1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static LIST_HEAD(regulator_ena_gpio_list); 55 static bool has_full_constraints; 56 static bool board_wants_dummy_regulator; 57 58 static struct dentry *debugfs_root; 59 60 /* 61 * struct regulator_map 62 * 63 * Used to provide symbolic supply names to devices. 64 */ 65 struct regulator_map { 66 struct list_head list; 67 const char *dev_name; /* The dev_name() for the consumer */ 68 const char *supply; 69 struct regulator_dev *regulator; 70 }; 71 72 /* 73 * struct regulator_enable_gpio 74 * 75 * Management for shared enable GPIO pin 76 */ 77 struct regulator_enable_gpio { 78 struct list_head list; 79 int gpio; 80 u32 enable_count; /* a number of enabled shared GPIO */ 81 u32 request_count; /* a number of requested shared GPIO */ 82 unsigned int ena_gpio_invert:1; 83 }; 84 85 /* 86 * struct regulator 87 * 88 * One for each consumer device. 89 */ 90 struct regulator { 91 struct device *dev; 92 struct list_head list; 93 unsigned int always_on:1; 94 unsigned int bypass:1; 95 int uA_load; 96 int min_uV; 97 int max_uV; 98 char *supply_name; 99 struct device_attribute dev_attr; 100 struct regulator_dev *rdev; 101 struct dentry *debugfs; 102 }; 103 104 static int _regulator_is_enabled(struct regulator_dev *rdev); 105 static int _regulator_disable(struct regulator_dev *rdev); 106 static int _regulator_get_voltage(struct regulator_dev *rdev); 107 static int _regulator_get_current_limit(struct regulator_dev *rdev); 108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 109 static void _notifier_call_chain(struct regulator_dev *rdev, 110 unsigned long event, void *data); 111 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 112 int min_uV, int max_uV); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 117 static const char *rdev_get_name(struct regulator_dev *rdev) 118 { 119 if (rdev->constraints && rdev->constraints->name) 120 return rdev->constraints->name; 121 else if (rdev->desc->name) 122 return rdev->desc->name; 123 else 124 return ""; 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t regulator_name_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 334 static ssize_t regulator_print_opmode(char *buf, int mode) 335 { 336 switch (mode) { 337 case REGULATOR_MODE_FAST: 338 return sprintf(buf, "fast\n"); 339 case REGULATOR_MODE_NORMAL: 340 return sprintf(buf, "normal\n"); 341 case REGULATOR_MODE_IDLE: 342 return sprintf(buf, "idle\n"); 343 case REGULATOR_MODE_STANDBY: 344 return sprintf(buf, "standby\n"); 345 } 346 return sprintf(buf, "unknown\n"); 347 } 348 349 static ssize_t regulator_opmode_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 struct regulator_dev *rdev = dev_get_drvdata(dev); 353 354 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 355 } 356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 357 358 static ssize_t regulator_print_state(char *buf, int state) 359 { 360 if (state > 0) 361 return sprintf(buf, "enabled\n"); 362 else if (state == 0) 363 return sprintf(buf, "disabled\n"); 364 else 365 return sprintf(buf, "unknown\n"); 366 } 367 368 static ssize_t regulator_state_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct regulator_dev *rdev = dev_get_drvdata(dev); 372 ssize_t ret; 373 374 mutex_lock(&rdev->mutex); 375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 376 mutex_unlock(&rdev->mutex); 377 378 return ret; 379 } 380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 381 382 static ssize_t regulator_status_show(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct regulator_dev *rdev = dev_get_drvdata(dev); 386 int status; 387 char *label; 388 389 status = rdev->desc->ops->get_status(rdev); 390 if (status < 0) 391 return status; 392 393 switch (status) { 394 case REGULATOR_STATUS_OFF: 395 label = "off"; 396 break; 397 case REGULATOR_STATUS_ON: 398 label = "on"; 399 break; 400 case REGULATOR_STATUS_ERROR: 401 label = "error"; 402 break; 403 case REGULATOR_STATUS_FAST: 404 label = "fast"; 405 break; 406 case REGULATOR_STATUS_NORMAL: 407 label = "normal"; 408 break; 409 case REGULATOR_STATUS_IDLE: 410 label = "idle"; 411 break; 412 case REGULATOR_STATUS_STANDBY: 413 label = "standby"; 414 break; 415 case REGULATOR_STATUS_BYPASS: 416 label = "bypass"; 417 break; 418 case REGULATOR_STATUS_UNDEFINED: 419 label = "undefined"; 420 break; 421 default: 422 return -ERANGE; 423 } 424 425 return sprintf(buf, "%s\n", label); 426 } 427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 428 429 static ssize_t regulator_min_uA_show(struct device *dev, 430 struct device_attribute *attr, char *buf) 431 { 432 struct regulator_dev *rdev = dev_get_drvdata(dev); 433 434 if (!rdev->constraints) 435 return sprintf(buf, "constraint not defined\n"); 436 437 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 438 } 439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 440 441 static ssize_t regulator_max_uA_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct regulator_dev *rdev = dev_get_drvdata(dev); 445 446 if (!rdev->constraints) 447 return sprintf(buf, "constraint not defined\n"); 448 449 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 450 } 451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 452 453 static ssize_t regulator_min_uV_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct regulator_dev *rdev = dev_get_drvdata(dev); 457 458 if (!rdev->constraints) 459 return sprintf(buf, "constraint not defined\n"); 460 461 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 462 } 463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 464 465 static ssize_t regulator_max_uV_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 if (!rdev->constraints) 471 return sprintf(buf, "constraint not defined\n"); 472 473 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 474 } 475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 476 477 static ssize_t regulator_total_uA_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 struct regulator *regulator; 482 int uA = 0; 483 484 mutex_lock(&rdev->mutex); 485 list_for_each_entry(regulator, &rdev->consumer_list, list) 486 uA += regulator->uA_load; 487 mutex_unlock(&rdev->mutex); 488 return sprintf(buf, "%d\n", uA); 489 } 490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 491 492 static ssize_t regulator_num_users_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct regulator_dev *rdev = dev_get_drvdata(dev); 496 return sprintf(buf, "%d\n", rdev->use_count); 497 } 498 499 static ssize_t regulator_type_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct regulator_dev *rdev = dev_get_drvdata(dev); 503 504 switch (rdev->desc->type) { 505 case REGULATOR_VOLTAGE: 506 return sprintf(buf, "voltage\n"); 507 case REGULATOR_CURRENT: 508 return sprintf(buf, "current\n"); 509 } 510 return sprintf(buf, "unknown\n"); 511 } 512 513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 struct regulator_dev *rdev = dev_get_drvdata(dev); 517 518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 519 } 520 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 521 regulator_suspend_mem_uV_show, NULL); 522 523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 529 } 530 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 531 regulator_suspend_disk_uV_show, NULL); 532 533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 539 } 540 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 541 regulator_suspend_standby_uV_show, NULL); 542 543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return regulator_print_opmode(buf, 549 rdev->constraints->state_mem.mode); 550 } 551 static DEVICE_ATTR(suspend_mem_mode, 0444, 552 regulator_suspend_mem_mode_show, NULL); 553 554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct regulator_dev *rdev = dev_get_drvdata(dev); 558 559 return regulator_print_opmode(buf, 560 rdev->constraints->state_disk.mode); 561 } 562 static DEVICE_ATTR(suspend_disk_mode, 0444, 563 regulator_suspend_disk_mode_show, NULL); 564 565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 566 struct device_attribute *attr, char *buf) 567 { 568 struct regulator_dev *rdev = dev_get_drvdata(dev); 569 570 return regulator_print_opmode(buf, 571 rdev->constraints->state_standby.mode); 572 } 573 static DEVICE_ATTR(suspend_standby_mode, 0444, 574 regulator_suspend_standby_mode_show, NULL); 575 576 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct regulator_dev *rdev = dev_get_drvdata(dev); 580 581 return regulator_print_state(buf, 582 rdev->constraints->state_mem.enabled); 583 } 584 static DEVICE_ATTR(suspend_mem_state, 0444, 585 regulator_suspend_mem_state_show, NULL); 586 587 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 struct regulator_dev *rdev = dev_get_drvdata(dev); 591 592 return regulator_print_state(buf, 593 rdev->constraints->state_disk.enabled); 594 } 595 static DEVICE_ATTR(suspend_disk_state, 0444, 596 regulator_suspend_disk_state_show, NULL); 597 598 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 599 struct device_attribute *attr, char *buf) 600 { 601 struct regulator_dev *rdev = dev_get_drvdata(dev); 602 603 return regulator_print_state(buf, 604 rdev->constraints->state_standby.enabled); 605 } 606 static DEVICE_ATTR(suspend_standby_state, 0444, 607 regulator_suspend_standby_state_show, NULL); 608 609 static ssize_t regulator_bypass_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct regulator_dev *rdev = dev_get_drvdata(dev); 613 const char *report; 614 bool bypass; 615 int ret; 616 617 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 618 619 if (ret != 0) 620 report = "unknown"; 621 else if (bypass) 622 report = "enabled"; 623 else 624 report = "disabled"; 625 626 return sprintf(buf, "%s\n", report); 627 } 628 static DEVICE_ATTR(bypass, 0444, 629 regulator_bypass_show, NULL); 630 631 /* 632 * These are the only attributes are present for all regulators. 633 * Other attributes are a function of regulator functionality. 634 */ 635 static struct device_attribute regulator_dev_attrs[] = { 636 __ATTR(name, 0444, regulator_name_show, NULL), 637 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 638 __ATTR(type, 0444, regulator_type_show, NULL), 639 __ATTR_NULL, 640 }; 641 642 static void regulator_dev_release(struct device *dev) 643 { 644 struct regulator_dev *rdev = dev_get_drvdata(dev); 645 kfree(rdev); 646 } 647 648 static struct class regulator_class = { 649 .name = "regulator", 650 .dev_release = regulator_dev_release, 651 .dev_attrs = regulator_dev_attrs, 652 }; 653 654 /* Calculate the new optimum regulator operating mode based on the new total 655 * consumer load. All locks held by caller */ 656 static void drms_uA_update(struct regulator_dev *rdev) 657 { 658 struct regulator *sibling; 659 int current_uA = 0, output_uV, input_uV, err; 660 unsigned int mode; 661 662 err = regulator_check_drms(rdev); 663 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 664 (!rdev->desc->ops->get_voltage && 665 !rdev->desc->ops->get_voltage_sel) || 666 !rdev->desc->ops->set_mode) 667 return; 668 669 /* get output voltage */ 670 output_uV = _regulator_get_voltage(rdev); 671 if (output_uV <= 0) 672 return; 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) 681 return; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 /* now get the optimum mode for our new total regulator load */ 688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 689 output_uV, current_uA); 690 691 /* check the new mode is allowed */ 692 err = regulator_mode_constrain(rdev, &mode); 693 if (err == 0) 694 rdev->desc->ops->set_mode(rdev, mode); 695 } 696 697 static int suspend_set_state(struct regulator_dev *rdev, 698 struct regulator_state *rstate) 699 { 700 int ret = 0; 701 702 /* If we have no suspend mode configration don't set anything; 703 * only warn if the driver implements set_suspend_voltage or 704 * set_suspend_mode callback. 705 */ 706 if (!rstate->enabled && !rstate->disabled) { 707 if (rdev->desc->ops->set_suspend_voltage || 708 rdev->desc->ops->set_suspend_mode) 709 rdev_warn(rdev, "No configuration\n"); 710 return 0; 711 } 712 713 if (rstate->enabled && rstate->disabled) { 714 rdev_err(rdev, "invalid configuration\n"); 715 return -EINVAL; 716 } 717 718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 719 ret = rdev->desc->ops->set_suspend_enable(rdev); 720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 721 ret = rdev->desc->ops->set_suspend_disable(rdev); 722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 723 ret = 0; 724 725 if (ret < 0) { 726 rdev_err(rdev, "failed to enabled/disable\n"); 727 return ret; 728 } 729 730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 732 if (ret < 0) { 733 rdev_err(rdev, "failed to set voltage\n"); 734 return ret; 735 } 736 } 737 738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 740 if (ret < 0) { 741 rdev_err(rdev, "failed to set mode\n"); 742 return ret; 743 } 744 } 745 return ret; 746 } 747 748 /* locks held by caller */ 749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 750 { 751 if (!rdev->constraints) 752 return -EINVAL; 753 754 switch (state) { 755 case PM_SUSPEND_STANDBY: 756 return suspend_set_state(rdev, 757 &rdev->constraints->state_standby); 758 case PM_SUSPEND_MEM: 759 return suspend_set_state(rdev, 760 &rdev->constraints->state_mem); 761 case PM_SUSPEND_MAX: 762 return suspend_set_state(rdev, 763 &rdev->constraints->state_disk); 764 default: 765 return -EINVAL; 766 } 767 } 768 769 static void print_constraints(struct regulator_dev *rdev) 770 { 771 struct regulation_constraints *constraints = rdev->constraints; 772 char buf[80] = ""; 773 int count = 0; 774 int ret; 775 776 if (constraints->min_uV && constraints->max_uV) { 777 if (constraints->min_uV == constraints->max_uV) 778 count += sprintf(buf + count, "%d mV ", 779 constraints->min_uV / 1000); 780 else 781 count += sprintf(buf + count, "%d <--> %d mV ", 782 constraints->min_uV / 1000, 783 constraints->max_uV / 1000); 784 } 785 786 if (!constraints->min_uV || 787 constraints->min_uV != constraints->max_uV) { 788 ret = _regulator_get_voltage(rdev); 789 if (ret > 0) 790 count += sprintf(buf + count, "at %d mV ", ret / 1000); 791 } 792 793 if (constraints->uV_offset) 794 count += sprintf(buf, "%dmV offset ", 795 constraints->uV_offset / 1000); 796 797 if (constraints->min_uA && constraints->max_uA) { 798 if (constraints->min_uA == constraints->max_uA) 799 count += sprintf(buf + count, "%d mA ", 800 constraints->min_uA / 1000); 801 else 802 count += sprintf(buf + count, "%d <--> %d mA ", 803 constraints->min_uA / 1000, 804 constraints->max_uA / 1000); 805 } 806 807 if (!constraints->min_uA || 808 constraints->min_uA != constraints->max_uA) { 809 ret = _regulator_get_current_limit(rdev); 810 if (ret > 0) 811 count += sprintf(buf + count, "at %d mA ", ret / 1000); 812 } 813 814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 815 count += sprintf(buf + count, "fast "); 816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 817 count += sprintf(buf + count, "normal "); 818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 819 count += sprintf(buf + count, "idle "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 821 count += sprintf(buf + count, "standby"); 822 823 if (!count) 824 sprintf(buf, "no parameters"); 825 826 rdev_info(rdev, "%s\n", buf); 827 828 if ((constraints->min_uV != constraints->max_uV) && 829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 830 rdev_warn(rdev, 831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 832 } 833 834 static int machine_constraints_voltage(struct regulator_dev *rdev, 835 struct regulation_constraints *constraints) 836 { 837 struct regulator_ops *ops = rdev->desc->ops; 838 int ret; 839 840 /* do we need to apply the constraint voltage */ 841 if (rdev->constraints->apply_uV && 842 rdev->constraints->min_uV == rdev->constraints->max_uV) { 843 ret = _regulator_do_set_voltage(rdev, 844 rdev->constraints->min_uV, 845 rdev->constraints->max_uV); 846 if (ret < 0) { 847 rdev_err(rdev, "failed to apply %duV constraint\n", 848 rdev->constraints->min_uV); 849 return ret; 850 } 851 } 852 853 /* constrain machine-level voltage specs to fit 854 * the actual range supported by this regulator. 855 */ 856 if (ops->list_voltage && rdev->desc->n_voltages) { 857 int count = rdev->desc->n_voltages; 858 int i; 859 int min_uV = INT_MAX; 860 int max_uV = INT_MIN; 861 int cmin = constraints->min_uV; 862 int cmax = constraints->max_uV; 863 864 /* it's safe to autoconfigure fixed-voltage supplies 865 and the constraints are used by list_voltage. */ 866 if (count == 1 && !cmin) { 867 cmin = 1; 868 cmax = INT_MAX; 869 constraints->min_uV = cmin; 870 constraints->max_uV = cmax; 871 } 872 873 /* voltage constraints are optional */ 874 if ((cmin == 0) && (cmax == 0)) 875 return 0; 876 877 /* else require explicit machine-level constraints */ 878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 879 rdev_err(rdev, "invalid voltage constraints\n"); 880 return -EINVAL; 881 } 882 883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 884 for (i = 0; i < count; i++) { 885 int value; 886 887 value = ops->list_voltage(rdev, i); 888 if (value <= 0) 889 continue; 890 891 /* maybe adjust [min_uV..max_uV] */ 892 if (value >= cmin && value < min_uV) 893 min_uV = value; 894 if (value <= cmax && value > max_uV) 895 max_uV = value; 896 } 897 898 /* final: [min_uV..max_uV] valid iff constraints valid */ 899 if (max_uV < min_uV) { 900 rdev_err(rdev, 901 "unsupportable voltage constraints %u-%uuV\n", 902 min_uV, max_uV); 903 return -EINVAL; 904 } 905 906 /* use regulator's subset of machine constraints */ 907 if (constraints->min_uV < min_uV) { 908 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 909 constraints->min_uV, min_uV); 910 constraints->min_uV = min_uV; 911 } 912 if (constraints->max_uV > max_uV) { 913 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 914 constraints->max_uV, max_uV); 915 constraints->max_uV = max_uV; 916 } 917 } 918 919 return 0; 920 } 921 922 /** 923 * set_machine_constraints - sets regulator constraints 924 * @rdev: regulator source 925 * @constraints: constraints to apply 926 * 927 * Allows platform initialisation code to define and constrain 928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 929 * Constraints *must* be set by platform code in order for some 930 * regulator operations to proceed i.e. set_voltage, set_current_limit, 931 * set_mode. 932 */ 933 static int set_machine_constraints(struct regulator_dev *rdev, 934 const struct regulation_constraints *constraints) 935 { 936 int ret = 0; 937 struct regulator_ops *ops = rdev->desc->ops; 938 939 if (constraints) 940 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 941 GFP_KERNEL); 942 else 943 rdev->constraints = kzalloc(sizeof(*constraints), 944 GFP_KERNEL); 945 if (!rdev->constraints) 946 return -ENOMEM; 947 948 ret = machine_constraints_voltage(rdev, rdev->constraints); 949 if (ret != 0) 950 goto out; 951 952 /* do we need to setup our suspend state */ 953 if (rdev->constraints->initial_state) { 954 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 955 if (ret < 0) { 956 rdev_err(rdev, "failed to set suspend state\n"); 957 goto out; 958 } 959 } 960 961 if (rdev->constraints->initial_mode) { 962 if (!ops->set_mode) { 963 rdev_err(rdev, "no set_mode operation\n"); 964 ret = -EINVAL; 965 goto out; 966 } 967 968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 969 if (ret < 0) { 970 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 971 goto out; 972 } 973 } 974 975 /* If the constraints say the regulator should be on at this point 976 * and we have control then make sure it is enabled. 977 */ 978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 979 ops->enable) { 980 ret = ops->enable(rdev); 981 if (ret < 0) { 982 rdev_err(rdev, "failed to enable\n"); 983 goto out; 984 } 985 } 986 987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 989 if (ret < 0) { 990 rdev_err(rdev, "failed to set ramp_delay\n"); 991 goto out; 992 } 993 } 994 995 print_constraints(rdev); 996 return 0; 997 out: 998 kfree(rdev->constraints); 999 rdev->constraints = NULL; 1000 return ret; 1001 } 1002 1003 /** 1004 * set_supply - set regulator supply regulator 1005 * @rdev: regulator name 1006 * @supply_rdev: supply regulator name 1007 * 1008 * Called by platform initialisation code to set the supply regulator for this 1009 * regulator. This ensures that a regulators supply will also be enabled by the 1010 * core if it's child is enabled. 1011 */ 1012 static int set_supply(struct regulator_dev *rdev, 1013 struct regulator_dev *supply_rdev) 1014 { 1015 int err; 1016 1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1018 1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1020 if (rdev->supply == NULL) { 1021 err = -ENOMEM; 1022 return err; 1023 } 1024 supply_rdev->open_count++; 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1031 * @rdev: regulator source 1032 * @consumer_dev_name: dev_name() string for device supply applies to 1033 * @supply: symbolic name for supply 1034 * 1035 * Allows platform initialisation code to map physical regulator 1036 * sources to symbolic names for supplies for use by devices. Devices 1037 * should use these symbolic names to request regulators, avoiding the 1038 * need to provide board-specific regulator names as platform data. 1039 */ 1040 static int set_consumer_device_supply(struct regulator_dev *rdev, 1041 const char *consumer_dev_name, 1042 const char *supply) 1043 { 1044 struct regulator_map *node; 1045 int has_dev; 1046 1047 if (supply == NULL) 1048 return -EINVAL; 1049 1050 if (consumer_dev_name != NULL) 1051 has_dev = 1; 1052 else 1053 has_dev = 0; 1054 1055 list_for_each_entry(node, ®ulator_map_list, list) { 1056 if (node->dev_name && consumer_dev_name) { 1057 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1058 continue; 1059 } else if (node->dev_name || consumer_dev_name) { 1060 continue; 1061 } 1062 1063 if (strcmp(node->supply, supply) != 0) 1064 continue; 1065 1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1067 consumer_dev_name, 1068 dev_name(&node->regulator->dev), 1069 node->regulator->desc->name, 1070 supply, 1071 dev_name(&rdev->dev), rdev_get_name(rdev)); 1072 return -EBUSY; 1073 } 1074 1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1076 if (node == NULL) 1077 return -ENOMEM; 1078 1079 node->regulator = rdev; 1080 node->supply = supply; 1081 1082 if (has_dev) { 1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1084 if (node->dev_name == NULL) { 1085 kfree(node); 1086 return -ENOMEM; 1087 } 1088 } 1089 1090 list_add(&node->list, ®ulator_map_list); 1091 return 0; 1092 } 1093 1094 static void unset_regulator_supplies(struct regulator_dev *rdev) 1095 { 1096 struct regulator_map *node, *n; 1097 1098 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1099 if (rdev == node->regulator) { 1100 list_del(&node->list); 1101 kfree(node->dev_name); 1102 kfree(node); 1103 } 1104 } 1105 } 1106 1107 #define REG_STR_SIZE 64 1108 1109 static struct regulator *create_regulator(struct regulator_dev *rdev, 1110 struct device *dev, 1111 const char *supply_name) 1112 { 1113 struct regulator *regulator; 1114 char buf[REG_STR_SIZE]; 1115 int err, size; 1116 1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1118 if (regulator == NULL) 1119 return NULL; 1120 1121 mutex_lock(&rdev->mutex); 1122 regulator->rdev = rdev; 1123 list_add(®ulator->list, &rdev->consumer_list); 1124 1125 if (dev) { 1126 regulator->dev = dev; 1127 1128 /* Add a link to the device sysfs entry */ 1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1130 dev->kobj.name, supply_name); 1131 if (size >= REG_STR_SIZE) 1132 goto overflow_err; 1133 1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1135 if (regulator->supply_name == NULL) 1136 goto overflow_err; 1137 1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1139 buf); 1140 if (err) { 1141 rdev_warn(rdev, "could not add device link %s err %d\n", 1142 dev->kobj.name, err); 1143 /* non-fatal */ 1144 } 1145 } else { 1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1147 if (regulator->supply_name == NULL) 1148 goto overflow_err; 1149 } 1150 1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1152 rdev->debugfs); 1153 if (!regulator->debugfs) { 1154 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1155 } else { 1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1157 ®ulator->uA_load); 1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1159 ®ulator->min_uV); 1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1161 ®ulator->max_uV); 1162 } 1163 1164 /* 1165 * Check now if the regulator is an always on regulator - if 1166 * it is then we don't need to do nearly so much work for 1167 * enable/disable calls. 1168 */ 1169 if (!_regulator_can_change_status(rdev) && 1170 _regulator_is_enabled(rdev)) 1171 regulator->always_on = true; 1172 1173 mutex_unlock(&rdev->mutex); 1174 return regulator; 1175 overflow_err: 1176 list_del(®ulator->list); 1177 kfree(regulator); 1178 mutex_unlock(&rdev->mutex); 1179 return NULL; 1180 } 1181 1182 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1183 { 1184 if (!rdev->desc->ops->enable_time) 1185 return rdev->desc->enable_time; 1186 return rdev->desc->ops->enable_time(rdev); 1187 } 1188 1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1190 const char *supply, 1191 int *ret) 1192 { 1193 struct regulator_dev *r; 1194 struct device_node *node; 1195 struct regulator_map *map; 1196 const char *devname = NULL; 1197 1198 /* first do a dt based lookup */ 1199 if (dev && dev->of_node) { 1200 node = of_get_regulator(dev, supply); 1201 if (node) { 1202 list_for_each_entry(r, ®ulator_list, list) 1203 if (r->dev.parent && 1204 node == r->dev.of_node) 1205 return r; 1206 } else { 1207 /* 1208 * If we couldn't even get the node then it's 1209 * not just that the device didn't register 1210 * yet, there's no node and we'll never 1211 * succeed. 1212 */ 1213 *ret = -ENODEV; 1214 } 1215 } 1216 1217 /* if not found, try doing it non-dt way */ 1218 if (dev) 1219 devname = dev_name(dev); 1220 1221 list_for_each_entry(r, ®ulator_list, list) 1222 if (strcmp(rdev_get_name(r), supply) == 0) 1223 return r; 1224 1225 list_for_each_entry(map, ®ulator_map_list, list) { 1226 /* If the mapping has a device set up it must match */ 1227 if (map->dev_name && 1228 (!devname || strcmp(map->dev_name, devname))) 1229 continue; 1230 1231 if (strcmp(map->supply, supply) == 0) 1232 return map->regulator; 1233 } 1234 1235 1236 return NULL; 1237 } 1238 1239 /* Internal regulator request function */ 1240 static struct regulator *_regulator_get(struct device *dev, const char *id, 1241 int exclusive) 1242 { 1243 struct regulator_dev *rdev; 1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1245 const char *devname = NULL; 1246 int ret = 0; 1247 1248 if (id == NULL) { 1249 pr_err("get() with no identifier\n"); 1250 return regulator; 1251 } 1252 1253 if (dev) 1254 devname = dev_name(dev); 1255 1256 mutex_lock(®ulator_list_mutex); 1257 1258 rdev = regulator_dev_lookup(dev, id, &ret); 1259 if (rdev) 1260 goto found; 1261 1262 /* 1263 * If we have return value from dev_lookup fail, we do not expect to 1264 * succeed, so, quit with appropriate error value 1265 */ 1266 if (ret) { 1267 regulator = ERR_PTR(ret); 1268 goto out; 1269 } 1270 1271 if (board_wants_dummy_regulator) { 1272 rdev = dummy_regulator_rdev; 1273 goto found; 1274 } 1275 1276 #ifdef CONFIG_REGULATOR_DUMMY 1277 if (!devname) 1278 devname = "deviceless"; 1279 1280 /* If the board didn't flag that it was fully constrained then 1281 * substitute in a dummy regulator so consumers can continue. 1282 */ 1283 if (!has_full_constraints) { 1284 pr_warn("%s supply %s not found, using dummy regulator\n", 1285 devname, id); 1286 rdev = dummy_regulator_rdev; 1287 goto found; 1288 } 1289 #endif 1290 1291 mutex_unlock(®ulator_list_mutex); 1292 return regulator; 1293 1294 found: 1295 if (rdev->exclusive) { 1296 regulator = ERR_PTR(-EPERM); 1297 goto out; 1298 } 1299 1300 if (exclusive && rdev->open_count) { 1301 regulator = ERR_PTR(-EBUSY); 1302 goto out; 1303 } 1304 1305 if (!try_module_get(rdev->owner)) 1306 goto out; 1307 1308 regulator = create_regulator(rdev, dev, id); 1309 if (regulator == NULL) { 1310 regulator = ERR_PTR(-ENOMEM); 1311 module_put(rdev->owner); 1312 goto out; 1313 } 1314 1315 rdev->open_count++; 1316 if (exclusive) { 1317 rdev->exclusive = 1; 1318 1319 ret = _regulator_is_enabled(rdev); 1320 if (ret > 0) 1321 rdev->use_count = 1; 1322 else 1323 rdev->use_count = 0; 1324 } 1325 1326 out: 1327 mutex_unlock(®ulator_list_mutex); 1328 1329 return regulator; 1330 } 1331 1332 /** 1333 * regulator_get - lookup and obtain a reference to a regulator. 1334 * @dev: device for regulator "consumer" 1335 * @id: Supply name or regulator ID. 1336 * 1337 * Returns a struct regulator corresponding to the regulator producer, 1338 * or IS_ERR() condition containing errno. 1339 * 1340 * Use of supply names configured via regulator_set_device_supply() is 1341 * strongly encouraged. It is recommended that the supply name used 1342 * should match the name used for the supply and/or the relevant 1343 * device pins in the datasheet. 1344 */ 1345 struct regulator *regulator_get(struct device *dev, const char *id) 1346 { 1347 return _regulator_get(dev, id, 0); 1348 } 1349 EXPORT_SYMBOL_GPL(regulator_get); 1350 1351 static void devm_regulator_release(struct device *dev, void *res) 1352 { 1353 regulator_put(*(struct regulator **)res); 1354 } 1355 1356 /** 1357 * devm_regulator_get - Resource managed regulator_get() 1358 * @dev: device for regulator "consumer" 1359 * @id: Supply name or regulator ID. 1360 * 1361 * Managed regulator_get(). Regulators returned from this function are 1362 * automatically regulator_put() on driver detach. See regulator_get() for more 1363 * information. 1364 */ 1365 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1366 { 1367 struct regulator **ptr, *regulator; 1368 1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1370 if (!ptr) 1371 return ERR_PTR(-ENOMEM); 1372 1373 regulator = regulator_get(dev, id); 1374 if (!IS_ERR(regulator)) { 1375 *ptr = regulator; 1376 devres_add(dev, ptr); 1377 } else { 1378 devres_free(ptr); 1379 } 1380 1381 return regulator; 1382 } 1383 EXPORT_SYMBOL_GPL(devm_regulator_get); 1384 1385 /** 1386 * regulator_get_exclusive - obtain exclusive access to a regulator. 1387 * @dev: device for regulator "consumer" 1388 * @id: Supply name or regulator ID. 1389 * 1390 * Returns a struct regulator corresponding to the regulator producer, 1391 * or IS_ERR() condition containing errno. Other consumers will be 1392 * unable to obtain this reference is held and the use count for the 1393 * regulator will be initialised to reflect the current state of the 1394 * regulator. 1395 * 1396 * This is intended for use by consumers which cannot tolerate shared 1397 * use of the regulator such as those which need to force the 1398 * regulator off for correct operation of the hardware they are 1399 * controlling. 1400 * 1401 * Use of supply names configured via regulator_set_device_supply() is 1402 * strongly encouraged. It is recommended that the supply name used 1403 * should match the name used for the supply and/or the relevant 1404 * device pins in the datasheet. 1405 */ 1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1407 { 1408 return _regulator_get(dev, id, 1); 1409 } 1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1411 1412 /* Locks held by regulator_put() */ 1413 static void _regulator_put(struct regulator *regulator) 1414 { 1415 struct regulator_dev *rdev; 1416 1417 if (regulator == NULL || IS_ERR(regulator)) 1418 return; 1419 1420 rdev = regulator->rdev; 1421 1422 debugfs_remove_recursive(regulator->debugfs); 1423 1424 /* remove any sysfs entries */ 1425 if (regulator->dev) 1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1427 kfree(regulator->supply_name); 1428 list_del(®ulator->list); 1429 kfree(regulator); 1430 1431 rdev->open_count--; 1432 rdev->exclusive = 0; 1433 1434 module_put(rdev->owner); 1435 } 1436 1437 /** 1438 * regulator_put - "free" the regulator source 1439 * @regulator: regulator source 1440 * 1441 * Note: drivers must ensure that all regulator_enable calls made on this 1442 * regulator source are balanced by regulator_disable calls prior to calling 1443 * this function. 1444 */ 1445 void regulator_put(struct regulator *regulator) 1446 { 1447 mutex_lock(®ulator_list_mutex); 1448 _regulator_put(regulator); 1449 mutex_unlock(®ulator_list_mutex); 1450 } 1451 EXPORT_SYMBOL_GPL(regulator_put); 1452 1453 static int devm_regulator_match(struct device *dev, void *res, void *data) 1454 { 1455 struct regulator **r = res; 1456 if (!r || !*r) { 1457 WARN_ON(!r || !*r); 1458 return 0; 1459 } 1460 return *r == data; 1461 } 1462 1463 /** 1464 * devm_regulator_put - Resource managed regulator_put() 1465 * @regulator: regulator to free 1466 * 1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1468 * this function will not need to be called and the resource management 1469 * code will ensure that the resource is freed. 1470 */ 1471 void devm_regulator_put(struct regulator *regulator) 1472 { 1473 int rc; 1474 1475 rc = devres_release(regulator->dev, devm_regulator_release, 1476 devm_regulator_match, regulator); 1477 if (rc != 0) 1478 WARN_ON(rc); 1479 } 1480 EXPORT_SYMBOL_GPL(devm_regulator_put); 1481 1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1484 const struct regulator_config *config) 1485 { 1486 struct regulator_enable_gpio *pin; 1487 int ret; 1488 1489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1490 if (pin->gpio == config->ena_gpio) { 1491 rdev_dbg(rdev, "GPIO %d is already used\n", 1492 config->ena_gpio); 1493 goto update_ena_gpio_to_rdev; 1494 } 1495 } 1496 1497 ret = gpio_request_one(config->ena_gpio, 1498 GPIOF_DIR_OUT | config->ena_gpio_flags, 1499 rdev_get_name(rdev)); 1500 if (ret) 1501 return ret; 1502 1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1504 if (pin == NULL) { 1505 gpio_free(config->ena_gpio); 1506 return -ENOMEM; 1507 } 1508 1509 pin->gpio = config->ena_gpio; 1510 pin->ena_gpio_invert = config->ena_gpio_invert; 1511 list_add(&pin->list, ®ulator_ena_gpio_list); 1512 1513 update_ena_gpio_to_rdev: 1514 pin->request_count++; 1515 rdev->ena_pin = pin; 1516 return 0; 1517 } 1518 1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1520 { 1521 struct regulator_enable_gpio *pin, *n; 1522 1523 if (!rdev->ena_pin) 1524 return; 1525 1526 /* Free the GPIO only in case of no use */ 1527 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1528 if (pin->gpio == rdev->ena_pin->gpio) { 1529 if (pin->request_count <= 1) { 1530 pin->request_count = 0; 1531 gpio_free(pin->gpio); 1532 list_del(&pin->list); 1533 kfree(pin); 1534 } else { 1535 pin->request_count--; 1536 } 1537 } 1538 } 1539 } 1540 1541 /** 1542 * Balance enable_count of each GPIO and actual GPIO pin control. 1543 * GPIO is enabled in case of initial use. (enable_count is 0) 1544 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1545 */ 1546 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1547 { 1548 struct regulator_enable_gpio *pin = rdev->ena_pin; 1549 1550 if (!pin) 1551 return -EINVAL; 1552 1553 if (enable) { 1554 /* Enable GPIO at initial use */ 1555 if (pin->enable_count == 0) 1556 gpio_set_value_cansleep(pin->gpio, 1557 !pin->ena_gpio_invert); 1558 1559 pin->enable_count++; 1560 } else { 1561 if (pin->enable_count > 1) { 1562 pin->enable_count--; 1563 return 0; 1564 } 1565 1566 /* Disable GPIO if not used */ 1567 if (pin->enable_count <= 1) { 1568 gpio_set_value_cansleep(pin->gpio, 1569 pin->ena_gpio_invert); 1570 pin->enable_count = 0; 1571 } 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int _regulator_do_enable(struct regulator_dev *rdev) 1578 { 1579 int ret, delay; 1580 1581 /* Query before enabling in case configuration dependent. */ 1582 ret = _regulator_get_enable_time(rdev); 1583 if (ret >= 0) { 1584 delay = ret; 1585 } else { 1586 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1587 delay = 0; 1588 } 1589 1590 trace_regulator_enable(rdev_get_name(rdev)); 1591 1592 if (rdev->ena_pin) { 1593 ret = regulator_ena_gpio_ctrl(rdev, true); 1594 if (ret < 0) 1595 return ret; 1596 rdev->ena_gpio_state = 1; 1597 } else if (rdev->desc->ops->enable) { 1598 ret = rdev->desc->ops->enable(rdev); 1599 if (ret < 0) 1600 return ret; 1601 } else { 1602 return -EINVAL; 1603 } 1604 1605 /* Allow the regulator to ramp; it would be useful to extend 1606 * this for bulk operations so that the regulators can ramp 1607 * together. */ 1608 trace_regulator_enable_delay(rdev_get_name(rdev)); 1609 1610 if (delay >= 1000) { 1611 mdelay(delay / 1000); 1612 udelay(delay % 1000); 1613 } else if (delay) { 1614 udelay(delay); 1615 } 1616 1617 trace_regulator_enable_complete(rdev_get_name(rdev)); 1618 1619 return 0; 1620 } 1621 1622 /* locks held by regulator_enable() */ 1623 static int _regulator_enable(struct regulator_dev *rdev) 1624 { 1625 int ret; 1626 1627 /* check voltage and requested load before enabling */ 1628 if (rdev->constraints && 1629 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1630 drms_uA_update(rdev); 1631 1632 if (rdev->use_count == 0) { 1633 /* The regulator may on if it's not switchable or left on */ 1634 ret = _regulator_is_enabled(rdev); 1635 if (ret == -EINVAL || ret == 0) { 1636 if (!_regulator_can_change_status(rdev)) 1637 return -EPERM; 1638 1639 ret = _regulator_do_enable(rdev); 1640 if (ret < 0) 1641 return ret; 1642 1643 } else if (ret < 0) { 1644 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1645 return ret; 1646 } 1647 /* Fallthrough on positive return values - already enabled */ 1648 } 1649 1650 rdev->use_count++; 1651 1652 return 0; 1653 } 1654 1655 /** 1656 * regulator_enable - enable regulator output 1657 * @regulator: regulator source 1658 * 1659 * Request that the regulator be enabled with the regulator output at 1660 * the predefined voltage or current value. Calls to regulator_enable() 1661 * must be balanced with calls to regulator_disable(). 1662 * 1663 * NOTE: the output value can be set by other drivers, boot loader or may be 1664 * hardwired in the regulator. 1665 */ 1666 int regulator_enable(struct regulator *regulator) 1667 { 1668 struct regulator_dev *rdev = regulator->rdev; 1669 int ret = 0; 1670 1671 if (regulator->always_on) 1672 return 0; 1673 1674 if (rdev->supply) { 1675 ret = regulator_enable(rdev->supply); 1676 if (ret != 0) 1677 return ret; 1678 } 1679 1680 mutex_lock(&rdev->mutex); 1681 ret = _regulator_enable(rdev); 1682 mutex_unlock(&rdev->mutex); 1683 1684 if (ret != 0 && rdev->supply) 1685 regulator_disable(rdev->supply); 1686 1687 return ret; 1688 } 1689 EXPORT_SYMBOL_GPL(regulator_enable); 1690 1691 static int _regulator_do_disable(struct regulator_dev *rdev) 1692 { 1693 int ret; 1694 1695 trace_regulator_disable(rdev_get_name(rdev)); 1696 1697 if (rdev->ena_pin) { 1698 ret = regulator_ena_gpio_ctrl(rdev, false); 1699 if (ret < 0) 1700 return ret; 1701 rdev->ena_gpio_state = 0; 1702 1703 } else if (rdev->desc->ops->disable) { 1704 ret = rdev->desc->ops->disable(rdev); 1705 if (ret != 0) 1706 return ret; 1707 } 1708 1709 trace_regulator_disable_complete(rdev_get_name(rdev)); 1710 1711 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1712 NULL); 1713 return 0; 1714 } 1715 1716 /* locks held by regulator_disable() */ 1717 static int _regulator_disable(struct regulator_dev *rdev) 1718 { 1719 int ret = 0; 1720 1721 if (WARN(rdev->use_count <= 0, 1722 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1723 return -EIO; 1724 1725 /* are we the last user and permitted to disable ? */ 1726 if (rdev->use_count == 1 && 1727 (rdev->constraints && !rdev->constraints->always_on)) { 1728 1729 /* we are last user */ 1730 if (_regulator_can_change_status(rdev)) { 1731 ret = _regulator_do_disable(rdev); 1732 if (ret < 0) { 1733 rdev_err(rdev, "failed to disable\n"); 1734 return ret; 1735 } 1736 } 1737 1738 rdev->use_count = 0; 1739 } else if (rdev->use_count > 1) { 1740 1741 if (rdev->constraints && 1742 (rdev->constraints->valid_ops_mask & 1743 REGULATOR_CHANGE_DRMS)) 1744 drms_uA_update(rdev); 1745 1746 rdev->use_count--; 1747 } 1748 1749 return ret; 1750 } 1751 1752 /** 1753 * regulator_disable - disable regulator output 1754 * @regulator: regulator source 1755 * 1756 * Disable the regulator output voltage or current. Calls to 1757 * regulator_enable() must be balanced with calls to 1758 * regulator_disable(). 1759 * 1760 * NOTE: this will only disable the regulator output if no other consumer 1761 * devices have it enabled, the regulator device supports disabling and 1762 * machine constraints permit this operation. 1763 */ 1764 int regulator_disable(struct regulator *regulator) 1765 { 1766 struct regulator_dev *rdev = regulator->rdev; 1767 int ret = 0; 1768 1769 if (regulator->always_on) 1770 return 0; 1771 1772 mutex_lock(&rdev->mutex); 1773 ret = _regulator_disable(rdev); 1774 mutex_unlock(&rdev->mutex); 1775 1776 if (ret == 0 && rdev->supply) 1777 regulator_disable(rdev->supply); 1778 1779 return ret; 1780 } 1781 EXPORT_SYMBOL_GPL(regulator_disable); 1782 1783 /* locks held by regulator_force_disable() */ 1784 static int _regulator_force_disable(struct regulator_dev *rdev) 1785 { 1786 int ret = 0; 1787 1788 /* force disable */ 1789 if (rdev->desc->ops->disable) { 1790 /* ah well, who wants to live forever... */ 1791 ret = rdev->desc->ops->disable(rdev); 1792 if (ret < 0) { 1793 rdev_err(rdev, "failed to force disable\n"); 1794 return ret; 1795 } 1796 /* notify other consumers that power has been forced off */ 1797 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1798 REGULATOR_EVENT_DISABLE, NULL); 1799 } 1800 1801 return ret; 1802 } 1803 1804 /** 1805 * regulator_force_disable - force disable regulator output 1806 * @regulator: regulator source 1807 * 1808 * Forcibly disable the regulator output voltage or current. 1809 * NOTE: this *will* disable the regulator output even if other consumer 1810 * devices have it enabled. This should be used for situations when device 1811 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1812 */ 1813 int regulator_force_disable(struct regulator *regulator) 1814 { 1815 struct regulator_dev *rdev = regulator->rdev; 1816 int ret; 1817 1818 mutex_lock(&rdev->mutex); 1819 regulator->uA_load = 0; 1820 ret = _regulator_force_disable(regulator->rdev); 1821 mutex_unlock(&rdev->mutex); 1822 1823 if (rdev->supply) 1824 while (rdev->open_count--) 1825 regulator_disable(rdev->supply); 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(regulator_force_disable); 1830 1831 static void regulator_disable_work(struct work_struct *work) 1832 { 1833 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1834 disable_work.work); 1835 int count, i, ret; 1836 1837 mutex_lock(&rdev->mutex); 1838 1839 BUG_ON(!rdev->deferred_disables); 1840 1841 count = rdev->deferred_disables; 1842 rdev->deferred_disables = 0; 1843 1844 for (i = 0; i < count; i++) { 1845 ret = _regulator_disable(rdev); 1846 if (ret != 0) 1847 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1848 } 1849 1850 mutex_unlock(&rdev->mutex); 1851 1852 if (rdev->supply) { 1853 for (i = 0; i < count; i++) { 1854 ret = regulator_disable(rdev->supply); 1855 if (ret != 0) { 1856 rdev_err(rdev, 1857 "Supply disable failed: %d\n", ret); 1858 } 1859 } 1860 } 1861 } 1862 1863 /** 1864 * regulator_disable_deferred - disable regulator output with delay 1865 * @regulator: regulator source 1866 * @ms: miliseconds until the regulator is disabled 1867 * 1868 * Execute regulator_disable() on the regulator after a delay. This 1869 * is intended for use with devices that require some time to quiesce. 1870 * 1871 * NOTE: this will only disable the regulator output if no other consumer 1872 * devices have it enabled, the regulator device supports disabling and 1873 * machine constraints permit this operation. 1874 */ 1875 int regulator_disable_deferred(struct regulator *regulator, int ms) 1876 { 1877 struct regulator_dev *rdev = regulator->rdev; 1878 int ret; 1879 1880 if (regulator->always_on) 1881 return 0; 1882 1883 if (!ms) 1884 return regulator_disable(regulator); 1885 1886 mutex_lock(&rdev->mutex); 1887 rdev->deferred_disables++; 1888 mutex_unlock(&rdev->mutex); 1889 1890 ret = schedule_delayed_work(&rdev->disable_work, 1891 msecs_to_jiffies(ms)); 1892 if (ret < 0) 1893 return ret; 1894 else 1895 return 0; 1896 } 1897 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1898 1899 /** 1900 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1901 * 1902 * @rdev: regulator to operate on 1903 * 1904 * Regulators that use regmap for their register I/O can set the 1905 * enable_reg and enable_mask fields in their descriptor and then use 1906 * this as their is_enabled operation, saving some code. 1907 */ 1908 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1909 { 1910 unsigned int val; 1911 int ret; 1912 1913 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1914 if (ret != 0) 1915 return ret; 1916 1917 if (rdev->desc->enable_is_inverted) 1918 return (val & rdev->desc->enable_mask) == 0; 1919 else 1920 return (val & rdev->desc->enable_mask) != 0; 1921 } 1922 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1923 1924 /** 1925 * regulator_enable_regmap - standard enable() for regmap users 1926 * 1927 * @rdev: regulator to operate on 1928 * 1929 * Regulators that use regmap for their register I/O can set the 1930 * enable_reg and enable_mask fields in their descriptor and then use 1931 * this as their enable() operation, saving some code. 1932 */ 1933 int regulator_enable_regmap(struct regulator_dev *rdev) 1934 { 1935 unsigned int val; 1936 1937 if (rdev->desc->enable_is_inverted) 1938 val = 0; 1939 else 1940 val = rdev->desc->enable_mask; 1941 1942 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1943 rdev->desc->enable_mask, val); 1944 } 1945 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1946 1947 /** 1948 * regulator_disable_regmap - standard disable() for regmap users 1949 * 1950 * @rdev: regulator to operate on 1951 * 1952 * Regulators that use regmap for their register I/O can set the 1953 * enable_reg and enable_mask fields in their descriptor and then use 1954 * this as their disable() operation, saving some code. 1955 */ 1956 int regulator_disable_regmap(struct regulator_dev *rdev) 1957 { 1958 unsigned int val; 1959 1960 if (rdev->desc->enable_is_inverted) 1961 val = rdev->desc->enable_mask; 1962 else 1963 val = 0; 1964 1965 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1966 rdev->desc->enable_mask, val); 1967 } 1968 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1969 1970 static int _regulator_is_enabled(struct regulator_dev *rdev) 1971 { 1972 /* A GPIO control always takes precedence */ 1973 if (rdev->ena_pin) 1974 return rdev->ena_gpio_state; 1975 1976 /* If we don't know then assume that the regulator is always on */ 1977 if (!rdev->desc->ops->is_enabled) 1978 return 1; 1979 1980 return rdev->desc->ops->is_enabled(rdev); 1981 } 1982 1983 /** 1984 * regulator_is_enabled - is the regulator output enabled 1985 * @regulator: regulator source 1986 * 1987 * Returns positive if the regulator driver backing the source/client 1988 * has requested that the device be enabled, zero if it hasn't, else a 1989 * negative errno code. 1990 * 1991 * Note that the device backing this regulator handle can have multiple 1992 * users, so it might be enabled even if regulator_enable() was never 1993 * called for this particular source. 1994 */ 1995 int regulator_is_enabled(struct regulator *regulator) 1996 { 1997 int ret; 1998 1999 if (regulator->always_on) 2000 return 1; 2001 2002 mutex_lock(®ulator->rdev->mutex); 2003 ret = _regulator_is_enabled(regulator->rdev); 2004 mutex_unlock(®ulator->rdev->mutex); 2005 2006 return ret; 2007 } 2008 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2009 2010 /** 2011 * regulator_can_change_voltage - check if regulator can change voltage 2012 * @regulator: regulator source 2013 * 2014 * Returns positive if the regulator driver backing the source/client 2015 * can change its voltage, false otherwise. Usefull for detecting fixed 2016 * or dummy regulators and disabling voltage change logic in the client 2017 * driver. 2018 */ 2019 int regulator_can_change_voltage(struct regulator *regulator) 2020 { 2021 struct regulator_dev *rdev = regulator->rdev; 2022 2023 if (rdev->constraints && 2024 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2025 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2026 return 1; 2027 2028 if (rdev->desc->continuous_voltage_range && 2029 rdev->constraints->min_uV && rdev->constraints->max_uV && 2030 rdev->constraints->min_uV != rdev->constraints->max_uV) 2031 return 1; 2032 } 2033 2034 return 0; 2035 } 2036 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2037 2038 /** 2039 * regulator_count_voltages - count regulator_list_voltage() selectors 2040 * @regulator: regulator source 2041 * 2042 * Returns number of selectors, or negative errno. Selectors are 2043 * numbered starting at zero, and typically correspond to bitfields 2044 * in hardware registers. 2045 */ 2046 int regulator_count_voltages(struct regulator *regulator) 2047 { 2048 struct regulator_dev *rdev = regulator->rdev; 2049 2050 return rdev->desc->n_voltages ? : -EINVAL; 2051 } 2052 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2053 2054 /** 2055 * regulator_list_voltage_linear - List voltages with simple calculation 2056 * 2057 * @rdev: Regulator device 2058 * @selector: Selector to convert into a voltage 2059 * 2060 * Regulators with a simple linear mapping between voltages and 2061 * selectors can set min_uV and uV_step in the regulator descriptor 2062 * and then use this function as their list_voltage() operation, 2063 */ 2064 int regulator_list_voltage_linear(struct regulator_dev *rdev, 2065 unsigned int selector) 2066 { 2067 if (selector >= rdev->desc->n_voltages) 2068 return -EINVAL; 2069 if (selector < rdev->desc->linear_min_sel) 2070 return 0; 2071 2072 selector -= rdev->desc->linear_min_sel; 2073 2074 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 2075 } 2076 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 2077 2078 /** 2079 * regulator_list_voltage_table - List voltages with table based mapping 2080 * 2081 * @rdev: Regulator device 2082 * @selector: Selector to convert into a voltage 2083 * 2084 * Regulators with table based mapping between voltages and 2085 * selectors can set volt_table in the regulator descriptor 2086 * and then use this function as their list_voltage() operation. 2087 */ 2088 int regulator_list_voltage_table(struct regulator_dev *rdev, 2089 unsigned int selector) 2090 { 2091 if (!rdev->desc->volt_table) { 2092 BUG_ON(!rdev->desc->volt_table); 2093 return -EINVAL; 2094 } 2095 2096 if (selector >= rdev->desc->n_voltages) 2097 return -EINVAL; 2098 2099 return rdev->desc->volt_table[selector]; 2100 } 2101 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 2102 2103 /** 2104 * regulator_list_voltage - enumerate supported voltages 2105 * @regulator: regulator source 2106 * @selector: identify voltage to list 2107 * Context: can sleep 2108 * 2109 * Returns a voltage that can be passed to @regulator_set_voltage(), 2110 * zero if this selector code can't be used on this system, or a 2111 * negative errno. 2112 */ 2113 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2114 { 2115 struct regulator_dev *rdev = regulator->rdev; 2116 struct regulator_ops *ops = rdev->desc->ops; 2117 int ret; 2118 2119 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2120 return -EINVAL; 2121 2122 mutex_lock(&rdev->mutex); 2123 ret = ops->list_voltage(rdev, selector); 2124 mutex_unlock(&rdev->mutex); 2125 2126 if (ret > 0) { 2127 if (ret < rdev->constraints->min_uV) 2128 ret = 0; 2129 else if (ret > rdev->constraints->max_uV) 2130 ret = 0; 2131 } 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2136 2137 /** 2138 * regulator_is_supported_voltage - check if a voltage range can be supported 2139 * 2140 * @regulator: Regulator to check. 2141 * @min_uV: Minimum required voltage in uV. 2142 * @max_uV: Maximum required voltage in uV. 2143 * 2144 * Returns a boolean or a negative error code. 2145 */ 2146 int regulator_is_supported_voltage(struct regulator *regulator, 2147 int min_uV, int max_uV) 2148 { 2149 struct regulator_dev *rdev = regulator->rdev; 2150 int i, voltages, ret; 2151 2152 /* If we can't change voltage check the current voltage */ 2153 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2154 ret = regulator_get_voltage(regulator); 2155 if (ret >= 0) 2156 return (min_uV <= ret && ret <= max_uV); 2157 else 2158 return ret; 2159 } 2160 2161 /* Any voltage within constrains range is fine? */ 2162 if (rdev->desc->continuous_voltage_range) 2163 return min_uV >= rdev->constraints->min_uV && 2164 max_uV <= rdev->constraints->max_uV; 2165 2166 ret = regulator_count_voltages(regulator); 2167 if (ret < 0) 2168 return ret; 2169 voltages = ret; 2170 2171 for (i = 0; i < voltages; i++) { 2172 ret = regulator_list_voltage(regulator, i); 2173 2174 if (ret >= min_uV && ret <= max_uV) 2175 return 1; 2176 } 2177 2178 return 0; 2179 } 2180 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2181 2182 /** 2183 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 2184 * 2185 * @rdev: regulator to operate on 2186 * 2187 * Regulators that use regmap for their register I/O can set the 2188 * vsel_reg and vsel_mask fields in their descriptor and then use this 2189 * as their get_voltage_vsel operation, saving some code. 2190 */ 2191 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 2192 { 2193 unsigned int val; 2194 int ret; 2195 2196 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 2197 if (ret != 0) 2198 return ret; 2199 2200 val &= rdev->desc->vsel_mask; 2201 val >>= ffs(rdev->desc->vsel_mask) - 1; 2202 2203 return val; 2204 } 2205 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 2206 2207 /** 2208 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 2209 * 2210 * @rdev: regulator to operate on 2211 * @sel: Selector to set 2212 * 2213 * Regulators that use regmap for their register I/O can set the 2214 * vsel_reg and vsel_mask fields in their descriptor and then use this 2215 * as their set_voltage_vsel operation, saving some code. 2216 */ 2217 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2218 { 2219 int ret; 2220 2221 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2222 2223 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2224 rdev->desc->vsel_mask, sel); 2225 if (ret) 2226 return ret; 2227 2228 if (rdev->desc->apply_bit) 2229 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, 2230 rdev->desc->apply_bit, 2231 rdev->desc->apply_bit); 2232 return ret; 2233 } 2234 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2235 2236 /** 2237 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2238 * 2239 * @rdev: Regulator to operate on 2240 * @min_uV: Lower bound for voltage 2241 * @max_uV: Upper bound for voltage 2242 * 2243 * Drivers implementing set_voltage_sel() and list_voltage() can use 2244 * this as their map_voltage() operation. It will find a suitable 2245 * voltage by calling list_voltage() until it gets something in bounds 2246 * for the requested voltages. 2247 */ 2248 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2249 int min_uV, int max_uV) 2250 { 2251 int best_val = INT_MAX; 2252 int selector = 0; 2253 int i, ret; 2254 2255 /* Find the smallest voltage that falls within the specified 2256 * range. 2257 */ 2258 for (i = 0; i < rdev->desc->n_voltages; i++) { 2259 ret = rdev->desc->ops->list_voltage(rdev, i); 2260 if (ret < 0) 2261 continue; 2262 2263 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2264 best_val = ret; 2265 selector = i; 2266 } 2267 } 2268 2269 if (best_val != INT_MAX) 2270 return selector; 2271 else 2272 return -EINVAL; 2273 } 2274 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2275 2276 /** 2277 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list 2278 * 2279 * @rdev: Regulator to operate on 2280 * @min_uV: Lower bound for voltage 2281 * @max_uV: Upper bound for voltage 2282 * 2283 * Drivers that have ascendant voltage list can use this as their 2284 * map_voltage() operation. 2285 */ 2286 int regulator_map_voltage_ascend(struct regulator_dev *rdev, 2287 int min_uV, int max_uV) 2288 { 2289 int i, ret; 2290 2291 for (i = 0; i < rdev->desc->n_voltages; i++) { 2292 ret = rdev->desc->ops->list_voltage(rdev, i); 2293 if (ret < 0) 2294 continue; 2295 2296 if (ret > max_uV) 2297 break; 2298 2299 if (ret >= min_uV && ret <= max_uV) 2300 return i; 2301 } 2302 2303 return -EINVAL; 2304 } 2305 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); 2306 2307 /** 2308 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2309 * 2310 * @rdev: Regulator to operate on 2311 * @min_uV: Lower bound for voltage 2312 * @max_uV: Upper bound for voltage 2313 * 2314 * Drivers providing min_uV and uV_step in their regulator_desc can 2315 * use this as their map_voltage() operation. 2316 */ 2317 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2318 int min_uV, int max_uV) 2319 { 2320 int ret, voltage; 2321 2322 /* Allow uV_step to be 0 for fixed voltage */ 2323 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2324 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2325 return 0; 2326 else 2327 return -EINVAL; 2328 } 2329 2330 if (!rdev->desc->uV_step) { 2331 BUG_ON(!rdev->desc->uV_step); 2332 return -EINVAL; 2333 } 2334 2335 if (min_uV < rdev->desc->min_uV) 2336 min_uV = rdev->desc->min_uV; 2337 2338 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2339 if (ret < 0) 2340 return ret; 2341 2342 ret += rdev->desc->linear_min_sel; 2343 2344 /* Map back into a voltage to verify we're still in bounds */ 2345 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2346 if (voltage < min_uV || voltage > max_uV) 2347 return -EINVAL; 2348 2349 return ret; 2350 } 2351 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2352 2353 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2354 int min_uV, int max_uV) 2355 { 2356 int ret; 2357 int delay = 0; 2358 int best_val = 0; 2359 unsigned int selector; 2360 int old_selector = -1; 2361 2362 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2363 2364 min_uV += rdev->constraints->uV_offset; 2365 max_uV += rdev->constraints->uV_offset; 2366 2367 /* 2368 * If we can't obtain the old selector there is not enough 2369 * info to call set_voltage_time_sel(). 2370 */ 2371 if (_regulator_is_enabled(rdev) && 2372 rdev->desc->ops->set_voltage_time_sel && 2373 rdev->desc->ops->get_voltage_sel) { 2374 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2375 if (old_selector < 0) 2376 return old_selector; 2377 } 2378 2379 if (rdev->desc->ops->set_voltage) { 2380 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2381 &selector); 2382 2383 if (ret >= 0) { 2384 if (rdev->desc->ops->list_voltage) 2385 best_val = rdev->desc->ops->list_voltage(rdev, 2386 selector); 2387 else 2388 best_val = _regulator_get_voltage(rdev); 2389 } 2390 2391 } else if (rdev->desc->ops->set_voltage_sel) { 2392 if (rdev->desc->ops->map_voltage) { 2393 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2394 max_uV); 2395 } else { 2396 if (rdev->desc->ops->list_voltage == 2397 regulator_list_voltage_linear) 2398 ret = regulator_map_voltage_linear(rdev, 2399 min_uV, max_uV); 2400 else 2401 ret = regulator_map_voltage_iterate(rdev, 2402 min_uV, max_uV); 2403 } 2404 2405 if (ret >= 0) { 2406 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2407 if (min_uV <= best_val && max_uV >= best_val) { 2408 selector = ret; 2409 if (old_selector == selector) 2410 ret = 0; 2411 else 2412 ret = rdev->desc->ops->set_voltage_sel( 2413 rdev, ret); 2414 } else { 2415 ret = -EINVAL; 2416 } 2417 } 2418 } else { 2419 ret = -EINVAL; 2420 } 2421 2422 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2423 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2424 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) { 2425 2426 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2427 old_selector, selector); 2428 if (delay < 0) { 2429 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2430 delay); 2431 delay = 0; 2432 } 2433 2434 /* Insert any necessary delays */ 2435 if (delay >= 1000) { 2436 mdelay(delay / 1000); 2437 udelay(delay % 1000); 2438 } else if (delay) { 2439 udelay(delay); 2440 } 2441 } 2442 2443 if (ret == 0 && best_val >= 0) { 2444 unsigned long data = best_val; 2445 2446 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2447 (void *)data); 2448 } 2449 2450 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2451 2452 return ret; 2453 } 2454 2455 /** 2456 * regulator_set_voltage - set regulator output voltage 2457 * @regulator: regulator source 2458 * @min_uV: Minimum required voltage in uV 2459 * @max_uV: Maximum acceptable voltage in uV 2460 * 2461 * Sets a voltage regulator to the desired output voltage. This can be set 2462 * during any regulator state. IOW, regulator can be disabled or enabled. 2463 * 2464 * If the regulator is enabled then the voltage will change to the new value 2465 * immediately otherwise if the regulator is disabled the regulator will 2466 * output at the new voltage when enabled. 2467 * 2468 * NOTE: If the regulator is shared between several devices then the lowest 2469 * request voltage that meets the system constraints will be used. 2470 * Regulator system constraints must be set for this regulator before 2471 * calling this function otherwise this call will fail. 2472 */ 2473 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2474 { 2475 struct regulator_dev *rdev = regulator->rdev; 2476 int ret = 0; 2477 int old_min_uV, old_max_uV; 2478 2479 mutex_lock(&rdev->mutex); 2480 2481 /* If we're setting the same range as last time the change 2482 * should be a noop (some cpufreq implementations use the same 2483 * voltage for multiple frequencies, for example). 2484 */ 2485 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2486 goto out; 2487 2488 /* sanity check */ 2489 if (!rdev->desc->ops->set_voltage && 2490 !rdev->desc->ops->set_voltage_sel) { 2491 ret = -EINVAL; 2492 goto out; 2493 } 2494 2495 /* constraints check */ 2496 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2497 if (ret < 0) 2498 goto out; 2499 2500 /* restore original values in case of error */ 2501 old_min_uV = regulator->min_uV; 2502 old_max_uV = regulator->max_uV; 2503 regulator->min_uV = min_uV; 2504 regulator->max_uV = max_uV; 2505 2506 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2507 if (ret < 0) 2508 goto out2; 2509 2510 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2511 if (ret < 0) 2512 goto out2; 2513 2514 out: 2515 mutex_unlock(&rdev->mutex); 2516 return ret; 2517 out2: 2518 regulator->min_uV = old_min_uV; 2519 regulator->max_uV = old_max_uV; 2520 mutex_unlock(&rdev->mutex); 2521 return ret; 2522 } 2523 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2524 2525 /** 2526 * regulator_set_voltage_time - get raise/fall time 2527 * @regulator: regulator source 2528 * @old_uV: starting voltage in microvolts 2529 * @new_uV: target voltage in microvolts 2530 * 2531 * Provided with the starting and ending voltage, this function attempts to 2532 * calculate the time in microseconds required to rise or fall to this new 2533 * voltage. 2534 */ 2535 int regulator_set_voltage_time(struct regulator *regulator, 2536 int old_uV, int new_uV) 2537 { 2538 struct regulator_dev *rdev = regulator->rdev; 2539 struct regulator_ops *ops = rdev->desc->ops; 2540 int old_sel = -1; 2541 int new_sel = -1; 2542 int voltage; 2543 int i; 2544 2545 /* Currently requires operations to do this */ 2546 if (!ops->list_voltage || !ops->set_voltage_time_sel 2547 || !rdev->desc->n_voltages) 2548 return -EINVAL; 2549 2550 for (i = 0; i < rdev->desc->n_voltages; i++) { 2551 /* We only look for exact voltage matches here */ 2552 voltage = regulator_list_voltage(regulator, i); 2553 if (voltage < 0) 2554 return -EINVAL; 2555 if (voltage == 0) 2556 continue; 2557 if (voltage == old_uV) 2558 old_sel = i; 2559 if (voltage == new_uV) 2560 new_sel = i; 2561 } 2562 2563 if (old_sel < 0 || new_sel < 0) 2564 return -EINVAL; 2565 2566 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2567 } 2568 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2569 2570 /** 2571 * regulator_set_voltage_time_sel - get raise/fall time 2572 * @rdev: regulator source device 2573 * @old_selector: selector for starting voltage 2574 * @new_selector: selector for target voltage 2575 * 2576 * Provided with the starting and target voltage selectors, this function 2577 * returns time in microseconds required to rise or fall to this new voltage 2578 * 2579 * Drivers providing ramp_delay in regulation_constraints can use this as their 2580 * set_voltage_time_sel() operation. 2581 */ 2582 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2583 unsigned int old_selector, 2584 unsigned int new_selector) 2585 { 2586 unsigned int ramp_delay = 0; 2587 int old_volt, new_volt; 2588 2589 if (rdev->constraints->ramp_delay) 2590 ramp_delay = rdev->constraints->ramp_delay; 2591 else if (rdev->desc->ramp_delay) 2592 ramp_delay = rdev->desc->ramp_delay; 2593 2594 if (ramp_delay == 0) { 2595 rdev_warn(rdev, "ramp_delay not set\n"); 2596 return 0; 2597 } 2598 2599 /* sanity check */ 2600 if (!rdev->desc->ops->list_voltage) 2601 return -EINVAL; 2602 2603 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2604 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2605 2606 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2607 } 2608 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2609 2610 /** 2611 * regulator_sync_voltage - re-apply last regulator output voltage 2612 * @regulator: regulator source 2613 * 2614 * Re-apply the last configured voltage. This is intended to be used 2615 * where some external control source the consumer is cooperating with 2616 * has caused the configured voltage to change. 2617 */ 2618 int regulator_sync_voltage(struct regulator *regulator) 2619 { 2620 struct regulator_dev *rdev = regulator->rdev; 2621 int ret, min_uV, max_uV; 2622 2623 mutex_lock(&rdev->mutex); 2624 2625 if (!rdev->desc->ops->set_voltage && 2626 !rdev->desc->ops->set_voltage_sel) { 2627 ret = -EINVAL; 2628 goto out; 2629 } 2630 2631 /* This is only going to work if we've had a voltage configured. */ 2632 if (!regulator->min_uV && !regulator->max_uV) { 2633 ret = -EINVAL; 2634 goto out; 2635 } 2636 2637 min_uV = regulator->min_uV; 2638 max_uV = regulator->max_uV; 2639 2640 /* This should be a paranoia check... */ 2641 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2642 if (ret < 0) 2643 goto out; 2644 2645 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2646 if (ret < 0) 2647 goto out; 2648 2649 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2650 2651 out: 2652 mutex_unlock(&rdev->mutex); 2653 return ret; 2654 } 2655 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2656 2657 static int _regulator_get_voltage(struct regulator_dev *rdev) 2658 { 2659 int sel, ret; 2660 2661 if (rdev->desc->ops->get_voltage_sel) { 2662 sel = rdev->desc->ops->get_voltage_sel(rdev); 2663 if (sel < 0) 2664 return sel; 2665 ret = rdev->desc->ops->list_voltage(rdev, sel); 2666 } else if (rdev->desc->ops->get_voltage) { 2667 ret = rdev->desc->ops->get_voltage(rdev); 2668 } else if (rdev->desc->ops->list_voltage) { 2669 ret = rdev->desc->ops->list_voltage(rdev, 0); 2670 } else { 2671 return -EINVAL; 2672 } 2673 2674 if (ret < 0) 2675 return ret; 2676 return ret - rdev->constraints->uV_offset; 2677 } 2678 2679 /** 2680 * regulator_get_voltage - get regulator output voltage 2681 * @regulator: regulator source 2682 * 2683 * This returns the current regulator voltage in uV. 2684 * 2685 * NOTE: If the regulator is disabled it will return the voltage value. This 2686 * function should not be used to determine regulator state. 2687 */ 2688 int regulator_get_voltage(struct regulator *regulator) 2689 { 2690 int ret; 2691 2692 mutex_lock(®ulator->rdev->mutex); 2693 2694 ret = _regulator_get_voltage(regulator->rdev); 2695 2696 mutex_unlock(®ulator->rdev->mutex); 2697 2698 return ret; 2699 } 2700 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2701 2702 /** 2703 * regulator_set_current_limit - set regulator output current limit 2704 * @regulator: regulator source 2705 * @min_uA: Minimuum supported current in uA 2706 * @max_uA: Maximum supported current in uA 2707 * 2708 * Sets current sink to the desired output current. This can be set during 2709 * any regulator state. IOW, regulator can be disabled or enabled. 2710 * 2711 * If the regulator is enabled then the current will change to the new value 2712 * immediately otherwise if the regulator is disabled the regulator will 2713 * output at the new current when enabled. 2714 * 2715 * NOTE: Regulator system constraints must be set for this regulator before 2716 * calling this function otherwise this call will fail. 2717 */ 2718 int regulator_set_current_limit(struct regulator *regulator, 2719 int min_uA, int max_uA) 2720 { 2721 struct regulator_dev *rdev = regulator->rdev; 2722 int ret; 2723 2724 mutex_lock(&rdev->mutex); 2725 2726 /* sanity check */ 2727 if (!rdev->desc->ops->set_current_limit) { 2728 ret = -EINVAL; 2729 goto out; 2730 } 2731 2732 /* constraints check */ 2733 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2734 if (ret < 0) 2735 goto out; 2736 2737 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2738 out: 2739 mutex_unlock(&rdev->mutex); 2740 return ret; 2741 } 2742 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2743 2744 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2745 { 2746 int ret; 2747 2748 mutex_lock(&rdev->mutex); 2749 2750 /* sanity check */ 2751 if (!rdev->desc->ops->get_current_limit) { 2752 ret = -EINVAL; 2753 goto out; 2754 } 2755 2756 ret = rdev->desc->ops->get_current_limit(rdev); 2757 out: 2758 mutex_unlock(&rdev->mutex); 2759 return ret; 2760 } 2761 2762 /** 2763 * regulator_get_current_limit - get regulator output current 2764 * @regulator: regulator source 2765 * 2766 * This returns the current supplied by the specified current sink in uA. 2767 * 2768 * NOTE: If the regulator is disabled it will return the current value. This 2769 * function should not be used to determine regulator state. 2770 */ 2771 int regulator_get_current_limit(struct regulator *regulator) 2772 { 2773 return _regulator_get_current_limit(regulator->rdev); 2774 } 2775 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2776 2777 /** 2778 * regulator_set_mode - set regulator operating mode 2779 * @regulator: regulator source 2780 * @mode: operating mode - one of the REGULATOR_MODE constants 2781 * 2782 * Set regulator operating mode to increase regulator efficiency or improve 2783 * regulation performance. 2784 * 2785 * NOTE: Regulator system constraints must be set for this regulator before 2786 * calling this function otherwise this call will fail. 2787 */ 2788 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2789 { 2790 struct regulator_dev *rdev = regulator->rdev; 2791 int ret; 2792 int regulator_curr_mode; 2793 2794 mutex_lock(&rdev->mutex); 2795 2796 /* sanity check */ 2797 if (!rdev->desc->ops->set_mode) { 2798 ret = -EINVAL; 2799 goto out; 2800 } 2801 2802 /* return if the same mode is requested */ 2803 if (rdev->desc->ops->get_mode) { 2804 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2805 if (regulator_curr_mode == mode) { 2806 ret = 0; 2807 goto out; 2808 } 2809 } 2810 2811 /* constraints check */ 2812 ret = regulator_mode_constrain(rdev, &mode); 2813 if (ret < 0) 2814 goto out; 2815 2816 ret = rdev->desc->ops->set_mode(rdev, mode); 2817 out: 2818 mutex_unlock(&rdev->mutex); 2819 return ret; 2820 } 2821 EXPORT_SYMBOL_GPL(regulator_set_mode); 2822 2823 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2824 { 2825 int ret; 2826 2827 mutex_lock(&rdev->mutex); 2828 2829 /* sanity check */ 2830 if (!rdev->desc->ops->get_mode) { 2831 ret = -EINVAL; 2832 goto out; 2833 } 2834 2835 ret = rdev->desc->ops->get_mode(rdev); 2836 out: 2837 mutex_unlock(&rdev->mutex); 2838 return ret; 2839 } 2840 2841 /** 2842 * regulator_get_mode - get regulator operating mode 2843 * @regulator: regulator source 2844 * 2845 * Get the current regulator operating mode. 2846 */ 2847 unsigned int regulator_get_mode(struct regulator *regulator) 2848 { 2849 return _regulator_get_mode(regulator->rdev); 2850 } 2851 EXPORT_SYMBOL_GPL(regulator_get_mode); 2852 2853 /** 2854 * regulator_set_optimum_mode - set regulator optimum operating mode 2855 * @regulator: regulator source 2856 * @uA_load: load current 2857 * 2858 * Notifies the regulator core of a new device load. This is then used by 2859 * DRMS (if enabled by constraints) to set the most efficient regulator 2860 * operating mode for the new regulator loading. 2861 * 2862 * Consumer devices notify their supply regulator of the maximum power 2863 * they will require (can be taken from device datasheet in the power 2864 * consumption tables) when they change operational status and hence power 2865 * state. Examples of operational state changes that can affect power 2866 * consumption are :- 2867 * 2868 * o Device is opened / closed. 2869 * o Device I/O is about to begin or has just finished. 2870 * o Device is idling in between work. 2871 * 2872 * This information is also exported via sysfs to userspace. 2873 * 2874 * DRMS will sum the total requested load on the regulator and change 2875 * to the most efficient operating mode if platform constraints allow. 2876 * 2877 * Returns the new regulator mode or error. 2878 */ 2879 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2880 { 2881 struct regulator_dev *rdev = regulator->rdev; 2882 struct regulator *consumer; 2883 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2884 unsigned int mode; 2885 2886 if (rdev->supply) 2887 input_uV = regulator_get_voltage(rdev->supply); 2888 2889 mutex_lock(&rdev->mutex); 2890 2891 /* 2892 * first check to see if we can set modes at all, otherwise just 2893 * tell the consumer everything is OK. 2894 */ 2895 regulator->uA_load = uA_load; 2896 ret = regulator_check_drms(rdev); 2897 if (ret < 0) { 2898 ret = 0; 2899 goto out; 2900 } 2901 2902 if (!rdev->desc->ops->get_optimum_mode) 2903 goto out; 2904 2905 /* 2906 * we can actually do this so any errors are indicators of 2907 * potential real failure. 2908 */ 2909 ret = -EINVAL; 2910 2911 if (!rdev->desc->ops->set_mode) 2912 goto out; 2913 2914 /* get output voltage */ 2915 output_uV = _regulator_get_voltage(rdev); 2916 if (output_uV <= 0) { 2917 rdev_err(rdev, "invalid output voltage found\n"); 2918 goto out; 2919 } 2920 2921 /* No supply? Use constraint voltage */ 2922 if (input_uV <= 0) 2923 input_uV = rdev->constraints->input_uV; 2924 if (input_uV <= 0) { 2925 rdev_err(rdev, "invalid input voltage found\n"); 2926 goto out; 2927 } 2928 2929 /* calc total requested load for this regulator */ 2930 list_for_each_entry(consumer, &rdev->consumer_list, list) 2931 total_uA_load += consumer->uA_load; 2932 2933 mode = rdev->desc->ops->get_optimum_mode(rdev, 2934 input_uV, output_uV, 2935 total_uA_load); 2936 ret = regulator_mode_constrain(rdev, &mode); 2937 if (ret < 0) { 2938 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2939 total_uA_load, input_uV, output_uV); 2940 goto out; 2941 } 2942 2943 ret = rdev->desc->ops->set_mode(rdev, mode); 2944 if (ret < 0) { 2945 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2946 goto out; 2947 } 2948 ret = mode; 2949 out: 2950 mutex_unlock(&rdev->mutex); 2951 return ret; 2952 } 2953 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2954 2955 /** 2956 * regulator_set_bypass_regmap - Default set_bypass() using regmap 2957 * 2958 * @rdev: device to operate on. 2959 * @enable: state to set. 2960 */ 2961 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) 2962 { 2963 unsigned int val; 2964 2965 if (enable) 2966 val = rdev->desc->bypass_mask; 2967 else 2968 val = 0; 2969 2970 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, 2971 rdev->desc->bypass_mask, val); 2972 } 2973 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); 2974 2975 /** 2976 * regulator_get_bypass_regmap - Default get_bypass() using regmap 2977 * 2978 * @rdev: device to operate on. 2979 * @enable: current state. 2980 */ 2981 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) 2982 { 2983 unsigned int val; 2984 int ret; 2985 2986 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); 2987 if (ret != 0) 2988 return ret; 2989 2990 *enable = val & rdev->desc->bypass_mask; 2991 2992 return 0; 2993 } 2994 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); 2995 2996 /** 2997 * regulator_allow_bypass - allow the regulator to go into bypass mode 2998 * 2999 * @regulator: Regulator to configure 3000 * @enable: enable or disable bypass mode 3001 * 3002 * Allow the regulator to go into bypass mode if all other consumers 3003 * for the regulator also enable bypass mode and the machine 3004 * constraints allow this. Bypass mode means that the regulator is 3005 * simply passing the input directly to the output with no regulation. 3006 */ 3007 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3008 { 3009 struct regulator_dev *rdev = regulator->rdev; 3010 int ret = 0; 3011 3012 if (!rdev->desc->ops->set_bypass) 3013 return 0; 3014 3015 if (rdev->constraints && 3016 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3017 return 0; 3018 3019 mutex_lock(&rdev->mutex); 3020 3021 if (enable && !regulator->bypass) { 3022 rdev->bypass_count++; 3023 3024 if (rdev->bypass_count == rdev->open_count) { 3025 ret = rdev->desc->ops->set_bypass(rdev, enable); 3026 if (ret != 0) 3027 rdev->bypass_count--; 3028 } 3029 3030 } else if (!enable && regulator->bypass) { 3031 rdev->bypass_count--; 3032 3033 if (rdev->bypass_count != rdev->open_count) { 3034 ret = rdev->desc->ops->set_bypass(rdev, enable); 3035 if (ret != 0) 3036 rdev->bypass_count++; 3037 } 3038 } 3039 3040 if (ret == 0) 3041 regulator->bypass = enable; 3042 3043 mutex_unlock(&rdev->mutex); 3044 3045 return ret; 3046 } 3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3048 3049 /** 3050 * regulator_register_notifier - register regulator event notifier 3051 * @regulator: regulator source 3052 * @nb: notifier block 3053 * 3054 * Register notifier block to receive regulator events. 3055 */ 3056 int regulator_register_notifier(struct regulator *regulator, 3057 struct notifier_block *nb) 3058 { 3059 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3060 nb); 3061 } 3062 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3063 3064 /** 3065 * regulator_unregister_notifier - unregister regulator event notifier 3066 * @regulator: regulator source 3067 * @nb: notifier block 3068 * 3069 * Unregister regulator event notifier block. 3070 */ 3071 int regulator_unregister_notifier(struct regulator *regulator, 3072 struct notifier_block *nb) 3073 { 3074 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3075 nb); 3076 } 3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3078 3079 /* notify regulator consumers and downstream regulator consumers. 3080 * Note mutex must be held by caller. 3081 */ 3082 static void _notifier_call_chain(struct regulator_dev *rdev, 3083 unsigned long event, void *data) 3084 { 3085 /* call rdev chain first */ 3086 blocking_notifier_call_chain(&rdev->notifier, event, data); 3087 } 3088 3089 /** 3090 * regulator_bulk_get - get multiple regulator consumers 3091 * 3092 * @dev: Device to supply 3093 * @num_consumers: Number of consumers to register 3094 * @consumers: Configuration of consumers; clients are stored here. 3095 * 3096 * @return 0 on success, an errno on failure. 3097 * 3098 * This helper function allows drivers to get several regulator 3099 * consumers in one operation. If any of the regulators cannot be 3100 * acquired then any regulators that were allocated will be freed 3101 * before returning to the caller. 3102 */ 3103 int regulator_bulk_get(struct device *dev, int num_consumers, 3104 struct regulator_bulk_data *consumers) 3105 { 3106 int i; 3107 int ret; 3108 3109 for (i = 0; i < num_consumers; i++) 3110 consumers[i].consumer = NULL; 3111 3112 for (i = 0; i < num_consumers; i++) { 3113 consumers[i].consumer = regulator_get(dev, 3114 consumers[i].supply); 3115 if (IS_ERR(consumers[i].consumer)) { 3116 ret = PTR_ERR(consumers[i].consumer); 3117 dev_err(dev, "Failed to get supply '%s': %d\n", 3118 consumers[i].supply, ret); 3119 consumers[i].consumer = NULL; 3120 goto err; 3121 } 3122 } 3123 3124 return 0; 3125 3126 err: 3127 while (--i >= 0) 3128 regulator_put(consumers[i].consumer); 3129 3130 return ret; 3131 } 3132 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3133 3134 /** 3135 * devm_regulator_bulk_get - managed get multiple regulator consumers 3136 * 3137 * @dev: Device to supply 3138 * @num_consumers: Number of consumers to register 3139 * @consumers: Configuration of consumers; clients are stored here. 3140 * 3141 * @return 0 on success, an errno on failure. 3142 * 3143 * This helper function allows drivers to get several regulator 3144 * consumers in one operation with management, the regulators will 3145 * automatically be freed when the device is unbound. If any of the 3146 * regulators cannot be acquired then any regulators that were 3147 * allocated will be freed before returning to the caller. 3148 */ 3149 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 3150 struct regulator_bulk_data *consumers) 3151 { 3152 int i; 3153 int ret; 3154 3155 for (i = 0; i < num_consumers; i++) 3156 consumers[i].consumer = NULL; 3157 3158 for (i = 0; i < num_consumers; i++) { 3159 consumers[i].consumer = devm_regulator_get(dev, 3160 consumers[i].supply); 3161 if (IS_ERR(consumers[i].consumer)) { 3162 ret = PTR_ERR(consumers[i].consumer); 3163 dev_err(dev, "Failed to get supply '%s': %d\n", 3164 consumers[i].supply, ret); 3165 consumers[i].consumer = NULL; 3166 goto err; 3167 } 3168 } 3169 3170 return 0; 3171 3172 err: 3173 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 3174 devm_regulator_put(consumers[i].consumer); 3175 3176 return ret; 3177 } 3178 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 3179 3180 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3181 { 3182 struct regulator_bulk_data *bulk = data; 3183 3184 bulk->ret = regulator_enable(bulk->consumer); 3185 } 3186 3187 /** 3188 * regulator_bulk_enable - enable multiple regulator consumers 3189 * 3190 * @num_consumers: Number of consumers 3191 * @consumers: Consumer data; clients are stored here. 3192 * @return 0 on success, an errno on failure 3193 * 3194 * This convenience API allows consumers to enable multiple regulator 3195 * clients in a single API call. If any consumers cannot be enabled 3196 * then any others that were enabled will be disabled again prior to 3197 * return. 3198 */ 3199 int regulator_bulk_enable(int num_consumers, 3200 struct regulator_bulk_data *consumers) 3201 { 3202 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3203 int i; 3204 int ret = 0; 3205 3206 for (i = 0; i < num_consumers; i++) { 3207 if (consumers[i].consumer->always_on) 3208 consumers[i].ret = 0; 3209 else 3210 async_schedule_domain(regulator_bulk_enable_async, 3211 &consumers[i], &async_domain); 3212 } 3213 3214 async_synchronize_full_domain(&async_domain); 3215 3216 /* If any consumer failed we need to unwind any that succeeded */ 3217 for (i = 0; i < num_consumers; i++) { 3218 if (consumers[i].ret != 0) { 3219 ret = consumers[i].ret; 3220 goto err; 3221 } 3222 } 3223 3224 return 0; 3225 3226 err: 3227 for (i = 0; i < num_consumers; i++) { 3228 if (consumers[i].ret < 0) 3229 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3230 consumers[i].ret); 3231 else 3232 regulator_disable(consumers[i].consumer); 3233 } 3234 3235 return ret; 3236 } 3237 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3238 3239 /** 3240 * regulator_bulk_disable - disable multiple regulator consumers 3241 * 3242 * @num_consumers: Number of consumers 3243 * @consumers: Consumer data; clients are stored here. 3244 * @return 0 on success, an errno on failure 3245 * 3246 * This convenience API allows consumers to disable multiple regulator 3247 * clients in a single API call. If any consumers cannot be disabled 3248 * then any others that were disabled will be enabled again prior to 3249 * return. 3250 */ 3251 int regulator_bulk_disable(int num_consumers, 3252 struct regulator_bulk_data *consumers) 3253 { 3254 int i; 3255 int ret, r; 3256 3257 for (i = num_consumers - 1; i >= 0; --i) { 3258 ret = regulator_disable(consumers[i].consumer); 3259 if (ret != 0) 3260 goto err; 3261 } 3262 3263 return 0; 3264 3265 err: 3266 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3267 for (++i; i < num_consumers; ++i) { 3268 r = regulator_enable(consumers[i].consumer); 3269 if (r != 0) 3270 pr_err("Failed to reename %s: %d\n", 3271 consumers[i].supply, r); 3272 } 3273 3274 return ret; 3275 } 3276 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3277 3278 /** 3279 * regulator_bulk_force_disable - force disable multiple regulator consumers 3280 * 3281 * @num_consumers: Number of consumers 3282 * @consumers: Consumer data; clients are stored here. 3283 * @return 0 on success, an errno on failure 3284 * 3285 * This convenience API allows consumers to forcibly disable multiple regulator 3286 * clients in a single API call. 3287 * NOTE: This should be used for situations when device damage will 3288 * likely occur if the regulators are not disabled (e.g. over temp). 3289 * Although regulator_force_disable function call for some consumers can 3290 * return error numbers, the function is called for all consumers. 3291 */ 3292 int regulator_bulk_force_disable(int num_consumers, 3293 struct regulator_bulk_data *consumers) 3294 { 3295 int i; 3296 int ret; 3297 3298 for (i = 0; i < num_consumers; i++) 3299 consumers[i].ret = 3300 regulator_force_disable(consumers[i].consumer); 3301 3302 for (i = 0; i < num_consumers; i++) { 3303 if (consumers[i].ret != 0) { 3304 ret = consumers[i].ret; 3305 goto out; 3306 } 3307 } 3308 3309 return 0; 3310 out: 3311 return ret; 3312 } 3313 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3314 3315 /** 3316 * regulator_bulk_free - free multiple regulator consumers 3317 * 3318 * @num_consumers: Number of consumers 3319 * @consumers: Consumer data; clients are stored here. 3320 * 3321 * This convenience API allows consumers to free multiple regulator 3322 * clients in a single API call. 3323 */ 3324 void regulator_bulk_free(int num_consumers, 3325 struct regulator_bulk_data *consumers) 3326 { 3327 int i; 3328 3329 for (i = 0; i < num_consumers; i++) { 3330 regulator_put(consumers[i].consumer); 3331 consumers[i].consumer = NULL; 3332 } 3333 } 3334 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3335 3336 /** 3337 * regulator_notifier_call_chain - call regulator event notifier 3338 * @rdev: regulator source 3339 * @event: notifier block 3340 * @data: callback-specific data. 3341 * 3342 * Called by regulator drivers to notify clients a regulator event has 3343 * occurred. We also notify regulator clients downstream. 3344 * Note lock must be held by caller. 3345 */ 3346 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3347 unsigned long event, void *data) 3348 { 3349 _notifier_call_chain(rdev, event, data); 3350 return NOTIFY_DONE; 3351 3352 } 3353 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3354 3355 /** 3356 * regulator_mode_to_status - convert a regulator mode into a status 3357 * 3358 * @mode: Mode to convert 3359 * 3360 * Convert a regulator mode into a status. 3361 */ 3362 int regulator_mode_to_status(unsigned int mode) 3363 { 3364 switch (mode) { 3365 case REGULATOR_MODE_FAST: 3366 return REGULATOR_STATUS_FAST; 3367 case REGULATOR_MODE_NORMAL: 3368 return REGULATOR_STATUS_NORMAL; 3369 case REGULATOR_MODE_IDLE: 3370 return REGULATOR_STATUS_IDLE; 3371 case REGULATOR_MODE_STANDBY: 3372 return REGULATOR_STATUS_STANDBY; 3373 default: 3374 return REGULATOR_STATUS_UNDEFINED; 3375 } 3376 } 3377 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3378 3379 /* 3380 * To avoid cluttering sysfs (and memory) with useless state, only 3381 * create attributes that can be meaningfully displayed. 3382 */ 3383 static int add_regulator_attributes(struct regulator_dev *rdev) 3384 { 3385 struct device *dev = &rdev->dev; 3386 struct regulator_ops *ops = rdev->desc->ops; 3387 int status = 0; 3388 3389 /* some attributes need specific methods to be displayed */ 3390 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3391 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3392 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3393 status = device_create_file(dev, &dev_attr_microvolts); 3394 if (status < 0) 3395 return status; 3396 } 3397 if (ops->get_current_limit) { 3398 status = device_create_file(dev, &dev_attr_microamps); 3399 if (status < 0) 3400 return status; 3401 } 3402 if (ops->get_mode) { 3403 status = device_create_file(dev, &dev_attr_opmode); 3404 if (status < 0) 3405 return status; 3406 } 3407 if (rdev->ena_pin || ops->is_enabled) { 3408 status = device_create_file(dev, &dev_attr_state); 3409 if (status < 0) 3410 return status; 3411 } 3412 if (ops->get_status) { 3413 status = device_create_file(dev, &dev_attr_status); 3414 if (status < 0) 3415 return status; 3416 } 3417 if (ops->get_bypass) { 3418 status = device_create_file(dev, &dev_attr_bypass); 3419 if (status < 0) 3420 return status; 3421 } 3422 3423 /* some attributes are type-specific */ 3424 if (rdev->desc->type == REGULATOR_CURRENT) { 3425 status = device_create_file(dev, &dev_attr_requested_microamps); 3426 if (status < 0) 3427 return status; 3428 } 3429 3430 /* all the other attributes exist to support constraints; 3431 * don't show them if there are no constraints, or if the 3432 * relevant supporting methods are missing. 3433 */ 3434 if (!rdev->constraints) 3435 return status; 3436 3437 /* constraints need specific supporting methods */ 3438 if (ops->set_voltage || ops->set_voltage_sel) { 3439 status = device_create_file(dev, &dev_attr_min_microvolts); 3440 if (status < 0) 3441 return status; 3442 status = device_create_file(dev, &dev_attr_max_microvolts); 3443 if (status < 0) 3444 return status; 3445 } 3446 if (ops->set_current_limit) { 3447 status = device_create_file(dev, &dev_attr_min_microamps); 3448 if (status < 0) 3449 return status; 3450 status = device_create_file(dev, &dev_attr_max_microamps); 3451 if (status < 0) 3452 return status; 3453 } 3454 3455 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3456 if (status < 0) 3457 return status; 3458 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3459 if (status < 0) 3460 return status; 3461 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3462 if (status < 0) 3463 return status; 3464 3465 if (ops->set_suspend_voltage) { 3466 status = device_create_file(dev, 3467 &dev_attr_suspend_standby_microvolts); 3468 if (status < 0) 3469 return status; 3470 status = device_create_file(dev, 3471 &dev_attr_suspend_mem_microvolts); 3472 if (status < 0) 3473 return status; 3474 status = device_create_file(dev, 3475 &dev_attr_suspend_disk_microvolts); 3476 if (status < 0) 3477 return status; 3478 } 3479 3480 if (ops->set_suspend_mode) { 3481 status = device_create_file(dev, 3482 &dev_attr_suspend_standby_mode); 3483 if (status < 0) 3484 return status; 3485 status = device_create_file(dev, 3486 &dev_attr_suspend_mem_mode); 3487 if (status < 0) 3488 return status; 3489 status = device_create_file(dev, 3490 &dev_attr_suspend_disk_mode); 3491 if (status < 0) 3492 return status; 3493 } 3494 3495 return status; 3496 } 3497 3498 static void rdev_init_debugfs(struct regulator_dev *rdev) 3499 { 3500 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3501 if (!rdev->debugfs) { 3502 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3503 return; 3504 } 3505 3506 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3507 &rdev->use_count); 3508 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3509 &rdev->open_count); 3510 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3511 &rdev->bypass_count); 3512 } 3513 3514 /** 3515 * regulator_register - register regulator 3516 * @regulator_desc: regulator to register 3517 * @config: runtime configuration for regulator 3518 * 3519 * Called by regulator drivers to register a regulator. 3520 * Returns a valid pointer to struct regulator_dev on success 3521 * or an ERR_PTR() on error. 3522 */ 3523 struct regulator_dev * 3524 regulator_register(const struct regulator_desc *regulator_desc, 3525 const struct regulator_config *config) 3526 { 3527 const struct regulation_constraints *constraints = NULL; 3528 const struct regulator_init_data *init_data; 3529 static atomic_t regulator_no = ATOMIC_INIT(0); 3530 struct regulator_dev *rdev; 3531 struct device *dev; 3532 int ret, i; 3533 const char *supply = NULL; 3534 3535 if (regulator_desc == NULL || config == NULL) 3536 return ERR_PTR(-EINVAL); 3537 3538 dev = config->dev; 3539 WARN_ON(!dev); 3540 3541 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3542 return ERR_PTR(-EINVAL); 3543 3544 if (regulator_desc->type != REGULATOR_VOLTAGE && 3545 regulator_desc->type != REGULATOR_CURRENT) 3546 return ERR_PTR(-EINVAL); 3547 3548 /* Only one of each should be implemented */ 3549 WARN_ON(regulator_desc->ops->get_voltage && 3550 regulator_desc->ops->get_voltage_sel); 3551 WARN_ON(regulator_desc->ops->set_voltage && 3552 regulator_desc->ops->set_voltage_sel); 3553 3554 /* If we're using selectors we must implement list_voltage. */ 3555 if (regulator_desc->ops->get_voltage_sel && 3556 !regulator_desc->ops->list_voltage) { 3557 return ERR_PTR(-EINVAL); 3558 } 3559 if (regulator_desc->ops->set_voltage_sel && 3560 !regulator_desc->ops->list_voltage) { 3561 return ERR_PTR(-EINVAL); 3562 } 3563 3564 init_data = config->init_data; 3565 3566 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3567 if (rdev == NULL) 3568 return ERR_PTR(-ENOMEM); 3569 3570 mutex_lock(®ulator_list_mutex); 3571 3572 mutex_init(&rdev->mutex); 3573 rdev->reg_data = config->driver_data; 3574 rdev->owner = regulator_desc->owner; 3575 rdev->desc = regulator_desc; 3576 if (config->regmap) 3577 rdev->regmap = config->regmap; 3578 else if (dev_get_regmap(dev, NULL)) 3579 rdev->regmap = dev_get_regmap(dev, NULL); 3580 else if (dev->parent) 3581 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3582 INIT_LIST_HEAD(&rdev->consumer_list); 3583 INIT_LIST_HEAD(&rdev->list); 3584 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3585 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3586 3587 /* preform any regulator specific init */ 3588 if (init_data && init_data->regulator_init) { 3589 ret = init_data->regulator_init(rdev->reg_data); 3590 if (ret < 0) 3591 goto clean; 3592 } 3593 3594 /* register with sysfs */ 3595 rdev->dev.class = ®ulator_class; 3596 rdev->dev.of_node = config->of_node; 3597 rdev->dev.parent = dev; 3598 dev_set_name(&rdev->dev, "regulator.%d", 3599 atomic_inc_return(®ulator_no) - 1); 3600 ret = device_register(&rdev->dev); 3601 if (ret != 0) { 3602 put_device(&rdev->dev); 3603 goto clean; 3604 } 3605 3606 dev_set_drvdata(&rdev->dev, rdev); 3607 3608 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3609 ret = regulator_ena_gpio_request(rdev, config); 3610 if (ret != 0) { 3611 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3612 config->ena_gpio, ret); 3613 goto wash; 3614 } 3615 3616 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3617 rdev->ena_gpio_state = 1; 3618 3619 if (config->ena_gpio_invert) 3620 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3621 } 3622 3623 /* set regulator constraints */ 3624 if (init_data) 3625 constraints = &init_data->constraints; 3626 3627 ret = set_machine_constraints(rdev, constraints); 3628 if (ret < 0) 3629 goto scrub; 3630 3631 /* add attributes supported by this regulator */ 3632 ret = add_regulator_attributes(rdev); 3633 if (ret < 0) 3634 goto scrub; 3635 3636 if (init_data && init_data->supply_regulator) 3637 supply = init_data->supply_regulator; 3638 else if (regulator_desc->supply_name) 3639 supply = regulator_desc->supply_name; 3640 3641 if (supply) { 3642 struct regulator_dev *r; 3643 3644 r = regulator_dev_lookup(dev, supply, &ret); 3645 3646 if (ret == -ENODEV) { 3647 /* 3648 * No supply was specified for this regulator and 3649 * there will never be one. 3650 */ 3651 ret = 0; 3652 goto add_dev; 3653 } else if (!r) { 3654 dev_err(dev, "Failed to find supply %s\n", supply); 3655 ret = -EPROBE_DEFER; 3656 goto scrub; 3657 } 3658 3659 ret = set_supply(rdev, r); 3660 if (ret < 0) 3661 goto scrub; 3662 3663 /* Enable supply if rail is enabled */ 3664 if (_regulator_is_enabled(rdev)) { 3665 ret = regulator_enable(rdev->supply); 3666 if (ret < 0) 3667 goto scrub; 3668 } 3669 } 3670 3671 add_dev: 3672 /* add consumers devices */ 3673 if (init_data) { 3674 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3675 ret = set_consumer_device_supply(rdev, 3676 init_data->consumer_supplies[i].dev_name, 3677 init_data->consumer_supplies[i].supply); 3678 if (ret < 0) { 3679 dev_err(dev, "Failed to set supply %s\n", 3680 init_data->consumer_supplies[i].supply); 3681 goto unset_supplies; 3682 } 3683 } 3684 } 3685 3686 list_add(&rdev->list, ®ulator_list); 3687 3688 rdev_init_debugfs(rdev); 3689 out: 3690 mutex_unlock(®ulator_list_mutex); 3691 return rdev; 3692 3693 unset_supplies: 3694 unset_regulator_supplies(rdev); 3695 3696 scrub: 3697 if (rdev->supply) 3698 _regulator_put(rdev->supply); 3699 regulator_ena_gpio_free(rdev); 3700 kfree(rdev->constraints); 3701 wash: 3702 device_unregister(&rdev->dev); 3703 /* device core frees rdev */ 3704 rdev = ERR_PTR(ret); 3705 goto out; 3706 3707 clean: 3708 kfree(rdev); 3709 rdev = ERR_PTR(ret); 3710 goto out; 3711 } 3712 EXPORT_SYMBOL_GPL(regulator_register); 3713 3714 /** 3715 * regulator_unregister - unregister regulator 3716 * @rdev: regulator to unregister 3717 * 3718 * Called by regulator drivers to unregister a regulator. 3719 */ 3720 void regulator_unregister(struct regulator_dev *rdev) 3721 { 3722 if (rdev == NULL) 3723 return; 3724 3725 if (rdev->supply) 3726 regulator_put(rdev->supply); 3727 mutex_lock(®ulator_list_mutex); 3728 debugfs_remove_recursive(rdev->debugfs); 3729 flush_work(&rdev->disable_work.work); 3730 WARN_ON(rdev->open_count); 3731 unset_regulator_supplies(rdev); 3732 list_del(&rdev->list); 3733 kfree(rdev->constraints); 3734 regulator_ena_gpio_free(rdev); 3735 device_unregister(&rdev->dev); 3736 mutex_unlock(®ulator_list_mutex); 3737 } 3738 EXPORT_SYMBOL_GPL(regulator_unregister); 3739 3740 /** 3741 * regulator_suspend_prepare - prepare regulators for system wide suspend 3742 * @state: system suspend state 3743 * 3744 * Configure each regulator with it's suspend operating parameters for state. 3745 * This will usually be called by machine suspend code prior to supending. 3746 */ 3747 int regulator_suspend_prepare(suspend_state_t state) 3748 { 3749 struct regulator_dev *rdev; 3750 int ret = 0; 3751 3752 /* ON is handled by regulator active state */ 3753 if (state == PM_SUSPEND_ON) 3754 return -EINVAL; 3755 3756 mutex_lock(®ulator_list_mutex); 3757 list_for_each_entry(rdev, ®ulator_list, list) { 3758 3759 mutex_lock(&rdev->mutex); 3760 ret = suspend_prepare(rdev, state); 3761 mutex_unlock(&rdev->mutex); 3762 3763 if (ret < 0) { 3764 rdev_err(rdev, "failed to prepare\n"); 3765 goto out; 3766 } 3767 } 3768 out: 3769 mutex_unlock(®ulator_list_mutex); 3770 return ret; 3771 } 3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3773 3774 /** 3775 * regulator_suspend_finish - resume regulators from system wide suspend 3776 * 3777 * Turn on regulators that might be turned off by regulator_suspend_prepare 3778 * and that should be turned on according to the regulators properties. 3779 */ 3780 int regulator_suspend_finish(void) 3781 { 3782 struct regulator_dev *rdev; 3783 int ret = 0, error; 3784 3785 mutex_lock(®ulator_list_mutex); 3786 list_for_each_entry(rdev, ®ulator_list, list) { 3787 struct regulator_ops *ops = rdev->desc->ops; 3788 3789 mutex_lock(&rdev->mutex); 3790 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3791 ops->enable) { 3792 error = ops->enable(rdev); 3793 if (error) 3794 ret = error; 3795 } else { 3796 if (!has_full_constraints) 3797 goto unlock; 3798 if (!ops->disable) 3799 goto unlock; 3800 if (!_regulator_is_enabled(rdev)) 3801 goto unlock; 3802 3803 error = ops->disable(rdev); 3804 if (error) 3805 ret = error; 3806 } 3807 unlock: 3808 mutex_unlock(&rdev->mutex); 3809 } 3810 mutex_unlock(®ulator_list_mutex); 3811 return ret; 3812 } 3813 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3814 3815 /** 3816 * regulator_has_full_constraints - the system has fully specified constraints 3817 * 3818 * Calling this function will cause the regulator API to disable all 3819 * regulators which have a zero use count and don't have an always_on 3820 * constraint in a late_initcall. 3821 * 3822 * The intention is that this will become the default behaviour in a 3823 * future kernel release so users are encouraged to use this facility 3824 * now. 3825 */ 3826 void regulator_has_full_constraints(void) 3827 { 3828 has_full_constraints = 1; 3829 } 3830 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3831 3832 /** 3833 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3834 * 3835 * Calling this function will cause the regulator API to provide a 3836 * dummy regulator to consumers if no physical regulator is found, 3837 * allowing most consumers to proceed as though a regulator were 3838 * configured. This allows systems such as those with software 3839 * controllable regulators for the CPU core only to be brought up more 3840 * readily. 3841 */ 3842 void regulator_use_dummy_regulator(void) 3843 { 3844 board_wants_dummy_regulator = true; 3845 } 3846 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3847 3848 /** 3849 * rdev_get_drvdata - get rdev regulator driver data 3850 * @rdev: regulator 3851 * 3852 * Get rdev regulator driver private data. This call can be used in the 3853 * regulator driver context. 3854 */ 3855 void *rdev_get_drvdata(struct regulator_dev *rdev) 3856 { 3857 return rdev->reg_data; 3858 } 3859 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3860 3861 /** 3862 * regulator_get_drvdata - get regulator driver data 3863 * @regulator: regulator 3864 * 3865 * Get regulator driver private data. This call can be used in the consumer 3866 * driver context when non API regulator specific functions need to be called. 3867 */ 3868 void *regulator_get_drvdata(struct regulator *regulator) 3869 { 3870 return regulator->rdev->reg_data; 3871 } 3872 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3873 3874 /** 3875 * regulator_set_drvdata - set regulator driver data 3876 * @regulator: regulator 3877 * @data: data 3878 */ 3879 void regulator_set_drvdata(struct regulator *regulator, void *data) 3880 { 3881 regulator->rdev->reg_data = data; 3882 } 3883 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3884 3885 /** 3886 * regulator_get_id - get regulator ID 3887 * @rdev: regulator 3888 */ 3889 int rdev_get_id(struct regulator_dev *rdev) 3890 { 3891 return rdev->desc->id; 3892 } 3893 EXPORT_SYMBOL_GPL(rdev_get_id); 3894 3895 struct device *rdev_get_dev(struct regulator_dev *rdev) 3896 { 3897 return &rdev->dev; 3898 } 3899 EXPORT_SYMBOL_GPL(rdev_get_dev); 3900 3901 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3902 { 3903 return reg_init_data->driver_data; 3904 } 3905 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3906 3907 #ifdef CONFIG_DEBUG_FS 3908 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3909 size_t count, loff_t *ppos) 3910 { 3911 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3912 ssize_t len, ret = 0; 3913 struct regulator_map *map; 3914 3915 if (!buf) 3916 return -ENOMEM; 3917 3918 list_for_each_entry(map, ®ulator_map_list, list) { 3919 len = snprintf(buf + ret, PAGE_SIZE - ret, 3920 "%s -> %s.%s\n", 3921 rdev_get_name(map->regulator), map->dev_name, 3922 map->supply); 3923 if (len >= 0) 3924 ret += len; 3925 if (ret > PAGE_SIZE) { 3926 ret = PAGE_SIZE; 3927 break; 3928 } 3929 } 3930 3931 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3932 3933 kfree(buf); 3934 3935 return ret; 3936 } 3937 #endif 3938 3939 static const struct file_operations supply_map_fops = { 3940 #ifdef CONFIG_DEBUG_FS 3941 .read = supply_map_read_file, 3942 .llseek = default_llseek, 3943 #endif 3944 }; 3945 3946 static int __init regulator_init(void) 3947 { 3948 int ret; 3949 3950 ret = class_register(®ulator_class); 3951 3952 debugfs_root = debugfs_create_dir("regulator", NULL); 3953 if (!debugfs_root) 3954 pr_warn("regulator: Failed to create debugfs directory\n"); 3955 3956 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3957 &supply_map_fops); 3958 3959 regulator_dummy_init(); 3960 3961 return ret; 3962 } 3963 3964 /* init early to allow our consumers to complete system booting */ 3965 core_initcall(regulator_init); 3966 3967 static int __init regulator_init_complete(void) 3968 { 3969 struct regulator_dev *rdev; 3970 struct regulator_ops *ops; 3971 struct regulation_constraints *c; 3972 int enabled, ret; 3973 3974 /* 3975 * Since DT doesn't provide an idiomatic mechanism for 3976 * enabling full constraints and since it's much more natural 3977 * with DT to provide them just assume that a DT enabled 3978 * system has full constraints. 3979 */ 3980 if (of_have_populated_dt()) 3981 has_full_constraints = true; 3982 3983 mutex_lock(®ulator_list_mutex); 3984 3985 /* If we have a full configuration then disable any regulators 3986 * which are not in use or always_on. This will become the 3987 * default behaviour in the future. 3988 */ 3989 list_for_each_entry(rdev, ®ulator_list, list) { 3990 ops = rdev->desc->ops; 3991 c = rdev->constraints; 3992 3993 if (!ops->disable || (c && c->always_on)) 3994 continue; 3995 3996 mutex_lock(&rdev->mutex); 3997 3998 if (rdev->use_count) 3999 goto unlock; 4000 4001 /* If we can't read the status assume it's on. */ 4002 if (ops->is_enabled) 4003 enabled = ops->is_enabled(rdev); 4004 else 4005 enabled = 1; 4006 4007 if (!enabled) 4008 goto unlock; 4009 4010 if (has_full_constraints) { 4011 /* We log since this may kill the system if it 4012 * goes wrong. */ 4013 rdev_info(rdev, "disabling\n"); 4014 ret = ops->disable(rdev); 4015 if (ret != 0) { 4016 rdev_err(rdev, "couldn't disable: %d\n", ret); 4017 } 4018 } else { 4019 /* The intention is that in future we will 4020 * assume that full constraints are provided 4021 * so warn even if we aren't going to do 4022 * anything here. 4023 */ 4024 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4025 } 4026 4027 unlock: 4028 mutex_unlock(&rdev->mutex); 4029 } 4030 4031 mutex_unlock(®ulator_list_mutex); 4032 4033 return 0; 4034 } 4035 late_initcall(regulator_init_complete); 4036