1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 static void _regulator_put(struct regulator *regulator); 113 114 static struct regulator_dev *dev_to_rdev(struct device *dev) 115 { 116 return container_of(dev, struct regulator_dev, dev); 117 } 118 119 static const char *rdev_get_name(struct regulator_dev *rdev) 120 { 121 if (rdev->constraints && rdev->constraints->name) 122 return rdev->constraints->name; 123 else if (rdev->desc->name) 124 return rdev->desc->name; 125 else 126 return ""; 127 } 128 129 static bool have_full_constraints(void) 130 { 131 return has_full_constraints || of_have_populated_dt(); 132 } 133 134 /** 135 * of_get_regulator - get a regulator device node based on supply name 136 * @dev: Device pointer for the consumer (of regulator) device 137 * @supply: regulator supply name 138 * 139 * Extract the regulator device node corresponding to the supply name. 140 * returns the device node corresponding to the regulator if found, else 141 * returns NULL. 142 */ 143 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 144 { 145 struct device_node *regnode = NULL; 146 char prop_name[32]; /* 32 is max size of property name */ 147 148 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 149 150 snprintf(prop_name, 32, "%s-supply", supply); 151 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 152 153 if (!regnode) { 154 dev_dbg(dev, "Looking up %s property in node %s failed", 155 prop_name, dev->of_node->full_name); 156 return NULL; 157 } 158 return regnode; 159 } 160 161 static int _regulator_can_change_status(struct regulator_dev *rdev) 162 { 163 if (!rdev->constraints) 164 return 0; 165 166 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 167 return 1; 168 else 169 return 0; 170 } 171 172 /* Platform voltage constraint check */ 173 static int regulator_check_voltage(struct regulator_dev *rdev, 174 int *min_uV, int *max_uV) 175 { 176 BUG_ON(*min_uV > *max_uV); 177 178 if (!rdev->constraints) { 179 rdev_err(rdev, "no constraints\n"); 180 return -ENODEV; 181 } 182 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 183 rdev_err(rdev, "operation not allowed\n"); 184 return -EPERM; 185 } 186 187 if (*max_uV > rdev->constraints->max_uV) 188 *max_uV = rdev->constraints->max_uV; 189 if (*min_uV < rdev->constraints->min_uV) 190 *min_uV = rdev->constraints->min_uV; 191 192 if (*min_uV > *max_uV) { 193 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 194 *min_uV, *max_uV); 195 return -EINVAL; 196 } 197 198 return 0; 199 } 200 201 /* Make sure we select a voltage that suits the needs of all 202 * regulator consumers 203 */ 204 static int regulator_check_consumers(struct regulator_dev *rdev, 205 int *min_uV, int *max_uV) 206 { 207 struct regulator *regulator; 208 209 list_for_each_entry(regulator, &rdev->consumer_list, list) { 210 /* 211 * Assume consumers that didn't say anything are OK 212 * with anything in the constraint range. 213 */ 214 if (!regulator->min_uV && !regulator->max_uV) 215 continue; 216 217 if (*max_uV > regulator->max_uV) 218 *max_uV = regulator->max_uV; 219 if (*min_uV < regulator->min_uV) 220 *min_uV = regulator->min_uV; 221 } 222 223 if (*min_uV > *max_uV) { 224 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 225 *min_uV, *max_uV); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 232 /* current constraint check */ 233 static int regulator_check_current_limit(struct regulator_dev *rdev, 234 int *min_uA, int *max_uA) 235 { 236 BUG_ON(*min_uA > *max_uA); 237 238 if (!rdev->constraints) { 239 rdev_err(rdev, "no constraints\n"); 240 return -ENODEV; 241 } 242 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 243 rdev_err(rdev, "operation not allowed\n"); 244 return -EPERM; 245 } 246 247 if (*max_uA > rdev->constraints->max_uA) 248 *max_uA = rdev->constraints->max_uA; 249 if (*min_uA < rdev->constraints->min_uA) 250 *min_uA = rdev->constraints->min_uA; 251 252 if (*min_uA > *max_uA) { 253 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 254 *min_uA, *max_uA); 255 return -EINVAL; 256 } 257 258 return 0; 259 } 260 261 /* operating mode constraint check */ 262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 263 { 264 switch (*mode) { 265 case REGULATOR_MODE_FAST: 266 case REGULATOR_MODE_NORMAL: 267 case REGULATOR_MODE_IDLE: 268 case REGULATOR_MODE_STANDBY: 269 break; 270 default: 271 rdev_err(rdev, "invalid mode %x specified\n", *mode); 272 return -EINVAL; 273 } 274 275 if (!rdev->constraints) { 276 rdev_err(rdev, "no constraints\n"); 277 return -ENODEV; 278 } 279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 280 rdev_err(rdev, "operation not allowed\n"); 281 return -EPERM; 282 } 283 284 /* The modes are bitmasks, the most power hungry modes having 285 * the lowest values. If the requested mode isn't supported 286 * try higher modes. */ 287 while (*mode) { 288 if (rdev->constraints->valid_modes_mask & *mode) 289 return 0; 290 *mode /= 2; 291 } 292 293 return -EINVAL; 294 } 295 296 /* dynamic regulator mode switching constraint check */ 297 static int regulator_check_drms(struct regulator_dev *rdev) 298 { 299 if (!rdev->constraints) { 300 rdev_err(rdev, "no constraints\n"); 301 return -ENODEV; 302 } 303 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 304 rdev_dbg(rdev, "operation not allowed\n"); 305 return -EPERM; 306 } 307 return 0; 308 } 309 310 static ssize_t regulator_uV_show(struct device *dev, 311 struct device_attribute *attr, char *buf) 312 { 313 struct regulator_dev *rdev = dev_get_drvdata(dev); 314 ssize_t ret; 315 316 mutex_lock(&rdev->mutex); 317 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 318 mutex_unlock(&rdev->mutex); 319 320 return ret; 321 } 322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 323 324 static ssize_t regulator_uA_show(struct device *dev, 325 struct device_attribute *attr, char *buf) 326 { 327 struct regulator_dev *rdev = dev_get_drvdata(dev); 328 329 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 330 } 331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 332 333 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 334 char *buf) 335 { 336 struct regulator_dev *rdev = dev_get_drvdata(dev); 337 338 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 339 } 340 static DEVICE_ATTR_RO(name); 341 342 static ssize_t regulator_print_opmode(char *buf, int mode) 343 { 344 switch (mode) { 345 case REGULATOR_MODE_FAST: 346 return sprintf(buf, "fast\n"); 347 case REGULATOR_MODE_NORMAL: 348 return sprintf(buf, "normal\n"); 349 case REGULATOR_MODE_IDLE: 350 return sprintf(buf, "idle\n"); 351 case REGULATOR_MODE_STANDBY: 352 return sprintf(buf, "standby\n"); 353 } 354 return sprintf(buf, "unknown\n"); 355 } 356 357 static ssize_t regulator_opmode_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct regulator_dev *rdev = dev_get_drvdata(dev); 361 362 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 363 } 364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 365 366 static ssize_t regulator_print_state(char *buf, int state) 367 { 368 if (state > 0) 369 return sprintf(buf, "enabled\n"); 370 else if (state == 0) 371 return sprintf(buf, "disabled\n"); 372 else 373 return sprintf(buf, "unknown\n"); 374 } 375 376 static ssize_t regulator_state_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 struct regulator_dev *rdev = dev_get_drvdata(dev); 380 ssize_t ret; 381 382 mutex_lock(&rdev->mutex); 383 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 384 mutex_unlock(&rdev->mutex); 385 386 return ret; 387 } 388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 389 390 static ssize_t regulator_status_show(struct device *dev, 391 struct device_attribute *attr, char *buf) 392 { 393 struct regulator_dev *rdev = dev_get_drvdata(dev); 394 int status; 395 char *label; 396 397 status = rdev->desc->ops->get_status(rdev); 398 if (status < 0) 399 return status; 400 401 switch (status) { 402 case REGULATOR_STATUS_OFF: 403 label = "off"; 404 break; 405 case REGULATOR_STATUS_ON: 406 label = "on"; 407 break; 408 case REGULATOR_STATUS_ERROR: 409 label = "error"; 410 break; 411 case REGULATOR_STATUS_FAST: 412 label = "fast"; 413 break; 414 case REGULATOR_STATUS_NORMAL: 415 label = "normal"; 416 break; 417 case REGULATOR_STATUS_IDLE: 418 label = "idle"; 419 break; 420 case REGULATOR_STATUS_STANDBY: 421 label = "standby"; 422 break; 423 case REGULATOR_STATUS_BYPASS: 424 label = "bypass"; 425 break; 426 case REGULATOR_STATUS_UNDEFINED: 427 label = "undefined"; 428 break; 429 default: 430 return -ERANGE; 431 } 432 433 return sprintf(buf, "%s\n", label); 434 } 435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 436 437 static ssize_t regulator_min_uA_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct regulator_dev *rdev = dev_get_drvdata(dev); 441 442 if (!rdev->constraints) 443 return sprintf(buf, "constraint not defined\n"); 444 445 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 446 } 447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 448 449 static ssize_t regulator_max_uA_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct regulator_dev *rdev = dev_get_drvdata(dev); 453 454 if (!rdev->constraints) 455 return sprintf(buf, "constraint not defined\n"); 456 457 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 458 } 459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 460 461 static ssize_t regulator_min_uV_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct regulator_dev *rdev = dev_get_drvdata(dev); 465 466 if (!rdev->constraints) 467 return sprintf(buf, "constraint not defined\n"); 468 469 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 470 } 471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 472 473 static ssize_t regulator_max_uV_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct regulator_dev *rdev = dev_get_drvdata(dev); 477 478 if (!rdev->constraints) 479 return sprintf(buf, "constraint not defined\n"); 480 481 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 482 } 483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 484 485 static ssize_t regulator_total_uA_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct regulator_dev *rdev = dev_get_drvdata(dev); 489 struct regulator *regulator; 490 int uA = 0; 491 492 mutex_lock(&rdev->mutex); 493 list_for_each_entry(regulator, &rdev->consumer_list, list) 494 uA += regulator->uA_load; 495 mutex_unlock(&rdev->mutex); 496 return sprintf(buf, "%d\n", uA); 497 } 498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 499 500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 501 char *buf) 502 { 503 struct regulator_dev *rdev = dev_get_drvdata(dev); 504 return sprintf(buf, "%d\n", rdev->use_count); 505 } 506 static DEVICE_ATTR_RO(num_users); 507 508 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 509 char *buf) 510 { 511 struct regulator_dev *rdev = dev_get_drvdata(dev); 512 513 switch (rdev->desc->type) { 514 case REGULATOR_VOLTAGE: 515 return sprintf(buf, "voltage\n"); 516 case REGULATOR_CURRENT: 517 return sprintf(buf, "current\n"); 518 } 519 return sprintf(buf, "unknown\n"); 520 } 521 static DEVICE_ATTR_RO(type); 522 523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 529 } 530 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 531 regulator_suspend_mem_uV_show, NULL); 532 533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 539 } 540 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 541 regulator_suspend_disk_uV_show, NULL); 542 543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 549 } 550 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 551 regulator_suspend_standby_uV_show, NULL); 552 553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct regulator_dev *rdev = dev_get_drvdata(dev); 557 558 return regulator_print_opmode(buf, 559 rdev->constraints->state_mem.mode); 560 } 561 static DEVICE_ATTR(suspend_mem_mode, 0444, 562 regulator_suspend_mem_mode_show, NULL); 563 564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566 { 567 struct regulator_dev *rdev = dev_get_drvdata(dev); 568 569 return regulator_print_opmode(buf, 570 rdev->constraints->state_disk.mode); 571 } 572 static DEVICE_ATTR(suspend_disk_mode, 0444, 573 regulator_suspend_disk_mode_show, NULL); 574 575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 576 struct device_attribute *attr, char *buf) 577 { 578 struct regulator_dev *rdev = dev_get_drvdata(dev); 579 580 return regulator_print_opmode(buf, 581 rdev->constraints->state_standby.mode); 582 } 583 static DEVICE_ATTR(suspend_standby_mode, 0444, 584 regulator_suspend_standby_mode_show, NULL); 585 586 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct regulator_dev *rdev = dev_get_drvdata(dev); 590 591 return regulator_print_state(buf, 592 rdev->constraints->state_mem.enabled); 593 } 594 static DEVICE_ATTR(suspend_mem_state, 0444, 595 regulator_suspend_mem_state_show, NULL); 596 597 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 598 struct device_attribute *attr, char *buf) 599 { 600 struct regulator_dev *rdev = dev_get_drvdata(dev); 601 602 return regulator_print_state(buf, 603 rdev->constraints->state_disk.enabled); 604 } 605 static DEVICE_ATTR(suspend_disk_state, 0444, 606 regulator_suspend_disk_state_show, NULL); 607 608 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct regulator_dev *rdev = dev_get_drvdata(dev); 612 613 return regulator_print_state(buf, 614 rdev->constraints->state_standby.enabled); 615 } 616 static DEVICE_ATTR(suspend_standby_state, 0444, 617 regulator_suspend_standby_state_show, NULL); 618 619 static ssize_t regulator_bypass_show(struct device *dev, 620 struct device_attribute *attr, char *buf) 621 { 622 struct regulator_dev *rdev = dev_get_drvdata(dev); 623 const char *report; 624 bool bypass; 625 int ret; 626 627 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 628 629 if (ret != 0) 630 report = "unknown"; 631 else if (bypass) 632 report = "enabled"; 633 else 634 report = "disabled"; 635 636 return sprintf(buf, "%s\n", report); 637 } 638 static DEVICE_ATTR(bypass, 0444, 639 regulator_bypass_show, NULL); 640 641 /* Calculate the new optimum regulator operating mode based on the new total 642 * consumer load. All locks held by caller */ 643 static int drms_uA_update(struct regulator_dev *rdev) 644 { 645 struct regulator *sibling; 646 int current_uA = 0, output_uV, input_uV, err; 647 unsigned int mode; 648 649 lockdep_assert_held_once(&rdev->mutex); 650 651 /* 652 * first check to see if we can set modes at all, otherwise just 653 * tell the consumer everything is OK. 654 */ 655 err = regulator_check_drms(rdev); 656 if (err < 0) 657 return 0; 658 659 if (!rdev->desc->ops->get_optimum_mode && 660 !rdev->desc->ops->set_load) 661 return 0; 662 663 if (!rdev->desc->ops->set_mode && 664 !rdev->desc->ops->set_load) 665 return -EINVAL; 666 667 /* get output voltage */ 668 output_uV = _regulator_get_voltage(rdev); 669 if (output_uV <= 0) { 670 rdev_err(rdev, "invalid output voltage found\n"); 671 return -EINVAL; 672 } 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) { 681 rdev_err(rdev, "invalid input voltage found\n"); 682 return -EINVAL; 683 } 684 685 /* calc total requested load */ 686 list_for_each_entry(sibling, &rdev->consumer_list, list) 687 current_uA += sibling->uA_load; 688 689 current_uA += rdev->constraints->system_load; 690 691 if (rdev->desc->ops->set_load) { 692 /* set the optimum mode for our new total regulator load */ 693 err = rdev->desc->ops->set_load(rdev, current_uA); 694 if (err < 0) 695 rdev_err(rdev, "failed to set load %d\n", current_uA); 696 } else { 697 /* now get the optimum mode for our new total regulator load */ 698 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 699 output_uV, current_uA); 700 701 /* check the new mode is allowed */ 702 err = regulator_mode_constrain(rdev, &mode); 703 if (err < 0) { 704 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 705 current_uA, input_uV, output_uV); 706 return err; 707 } 708 709 err = rdev->desc->ops->set_mode(rdev, mode); 710 if (err < 0) 711 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 712 } 713 714 return err; 715 } 716 717 static int suspend_set_state(struct regulator_dev *rdev, 718 struct regulator_state *rstate) 719 { 720 int ret = 0; 721 722 /* If we have no suspend mode configration don't set anything; 723 * only warn if the driver implements set_suspend_voltage or 724 * set_suspend_mode callback. 725 */ 726 if (!rstate->enabled && !rstate->disabled) { 727 if (rdev->desc->ops->set_suspend_voltage || 728 rdev->desc->ops->set_suspend_mode) 729 rdev_warn(rdev, "No configuration\n"); 730 return 0; 731 } 732 733 if (rstate->enabled && rstate->disabled) { 734 rdev_err(rdev, "invalid configuration\n"); 735 return -EINVAL; 736 } 737 738 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 739 ret = rdev->desc->ops->set_suspend_enable(rdev); 740 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 741 ret = rdev->desc->ops->set_suspend_disable(rdev); 742 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 743 ret = 0; 744 745 if (ret < 0) { 746 rdev_err(rdev, "failed to enabled/disable\n"); 747 return ret; 748 } 749 750 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 751 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 752 if (ret < 0) { 753 rdev_err(rdev, "failed to set voltage\n"); 754 return ret; 755 } 756 } 757 758 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 759 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 760 if (ret < 0) { 761 rdev_err(rdev, "failed to set mode\n"); 762 return ret; 763 } 764 } 765 return ret; 766 } 767 768 /* locks held by caller */ 769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 770 { 771 lockdep_assert_held_once(&rdev->mutex); 772 773 if (!rdev->constraints) 774 return -EINVAL; 775 776 switch (state) { 777 case PM_SUSPEND_STANDBY: 778 return suspend_set_state(rdev, 779 &rdev->constraints->state_standby); 780 case PM_SUSPEND_MEM: 781 return suspend_set_state(rdev, 782 &rdev->constraints->state_mem); 783 case PM_SUSPEND_MAX: 784 return suspend_set_state(rdev, 785 &rdev->constraints->state_disk); 786 default: 787 return -EINVAL; 788 } 789 } 790 791 static void print_constraints(struct regulator_dev *rdev) 792 { 793 struct regulation_constraints *constraints = rdev->constraints; 794 char buf[160] = ""; 795 size_t len = sizeof(buf) - 1; 796 int count = 0; 797 int ret; 798 799 if (constraints->min_uV && constraints->max_uV) { 800 if (constraints->min_uV == constraints->max_uV) 801 count += scnprintf(buf + count, len - count, "%d mV ", 802 constraints->min_uV / 1000); 803 else 804 count += scnprintf(buf + count, len - count, 805 "%d <--> %d mV ", 806 constraints->min_uV / 1000, 807 constraints->max_uV / 1000); 808 } 809 810 if (!constraints->min_uV || 811 constraints->min_uV != constraints->max_uV) { 812 ret = _regulator_get_voltage(rdev); 813 if (ret > 0) 814 count += scnprintf(buf + count, len - count, 815 "at %d mV ", ret / 1000); 816 } 817 818 if (constraints->uV_offset) 819 count += scnprintf(buf + count, len - count, "%dmV offset ", 820 constraints->uV_offset / 1000); 821 822 if (constraints->min_uA && constraints->max_uA) { 823 if (constraints->min_uA == constraints->max_uA) 824 count += scnprintf(buf + count, len - count, "%d mA ", 825 constraints->min_uA / 1000); 826 else 827 count += scnprintf(buf + count, len - count, 828 "%d <--> %d mA ", 829 constraints->min_uA / 1000, 830 constraints->max_uA / 1000); 831 } 832 833 if (!constraints->min_uA || 834 constraints->min_uA != constraints->max_uA) { 835 ret = _regulator_get_current_limit(rdev); 836 if (ret > 0) 837 count += scnprintf(buf + count, len - count, 838 "at %d mA ", ret / 1000); 839 } 840 841 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 842 count += scnprintf(buf + count, len - count, "fast "); 843 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 844 count += scnprintf(buf + count, len - count, "normal "); 845 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 846 count += scnprintf(buf + count, len - count, "idle "); 847 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 848 count += scnprintf(buf + count, len - count, "standby"); 849 850 if (!count) 851 scnprintf(buf, len, "no parameters"); 852 853 rdev_dbg(rdev, "%s\n", buf); 854 855 if ((constraints->min_uV != constraints->max_uV) && 856 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 857 rdev_warn(rdev, 858 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 859 } 860 861 static int machine_constraints_voltage(struct regulator_dev *rdev, 862 struct regulation_constraints *constraints) 863 { 864 const struct regulator_ops *ops = rdev->desc->ops; 865 int ret; 866 867 /* do we need to apply the constraint voltage */ 868 if (rdev->constraints->apply_uV && 869 rdev->constraints->min_uV == rdev->constraints->max_uV) { 870 int current_uV = _regulator_get_voltage(rdev); 871 if (current_uV < 0) { 872 rdev_err(rdev, 873 "failed to get the current voltage(%d)\n", 874 current_uV); 875 return current_uV; 876 } 877 if (current_uV < rdev->constraints->min_uV || 878 current_uV > rdev->constraints->max_uV) { 879 ret = _regulator_do_set_voltage( 880 rdev, rdev->constraints->min_uV, 881 rdev->constraints->max_uV); 882 if (ret < 0) { 883 rdev_err(rdev, 884 "failed to apply %duV constraint(%d)\n", 885 rdev->constraints->min_uV, ret); 886 return ret; 887 } 888 } 889 } 890 891 /* constrain machine-level voltage specs to fit 892 * the actual range supported by this regulator. 893 */ 894 if (ops->list_voltage && rdev->desc->n_voltages) { 895 int count = rdev->desc->n_voltages; 896 int i; 897 int min_uV = INT_MAX; 898 int max_uV = INT_MIN; 899 int cmin = constraints->min_uV; 900 int cmax = constraints->max_uV; 901 902 /* it's safe to autoconfigure fixed-voltage supplies 903 and the constraints are used by list_voltage. */ 904 if (count == 1 && !cmin) { 905 cmin = 1; 906 cmax = INT_MAX; 907 constraints->min_uV = cmin; 908 constraints->max_uV = cmax; 909 } 910 911 /* voltage constraints are optional */ 912 if ((cmin == 0) && (cmax == 0)) 913 return 0; 914 915 /* else require explicit machine-level constraints */ 916 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 917 rdev_err(rdev, "invalid voltage constraints\n"); 918 return -EINVAL; 919 } 920 921 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 922 for (i = 0; i < count; i++) { 923 int value; 924 925 value = ops->list_voltage(rdev, i); 926 if (value <= 0) 927 continue; 928 929 /* maybe adjust [min_uV..max_uV] */ 930 if (value >= cmin && value < min_uV) 931 min_uV = value; 932 if (value <= cmax && value > max_uV) 933 max_uV = value; 934 } 935 936 /* final: [min_uV..max_uV] valid iff constraints valid */ 937 if (max_uV < min_uV) { 938 rdev_err(rdev, 939 "unsupportable voltage constraints %u-%uuV\n", 940 min_uV, max_uV); 941 return -EINVAL; 942 } 943 944 /* use regulator's subset of machine constraints */ 945 if (constraints->min_uV < min_uV) { 946 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 947 constraints->min_uV, min_uV); 948 constraints->min_uV = min_uV; 949 } 950 if (constraints->max_uV > max_uV) { 951 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 952 constraints->max_uV, max_uV); 953 constraints->max_uV = max_uV; 954 } 955 } 956 957 return 0; 958 } 959 960 static int machine_constraints_current(struct regulator_dev *rdev, 961 struct regulation_constraints *constraints) 962 { 963 const struct regulator_ops *ops = rdev->desc->ops; 964 int ret; 965 966 if (!constraints->min_uA && !constraints->max_uA) 967 return 0; 968 969 if (constraints->min_uA > constraints->max_uA) { 970 rdev_err(rdev, "Invalid current constraints\n"); 971 return -EINVAL; 972 } 973 974 if (!ops->set_current_limit || !ops->get_current_limit) { 975 rdev_warn(rdev, "Operation of current configuration missing\n"); 976 return 0; 977 } 978 979 /* Set regulator current in constraints range */ 980 ret = ops->set_current_limit(rdev, constraints->min_uA, 981 constraints->max_uA); 982 if (ret < 0) { 983 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 984 return ret; 985 } 986 987 return 0; 988 } 989 990 static int _regulator_do_enable(struct regulator_dev *rdev); 991 992 /** 993 * set_machine_constraints - sets regulator constraints 994 * @rdev: regulator source 995 * @constraints: constraints to apply 996 * 997 * Allows platform initialisation code to define and constrain 998 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 999 * Constraints *must* be set by platform code in order for some 1000 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1001 * set_mode. 1002 */ 1003 static int set_machine_constraints(struct regulator_dev *rdev, 1004 const struct regulation_constraints *constraints) 1005 { 1006 int ret = 0; 1007 const struct regulator_ops *ops = rdev->desc->ops; 1008 1009 if (constraints) 1010 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1011 GFP_KERNEL); 1012 else 1013 rdev->constraints = kzalloc(sizeof(*constraints), 1014 GFP_KERNEL); 1015 if (!rdev->constraints) 1016 return -ENOMEM; 1017 1018 ret = machine_constraints_voltage(rdev, rdev->constraints); 1019 if (ret != 0) 1020 goto out; 1021 1022 ret = machine_constraints_current(rdev, rdev->constraints); 1023 if (ret != 0) 1024 goto out; 1025 1026 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1027 ret = ops->set_input_current_limit(rdev, 1028 rdev->constraints->ilim_uA); 1029 if (ret < 0) { 1030 rdev_err(rdev, "failed to set input limit\n"); 1031 goto out; 1032 } 1033 } 1034 1035 /* do we need to setup our suspend state */ 1036 if (rdev->constraints->initial_state) { 1037 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1038 if (ret < 0) { 1039 rdev_err(rdev, "failed to set suspend state\n"); 1040 goto out; 1041 } 1042 } 1043 1044 if (rdev->constraints->initial_mode) { 1045 if (!ops->set_mode) { 1046 rdev_err(rdev, "no set_mode operation\n"); 1047 ret = -EINVAL; 1048 goto out; 1049 } 1050 1051 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1052 if (ret < 0) { 1053 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1054 goto out; 1055 } 1056 } 1057 1058 /* If the constraints say the regulator should be on at this point 1059 * and we have control then make sure it is enabled. 1060 */ 1061 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1062 ret = _regulator_do_enable(rdev); 1063 if (ret < 0 && ret != -EINVAL) { 1064 rdev_err(rdev, "failed to enable\n"); 1065 goto out; 1066 } 1067 } 1068 1069 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1070 && ops->set_ramp_delay) { 1071 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set ramp_delay\n"); 1074 goto out; 1075 } 1076 } 1077 1078 if (rdev->constraints->pull_down && ops->set_pull_down) { 1079 ret = ops->set_pull_down(rdev); 1080 if (ret < 0) { 1081 rdev_err(rdev, "failed to set pull down\n"); 1082 goto out; 1083 } 1084 } 1085 1086 if (rdev->constraints->soft_start && ops->set_soft_start) { 1087 ret = ops->set_soft_start(rdev); 1088 if (ret < 0) { 1089 rdev_err(rdev, "failed to set soft start\n"); 1090 goto out; 1091 } 1092 } 1093 1094 if (rdev->constraints->over_current_protection 1095 && ops->set_over_current_protection) { 1096 ret = ops->set_over_current_protection(rdev); 1097 if (ret < 0) { 1098 rdev_err(rdev, "failed to set over current protection\n"); 1099 goto out; 1100 } 1101 } 1102 1103 print_constraints(rdev); 1104 return 0; 1105 out: 1106 kfree(rdev->constraints); 1107 rdev->constraints = NULL; 1108 return ret; 1109 } 1110 1111 /** 1112 * set_supply - set regulator supply regulator 1113 * @rdev: regulator name 1114 * @supply_rdev: supply regulator name 1115 * 1116 * Called by platform initialisation code to set the supply regulator for this 1117 * regulator. This ensures that a regulators supply will also be enabled by the 1118 * core if it's child is enabled. 1119 */ 1120 static int set_supply(struct regulator_dev *rdev, 1121 struct regulator_dev *supply_rdev) 1122 { 1123 int err; 1124 1125 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1126 1127 if (!try_module_get(supply_rdev->owner)) 1128 return -ENODEV; 1129 1130 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1131 if (rdev->supply == NULL) { 1132 err = -ENOMEM; 1133 return err; 1134 } 1135 supply_rdev->open_count++; 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1142 * @rdev: regulator source 1143 * @consumer_dev_name: dev_name() string for device supply applies to 1144 * @supply: symbolic name for supply 1145 * 1146 * Allows platform initialisation code to map physical regulator 1147 * sources to symbolic names for supplies for use by devices. Devices 1148 * should use these symbolic names to request regulators, avoiding the 1149 * need to provide board-specific regulator names as platform data. 1150 */ 1151 static int set_consumer_device_supply(struct regulator_dev *rdev, 1152 const char *consumer_dev_name, 1153 const char *supply) 1154 { 1155 struct regulator_map *node; 1156 int has_dev; 1157 1158 if (supply == NULL) 1159 return -EINVAL; 1160 1161 if (consumer_dev_name != NULL) 1162 has_dev = 1; 1163 else 1164 has_dev = 0; 1165 1166 list_for_each_entry(node, ®ulator_map_list, list) { 1167 if (node->dev_name && consumer_dev_name) { 1168 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1169 continue; 1170 } else if (node->dev_name || consumer_dev_name) { 1171 continue; 1172 } 1173 1174 if (strcmp(node->supply, supply) != 0) 1175 continue; 1176 1177 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1178 consumer_dev_name, 1179 dev_name(&node->regulator->dev), 1180 node->regulator->desc->name, 1181 supply, 1182 dev_name(&rdev->dev), rdev_get_name(rdev)); 1183 return -EBUSY; 1184 } 1185 1186 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1187 if (node == NULL) 1188 return -ENOMEM; 1189 1190 node->regulator = rdev; 1191 node->supply = supply; 1192 1193 if (has_dev) { 1194 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1195 if (node->dev_name == NULL) { 1196 kfree(node); 1197 return -ENOMEM; 1198 } 1199 } 1200 1201 list_add(&node->list, ®ulator_map_list); 1202 return 0; 1203 } 1204 1205 static void unset_regulator_supplies(struct regulator_dev *rdev) 1206 { 1207 struct regulator_map *node, *n; 1208 1209 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1210 if (rdev == node->regulator) { 1211 list_del(&node->list); 1212 kfree(node->dev_name); 1213 kfree(node); 1214 } 1215 } 1216 } 1217 1218 #define REG_STR_SIZE 64 1219 1220 static struct regulator *create_regulator(struct regulator_dev *rdev, 1221 struct device *dev, 1222 const char *supply_name) 1223 { 1224 struct regulator *regulator; 1225 char buf[REG_STR_SIZE]; 1226 int err, size; 1227 1228 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1229 if (regulator == NULL) 1230 return NULL; 1231 1232 mutex_lock(&rdev->mutex); 1233 regulator->rdev = rdev; 1234 list_add(®ulator->list, &rdev->consumer_list); 1235 1236 if (dev) { 1237 regulator->dev = dev; 1238 1239 /* Add a link to the device sysfs entry */ 1240 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1241 dev->kobj.name, supply_name); 1242 if (size >= REG_STR_SIZE) 1243 goto overflow_err; 1244 1245 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1246 if (regulator->supply_name == NULL) 1247 goto overflow_err; 1248 1249 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1250 buf); 1251 if (err) { 1252 rdev_dbg(rdev, "could not add device link %s err %d\n", 1253 dev->kobj.name, err); 1254 /* non-fatal */ 1255 } 1256 } else { 1257 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1258 if (regulator->supply_name == NULL) 1259 goto overflow_err; 1260 } 1261 1262 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1263 rdev->debugfs); 1264 if (!regulator->debugfs) { 1265 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1266 } else { 1267 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1268 ®ulator->uA_load); 1269 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1270 ®ulator->min_uV); 1271 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1272 ®ulator->max_uV); 1273 } 1274 1275 /* 1276 * Check now if the regulator is an always on regulator - if 1277 * it is then we don't need to do nearly so much work for 1278 * enable/disable calls. 1279 */ 1280 if (!_regulator_can_change_status(rdev) && 1281 _regulator_is_enabled(rdev)) 1282 regulator->always_on = true; 1283 1284 mutex_unlock(&rdev->mutex); 1285 return regulator; 1286 overflow_err: 1287 list_del(®ulator->list); 1288 kfree(regulator); 1289 mutex_unlock(&rdev->mutex); 1290 return NULL; 1291 } 1292 1293 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1294 { 1295 if (rdev->constraints && rdev->constraints->enable_time) 1296 return rdev->constraints->enable_time; 1297 if (!rdev->desc->ops->enable_time) 1298 return rdev->desc->enable_time; 1299 return rdev->desc->ops->enable_time(rdev); 1300 } 1301 1302 static struct regulator_supply_alias *regulator_find_supply_alias( 1303 struct device *dev, const char *supply) 1304 { 1305 struct regulator_supply_alias *map; 1306 1307 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1308 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1309 return map; 1310 1311 return NULL; 1312 } 1313 1314 static void regulator_supply_alias(struct device **dev, const char **supply) 1315 { 1316 struct regulator_supply_alias *map; 1317 1318 map = regulator_find_supply_alias(*dev, *supply); 1319 if (map) { 1320 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1321 *supply, map->alias_supply, 1322 dev_name(map->alias_dev)); 1323 *dev = map->alias_dev; 1324 *supply = map->alias_supply; 1325 } 1326 } 1327 1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1329 const char *supply, 1330 int *ret) 1331 { 1332 struct regulator_dev *r; 1333 struct device_node *node; 1334 struct regulator_map *map; 1335 const char *devname = NULL; 1336 1337 regulator_supply_alias(&dev, &supply); 1338 1339 /* first do a dt based lookup */ 1340 if (dev && dev->of_node) { 1341 node = of_get_regulator(dev, supply); 1342 if (node) { 1343 list_for_each_entry(r, ®ulator_list, list) 1344 if (r->dev.parent && 1345 node == r->dev.of_node) 1346 return r; 1347 *ret = -EPROBE_DEFER; 1348 return NULL; 1349 } else { 1350 /* 1351 * If we couldn't even get the node then it's 1352 * not just that the device didn't register 1353 * yet, there's no node and we'll never 1354 * succeed. 1355 */ 1356 *ret = -ENODEV; 1357 } 1358 } 1359 1360 /* if not found, try doing it non-dt way */ 1361 if (dev) 1362 devname = dev_name(dev); 1363 1364 list_for_each_entry(r, ®ulator_list, list) 1365 if (strcmp(rdev_get_name(r), supply) == 0) 1366 return r; 1367 1368 list_for_each_entry(map, ®ulator_map_list, list) { 1369 /* If the mapping has a device set up it must match */ 1370 if (map->dev_name && 1371 (!devname || strcmp(map->dev_name, devname))) 1372 continue; 1373 1374 if (strcmp(map->supply, supply) == 0) 1375 return map->regulator; 1376 } 1377 1378 1379 return NULL; 1380 } 1381 1382 static int regulator_resolve_supply(struct regulator_dev *rdev) 1383 { 1384 struct regulator_dev *r; 1385 struct device *dev = rdev->dev.parent; 1386 int ret; 1387 1388 /* No supply to resovle? */ 1389 if (!rdev->supply_name) 1390 return 0; 1391 1392 /* Supply already resolved? */ 1393 if (rdev->supply) 1394 return 0; 1395 1396 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1397 if (!r) { 1398 if (ret == -ENODEV) { 1399 /* 1400 * No supply was specified for this regulator and 1401 * there will never be one. 1402 */ 1403 return 0; 1404 } 1405 1406 if (have_full_constraints()) { 1407 r = dummy_regulator_rdev; 1408 } else { 1409 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1410 rdev->supply_name, rdev->desc->name); 1411 return -EPROBE_DEFER; 1412 } 1413 } 1414 1415 /* Recursively resolve the supply of the supply */ 1416 ret = regulator_resolve_supply(r); 1417 if (ret < 0) 1418 return ret; 1419 1420 ret = set_supply(rdev, r); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* Cascade always-on state to supply */ 1425 if (_regulator_is_enabled(rdev) && rdev->supply) { 1426 ret = regulator_enable(rdev->supply); 1427 if (ret < 0) { 1428 _regulator_put(rdev->supply); 1429 return ret; 1430 } 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* Internal regulator request function */ 1437 static struct regulator *_regulator_get(struct device *dev, const char *id, 1438 bool exclusive, bool allow_dummy) 1439 { 1440 struct regulator_dev *rdev; 1441 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1442 const char *devname = NULL; 1443 int ret; 1444 1445 if (id == NULL) { 1446 pr_err("get() with no identifier\n"); 1447 return ERR_PTR(-EINVAL); 1448 } 1449 1450 if (dev) 1451 devname = dev_name(dev); 1452 1453 if (have_full_constraints()) 1454 ret = -ENODEV; 1455 else 1456 ret = -EPROBE_DEFER; 1457 1458 mutex_lock(®ulator_list_mutex); 1459 1460 rdev = regulator_dev_lookup(dev, id, &ret); 1461 if (rdev) 1462 goto found; 1463 1464 regulator = ERR_PTR(ret); 1465 1466 /* 1467 * If we have return value from dev_lookup fail, we do not expect to 1468 * succeed, so, quit with appropriate error value 1469 */ 1470 if (ret && ret != -ENODEV) 1471 goto out; 1472 1473 if (!devname) 1474 devname = "deviceless"; 1475 1476 /* 1477 * Assume that a regulator is physically present and enabled 1478 * even if it isn't hooked up and just provide a dummy. 1479 */ 1480 if (have_full_constraints() && allow_dummy) { 1481 pr_warn("%s supply %s not found, using dummy regulator\n", 1482 devname, id); 1483 1484 rdev = dummy_regulator_rdev; 1485 goto found; 1486 /* Don't log an error when called from regulator_get_optional() */ 1487 } else if (!have_full_constraints() || exclusive) { 1488 dev_warn(dev, "dummy supplies not allowed\n"); 1489 } 1490 1491 mutex_unlock(®ulator_list_mutex); 1492 return regulator; 1493 1494 found: 1495 if (rdev->exclusive) { 1496 regulator = ERR_PTR(-EPERM); 1497 goto out; 1498 } 1499 1500 if (exclusive && rdev->open_count) { 1501 regulator = ERR_PTR(-EBUSY); 1502 goto out; 1503 } 1504 1505 ret = regulator_resolve_supply(rdev); 1506 if (ret < 0) { 1507 regulator = ERR_PTR(ret); 1508 goto out; 1509 } 1510 1511 if (!try_module_get(rdev->owner)) 1512 goto out; 1513 1514 regulator = create_regulator(rdev, dev, id); 1515 if (regulator == NULL) { 1516 regulator = ERR_PTR(-ENOMEM); 1517 module_put(rdev->owner); 1518 goto out; 1519 } 1520 1521 rdev->open_count++; 1522 if (exclusive) { 1523 rdev->exclusive = 1; 1524 1525 ret = _regulator_is_enabled(rdev); 1526 if (ret > 0) 1527 rdev->use_count = 1; 1528 else 1529 rdev->use_count = 0; 1530 } 1531 1532 out: 1533 mutex_unlock(®ulator_list_mutex); 1534 1535 return regulator; 1536 } 1537 1538 /** 1539 * regulator_get - lookup and obtain a reference to a regulator. 1540 * @dev: device for regulator "consumer" 1541 * @id: Supply name or regulator ID. 1542 * 1543 * Returns a struct regulator corresponding to the regulator producer, 1544 * or IS_ERR() condition containing errno. 1545 * 1546 * Use of supply names configured via regulator_set_device_supply() is 1547 * strongly encouraged. It is recommended that the supply name used 1548 * should match the name used for the supply and/or the relevant 1549 * device pins in the datasheet. 1550 */ 1551 struct regulator *regulator_get(struct device *dev, const char *id) 1552 { 1553 return _regulator_get(dev, id, false, true); 1554 } 1555 EXPORT_SYMBOL_GPL(regulator_get); 1556 1557 /** 1558 * regulator_get_exclusive - obtain exclusive access to a regulator. 1559 * @dev: device for regulator "consumer" 1560 * @id: Supply name or regulator ID. 1561 * 1562 * Returns a struct regulator corresponding to the regulator producer, 1563 * or IS_ERR() condition containing errno. Other consumers will be 1564 * unable to obtain this regulator while this reference is held and the 1565 * use count for the regulator will be initialised to reflect the current 1566 * state of the regulator. 1567 * 1568 * This is intended for use by consumers which cannot tolerate shared 1569 * use of the regulator such as those which need to force the 1570 * regulator off for correct operation of the hardware they are 1571 * controlling. 1572 * 1573 * Use of supply names configured via regulator_set_device_supply() is 1574 * strongly encouraged. It is recommended that the supply name used 1575 * should match the name used for the supply and/or the relevant 1576 * device pins in the datasheet. 1577 */ 1578 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1579 { 1580 return _regulator_get(dev, id, true, false); 1581 } 1582 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1583 1584 /** 1585 * regulator_get_optional - obtain optional access to a regulator. 1586 * @dev: device for regulator "consumer" 1587 * @id: Supply name or regulator ID. 1588 * 1589 * Returns a struct regulator corresponding to the regulator producer, 1590 * or IS_ERR() condition containing errno. 1591 * 1592 * This is intended for use by consumers for devices which can have 1593 * some supplies unconnected in normal use, such as some MMC devices. 1594 * It can allow the regulator core to provide stub supplies for other 1595 * supplies requested using normal regulator_get() calls without 1596 * disrupting the operation of drivers that can handle absent 1597 * supplies. 1598 * 1599 * Use of supply names configured via regulator_set_device_supply() is 1600 * strongly encouraged. It is recommended that the supply name used 1601 * should match the name used for the supply and/or the relevant 1602 * device pins in the datasheet. 1603 */ 1604 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1605 { 1606 return _regulator_get(dev, id, false, false); 1607 } 1608 EXPORT_SYMBOL_GPL(regulator_get_optional); 1609 1610 /* regulator_list_mutex lock held by regulator_put() */ 1611 static void _regulator_put(struct regulator *regulator) 1612 { 1613 struct regulator_dev *rdev; 1614 1615 if (IS_ERR_OR_NULL(regulator)) 1616 return; 1617 1618 lockdep_assert_held_once(®ulator_list_mutex); 1619 1620 rdev = regulator->rdev; 1621 1622 debugfs_remove_recursive(regulator->debugfs); 1623 1624 /* remove any sysfs entries */ 1625 if (regulator->dev) 1626 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1627 mutex_lock(&rdev->mutex); 1628 list_del(®ulator->list); 1629 1630 rdev->open_count--; 1631 rdev->exclusive = 0; 1632 mutex_unlock(&rdev->mutex); 1633 1634 kfree(regulator->supply_name); 1635 kfree(regulator); 1636 1637 module_put(rdev->owner); 1638 } 1639 1640 /** 1641 * regulator_put - "free" the regulator source 1642 * @regulator: regulator source 1643 * 1644 * Note: drivers must ensure that all regulator_enable calls made on this 1645 * regulator source are balanced by regulator_disable calls prior to calling 1646 * this function. 1647 */ 1648 void regulator_put(struct regulator *regulator) 1649 { 1650 mutex_lock(®ulator_list_mutex); 1651 _regulator_put(regulator); 1652 mutex_unlock(®ulator_list_mutex); 1653 } 1654 EXPORT_SYMBOL_GPL(regulator_put); 1655 1656 /** 1657 * regulator_register_supply_alias - Provide device alias for supply lookup 1658 * 1659 * @dev: device that will be given as the regulator "consumer" 1660 * @id: Supply name or regulator ID 1661 * @alias_dev: device that should be used to lookup the supply 1662 * @alias_id: Supply name or regulator ID that should be used to lookup the 1663 * supply 1664 * 1665 * All lookups for id on dev will instead be conducted for alias_id on 1666 * alias_dev. 1667 */ 1668 int regulator_register_supply_alias(struct device *dev, const char *id, 1669 struct device *alias_dev, 1670 const char *alias_id) 1671 { 1672 struct regulator_supply_alias *map; 1673 1674 map = regulator_find_supply_alias(dev, id); 1675 if (map) 1676 return -EEXIST; 1677 1678 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1679 if (!map) 1680 return -ENOMEM; 1681 1682 map->src_dev = dev; 1683 map->src_supply = id; 1684 map->alias_dev = alias_dev; 1685 map->alias_supply = alias_id; 1686 1687 list_add(&map->list, ®ulator_supply_alias_list); 1688 1689 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1690 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1691 1692 return 0; 1693 } 1694 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1695 1696 /** 1697 * regulator_unregister_supply_alias - Remove device alias 1698 * 1699 * @dev: device that will be given as the regulator "consumer" 1700 * @id: Supply name or regulator ID 1701 * 1702 * Remove a lookup alias if one exists for id on dev. 1703 */ 1704 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1705 { 1706 struct regulator_supply_alias *map; 1707 1708 map = regulator_find_supply_alias(dev, id); 1709 if (map) { 1710 list_del(&map->list); 1711 kfree(map); 1712 } 1713 } 1714 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1715 1716 /** 1717 * regulator_bulk_register_supply_alias - register multiple aliases 1718 * 1719 * @dev: device that will be given as the regulator "consumer" 1720 * @id: List of supply names or regulator IDs 1721 * @alias_dev: device that should be used to lookup the supply 1722 * @alias_id: List of supply names or regulator IDs that should be used to 1723 * lookup the supply 1724 * @num_id: Number of aliases to register 1725 * 1726 * @return 0 on success, an errno on failure. 1727 * 1728 * This helper function allows drivers to register several supply 1729 * aliases in one operation. If any of the aliases cannot be 1730 * registered any aliases that were registered will be removed 1731 * before returning to the caller. 1732 */ 1733 int regulator_bulk_register_supply_alias(struct device *dev, 1734 const char *const *id, 1735 struct device *alias_dev, 1736 const char *const *alias_id, 1737 int num_id) 1738 { 1739 int i; 1740 int ret; 1741 1742 for (i = 0; i < num_id; ++i) { 1743 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1744 alias_id[i]); 1745 if (ret < 0) 1746 goto err; 1747 } 1748 1749 return 0; 1750 1751 err: 1752 dev_err(dev, 1753 "Failed to create supply alias %s,%s -> %s,%s\n", 1754 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1755 1756 while (--i >= 0) 1757 regulator_unregister_supply_alias(dev, id[i]); 1758 1759 return ret; 1760 } 1761 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1762 1763 /** 1764 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1765 * 1766 * @dev: device that will be given as the regulator "consumer" 1767 * @id: List of supply names or regulator IDs 1768 * @num_id: Number of aliases to unregister 1769 * 1770 * This helper function allows drivers to unregister several supply 1771 * aliases in one operation. 1772 */ 1773 void regulator_bulk_unregister_supply_alias(struct device *dev, 1774 const char *const *id, 1775 int num_id) 1776 { 1777 int i; 1778 1779 for (i = 0; i < num_id; ++i) 1780 regulator_unregister_supply_alias(dev, id[i]); 1781 } 1782 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1783 1784 1785 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1786 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1787 const struct regulator_config *config) 1788 { 1789 struct regulator_enable_gpio *pin; 1790 struct gpio_desc *gpiod; 1791 int ret; 1792 1793 gpiod = gpio_to_desc(config->ena_gpio); 1794 1795 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1796 if (pin->gpiod == gpiod) { 1797 rdev_dbg(rdev, "GPIO %d is already used\n", 1798 config->ena_gpio); 1799 goto update_ena_gpio_to_rdev; 1800 } 1801 } 1802 1803 ret = gpio_request_one(config->ena_gpio, 1804 GPIOF_DIR_OUT | config->ena_gpio_flags, 1805 rdev_get_name(rdev)); 1806 if (ret) 1807 return ret; 1808 1809 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1810 if (pin == NULL) { 1811 gpio_free(config->ena_gpio); 1812 return -ENOMEM; 1813 } 1814 1815 pin->gpiod = gpiod; 1816 pin->ena_gpio_invert = config->ena_gpio_invert; 1817 list_add(&pin->list, ®ulator_ena_gpio_list); 1818 1819 update_ena_gpio_to_rdev: 1820 pin->request_count++; 1821 rdev->ena_pin = pin; 1822 return 0; 1823 } 1824 1825 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1826 { 1827 struct regulator_enable_gpio *pin, *n; 1828 1829 if (!rdev->ena_pin) 1830 return; 1831 1832 /* Free the GPIO only in case of no use */ 1833 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1834 if (pin->gpiod == rdev->ena_pin->gpiod) { 1835 if (pin->request_count <= 1) { 1836 pin->request_count = 0; 1837 gpiod_put(pin->gpiod); 1838 list_del(&pin->list); 1839 kfree(pin); 1840 rdev->ena_pin = NULL; 1841 return; 1842 } else { 1843 pin->request_count--; 1844 } 1845 } 1846 } 1847 } 1848 1849 /** 1850 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1851 * @rdev: regulator_dev structure 1852 * @enable: enable GPIO at initial use? 1853 * 1854 * GPIO is enabled in case of initial use. (enable_count is 0) 1855 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1856 */ 1857 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1858 { 1859 struct regulator_enable_gpio *pin = rdev->ena_pin; 1860 1861 if (!pin) 1862 return -EINVAL; 1863 1864 if (enable) { 1865 /* Enable GPIO at initial use */ 1866 if (pin->enable_count == 0) 1867 gpiod_set_value_cansleep(pin->gpiod, 1868 !pin->ena_gpio_invert); 1869 1870 pin->enable_count++; 1871 } else { 1872 if (pin->enable_count > 1) { 1873 pin->enable_count--; 1874 return 0; 1875 } 1876 1877 /* Disable GPIO if not used */ 1878 if (pin->enable_count <= 1) { 1879 gpiod_set_value_cansleep(pin->gpiod, 1880 pin->ena_gpio_invert); 1881 pin->enable_count = 0; 1882 } 1883 } 1884 1885 return 0; 1886 } 1887 1888 /** 1889 * _regulator_enable_delay - a delay helper function 1890 * @delay: time to delay in microseconds 1891 * 1892 * Delay for the requested amount of time as per the guidelines in: 1893 * 1894 * Documentation/timers/timers-howto.txt 1895 * 1896 * The assumption here is that regulators will never be enabled in 1897 * atomic context and therefore sleeping functions can be used. 1898 */ 1899 static void _regulator_enable_delay(unsigned int delay) 1900 { 1901 unsigned int ms = delay / 1000; 1902 unsigned int us = delay % 1000; 1903 1904 if (ms > 0) { 1905 /* 1906 * For small enough values, handle super-millisecond 1907 * delays in the usleep_range() call below. 1908 */ 1909 if (ms < 20) 1910 us += ms * 1000; 1911 else 1912 msleep(ms); 1913 } 1914 1915 /* 1916 * Give the scheduler some room to coalesce with any other 1917 * wakeup sources. For delays shorter than 10 us, don't even 1918 * bother setting up high-resolution timers and just busy- 1919 * loop. 1920 */ 1921 if (us >= 10) 1922 usleep_range(us, us + 100); 1923 else 1924 udelay(us); 1925 } 1926 1927 static int _regulator_do_enable(struct regulator_dev *rdev) 1928 { 1929 int ret, delay; 1930 1931 /* Query before enabling in case configuration dependent. */ 1932 ret = _regulator_get_enable_time(rdev); 1933 if (ret >= 0) { 1934 delay = ret; 1935 } else { 1936 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1937 delay = 0; 1938 } 1939 1940 trace_regulator_enable(rdev_get_name(rdev)); 1941 1942 if (rdev->desc->off_on_delay) { 1943 /* if needed, keep a distance of off_on_delay from last time 1944 * this regulator was disabled. 1945 */ 1946 unsigned long start_jiffy = jiffies; 1947 unsigned long intended, max_delay, remaining; 1948 1949 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1950 intended = rdev->last_off_jiffy + max_delay; 1951 1952 if (time_before(start_jiffy, intended)) { 1953 /* calc remaining jiffies to deal with one-time 1954 * timer wrapping. 1955 * in case of multiple timer wrapping, either it can be 1956 * detected by out-of-range remaining, or it cannot be 1957 * detected and we gets a panelty of 1958 * _regulator_enable_delay(). 1959 */ 1960 remaining = intended - start_jiffy; 1961 if (remaining <= max_delay) 1962 _regulator_enable_delay( 1963 jiffies_to_usecs(remaining)); 1964 } 1965 } 1966 1967 if (rdev->ena_pin) { 1968 if (!rdev->ena_gpio_state) { 1969 ret = regulator_ena_gpio_ctrl(rdev, true); 1970 if (ret < 0) 1971 return ret; 1972 rdev->ena_gpio_state = 1; 1973 } 1974 } else if (rdev->desc->ops->enable) { 1975 ret = rdev->desc->ops->enable(rdev); 1976 if (ret < 0) 1977 return ret; 1978 } else { 1979 return -EINVAL; 1980 } 1981 1982 /* Allow the regulator to ramp; it would be useful to extend 1983 * this for bulk operations so that the regulators can ramp 1984 * together. */ 1985 trace_regulator_enable_delay(rdev_get_name(rdev)); 1986 1987 _regulator_enable_delay(delay); 1988 1989 trace_regulator_enable_complete(rdev_get_name(rdev)); 1990 1991 return 0; 1992 } 1993 1994 /* locks held by regulator_enable() */ 1995 static int _regulator_enable(struct regulator_dev *rdev) 1996 { 1997 int ret; 1998 1999 lockdep_assert_held_once(&rdev->mutex); 2000 2001 /* check voltage and requested load before enabling */ 2002 if (rdev->constraints && 2003 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 2004 drms_uA_update(rdev); 2005 2006 if (rdev->use_count == 0) { 2007 /* The regulator may on if it's not switchable or left on */ 2008 ret = _regulator_is_enabled(rdev); 2009 if (ret == -EINVAL || ret == 0) { 2010 if (!_regulator_can_change_status(rdev)) 2011 return -EPERM; 2012 2013 ret = _regulator_do_enable(rdev); 2014 if (ret < 0) 2015 return ret; 2016 2017 } else if (ret < 0) { 2018 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2019 return ret; 2020 } 2021 /* Fallthrough on positive return values - already enabled */ 2022 } 2023 2024 rdev->use_count++; 2025 2026 return 0; 2027 } 2028 2029 /** 2030 * regulator_enable - enable regulator output 2031 * @regulator: regulator source 2032 * 2033 * Request that the regulator be enabled with the regulator output at 2034 * the predefined voltage or current value. Calls to regulator_enable() 2035 * must be balanced with calls to regulator_disable(). 2036 * 2037 * NOTE: the output value can be set by other drivers, boot loader or may be 2038 * hardwired in the regulator. 2039 */ 2040 int regulator_enable(struct regulator *regulator) 2041 { 2042 struct regulator_dev *rdev = regulator->rdev; 2043 int ret = 0; 2044 2045 if (regulator->always_on) 2046 return 0; 2047 2048 if (rdev->supply) { 2049 ret = regulator_enable(rdev->supply); 2050 if (ret != 0) 2051 return ret; 2052 } 2053 2054 mutex_lock(&rdev->mutex); 2055 ret = _regulator_enable(rdev); 2056 mutex_unlock(&rdev->mutex); 2057 2058 if (ret != 0 && rdev->supply) 2059 regulator_disable(rdev->supply); 2060 2061 return ret; 2062 } 2063 EXPORT_SYMBOL_GPL(regulator_enable); 2064 2065 static int _regulator_do_disable(struct regulator_dev *rdev) 2066 { 2067 int ret; 2068 2069 trace_regulator_disable(rdev_get_name(rdev)); 2070 2071 if (rdev->ena_pin) { 2072 if (rdev->ena_gpio_state) { 2073 ret = regulator_ena_gpio_ctrl(rdev, false); 2074 if (ret < 0) 2075 return ret; 2076 rdev->ena_gpio_state = 0; 2077 } 2078 2079 } else if (rdev->desc->ops->disable) { 2080 ret = rdev->desc->ops->disable(rdev); 2081 if (ret != 0) 2082 return ret; 2083 } 2084 2085 /* cares about last_off_jiffy only if off_on_delay is required by 2086 * device. 2087 */ 2088 if (rdev->desc->off_on_delay) 2089 rdev->last_off_jiffy = jiffies; 2090 2091 trace_regulator_disable_complete(rdev_get_name(rdev)); 2092 2093 return 0; 2094 } 2095 2096 /* locks held by regulator_disable() */ 2097 static int _regulator_disable(struct regulator_dev *rdev) 2098 { 2099 int ret = 0; 2100 2101 lockdep_assert_held_once(&rdev->mutex); 2102 2103 if (WARN(rdev->use_count <= 0, 2104 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2105 return -EIO; 2106 2107 /* are we the last user and permitted to disable ? */ 2108 if (rdev->use_count == 1 && 2109 (rdev->constraints && !rdev->constraints->always_on)) { 2110 2111 /* we are last user */ 2112 if (_regulator_can_change_status(rdev)) { 2113 ret = _notifier_call_chain(rdev, 2114 REGULATOR_EVENT_PRE_DISABLE, 2115 NULL); 2116 if (ret & NOTIFY_STOP_MASK) 2117 return -EINVAL; 2118 2119 ret = _regulator_do_disable(rdev); 2120 if (ret < 0) { 2121 rdev_err(rdev, "failed to disable\n"); 2122 _notifier_call_chain(rdev, 2123 REGULATOR_EVENT_ABORT_DISABLE, 2124 NULL); 2125 return ret; 2126 } 2127 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2128 NULL); 2129 } 2130 2131 rdev->use_count = 0; 2132 } else if (rdev->use_count > 1) { 2133 2134 if (rdev->constraints && 2135 (rdev->constraints->valid_ops_mask & 2136 REGULATOR_CHANGE_DRMS)) 2137 drms_uA_update(rdev); 2138 2139 rdev->use_count--; 2140 } 2141 2142 return ret; 2143 } 2144 2145 /** 2146 * regulator_disable - disable regulator output 2147 * @regulator: regulator source 2148 * 2149 * Disable the regulator output voltage or current. Calls to 2150 * regulator_enable() must be balanced with calls to 2151 * regulator_disable(). 2152 * 2153 * NOTE: this will only disable the regulator output if no other consumer 2154 * devices have it enabled, the regulator device supports disabling and 2155 * machine constraints permit this operation. 2156 */ 2157 int regulator_disable(struct regulator *regulator) 2158 { 2159 struct regulator_dev *rdev = regulator->rdev; 2160 int ret = 0; 2161 2162 if (regulator->always_on) 2163 return 0; 2164 2165 mutex_lock(&rdev->mutex); 2166 ret = _regulator_disable(rdev); 2167 mutex_unlock(&rdev->mutex); 2168 2169 if (ret == 0 && rdev->supply) 2170 regulator_disable(rdev->supply); 2171 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(regulator_disable); 2175 2176 /* locks held by regulator_force_disable() */ 2177 static int _regulator_force_disable(struct regulator_dev *rdev) 2178 { 2179 int ret = 0; 2180 2181 lockdep_assert_held_once(&rdev->mutex); 2182 2183 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2184 REGULATOR_EVENT_PRE_DISABLE, NULL); 2185 if (ret & NOTIFY_STOP_MASK) 2186 return -EINVAL; 2187 2188 ret = _regulator_do_disable(rdev); 2189 if (ret < 0) { 2190 rdev_err(rdev, "failed to force disable\n"); 2191 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2192 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2193 return ret; 2194 } 2195 2196 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2197 REGULATOR_EVENT_DISABLE, NULL); 2198 2199 return 0; 2200 } 2201 2202 /** 2203 * regulator_force_disable - force disable regulator output 2204 * @regulator: regulator source 2205 * 2206 * Forcibly disable the regulator output voltage or current. 2207 * NOTE: this *will* disable the regulator output even if other consumer 2208 * devices have it enabled. This should be used for situations when device 2209 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2210 */ 2211 int regulator_force_disable(struct regulator *regulator) 2212 { 2213 struct regulator_dev *rdev = regulator->rdev; 2214 int ret; 2215 2216 mutex_lock(&rdev->mutex); 2217 regulator->uA_load = 0; 2218 ret = _regulator_force_disable(regulator->rdev); 2219 mutex_unlock(&rdev->mutex); 2220 2221 if (rdev->supply) 2222 while (rdev->open_count--) 2223 regulator_disable(rdev->supply); 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL_GPL(regulator_force_disable); 2228 2229 static void regulator_disable_work(struct work_struct *work) 2230 { 2231 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2232 disable_work.work); 2233 int count, i, ret; 2234 2235 mutex_lock(&rdev->mutex); 2236 2237 BUG_ON(!rdev->deferred_disables); 2238 2239 count = rdev->deferred_disables; 2240 rdev->deferred_disables = 0; 2241 2242 for (i = 0; i < count; i++) { 2243 ret = _regulator_disable(rdev); 2244 if (ret != 0) 2245 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2246 } 2247 2248 mutex_unlock(&rdev->mutex); 2249 2250 if (rdev->supply) { 2251 for (i = 0; i < count; i++) { 2252 ret = regulator_disable(rdev->supply); 2253 if (ret != 0) { 2254 rdev_err(rdev, 2255 "Supply disable failed: %d\n", ret); 2256 } 2257 } 2258 } 2259 } 2260 2261 /** 2262 * regulator_disable_deferred - disable regulator output with delay 2263 * @regulator: regulator source 2264 * @ms: miliseconds until the regulator is disabled 2265 * 2266 * Execute regulator_disable() on the regulator after a delay. This 2267 * is intended for use with devices that require some time to quiesce. 2268 * 2269 * NOTE: this will only disable the regulator output if no other consumer 2270 * devices have it enabled, the regulator device supports disabling and 2271 * machine constraints permit this operation. 2272 */ 2273 int regulator_disable_deferred(struct regulator *regulator, int ms) 2274 { 2275 struct regulator_dev *rdev = regulator->rdev; 2276 int ret; 2277 2278 if (regulator->always_on) 2279 return 0; 2280 2281 if (!ms) 2282 return regulator_disable(regulator); 2283 2284 mutex_lock(&rdev->mutex); 2285 rdev->deferred_disables++; 2286 mutex_unlock(&rdev->mutex); 2287 2288 ret = queue_delayed_work(system_power_efficient_wq, 2289 &rdev->disable_work, 2290 msecs_to_jiffies(ms)); 2291 if (ret < 0) 2292 return ret; 2293 else 2294 return 0; 2295 } 2296 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2297 2298 static int _regulator_is_enabled(struct regulator_dev *rdev) 2299 { 2300 /* A GPIO control always takes precedence */ 2301 if (rdev->ena_pin) 2302 return rdev->ena_gpio_state; 2303 2304 /* If we don't know then assume that the regulator is always on */ 2305 if (!rdev->desc->ops->is_enabled) 2306 return 1; 2307 2308 return rdev->desc->ops->is_enabled(rdev); 2309 } 2310 2311 /** 2312 * regulator_is_enabled - is the regulator output enabled 2313 * @regulator: regulator source 2314 * 2315 * Returns positive if the regulator driver backing the source/client 2316 * has requested that the device be enabled, zero if it hasn't, else a 2317 * negative errno code. 2318 * 2319 * Note that the device backing this regulator handle can have multiple 2320 * users, so it might be enabled even if regulator_enable() was never 2321 * called for this particular source. 2322 */ 2323 int regulator_is_enabled(struct regulator *regulator) 2324 { 2325 int ret; 2326 2327 if (regulator->always_on) 2328 return 1; 2329 2330 mutex_lock(®ulator->rdev->mutex); 2331 ret = _regulator_is_enabled(regulator->rdev); 2332 mutex_unlock(®ulator->rdev->mutex); 2333 2334 return ret; 2335 } 2336 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2337 2338 /** 2339 * regulator_can_change_voltage - check if regulator can change voltage 2340 * @regulator: regulator source 2341 * 2342 * Returns positive if the regulator driver backing the source/client 2343 * can change its voltage, false otherwise. Useful for detecting fixed 2344 * or dummy regulators and disabling voltage change logic in the client 2345 * driver. 2346 */ 2347 int regulator_can_change_voltage(struct regulator *regulator) 2348 { 2349 struct regulator_dev *rdev = regulator->rdev; 2350 2351 if (rdev->constraints && 2352 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2353 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2354 return 1; 2355 2356 if (rdev->desc->continuous_voltage_range && 2357 rdev->constraints->min_uV && rdev->constraints->max_uV && 2358 rdev->constraints->min_uV != rdev->constraints->max_uV) 2359 return 1; 2360 } 2361 2362 return 0; 2363 } 2364 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2365 2366 /** 2367 * regulator_count_voltages - count regulator_list_voltage() selectors 2368 * @regulator: regulator source 2369 * 2370 * Returns number of selectors, or negative errno. Selectors are 2371 * numbered starting at zero, and typically correspond to bitfields 2372 * in hardware registers. 2373 */ 2374 int regulator_count_voltages(struct regulator *regulator) 2375 { 2376 struct regulator_dev *rdev = regulator->rdev; 2377 2378 if (rdev->desc->n_voltages) 2379 return rdev->desc->n_voltages; 2380 2381 if (!rdev->supply) 2382 return -EINVAL; 2383 2384 return regulator_count_voltages(rdev->supply); 2385 } 2386 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2387 2388 /** 2389 * regulator_list_voltage - enumerate supported voltages 2390 * @regulator: regulator source 2391 * @selector: identify voltage to list 2392 * Context: can sleep 2393 * 2394 * Returns a voltage that can be passed to @regulator_set_voltage(), 2395 * zero if this selector code can't be used on this system, or a 2396 * negative errno. 2397 */ 2398 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2399 { 2400 struct regulator_dev *rdev = regulator->rdev; 2401 const struct regulator_ops *ops = rdev->desc->ops; 2402 int ret; 2403 2404 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2405 return rdev->desc->fixed_uV; 2406 2407 if (ops->list_voltage) { 2408 if (selector >= rdev->desc->n_voltages) 2409 return -EINVAL; 2410 mutex_lock(&rdev->mutex); 2411 ret = ops->list_voltage(rdev, selector); 2412 mutex_unlock(&rdev->mutex); 2413 } else if (rdev->supply) { 2414 ret = regulator_list_voltage(rdev->supply, selector); 2415 } else { 2416 return -EINVAL; 2417 } 2418 2419 if (ret > 0) { 2420 if (ret < rdev->constraints->min_uV) 2421 ret = 0; 2422 else if (ret > rdev->constraints->max_uV) 2423 ret = 0; 2424 } 2425 2426 return ret; 2427 } 2428 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2429 2430 /** 2431 * regulator_get_regmap - get the regulator's register map 2432 * @regulator: regulator source 2433 * 2434 * Returns the register map for the given regulator, or an ERR_PTR value 2435 * if the regulator doesn't use regmap. 2436 */ 2437 struct regmap *regulator_get_regmap(struct regulator *regulator) 2438 { 2439 struct regmap *map = regulator->rdev->regmap; 2440 2441 return map ? map : ERR_PTR(-EOPNOTSUPP); 2442 } 2443 2444 /** 2445 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2446 * @regulator: regulator source 2447 * @vsel_reg: voltage selector register, output parameter 2448 * @vsel_mask: mask for voltage selector bitfield, output parameter 2449 * 2450 * Returns the hardware register offset and bitmask used for setting the 2451 * regulator voltage. This might be useful when configuring voltage-scaling 2452 * hardware or firmware that can make I2C requests behind the kernel's back, 2453 * for example. 2454 * 2455 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2456 * and 0 is returned, otherwise a negative errno is returned. 2457 */ 2458 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2459 unsigned *vsel_reg, 2460 unsigned *vsel_mask) 2461 { 2462 struct regulator_dev *rdev = regulator->rdev; 2463 const struct regulator_ops *ops = rdev->desc->ops; 2464 2465 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2466 return -EOPNOTSUPP; 2467 2468 *vsel_reg = rdev->desc->vsel_reg; 2469 *vsel_mask = rdev->desc->vsel_mask; 2470 2471 return 0; 2472 } 2473 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2474 2475 /** 2476 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2477 * @regulator: regulator source 2478 * @selector: identify voltage to list 2479 * 2480 * Converts the selector to a hardware-specific voltage selector that can be 2481 * directly written to the regulator registers. The address of the voltage 2482 * register can be determined by calling @regulator_get_hardware_vsel_register. 2483 * 2484 * On error a negative errno is returned. 2485 */ 2486 int regulator_list_hardware_vsel(struct regulator *regulator, 2487 unsigned selector) 2488 { 2489 struct regulator_dev *rdev = regulator->rdev; 2490 const struct regulator_ops *ops = rdev->desc->ops; 2491 2492 if (selector >= rdev->desc->n_voltages) 2493 return -EINVAL; 2494 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2495 return -EOPNOTSUPP; 2496 2497 return selector; 2498 } 2499 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2500 2501 /** 2502 * regulator_get_linear_step - return the voltage step size between VSEL values 2503 * @regulator: regulator source 2504 * 2505 * Returns the voltage step size between VSEL values for linear 2506 * regulators, or return 0 if the regulator isn't a linear regulator. 2507 */ 2508 unsigned int regulator_get_linear_step(struct regulator *regulator) 2509 { 2510 struct regulator_dev *rdev = regulator->rdev; 2511 2512 return rdev->desc->uV_step; 2513 } 2514 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2515 2516 /** 2517 * regulator_is_supported_voltage - check if a voltage range can be supported 2518 * 2519 * @regulator: Regulator to check. 2520 * @min_uV: Minimum required voltage in uV. 2521 * @max_uV: Maximum required voltage in uV. 2522 * 2523 * Returns a boolean or a negative error code. 2524 */ 2525 int regulator_is_supported_voltage(struct regulator *regulator, 2526 int min_uV, int max_uV) 2527 { 2528 struct regulator_dev *rdev = regulator->rdev; 2529 int i, voltages, ret; 2530 2531 /* If we can't change voltage check the current voltage */ 2532 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2533 ret = regulator_get_voltage(regulator); 2534 if (ret >= 0) 2535 return min_uV <= ret && ret <= max_uV; 2536 else 2537 return ret; 2538 } 2539 2540 /* Any voltage within constrains range is fine? */ 2541 if (rdev->desc->continuous_voltage_range) 2542 return min_uV >= rdev->constraints->min_uV && 2543 max_uV <= rdev->constraints->max_uV; 2544 2545 ret = regulator_count_voltages(regulator); 2546 if (ret < 0) 2547 return ret; 2548 voltages = ret; 2549 2550 for (i = 0; i < voltages; i++) { 2551 ret = regulator_list_voltage(regulator, i); 2552 2553 if (ret >= min_uV && ret <= max_uV) 2554 return 1; 2555 } 2556 2557 return 0; 2558 } 2559 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2560 2561 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2562 int min_uV, int max_uV, 2563 unsigned *selector) 2564 { 2565 struct pre_voltage_change_data data; 2566 int ret; 2567 2568 data.old_uV = _regulator_get_voltage(rdev); 2569 data.min_uV = min_uV; 2570 data.max_uV = max_uV; 2571 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2572 &data); 2573 if (ret & NOTIFY_STOP_MASK) 2574 return -EINVAL; 2575 2576 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2577 if (ret >= 0) 2578 return ret; 2579 2580 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2581 (void *)data.old_uV); 2582 2583 return ret; 2584 } 2585 2586 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2587 int uV, unsigned selector) 2588 { 2589 struct pre_voltage_change_data data; 2590 int ret; 2591 2592 data.old_uV = _regulator_get_voltage(rdev); 2593 data.min_uV = uV; 2594 data.max_uV = uV; 2595 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2596 &data); 2597 if (ret & NOTIFY_STOP_MASK) 2598 return -EINVAL; 2599 2600 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2601 if (ret >= 0) 2602 return ret; 2603 2604 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2605 (void *)data.old_uV); 2606 2607 return ret; 2608 } 2609 2610 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2611 int min_uV, int max_uV) 2612 { 2613 int ret; 2614 int delay = 0; 2615 int best_val = 0; 2616 unsigned int selector; 2617 int old_selector = -1; 2618 2619 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2620 2621 min_uV += rdev->constraints->uV_offset; 2622 max_uV += rdev->constraints->uV_offset; 2623 2624 /* 2625 * If we can't obtain the old selector there is not enough 2626 * info to call set_voltage_time_sel(). 2627 */ 2628 if (_regulator_is_enabled(rdev) && 2629 rdev->desc->ops->set_voltage_time_sel && 2630 rdev->desc->ops->get_voltage_sel) { 2631 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2632 if (old_selector < 0) 2633 return old_selector; 2634 } 2635 2636 if (rdev->desc->ops->set_voltage) { 2637 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2638 &selector); 2639 2640 if (ret >= 0) { 2641 if (rdev->desc->ops->list_voltage) 2642 best_val = rdev->desc->ops->list_voltage(rdev, 2643 selector); 2644 else 2645 best_val = _regulator_get_voltage(rdev); 2646 } 2647 2648 } else if (rdev->desc->ops->set_voltage_sel) { 2649 if (rdev->desc->ops->map_voltage) { 2650 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2651 max_uV); 2652 } else { 2653 if (rdev->desc->ops->list_voltage == 2654 regulator_list_voltage_linear) 2655 ret = regulator_map_voltage_linear(rdev, 2656 min_uV, max_uV); 2657 else if (rdev->desc->ops->list_voltage == 2658 regulator_list_voltage_linear_range) 2659 ret = regulator_map_voltage_linear_range(rdev, 2660 min_uV, max_uV); 2661 else 2662 ret = regulator_map_voltage_iterate(rdev, 2663 min_uV, max_uV); 2664 } 2665 2666 if (ret >= 0) { 2667 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2668 if (min_uV <= best_val && max_uV >= best_val) { 2669 selector = ret; 2670 if (old_selector == selector) 2671 ret = 0; 2672 else 2673 ret = _regulator_call_set_voltage_sel( 2674 rdev, best_val, selector); 2675 } else { 2676 ret = -EINVAL; 2677 } 2678 } 2679 } else { 2680 ret = -EINVAL; 2681 } 2682 2683 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2684 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2685 && old_selector != selector) { 2686 2687 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2688 old_selector, selector); 2689 if (delay < 0) { 2690 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2691 delay); 2692 delay = 0; 2693 } 2694 2695 /* Insert any necessary delays */ 2696 if (delay >= 1000) { 2697 mdelay(delay / 1000); 2698 udelay(delay % 1000); 2699 } else if (delay) { 2700 udelay(delay); 2701 } 2702 } 2703 2704 if (ret == 0 && best_val >= 0) { 2705 unsigned long data = best_val; 2706 2707 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2708 (void *)data); 2709 } 2710 2711 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2712 2713 return ret; 2714 } 2715 2716 /** 2717 * regulator_set_voltage - set regulator output voltage 2718 * @regulator: regulator source 2719 * @min_uV: Minimum required voltage in uV 2720 * @max_uV: Maximum acceptable voltage in uV 2721 * 2722 * Sets a voltage regulator to the desired output voltage. This can be set 2723 * during any regulator state. IOW, regulator can be disabled or enabled. 2724 * 2725 * If the regulator is enabled then the voltage will change to the new value 2726 * immediately otherwise if the regulator is disabled the regulator will 2727 * output at the new voltage when enabled. 2728 * 2729 * NOTE: If the regulator is shared between several devices then the lowest 2730 * request voltage that meets the system constraints will be used. 2731 * Regulator system constraints must be set for this regulator before 2732 * calling this function otherwise this call will fail. 2733 */ 2734 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2735 { 2736 struct regulator_dev *rdev = regulator->rdev; 2737 int ret = 0; 2738 int old_min_uV, old_max_uV; 2739 int current_uV; 2740 2741 mutex_lock(&rdev->mutex); 2742 2743 /* If we're setting the same range as last time the change 2744 * should be a noop (some cpufreq implementations use the same 2745 * voltage for multiple frequencies, for example). 2746 */ 2747 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2748 goto out; 2749 2750 /* If we're trying to set a range that overlaps the current voltage, 2751 * return successfully even though the regulator does not support 2752 * changing the voltage. 2753 */ 2754 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2755 current_uV = _regulator_get_voltage(rdev); 2756 if (min_uV <= current_uV && current_uV <= max_uV) { 2757 regulator->min_uV = min_uV; 2758 regulator->max_uV = max_uV; 2759 goto out; 2760 } 2761 } 2762 2763 /* sanity check */ 2764 if (!rdev->desc->ops->set_voltage && 2765 !rdev->desc->ops->set_voltage_sel) { 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 2770 /* constraints check */ 2771 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2772 if (ret < 0) 2773 goto out; 2774 2775 /* restore original values in case of error */ 2776 old_min_uV = regulator->min_uV; 2777 old_max_uV = regulator->max_uV; 2778 regulator->min_uV = min_uV; 2779 regulator->max_uV = max_uV; 2780 2781 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2782 if (ret < 0) 2783 goto out2; 2784 2785 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2786 if (ret < 0) 2787 goto out2; 2788 2789 out: 2790 mutex_unlock(&rdev->mutex); 2791 return ret; 2792 out2: 2793 regulator->min_uV = old_min_uV; 2794 regulator->max_uV = old_max_uV; 2795 mutex_unlock(&rdev->mutex); 2796 return ret; 2797 } 2798 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2799 2800 /** 2801 * regulator_set_voltage_time - get raise/fall time 2802 * @regulator: regulator source 2803 * @old_uV: starting voltage in microvolts 2804 * @new_uV: target voltage in microvolts 2805 * 2806 * Provided with the starting and ending voltage, this function attempts to 2807 * calculate the time in microseconds required to rise or fall to this new 2808 * voltage. 2809 */ 2810 int regulator_set_voltage_time(struct regulator *regulator, 2811 int old_uV, int new_uV) 2812 { 2813 struct regulator_dev *rdev = regulator->rdev; 2814 const struct regulator_ops *ops = rdev->desc->ops; 2815 int old_sel = -1; 2816 int new_sel = -1; 2817 int voltage; 2818 int i; 2819 2820 /* Currently requires operations to do this */ 2821 if (!ops->list_voltage || !ops->set_voltage_time_sel 2822 || !rdev->desc->n_voltages) 2823 return -EINVAL; 2824 2825 for (i = 0; i < rdev->desc->n_voltages; i++) { 2826 /* We only look for exact voltage matches here */ 2827 voltage = regulator_list_voltage(regulator, i); 2828 if (voltage < 0) 2829 return -EINVAL; 2830 if (voltage == 0) 2831 continue; 2832 if (voltage == old_uV) 2833 old_sel = i; 2834 if (voltage == new_uV) 2835 new_sel = i; 2836 } 2837 2838 if (old_sel < 0 || new_sel < 0) 2839 return -EINVAL; 2840 2841 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2842 } 2843 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2844 2845 /** 2846 * regulator_set_voltage_time_sel - get raise/fall time 2847 * @rdev: regulator source device 2848 * @old_selector: selector for starting voltage 2849 * @new_selector: selector for target voltage 2850 * 2851 * Provided with the starting and target voltage selectors, this function 2852 * returns time in microseconds required to rise or fall to this new voltage 2853 * 2854 * Drivers providing ramp_delay in regulation_constraints can use this as their 2855 * set_voltage_time_sel() operation. 2856 */ 2857 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2858 unsigned int old_selector, 2859 unsigned int new_selector) 2860 { 2861 unsigned int ramp_delay = 0; 2862 int old_volt, new_volt; 2863 2864 if (rdev->constraints->ramp_delay) 2865 ramp_delay = rdev->constraints->ramp_delay; 2866 else if (rdev->desc->ramp_delay) 2867 ramp_delay = rdev->desc->ramp_delay; 2868 2869 if (ramp_delay == 0) { 2870 rdev_warn(rdev, "ramp_delay not set\n"); 2871 return 0; 2872 } 2873 2874 /* sanity check */ 2875 if (!rdev->desc->ops->list_voltage) 2876 return -EINVAL; 2877 2878 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2879 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2880 2881 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2882 } 2883 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2884 2885 /** 2886 * regulator_sync_voltage - re-apply last regulator output voltage 2887 * @regulator: regulator source 2888 * 2889 * Re-apply the last configured voltage. This is intended to be used 2890 * where some external control source the consumer is cooperating with 2891 * has caused the configured voltage to change. 2892 */ 2893 int regulator_sync_voltage(struct regulator *regulator) 2894 { 2895 struct regulator_dev *rdev = regulator->rdev; 2896 int ret, min_uV, max_uV; 2897 2898 mutex_lock(&rdev->mutex); 2899 2900 if (!rdev->desc->ops->set_voltage && 2901 !rdev->desc->ops->set_voltage_sel) { 2902 ret = -EINVAL; 2903 goto out; 2904 } 2905 2906 /* This is only going to work if we've had a voltage configured. */ 2907 if (!regulator->min_uV && !regulator->max_uV) { 2908 ret = -EINVAL; 2909 goto out; 2910 } 2911 2912 min_uV = regulator->min_uV; 2913 max_uV = regulator->max_uV; 2914 2915 /* This should be a paranoia check... */ 2916 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2917 if (ret < 0) 2918 goto out; 2919 2920 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2921 if (ret < 0) 2922 goto out; 2923 2924 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2925 2926 out: 2927 mutex_unlock(&rdev->mutex); 2928 return ret; 2929 } 2930 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2931 2932 static int _regulator_get_voltage(struct regulator_dev *rdev) 2933 { 2934 int sel, ret; 2935 2936 if (rdev->desc->ops->get_voltage_sel) { 2937 sel = rdev->desc->ops->get_voltage_sel(rdev); 2938 if (sel < 0) 2939 return sel; 2940 ret = rdev->desc->ops->list_voltage(rdev, sel); 2941 } else if (rdev->desc->ops->get_voltage) { 2942 ret = rdev->desc->ops->get_voltage(rdev); 2943 } else if (rdev->desc->ops->list_voltage) { 2944 ret = rdev->desc->ops->list_voltage(rdev, 0); 2945 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2946 ret = rdev->desc->fixed_uV; 2947 } else if (rdev->supply) { 2948 ret = regulator_get_voltage(rdev->supply); 2949 } else { 2950 return -EINVAL; 2951 } 2952 2953 if (ret < 0) 2954 return ret; 2955 return ret - rdev->constraints->uV_offset; 2956 } 2957 2958 /** 2959 * regulator_get_voltage - get regulator output voltage 2960 * @regulator: regulator source 2961 * 2962 * This returns the current regulator voltage in uV. 2963 * 2964 * NOTE: If the regulator is disabled it will return the voltage value. This 2965 * function should not be used to determine regulator state. 2966 */ 2967 int regulator_get_voltage(struct regulator *regulator) 2968 { 2969 int ret; 2970 2971 mutex_lock(®ulator->rdev->mutex); 2972 2973 ret = _regulator_get_voltage(regulator->rdev); 2974 2975 mutex_unlock(®ulator->rdev->mutex); 2976 2977 return ret; 2978 } 2979 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2980 2981 /** 2982 * regulator_set_current_limit - set regulator output current limit 2983 * @regulator: regulator source 2984 * @min_uA: Minimum supported current in uA 2985 * @max_uA: Maximum supported current in uA 2986 * 2987 * Sets current sink to the desired output current. This can be set during 2988 * any regulator state. IOW, regulator can be disabled or enabled. 2989 * 2990 * If the regulator is enabled then the current will change to the new value 2991 * immediately otherwise if the regulator is disabled the regulator will 2992 * output at the new current when enabled. 2993 * 2994 * NOTE: Regulator system constraints must be set for this regulator before 2995 * calling this function otherwise this call will fail. 2996 */ 2997 int regulator_set_current_limit(struct regulator *regulator, 2998 int min_uA, int max_uA) 2999 { 3000 struct regulator_dev *rdev = regulator->rdev; 3001 int ret; 3002 3003 mutex_lock(&rdev->mutex); 3004 3005 /* sanity check */ 3006 if (!rdev->desc->ops->set_current_limit) { 3007 ret = -EINVAL; 3008 goto out; 3009 } 3010 3011 /* constraints check */ 3012 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3013 if (ret < 0) 3014 goto out; 3015 3016 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3017 out: 3018 mutex_unlock(&rdev->mutex); 3019 return ret; 3020 } 3021 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3022 3023 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3024 { 3025 int ret; 3026 3027 mutex_lock(&rdev->mutex); 3028 3029 /* sanity check */ 3030 if (!rdev->desc->ops->get_current_limit) { 3031 ret = -EINVAL; 3032 goto out; 3033 } 3034 3035 ret = rdev->desc->ops->get_current_limit(rdev); 3036 out: 3037 mutex_unlock(&rdev->mutex); 3038 return ret; 3039 } 3040 3041 /** 3042 * regulator_get_current_limit - get regulator output current 3043 * @regulator: regulator source 3044 * 3045 * This returns the current supplied by the specified current sink in uA. 3046 * 3047 * NOTE: If the regulator is disabled it will return the current value. This 3048 * function should not be used to determine regulator state. 3049 */ 3050 int regulator_get_current_limit(struct regulator *regulator) 3051 { 3052 return _regulator_get_current_limit(regulator->rdev); 3053 } 3054 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3055 3056 /** 3057 * regulator_set_mode - set regulator operating mode 3058 * @regulator: regulator source 3059 * @mode: operating mode - one of the REGULATOR_MODE constants 3060 * 3061 * Set regulator operating mode to increase regulator efficiency or improve 3062 * regulation performance. 3063 * 3064 * NOTE: Regulator system constraints must be set for this regulator before 3065 * calling this function otherwise this call will fail. 3066 */ 3067 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3068 { 3069 struct regulator_dev *rdev = regulator->rdev; 3070 int ret; 3071 int regulator_curr_mode; 3072 3073 mutex_lock(&rdev->mutex); 3074 3075 /* sanity check */ 3076 if (!rdev->desc->ops->set_mode) { 3077 ret = -EINVAL; 3078 goto out; 3079 } 3080 3081 /* return if the same mode is requested */ 3082 if (rdev->desc->ops->get_mode) { 3083 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3084 if (regulator_curr_mode == mode) { 3085 ret = 0; 3086 goto out; 3087 } 3088 } 3089 3090 /* constraints check */ 3091 ret = regulator_mode_constrain(rdev, &mode); 3092 if (ret < 0) 3093 goto out; 3094 3095 ret = rdev->desc->ops->set_mode(rdev, mode); 3096 out: 3097 mutex_unlock(&rdev->mutex); 3098 return ret; 3099 } 3100 EXPORT_SYMBOL_GPL(regulator_set_mode); 3101 3102 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3103 { 3104 int ret; 3105 3106 mutex_lock(&rdev->mutex); 3107 3108 /* sanity check */ 3109 if (!rdev->desc->ops->get_mode) { 3110 ret = -EINVAL; 3111 goto out; 3112 } 3113 3114 ret = rdev->desc->ops->get_mode(rdev); 3115 out: 3116 mutex_unlock(&rdev->mutex); 3117 return ret; 3118 } 3119 3120 /** 3121 * regulator_get_mode - get regulator operating mode 3122 * @regulator: regulator source 3123 * 3124 * Get the current regulator operating mode. 3125 */ 3126 unsigned int regulator_get_mode(struct regulator *regulator) 3127 { 3128 return _regulator_get_mode(regulator->rdev); 3129 } 3130 EXPORT_SYMBOL_GPL(regulator_get_mode); 3131 3132 /** 3133 * regulator_set_load - set regulator load 3134 * @regulator: regulator source 3135 * @uA_load: load current 3136 * 3137 * Notifies the regulator core of a new device load. This is then used by 3138 * DRMS (if enabled by constraints) to set the most efficient regulator 3139 * operating mode for the new regulator loading. 3140 * 3141 * Consumer devices notify their supply regulator of the maximum power 3142 * they will require (can be taken from device datasheet in the power 3143 * consumption tables) when they change operational status and hence power 3144 * state. Examples of operational state changes that can affect power 3145 * consumption are :- 3146 * 3147 * o Device is opened / closed. 3148 * o Device I/O is about to begin or has just finished. 3149 * o Device is idling in between work. 3150 * 3151 * This information is also exported via sysfs to userspace. 3152 * 3153 * DRMS will sum the total requested load on the regulator and change 3154 * to the most efficient operating mode if platform constraints allow. 3155 * 3156 * On error a negative errno is returned. 3157 */ 3158 int regulator_set_load(struct regulator *regulator, int uA_load) 3159 { 3160 struct regulator_dev *rdev = regulator->rdev; 3161 int ret; 3162 3163 mutex_lock(&rdev->mutex); 3164 regulator->uA_load = uA_load; 3165 ret = drms_uA_update(rdev); 3166 mutex_unlock(&rdev->mutex); 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(regulator_set_load); 3171 3172 /** 3173 * regulator_allow_bypass - allow the regulator to go into bypass mode 3174 * 3175 * @regulator: Regulator to configure 3176 * @enable: enable or disable bypass mode 3177 * 3178 * Allow the regulator to go into bypass mode if all other consumers 3179 * for the regulator also enable bypass mode and the machine 3180 * constraints allow this. Bypass mode means that the regulator is 3181 * simply passing the input directly to the output with no regulation. 3182 */ 3183 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3184 { 3185 struct regulator_dev *rdev = regulator->rdev; 3186 int ret = 0; 3187 3188 if (!rdev->desc->ops->set_bypass) 3189 return 0; 3190 3191 if (rdev->constraints && 3192 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3193 return 0; 3194 3195 mutex_lock(&rdev->mutex); 3196 3197 if (enable && !regulator->bypass) { 3198 rdev->bypass_count++; 3199 3200 if (rdev->bypass_count == rdev->open_count) { 3201 ret = rdev->desc->ops->set_bypass(rdev, enable); 3202 if (ret != 0) 3203 rdev->bypass_count--; 3204 } 3205 3206 } else if (!enable && regulator->bypass) { 3207 rdev->bypass_count--; 3208 3209 if (rdev->bypass_count != rdev->open_count) { 3210 ret = rdev->desc->ops->set_bypass(rdev, enable); 3211 if (ret != 0) 3212 rdev->bypass_count++; 3213 } 3214 } 3215 3216 if (ret == 0) 3217 regulator->bypass = enable; 3218 3219 mutex_unlock(&rdev->mutex); 3220 3221 return ret; 3222 } 3223 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3224 3225 /** 3226 * regulator_register_notifier - register regulator event notifier 3227 * @regulator: regulator source 3228 * @nb: notifier block 3229 * 3230 * Register notifier block to receive regulator events. 3231 */ 3232 int regulator_register_notifier(struct regulator *regulator, 3233 struct notifier_block *nb) 3234 { 3235 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3236 nb); 3237 } 3238 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3239 3240 /** 3241 * regulator_unregister_notifier - unregister regulator event notifier 3242 * @regulator: regulator source 3243 * @nb: notifier block 3244 * 3245 * Unregister regulator event notifier block. 3246 */ 3247 int regulator_unregister_notifier(struct regulator *regulator, 3248 struct notifier_block *nb) 3249 { 3250 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3251 nb); 3252 } 3253 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3254 3255 /* notify regulator consumers and downstream regulator consumers. 3256 * Note mutex must be held by caller. 3257 */ 3258 static int _notifier_call_chain(struct regulator_dev *rdev, 3259 unsigned long event, void *data) 3260 { 3261 /* call rdev chain first */ 3262 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3263 } 3264 3265 /** 3266 * regulator_bulk_get - get multiple regulator consumers 3267 * 3268 * @dev: Device to supply 3269 * @num_consumers: Number of consumers to register 3270 * @consumers: Configuration of consumers; clients are stored here. 3271 * 3272 * @return 0 on success, an errno on failure. 3273 * 3274 * This helper function allows drivers to get several regulator 3275 * consumers in one operation. If any of the regulators cannot be 3276 * acquired then any regulators that were allocated will be freed 3277 * before returning to the caller. 3278 */ 3279 int regulator_bulk_get(struct device *dev, int num_consumers, 3280 struct regulator_bulk_data *consumers) 3281 { 3282 int i; 3283 int ret; 3284 3285 for (i = 0; i < num_consumers; i++) 3286 consumers[i].consumer = NULL; 3287 3288 for (i = 0; i < num_consumers; i++) { 3289 consumers[i].consumer = regulator_get(dev, 3290 consumers[i].supply); 3291 if (IS_ERR(consumers[i].consumer)) { 3292 ret = PTR_ERR(consumers[i].consumer); 3293 dev_err(dev, "Failed to get supply '%s': %d\n", 3294 consumers[i].supply, ret); 3295 consumers[i].consumer = NULL; 3296 goto err; 3297 } 3298 } 3299 3300 return 0; 3301 3302 err: 3303 while (--i >= 0) 3304 regulator_put(consumers[i].consumer); 3305 3306 return ret; 3307 } 3308 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3309 3310 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3311 { 3312 struct regulator_bulk_data *bulk = data; 3313 3314 bulk->ret = regulator_enable(bulk->consumer); 3315 } 3316 3317 /** 3318 * regulator_bulk_enable - enable multiple regulator consumers 3319 * 3320 * @num_consumers: Number of consumers 3321 * @consumers: Consumer data; clients are stored here. 3322 * @return 0 on success, an errno on failure 3323 * 3324 * This convenience API allows consumers to enable multiple regulator 3325 * clients in a single API call. If any consumers cannot be enabled 3326 * then any others that were enabled will be disabled again prior to 3327 * return. 3328 */ 3329 int regulator_bulk_enable(int num_consumers, 3330 struct regulator_bulk_data *consumers) 3331 { 3332 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3333 int i; 3334 int ret = 0; 3335 3336 for (i = 0; i < num_consumers; i++) { 3337 if (consumers[i].consumer->always_on) 3338 consumers[i].ret = 0; 3339 else 3340 async_schedule_domain(regulator_bulk_enable_async, 3341 &consumers[i], &async_domain); 3342 } 3343 3344 async_synchronize_full_domain(&async_domain); 3345 3346 /* If any consumer failed we need to unwind any that succeeded */ 3347 for (i = 0; i < num_consumers; i++) { 3348 if (consumers[i].ret != 0) { 3349 ret = consumers[i].ret; 3350 goto err; 3351 } 3352 } 3353 3354 return 0; 3355 3356 err: 3357 for (i = 0; i < num_consumers; i++) { 3358 if (consumers[i].ret < 0) 3359 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3360 consumers[i].ret); 3361 else 3362 regulator_disable(consumers[i].consumer); 3363 } 3364 3365 return ret; 3366 } 3367 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3368 3369 /** 3370 * regulator_bulk_disable - disable multiple regulator consumers 3371 * 3372 * @num_consumers: Number of consumers 3373 * @consumers: Consumer data; clients are stored here. 3374 * @return 0 on success, an errno on failure 3375 * 3376 * This convenience API allows consumers to disable multiple regulator 3377 * clients in a single API call. If any consumers cannot be disabled 3378 * then any others that were disabled will be enabled again prior to 3379 * return. 3380 */ 3381 int regulator_bulk_disable(int num_consumers, 3382 struct regulator_bulk_data *consumers) 3383 { 3384 int i; 3385 int ret, r; 3386 3387 for (i = num_consumers - 1; i >= 0; --i) { 3388 ret = regulator_disable(consumers[i].consumer); 3389 if (ret != 0) 3390 goto err; 3391 } 3392 3393 return 0; 3394 3395 err: 3396 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3397 for (++i; i < num_consumers; ++i) { 3398 r = regulator_enable(consumers[i].consumer); 3399 if (r != 0) 3400 pr_err("Failed to reename %s: %d\n", 3401 consumers[i].supply, r); 3402 } 3403 3404 return ret; 3405 } 3406 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3407 3408 /** 3409 * regulator_bulk_force_disable - force disable multiple regulator consumers 3410 * 3411 * @num_consumers: Number of consumers 3412 * @consumers: Consumer data; clients are stored here. 3413 * @return 0 on success, an errno on failure 3414 * 3415 * This convenience API allows consumers to forcibly disable multiple regulator 3416 * clients in a single API call. 3417 * NOTE: This should be used for situations when device damage will 3418 * likely occur if the regulators are not disabled (e.g. over temp). 3419 * Although regulator_force_disable function call for some consumers can 3420 * return error numbers, the function is called for all consumers. 3421 */ 3422 int regulator_bulk_force_disable(int num_consumers, 3423 struct regulator_bulk_data *consumers) 3424 { 3425 int i; 3426 int ret; 3427 3428 for (i = 0; i < num_consumers; i++) 3429 consumers[i].ret = 3430 regulator_force_disable(consumers[i].consumer); 3431 3432 for (i = 0; i < num_consumers; i++) { 3433 if (consumers[i].ret != 0) { 3434 ret = consumers[i].ret; 3435 goto out; 3436 } 3437 } 3438 3439 return 0; 3440 out: 3441 return ret; 3442 } 3443 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3444 3445 /** 3446 * regulator_bulk_free - free multiple regulator consumers 3447 * 3448 * @num_consumers: Number of consumers 3449 * @consumers: Consumer data; clients are stored here. 3450 * 3451 * This convenience API allows consumers to free multiple regulator 3452 * clients in a single API call. 3453 */ 3454 void regulator_bulk_free(int num_consumers, 3455 struct regulator_bulk_data *consumers) 3456 { 3457 int i; 3458 3459 for (i = 0; i < num_consumers; i++) { 3460 regulator_put(consumers[i].consumer); 3461 consumers[i].consumer = NULL; 3462 } 3463 } 3464 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3465 3466 /** 3467 * regulator_notifier_call_chain - call regulator event notifier 3468 * @rdev: regulator source 3469 * @event: notifier block 3470 * @data: callback-specific data. 3471 * 3472 * Called by regulator drivers to notify clients a regulator event has 3473 * occurred. We also notify regulator clients downstream. 3474 * Note lock must be held by caller. 3475 */ 3476 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3477 unsigned long event, void *data) 3478 { 3479 lockdep_assert_held_once(&rdev->mutex); 3480 3481 _notifier_call_chain(rdev, event, data); 3482 return NOTIFY_DONE; 3483 3484 } 3485 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3486 3487 /** 3488 * regulator_mode_to_status - convert a regulator mode into a status 3489 * 3490 * @mode: Mode to convert 3491 * 3492 * Convert a regulator mode into a status. 3493 */ 3494 int regulator_mode_to_status(unsigned int mode) 3495 { 3496 switch (mode) { 3497 case REGULATOR_MODE_FAST: 3498 return REGULATOR_STATUS_FAST; 3499 case REGULATOR_MODE_NORMAL: 3500 return REGULATOR_STATUS_NORMAL; 3501 case REGULATOR_MODE_IDLE: 3502 return REGULATOR_STATUS_IDLE; 3503 case REGULATOR_MODE_STANDBY: 3504 return REGULATOR_STATUS_STANDBY; 3505 default: 3506 return REGULATOR_STATUS_UNDEFINED; 3507 } 3508 } 3509 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3510 3511 static struct attribute *regulator_dev_attrs[] = { 3512 &dev_attr_name.attr, 3513 &dev_attr_num_users.attr, 3514 &dev_attr_type.attr, 3515 &dev_attr_microvolts.attr, 3516 &dev_attr_microamps.attr, 3517 &dev_attr_opmode.attr, 3518 &dev_attr_state.attr, 3519 &dev_attr_status.attr, 3520 &dev_attr_bypass.attr, 3521 &dev_attr_requested_microamps.attr, 3522 &dev_attr_min_microvolts.attr, 3523 &dev_attr_max_microvolts.attr, 3524 &dev_attr_min_microamps.attr, 3525 &dev_attr_max_microamps.attr, 3526 &dev_attr_suspend_standby_state.attr, 3527 &dev_attr_suspend_mem_state.attr, 3528 &dev_attr_suspend_disk_state.attr, 3529 &dev_attr_suspend_standby_microvolts.attr, 3530 &dev_attr_suspend_mem_microvolts.attr, 3531 &dev_attr_suspend_disk_microvolts.attr, 3532 &dev_attr_suspend_standby_mode.attr, 3533 &dev_attr_suspend_mem_mode.attr, 3534 &dev_attr_suspend_disk_mode.attr, 3535 NULL 3536 }; 3537 3538 /* 3539 * To avoid cluttering sysfs (and memory) with useless state, only 3540 * create attributes that can be meaningfully displayed. 3541 */ 3542 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3543 struct attribute *attr, int idx) 3544 { 3545 struct device *dev = kobj_to_dev(kobj); 3546 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3547 const struct regulator_ops *ops = rdev->desc->ops; 3548 umode_t mode = attr->mode; 3549 3550 /* these three are always present */ 3551 if (attr == &dev_attr_name.attr || 3552 attr == &dev_attr_num_users.attr || 3553 attr == &dev_attr_type.attr) 3554 return mode; 3555 3556 /* some attributes need specific methods to be displayed */ 3557 if (attr == &dev_attr_microvolts.attr) { 3558 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3559 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3560 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3561 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3562 return mode; 3563 return 0; 3564 } 3565 3566 if (attr == &dev_attr_microamps.attr) 3567 return ops->get_current_limit ? mode : 0; 3568 3569 if (attr == &dev_attr_opmode.attr) 3570 return ops->get_mode ? mode : 0; 3571 3572 if (attr == &dev_attr_state.attr) 3573 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3574 3575 if (attr == &dev_attr_status.attr) 3576 return ops->get_status ? mode : 0; 3577 3578 if (attr == &dev_attr_bypass.attr) 3579 return ops->get_bypass ? mode : 0; 3580 3581 /* some attributes are type-specific */ 3582 if (attr == &dev_attr_requested_microamps.attr) 3583 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3584 3585 /* constraints need specific supporting methods */ 3586 if (attr == &dev_attr_min_microvolts.attr || 3587 attr == &dev_attr_max_microvolts.attr) 3588 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3589 3590 if (attr == &dev_attr_min_microamps.attr || 3591 attr == &dev_attr_max_microamps.attr) 3592 return ops->set_current_limit ? mode : 0; 3593 3594 if (attr == &dev_attr_suspend_standby_state.attr || 3595 attr == &dev_attr_suspend_mem_state.attr || 3596 attr == &dev_attr_suspend_disk_state.attr) 3597 return mode; 3598 3599 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3600 attr == &dev_attr_suspend_mem_microvolts.attr || 3601 attr == &dev_attr_suspend_disk_microvolts.attr) 3602 return ops->set_suspend_voltage ? mode : 0; 3603 3604 if (attr == &dev_attr_suspend_standby_mode.attr || 3605 attr == &dev_attr_suspend_mem_mode.attr || 3606 attr == &dev_attr_suspend_disk_mode.attr) 3607 return ops->set_suspend_mode ? mode : 0; 3608 3609 return mode; 3610 } 3611 3612 static const struct attribute_group regulator_dev_group = { 3613 .attrs = regulator_dev_attrs, 3614 .is_visible = regulator_attr_is_visible, 3615 }; 3616 3617 static const struct attribute_group *regulator_dev_groups[] = { 3618 ®ulator_dev_group, 3619 NULL 3620 }; 3621 3622 static void regulator_dev_release(struct device *dev) 3623 { 3624 struct regulator_dev *rdev = dev_get_drvdata(dev); 3625 3626 kfree(rdev->constraints); 3627 of_node_put(rdev->dev.of_node); 3628 kfree(rdev); 3629 } 3630 3631 static struct class regulator_class = { 3632 .name = "regulator", 3633 .dev_release = regulator_dev_release, 3634 .dev_groups = regulator_dev_groups, 3635 }; 3636 3637 static void rdev_init_debugfs(struct regulator_dev *rdev) 3638 { 3639 struct device *parent = rdev->dev.parent; 3640 const char *rname = rdev_get_name(rdev); 3641 char name[NAME_MAX]; 3642 3643 /* Avoid duplicate debugfs directory names */ 3644 if (parent && rname == rdev->desc->name) { 3645 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3646 rname); 3647 rname = name; 3648 } 3649 3650 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3651 if (!rdev->debugfs) { 3652 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3653 return; 3654 } 3655 3656 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3657 &rdev->use_count); 3658 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3659 &rdev->open_count); 3660 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3661 &rdev->bypass_count); 3662 } 3663 3664 /** 3665 * regulator_register - register regulator 3666 * @regulator_desc: regulator to register 3667 * @cfg: runtime configuration for regulator 3668 * 3669 * Called by regulator drivers to register a regulator. 3670 * Returns a valid pointer to struct regulator_dev on success 3671 * or an ERR_PTR() on error. 3672 */ 3673 struct regulator_dev * 3674 regulator_register(const struct regulator_desc *regulator_desc, 3675 const struct regulator_config *cfg) 3676 { 3677 const struct regulation_constraints *constraints = NULL; 3678 const struct regulator_init_data *init_data; 3679 struct regulator_config *config = NULL; 3680 static atomic_t regulator_no = ATOMIC_INIT(-1); 3681 struct regulator_dev *rdev; 3682 struct device *dev; 3683 int ret, i; 3684 3685 if (regulator_desc == NULL || cfg == NULL) 3686 return ERR_PTR(-EINVAL); 3687 3688 dev = cfg->dev; 3689 WARN_ON(!dev); 3690 3691 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3692 return ERR_PTR(-EINVAL); 3693 3694 if (regulator_desc->type != REGULATOR_VOLTAGE && 3695 regulator_desc->type != REGULATOR_CURRENT) 3696 return ERR_PTR(-EINVAL); 3697 3698 /* Only one of each should be implemented */ 3699 WARN_ON(regulator_desc->ops->get_voltage && 3700 regulator_desc->ops->get_voltage_sel); 3701 WARN_ON(regulator_desc->ops->set_voltage && 3702 regulator_desc->ops->set_voltage_sel); 3703 3704 /* If we're using selectors we must implement list_voltage. */ 3705 if (regulator_desc->ops->get_voltage_sel && 3706 !regulator_desc->ops->list_voltage) { 3707 return ERR_PTR(-EINVAL); 3708 } 3709 if (regulator_desc->ops->set_voltage_sel && 3710 !regulator_desc->ops->list_voltage) { 3711 return ERR_PTR(-EINVAL); 3712 } 3713 3714 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3715 if (rdev == NULL) 3716 return ERR_PTR(-ENOMEM); 3717 3718 /* 3719 * Duplicate the config so the driver could override it after 3720 * parsing init data. 3721 */ 3722 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3723 if (config == NULL) { 3724 kfree(rdev); 3725 return ERR_PTR(-ENOMEM); 3726 } 3727 3728 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3729 &rdev->dev.of_node); 3730 if (!init_data) { 3731 init_data = config->init_data; 3732 rdev->dev.of_node = of_node_get(config->of_node); 3733 } 3734 3735 mutex_lock(®ulator_list_mutex); 3736 3737 mutex_init(&rdev->mutex); 3738 rdev->reg_data = config->driver_data; 3739 rdev->owner = regulator_desc->owner; 3740 rdev->desc = regulator_desc; 3741 if (config->regmap) 3742 rdev->regmap = config->regmap; 3743 else if (dev_get_regmap(dev, NULL)) 3744 rdev->regmap = dev_get_regmap(dev, NULL); 3745 else if (dev->parent) 3746 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3747 INIT_LIST_HEAD(&rdev->consumer_list); 3748 INIT_LIST_HEAD(&rdev->list); 3749 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3750 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3751 3752 /* preform any regulator specific init */ 3753 if (init_data && init_data->regulator_init) { 3754 ret = init_data->regulator_init(rdev->reg_data); 3755 if (ret < 0) 3756 goto clean; 3757 } 3758 3759 /* register with sysfs */ 3760 rdev->dev.class = ®ulator_class; 3761 rdev->dev.parent = dev; 3762 dev_set_name(&rdev->dev, "regulator.%lu", 3763 (unsigned long) atomic_inc_return(®ulator_no)); 3764 ret = device_register(&rdev->dev); 3765 if (ret != 0) { 3766 put_device(&rdev->dev); 3767 goto clean; 3768 } 3769 3770 dev_set_drvdata(&rdev->dev, rdev); 3771 3772 if ((config->ena_gpio || config->ena_gpio_initialized) && 3773 gpio_is_valid(config->ena_gpio)) { 3774 ret = regulator_ena_gpio_request(rdev, config); 3775 if (ret != 0) { 3776 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3777 config->ena_gpio, ret); 3778 goto wash; 3779 } 3780 } 3781 3782 /* set regulator constraints */ 3783 if (init_data) 3784 constraints = &init_data->constraints; 3785 3786 ret = set_machine_constraints(rdev, constraints); 3787 if (ret < 0) 3788 goto scrub; 3789 3790 if (init_data && init_data->supply_regulator) 3791 rdev->supply_name = init_data->supply_regulator; 3792 else if (regulator_desc->supply_name) 3793 rdev->supply_name = regulator_desc->supply_name; 3794 3795 /* add consumers devices */ 3796 if (init_data) { 3797 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3798 ret = set_consumer_device_supply(rdev, 3799 init_data->consumer_supplies[i].dev_name, 3800 init_data->consumer_supplies[i].supply); 3801 if (ret < 0) { 3802 dev_err(dev, "Failed to set supply %s\n", 3803 init_data->consumer_supplies[i].supply); 3804 goto unset_supplies; 3805 } 3806 } 3807 } 3808 3809 list_add(&rdev->list, ®ulator_list); 3810 3811 rdev_init_debugfs(rdev); 3812 out: 3813 mutex_unlock(®ulator_list_mutex); 3814 kfree(config); 3815 return rdev; 3816 3817 unset_supplies: 3818 unset_regulator_supplies(rdev); 3819 3820 scrub: 3821 regulator_ena_gpio_free(rdev); 3822 kfree(rdev->constraints); 3823 wash: 3824 device_unregister(&rdev->dev); 3825 /* device core frees rdev */ 3826 rdev = ERR_PTR(ret); 3827 goto out; 3828 3829 clean: 3830 kfree(rdev); 3831 rdev = ERR_PTR(ret); 3832 goto out; 3833 } 3834 EXPORT_SYMBOL_GPL(regulator_register); 3835 3836 /** 3837 * regulator_unregister - unregister regulator 3838 * @rdev: regulator to unregister 3839 * 3840 * Called by regulator drivers to unregister a regulator. 3841 */ 3842 void regulator_unregister(struct regulator_dev *rdev) 3843 { 3844 if (rdev == NULL) 3845 return; 3846 3847 if (rdev->supply) { 3848 while (rdev->use_count--) 3849 regulator_disable(rdev->supply); 3850 regulator_put(rdev->supply); 3851 } 3852 mutex_lock(®ulator_list_mutex); 3853 debugfs_remove_recursive(rdev->debugfs); 3854 flush_work(&rdev->disable_work.work); 3855 WARN_ON(rdev->open_count); 3856 unset_regulator_supplies(rdev); 3857 list_del(&rdev->list); 3858 mutex_unlock(®ulator_list_mutex); 3859 regulator_ena_gpio_free(rdev); 3860 device_unregister(&rdev->dev); 3861 } 3862 EXPORT_SYMBOL_GPL(regulator_unregister); 3863 3864 /** 3865 * regulator_suspend_prepare - prepare regulators for system wide suspend 3866 * @state: system suspend state 3867 * 3868 * Configure each regulator with it's suspend operating parameters for state. 3869 * This will usually be called by machine suspend code prior to supending. 3870 */ 3871 int regulator_suspend_prepare(suspend_state_t state) 3872 { 3873 struct regulator_dev *rdev; 3874 int ret = 0; 3875 3876 /* ON is handled by regulator active state */ 3877 if (state == PM_SUSPEND_ON) 3878 return -EINVAL; 3879 3880 mutex_lock(®ulator_list_mutex); 3881 list_for_each_entry(rdev, ®ulator_list, list) { 3882 3883 mutex_lock(&rdev->mutex); 3884 ret = suspend_prepare(rdev, state); 3885 mutex_unlock(&rdev->mutex); 3886 3887 if (ret < 0) { 3888 rdev_err(rdev, "failed to prepare\n"); 3889 goto out; 3890 } 3891 } 3892 out: 3893 mutex_unlock(®ulator_list_mutex); 3894 return ret; 3895 } 3896 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3897 3898 /** 3899 * regulator_suspend_finish - resume regulators from system wide suspend 3900 * 3901 * Turn on regulators that might be turned off by regulator_suspend_prepare 3902 * and that should be turned on according to the regulators properties. 3903 */ 3904 int regulator_suspend_finish(void) 3905 { 3906 struct regulator_dev *rdev; 3907 int ret = 0, error; 3908 3909 mutex_lock(®ulator_list_mutex); 3910 list_for_each_entry(rdev, ®ulator_list, list) { 3911 mutex_lock(&rdev->mutex); 3912 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3913 if (!_regulator_is_enabled(rdev)) { 3914 error = _regulator_do_enable(rdev); 3915 if (error) 3916 ret = error; 3917 } 3918 } else { 3919 if (!have_full_constraints()) 3920 goto unlock; 3921 if (!_regulator_is_enabled(rdev)) 3922 goto unlock; 3923 3924 error = _regulator_do_disable(rdev); 3925 if (error) 3926 ret = error; 3927 } 3928 unlock: 3929 mutex_unlock(&rdev->mutex); 3930 } 3931 mutex_unlock(®ulator_list_mutex); 3932 return ret; 3933 } 3934 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3935 3936 /** 3937 * regulator_has_full_constraints - the system has fully specified constraints 3938 * 3939 * Calling this function will cause the regulator API to disable all 3940 * regulators which have a zero use count and don't have an always_on 3941 * constraint in a late_initcall. 3942 * 3943 * The intention is that this will become the default behaviour in a 3944 * future kernel release so users are encouraged to use this facility 3945 * now. 3946 */ 3947 void regulator_has_full_constraints(void) 3948 { 3949 has_full_constraints = 1; 3950 } 3951 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3952 3953 /** 3954 * rdev_get_drvdata - get rdev regulator driver data 3955 * @rdev: regulator 3956 * 3957 * Get rdev regulator driver private data. This call can be used in the 3958 * regulator driver context. 3959 */ 3960 void *rdev_get_drvdata(struct regulator_dev *rdev) 3961 { 3962 return rdev->reg_data; 3963 } 3964 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3965 3966 /** 3967 * regulator_get_drvdata - get regulator driver data 3968 * @regulator: regulator 3969 * 3970 * Get regulator driver private data. This call can be used in the consumer 3971 * driver context when non API regulator specific functions need to be called. 3972 */ 3973 void *regulator_get_drvdata(struct regulator *regulator) 3974 { 3975 return regulator->rdev->reg_data; 3976 } 3977 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3978 3979 /** 3980 * regulator_set_drvdata - set regulator driver data 3981 * @regulator: regulator 3982 * @data: data 3983 */ 3984 void regulator_set_drvdata(struct regulator *regulator, void *data) 3985 { 3986 regulator->rdev->reg_data = data; 3987 } 3988 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3989 3990 /** 3991 * regulator_get_id - get regulator ID 3992 * @rdev: regulator 3993 */ 3994 int rdev_get_id(struct regulator_dev *rdev) 3995 { 3996 return rdev->desc->id; 3997 } 3998 EXPORT_SYMBOL_GPL(rdev_get_id); 3999 4000 struct device *rdev_get_dev(struct regulator_dev *rdev) 4001 { 4002 return &rdev->dev; 4003 } 4004 EXPORT_SYMBOL_GPL(rdev_get_dev); 4005 4006 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4007 { 4008 return reg_init_data->driver_data; 4009 } 4010 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4011 4012 #ifdef CONFIG_DEBUG_FS 4013 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4014 size_t count, loff_t *ppos) 4015 { 4016 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4017 ssize_t len, ret = 0; 4018 struct regulator_map *map; 4019 4020 if (!buf) 4021 return -ENOMEM; 4022 4023 list_for_each_entry(map, ®ulator_map_list, list) { 4024 len = snprintf(buf + ret, PAGE_SIZE - ret, 4025 "%s -> %s.%s\n", 4026 rdev_get_name(map->regulator), map->dev_name, 4027 map->supply); 4028 if (len >= 0) 4029 ret += len; 4030 if (ret > PAGE_SIZE) { 4031 ret = PAGE_SIZE; 4032 break; 4033 } 4034 } 4035 4036 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4037 4038 kfree(buf); 4039 4040 return ret; 4041 } 4042 #endif 4043 4044 static const struct file_operations supply_map_fops = { 4045 #ifdef CONFIG_DEBUG_FS 4046 .read = supply_map_read_file, 4047 .llseek = default_llseek, 4048 #endif 4049 }; 4050 4051 #ifdef CONFIG_DEBUG_FS 4052 static void regulator_summary_show_subtree(struct seq_file *s, 4053 struct regulator_dev *rdev, 4054 int level) 4055 { 4056 struct list_head *list = s->private; 4057 struct regulator_dev *child; 4058 struct regulation_constraints *c; 4059 struct regulator *consumer; 4060 4061 if (!rdev) 4062 return; 4063 4064 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4065 level * 3 + 1, "", 4066 30 - level * 3, rdev_get_name(rdev), 4067 rdev->use_count, rdev->open_count, rdev->bypass_count); 4068 4069 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4070 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4071 4072 c = rdev->constraints; 4073 if (c) { 4074 switch (rdev->desc->type) { 4075 case REGULATOR_VOLTAGE: 4076 seq_printf(s, "%5dmV %5dmV ", 4077 c->min_uV / 1000, c->max_uV / 1000); 4078 break; 4079 case REGULATOR_CURRENT: 4080 seq_printf(s, "%5dmA %5dmA ", 4081 c->min_uA / 1000, c->max_uA / 1000); 4082 break; 4083 } 4084 } 4085 4086 seq_puts(s, "\n"); 4087 4088 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4089 if (consumer->dev->class == ®ulator_class) 4090 continue; 4091 4092 seq_printf(s, "%*s%-*s ", 4093 (level + 1) * 3 + 1, "", 4094 30 - (level + 1) * 3, dev_name(consumer->dev)); 4095 4096 switch (rdev->desc->type) { 4097 case REGULATOR_VOLTAGE: 4098 seq_printf(s, "%37dmV %5dmV", 4099 consumer->min_uV / 1000, 4100 consumer->max_uV / 1000); 4101 break; 4102 case REGULATOR_CURRENT: 4103 break; 4104 } 4105 4106 seq_puts(s, "\n"); 4107 } 4108 4109 list_for_each_entry(child, list, list) { 4110 /* handle only non-root regulators supplied by current rdev */ 4111 if (!child->supply || child->supply->rdev != rdev) 4112 continue; 4113 4114 regulator_summary_show_subtree(s, child, level + 1); 4115 } 4116 } 4117 4118 static int regulator_summary_show(struct seq_file *s, void *data) 4119 { 4120 struct list_head *list = s->private; 4121 struct regulator_dev *rdev; 4122 4123 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4124 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4125 4126 mutex_lock(®ulator_list_mutex); 4127 4128 list_for_each_entry(rdev, list, list) { 4129 if (rdev->supply) 4130 continue; 4131 4132 regulator_summary_show_subtree(s, rdev, 0); 4133 } 4134 4135 mutex_unlock(®ulator_list_mutex); 4136 4137 return 0; 4138 } 4139 4140 static int regulator_summary_open(struct inode *inode, struct file *file) 4141 { 4142 return single_open(file, regulator_summary_show, inode->i_private); 4143 } 4144 #endif 4145 4146 static const struct file_operations regulator_summary_fops = { 4147 #ifdef CONFIG_DEBUG_FS 4148 .open = regulator_summary_open, 4149 .read = seq_read, 4150 .llseek = seq_lseek, 4151 .release = single_release, 4152 #endif 4153 }; 4154 4155 static int __init regulator_init(void) 4156 { 4157 int ret; 4158 4159 ret = class_register(®ulator_class); 4160 4161 debugfs_root = debugfs_create_dir("regulator", NULL); 4162 if (!debugfs_root) 4163 pr_warn("regulator: Failed to create debugfs directory\n"); 4164 4165 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4166 &supply_map_fops); 4167 4168 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4169 ®ulator_list, ®ulator_summary_fops); 4170 4171 regulator_dummy_init(); 4172 4173 return ret; 4174 } 4175 4176 /* init early to allow our consumers to complete system booting */ 4177 core_initcall(regulator_init); 4178 4179 static int __init regulator_late_cleanup(struct device *dev, void *data) 4180 { 4181 struct regulator_dev *rdev = dev_to_rdev(dev); 4182 const struct regulator_ops *ops = rdev->desc->ops; 4183 struct regulation_constraints *c = rdev->constraints; 4184 int enabled, ret; 4185 4186 if (c && c->always_on) 4187 return 0; 4188 4189 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 4190 return 0; 4191 4192 mutex_lock(&rdev->mutex); 4193 4194 if (rdev->use_count) 4195 goto unlock; 4196 4197 /* If we can't read the status assume it's on. */ 4198 if (ops->is_enabled) 4199 enabled = ops->is_enabled(rdev); 4200 else 4201 enabled = 1; 4202 4203 if (!enabled) 4204 goto unlock; 4205 4206 if (have_full_constraints()) { 4207 /* We log since this may kill the system if it goes 4208 * wrong. */ 4209 rdev_info(rdev, "disabling\n"); 4210 ret = _regulator_do_disable(rdev); 4211 if (ret != 0) 4212 rdev_err(rdev, "couldn't disable: %d\n", ret); 4213 } else { 4214 /* The intention is that in future we will 4215 * assume that full constraints are provided 4216 * so warn even if we aren't going to do 4217 * anything here. 4218 */ 4219 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4220 } 4221 4222 unlock: 4223 mutex_unlock(&rdev->mutex); 4224 4225 return 0; 4226 } 4227 4228 static int __init regulator_init_complete(void) 4229 { 4230 /* 4231 * Since DT doesn't provide an idiomatic mechanism for 4232 * enabling full constraints and since it's much more natural 4233 * with DT to provide them just assume that a DT enabled 4234 * system has full constraints. 4235 */ 4236 if (of_have_populated_dt()) 4237 has_full_constraints = true; 4238 4239 /* If we have a full configuration then disable any regulators 4240 * we have permission to change the status for and which are 4241 * not in use or always_on. This is effectively the default 4242 * for DT and ACPI as they have full constraints. 4243 */ 4244 class_for_each_device(®ulator_class, NULL, NULL, 4245 regulator_late_cleanup); 4246 4247 return 0; 4248 } 4249 late_initcall_sync(regulator_init_complete); 4250