } 2802 2803 trace_regulator_enable_complete(rdev_get_name(rdev)); 2804 2805 return 0; 2806 } 2807 2808 /** 2809 * _regulator_handle_consumer_enable - handle that a consumer enabled 2810 * @regulator: regulator source 2811 * 2812 * Some things on a regulator consumer (like the contribution towards total 2813 * load on the regulator) only have an effect when the consumer wants the 2814 * regulator enabled. Explained in example with two consumers of the same 2815 * regulator: 2816 * consumer A: set_load(100); => total load = 0 2817 * consumer A: regulator_enable(); => total load = 100 2818 * consumer B: set_load(1000); => total load = 100 2819 * consumer B: regulator_enable(); => total load = 1100 2820 * consumer A: regulator_disable(); => total_load = 1000 2821 * 2822 * This function (together with _regulator_handle_consumer_disable) is 2823 * responsible for keeping track of the refcount for a given regulator consumer 2824 * and applying / unapplying these things. 2825 * 2826 * Returns 0 upon no error; -error upon error. 2827 */ 2828 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2829 { 2830 int ret; 2831 struct regulator_dev *rdev = regulator->rdev; 2832 2833 lockdep_assert_held_once(&rdev->mutex.base); 2834 2835 regulator->enable_count++; 2836 if (regulator->uA_load && regulator->enable_count == 1) { 2837 ret = drms_uA_update(rdev); 2838 if (ret) 2839 regulator->enable_count--; 2840 return ret; 2841 } 2842 2843 return 0; 2844 } 2845 2846 /** 2847 * _regulator_handle_consumer_disable - handle that a consumer disabled 2848 * @regulator: regulator source 2849 * 2850 * The opposite of _regulator_handle_consumer_enable(). 2851 * 2852 * Returns 0 upon no error; -error upon error. 2853 */ 2854 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2855 { 2856 struct regulator_dev *rdev = regulator->rdev; 2857 2858 lockdep_assert_held_once(&rdev->mutex.base); 2859 2860 if (!regulator->enable_count) { 2861 rdev_err(rdev, "Underflow of regulator enable count\n"); 2862 return -EINVAL; 2863 } 2864 2865 regulator->enable_count--; 2866 if (regulator->uA_load && regulator->enable_count == 0) 2867 return drms_uA_update(rdev); 2868 2869 return 0; 2870 } 2871 2872 /* locks held by regulator_enable() */ 2873 static int _regulator_enable(struct regulator *regulator) 2874 { 2875 struct regulator_dev *rdev = regulator->rdev; 2876 int ret; 2877 2878 lockdep_assert_held_once(&rdev->mutex.base); 2879 2880 if (rdev->use_count == 0 && rdev->supply) { 2881 ret = _regulator_enable(rdev->supply); 2882 if (ret < 0) 2883 return ret; 2884 } 2885 2886 /* balance only if there are regulators coupled */ 2887 if (rdev->coupling_desc.n_coupled > 1) { 2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2889 if (ret < 0) 2890 goto err_disable_supply; 2891 } 2892 2893 ret = _regulator_handle_consumer_enable(regulator); 2894 if (ret < 0) 2895 goto err_disable_supply; 2896 2897 if (rdev->use_count == 0) { 2898 /* 2899 * The regulator may already be enabled if it's not switchable 2900 * or was left on 2901 */ 2902 ret = _regulator_is_enabled(rdev); 2903 if (ret == -EINVAL || ret == 0) { 2904 if (!regulator_ops_is_valid(rdev, 2905 REGULATOR_CHANGE_STATUS)) { 2906 ret = -EPERM; 2907 goto err_consumer_disable; 2908 } 2909 2910 ret = _regulator_do_enable(rdev); 2911 if (ret < 0) 2912 goto err_consumer_disable; 2913 2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2915 NULL); 2916 } else if (ret < 0) { 2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2918 goto err_consumer_disable; 2919 } 2920 /* Fallthrough on positive return values - already enabled */ 2921 } 2922 2923 rdev->use_count++; 2924 2925 return 0; 2926 2927 err_consumer_disable: 2928 _regulator_handle_consumer_disable(regulator); 2929 2930 err_disable_supply: 2931 if (rdev->use_count == 0 && rdev->supply) 2932 _regulator_disable(rdev->supply); 2933 2934 return ret; 2935 } 2936 2937 /** 2938 * regulator_enable - enable regulator output 2939 * @regulator: regulator source 2940 * 2941 * Request that the regulator be enabled with the regulator output at 2942 * the predefined voltage or current value. Calls to regulator_enable() 2943 * must be balanced with calls to regulator_disable(). 2944 * 2945 * NOTE: the output value can be set by other drivers, boot loader or may be 2946 * hardwired in the regulator. 2947 */ 2948 int regulator_enable(struct regulator *regulator) 2949 { 2950 struct regulator_dev *rdev = regulator->rdev; 2951 struct ww_acquire_ctx ww_ctx; 2952 int ret; 2953 2954 regulator_lock_dependent(rdev, &ww_ctx); 2955 ret = _regulator_enable(regulator); 2956 regulator_unlock_dependent(rdev, &ww_ctx); 2957 2958 return ret; 2959 } 2960 EXPORT_SYMBOL_GPL(regulator_enable); 2961 2962 static int _regulator_do_disable(struct regulator_dev *rdev) 2963 { 2964 int ret; 2965 2966 trace_regulator_disable(rdev_get_name(rdev)); 2967 2968 if (rdev->ena_pin) { 2969 if (rdev->ena_gpio_state) { 2970 ret = regulator_ena_gpio_ctrl(rdev, false); 2971 if (ret < 0) 2972 return ret; 2973 rdev->ena_gpio_state = 0; 2974 } 2975 2976 } else if (rdev->desc->ops->disable) { 2977 ret = rdev->desc->ops->disable(rdev); 2978 if (ret != 0) 2979 return ret; 2980 } 2981 2982 if (rdev->desc->off_on_delay) 2983 rdev->last_off = ktime_get_boottime(); 2984 2985 trace_regulator_disable_complete(rdev_get_name(rdev)); 2986 2987 return 0; 2988 } 2989 2990 /* locks held by regulator_disable() */ 2991 static int _regulator_disable(struct regulator *regulator) 2992 { 2993 struct regulator_dev *rdev = regulator->rdev; 2994 int ret = 0; 2995 2996 lockdep_assert_held_once(&rdev->mutex.base); 2997 2998 if (WARN(rdev->use_count <= 0, 2999 "unbalanced disables for %s\n", rdev_get_name(rdev))) 3000 return -EIO; 3001 3002 /* are we the last user and permitted to disable ? */ 3003 if (rdev->use_count == 1 && 3004 (rdev->constraints && !rdev->constraints->always_on)) { 3005 3006 /* we are last user */ 3007 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3008 ret = _notifier_call_chain(rdev, 3009 REGULATOR_EVENT_PRE_DISABLE, 3010 NULL); 3011 if (ret & NOTIFY_STOP_MASK) 3012 return -EINVAL; 3013 3014 ret = _regulator_do_disable(rdev); 3015 if (ret < 0) { 3016 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3017 _notifier_call_chain(rdev, 3018 REGULATOR_EVENT_ABORT_DISABLE, 3019 NULL); 3020 return ret; 3021 } 3022 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3023 NULL); 3024 } 3025 3026 rdev->use_count = 0; 3027 } else if (rdev->use_count > 1) { 3028 rdev->use_count--; 3029 } 3030 3031 if (ret == 0) 3032 ret = _regulator_handle_consumer_disable(regulator); 3033 3034 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3035 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3036 3037 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3038 ret = _regulator_disable(rdev->supply); 3039 3040 return ret; 3041 } 3042 3043 /** 3044 * regulator_disable - disable regulator output 3045 * @regulator: regulator source 3046 * 3047 * Disable the regulator output voltage or current. Calls to 3048 * regulator_enable() must be balanced with calls to 3049 * regulator_disable(). 3050 * 3051 * NOTE: this will only disable the regulator output if no other consumer 3052 * devices have it enabled, the regulator device supports disabling and 3053 * machine constraints permit this operation. 3054 */ 3055 int regulator_disable(struct regulator *regulator) 3056 { 3057 struct regulator_dev *rdev = regulator->rdev; 3058 struct ww_acquire_ctx ww_ctx; 3059 int ret; 3060 3061 regulator_lock_dependent(rdev, &ww_ctx); 3062 ret = _regulator_disable(regulator); 3063 regulator_unlock_dependent(rdev, &ww_ctx); 3064 3065 return ret; 3066 } 3067 EXPORT_SYMBOL_GPL(regulator_disable); 3068 3069 /* locks held by regulator_force_disable() */ 3070 static int _regulator_force_disable(struct regulator_dev *rdev) 3071 { 3072 int ret = 0; 3073 3074 lockdep_assert_held_once(&rdev->mutex.base); 3075 3076 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3077 REGULATOR_EVENT_PRE_DISABLE, NULL); 3078 if (ret & NOTIFY_STOP_MASK) 3079 return -EINVAL; 3080 3081 ret = _regulator_do_disable(rdev); 3082 if (ret < 0) { 3083 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3084 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3085 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3086 return ret; 3087 } 3088 3089 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3090 REGULATOR_EVENT_DISABLE, NULL); 3091 3092 return 0; 3093 } 3094 3095 /** 3096 * regulator_force_disable - force disable regulator output 3097 * @regulator: regulator source 3098 * 3099 * Forcibly disable the regulator output voltage or current. 3100 * NOTE: this *will* disable the regulator output even if other consumer 3101 * devices have it enabled. This should be used for situations when device 3102 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3103 */ 3104 int regulator_force_disable(struct regulator *regulator) 3105 { 3106 struct regulator_dev *rdev = regulator->rdev; 3107 struct ww_acquire_ctx ww_ctx; 3108 int ret; 3109 3110 regulator_lock_dependent(rdev, &ww_ctx); 3111 3112 ret = _regulator_force_disable(regulator->rdev); 3113 3114 if (rdev->coupling_desc.n_coupled > 1) 3115 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3116 3117 if (regulator->uA_load) { 3118 regulator->uA_load = 0; 3119 ret = drms_uA_update(rdev); 3120 } 3121 3122 if (rdev->use_count != 0 && rdev->supply) 3123 _regulator_disable(rdev->supply); 3124 3125 regulator_unlock_dependent(rdev, &ww_ctx); 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(regulator_force_disable); 3130 3131 static void regulator_disable_work(struct work_struct *work) 3132 { 3133 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3134 disable_work.work); 3135 struct ww_acquire_ctx ww_ctx; 3136 int count, i, ret; 3137 struct regulator *regulator; 3138 int total_count = 0; 3139 3140 regulator_lock_dependent(rdev, &ww_ctx); 3141 3142 /* 3143 * Workqueue functions queue the new work instance while the previous 3144 * work instance is being processed. Cancel the queued work instance 3145 * as the work instance under processing does the job of the queued 3146 * work instance. 3147 */ 3148 cancel_delayed_work(&rdev->disable_work); 3149 3150 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3151 count = regulator->deferred_disables; 3152 3153 if (!count) 3154 continue; 3155 3156 total_count += count; 3157 regulator->deferred_disables = 0; 3158 3159 for (i = 0; i < count; i++) { 3160 ret = _regulator_disable(regulator); 3161 if (ret != 0) 3162 rdev_err(rdev, "Deferred disable failed: %pe\n", 3163 ERR_PTR(ret)); 3164 } 3165 } 3166 WARN_ON(!total_count); 3167 3168 if (rdev->coupling_desc.n_coupled > 1) 3169 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3170 3171 regulator_unlock_dependent(rdev, &ww_ctx); 3172 } 3173 3174 /** 3175 * regulator_disable_deferred - disable regulator output with delay 3176 * @regulator: regulator source 3177 * @ms: milliseconds until the regulator is disabled 3178 * 3179 * Execute regulator_disable() on the regulator after a delay. This 3180 * is intended for use with devices that require some time to quiesce. 3181 * 3182 * NOTE: this will only disable the regulator output if no other consumer 3183 * devices have it enabled, the regulator device supports disabling and 3184 * machine constraints permit this operation. 3185 */ 3186 int regulator_disable_deferred(struct regulator *regulator, int ms) 3187 { 3188 struct regulator_dev *rdev = regulator->rdev; 3189 3190 if (!ms) 3191 return regulator_disable(regulator); 3192 3193 regulator_lock(rdev); 3194 regulator->deferred_disables++; 3195 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3196 msecs_to_jiffies(ms)); 3197 regulator_unlock(rdev); 3198 3199 return 0; 3200 } 3201 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3202 3203 static int _regulator_is_enabled(struct regulator_dev *rdev) 3204 { 3205 /* A GPIO control always takes precedence */ 3206 if (rdev->ena_pin) 3207 return rdev->ena_gpio_state; 3208 3209 /* If we don't know then assume that the regulator is always on */ 3210 if (!rdev->desc->ops->is_enabled) 3211 return 1; 3212 3213 return rdev->desc->ops->is_enabled(rdev); 3214 } 3215 3216 static int _regulator_list_voltage(struct regulator_dev *rdev, 3217 unsigned selector, int lock) 3218 { 3219 const struct regulator_ops *ops = rdev->desc->ops; 3220 int ret; 3221 3222 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3223 return rdev->desc->fixed_uV; 3224 3225 if (ops->list_voltage) { 3226 if (selector >= rdev->desc->n_voltages) 3227 return -EINVAL; 3228 if (selector < rdev->desc->linear_min_sel) 3229 return 0; 3230 if (lock) 3231 regulator_lock(rdev); 3232 ret = ops->list_voltage(rdev, selector); 3233 if (lock) 3234 regulator_unlock(rdev); 3235 } else if (rdev->is_switch && rdev->supply) { 3236 ret = _regulator_list_voltage(rdev->supply->rdev, 3237 selector, lock); 3238 } else { 3239 return -EINVAL; 3240 } 3241 3242 if (ret > 0) { 3243 if (ret < rdev->constraints->min_uV) 3244 ret = 0; 3245 else if (ret > rdev->constraints->max_uV) 3246 ret = 0; 3247 } 3248 3249 return ret; 3250 } 3251 3252 /** 3253 * regulator_is_enabled - is the regulator output enabled 3254 * @regulator: regulator source 3255 * 3256 * Returns positive if the regulator driver backing the source/client 3257 * has requested that the device be enabled, zero if it hasn't, else a 3258 * negative errno code. 3259 * 3260 * Note that the device backing this regulator handle can have multiple 3261 * users, so it might be enabled even if regulator_enable() was never 3262 * called for this particular source. 3263 */ 3264 int regulator_is_enabled(struct regulator *regulator) 3265 { 3266 int ret; 3267 3268 if (regulator->always_on) 3269 return 1; 3270 3271 regulator_lock(regulator->rdev); 3272 ret = _regulator_is_enabled(regulator->rdev); 3273 regulator_unlock(regulator->rdev); 3274 3275 return ret; 3276 } 3277 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3278 3279 /** 3280 * regulator_count_voltages - count regulator_list_voltage() selectors 3281 * @regulator: regulator source 3282 * 3283 * Returns number of selectors, or negative errno. Selectors are 3284 * numbered starting at zero, and typically correspond to bitfields 3285 * in hardware registers. 3286 */ 3287 int regulator_count_voltages(struct regulator *regulator) 3288 { 3289 struct regulator_dev *rdev = regulator->rdev; 3290 3291 if (rdev->desc->n_voltages) 3292 return rdev->desc->n_voltages; 3293 3294 if (!rdev->is_switch || !rdev->supply) 3295 return -EINVAL; 3296 3297 return regulator_count_voltages(rdev->supply); 3298 } 3299 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3300 3301 /** 3302 * regulator_list_voltage - enumerate supported voltages 3303 * @regulator: regulator source 3304 * @selector: identify voltage to list 3305 * Context: can sleep 3306 * 3307 * Returns a voltage that can be passed to @regulator_set_voltage(), 3308 * zero if this selector code can't be used on this system, or a 3309 * negative errno. 3310 */ 3311 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3312 { 3313 return _regulator_list_voltage(regulator->rdev, selector, 1); 3314 } 3315 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3316 3317 /** 3318 * regulator_get_regmap - get the regulator's register map 3319 * @regulator: regulator source 3320 * 3321 * Returns the register map for the given regulator, or an ERR_PTR value 3322 * if the regulator doesn't use regmap. 3323 */ 3324 struct regmap *regulator_get_regmap(struct regulator *regulator) 3325 { 3326 struct regmap *map = regulator->rdev->regmap; 3327 3328 return map ? map : ERR_PTR(-EOPNOTSUPP); 3329 } 3330 3331 /** 3332 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3333 * @regulator: regulator source 3334 * @vsel_reg: voltage selector register, output parameter 3335 * @vsel_mask: mask for voltage selector bitfield, output parameter 3336 * 3337 * Returns the hardware register offset and bitmask used for setting the 3338 * regulator voltage. This might be useful when configuring voltage-scaling 3339 * hardware or firmware that can make I2C requests behind the kernel's back, 3340 * for example. 3341 * 3342 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3343 * and 0 is returned, otherwise a negative errno is returned. 3344 */ 3345 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3346 unsigned *vsel_reg, 3347 unsigned *vsel_mask) 3348 { 3349 struct regulator_dev *rdev = regulator->rdev; 3350 const struct regulator_ops *ops = rdev->desc->ops; 3351 3352 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3353 return -EOPNOTSUPP; 3354 3355 *vsel_reg = rdev->desc->vsel_reg; 3356 *vsel_mask = rdev->desc->vsel_mask; 3357 3358 return 0; 3359 } 3360 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3361 3362 /** 3363 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3364 * @regulator: regulator source 3365 * @selector: identify voltage to list 3366 * 3367 * Converts the selector to a hardware-specific voltage selector that can be 3368 * directly written to the regulator registers. The address of the voltage 3369 * register can be determined by calling @regulator_get_hardware_vsel_register. 3370 * 3371 * On error a negative errno is returned. 3372 */ 3373 int regulator_list_hardware_vsel(struct regulator *regulator, 3374 unsigned selector) 3375 { 3376 struct regulator_dev *rdev = regulator->rdev; 3377 const struct regulator_ops *ops = rdev->desc->ops; 3378 3379 if (selector >= rdev->desc->n_voltages) 3380 return -EINVAL; 3381 if (selector < rdev->desc->linear_min_sel) 3382 return 0; 3383 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3384 return -EOPNOTSUPP; 3385 3386 return selector; 3387 } 3388 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3389 3390 /** 3391 * regulator_get_linear_step - return the voltage step size between VSEL values 3392 * @regulator: regulator source 3393 * 3394 * Returns the voltage step size between VSEL values for linear 3395 * regulators, or return 0 if the regulator isn't a linear regulator. 3396 */ 3397 unsigned int regulator_get_linear_step(struct regulator *regulator) 3398 { 3399 struct regulator_dev *rdev = regulator->rdev; 3400 3401 return rdev->desc->uV_step; 3402 } 3403 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3404 3405 /** 3406 * regulator_is_supported_voltage - check if a voltage range can be supported 3407 * 3408 * @regulator: Regulator to check. 3409 * @min_uV: Minimum required voltage in uV. 3410 * @max_uV: Maximum required voltage in uV. 3411 * 3412 * Returns a boolean. 3413 */ 3414 int regulator_is_supported_voltage(struct regulator *regulator, 3415 int min_uV, int max_uV) 3416 { 3417 struct regulator_dev *rdev = regulator->rdev; 3418 int i, voltages, ret; 3419 3420 /* If we can't change voltage check the current voltage */ 3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3422 ret = regulator_get_voltage(regulator); 3423 if (ret >= 0) 3424 return min_uV <= ret && ret <= max_uV; 3425 else 3426 return ret; 3427 } 3428 3429 /* Any voltage within constrains range is fine? */ 3430 if (rdev->desc->continuous_voltage_range) 3431 return min_uV >= rdev->constraints->min_uV && 3432 max_uV <= rdev->constraints->max_uV; 3433 3434 ret = regulator_count_voltages(regulator); 3435 if (ret < 0) 3436 return 0; 3437 voltages = ret; 3438 3439 for (i = 0; i < voltages; i++) { 3440 ret = regulator_list_voltage(regulator, i); 3441 3442 if (ret >= min_uV && ret <= max_uV) 3443 return 1; 3444 } 3445 3446 return 0; 3447 } 3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3449 3450 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3451 int max_uV) 3452 { 3453 const struct regulator_desc *desc = rdev->desc; 3454 3455 if (desc->ops->map_voltage) 3456 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3457 3458 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3460 3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3463 3464 if (desc->ops->list_voltage == 3465 regulator_list_voltage_pickable_linear_range) 3466 return regulator_map_voltage_pickable_linear_range(rdev, 3467 min_uV, max_uV); 3468 3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3470 } 3471 3472 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3473 int min_uV, int max_uV, 3474 unsigned *selector) 3475 { 3476 struct pre_voltage_change_data data; 3477 int ret; 3478 3479 data.old_uV = regulator_get_voltage_rdev(rdev); 3480 data.min_uV = min_uV; 3481 data.max_uV = max_uV; 3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3483 &data); 3484 if (ret & NOTIFY_STOP_MASK) 3485 return -EINVAL; 3486 3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3488 if (ret >= 0) 3489 return ret; 3490 3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3492 (void *)data.old_uV); 3493 3494 return ret; 3495 } 3496 3497 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3498 int uV, unsigned selector) 3499 { 3500 struct pre_voltage_change_data data; 3501 int ret; 3502 3503 data.old_uV = regulator_get_voltage_rdev(rdev); 3504 data.min_uV = uV; 3505 data.max_uV = uV; 3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3507 &data); 3508 if (ret & NOTIFY_STOP_MASK) 3509 return -EINVAL; 3510 3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3512 if (ret >= 0) 3513 return ret; 3514 3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3516 (void *)data.old_uV); 3517 3518 return ret; 3519 } 3520 3521 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3522 int uV, int new_selector) 3523 { 3524 const struct regulator_ops *ops = rdev->desc->ops; 3525 int diff, old_sel, curr_sel, ret; 3526 3527 /* Stepping is only needed if the regulator is enabled. */ 3528 if (!_regulator_is_enabled(rdev)) 3529 goto final_set; 3530 3531 if (!ops->get_voltage_sel) 3532 return -EINVAL; 3533 3534 old_sel = ops->get_voltage_sel(rdev); 3535 if (old_sel < 0) 3536 return old_sel; 3537 3538 diff = new_selector - old_sel; 3539 if (diff == 0) 3540 return 0; /* No change needed. */ 3541 3542 if (diff > 0) { 3543 /* Stepping up. */ 3544 for (curr_sel = old_sel + rdev->desc->vsel_step; 3545 curr_sel < new_selector; 3546 curr_sel += rdev->desc->vsel_step) { 3547 /* 3548 * Call the callback directly instead of using 3549 * _regulator_call_set_voltage_sel() as we don't 3550 * want to notify anyone yet. Same in the branch 3551 * below. 3552 */ 3553 ret = ops->set_voltage_sel(rdev, curr_sel); 3554 if (ret) 3555 goto try_revert; 3556 } 3557 } else { 3558 /* Stepping down. */ 3559 for (curr_sel = old_sel - rdev->desc->vsel_step; 3560 curr_sel > new_selector; 3561 curr_sel -= rdev->desc->vsel_step) { 3562 ret = ops->set_voltage_sel(rdev, curr_sel); 3563 if (ret) 3564 goto try_revert; 3565 } 3566 } 3567 3568 final_set: 3569 /* The final selector will trigger the notifiers. */ 3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3571 3572 try_revert: 3573 /* 3574 * At least try to return to the previous voltage if setting a new 3575 * one failed. 3576 */ 3577 (void)ops->set_voltage_sel(rdev, old_sel); 3578 return ret; 3579 } 3580 3581 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3582 int old_uV, int new_uV) 3583 { 3584 unsigned int ramp_delay = 0; 3585 3586 if (rdev->constraints->ramp_delay) 3587 ramp_delay = rdev->constraints->ramp_delay; 3588 else if (rdev->desc->ramp_delay) 3589 ramp_delay = rdev->desc->ramp_delay; 3590 else if (rdev->constraints->settling_time) 3591 return rdev->constraints->settling_time; 3592 else if (rdev->constraints->settling_time_up && 3593 (new_uV > old_uV)) 3594 return rdev->constraints->settling_time_up; 3595 else if (rdev->constraints->settling_time_down && 3596 (new_uV < old_uV)) 3597 return rdev->constraints->settling_time_down; 3598 3599 if (ramp_delay == 0) 3600 return 0; 3601 3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3603 } 3604 3605 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3606 int min_uV, int max_uV) 3607 { 3608 int ret; 3609 int delay = 0; 3610 int best_val = 0; 3611 unsigned int selector; 3612 int old_selector = -1; 3613 const struct regulator_ops *ops = rdev->desc->ops; 3614 int old_uV = regulator_get_voltage_rdev(rdev); 3615 3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3617 3618 min_uV += rdev->constraints->uV_offset; 3619 max_uV += rdev->constraints->uV_offset; 3620 3621 /* 3622 * If we can't obtain the old selector there is not enough 3623 * info to call set_voltage_time_sel(). 3624 */ 3625 if (_regulator_is_enabled(rdev) && 3626 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3627 old_selector = ops->get_voltage_sel(rdev); 3628 if (old_selector < 0) 3629 return old_selector; 3630 } 3631 3632 if (ops->set_voltage) { 3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3634 &selector); 3635 3636 if (ret >= 0) { 3637 if (ops->list_voltage) 3638 best_val = ops->list_voltage(rdev, 3639 selector); 3640 else 3641 best_val = regulator_get_voltage_rdev(rdev); 3642 } 3643 3644 } else if (ops->set_voltage_sel) { 3645 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3646 if (ret >= 0) { 3647 best_val = ops->list_voltage(rdev, ret); 3648 if (min_uV <= best_val && max_uV >= best_val) { 3649 selector = ret; 3650 if (old_selector == selector) 3651 ret = 0; 3652 else if (rdev->desc->vsel_step) 3653 ret = _regulator_set_voltage_sel_step( 3654 rdev, best_val, selector); 3655 else 3656 ret = _regulator_call_set_voltage_sel( 3657 rdev, best_val, selector); 3658 } else { 3659 ret = -EINVAL; 3660 } 3661 } 3662 } else { 3663 ret = -EINVAL; 3664 } 3665 3666 if (ret) 3667 goto out; 3668 3669 if (ops->set_voltage_time_sel) { 3670 /* 3671 * Call set_voltage_time_sel if successfully obtained 3672 * old_selector 3673 */ 3674 if (old_selector >= 0 && old_selector != selector) 3675 delay = ops->set_voltage_time_sel(rdev, old_selector, 3676 selector); 3677 } else { 3678 if (old_uV != best_val) { 3679 if (ops->set_voltage_time) 3680 delay = ops->set_voltage_time(rdev, old_uV, 3681 best_val); 3682 else 3683 delay = _regulator_set_voltage_time(rdev, 3684 old_uV, 3685 best_val); 3686 } 3687 } 3688 3689 if (delay < 0) { 3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3691 delay = 0; 3692 } 3693 3694 /* Insert any necessary delays */ 3695 _regulator_delay_helper(delay); 3696 3697 if (best_val >= 0) { 3698 unsigned long data = best_val; 3699 3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3701 (void *)data); 3702 } 3703 3704 out: 3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3706 3707 return ret; 3708 } 3709 3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3711 int min_uV, int max_uV, suspend_state_t state) 3712 { 3713 struct regulator_state *rstate; 3714 int uV, sel; 3715 3716 rstate = regulator_get_suspend_state(rdev, state); 3717 if (rstate == NULL) 3718 return -EINVAL; 3719 3720 if (min_uV < rstate->min_uV) 3721 min_uV = rstate->min_uV; 3722 if (max_uV > rstate->max_uV) 3723 max_uV = rstate->max_uV; 3724 3725 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3726 if (sel < 0) 3727 return sel; 3728 3729 uV = rdev->desc->ops->list_voltage(rdev, sel); 3730 if (uV >= min_uV && uV <= max_uV) 3731 rstate->uV = uV; 3732 3733 return 0; 3734 } 3735 3736 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3737 int min_uV, int max_uV, 3738 suspend_state_t state) 3739 { 3740 struct regulator_dev *rdev = regulator->rdev; 3741 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3742 int ret = 0; 3743 int old_min_uV, old_max_uV; 3744 int current_uV; 3745 3746 /* If we're setting the same range as last time the change 3747 * should be a noop (some cpufreq implementations use the same 3748 * voltage for multiple frequencies, for example). 3749 */ 3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3751 goto out; 3752 3753 /* If we're trying to set a range that overlaps the current voltage, 3754 * return successfully even though the regulator does not support 3755 * changing the voltage. 3756 */ 3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3758 current_uV = regulator_get_voltage_rdev(rdev); 3759 if (min_uV <= current_uV && current_uV <= max_uV) { 3760 voltage->min_uV = min_uV; 3761 voltage->max_uV = max_uV; 3762 goto out; 3763 } 3764 } 3765 3766 /* sanity check */ 3767 if (!rdev->desc->ops->set_voltage && 3768 !rdev->desc->ops->set_voltage_sel) { 3769 ret = -EINVAL; 3770 goto out; 3771 } 3772 3773 /* constraints check */ 3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3775 if (ret < 0) 3776 goto out; 3777 3778 /* restore original values in case of error */ 3779 old_min_uV = voltage->min_uV; 3780 old_max_uV = voltage->max_uV; 3781 voltage->min_uV = min_uV; 3782 voltage->max_uV = max_uV; 3783 3784 /* for not coupled regulators this will just set the voltage */ 3785 ret = regulator_balance_voltage(rdev, state); 3786 if (ret < 0) { 3787 voltage->min_uV = old_min_uV; 3788 voltage->max_uV = old_max_uV; 3789 } 3790 3791 out: 3792 return ret; 3793 } 3794 3795 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3796 int max_uV, suspend_state_t state) 3797 { 3798 int best_supply_uV = 0; 3799 int supply_change_uV = 0; 3800 int ret; 3801 3802 if (rdev->supply && 3803 regulator_ops_is_valid(rdev->supply->rdev, 3804 REGULATOR_CHANGE_VOLTAGE) && 3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3806 rdev->desc->ops->get_voltage_sel))) { 3807 int current_supply_uV; 3808 int selector; 3809 3810 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3811 if (selector < 0) { 3812 ret = selector; 3813 goto out; 3814 } 3815 3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3817 if (best_supply_uV < 0) { 3818 ret = best_supply_uV; 3819 goto out; 3820 } 3821 3822 best_supply_uV += rdev->desc->min_dropout_uV; 3823 3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3825 if (current_supply_uV < 0) { 3826 ret = current_supply_uV; 3827 goto out; 3828 } 3829 3830 supply_change_uV = best_supply_uV - current_supply_uV; 3831 } 3832 3833 if (supply_change_uV > 0) { 3834 ret = regulator_set_voltage_unlocked(rdev->supply, 3835 best_supply_uV, INT_MAX, state); 3836 if (ret) { 3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3838 ERR_PTR(ret)); 3839 goto out; 3840 } 3841 } 3842 3843 if (state == PM_SUSPEND_ON) 3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3845 else 3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3847 max_uV, state); 3848 if (ret < 0) 3849 goto out; 3850 3851 if (supply_change_uV < 0) { 3852 ret = regulator_set_voltage_unlocked(rdev->supply, 3853 best_supply_uV, INT_MAX, state); 3854 if (ret) 3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3856 ERR_PTR(ret)); 3857 /* No need to fail here */ 3858 ret = 0; 3859 } 3860 3861 out: 3862 return ret; 3863 } 3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3865 3866 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3867 int *current_uV, int *min_uV) 3868 { 3869 struct regulation_constraints *constraints = rdev->constraints; 3870 3871 /* Limit voltage change only if necessary */ 3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3873 return 1; 3874 3875 if (*current_uV < 0) { 3876 *current_uV = regulator_get_voltage_rdev(rdev); 3877 3878 if (*current_uV < 0) 3879 return *current_uV; 3880 } 3881 3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3883 return 1; 3884 3885 /* Clamp target voltage within the given step */ 3886 if (*current_uV < *min_uV) 3887 *min_uV = min(*current_uV + constraints->max_uV_step, 3888 *min_uV); 3889 else 3890 *min_uV = max(*current_uV - constraints->max_uV_step, 3891 *min_uV); 3892 3893 return 0; 3894 } 3895 3896 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3897 int *current_uV, 3898 int *min_uV, int *max_uV, 3899 suspend_state_t state, 3900 int n_coupled) 3901 { 3902 struct coupling_desc *c_desc = &rdev->coupling_desc; 3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3904 struct regulation_constraints *constraints = rdev->constraints; 3905 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3906 int max_current_uV = 0, min_current_uV = INT_MAX; 3907 int highest_min_uV = 0, target_uV, possible_uV; 3908 int i, ret, max_spread; 3909 bool done; 3910 3911 *current_uV = -1; 3912 3913 /* 3914 * If there are no coupled regulators, simply set the voltage 3915 * demanded by consumers. 3916 */ 3917 if (n_coupled == 1) { 3918 /* 3919 * If consumers don't provide any demands, set voltage 3920 * to min_uV 3921 */ 3922 desired_min_uV = constraints->min_uV; 3923 desired_max_uV = constraints->max_uV; 3924 3925 ret = regulator_check_consumers(rdev, 3926 &desired_min_uV, 3927 &desired_max_uV, state); 3928 if (ret < 0) 3929 return ret; 3930 3931 possible_uV = desired_min_uV; 3932 done = true; 3933 3934 goto finish; 3935 } 3936 3937 /* Find highest min desired voltage */ 3938 for (i = 0; i < n_coupled; i++) { 3939 int tmp_min = 0; 3940 int tmp_max = INT_MAX; 3941 3942 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3943 3944 ret = regulator_check_consumers(c_rdevs[i], 3945 &tmp_min, 3946 &tmp_max, state); 3947 if (ret < 0) 3948 return ret; 3949 3950 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3951 if (ret < 0) 3952 return ret; 3953 3954 highest_min_uV = max(highest_min_uV, tmp_min); 3955 3956 if (i == 0) { 3957 desired_min_uV = tmp_min; 3958 desired_max_uV = tmp_max; 3959 } 3960 } 3961 3962 max_spread = constraints->max_spread[0]; 3963 3964 /* 3965 * Let target_uV be equal to the desired one if possible. 3966 * If not, set it to minimum voltage, allowed by other coupled 3967 * regulators. 3968 */ 3969 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3970 3971 /* 3972 * Find min and max voltages, which currently aren't violating 3973 * max_spread. 3974 */ 3975 for (i = 1; i < n_coupled; i++) { 3976 int tmp_act; 3977 3978 if (!_regulator_is_enabled(c_rdevs[i])) 3979 continue; 3980 3981 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3982 if (tmp_act < 0) 3983 return tmp_act; 3984 3985 min_current_uV = min(tmp_act, min_current_uV); 3986 max_current_uV = max(tmp_act, max_current_uV); 3987 } 3988 3989 /* There aren't any other regulators enabled */ 3990 if (max_current_uV == 0) { 3991 possible_uV = target_uV; 3992 } else { 3993 /* 3994 * Correct target voltage, so as it currently isn't 3995 * violating max_spread 3996 */ 3997 possible_uV = max(target_uV, max_current_uV - max_spread); 3998 possible_uV = min(possible_uV, min_current_uV + max_spread); 3999 } 4000 4001 if (possible_uV > desired_max_uV) 4002 return -EINVAL; 4003 4004 done = (possible_uV == target_uV); 4005 desired_min_uV = possible_uV; 4006 4007 finish: 4008 /* Apply max_uV_step constraint if necessary */ 4009 if (state == PM_SUSPEND_ON) { 4010 ret = regulator_limit_voltage_step(rdev, current_uV, 4011 &desired_min_uV); 4012 if (ret < 0) 4013 return ret; 4014 4015 if (ret == 0) 4016 done = false; 4017 } 4018 4019 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4020 if (n_coupled > 1 && *current_uV == -1) { 4021 4022 if (_regulator_is_enabled(rdev)) { 4023 ret = regulator_get_voltage_rdev(rdev); 4024 if (ret < 0) 4025 return ret; 4026 4027 *current_uV = ret; 4028 } else { 4029 *current_uV = desired_min_uV; 4030 } 4031 } 4032 4033 *min_uV = desired_min_uV; 4034 *max_uV = desired_max_uV; 4035 4036 return done; 4037 } 4038 4039 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4040 suspend_state_t state, bool skip_coupled) 4041 { 4042 struct regulator_dev **c_rdevs; 4043 struct regulator_dev *best_rdev; 4044 struct coupling_desc *c_desc = &rdev->coupling_desc; 4045 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4046 unsigned int delta, best_delta; 4047 unsigned long c_rdev_done = 0; 4048 bool best_c_rdev_done; 4049 4050 c_rdevs = c_desc->coupled_rdevs; 4051 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4052 4053 /* 4054 * Find the best possible voltage change on each loop. Leave the loop 4055 * if there isn't any possible change. 4056 */ 4057 do { 4058 best_c_rdev_done = false; 4059 best_delta = 0; 4060 best_min_uV = 0; 4061 best_max_uV = 0; 4062 best_c_rdev = 0; 4063 best_rdev = NULL; 4064 4065 /* 4066 * Find highest difference between optimal voltage 4067 * and current voltage. 4068 */ 4069 for (i = 0; i < n_coupled; i++) { 4070 /* 4071 * optimal_uV is the best voltage that can be set for 4072 * i-th regulator at the moment without violating 4073 * max_spread constraint in order to balance 4074 * the coupled voltages. 4075 */ 4076 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4077 4078 if (test_bit(i, &c_rdev_done)) 4079 continue; 4080 4081 ret = regulator_get_optimal_voltage(c_rdevs[i], 4082 ¤t_uV, 4083 &optimal_uV, 4084 &optimal_max_uV, 4085 state, n_coupled); 4086 if (ret < 0) 4087 goto out; 4088 4089 delta = abs(optimal_uV - current_uV); 4090 4091 if (delta && best_delta <= delta) { 4092 best_c_rdev_done = ret; 4093 best_delta = delta; 4094 best_rdev = c_rdevs[i]; 4095 best_min_uV = optimal_uV; 4096 best_max_uV = optimal_max_uV; 4097 best_c_rdev = i; 4098 } 4099 } 4100 4101 /* Nothing to change, return successfully */ 4102 if (!best_rdev) { 4103 ret = 0; 4104 goto out; 4105 } 4106 4107 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4108 best_max_uV, state); 4109 4110 if (ret < 0) 4111 goto out; 4112 4113 if (best_c_rdev_done) 4114 set_bit(best_c_rdev, &c_rdev_done); 4115 4116 } while (n_coupled > 1); 4117 4118 out: 4119 return ret; 4120 } 4121 4122 static int regulator_balance_voltage(struct regulator_dev *rdev, 4123 suspend_state_t state) 4124 { 4125 struct coupling_desc *c_desc = &rdev->coupling_desc; 4126 struct regulator_coupler *coupler = c_desc->coupler; 4127 bool skip_coupled = false; 4128 4129 /* 4130 * If system is in a state other than PM_SUSPEND_ON, don't check 4131 * other coupled regulators. 4132 */ 4133 if (state != PM_SUSPEND_ON) 4134 skip_coupled = true; 4135 4136 if (c_desc->n_resolved < c_desc->n_coupled) { 4137 rdev_err(rdev, "Not all coupled regulators registered\n"); 4138 return -EPERM; 4139 } 4140 4141 /* Invoke custom balancer for customized couplers */ 4142 if (coupler && coupler->balance_voltage) 4143 return coupler->balance_voltage(coupler, rdev, state); 4144 4145 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4146 } 4147 4148 /** 4149 * regulator_set_voltage - set regulator output voltage 4150 * @regulator: regulator source 4151 * @min_uV: Minimum required voltage in uV 4152 * @max_uV: Maximum acceptable voltage in uV 4153 * 4154 * Sets a voltage regulator to the desired output voltage. This can be set 4155 * during any regulator state. IOW, regulator can be disabled or enabled. 4156 * 4157 * If the regulator is enabled then the voltage will change to the new value 4158 * immediately otherwise if the regulator is disabled the regulator will 4159 * output at the new voltage when enabled. 4160 * 4161 * NOTE: If the regulator is shared between several devices then the lowest 4162 * request voltage that meets the system constraints will be used. 4163 * Regulator system constraints must be set for this regulator before 4164 * calling this function otherwise this call will fail. 4165 */ 4166 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4167 { 4168 struct ww_acquire_ctx ww_ctx; 4169 int ret; 4170 4171 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4172 4173 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4174 PM_SUSPEND_ON); 4175 4176 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4177 4178 return ret; 4179 } 4180 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4181 4182 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4183 suspend_state_t state, bool en) 4184 { 4185 struct regulator_state *rstate; 4186 4187 rstate = regulator_get_suspend_state(rdev, state); 4188 if (rstate == NULL) 4189 return -EINVAL; 4190 4191 if (!rstate->changeable) 4192 return -EPERM; 4193 4194 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4195 4196 return 0; 4197 } 4198 4199 int regulator_suspend_enable(struct regulator_dev *rdev, 4200 suspend_state_t state) 4201 { 4202 return regulator_suspend_toggle(rdev, state, true); 4203 } 4204 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4205 4206 int regulator_suspend_disable(struct regulator_dev *rdev, 4207 suspend_state_t state) 4208 { 4209 struct regulator *regulator; 4210 struct regulator_voltage *voltage; 4211 4212 /* 4213 * if any consumer wants this regulator device keeping on in 4214 * suspend states, don't set it as disabled. 4215 */ 4216 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4217 voltage = ®ulator->voltage[state]; 4218 if (voltage->min_uV || voltage->max_uV) 4219 return 0; 4220 } 4221 4222 return regulator_suspend_toggle(rdev, state, false); 4223 } 4224 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4225 4226 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4227 int min_uV, int max_uV, 4228 suspend_state_t state) 4229 { 4230 struct regulator_dev *rdev = regulator->rdev; 4231 struct regulator_state *rstate; 4232 4233 rstate = regulator_get_suspend_state(rdev, state); 4234 if (rstate == NULL) 4235 return -EINVAL; 4236 4237 if (rstate->min_uV == rstate->max_uV) { 4238 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4239 return -EPERM; 4240 } 4241 4242 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4243 } 4244 4245 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4246 int max_uV, suspend_state_t state) 4247 { 4248 struct ww_acquire_ctx ww_ctx; 4249 int ret; 4250 4251 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4252 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4253 return -EINVAL; 4254 4255 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4256 4257 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4258 max_uV, state); 4259 4260 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4261 4262 return ret; 4263 } 4264 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4265 4266 /** 4267 * regulator_set_voltage_time - get raise/fall time 4268 * @regulator: regulator source 4269 * @old_uV: starting voltage in microvolts 4270 * @new_uV: target voltage in microvolts 4271 * 4272 * Provided with the starting and ending voltage, this function attempts to 4273 * calculate the time in microseconds required to rise or fall to this new 4274 * voltage. 4275 */ 4276 int regulator_set_voltage_time(struct regulator *regulator, 4277 int old_uV, int new_uV) 4278 { 4279 struct regulator_dev *rdev = regulator->rdev; 4280 const struct regulator_ops *ops = rdev->desc->ops; 4281 int old_sel = -1; 4282 int new_sel = -1; 4283 int voltage; 4284 int i; 4285 4286 if (ops->set_voltage_time) 4287 return ops->set_voltage_time(rdev, old_uV, new_uV); 4288 else if (!ops->set_voltage_time_sel) 4289 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4290 4291 /* Currently requires operations to do this */ 4292 if (!ops->list_voltage || !rdev->desc->n_voltages) 4293 return -EINVAL; 4294 4295 for (i = 0; i < rdev->desc->n_voltages; i++) { 4296 /* We only look for exact voltage matches here */ 4297 if (i < rdev->desc->linear_min_sel) 4298 continue; 4299 4300 if (old_sel >= 0 && new_sel >= 0) 4301 break; 4302 4303 voltage = regulator_list_voltage(regulator, i); 4304 if (voltage < 0) 4305 return -EINVAL; 4306 if (voltage == 0) 4307 continue; 4308 if (voltage == old_uV) 4309 old_sel = i; 4310 if (voltage == new_uV) 4311 new_sel = i; 4312 } 4313 4314 if (old_sel < 0 || new_sel < 0) 4315 return -EINVAL; 4316 4317 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4318 } 4319 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4320 4321 /** 4322 * regulator_set_voltage_time_sel - get raise/fall time 4323 * @rdev: regulator source device 4324 * @old_selector: selector for starting voltage 4325 * @new_selector: selector for target voltage 4326 * 4327 * Provided with the starting and target voltage selectors, this function 4328 * returns time in microseconds required to rise or fall to this new voltage 4329 * 4330 * Drivers providing ramp_delay in regulation_constraints can use this as their 4331 * set_voltage_time_sel() operation. 4332 */ 4333 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4334 unsigned int old_selector, 4335 unsigned int new_selector) 4336 { 4337 int old_volt, new_volt; 4338 4339 /* sanity check */ 4340 if (!rdev->desc->ops->list_voltage) 4341 return -EINVAL; 4342 4343 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4344 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4345 4346 if (rdev->desc->ops->set_voltage_time) 4347 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4348 new_volt); 4349 else 4350 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4351 } 4352 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4353 4354 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4355 { 4356 int ret; 4357 4358 regulator_lock(rdev); 4359 4360 if (!rdev->desc->ops->set_voltage && 4361 !rdev->desc->ops->set_voltage_sel) { 4362 ret = -EINVAL; 4363 goto out; 4364 } 4365 4366 /* balance only, if regulator is coupled */ 4367 if (rdev->coupling_desc.n_coupled > 1) 4368 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4369 else 4370 ret = -EOPNOTSUPP; 4371 4372 out: 4373 regulator_unlock(rdev); 4374 return ret; 4375 } 4376 4377 /** 4378 * regulator_sync_voltage - re-apply last regulator output voltage 4379 * @regulator: regulator source 4380 * 4381 * Re-apply the last configured voltage. This is intended to be used 4382 * where some external control source the consumer is cooperating with 4383 * has caused the configured voltage to change. 4384 */ 4385 int regulator_sync_voltage(struct regulator *regulator) 4386 { 4387 struct regulator_dev *rdev = regulator->rdev; 4388 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4389 int ret, min_uV, max_uV; 4390 4391 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4392 return 0; 4393 4394 regulator_lock(rdev); 4395 4396 if (!rdev->desc->ops->set_voltage && 4397 !rdev->desc->ops->set_voltage_sel) { 4398 ret = -EINVAL; 4399 goto out; 4400 } 4401 4402 /* This is only going to work if we've had a voltage configured. */ 4403 if (!voltage->min_uV && !voltage->max_uV) { 4404 ret = -EINVAL; 4405 goto out; 4406 } 4407 4408 min_uV = voltage->min_uV; 4409 max_uV = voltage->max_uV; 4410 4411 /* This should be a paranoia check... */ 4412 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4413 if (ret < 0) 4414 goto out; 4415 4416 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4417 if (ret < 0) 4418 goto out; 4419 4420 /* balance only, if regulator is coupled */ 4421 if (rdev->coupling_desc.n_coupled > 1) 4422 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4423 else 4424 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4425 4426 out: 4427 regulator_unlock(rdev); 4428 return ret; 4429 } 4430 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4431 4432 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4433 { 4434 int sel, ret; 4435 bool bypassed; 4436 4437 if (rdev->desc->ops->get_bypass) { 4438 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4439 if (ret < 0) 4440 return ret; 4441 if (bypassed) { 4442 /* if bypassed the regulator must have a supply */ 4443 if (!rdev->supply) { 4444 rdev_err(rdev, 4445 "bypassed regulator has no supply!\n"); 4446 return -EPROBE_DEFER; 4447 } 4448 4449 return regulator_get_voltage_rdev(rdev->supply->rdev); 4450 } 4451 } 4452 4453 if (rdev->desc->ops->get_voltage_sel) { 4454 sel = rdev->desc->ops->get_voltage_sel(rdev); 4455 if (sel < 0) 4456 return sel; 4457 ret = rdev->desc->ops->list_voltage(rdev, sel); 4458 } else if (rdev->desc->ops->get_voltage) { 4459 ret = rdev->desc->ops->get_voltage(rdev); 4460 } else if (rdev->desc->ops->list_voltage) { 4461 ret = rdev->desc->ops->list_voltage(rdev, 0); 4462 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4463 ret = rdev->desc->fixed_uV; 4464 } else if (rdev->supply) { 4465 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4466 } else if (rdev->supply_name) { 4467 return -EPROBE_DEFER; 4468 } else { 4469 return -EINVAL; 4470 } 4471 4472 if (ret < 0) 4473 return ret; 4474 return ret - rdev->constraints->uV_offset; 4475 } 4476 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4477 4478 /** 4479 * regulator_get_voltage - get regulator output voltage 4480 * @regulator: regulator source 4481 * 4482 * This returns the current regulator voltage in uV. 4483 * 4484 * NOTE: If the regulator is disabled it will return the voltage value. This 4485 * function should not be used to determine regulator state. 4486 */ 4487 int regulator_get_voltage(struct regulator *regulator) 4488 { 4489 struct ww_acquire_ctx ww_ctx; 4490 int ret; 4491 4492 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4493 ret = regulator_get_voltage_rdev(regulator->rdev); 4494 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4495 4496 return ret; 4497 } 4498 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4499 4500 /** 4501 * regulator_set_current_limit - set regulator output current limit 4502 * @regulator: regulator source 4503 * @min_uA: Minimum supported current in uA 4504 * @max_uA: Maximum supported current in uA 4505 * 4506 * Sets current sink to the desired output current. This can be set during 4507 * any regulator state. IOW, regulator can be disabled or enabled. 4508 * 4509 * If the regulator is enabled then the current will change to the new value 4510 * immediately otherwise if the regulator is disabled the regulator will 4511 * output at the new current when enabled. 4512 * 4513 * NOTE: Regulator system constraints must be set for this regulator before 4514 * calling this function otherwise this call will fail. 4515 */ 4516 int regulator_set_current_limit(struct regulator *regulator, 4517 int min_uA, int max_uA) 4518 { 4519 struct regulator_dev *rdev = regulator->rdev; 4520 int ret; 4521 4522 regulator_lock(rdev); 4523 4524 /* sanity check */ 4525 if (!rdev->desc->ops->set_current_limit) { 4526 ret = -EINVAL; 4527 goto out; 4528 } 4529 4530 /* constraints check */ 4531 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4532 if (ret < 0) 4533 goto out; 4534 4535 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4536 out: 4537 regulator_unlock(rdev); 4538 return ret; 4539 } 4540 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4541 4542 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4543 { 4544 /* sanity check */ 4545 if (!rdev->desc->ops->get_current_limit) 4546 return -EINVAL; 4547 4548 return rdev->desc->ops->get_current_limit(rdev); 4549 } 4550 4551 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4552 { 4553 int ret; 4554 4555 regulator_lock(rdev); 4556 ret = _regulator_get_current_limit_unlocked(rdev); 4557 regulator_unlock(rdev); 4558 4559 return ret; 4560 } 4561 4562 /** 4563 * regulator_get_current_limit - get regulator output current 4564 * @regulator: regulator source 4565 * 4566 * This returns the current supplied by the specified current sink in uA. 4567 * 4568 * NOTE: If the regulator is disabled it will return the current value. This 4569 * function should not be used to determine regulator state. 4570 */ 4571 int regulator_get_current_limit(struct regulator *regulator) 4572 { 4573 return _regulator_get_current_limit(regulator->rdev); 4574 } 4575 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4576 4577 /** 4578 * regulator_set_mode - set regulator operating mode 4579 * @regulator: regulator source 4580 * @mode: operating mode - one of the REGULATOR_MODE constants 4581 * 4582 * Set regulator operating mode to increase regulator efficiency or improve 4583 * regulation performance. 4584 * 4585 * NOTE: Regulator system constraints must be set for this regulator before 4586 * calling this function otherwise this call will fail. 4587 */ 4588 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4589 { 4590 struct regulator_dev *rdev = regulator->rdev; 4591 int ret; 4592 int regulator_curr_mode; 4593 4594 regulator_lock(rdev); 4595 4596 /* sanity check */ 4597 if (!rdev->desc->ops->set_mode) { 4598 ret = -EINVAL; 4599 goto out; 4600 } 4601 4602 /* return if the same mode is requested */ 4603 if (rdev->desc->ops->get_mode) { 4604 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4605 if (regulator_curr_mode == mode) { 4606 ret = 0; 4607 goto out; 4608 } 4609 } 4610 4611 /* constraints check */ 4612 ret = regulator_mode_constrain(rdev, &mode); 4613 if (ret < 0) 4614 goto out; 4615 4616 ret = rdev->desc->ops->set_mode(rdev, mode); 4617 out: 4618 regulator_unlock(rdev); 4619 return ret; 4620 } 4621 EXPORT_SYMBOL_GPL(regulator_set_mode); 4622 4623 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4624 { 4625 /* sanity check */ 4626 if (!rdev->desc->ops->get_mode) 4627 return -EINVAL; 4628 4629 return rdev->desc->ops->get_mode(rdev); 4630 } 4631 4632 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4633 { 4634 int ret; 4635 4636 regulator_lock(rdev); 4637 ret = _regulator_get_mode_unlocked(rdev); 4638 regulator_unlock(rdev); 4639 4640 return ret; 4641 } 4642 4643 /** 4644 * regulator_get_mode - get regulator operating mode 4645 * @regulator: regulator source 4646 * 4647 * Get the current regulator operating mode. 4648 */ 4649 unsigned int regulator_get_mode(struct regulator *regulator) 4650 { 4651 return _regulator_get_mode(regulator->rdev); 4652 } 4653 EXPORT_SYMBOL_GPL(regulator_get_mode); 4654 4655 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4656 { 4657 int ret = 0; 4658 4659 if (rdev->use_cached_err) { 4660 spin_lock(&rdev->err_lock); 4661 ret = rdev->cached_err; 4662 spin_unlock(&rdev->err_lock); 4663 } 4664 return ret; 4665 } 4666 4667 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4668 unsigned int *flags) 4669 { 4670 int cached_flags, ret = 0; 4671 4672 regulator_lock(rdev); 4673 4674 cached_flags = rdev_get_cached_err_flags(rdev); 4675 4676 if (rdev->desc->ops->get_error_flags) 4677 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4678 else if (!rdev->use_cached_err) 4679 ret = -EINVAL; 4680 4681 *flags |= cached_flags; 4682 4683 regulator_unlock(rdev); 4684 4685 return ret; 4686 } 4687 4688 /** 4689 * regulator_get_error_flags - get regulator error information 4690 * @regulator: regulator source 4691 * @flags: pointer to store error flags 4692 * 4693 * Get the current regulator error information. 4694 */ 4695 int regulator_get_error_flags(struct regulator *regulator, 4696 unsigned int *flags) 4697 { 4698 return _regulator_get_error_flags(regulator->rdev, flags); 4699 } 4700 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4701 4702 /** 4703 * regulator_set_load - set regulator load 4704 * @regulator: regulator source 4705 * @uA_load: load current 4706 * 4707 * Notifies the regulator core of a new device load. This is then used by 4708 * DRMS (if enabled by constraints) to set the most efficient regulator 4709 * operating mode for the new regulator loading. 4710 * 4711 * Consumer devices notify their supply regulator of the maximum power 4712 * they will require (can be taken from device datasheet in the power 4713 * consumption tables) when they change operational status and hence power 4714 * state. Examples of operational state changes that can affect power 4715 * consumption are :- 4716 * 4717 * o Device is opened / closed. 4718 * o Device I/O is about to begin or has just finished. 4719 * o Device is idling in between work. 4720 * 4721 * This information is also exported via sysfs to userspace. 4722 * 4723 * DRMS will sum the total requested load on the regulator and change 4724 * to the most efficient operating mode if platform constraints allow. 4725 * 4726 * NOTE: when a regulator consumer requests to have a regulator 4727 * disabled then any load that consumer requested no longer counts 4728 * toward the total requested load. If the regulator is re-enabled 4729 * then the previously requested load will start counting again. 4730 * 4731 * If a regulator is an always-on regulator then an individual consumer's 4732 * load will still be removed if that consumer is fully disabled. 4733 * 4734 * On error a negative errno is returned. 4735 */ 4736 int regulator_set_load(struct regulator *regulator, int uA_load) 4737 { 4738 struct regulator_dev *rdev = regulator->rdev; 4739 int old_uA_load; 4740 int ret = 0; 4741 4742 regulator_lock(rdev); 4743 old_uA_load = regulator->uA_load; 4744 regulator->uA_load = uA_load; 4745 if (regulator->enable_count && old_uA_load != uA_load) { 4746 ret = drms_uA_update(rdev); 4747 if (ret < 0) 4748 regulator->uA_load = old_uA_load; 4749 } 4750 regulator_unlock(rdev); 4751 4752 return ret; 4753 } 4754 EXPORT_SYMBOL_GPL(regulator_set_load); 4755 4756 /** 4757 * regulator_allow_bypass - allow the regulator to go into bypass mode 4758 * 4759 * @regulator: Regulator to configure 4760 * @enable: enable or disable bypass mode 4761 * 4762 * Allow the regulator to go into bypass mode if all other consumers 4763 * for the regulator also enable bypass mode and the machine 4764 * constraints allow this. Bypass mode means that the regulator is 4765 * simply passing the input directly to the output with no regulation. 4766 */ 4767 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4768 { 4769 struct regulator_dev *rdev = regulator->rdev; 4770 const char *name = rdev_get_name(rdev); 4771 int ret = 0; 4772 4773 if (!rdev->desc->ops->set_bypass) 4774 return 0; 4775 4776 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4777 return 0; 4778 4779 regulator_lock(rdev); 4780 4781 if (enable && !regulator->bypass) { 4782 rdev->bypass_count++; 4783 4784 if (rdev->bypass_count == rdev->open_count) { 4785 trace_regulator_bypass_enable(name); 4786 4787 ret = rdev->desc->ops->set_bypass(rdev, enable); 4788 if (ret != 0) 4789 rdev->bypass_count--; 4790 else 4791 trace_regulator_bypass_enable_complete(name); 4792 } 4793 4794 } else if (!enable && regulator->bypass) { 4795 rdev->bypass_count--; 4796 4797 if (rdev->bypass_count != rdev->open_count) { 4798 trace_regulator_bypass_disable(name); 4799 4800 ret = rdev->desc->ops->set_bypass(rdev, enable); 4801 if (ret != 0) 4802 rdev->bypass_count++; 4803 else 4804 trace_regulator_bypass_disable_complete(name); 4805 } 4806 } 4807 4808 if (ret == 0) 4809 regulator->bypass = enable; 4810 4811 regulator_unlock(rdev); 4812 4813 return ret; 4814 } 4815 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4816 4817 /** 4818 * regulator_register_notifier - register regulator event notifier 4819 * @regulator: regulator source 4820 * @nb: notifier block 4821 * 4822 * Register notifier block to receive regulator events. 4823 */ 4824 int regulator_register_notifier(struct regulator *regulator, 4825 struct notifier_block *nb) 4826 { 4827 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4828 nb); 4829 } 4830 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4831 4832 /** 4833 * regulator_unregister_notifier - unregister regulator event notifier 4834 * @regulator: regulator source 4835 * @nb: notifier block 4836 * 4837 * Unregister regulator event notifier block. 4838 */ 4839 int regulator_unregister_notifier(struct regulator *regulator, 4840 struct notifier_block *nb) 4841 { 4842 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4843 nb); 4844 } 4845 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4846 4847 /* notify regulator consumers and downstream regulator consumers. 4848 * Note mutex must be held by caller. 4849 */ 4850 static int _notifier_call_chain(struct regulator_dev *rdev, 4851 unsigned long event, void *data) 4852 { 4853 /* call rdev chain first */ 4854 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4855 } 4856 4857 int _regulator_bulk_get(struct device *dev, int num_consumers, 4858 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4859 { 4860 int i; 4861 int ret; 4862 4863 for (i = 0; i < num_consumers; i++) 4864 consumers[i].consumer = NULL; 4865 4866 for (i = 0; i < num_consumers; i++) { 4867 consumers[i].consumer = _regulator_get(dev, 4868 consumers[i].supply, get_type); 4869 if (IS_ERR(consumers[i].consumer)) { 4870 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4871 "Failed to get supply '%s'", 4872 consumers[i].supply); 4873 consumers[i].consumer = NULL; 4874 goto err; 4875 } 4876 4877 if (consumers[i].init_load_uA > 0) { 4878 ret = regulator_set_load(consumers[i].consumer, 4879 consumers[i].init_load_uA); 4880 if (ret) { 4881 i++; 4882 goto err; 4883 } 4884 } 4885 } 4886 4887 return 0; 4888 4889 err: 4890 while (--i >= 0) 4891 regulator_put(consumers[i].consumer); 4892 4893 return ret; 4894 } 4895 4896 /** 4897 * regulator_bulk_get - get multiple regulator consumers 4898 * 4899 * @dev: Device to supply 4900 * @num_consumers: Number of consumers to register 4901 * @consumers: Configuration of consumers; clients are stored here. 4902 * 4903 * @return 0 on success, an errno on failure. 4904 * 4905 * This helper function allows drivers to get several regulator 4906 * consumers in one operation. If any of the regulators cannot be 4907 * acquired then any regulators that were allocated will be freed 4908 * before returning to the caller. 4909 */ 4910 int regulator_bulk_get(struct device *dev, int num_consumers, 4911 struct regulator_bulk_data *consumers) 4912 { 4913 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4914 } 4915 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4916 4917 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4918 { 4919 struct regulator_bulk_data *bulk = data; 4920 4921 bulk->ret = regulator_enable(bulk->consumer); 4922 } 4923 4924 /** 4925 * regulator_bulk_enable - enable multiple regulator consumers 4926 * 4927 * @num_consumers: Number of consumers 4928 * @consumers: Consumer data; clients are stored here. 4929 * @return 0 on success, an errno on failure 4930 * 4931 * This convenience API allows consumers to enable multiple regulator 4932 * clients in a single API call. If any consumers cannot be enabled 4933 * then any others that were enabled will be disabled again prior to 4934 * return. 4935 */ 4936 int regulator_bulk_enable(int num_consumers, 4937 struct regulator_bulk_data *consumers) 4938 { 4939 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4940 int i; 4941 int ret = 0; 4942 4943 for (i = 0; i < num_consumers; i++) { 4944 async_schedule_domain(regulator_bulk_enable_async, 4945 &consumers[i], &async_domain); 4946 } 4947 4948 async_synchronize_full_domain(&async_domain); 4949 4950 /* If any consumer failed we need to unwind any that succeeded */ 4951 for (i = 0; i < num_consumers; i++) { 4952 if (consumers[i].ret != 0) { 4953 ret = consumers[i].ret; 4954 goto err; 4955 } 4956 } 4957 4958 return 0; 4959 4960 err: 4961 for (i = 0; i < num_consumers; i++) { 4962 if (consumers[i].ret < 0) 4963 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4964 ERR_PTR(consumers[i].ret)); 4965 else 4966 regulator_disable(consumers[i].consumer); 4967 } 4968 4969 return ret; 4970 } 4971 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4972 4973 /** 4974 * regulator_bulk_disable - disable multiple regulator consumers 4975 * 4976 * @num_consumers: Number of consumers 4977 * @consumers: Consumer data; clients are stored here. 4978 * @return 0 on success, an errno on failure 4979 * 4980 * This convenience API allows consumers to disable multiple regulator 4981 * clients in a single API call. If any consumers cannot be disabled 4982 * then any others that were disabled will be enabled again prior to 4983 * return. 4984 */ 4985 int regulator_bulk_disable(int num_consumers, 4986 struct regulator_bulk_data *consumers) 4987 { 4988 int i; 4989 int ret, r; 4990 4991 for (i = num_consumers - 1; i >= 0; --i) { 4992 ret = regulator_disable(consumers[i].consumer); 4993 if (ret != 0) 4994 goto err; 4995 } 4996 4997 return 0; 4998 4999 err: 5000 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5001 for (++i; i < num_consumers; ++i) { 5002 r = regulator_enable(consumers[i].consumer); 5003 if (r != 0) 5004 pr_err("Failed to re-enable %s: %pe\n", 5005 consumers[i].supply, ERR_PTR(r)); 5006 } 5007 5008 return ret; 5009 } 5010 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5011 5012 /** 5013 * regulator_bulk_force_disable - force disable multiple regulator consumers 5014 * 5015 * @num_consumers: Number of consumers 5016 * @consumers: Consumer data; clients are stored here. 5017 * @return 0 on success, an errno on failure 5018 * 5019 * This convenience API allows consumers to forcibly disable multiple regulator 5020 * clients in a single API call. 5021 * NOTE: This should be used for situations when device damage will 5022 * likely occur if the regulators are not disabled (e.g. over temp). 5023 * Although regulator_force_disable function call for some consumers can 5024 * return error numbers, the function is called for all consumers. 5025 */ 5026 int regulator_bulk_force_disable(int num_consumers, 5027 struct regulator_bulk_data *consumers) 5028 { 5029 int i; 5030 int ret = 0; 5031 5032 for (i = 0; i < num_consumers; i++) { 5033 consumers[i].ret = 5034 regulator_force_disable(consumers[i].consumer); 5035 5036 /* Store first error for reporting */ 5037 if (consumers[i].ret && !ret) 5038 ret = consumers[i].ret; 5039 } 5040 5041 return ret; 5042 } 5043 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5044 5045 /** 5046 * regulator_bulk_free - free multiple regulator consumers 5047 * 5048 * @num_consumers: Number of consumers 5049 * @consumers: Consumer data; clients are stored here. 5050 * 5051 * This convenience API allows consumers to free multiple regulator 5052 * clients in a single API call. 5053 */ 5054 void regulator_bulk_free(int num_consumers, 5055 struct regulator_bulk_data *consumers) 5056 { 5057 int i; 5058 5059 for (i = 0; i < num_consumers; i++) { 5060 regulator_put(consumers[i].consumer); 5061 consumers[i].consumer = NULL; 5062 } 5063 } 5064 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5065 5066 /** 5067 * regulator_notifier_call_chain - call regulator event notifier 5068 * @rdev: regulator source 5069 * @event: notifier block 5070 * @data: callback-specific data. 5071 * 5072 * Called by regulator drivers to notify clients a regulator event has 5073 * occurred. 5074 */ 5075 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5076 unsigned long event, void *data) 5077 { 5078 _notifier_call_chain(rdev, event, data); 5079 return NOTIFY_DONE; 5080 5081 } 5082 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5083 5084 /** 5085 * regulator_mode_to_status - convert a regulator mode into a status 5086 * 5087 * @mode: Mode to convert 5088 * 5089 * Convert a regulator mode into a status. 5090 */ 5091 int regulator_mode_to_status(unsigned int mode) 5092 { 5093 switch (mode) { 5094 case REGULATOR_MODE_FAST: 5095 return REGULATOR_STATUS_FAST; 5096 case REGULATOR_MODE_NORMAL: 5097 return REGULATOR_STATUS_NORMAL; 5098 case REGULATOR_MODE_IDLE: 5099 return REGULATOR_STATUS_IDLE; 5100 case REGULATOR_MODE_STANDBY: 5101 return REGULATOR_STATUS_STANDBY; 5102 default: 5103 return REGULATOR_STATUS_UNDEFINED; 5104 } 5105 } 5106 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5107 5108 static struct attribute *regulator_dev_attrs[] = { 5109 &dev_attr_name.attr, 5110 &dev_attr_num_users.attr, 5111 &dev_attr_type.attr, 5112 &dev_attr_microvolts.attr, 5113 &dev_attr_microamps.attr, 5114 &dev_attr_opmode.attr, 5115 &dev_attr_state.attr, 5116 &dev_attr_status.attr, 5117 &dev_attr_bypass.attr, 5118 &dev_attr_requested_microamps.attr, 5119 &dev_attr_min_microvolts.attr, 5120 &dev_attr_max_microvolts.attr, 5121 &dev_attr_min_microamps.attr, 5122 &dev_attr_max_microamps.attr, 5123 &dev_attr_under_voltage.attr, 5124 &dev_attr_over_current.attr, 5125 &dev_attr_regulation_out.attr, 5126 &dev_attr_fail.attr, 5127 &dev_attr_over_temp.attr, 5128 &dev_attr_under_voltage_warn.attr, 5129 &dev_attr_over_current_warn.attr, 5130 &dev_attr_over_voltage_warn.attr, 5131 &dev_attr_over_temp_warn.attr, 5132 &dev_attr_suspend_standby_state.attr, 5133 &dev_attr_suspend_mem_state.attr, 5134 &dev_attr_suspend_disk_state.attr, 5135 &dev_attr_suspend_standby_microvolts.attr, 5136 &dev_attr_suspend_mem_microvolts.attr, 5137 &dev_attr_suspend_disk_microvolts.attr, 5138 &dev_attr_suspend_standby_mode.attr, 5139 &dev_attr_suspend_mem_mode.attr, 5140 &dev_attr_suspend_disk_mode.attr, 5141 NULL 5142 }; 5143 5144 /* 5145 * To avoid cluttering sysfs (and memory) with useless state, only 5146 * create attributes that can be meaningfully displayed. 5147 */ 5148 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5149 struct attribute *attr, int idx) 5150 { 5151 struct device *dev = kobj_to_dev(kobj); 5152 struct regulator_dev *rdev = dev_to_rdev(dev); 5153 const struct regulator_ops *ops = rdev->desc->ops; 5154 umode_t mode = attr->mode; 5155 5156 /* these three are always present */ 5157 if (attr == &dev_attr_name.attr || 5158 attr == &dev_attr_num_users.attr || 5159 attr == &dev_attr_type.attr) 5160 return mode; 5161 5162 /* some attributes need specific methods to be displayed */ 5163 if (attr == &dev_attr_microvolts.attr) { 5164 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5165 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5166 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5167 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5168 return mode; 5169 return 0; 5170 } 5171 5172 if (attr == &dev_attr_microamps.attr) 5173 return ops->get_current_limit ? mode : 0; 5174 5175 if (attr == &dev_attr_opmode.attr) 5176 return ops->get_mode ? mode : 0; 5177 5178 if (attr == &dev_attr_state.attr) 5179 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5180 5181 if (attr == &dev_attr_status.attr) 5182 return ops->get_status ? mode : 0; 5183 5184 if (attr == &dev_attr_bypass.attr) 5185 return ops->get_bypass ? mode : 0; 5186 5187 if (attr == &dev_attr_under_voltage.attr || 5188 attr == &dev_attr_over_current.attr || 5189 attr == &dev_attr_regulation_out.attr || 5190 attr == &dev_attr_fail.attr || 5191 attr == &dev_attr_over_temp.attr || 5192 attr == &dev_attr_under_voltage_warn.attr || 5193 attr == &dev_attr_over_current_warn.attr || 5194 attr == &dev_attr_over_voltage_warn.attr || 5195 attr == &dev_attr_over_temp_warn.attr) 5196 return ops->get_error_flags ? mode : 0; 5197 5198 /* constraints need specific supporting methods */ 5199 if (attr == &dev_attr_min_microvolts.attr || 5200 attr == &dev_attr_max_microvolts.attr) 5201 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5202 5203 if (attr == &dev_attr_min_microamps.attr || 5204 attr == &dev_attr_max_microamps.attr) 5205 return ops->set_current_limit ? mode : 0; 5206 5207 if (attr == &dev_attr_suspend_standby_state.attr || 5208 attr == &dev_attr_suspend_mem_state.attr || 5209 attr == &dev_attr_suspend_disk_state.attr) 5210 return mode; 5211 5212 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5213 attr == &dev_attr_suspend_mem_microvolts.attr || 5214 attr == &dev_attr_suspend_disk_microvolts.attr) 5215 return ops->set_suspend_voltage ? mode : 0; 5216 5217 if (attr == &dev_attr_suspend_standby_mode.attr || 5218 attr == &dev_attr_suspend_mem_mode.attr || 5219 attr == &dev_attr_suspend_disk_mode.attr) 5220 return ops->set_suspend_mode ? mode : 0; 5221 5222 return mode; 5223 } 5224 5225 static const struct attribute_group regulator_dev_group = { 5226 .attrs = regulator_dev_attrs, 5227 .is_visible = regulator_attr_is_visible, 5228 }; 5229 5230 static const struct attribute_group *regulator_dev_groups[] = { 5231 ®ulator_dev_group, 5232 NULL 5233 }; 5234 5235 static void regulator_dev_release(struct device *dev) 5236 { 5237 struct regulator_dev *rdev = dev_get_drvdata(dev); 5238 5239 debugfs_remove_recursive(rdev->debugfs); 5240 kfree(rdev->constraints); 5241 of_node_put(rdev->dev.of_node); 5242 kfree(rdev); 5243 } 5244 5245 static void rdev_init_debugfs(struct regulator_dev *rdev) 5246 { 5247 struct device *parent = rdev->dev.parent; 5248 const char *rname = rdev_get_name(rdev); 5249 char name[NAME_MAX]; 5250 5251 /* Avoid duplicate debugfs directory names */ 5252 if (parent && rname == rdev->desc->name) { 5253 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5254 rname); 5255 rname = name; 5256 } 5257 5258 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5259 if (IS_ERR(rdev->debugfs)) { 5260 rdev_warn(rdev, "Failed to create debugfs directory\n"); 5261 return; 5262 } 5263 5264 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5265 &rdev->use_count); 5266 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5267 &rdev->open_count); 5268 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5269 &rdev->bypass_count); 5270 } 5271 5272 static int regulator_register_resolve_supply(struct device *dev, void *data) 5273 { 5274 struct regulator_dev *rdev = dev_to_rdev(dev); 5275 5276 if (regulator_resolve_supply(rdev)) 5277 rdev_dbg(rdev, "unable to resolve supply\n"); 5278 5279 return 0; 5280 } 5281 5282 int regulator_coupler_register(struct regulator_coupler *coupler) 5283 { 5284 mutex_lock(®ulator_list_mutex); 5285 list_add_tail(&coupler->list, ®ulator_coupler_list); 5286 mutex_unlock(®ulator_list_mutex); 5287 5288 return 0; 5289 } 5290 5291 static struct regulator_coupler * 5292 regulator_find_coupler(struct regulator_dev *rdev) 5293 { 5294 struct regulator_coupler *coupler; 5295 int err; 5296 5297 /* 5298 * Note that regulators are appended to the list and the generic 5299 * coupler is registered first, hence it will be attached at last 5300 * if nobody cared. 5301 */ 5302 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5303 err = coupler->attach_regulator(coupler, rdev); 5304 if (!err) { 5305 if (!coupler->balance_voltage && 5306 rdev->coupling_desc.n_coupled > 2) 5307 goto err_unsupported; 5308 5309 return coupler; 5310 } 5311 5312 if (err < 0) 5313 return ERR_PTR(err); 5314 5315 if (err == 1) 5316 continue; 5317 5318 break; 5319 } 5320 5321 return ERR_PTR(-EINVAL); 5322 5323 err_unsupported: 5324 if (coupler->detach_regulator) 5325 coupler->detach_regulator(coupler, rdev); 5326 5327 rdev_err(rdev, 5328 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5329 5330 return ERR_PTR(-EPERM); 5331 } 5332 5333 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5334 { 5335 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5336 struct coupling_desc *c_desc = &rdev->coupling_desc; 5337 int n_coupled = c_desc->n_coupled; 5338 struct regulator_dev *c_rdev; 5339 int i; 5340 5341 for (i = 1; i < n_coupled; i++) { 5342 /* already resolved */ 5343 if (c_desc->coupled_rdevs[i]) 5344 continue; 5345 5346 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5347 5348 if (!c_rdev) 5349 continue; 5350 5351 if (c_rdev->coupling_desc.coupler != coupler) { 5352 rdev_err(rdev, "coupler mismatch with %s\n", 5353 rdev_get_name(c_rdev)); 5354 return; 5355 } 5356 5357 c_desc->coupled_rdevs[i] = c_rdev; 5358 c_desc->n_resolved++; 5359 5360 regulator_resolve_coupling(c_rdev); 5361 } 5362 } 5363 5364 static void regulator_remove_coupling(struct regulator_dev *rdev) 5365 { 5366 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5367 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5368 struct regulator_dev *__c_rdev, *c_rdev; 5369 unsigned int __n_coupled, n_coupled; 5370 int i, k; 5371 int err; 5372 5373 n_coupled = c_desc->n_coupled; 5374 5375 for (i = 1; i < n_coupled; i++) { 5376 c_rdev = c_desc->coupled_rdevs[i]; 5377 5378 if (!c_rdev) 5379 continue; 5380 5381 regulator_lock(c_rdev); 5382 5383 __c_desc = &c_rdev->coupling_desc; 5384 __n_coupled = __c_desc->n_coupled; 5385 5386 for (k = 1; k < __n_coupled; k++) { 5387 __c_rdev = __c_desc->coupled_rdevs[k]; 5388 5389 if (__c_rdev == rdev) { 5390 __c_desc->coupled_rdevs[k] = NULL; 5391 __c_desc->n_resolved--; 5392 break; 5393 } 5394 } 5395 5396 regulator_unlock(c_rdev); 5397 5398 c_desc->coupled_rdevs[i] = NULL; 5399 c_desc->n_resolved--; 5400 } 5401 5402 if (coupler && coupler->detach_regulator) { 5403 err = coupler->detach_regulator(coupler, rdev); 5404 if (err) 5405 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5406 ERR_PTR(err)); 5407 } 5408 5409 kfree(rdev->coupling_desc.coupled_rdevs); 5410 rdev->coupling_desc.coupled_rdevs = NULL; 5411 } 5412 5413 static int regulator_init_coupling(struct regulator_dev *rdev) 5414 { 5415 struct regulator_dev **coupled; 5416 int err, n_phandles; 5417 5418 if (!IS_ENABLED(CONFIG_OF)) 5419 n_phandles = 0; 5420 else 5421 n_phandles = of_get_n_coupled(rdev); 5422 5423 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5424 if (!coupled) 5425 return -ENOMEM; 5426 5427 rdev->coupling_desc.coupled_rdevs = coupled; 5428 5429 /* 5430 * Every regulator should always have coupling descriptor filled with 5431 * at least pointer to itself. 5432 */ 5433 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5434 rdev->coupling_desc.n_coupled = n_phandles + 1; 5435 rdev->coupling_desc.n_resolved++; 5436 5437 /* regulator isn't coupled */ 5438 if (n_phandles == 0) 5439 return 0; 5440 5441 if (!of_check_coupling_data(rdev)) 5442 return -EPERM; 5443 5444 mutex_lock(®ulator_list_mutex); 5445 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5446 mutex_unlock(®ulator_list_mutex); 5447 5448 if (IS_ERR(rdev->coupling_desc.coupler)) { 5449 err = PTR_ERR(rdev->coupling_desc.coupler); 5450 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5451 return err; 5452 } 5453 5454 return 0; 5455 } 5456 5457 static int generic_coupler_attach(struct regulator_coupler *coupler, 5458 struct regulator_dev *rdev) 5459 { 5460 if (rdev->coupling_desc.n_coupled > 2) { 5461 rdev_err(rdev, 5462 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5463 return -EPERM; 5464 } 5465 5466 if (!rdev->constraints->always_on) { 5467 rdev_err(rdev, 5468 "Coupling of a non always-on regulator is unimplemented\n"); 5469 return -ENOTSUPP; 5470 } 5471 5472 return 0; 5473 } 5474 5475 static struct regulator_coupler generic_regulator_coupler = { 5476 .attach_regulator = generic_coupler_attach, 5477 }; 5478 5479 /** 5480 * regulator_register - register regulator 5481 * @dev: the device that drive the regulator 5482 * @regulator_desc: regulator to register 5483 * @cfg: runtime configuration for regulator 5484 * 5485 * Called by regulator drivers to register a regulator. 5486 * Returns a valid pointer to struct regulator_dev on success 5487 * or an ERR_PTR() on error. 5488 */ 5489 struct regulator_dev * 5490 regulator_register(struct device *dev, 5491 const struct regulator_desc *regulator_desc, 5492 const struct regulator_config *cfg) 5493 { 5494 const struct regulator_init_data *init_data; 5495 struct regulator_config *config = NULL; 5496 static atomic_t regulator_no = ATOMIC_INIT(-1); 5497 struct regulator_dev *rdev; 5498 bool dangling_cfg_gpiod = false; 5499 bool dangling_of_gpiod = false; 5500 int ret, i; 5501 bool resolved_early = false; 5502 5503 if (cfg == NULL) 5504 return ERR_PTR(-EINVAL); 5505 if (cfg->ena_gpiod) 5506 dangling_cfg_gpiod = true; 5507 if (regulator_desc == NULL) { 5508 ret = -EINVAL; 5509 goto rinse; 5510 } 5511 5512 WARN_ON(!dev || !cfg->dev); 5513 5514 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5515 ret = -EINVAL; 5516 goto rinse; 5517 } 5518 5519 if (regulator_desc->type != REGULATOR_VOLTAGE && 5520 regulator_desc->type != REGULATOR_CURRENT) { 5521 ret = -EINVAL; 5522 goto rinse; 5523 } 5524 5525 /* Only one of each should be implemented */ 5526 WARN_ON(regulator_desc->ops->get_voltage && 5527 regulator_desc->ops->get_voltage_sel); 5528 WARN_ON(regulator_desc->ops->set_voltage && 5529 regulator_desc->ops->set_voltage_sel); 5530 5531 /* If we're using selectors we must implement list_voltage. */ 5532 if (regulator_desc->ops->get_voltage_sel && 5533 !regulator_desc->ops->list_voltage) { 5534 ret = -EINVAL; 5535 goto rinse; 5536 } 5537 if (regulator_desc->ops->set_voltage_sel && 5538 !regulator_desc->ops->list_voltage) { 5539 ret = -EINVAL; 5540 goto rinse; 5541 } 5542 5543 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5544 if (rdev == NULL) { 5545 ret = -ENOMEM; 5546 goto rinse; 5547 } 5548 device_initialize(&rdev->dev); 5549 spin_lock_init(&rdev->err_lock); 5550 5551 /* 5552 * Duplicate the config so the driver could override it after 5553 * parsing init data. 5554 */ 5555 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5556 if (config == NULL) { 5557 ret = -ENOMEM; 5558 goto clean; 5559 } 5560 5561 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5562 &rdev->dev.of_node); 5563 5564 /* 5565 * Sometimes not all resources are probed already so we need to take 5566 * that into account. This happens most the time if the ena_gpiod comes 5567 * from a gpio extender or something else. 5568 */ 5569 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5570 ret = -EPROBE_DEFER; 5571 goto clean; 5572 } 5573 5574 /* 5575 * We need to keep track of any GPIO descriptor coming from the 5576 * device tree until we have handled it over to the core. If the 5577 * config that was passed in to this function DOES NOT contain 5578 * a descriptor, and the config after this call DOES contain 5579 * a descriptor, we definitely got one from parsing the device 5580 * tree. 5581 */ 5582 if (!cfg->ena_gpiod && config->ena_gpiod) 5583 dangling_of_gpiod = true; 5584 if (!init_data) { 5585 init_data = config->init_data; 5586 rdev->dev.of_node = of_node_get(config->of_node); 5587 } 5588 5589 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5590 rdev->reg_data = config->driver_data; 5591 rdev->owner = regulator_desc->owner; 5592 rdev->desc = regulator_desc; 5593 if (config->regmap) 5594 rdev->regmap = config->regmap; 5595 else if (dev_get_regmap(dev, NULL)) 5596 rdev->regmap = dev_get_regmap(dev, NULL); 5597 else if (dev->parent) 5598 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5599 INIT_LIST_HEAD(&rdev->consumer_list); 5600 INIT_LIST_HEAD(&rdev->list); 5601 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5602 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5603 5604 if (init_data && init_data->supply_regulator) 5605 rdev->supply_name = init_data->supply_regulator; 5606 else if (regulator_desc->supply_name) 5607 rdev->supply_name = regulator_desc->supply_name; 5608 5609 /* register with sysfs */ 5610 rdev->dev.class = ®ulator_class; 5611 rdev->dev.parent = config->dev; 5612 dev_set_name(&rdev->dev, "regulator.%lu", 5613 (unsigned long) atomic_inc_return(®ulator_no)); 5614 dev_set_drvdata(&rdev->dev, rdev); 5615 5616 /* set regulator constraints */ 5617 if (init_data) 5618 rdev->constraints = kmemdup(&init_data->constraints, 5619 sizeof(*rdev->constraints), 5620 GFP_KERNEL); 5621 else 5622 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5623 GFP_KERNEL); 5624 if (!rdev->constraints) { 5625 ret = -ENOMEM; 5626 goto wash; 5627 } 5628 5629 if ((rdev->supply_name && !rdev->supply) && 5630 (rdev->constraints->always_on || 5631 rdev->constraints->boot_on)) { 5632 ret = regulator_resolve_supply(rdev); 5633 if (ret) 5634 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5635 ERR_PTR(ret)); 5636 5637 resolved_early = true; 5638 } 5639 5640 /* perform any regulator specific init */ 5641 if (init_data && init_data->regulator_init) { 5642 ret = init_data->regulator_init(rdev->reg_data); 5643 if (ret < 0) 5644 goto wash; 5645 } 5646 5647 if (config->ena_gpiod) { 5648 ret = regulator_ena_gpio_request(rdev, config); 5649 if (ret != 0) { 5650 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5651 ERR_PTR(ret)); 5652 goto wash; 5653 } 5654 /* The regulator core took over the GPIO descriptor */ 5655 dangling_cfg_gpiod = false; 5656 dangling_of_gpiod = false; 5657 } 5658 5659 ret = set_machine_constraints(rdev); 5660 if (ret == -EPROBE_DEFER && !resolved_early) { 5661 /* Regulator might be in bypass mode and so needs its supply 5662 * to set the constraints 5663 */ 5664 /* FIXME: this currently triggers a chicken-and-egg problem 5665 * when creating -SUPPLY symlink in sysfs to a regulator 5666 * that is just being created 5667 */ 5668 rdev_dbg(rdev, "will resolve supply early: %s\n", 5669 rdev->supply_name); 5670 ret = regulator_resolve_supply(rdev); 5671 if (!ret) 5672 ret = set_machine_constraints(rdev); 5673 else 5674 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5675 ERR_PTR(ret)); 5676 } 5677 if (ret < 0) 5678 goto wash; 5679 5680 ret = regulator_init_coupling(rdev); 5681 if (ret < 0) 5682 goto wash; 5683 5684 /* add consumers devices */ 5685 if (init_data) { 5686 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5687 ret = set_consumer_device_supply(rdev, 5688 init_data->consumer_supplies[i].dev_name, 5689 init_data->consumer_supplies[i].supply); 5690 if (ret < 0) { 5691 dev_err(dev, "Failed to set supply %s\n", 5692 init_data->consumer_supplies[i].supply); 5693 goto unset_supplies; 5694 } 5695 } 5696 } 5697 5698 if (!rdev->desc->ops->get_voltage && 5699 !rdev->desc->ops->list_voltage && 5700 !rdev->desc->fixed_uV) 5701 rdev->is_switch = true; 5702 5703 ret = device_add(&rdev->dev); 5704 if (ret != 0) 5705 goto unset_supplies; 5706 5707 rdev_init_debugfs(rdev); 5708 5709 /* try to resolve regulators coupling since a new one was registered */ 5710 mutex_lock(®ulator_list_mutex); 5711 regulator_resolve_coupling(rdev); 5712 mutex_unlock(®ulator_list_mutex); 5713 5714 /* try to resolve regulators supply since a new one was registered */ 5715 class_for_each_device(®ulator_class, NULL, NULL, 5716 regulator_register_resolve_supply); 5717 kfree(config); 5718 return rdev; 5719 5720 unset_supplies: 5721 mutex_lock(®ulator_list_mutex); 5722 unset_regulator_supplies(rdev); 5723 regulator_remove_coupling(rdev); 5724 mutex_unlock(®ulator_list_mutex); 5725 wash: 5726 regulator_put(rdev->supply); 5727 kfree(rdev->coupling_desc.coupled_rdevs); 5728 mutex_lock(®ulator_list_mutex); 5729 regulator_ena_gpio_free(rdev); 5730 mutex_unlock(®ulator_list_mutex); 5731 put_device(&rdev->dev); 5732 rdev = NULL; 5733 clean: 5734 if (dangling_of_gpiod) 5735 gpiod_put(config->ena_gpiod); 5736 if (rdev && rdev->dev.of_node) 5737 of_node_put(rdev->dev.of_node); 5738 kfree(rdev); 5739 kfree(config); 5740 rinse: 5741 if (dangling_cfg_gpiod) 5742 gpiod_put(cfg->ena_gpiod); 5743 return ERR_PTR(ret); 5744 } 5745 EXPORT_SYMBOL_GPL(regulator_register); 5746 5747 /** 5748 * regulator_unregister - unregister regulator 5749 * @rdev: regulator to unregister 5750 * 5751 * Called by regulator drivers to unregister a regulator. 5752 */ 5753 void regulator_unregister(struct regulator_dev *rdev) 5754 { 5755 if (rdev == NULL) 5756 return; 5757 5758 if (rdev->supply) { 5759 while (rdev->use_count--) 5760 regulator_disable(rdev->supply); 5761 regulator_put(rdev->supply); 5762 } 5763 5764 flush_work(&rdev->disable_work.work); 5765 5766 mutex_lock(®ulator_list_mutex); 5767 5768 WARN_ON(rdev->open_count); 5769 regulator_remove_coupling(rdev); 5770 unset_regulator_supplies(rdev); 5771 list_del(&rdev->list); 5772 regulator_ena_gpio_free(rdev); 5773 device_unregister(&rdev->dev); 5774 5775 mutex_unlock(®ulator_list_mutex); 5776 } 5777 EXPORT_SYMBOL_GPL(regulator_unregister); 5778 5779 #ifdef CONFIG_SUSPEND 5780 /** 5781 * regulator_suspend - prepare regulators for system wide suspend 5782 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5783 * 5784 * Configure each regulator with it's suspend operating parameters for state. 5785 */ 5786 static int regulator_suspend(struct device *dev) 5787 { 5788 struct regulator_dev *rdev = dev_to_rdev(dev); 5789 suspend_state_t state = pm_suspend_target_state; 5790 int ret; 5791 const struct regulator_state *rstate; 5792 5793 rstate = regulator_get_suspend_state_check(rdev, state); 5794 if (!rstate) 5795 return 0; 5796 5797 regulator_lock(rdev); 5798 ret = __suspend_set_state(rdev, rstate); 5799 regulator_unlock(rdev); 5800 5801 return ret; 5802 } 5803 5804 static int regulator_resume(struct device *dev) 5805 { 5806 suspend_state_t state = pm_suspend_target_state; 5807 struct regulator_dev *rdev = dev_to_rdev(dev); 5808 struct regulator_state *rstate; 5809 int ret = 0; 5810 5811 rstate = regulator_get_suspend_state(rdev, state); 5812 if (rstate == NULL) 5813 return 0; 5814 5815 /* Avoid grabbing the lock if we don't need to */ 5816 if (!rdev->desc->ops->resume) 5817 return 0; 5818 5819 regulator_lock(rdev); 5820 5821 if (rstate->enabled == ENABLE_IN_SUSPEND || 5822 rstate->enabled == DISABLE_IN_SUSPEND) 5823 ret = rdev->desc->ops->resume(rdev); 5824 5825 regulator_unlock(rdev); 5826 5827 return ret; 5828 } 5829 #else /* !CONFIG_SUSPEND */ 5830 5831 #define regulator_suspend NULL 5832 #define regulator_resume NULL 5833 5834 #endif /* !CONFIG_SUSPEND */ 5835 5836 #ifdef CONFIG_PM 5837 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5838 .suspend = regulator_suspend, 5839 .resume = regulator_resume, 5840 }; 5841 #endif 5842 5843 struct class regulator_class = { 5844 .name = "regulator", 5845 .dev_release = regulator_dev_release, 5846 .dev_groups = regulator_dev_groups, 5847 #ifdef CONFIG_PM 5848 .pm = ®ulator_pm_ops, 5849 #endif 5850 }; 5851 /** 5852 * regulator_has_full_constraints - the system has fully specified constraints 5853 * 5854 * Calling this function will cause the regulator API to disable all 5855 * regulators which have a zero use count and don't have an always_on 5856 * constraint in a late_initcall. 5857 * 5858 * The intention is that this will become the default behaviour in a 5859 * future kernel release so users are encouraged to use this facility 5860 * now. 5861 */ 5862 void regulator_has_full_constraints(void) 5863 { 5864 has_full_constraints = 1; 5865 } 5866 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5867 5868 /** 5869 * rdev_get_drvdata - get rdev regulator driver data 5870 * @rdev: regulator 5871 * 5872 * Get rdev regulator driver private data. This call can be used in the 5873 * regulator driver context. 5874 */ 5875 void *rdev_get_drvdata(struct regulator_dev *rdev) 5876 { 5877 return rdev->reg_data; 5878 } 5879 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5880 5881 /** 5882 * regulator_get_drvdata - get regulator driver data 5883 * @regulator: regulator 5884 * 5885 * Get regulator driver private data. This call can be used in the consumer 5886 * driver context when non API regulator specific functions need to be called. 5887 */ 5888 void *regulator_get_drvdata(struct regulator *regulator) 5889 { 5890 return regulator->rdev->reg_data; 5891 } 5892 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5893 5894 /** 5895 * regulator_set_drvdata - set regulator driver data 5896 * @regulator: regulator 5897 * @data: data 5898 */ 5899 void regulator_set_drvdata(struct regulator *regulator, void *data) 5900 { 5901 regulator->rdev->reg_data = data; 5902 } 5903 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5904 5905 /** 5906 * rdev_get_id - get regulator ID 5907 * @rdev: regulator 5908 */ 5909 int rdev_get_id(struct regulator_dev *rdev) 5910 { 5911 return rdev->desc->id; 5912 } 5913 EXPORT_SYMBOL_GPL(rdev_get_id); 5914 5915 struct device *rdev_get_dev(struct regulator_dev *rdev) 5916 { 5917 return &rdev->dev; 5918 } 5919 EXPORT_SYMBOL_GPL(rdev_get_dev); 5920 5921 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5922 { 5923 return rdev->regmap; 5924 } 5925 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5926 5927 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5928 { 5929 return reg_init_data->driver_data; 5930 } 5931 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5932 5933 #ifdef CONFIG_DEBUG_FS 5934 static int supply_map_show(struct seq_file *sf, void *data) 5935 { 5936 struct regulator_map *map; 5937 5938 list_for_each_entry(map, ®ulator_map_list, list) { 5939 seq_printf(sf, "%s -> %s.%s\n", 5940 rdev_get_name(map->regulator), map->dev_name, 5941 map->supply); 5942 } 5943 5944 return 0; 5945 } 5946 DEFINE_SHOW_ATTRIBUTE(supply_map); 5947 5948 struct summary_data { 5949 struct seq_file *s; 5950 struct regulator_dev *parent; 5951 int level; 5952 }; 5953 5954 static void regulator_summary_show_subtree(struct seq_file *s, 5955 struct regulator_dev *rdev, 5956 int level); 5957 5958 static int regulator_summary_show_children(struct device *dev, void *data) 5959 { 5960 struct regulator_dev *rdev = dev_to_rdev(dev); 5961 struct summary_data *summary_data = data; 5962 5963 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5964 regulator_summary_show_subtree(summary_data->s, rdev, 5965 summary_data->level + 1); 5966 5967 return 0; 5968 } 5969 5970 static void regulator_summary_show_subtree(struct seq_file *s, 5971 struct regulator_dev *rdev, 5972 int level) 5973 { 5974 struct regulation_constraints *c; 5975 struct regulator *consumer; 5976 struct summary_data summary_data; 5977 unsigned int opmode; 5978 5979 if (!rdev) 5980 return; 5981 5982 opmode = _regulator_get_mode_unlocked(rdev); 5983 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5984 level * 3 + 1, "", 5985 30 - level * 3, rdev_get_name(rdev), 5986 rdev->use_count, rdev->open_count, rdev->bypass_count, 5987 regulator_opmode_to_str(opmode)); 5988 5989 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5990 seq_printf(s, "%5dmA ", 5991 _regulator_get_current_limit_unlocked(rdev) / 1000); 5992 5993 c = rdev->constraints; 5994 if (c) { 5995 switch (rdev->desc->type) { 5996 case REGULATOR_VOLTAGE: 5997 seq_printf(s, "%5dmV %5dmV ", 5998 c->min_uV / 1000, c->max_uV / 1000); 5999 break; 6000 case REGULATOR_CURRENT: 6001 seq_printf(s, "%5dmA %5dmA ", 6002 c->min_uA / 1000, c->max_uA / 1000); 6003 break; 6004 } 6005 } 6006 6007 seq_puts(s, "\n"); 6008 6009 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6010 if (consumer->dev && consumer->dev->class == ®ulator_class) 6011 continue; 6012 6013 seq_printf(s, "%*s%-*s ", 6014 (level + 1) * 3 + 1, "", 6015 30 - (level + 1) * 3, 6016 consumer->supply_name ? consumer->supply_name : 6017 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6018 6019 switch (rdev->desc->type) { 6020 case REGULATOR_VOLTAGE: 6021 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6022 consumer->enable_count, 6023 consumer->uA_load / 1000, 6024 consumer->uA_load && !consumer->enable_count ? 6025 '*' : ' ', 6026 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6027 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6028 break; 6029 case REGULATOR_CURRENT: 6030 break; 6031 } 6032 6033 seq_puts(s, "\n"); 6034 } 6035 6036 summary_data.s = s; 6037 summary_data.level = level; 6038 summary_data.parent = rdev; 6039 6040 class_for_each_device(®ulator_class, NULL, &summary_data, 6041 regulator_summary_show_children); 6042 } 6043 6044 struct summary_lock_data { 6045 struct ww_acquire_ctx *ww_ctx; 6046 struct regulator_dev **new_contended_rdev; 6047 struct regulator_dev **old_contended_rdev; 6048 }; 6049 6050 static int regulator_summary_lock_one(struct device *dev, void *data) 6051 { 6052 struct regulator_dev *rdev = dev_to_rdev(dev); 6053 struct summary_lock_data *lock_data = data; 6054 int ret = 0; 6055 6056 if (rdev != *lock_data->old_contended_rdev) { 6057 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6058 6059 if (ret == -EDEADLK) 6060 *lock_data->new_contended_rdev = rdev; 6061 else 6062 WARN_ON_ONCE(ret); 6063 } else { 6064 *lock_data->old_contended_rdev = NULL; 6065 } 6066 6067 return ret; 6068 } 6069 6070 static int regulator_summary_unlock_one(struct device *dev, void *data) 6071 { 6072 struct regulator_dev *rdev = dev_to_rdev(dev); 6073 struct summary_lock_data *lock_data = data; 6074 6075 if (lock_data) { 6076 if (rdev == *lock_data->new_contended_rdev) 6077 return -EDEADLK; 6078 } 6079 6080 regulator_unlock(rdev); 6081 6082 return 0; 6083 } 6084 6085 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6086 struct regulator_dev **new_contended_rdev, 6087 struct regulator_dev **old_contended_rdev) 6088 { 6089 struct summary_lock_data lock_data; 6090 int ret; 6091 6092 lock_data.ww_ctx = ww_ctx; 6093 lock_data.new_contended_rdev = new_contended_rdev; 6094 lock_data.old_contended_rdev = old_contended_rdev; 6095 6096 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6097 regulator_summary_lock_one); 6098 if (ret) 6099 class_for_each_device(®ulator_class, NULL, &lock_data, 6100 regulator_summary_unlock_one); 6101 6102 return ret; 6103 } 6104 6105 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6106 { 6107 struct regulator_dev *new_contended_rdev = NULL; 6108 struct regulator_dev *old_contended_rdev = NULL; 6109 int err; 6110 6111 mutex_lock(®ulator_list_mutex); 6112 6113 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6114 6115 do { 6116 if (new_contended_rdev) { 6117 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6118 old_contended_rdev = new_contended_rdev; 6119 old_contended_rdev->ref_cnt++; 6120 old_contended_rdev->mutex_owner = current; 6121 } 6122 6123 err = regulator_summary_lock_all(ww_ctx, 6124 &new_contended_rdev, 6125 &old_contended_rdev); 6126 6127 if (old_contended_rdev) 6128 regulator_unlock(old_contended_rdev); 6129 6130 } while (err == -EDEADLK); 6131 6132 ww_acquire_done(ww_ctx); 6133 } 6134 6135 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6136 { 6137 class_for_each_device(®ulator_class, NULL, NULL, 6138 regulator_summary_unlock_one); 6139 ww_acquire_fini(ww_ctx); 6140 6141 mutex_unlock(®ulator_list_mutex); 6142 } 6143 6144 static int regulator_summary_show_roots(struct device *dev, void *data) 6145 { 6146 struct regulator_dev *rdev = dev_to_rdev(dev); 6147 struct seq_file *s = data; 6148 6149 if (!rdev->supply) 6150 regulator_summary_show_subtree(s, rdev, 0); 6151 6152 return 0; 6153 } 6154 6155 static int regulator_summary_show(struct seq_file *s, void *data) 6156 { 6157 struct ww_acquire_ctx ww_ctx; 6158 6159 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6160 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6161 6162 regulator_summary_lock(&ww_ctx); 6163 6164 class_for_each_device(®ulator_class, NULL, s, 6165 regulator_summary_show_roots); 6166 6167 regulator_summary_unlock(&ww_ctx); 6168 6169 return 0; 6170 } 6171 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6172 #endif /* CONFIG_DEBUG_FS */ 6173 6174 static int __init regulator_init(void) 6175 { 6176 int ret; 6177 6178 ret = class_register(®ulator_class); 6179 6180 debugfs_root = debugfs_create_dir("regulator", NULL); 6181 if (IS_ERR(debugfs_root)) 6182 pr_warn("regulator: Failed to create debugfs directory\n"); 6183 6184 #ifdef CONFIG_DEBUG_FS 6185 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6186 &supply_map_fops); 6187 6188 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6189 NULL, ®ulator_summary_fops); 6190 #endif 6191 regulator_dummy_init(); 6192 6193 regulator_coupler_register(&generic_regulator_coupler); 6194 6195 return ret; 6196 } 6197 6198 /* init early to allow our consumers to complete system booting */ 6199 core_initcall(regulator_init); 6200 6201 static int regulator_late_cleanup(struct device *dev, void *data) 6202 { 6203 struct regulator_dev *rdev = dev_to_rdev(dev); 6204 struct regulation_constraints *c = rdev->constraints; 6205 int ret; 6206 6207 if (c && c->always_on) 6208 return 0; 6209 6210 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6211 return 0; 6212 6213 regulator_lock(rdev); 6214 6215 if (rdev->use_count) 6216 goto unlock; 6217 6218 /* If reading the status failed, assume that it's off. */ 6219 if (_regulator_is_enabled(rdev) <= 0) 6220 goto unlock; 6221 6222 if (have_full_constraints()) { 6223 /* We log since this may kill the system if it goes 6224 * wrong. 6225 */ 6226 rdev_info(rdev, "disabling\n"); 6227 ret = _regulator_do_disable(rdev); 6228 if (ret != 0) 6229 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6230 } else { 6231 /* The intention is that in future we will 6232 * assume that full constraints are provided 6233 * so warn even if we aren't going to do 6234 * anything here. 6235 */ 6236 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6237 } 6238 6239 unlock: 6240 regulator_unlock(rdev); 6241 6242 return 0; 6243 } 6244 6245 static void regulator_init_complete_work_function(struct work_struct *work) 6246 { 6247 /* 6248 * Regulators may had failed to resolve their input supplies 6249 * when were registered, either because the input supply was 6250 * not registered yet or because its parent device was not 6251 * bound yet. So attempt to resolve the input supplies for 6252 * pending regulators before trying to disable unused ones. 6253 */ 6254 class_for_each_device(®ulator_class, NULL, NULL, 6255 regulator_register_resolve_supply); 6256 6257 /* If we have a full configuration then disable any regulators 6258 * we have permission to change the status for and which are 6259 * not in use or always_on. This is effectively the default 6260 * for DT and ACPI as they have full constraints. 6261 */ 6262 class_for_each_device(®ulator_class, NULL, NULL, 6263 regulator_late_cleanup); 6264 } 6265 6266 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6267 regulator_init_complete_work_function); 6268 6269 static int __init regulator_init_complete(void) 6270 { 6271 /* 6272 * Since DT doesn't provide an idiomatic mechanism for 6273 * enabling full constraints and since it's much more natural 6274 * with DT to provide them just assume that a DT enabled 6275 * system has full constraints. 6276 */ 6277 if (of_have_populated_dt()) 6278 has_full_constraints = true; 6279 6280 /* 6281 * We punt completion for an arbitrary amount of time since 6282 * systems like distros will load many drivers from userspace 6283 * so consumers might not always be ready yet, this is 6284 * particularly an issue with laptops where this might bounce 6285 * the display off then on. Ideally we'd get a notification 6286 * from userspace when this happens but we don't so just wait 6287 * a bit and hope we waited long enough. It'd be better if 6288 * we'd only do this on systems that need it, and a kernel 6289 * command line option might be useful. 6290 */ 6291 schedule_delayed_work(®ulator_init_complete_work, 6292 msecs_to_jiffies(30000)); 6293 6294 return 0; 6295 } 6296 late_initcall_sync(regulator_init_complete); 6297