1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 struct gpio_desc *gpiod; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 static void _regulator_put(struct regulator *regulator); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 129 { 130 if (!rdev->constraints) { 131 rdev_err(rdev, "no constraints\n"); 132 return false; 133 } 134 135 if (rdev->constraints->valid_ops_mask & ops) 136 return true; 137 138 return false; 139 } 140 141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 142 { 143 if (rdev && rdev->supply) 144 return rdev->supply->rdev; 145 146 return NULL; 147 } 148 149 /** 150 * regulator_lock_nested - lock a single regulator 151 * @rdev: regulator source 152 * @subclass: mutex subclass used for lockdep 153 * 154 * This function can be called many times by one task on 155 * a single regulator and its mutex will be locked only 156 * once. If a task, which is calling this function is other 157 * than the one, which initially locked the mutex, it will 158 * wait on mutex. 159 */ 160 static void regulator_lock_nested(struct regulator_dev *rdev, 161 unsigned int subclass) 162 { 163 if (!mutex_trylock(&rdev->mutex)) { 164 if (rdev->mutex_owner == current) { 165 rdev->ref_cnt++; 166 return; 167 } 168 mutex_lock_nested(&rdev->mutex, subclass); 169 } 170 171 rdev->ref_cnt = 1; 172 rdev->mutex_owner = current; 173 } 174 175 static inline void regulator_lock(struct regulator_dev *rdev) 176 { 177 regulator_lock_nested(rdev, 0); 178 } 179 180 /** 181 * regulator_unlock - unlock a single regulator 182 * @rdev: regulator_source 183 * 184 * This function unlocks the mutex when the 185 * reference counter reaches 0. 186 */ 187 static void regulator_unlock(struct regulator_dev *rdev) 188 { 189 if (rdev->ref_cnt != 0) { 190 rdev->ref_cnt--; 191 192 if (!rdev->ref_cnt) { 193 rdev->mutex_owner = NULL; 194 mutex_unlock(&rdev->mutex); 195 } 196 } 197 } 198 199 /** 200 * regulator_lock_supply - lock a regulator and its supplies 201 * @rdev: regulator source 202 */ 203 static void regulator_lock_supply(struct regulator_dev *rdev) 204 { 205 int i; 206 207 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 208 regulator_lock_nested(rdev, i); 209 } 210 211 /** 212 * regulator_unlock_supply - unlock a regulator and its supplies 213 * @rdev: regulator source 214 */ 215 static void regulator_unlock_supply(struct regulator_dev *rdev) 216 { 217 struct regulator *supply; 218 219 while (1) { 220 regulator_unlock(rdev); 221 supply = rdev->supply; 222 223 if (!rdev->supply) 224 return; 225 226 rdev = supply->rdev; 227 } 228 } 229 230 /** 231 * of_get_regulator - get a regulator device node based on supply name 232 * @dev: Device pointer for the consumer (of regulator) device 233 * @supply: regulator supply name 234 * 235 * Extract the regulator device node corresponding to the supply name. 236 * returns the device node corresponding to the regulator if found, else 237 * returns NULL. 238 */ 239 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 240 { 241 struct device_node *regnode = NULL; 242 char prop_name[32]; /* 32 is max size of property name */ 243 244 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 245 246 snprintf(prop_name, 32, "%s-supply", supply); 247 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 248 249 if (!regnode) { 250 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 251 prop_name, dev->of_node); 252 return NULL; 253 } 254 return regnode; 255 } 256 257 /* Platform voltage constraint check */ 258 static int regulator_check_voltage(struct regulator_dev *rdev, 259 int *min_uV, int *max_uV) 260 { 261 BUG_ON(*min_uV > *max_uV); 262 263 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 264 rdev_err(rdev, "voltage operation not allowed\n"); 265 return -EPERM; 266 } 267 268 if (*max_uV > rdev->constraints->max_uV) 269 *max_uV = rdev->constraints->max_uV; 270 if (*min_uV < rdev->constraints->min_uV) 271 *min_uV = rdev->constraints->min_uV; 272 273 if (*min_uV > *max_uV) { 274 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 275 *min_uV, *max_uV); 276 return -EINVAL; 277 } 278 279 return 0; 280 } 281 282 /* return 0 if the state is valid */ 283 static int regulator_check_states(suspend_state_t state) 284 { 285 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 286 } 287 288 /* Make sure we select a voltage that suits the needs of all 289 * regulator consumers 290 */ 291 static int regulator_check_consumers(struct regulator_dev *rdev, 292 int *min_uV, int *max_uV, 293 suspend_state_t state) 294 { 295 struct regulator *regulator; 296 struct regulator_voltage *voltage; 297 298 list_for_each_entry(regulator, &rdev->consumer_list, list) { 299 voltage = ®ulator->voltage[state]; 300 /* 301 * Assume consumers that didn't say anything are OK 302 * with anything in the constraint range. 303 */ 304 if (!voltage->min_uV && !voltage->max_uV) 305 continue; 306 307 if (*max_uV > voltage->max_uV) 308 *max_uV = voltage->max_uV; 309 if (*min_uV < voltage->min_uV) 310 *min_uV = voltage->min_uV; 311 } 312 313 if (*min_uV > *max_uV) { 314 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 315 *min_uV, *max_uV); 316 return -EINVAL; 317 } 318 319 return 0; 320 } 321 322 /* current constraint check */ 323 static int regulator_check_current_limit(struct regulator_dev *rdev, 324 int *min_uA, int *max_uA) 325 { 326 BUG_ON(*min_uA > *max_uA); 327 328 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 329 rdev_err(rdev, "current operation not allowed\n"); 330 return -EPERM; 331 } 332 333 if (*max_uA > rdev->constraints->max_uA) 334 *max_uA = rdev->constraints->max_uA; 335 if (*min_uA < rdev->constraints->min_uA) 336 *min_uA = rdev->constraints->min_uA; 337 338 if (*min_uA > *max_uA) { 339 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 340 *min_uA, *max_uA); 341 return -EINVAL; 342 } 343 344 return 0; 345 } 346 347 /* operating mode constraint check */ 348 static int regulator_mode_constrain(struct regulator_dev *rdev, 349 unsigned int *mode) 350 { 351 switch (*mode) { 352 case REGULATOR_MODE_FAST: 353 case REGULATOR_MODE_NORMAL: 354 case REGULATOR_MODE_IDLE: 355 case REGULATOR_MODE_STANDBY: 356 break; 357 default: 358 rdev_err(rdev, "invalid mode %x specified\n", *mode); 359 return -EINVAL; 360 } 361 362 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 363 rdev_err(rdev, "mode operation not allowed\n"); 364 return -EPERM; 365 } 366 367 /* The modes are bitmasks, the most power hungry modes having 368 * the lowest values. If the requested mode isn't supported 369 * try higher modes. */ 370 while (*mode) { 371 if (rdev->constraints->valid_modes_mask & *mode) 372 return 0; 373 *mode /= 2; 374 } 375 376 return -EINVAL; 377 } 378 379 static inline struct regulator_state * 380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 381 { 382 if (rdev->constraints == NULL) 383 return NULL; 384 385 switch (state) { 386 case PM_SUSPEND_STANDBY: 387 return &rdev->constraints->state_standby; 388 case PM_SUSPEND_MEM: 389 return &rdev->constraints->state_mem; 390 case PM_SUSPEND_MAX: 391 return &rdev->constraints->state_disk; 392 default: 393 return NULL; 394 } 395 } 396 397 static ssize_t regulator_uV_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct regulator_dev *rdev = dev_get_drvdata(dev); 401 ssize_t ret; 402 403 regulator_lock(rdev); 404 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 405 regulator_unlock(rdev); 406 407 return ret; 408 } 409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 410 411 static ssize_t regulator_uA_show(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 struct regulator_dev *rdev = dev_get_drvdata(dev); 415 416 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 417 } 418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 419 420 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 421 char *buf) 422 { 423 struct regulator_dev *rdev = dev_get_drvdata(dev); 424 425 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 426 } 427 static DEVICE_ATTR_RO(name); 428 429 static ssize_t regulator_print_opmode(char *buf, int mode) 430 { 431 switch (mode) { 432 case REGULATOR_MODE_FAST: 433 return sprintf(buf, "fast\n"); 434 case REGULATOR_MODE_NORMAL: 435 return sprintf(buf, "normal\n"); 436 case REGULATOR_MODE_IDLE: 437 return sprintf(buf, "idle\n"); 438 case REGULATOR_MODE_STANDBY: 439 return sprintf(buf, "standby\n"); 440 } 441 return sprintf(buf, "unknown\n"); 442 } 443 444 static ssize_t regulator_opmode_show(struct device *dev, 445 struct device_attribute *attr, char *buf) 446 { 447 struct regulator_dev *rdev = dev_get_drvdata(dev); 448 449 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 450 } 451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 452 453 static ssize_t regulator_print_state(char *buf, int state) 454 { 455 if (state > 0) 456 return sprintf(buf, "enabled\n"); 457 else if (state == 0) 458 return sprintf(buf, "disabled\n"); 459 else 460 return sprintf(buf, "unknown\n"); 461 } 462 463 static ssize_t regulator_state_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct regulator_dev *rdev = dev_get_drvdata(dev); 467 ssize_t ret; 468 469 regulator_lock(rdev); 470 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 471 regulator_unlock(rdev); 472 473 return ret; 474 } 475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 476 477 static ssize_t regulator_status_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 int status; 482 char *label; 483 484 status = rdev->desc->ops->get_status(rdev); 485 if (status < 0) 486 return status; 487 488 switch (status) { 489 case REGULATOR_STATUS_OFF: 490 label = "off"; 491 break; 492 case REGULATOR_STATUS_ON: 493 label = "on"; 494 break; 495 case REGULATOR_STATUS_ERROR: 496 label = "error"; 497 break; 498 case REGULATOR_STATUS_FAST: 499 label = "fast"; 500 break; 501 case REGULATOR_STATUS_NORMAL: 502 label = "normal"; 503 break; 504 case REGULATOR_STATUS_IDLE: 505 label = "idle"; 506 break; 507 case REGULATOR_STATUS_STANDBY: 508 label = "standby"; 509 break; 510 case REGULATOR_STATUS_BYPASS: 511 label = "bypass"; 512 break; 513 case REGULATOR_STATUS_UNDEFINED: 514 label = "undefined"; 515 break; 516 default: 517 return -ERANGE; 518 } 519 520 return sprintf(buf, "%s\n", label); 521 } 522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 523 524 static ssize_t regulator_min_uA_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 struct regulator_dev *rdev = dev_get_drvdata(dev); 528 529 if (!rdev->constraints) 530 return sprintf(buf, "constraint not defined\n"); 531 532 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 533 } 534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 535 536 static ssize_t regulator_max_uA_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 if (!rdev->constraints) 542 return sprintf(buf, "constraint not defined\n"); 543 544 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 545 } 546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 547 548 static ssize_t regulator_min_uV_show(struct device *dev, 549 struct device_attribute *attr, char *buf) 550 { 551 struct regulator_dev *rdev = dev_get_drvdata(dev); 552 553 if (!rdev->constraints) 554 return sprintf(buf, "constraint not defined\n"); 555 556 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 557 } 558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 559 560 static ssize_t regulator_max_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 if (!rdev->constraints) 566 return sprintf(buf, "constraint not defined\n"); 567 568 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 569 } 570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 571 572 static ssize_t regulator_total_uA_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct regulator_dev *rdev = dev_get_drvdata(dev); 576 struct regulator *regulator; 577 int uA = 0; 578 579 regulator_lock(rdev); 580 list_for_each_entry(regulator, &rdev->consumer_list, list) 581 uA += regulator->uA_load; 582 regulator_unlock(rdev); 583 return sprintf(buf, "%d\n", uA); 584 } 585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 586 587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 588 char *buf) 589 { 590 struct regulator_dev *rdev = dev_get_drvdata(dev); 591 return sprintf(buf, "%d\n", rdev->use_count); 592 } 593 static DEVICE_ATTR_RO(num_users); 594 595 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 596 char *buf) 597 { 598 struct regulator_dev *rdev = dev_get_drvdata(dev); 599 600 switch (rdev->desc->type) { 601 case REGULATOR_VOLTAGE: 602 return sprintf(buf, "voltage\n"); 603 case REGULATOR_CURRENT: 604 return sprintf(buf, "current\n"); 605 } 606 return sprintf(buf, "unknown\n"); 607 } 608 static DEVICE_ATTR_RO(type); 609 610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 611 struct device_attribute *attr, char *buf) 612 { 613 struct regulator_dev *rdev = dev_get_drvdata(dev); 614 615 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 616 } 617 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 618 regulator_suspend_mem_uV_show, NULL); 619 620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 621 struct device_attribute *attr, char *buf) 622 { 623 struct regulator_dev *rdev = dev_get_drvdata(dev); 624 625 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 626 } 627 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 628 regulator_suspend_disk_uV_show, NULL); 629 630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 631 struct device_attribute *attr, char *buf) 632 { 633 struct regulator_dev *rdev = dev_get_drvdata(dev); 634 635 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 636 } 637 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 638 regulator_suspend_standby_uV_show, NULL); 639 640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct regulator_dev *rdev = dev_get_drvdata(dev); 644 645 return regulator_print_opmode(buf, 646 rdev->constraints->state_mem.mode); 647 } 648 static DEVICE_ATTR(suspend_mem_mode, 0444, 649 regulator_suspend_mem_mode_show, NULL); 650 651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 656 return regulator_print_opmode(buf, 657 rdev->constraints->state_disk.mode); 658 } 659 static DEVICE_ATTR(suspend_disk_mode, 0444, 660 regulator_suspend_disk_mode_show, NULL); 661 662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 663 struct device_attribute *attr, char *buf) 664 { 665 struct regulator_dev *rdev = dev_get_drvdata(dev); 666 667 return regulator_print_opmode(buf, 668 rdev->constraints->state_standby.mode); 669 } 670 static DEVICE_ATTR(suspend_standby_mode, 0444, 671 regulator_suspend_standby_mode_show, NULL); 672 673 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 674 struct device_attribute *attr, char *buf) 675 { 676 struct regulator_dev *rdev = dev_get_drvdata(dev); 677 678 return regulator_print_state(buf, 679 rdev->constraints->state_mem.enabled); 680 } 681 static DEVICE_ATTR(suspend_mem_state, 0444, 682 regulator_suspend_mem_state_show, NULL); 683 684 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 685 struct device_attribute *attr, char *buf) 686 { 687 struct regulator_dev *rdev = dev_get_drvdata(dev); 688 689 return regulator_print_state(buf, 690 rdev->constraints->state_disk.enabled); 691 } 692 static DEVICE_ATTR(suspend_disk_state, 0444, 693 regulator_suspend_disk_state_show, NULL); 694 695 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 696 struct device_attribute *attr, char *buf) 697 { 698 struct regulator_dev *rdev = dev_get_drvdata(dev); 699 700 return regulator_print_state(buf, 701 rdev->constraints->state_standby.enabled); 702 } 703 static DEVICE_ATTR(suspend_standby_state, 0444, 704 regulator_suspend_standby_state_show, NULL); 705 706 static ssize_t regulator_bypass_show(struct device *dev, 707 struct device_attribute *attr, char *buf) 708 { 709 struct regulator_dev *rdev = dev_get_drvdata(dev); 710 const char *report; 711 bool bypass; 712 int ret; 713 714 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 715 716 if (ret != 0) 717 report = "unknown"; 718 else if (bypass) 719 report = "enabled"; 720 else 721 report = "disabled"; 722 723 return sprintf(buf, "%s\n", report); 724 } 725 static DEVICE_ATTR(bypass, 0444, 726 regulator_bypass_show, NULL); 727 728 /* Calculate the new optimum regulator operating mode based on the new total 729 * consumer load. All locks held by caller */ 730 static int drms_uA_update(struct regulator_dev *rdev) 731 { 732 struct regulator *sibling; 733 int current_uA = 0, output_uV, input_uV, err; 734 unsigned int mode; 735 736 lockdep_assert_held_once(&rdev->mutex); 737 738 /* 739 * first check to see if we can set modes at all, otherwise just 740 * tell the consumer everything is OK. 741 */ 742 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 743 return 0; 744 745 if (!rdev->desc->ops->get_optimum_mode && 746 !rdev->desc->ops->set_load) 747 return 0; 748 749 if (!rdev->desc->ops->set_mode && 750 !rdev->desc->ops->set_load) 751 return -EINVAL; 752 753 /* calc total requested load */ 754 list_for_each_entry(sibling, &rdev->consumer_list, list) 755 current_uA += sibling->uA_load; 756 757 current_uA += rdev->constraints->system_load; 758 759 if (rdev->desc->ops->set_load) { 760 /* set the optimum mode for our new total regulator load */ 761 err = rdev->desc->ops->set_load(rdev, current_uA); 762 if (err < 0) 763 rdev_err(rdev, "failed to set load %d\n", current_uA); 764 } else { 765 /* get output voltage */ 766 output_uV = _regulator_get_voltage(rdev); 767 if (output_uV <= 0) { 768 rdev_err(rdev, "invalid output voltage found\n"); 769 return -EINVAL; 770 } 771 772 /* get input voltage */ 773 input_uV = 0; 774 if (rdev->supply) 775 input_uV = regulator_get_voltage(rdev->supply); 776 if (input_uV <= 0) 777 input_uV = rdev->constraints->input_uV; 778 if (input_uV <= 0) { 779 rdev_err(rdev, "invalid input voltage found\n"); 780 return -EINVAL; 781 } 782 783 /* now get the optimum mode for our new total regulator load */ 784 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 785 output_uV, current_uA); 786 787 /* check the new mode is allowed */ 788 err = regulator_mode_constrain(rdev, &mode); 789 if (err < 0) { 790 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 791 current_uA, input_uV, output_uV); 792 return err; 793 } 794 795 err = rdev->desc->ops->set_mode(rdev, mode); 796 if (err < 0) 797 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 798 } 799 800 return err; 801 } 802 803 static int suspend_set_state(struct regulator_dev *rdev, 804 suspend_state_t state) 805 { 806 int ret = 0; 807 struct regulator_state *rstate; 808 809 rstate = regulator_get_suspend_state(rdev, state); 810 if (rstate == NULL) 811 return 0; 812 813 /* If we have no suspend mode configration don't set anything; 814 * only warn if the driver implements set_suspend_voltage or 815 * set_suspend_mode callback. 816 */ 817 if (rstate->enabled != ENABLE_IN_SUSPEND && 818 rstate->enabled != DISABLE_IN_SUSPEND) { 819 if (rdev->desc->ops->set_suspend_voltage || 820 rdev->desc->ops->set_suspend_mode) 821 rdev_warn(rdev, "No configuration\n"); 822 return 0; 823 } 824 825 if (rstate->enabled == ENABLE_IN_SUSPEND && 826 rdev->desc->ops->set_suspend_enable) 827 ret = rdev->desc->ops->set_suspend_enable(rdev); 828 else if (rstate->enabled == DISABLE_IN_SUSPEND && 829 rdev->desc->ops->set_suspend_disable) 830 ret = rdev->desc->ops->set_suspend_disable(rdev); 831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 832 ret = 0; 833 834 if (ret < 0) { 835 rdev_err(rdev, "failed to enabled/disable\n"); 836 return ret; 837 } 838 839 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 840 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 841 if (ret < 0) { 842 rdev_err(rdev, "failed to set voltage\n"); 843 return ret; 844 } 845 } 846 847 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 848 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 849 if (ret < 0) { 850 rdev_err(rdev, "failed to set mode\n"); 851 return ret; 852 } 853 } 854 855 return ret; 856 } 857 858 static void print_constraints(struct regulator_dev *rdev) 859 { 860 struct regulation_constraints *constraints = rdev->constraints; 861 char buf[160] = ""; 862 size_t len = sizeof(buf) - 1; 863 int count = 0; 864 int ret; 865 866 if (constraints->min_uV && constraints->max_uV) { 867 if (constraints->min_uV == constraints->max_uV) 868 count += scnprintf(buf + count, len - count, "%d mV ", 869 constraints->min_uV / 1000); 870 else 871 count += scnprintf(buf + count, len - count, 872 "%d <--> %d mV ", 873 constraints->min_uV / 1000, 874 constraints->max_uV / 1000); 875 } 876 877 if (!constraints->min_uV || 878 constraints->min_uV != constraints->max_uV) { 879 ret = _regulator_get_voltage(rdev); 880 if (ret > 0) 881 count += scnprintf(buf + count, len - count, 882 "at %d mV ", ret / 1000); 883 } 884 885 if (constraints->uV_offset) 886 count += scnprintf(buf + count, len - count, "%dmV offset ", 887 constraints->uV_offset / 1000); 888 889 if (constraints->min_uA && constraints->max_uA) { 890 if (constraints->min_uA == constraints->max_uA) 891 count += scnprintf(buf + count, len - count, "%d mA ", 892 constraints->min_uA / 1000); 893 else 894 count += scnprintf(buf + count, len - count, 895 "%d <--> %d mA ", 896 constraints->min_uA / 1000, 897 constraints->max_uA / 1000); 898 } 899 900 if (!constraints->min_uA || 901 constraints->min_uA != constraints->max_uA) { 902 ret = _regulator_get_current_limit(rdev); 903 if (ret > 0) 904 count += scnprintf(buf + count, len - count, 905 "at %d mA ", ret / 1000); 906 } 907 908 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 909 count += scnprintf(buf + count, len - count, "fast "); 910 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 911 count += scnprintf(buf + count, len - count, "normal "); 912 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 913 count += scnprintf(buf + count, len - count, "idle "); 914 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 915 count += scnprintf(buf + count, len - count, "standby"); 916 917 if (!count) 918 scnprintf(buf, len, "no parameters"); 919 920 rdev_dbg(rdev, "%s\n", buf); 921 922 if ((constraints->min_uV != constraints->max_uV) && 923 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 924 rdev_warn(rdev, 925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 926 } 927 928 static int machine_constraints_voltage(struct regulator_dev *rdev, 929 struct regulation_constraints *constraints) 930 { 931 const struct regulator_ops *ops = rdev->desc->ops; 932 int ret; 933 934 /* do we need to apply the constraint voltage */ 935 if (rdev->constraints->apply_uV && 936 rdev->constraints->min_uV && rdev->constraints->max_uV) { 937 int target_min, target_max; 938 int current_uV = _regulator_get_voltage(rdev); 939 940 if (current_uV == -ENOTRECOVERABLE) { 941 /* This regulator can't be read and must be initted */ 942 rdev_info(rdev, "Setting %d-%duV\n", 943 rdev->constraints->min_uV, 944 rdev->constraints->max_uV); 945 _regulator_do_set_voltage(rdev, 946 rdev->constraints->min_uV, 947 rdev->constraints->max_uV); 948 current_uV = _regulator_get_voltage(rdev); 949 } 950 951 if (current_uV < 0) { 952 rdev_err(rdev, 953 "failed to get the current voltage(%d)\n", 954 current_uV); 955 return current_uV; 956 } 957 958 /* 959 * If we're below the minimum voltage move up to the 960 * minimum voltage, if we're above the maximum voltage 961 * then move down to the maximum. 962 */ 963 target_min = current_uV; 964 target_max = current_uV; 965 966 if (current_uV < rdev->constraints->min_uV) { 967 target_min = rdev->constraints->min_uV; 968 target_max = rdev->constraints->min_uV; 969 } 970 971 if (current_uV > rdev->constraints->max_uV) { 972 target_min = rdev->constraints->max_uV; 973 target_max = rdev->constraints->max_uV; 974 } 975 976 if (target_min != current_uV || target_max != current_uV) { 977 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 978 current_uV, target_min, target_max); 979 ret = _regulator_do_set_voltage( 980 rdev, target_min, target_max); 981 if (ret < 0) { 982 rdev_err(rdev, 983 "failed to apply %d-%duV constraint(%d)\n", 984 target_min, target_max, ret); 985 return ret; 986 } 987 } 988 } 989 990 /* constrain machine-level voltage specs to fit 991 * the actual range supported by this regulator. 992 */ 993 if (ops->list_voltage && rdev->desc->n_voltages) { 994 int count = rdev->desc->n_voltages; 995 int i; 996 int min_uV = INT_MAX; 997 int max_uV = INT_MIN; 998 int cmin = constraints->min_uV; 999 int cmax = constraints->max_uV; 1000 1001 /* it's safe to autoconfigure fixed-voltage supplies 1002 and the constraints are used by list_voltage. */ 1003 if (count == 1 && !cmin) { 1004 cmin = 1; 1005 cmax = INT_MAX; 1006 constraints->min_uV = cmin; 1007 constraints->max_uV = cmax; 1008 } 1009 1010 /* voltage constraints are optional */ 1011 if ((cmin == 0) && (cmax == 0)) 1012 return 0; 1013 1014 /* else require explicit machine-level constraints */ 1015 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1016 rdev_err(rdev, "invalid voltage constraints\n"); 1017 return -EINVAL; 1018 } 1019 1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1021 for (i = 0; i < count; i++) { 1022 int value; 1023 1024 value = ops->list_voltage(rdev, i); 1025 if (value <= 0) 1026 continue; 1027 1028 /* maybe adjust [min_uV..max_uV] */ 1029 if (value >= cmin && value < min_uV) 1030 min_uV = value; 1031 if (value <= cmax && value > max_uV) 1032 max_uV = value; 1033 } 1034 1035 /* final: [min_uV..max_uV] valid iff constraints valid */ 1036 if (max_uV < min_uV) { 1037 rdev_err(rdev, 1038 "unsupportable voltage constraints %u-%uuV\n", 1039 min_uV, max_uV); 1040 return -EINVAL; 1041 } 1042 1043 /* use regulator's subset of machine constraints */ 1044 if (constraints->min_uV < min_uV) { 1045 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1046 constraints->min_uV, min_uV); 1047 constraints->min_uV = min_uV; 1048 } 1049 if (constraints->max_uV > max_uV) { 1050 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1051 constraints->max_uV, max_uV); 1052 constraints->max_uV = max_uV; 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 static int machine_constraints_current(struct regulator_dev *rdev, 1060 struct regulation_constraints *constraints) 1061 { 1062 const struct regulator_ops *ops = rdev->desc->ops; 1063 int ret; 1064 1065 if (!constraints->min_uA && !constraints->max_uA) 1066 return 0; 1067 1068 if (constraints->min_uA > constraints->max_uA) { 1069 rdev_err(rdev, "Invalid current constraints\n"); 1070 return -EINVAL; 1071 } 1072 1073 if (!ops->set_current_limit || !ops->get_current_limit) { 1074 rdev_warn(rdev, "Operation of current configuration missing\n"); 1075 return 0; 1076 } 1077 1078 /* Set regulator current in constraints range */ 1079 ret = ops->set_current_limit(rdev, constraints->min_uA, 1080 constraints->max_uA); 1081 if (ret < 0) { 1082 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1083 return ret; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int _regulator_do_enable(struct regulator_dev *rdev); 1090 1091 /** 1092 * set_machine_constraints - sets regulator constraints 1093 * @rdev: regulator source 1094 * @constraints: constraints to apply 1095 * 1096 * Allows platform initialisation code to define and constrain 1097 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1098 * Constraints *must* be set by platform code in order for some 1099 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1100 * set_mode. 1101 */ 1102 static int set_machine_constraints(struct regulator_dev *rdev, 1103 const struct regulation_constraints *constraints) 1104 { 1105 int ret = 0; 1106 const struct regulator_ops *ops = rdev->desc->ops; 1107 1108 if (constraints) 1109 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1110 GFP_KERNEL); 1111 else 1112 rdev->constraints = kzalloc(sizeof(*constraints), 1113 GFP_KERNEL); 1114 if (!rdev->constraints) 1115 return -ENOMEM; 1116 1117 ret = machine_constraints_voltage(rdev, rdev->constraints); 1118 if (ret != 0) 1119 return ret; 1120 1121 ret = machine_constraints_current(rdev, rdev->constraints); 1122 if (ret != 0) 1123 return ret; 1124 1125 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1126 ret = ops->set_input_current_limit(rdev, 1127 rdev->constraints->ilim_uA); 1128 if (ret < 0) { 1129 rdev_err(rdev, "failed to set input limit\n"); 1130 return ret; 1131 } 1132 } 1133 1134 /* do we need to setup our suspend state */ 1135 if (rdev->constraints->initial_state) { 1136 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1137 if (ret < 0) { 1138 rdev_err(rdev, "failed to set suspend state\n"); 1139 return ret; 1140 } 1141 } 1142 1143 if (rdev->constraints->initial_mode) { 1144 if (!ops->set_mode) { 1145 rdev_err(rdev, "no set_mode operation\n"); 1146 return -EINVAL; 1147 } 1148 1149 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1150 if (ret < 0) { 1151 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1152 return ret; 1153 } 1154 } 1155 1156 /* If the constraints say the regulator should be on at this point 1157 * and we have control then make sure it is enabled. 1158 */ 1159 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1160 ret = _regulator_do_enable(rdev); 1161 if (ret < 0 && ret != -EINVAL) { 1162 rdev_err(rdev, "failed to enable\n"); 1163 return ret; 1164 } 1165 } 1166 1167 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1168 && ops->set_ramp_delay) { 1169 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1170 if (ret < 0) { 1171 rdev_err(rdev, "failed to set ramp_delay\n"); 1172 return ret; 1173 } 1174 } 1175 1176 if (rdev->constraints->pull_down && ops->set_pull_down) { 1177 ret = ops->set_pull_down(rdev); 1178 if (ret < 0) { 1179 rdev_err(rdev, "failed to set pull down\n"); 1180 return ret; 1181 } 1182 } 1183 1184 if (rdev->constraints->soft_start && ops->set_soft_start) { 1185 ret = ops->set_soft_start(rdev); 1186 if (ret < 0) { 1187 rdev_err(rdev, "failed to set soft start\n"); 1188 return ret; 1189 } 1190 } 1191 1192 if (rdev->constraints->over_current_protection 1193 && ops->set_over_current_protection) { 1194 ret = ops->set_over_current_protection(rdev); 1195 if (ret < 0) { 1196 rdev_err(rdev, "failed to set over current protection\n"); 1197 return ret; 1198 } 1199 } 1200 1201 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1202 bool ad_state = (rdev->constraints->active_discharge == 1203 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1204 1205 ret = ops->set_active_discharge(rdev, ad_state); 1206 if (ret < 0) { 1207 rdev_err(rdev, "failed to set active discharge\n"); 1208 return ret; 1209 } 1210 } 1211 1212 print_constraints(rdev); 1213 return 0; 1214 } 1215 1216 /** 1217 * set_supply - set regulator supply regulator 1218 * @rdev: regulator name 1219 * @supply_rdev: supply regulator name 1220 * 1221 * Called by platform initialisation code to set the supply regulator for this 1222 * regulator. This ensures that a regulators supply will also be enabled by the 1223 * core if it's child is enabled. 1224 */ 1225 static int set_supply(struct regulator_dev *rdev, 1226 struct regulator_dev *supply_rdev) 1227 { 1228 int err; 1229 1230 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1231 1232 if (!try_module_get(supply_rdev->owner)) 1233 return -ENODEV; 1234 1235 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1236 if (rdev->supply == NULL) { 1237 err = -ENOMEM; 1238 return err; 1239 } 1240 supply_rdev->open_count++; 1241 1242 return 0; 1243 } 1244 1245 /** 1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1247 * @rdev: regulator source 1248 * @consumer_dev_name: dev_name() string for device supply applies to 1249 * @supply: symbolic name for supply 1250 * 1251 * Allows platform initialisation code to map physical regulator 1252 * sources to symbolic names for supplies for use by devices. Devices 1253 * should use these symbolic names to request regulators, avoiding the 1254 * need to provide board-specific regulator names as platform data. 1255 */ 1256 static int set_consumer_device_supply(struct regulator_dev *rdev, 1257 const char *consumer_dev_name, 1258 const char *supply) 1259 { 1260 struct regulator_map *node; 1261 int has_dev; 1262 1263 if (supply == NULL) 1264 return -EINVAL; 1265 1266 if (consumer_dev_name != NULL) 1267 has_dev = 1; 1268 else 1269 has_dev = 0; 1270 1271 list_for_each_entry(node, ®ulator_map_list, list) { 1272 if (node->dev_name && consumer_dev_name) { 1273 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1274 continue; 1275 } else if (node->dev_name || consumer_dev_name) { 1276 continue; 1277 } 1278 1279 if (strcmp(node->supply, supply) != 0) 1280 continue; 1281 1282 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1283 consumer_dev_name, 1284 dev_name(&node->regulator->dev), 1285 node->regulator->desc->name, 1286 supply, 1287 dev_name(&rdev->dev), rdev_get_name(rdev)); 1288 return -EBUSY; 1289 } 1290 1291 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1292 if (node == NULL) 1293 return -ENOMEM; 1294 1295 node->regulator = rdev; 1296 node->supply = supply; 1297 1298 if (has_dev) { 1299 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1300 if (node->dev_name == NULL) { 1301 kfree(node); 1302 return -ENOMEM; 1303 } 1304 } 1305 1306 list_add(&node->list, ®ulator_map_list); 1307 return 0; 1308 } 1309 1310 static void unset_regulator_supplies(struct regulator_dev *rdev) 1311 { 1312 struct regulator_map *node, *n; 1313 1314 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1315 if (rdev == node->regulator) { 1316 list_del(&node->list); 1317 kfree(node->dev_name); 1318 kfree(node); 1319 } 1320 } 1321 } 1322 1323 #ifdef CONFIG_DEBUG_FS 1324 static ssize_t constraint_flags_read_file(struct file *file, 1325 char __user *user_buf, 1326 size_t count, loff_t *ppos) 1327 { 1328 const struct regulator *regulator = file->private_data; 1329 const struct regulation_constraints *c = regulator->rdev->constraints; 1330 char *buf; 1331 ssize_t ret; 1332 1333 if (!c) 1334 return 0; 1335 1336 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1337 if (!buf) 1338 return -ENOMEM; 1339 1340 ret = snprintf(buf, PAGE_SIZE, 1341 "always_on: %u\n" 1342 "boot_on: %u\n" 1343 "apply_uV: %u\n" 1344 "ramp_disable: %u\n" 1345 "soft_start: %u\n" 1346 "pull_down: %u\n" 1347 "over_current_protection: %u\n", 1348 c->always_on, 1349 c->boot_on, 1350 c->apply_uV, 1351 c->ramp_disable, 1352 c->soft_start, 1353 c->pull_down, 1354 c->over_current_protection); 1355 1356 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1357 kfree(buf); 1358 1359 return ret; 1360 } 1361 1362 #endif 1363 1364 static const struct file_operations constraint_flags_fops = { 1365 #ifdef CONFIG_DEBUG_FS 1366 .open = simple_open, 1367 .read = constraint_flags_read_file, 1368 .llseek = default_llseek, 1369 #endif 1370 }; 1371 1372 #define REG_STR_SIZE 64 1373 1374 static struct regulator *create_regulator(struct regulator_dev *rdev, 1375 struct device *dev, 1376 const char *supply_name) 1377 { 1378 struct regulator *regulator; 1379 char buf[REG_STR_SIZE]; 1380 int err, size; 1381 1382 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1383 if (regulator == NULL) 1384 return NULL; 1385 1386 regulator_lock(rdev); 1387 regulator->rdev = rdev; 1388 list_add(®ulator->list, &rdev->consumer_list); 1389 1390 if (dev) { 1391 regulator->dev = dev; 1392 1393 /* Add a link to the device sysfs entry */ 1394 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1395 dev->kobj.name, supply_name); 1396 if (size >= REG_STR_SIZE) 1397 goto overflow_err; 1398 1399 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1400 if (regulator->supply_name == NULL) 1401 goto overflow_err; 1402 1403 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1404 buf); 1405 if (err) { 1406 rdev_dbg(rdev, "could not add device link %s err %d\n", 1407 dev->kobj.name, err); 1408 /* non-fatal */ 1409 } 1410 } else { 1411 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1412 if (regulator->supply_name == NULL) 1413 goto overflow_err; 1414 } 1415 1416 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1417 rdev->debugfs); 1418 if (!regulator->debugfs) { 1419 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1420 } else { 1421 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1422 ®ulator->uA_load); 1423 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1424 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1425 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1426 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1427 debugfs_create_file("constraint_flags", 0444, 1428 regulator->debugfs, regulator, 1429 &constraint_flags_fops); 1430 } 1431 1432 /* 1433 * Check now if the regulator is an always on regulator - if 1434 * it is then we don't need to do nearly so much work for 1435 * enable/disable calls. 1436 */ 1437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1438 _regulator_is_enabled(rdev)) 1439 regulator->always_on = true; 1440 1441 regulator_unlock(rdev); 1442 return regulator; 1443 overflow_err: 1444 list_del(®ulator->list); 1445 kfree(regulator); 1446 regulator_unlock(rdev); 1447 return NULL; 1448 } 1449 1450 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1451 { 1452 if (rdev->constraints && rdev->constraints->enable_time) 1453 return rdev->constraints->enable_time; 1454 if (!rdev->desc->ops->enable_time) 1455 return rdev->desc->enable_time; 1456 return rdev->desc->ops->enable_time(rdev); 1457 } 1458 1459 static struct regulator_supply_alias *regulator_find_supply_alias( 1460 struct device *dev, const char *supply) 1461 { 1462 struct regulator_supply_alias *map; 1463 1464 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1465 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1466 return map; 1467 1468 return NULL; 1469 } 1470 1471 static void regulator_supply_alias(struct device **dev, const char **supply) 1472 { 1473 struct regulator_supply_alias *map; 1474 1475 map = regulator_find_supply_alias(*dev, *supply); 1476 if (map) { 1477 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1478 *supply, map->alias_supply, 1479 dev_name(map->alias_dev)); 1480 *dev = map->alias_dev; 1481 *supply = map->alias_supply; 1482 } 1483 } 1484 1485 static int regulator_match(struct device *dev, const void *data) 1486 { 1487 struct regulator_dev *r = dev_to_rdev(dev); 1488 1489 return strcmp(rdev_get_name(r), data) == 0; 1490 } 1491 1492 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1493 { 1494 struct device *dev; 1495 1496 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1497 1498 return dev ? dev_to_rdev(dev) : NULL; 1499 } 1500 1501 /** 1502 * regulator_dev_lookup - lookup a regulator device. 1503 * @dev: device for regulator "consumer". 1504 * @supply: Supply name or regulator ID. 1505 * 1506 * If successful, returns a struct regulator_dev that corresponds to the name 1507 * @supply and with the embedded struct device refcount incremented by one. 1508 * The refcount must be dropped by calling put_device(). 1509 * On failure one of the following ERR-PTR-encoded values is returned: 1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1511 * in the future. 1512 */ 1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1514 const char *supply) 1515 { 1516 struct regulator_dev *r = NULL; 1517 struct device_node *node; 1518 struct regulator_map *map; 1519 const char *devname = NULL; 1520 1521 regulator_supply_alias(&dev, &supply); 1522 1523 /* first do a dt based lookup */ 1524 if (dev && dev->of_node) { 1525 node = of_get_regulator(dev, supply); 1526 if (node) { 1527 r = of_find_regulator_by_node(node); 1528 if (r) 1529 return r; 1530 1531 /* 1532 * We have a node, but there is no device. 1533 * assume it has not registered yet. 1534 */ 1535 return ERR_PTR(-EPROBE_DEFER); 1536 } 1537 } 1538 1539 /* if not found, try doing it non-dt way */ 1540 if (dev) 1541 devname = dev_name(dev); 1542 1543 mutex_lock(®ulator_list_mutex); 1544 list_for_each_entry(map, ®ulator_map_list, list) { 1545 /* If the mapping has a device set up it must match */ 1546 if (map->dev_name && 1547 (!devname || strcmp(map->dev_name, devname))) 1548 continue; 1549 1550 if (strcmp(map->supply, supply) == 0 && 1551 get_device(&map->regulator->dev)) { 1552 r = map->regulator; 1553 break; 1554 } 1555 } 1556 mutex_unlock(®ulator_list_mutex); 1557 1558 if (r) 1559 return r; 1560 1561 r = regulator_lookup_by_name(supply); 1562 if (r) 1563 return r; 1564 1565 return ERR_PTR(-ENODEV); 1566 } 1567 1568 static int regulator_resolve_supply(struct regulator_dev *rdev) 1569 { 1570 struct regulator_dev *r; 1571 struct device *dev = rdev->dev.parent; 1572 int ret; 1573 1574 /* No supply to resovle? */ 1575 if (!rdev->supply_name) 1576 return 0; 1577 1578 /* Supply already resolved? */ 1579 if (rdev->supply) 1580 return 0; 1581 1582 r = regulator_dev_lookup(dev, rdev->supply_name); 1583 if (IS_ERR(r)) { 1584 ret = PTR_ERR(r); 1585 1586 /* Did the lookup explicitly defer for us? */ 1587 if (ret == -EPROBE_DEFER) 1588 return ret; 1589 1590 if (have_full_constraints()) { 1591 r = dummy_regulator_rdev; 1592 get_device(&r->dev); 1593 } else { 1594 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1595 rdev->supply_name, rdev->desc->name); 1596 return -EPROBE_DEFER; 1597 } 1598 } 1599 1600 /* 1601 * If the supply's parent device is not the same as the 1602 * regulator's parent device, then ensure the parent device 1603 * is bound before we resolve the supply, in case the parent 1604 * device get probe deferred and unregisters the supply. 1605 */ 1606 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1607 if (!device_is_bound(r->dev.parent)) { 1608 put_device(&r->dev); 1609 return -EPROBE_DEFER; 1610 } 1611 } 1612 1613 /* Recursively resolve the supply of the supply */ 1614 ret = regulator_resolve_supply(r); 1615 if (ret < 0) { 1616 put_device(&r->dev); 1617 return ret; 1618 } 1619 1620 ret = set_supply(rdev, r); 1621 if (ret < 0) { 1622 put_device(&r->dev); 1623 return ret; 1624 } 1625 1626 /* Cascade always-on state to supply */ 1627 if (_regulator_is_enabled(rdev)) { 1628 ret = regulator_enable(rdev->supply); 1629 if (ret < 0) { 1630 _regulator_put(rdev->supply); 1631 rdev->supply = NULL; 1632 return ret; 1633 } 1634 } 1635 1636 return 0; 1637 } 1638 1639 /* Internal regulator request function */ 1640 struct regulator *_regulator_get(struct device *dev, const char *id, 1641 enum regulator_get_type get_type) 1642 { 1643 struct regulator_dev *rdev; 1644 struct regulator *regulator; 1645 const char *devname = dev ? dev_name(dev) : "deviceless"; 1646 int ret; 1647 1648 if (get_type >= MAX_GET_TYPE) { 1649 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1650 return ERR_PTR(-EINVAL); 1651 } 1652 1653 if (id == NULL) { 1654 pr_err("get() with no identifier\n"); 1655 return ERR_PTR(-EINVAL); 1656 } 1657 1658 rdev = regulator_dev_lookup(dev, id); 1659 if (IS_ERR(rdev)) { 1660 ret = PTR_ERR(rdev); 1661 1662 /* 1663 * If regulator_dev_lookup() fails with error other 1664 * than -ENODEV our job here is done, we simply return it. 1665 */ 1666 if (ret != -ENODEV) 1667 return ERR_PTR(ret); 1668 1669 if (!have_full_constraints()) { 1670 dev_warn(dev, 1671 "incomplete constraints, dummy supplies not allowed\n"); 1672 return ERR_PTR(-ENODEV); 1673 } 1674 1675 switch (get_type) { 1676 case NORMAL_GET: 1677 /* 1678 * Assume that a regulator is physically present and 1679 * enabled, even if it isn't hooked up, and just 1680 * provide a dummy. 1681 */ 1682 dev_warn(dev, 1683 "%s supply %s not found, using dummy regulator\n", 1684 devname, id); 1685 rdev = dummy_regulator_rdev; 1686 get_device(&rdev->dev); 1687 break; 1688 1689 case EXCLUSIVE_GET: 1690 dev_warn(dev, 1691 "dummy supplies not allowed for exclusive requests\n"); 1692 /* fall through */ 1693 1694 default: 1695 return ERR_PTR(-ENODEV); 1696 } 1697 } 1698 1699 if (rdev->exclusive) { 1700 regulator = ERR_PTR(-EPERM); 1701 put_device(&rdev->dev); 1702 return regulator; 1703 } 1704 1705 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1706 regulator = ERR_PTR(-EBUSY); 1707 put_device(&rdev->dev); 1708 return regulator; 1709 } 1710 1711 ret = regulator_resolve_supply(rdev); 1712 if (ret < 0) { 1713 regulator = ERR_PTR(ret); 1714 put_device(&rdev->dev); 1715 return regulator; 1716 } 1717 1718 if (!try_module_get(rdev->owner)) { 1719 regulator = ERR_PTR(-EPROBE_DEFER); 1720 put_device(&rdev->dev); 1721 return regulator; 1722 } 1723 1724 regulator = create_regulator(rdev, dev, id); 1725 if (regulator == NULL) { 1726 regulator = ERR_PTR(-ENOMEM); 1727 put_device(&rdev->dev); 1728 module_put(rdev->owner); 1729 return regulator; 1730 } 1731 1732 rdev->open_count++; 1733 if (get_type == EXCLUSIVE_GET) { 1734 rdev->exclusive = 1; 1735 1736 ret = _regulator_is_enabled(rdev); 1737 if (ret > 0) 1738 rdev->use_count = 1; 1739 else 1740 rdev->use_count = 0; 1741 } 1742 1743 return regulator; 1744 } 1745 1746 /** 1747 * regulator_get - lookup and obtain a reference to a regulator. 1748 * @dev: device for regulator "consumer" 1749 * @id: Supply name or regulator ID. 1750 * 1751 * Returns a struct regulator corresponding to the regulator producer, 1752 * or IS_ERR() condition containing errno. 1753 * 1754 * Use of supply names configured via regulator_set_device_supply() is 1755 * strongly encouraged. It is recommended that the supply name used 1756 * should match the name used for the supply and/or the relevant 1757 * device pins in the datasheet. 1758 */ 1759 struct regulator *regulator_get(struct device *dev, const char *id) 1760 { 1761 return _regulator_get(dev, id, NORMAL_GET); 1762 } 1763 EXPORT_SYMBOL_GPL(regulator_get); 1764 1765 /** 1766 * regulator_get_exclusive - obtain exclusive access to a regulator. 1767 * @dev: device for regulator "consumer" 1768 * @id: Supply name or regulator ID. 1769 * 1770 * Returns a struct regulator corresponding to the regulator producer, 1771 * or IS_ERR() condition containing errno. Other consumers will be 1772 * unable to obtain this regulator while this reference is held and the 1773 * use count for the regulator will be initialised to reflect the current 1774 * state of the regulator. 1775 * 1776 * This is intended for use by consumers which cannot tolerate shared 1777 * use of the regulator such as those which need to force the 1778 * regulator off for correct operation of the hardware they are 1779 * controlling. 1780 * 1781 * Use of supply names configured via regulator_set_device_supply() is 1782 * strongly encouraged. It is recommended that the supply name used 1783 * should match the name used for the supply and/or the relevant 1784 * device pins in the datasheet. 1785 */ 1786 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1787 { 1788 return _regulator_get(dev, id, EXCLUSIVE_GET); 1789 } 1790 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1791 1792 /** 1793 * regulator_get_optional - obtain optional access to a regulator. 1794 * @dev: device for regulator "consumer" 1795 * @id: Supply name or regulator ID. 1796 * 1797 * Returns a struct regulator corresponding to the regulator producer, 1798 * or IS_ERR() condition containing errno. 1799 * 1800 * This is intended for use by consumers for devices which can have 1801 * some supplies unconnected in normal use, such as some MMC devices. 1802 * It can allow the regulator core to provide stub supplies for other 1803 * supplies requested using normal regulator_get() calls without 1804 * disrupting the operation of drivers that can handle absent 1805 * supplies. 1806 * 1807 * Use of supply names configured via regulator_set_device_supply() is 1808 * strongly encouraged. It is recommended that the supply name used 1809 * should match the name used for the supply and/or the relevant 1810 * device pins in the datasheet. 1811 */ 1812 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1813 { 1814 return _regulator_get(dev, id, OPTIONAL_GET); 1815 } 1816 EXPORT_SYMBOL_GPL(regulator_get_optional); 1817 1818 /* regulator_list_mutex lock held by regulator_put() */ 1819 static void _regulator_put(struct regulator *regulator) 1820 { 1821 struct regulator_dev *rdev; 1822 1823 if (IS_ERR_OR_NULL(regulator)) 1824 return; 1825 1826 lockdep_assert_held_once(®ulator_list_mutex); 1827 1828 rdev = regulator->rdev; 1829 1830 debugfs_remove_recursive(regulator->debugfs); 1831 1832 /* remove any sysfs entries */ 1833 if (regulator->dev) 1834 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1835 regulator_lock(rdev); 1836 list_del(®ulator->list); 1837 1838 rdev->open_count--; 1839 rdev->exclusive = 0; 1840 put_device(&rdev->dev); 1841 regulator_unlock(rdev); 1842 1843 kfree_const(regulator->supply_name); 1844 kfree(regulator); 1845 1846 module_put(rdev->owner); 1847 } 1848 1849 /** 1850 * regulator_put - "free" the regulator source 1851 * @regulator: regulator source 1852 * 1853 * Note: drivers must ensure that all regulator_enable calls made on this 1854 * regulator source are balanced by regulator_disable calls prior to calling 1855 * this function. 1856 */ 1857 void regulator_put(struct regulator *regulator) 1858 { 1859 mutex_lock(®ulator_list_mutex); 1860 _regulator_put(regulator); 1861 mutex_unlock(®ulator_list_mutex); 1862 } 1863 EXPORT_SYMBOL_GPL(regulator_put); 1864 1865 /** 1866 * regulator_register_supply_alias - Provide device alias for supply lookup 1867 * 1868 * @dev: device that will be given as the regulator "consumer" 1869 * @id: Supply name or regulator ID 1870 * @alias_dev: device that should be used to lookup the supply 1871 * @alias_id: Supply name or regulator ID that should be used to lookup the 1872 * supply 1873 * 1874 * All lookups for id on dev will instead be conducted for alias_id on 1875 * alias_dev. 1876 */ 1877 int regulator_register_supply_alias(struct device *dev, const char *id, 1878 struct device *alias_dev, 1879 const char *alias_id) 1880 { 1881 struct regulator_supply_alias *map; 1882 1883 map = regulator_find_supply_alias(dev, id); 1884 if (map) 1885 return -EEXIST; 1886 1887 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1888 if (!map) 1889 return -ENOMEM; 1890 1891 map->src_dev = dev; 1892 map->src_supply = id; 1893 map->alias_dev = alias_dev; 1894 map->alias_supply = alias_id; 1895 1896 list_add(&map->list, ®ulator_supply_alias_list); 1897 1898 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1899 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1900 1901 return 0; 1902 } 1903 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1904 1905 /** 1906 * regulator_unregister_supply_alias - Remove device alias 1907 * 1908 * @dev: device that will be given as the regulator "consumer" 1909 * @id: Supply name or regulator ID 1910 * 1911 * Remove a lookup alias if one exists for id on dev. 1912 */ 1913 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1914 { 1915 struct regulator_supply_alias *map; 1916 1917 map = regulator_find_supply_alias(dev, id); 1918 if (map) { 1919 list_del(&map->list); 1920 kfree(map); 1921 } 1922 } 1923 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1924 1925 /** 1926 * regulator_bulk_register_supply_alias - register multiple aliases 1927 * 1928 * @dev: device that will be given as the regulator "consumer" 1929 * @id: List of supply names or regulator IDs 1930 * @alias_dev: device that should be used to lookup the supply 1931 * @alias_id: List of supply names or regulator IDs that should be used to 1932 * lookup the supply 1933 * @num_id: Number of aliases to register 1934 * 1935 * @return 0 on success, an errno on failure. 1936 * 1937 * This helper function allows drivers to register several supply 1938 * aliases in one operation. If any of the aliases cannot be 1939 * registered any aliases that were registered will be removed 1940 * before returning to the caller. 1941 */ 1942 int regulator_bulk_register_supply_alias(struct device *dev, 1943 const char *const *id, 1944 struct device *alias_dev, 1945 const char *const *alias_id, 1946 int num_id) 1947 { 1948 int i; 1949 int ret; 1950 1951 for (i = 0; i < num_id; ++i) { 1952 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1953 alias_id[i]); 1954 if (ret < 0) 1955 goto err; 1956 } 1957 1958 return 0; 1959 1960 err: 1961 dev_err(dev, 1962 "Failed to create supply alias %s,%s -> %s,%s\n", 1963 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1964 1965 while (--i >= 0) 1966 regulator_unregister_supply_alias(dev, id[i]); 1967 1968 return ret; 1969 } 1970 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1971 1972 /** 1973 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1974 * 1975 * @dev: device that will be given as the regulator "consumer" 1976 * @id: List of supply names or regulator IDs 1977 * @num_id: Number of aliases to unregister 1978 * 1979 * This helper function allows drivers to unregister several supply 1980 * aliases in one operation. 1981 */ 1982 void regulator_bulk_unregister_supply_alias(struct device *dev, 1983 const char *const *id, 1984 int num_id) 1985 { 1986 int i; 1987 1988 for (i = 0; i < num_id; ++i) 1989 regulator_unregister_supply_alias(dev, id[i]); 1990 } 1991 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1992 1993 1994 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1995 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1996 const struct regulator_config *config) 1997 { 1998 struct regulator_enable_gpio *pin; 1999 struct gpio_desc *gpiod; 2000 int ret; 2001 2002 if (config->ena_gpiod) 2003 gpiod = config->ena_gpiod; 2004 else 2005 gpiod = gpio_to_desc(config->ena_gpio); 2006 2007 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2008 if (pin->gpiod == gpiod) { 2009 rdev_dbg(rdev, "GPIO %d is already used\n", 2010 config->ena_gpio); 2011 goto update_ena_gpio_to_rdev; 2012 } 2013 } 2014 2015 if (!config->ena_gpiod) { 2016 ret = gpio_request_one(config->ena_gpio, 2017 GPIOF_DIR_OUT | config->ena_gpio_flags, 2018 rdev_get_name(rdev)); 2019 if (ret) 2020 return ret; 2021 } 2022 2023 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2024 if (pin == NULL) { 2025 if (!config->ena_gpiod) 2026 gpio_free(config->ena_gpio); 2027 return -ENOMEM; 2028 } 2029 2030 pin->gpiod = gpiod; 2031 pin->ena_gpio_invert = config->ena_gpio_invert; 2032 list_add(&pin->list, ®ulator_ena_gpio_list); 2033 2034 update_ena_gpio_to_rdev: 2035 pin->request_count++; 2036 rdev->ena_pin = pin; 2037 return 0; 2038 } 2039 2040 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2041 { 2042 struct regulator_enable_gpio *pin, *n; 2043 2044 if (!rdev->ena_pin) 2045 return; 2046 2047 /* Free the GPIO only in case of no use */ 2048 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2049 if (pin->gpiod == rdev->ena_pin->gpiod) { 2050 if (pin->request_count <= 1) { 2051 pin->request_count = 0; 2052 gpiod_put(pin->gpiod); 2053 list_del(&pin->list); 2054 kfree(pin); 2055 rdev->ena_pin = NULL; 2056 return; 2057 } else { 2058 pin->request_count--; 2059 } 2060 } 2061 } 2062 } 2063 2064 /** 2065 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2066 * @rdev: regulator_dev structure 2067 * @enable: enable GPIO at initial use? 2068 * 2069 * GPIO is enabled in case of initial use. (enable_count is 0) 2070 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2071 */ 2072 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2073 { 2074 struct regulator_enable_gpio *pin = rdev->ena_pin; 2075 2076 if (!pin) 2077 return -EINVAL; 2078 2079 if (enable) { 2080 /* Enable GPIO at initial use */ 2081 if (pin->enable_count == 0) 2082 gpiod_set_value_cansleep(pin->gpiod, 2083 !pin->ena_gpio_invert); 2084 2085 pin->enable_count++; 2086 } else { 2087 if (pin->enable_count > 1) { 2088 pin->enable_count--; 2089 return 0; 2090 } 2091 2092 /* Disable GPIO if not used */ 2093 if (pin->enable_count <= 1) { 2094 gpiod_set_value_cansleep(pin->gpiod, 2095 pin->ena_gpio_invert); 2096 pin->enable_count = 0; 2097 } 2098 } 2099 2100 return 0; 2101 } 2102 2103 /** 2104 * _regulator_enable_delay - a delay helper function 2105 * @delay: time to delay in microseconds 2106 * 2107 * Delay for the requested amount of time as per the guidelines in: 2108 * 2109 * Documentation/timers/timers-howto.txt 2110 * 2111 * The assumption here is that regulators will never be enabled in 2112 * atomic context and therefore sleeping functions can be used. 2113 */ 2114 static void _regulator_enable_delay(unsigned int delay) 2115 { 2116 unsigned int ms = delay / 1000; 2117 unsigned int us = delay % 1000; 2118 2119 if (ms > 0) { 2120 /* 2121 * For small enough values, handle super-millisecond 2122 * delays in the usleep_range() call below. 2123 */ 2124 if (ms < 20) 2125 us += ms * 1000; 2126 else 2127 msleep(ms); 2128 } 2129 2130 /* 2131 * Give the scheduler some room to coalesce with any other 2132 * wakeup sources. For delays shorter than 10 us, don't even 2133 * bother setting up high-resolution timers and just busy- 2134 * loop. 2135 */ 2136 if (us >= 10) 2137 usleep_range(us, us + 100); 2138 else 2139 udelay(us); 2140 } 2141 2142 static int _regulator_do_enable(struct regulator_dev *rdev) 2143 { 2144 int ret, delay; 2145 2146 /* Query before enabling in case configuration dependent. */ 2147 ret = _regulator_get_enable_time(rdev); 2148 if (ret >= 0) { 2149 delay = ret; 2150 } else { 2151 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2152 delay = 0; 2153 } 2154 2155 trace_regulator_enable(rdev_get_name(rdev)); 2156 2157 if (rdev->desc->off_on_delay) { 2158 /* if needed, keep a distance of off_on_delay from last time 2159 * this regulator was disabled. 2160 */ 2161 unsigned long start_jiffy = jiffies; 2162 unsigned long intended, max_delay, remaining; 2163 2164 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2165 intended = rdev->last_off_jiffy + max_delay; 2166 2167 if (time_before(start_jiffy, intended)) { 2168 /* calc remaining jiffies to deal with one-time 2169 * timer wrapping. 2170 * in case of multiple timer wrapping, either it can be 2171 * detected by out-of-range remaining, or it cannot be 2172 * detected and we gets a panelty of 2173 * _regulator_enable_delay(). 2174 */ 2175 remaining = intended - start_jiffy; 2176 if (remaining <= max_delay) 2177 _regulator_enable_delay( 2178 jiffies_to_usecs(remaining)); 2179 } 2180 } 2181 2182 if (rdev->ena_pin) { 2183 if (!rdev->ena_gpio_state) { 2184 ret = regulator_ena_gpio_ctrl(rdev, true); 2185 if (ret < 0) 2186 return ret; 2187 rdev->ena_gpio_state = 1; 2188 } 2189 } else if (rdev->desc->ops->enable) { 2190 ret = rdev->desc->ops->enable(rdev); 2191 if (ret < 0) 2192 return ret; 2193 } else { 2194 return -EINVAL; 2195 } 2196 2197 /* Allow the regulator to ramp; it would be useful to extend 2198 * this for bulk operations so that the regulators can ramp 2199 * together. */ 2200 trace_regulator_enable_delay(rdev_get_name(rdev)); 2201 2202 _regulator_enable_delay(delay); 2203 2204 trace_regulator_enable_complete(rdev_get_name(rdev)); 2205 2206 return 0; 2207 } 2208 2209 /* locks held by regulator_enable() */ 2210 static int _regulator_enable(struct regulator_dev *rdev) 2211 { 2212 int ret; 2213 2214 lockdep_assert_held_once(&rdev->mutex); 2215 2216 /* check voltage and requested load before enabling */ 2217 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2218 drms_uA_update(rdev); 2219 2220 if (rdev->use_count == 0) { 2221 /* The regulator may on if it's not switchable or left on */ 2222 ret = _regulator_is_enabled(rdev); 2223 if (ret == -EINVAL || ret == 0) { 2224 if (!regulator_ops_is_valid(rdev, 2225 REGULATOR_CHANGE_STATUS)) 2226 return -EPERM; 2227 2228 ret = _regulator_do_enable(rdev); 2229 if (ret < 0) 2230 return ret; 2231 2232 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2233 NULL); 2234 } else if (ret < 0) { 2235 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2236 return ret; 2237 } 2238 /* Fallthrough on positive return values - already enabled */ 2239 } 2240 2241 rdev->use_count++; 2242 2243 return 0; 2244 } 2245 2246 /** 2247 * regulator_enable - enable regulator output 2248 * @regulator: regulator source 2249 * 2250 * Request that the regulator be enabled with the regulator output at 2251 * the predefined voltage or current value. Calls to regulator_enable() 2252 * must be balanced with calls to regulator_disable(). 2253 * 2254 * NOTE: the output value can be set by other drivers, boot loader or may be 2255 * hardwired in the regulator. 2256 */ 2257 int regulator_enable(struct regulator *regulator) 2258 { 2259 struct regulator_dev *rdev = regulator->rdev; 2260 int ret = 0; 2261 2262 if (regulator->always_on) 2263 return 0; 2264 2265 if (rdev->supply) { 2266 ret = regulator_enable(rdev->supply); 2267 if (ret != 0) 2268 return ret; 2269 } 2270 2271 mutex_lock(&rdev->mutex); 2272 ret = _regulator_enable(rdev); 2273 mutex_unlock(&rdev->mutex); 2274 2275 if (ret != 0 && rdev->supply) 2276 regulator_disable(rdev->supply); 2277 2278 return ret; 2279 } 2280 EXPORT_SYMBOL_GPL(regulator_enable); 2281 2282 static int _regulator_do_disable(struct regulator_dev *rdev) 2283 { 2284 int ret; 2285 2286 trace_regulator_disable(rdev_get_name(rdev)); 2287 2288 if (rdev->ena_pin) { 2289 if (rdev->ena_gpio_state) { 2290 ret = regulator_ena_gpio_ctrl(rdev, false); 2291 if (ret < 0) 2292 return ret; 2293 rdev->ena_gpio_state = 0; 2294 } 2295 2296 } else if (rdev->desc->ops->disable) { 2297 ret = rdev->desc->ops->disable(rdev); 2298 if (ret != 0) 2299 return ret; 2300 } 2301 2302 /* cares about last_off_jiffy only if off_on_delay is required by 2303 * device. 2304 */ 2305 if (rdev->desc->off_on_delay) 2306 rdev->last_off_jiffy = jiffies; 2307 2308 trace_regulator_disable_complete(rdev_get_name(rdev)); 2309 2310 return 0; 2311 } 2312 2313 /* locks held by regulator_disable() */ 2314 static int _regulator_disable(struct regulator_dev *rdev) 2315 { 2316 int ret = 0; 2317 2318 lockdep_assert_held_once(&rdev->mutex); 2319 2320 if (WARN(rdev->use_count <= 0, 2321 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2322 return -EIO; 2323 2324 /* are we the last user and permitted to disable ? */ 2325 if (rdev->use_count == 1 && 2326 (rdev->constraints && !rdev->constraints->always_on)) { 2327 2328 /* we are last user */ 2329 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2330 ret = _notifier_call_chain(rdev, 2331 REGULATOR_EVENT_PRE_DISABLE, 2332 NULL); 2333 if (ret & NOTIFY_STOP_MASK) 2334 return -EINVAL; 2335 2336 ret = _regulator_do_disable(rdev); 2337 if (ret < 0) { 2338 rdev_err(rdev, "failed to disable\n"); 2339 _notifier_call_chain(rdev, 2340 REGULATOR_EVENT_ABORT_DISABLE, 2341 NULL); 2342 return ret; 2343 } 2344 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2345 NULL); 2346 } 2347 2348 rdev->use_count = 0; 2349 } else if (rdev->use_count > 1) { 2350 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2351 drms_uA_update(rdev); 2352 2353 rdev->use_count--; 2354 } 2355 2356 return ret; 2357 } 2358 2359 /** 2360 * regulator_disable - disable regulator output 2361 * @regulator: regulator source 2362 * 2363 * Disable the regulator output voltage or current. Calls to 2364 * regulator_enable() must be balanced with calls to 2365 * regulator_disable(). 2366 * 2367 * NOTE: this will only disable the regulator output if no other consumer 2368 * devices have it enabled, the regulator device supports disabling and 2369 * machine constraints permit this operation. 2370 */ 2371 int regulator_disable(struct regulator *regulator) 2372 { 2373 struct regulator_dev *rdev = regulator->rdev; 2374 int ret = 0; 2375 2376 if (regulator->always_on) 2377 return 0; 2378 2379 mutex_lock(&rdev->mutex); 2380 ret = _regulator_disable(rdev); 2381 mutex_unlock(&rdev->mutex); 2382 2383 if (ret == 0 && rdev->supply) 2384 regulator_disable(rdev->supply); 2385 2386 return ret; 2387 } 2388 EXPORT_SYMBOL_GPL(regulator_disable); 2389 2390 /* locks held by regulator_force_disable() */ 2391 static int _regulator_force_disable(struct regulator_dev *rdev) 2392 { 2393 int ret = 0; 2394 2395 lockdep_assert_held_once(&rdev->mutex); 2396 2397 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2398 REGULATOR_EVENT_PRE_DISABLE, NULL); 2399 if (ret & NOTIFY_STOP_MASK) 2400 return -EINVAL; 2401 2402 ret = _regulator_do_disable(rdev); 2403 if (ret < 0) { 2404 rdev_err(rdev, "failed to force disable\n"); 2405 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2406 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2407 return ret; 2408 } 2409 2410 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2411 REGULATOR_EVENT_DISABLE, NULL); 2412 2413 return 0; 2414 } 2415 2416 /** 2417 * regulator_force_disable - force disable regulator output 2418 * @regulator: regulator source 2419 * 2420 * Forcibly disable the regulator output voltage or current. 2421 * NOTE: this *will* disable the regulator output even if other consumer 2422 * devices have it enabled. This should be used for situations when device 2423 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2424 */ 2425 int regulator_force_disable(struct regulator *regulator) 2426 { 2427 struct regulator_dev *rdev = regulator->rdev; 2428 int ret; 2429 2430 mutex_lock(&rdev->mutex); 2431 regulator->uA_load = 0; 2432 ret = _regulator_force_disable(regulator->rdev); 2433 mutex_unlock(&rdev->mutex); 2434 2435 if (rdev->supply) 2436 while (rdev->open_count--) 2437 regulator_disable(rdev->supply); 2438 2439 return ret; 2440 } 2441 EXPORT_SYMBOL_GPL(regulator_force_disable); 2442 2443 static void regulator_disable_work(struct work_struct *work) 2444 { 2445 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2446 disable_work.work); 2447 int count, i, ret; 2448 2449 regulator_lock(rdev); 2450 2451 BUG_ON(!rdev->deferred_disables); 2452 2453 count = rdev->deferred_disables; 2454 rdev->deferred_disables = 0; 2455 2456 /* 2457 * Workqueue functions queue the new work instance while the previous 2458 * work instance is being processed. Cancel the queued work instance 2459 * as the work instance under processing does the job of the queued 2460 * work instance. 2461 */ 2462 cancel_delayed_work(&rdev->disable_work); 2463 2464 for (i = 0; i < count; i++) { 2465 ret = _regulator_disable(rdev); 2466 if (ret != 0) 2467 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2468 } 2469 2470 regulator_unlock(rdev); 2471 2472 if (rdev->supply) { 2473 for (i = 0; i < count; i++) { 2474 ret = regulator_disable(rdev->supply); 2475 if (ret != 0) { 2476 rdev_err(rdev, 2477 "Supply disable failed: %d\n", ret); 2478 } 2479 } 2480 } 2481 } 2482 2483 /** 2484 * regulator_disable_deferred - disable regulator output with delay 2485 * @regulator: regulator source 2486 * @ms: miliseconds until the regulator is disabled 2487 * 2488 * Execute regulator_disable() on the regulator after a delay. This 2489 * is intended for use with devices that require some time to quiesce. 2490 * 2491 * NOTE: this will only disable the regulator output if no other consumer 2492 * devices have it enabled, the regulator device supports disabling and 2493 * machine constraints permit this operation. 2494 */ 2495 int regulator_disable_deferred(struct regulator *regulator, int ms) 2496 { 2497 struct regulator_dev *rdev = regulator->rdev; 2498 2499 if (regulator->always_on) 2500 return 0; 2501 2502 if (!ms) 2503 return regulator_disable(regulator); 2504 2505 regulator_lock(rdev); 2506 rdev->deferred_disables++; 2507 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2508 msecs_to_jiffies(ms)); 2509 regulator_unlock(rdev); 2510 2511 return 0; 2512 } 2513 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2514 2515 static int _regulator_is_enabled(struct regulator_dev *rdev) 2516 { 2517 /* A GPIO control always takes precedence */ 2518 if (rdev->ena_pin) 2519 return rdev->ena_gpio_state; 2520 2521 /* If we don't know then assume that the regulator is always on */ 2522 if (!rdev->desc->ops->is_enabled) 2523 return 1; 2524 2525 return rdev->desc->ops->is_enabled(rdev); 2526 } 2527 2528 static int _regulator_list_voltage(struct regulator_dev *rdev, 2529 unsigned selector, int lock) 2530 { 2531 const struct regulator_ops *ops = rdev->desc->ops; 2532 int ret; 2533 2534 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2535 return rdev->desc->fixed_uV; 2536 2537 if (ops->list_voltage) { 2538 if (selector >= rdev->desc->n_voltages) 2539 return -EINVAL; 2540 if (lock) 2541 regulator_lock(rdev); 2542 ret = ops->list_voltage(rdev, selector); 2543 if (lock) 2544 regulator_unlock(rdev); 2545 } else if (rdev->is_switch && rdev->supply) { 2546 ret = _regulator_list_voltage(rdev->supply->rdev, 2547 selector, lock); 2548 } else { 2549 return -EINVAL; 2550 } 2551 2552 if (ret > 0) { 2553 if (ret < rdev->constraints->min_uV) 2554 ret = 0; 2555 else if (ret > rdev->constraints->max_uV) 2556 ret = 0; 2557 } 2558 2559 return ret; 2560 } 2561 2562 /** 2563 * regulator_is_enabled - is the regulator output enabled 2564 * @regulator: regulator source 2565 * 2566 * Returns positive if the regulator driver backing the source/client 2567 * has requested that the device be enabled, zero if it hasn't, else a 2568 * negative errno code. 2569 * 2570 * Note that the device backing this regulator handle can have multiple 2571 * users, so it might be enabled even if regulator_enable() was never 2572 * called for this particular source. 2573 */ 2574 int regulator_is_enabled(struct regulator *regulator) 2575 { 2576 int ret; 2577 2578 if (regulator->always_on) 2579 return 1; 2580 2581 mutex_lock(®ulator->rdev->mutex); 2582 ret = _regulator_is_enabled(regulator->rdev); 2583 mutex_unlock(®ulator->rdev->mutex); 2584 2585 return ret; 2586 } 2587 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2588 2589 /** 2590 * regulator_count_voltages - count regulator_list_voltage() selectors 2591 * @regulator: regulator source 2592 * 2593 * Returns number of selectors, or negative errno. Selectors are 2594 * numbered starting at zero, and typically correspond to bitfields 2595 * in hardware registers. 2596 */ 2597 int regulator_count_voltages(struct regulator *regulator) 2598 { 2599 struct regulator_dev *rdev = regulator->rdev; 2600 2601 if (rdev->desc->n_voltages) 2602 return rdev->desc->n_voltages; 2603 2604 if (!rdev->is_switch || !rdev->supply) 2605 return -EINVAL; 2606 2607 return regulator_count_voltages(rdev->supply); 2608 } 2609 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2610 2611 /** 2612 * regulator_list_voltage - enumerate supported voltages 2613 * @regulator: regulator source 2614 * @selector: identify voltage to list 2615 * Context: can sleep 2616 * 2617 * Returns a voltage that can be passed to @regulator_set_voltage(), 2618 * zero if this selector code can't be used on this system, or a 2619 * negative errno. 2620 */ 2621 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2622 { 2623 return _regulator_list_voltage(regulator->rdev, selector, 1); 2624 } 2625 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2626 2627 /** 2628 * regulator_get_regmap - get the regulator's register map 2629 * @regulator: regulator source 2630 * 2631 * Returns the register map for the given regulator, or an ERR_PTR value 2632 * if the regulator doesn't use regmap. 2633 */ 2634 struct regmap *regulator_get_regmap(struct regulator *regulator) 2635 { 2636 struct regmap *map = regulator->rdev->regmap; 2637 2638 return map ? map : ERR_PTR(-EOPNOTSUPP); 2639 } 2640 2641 /** 2642 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2643 * @regulator: regulator source 2644 * @vsel_reg: voltage selector register, output parameter 2645 * @vsel_mask: mask for voltage selector bitfield, output parameter 2646 * 2647 * Returns the hardware register offset and bitmask used for setting the 2648 * regulator voltage. This might be useful when configuring voltage-scaling 2649 * hardware or firmware that can make I2C requests behind the kernel's back, 2650 * for example. 2651 * 2652 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2653 * and 0 is returned, otherwise a negative errno is returned. 2654 */ 2655 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2656 unsigned *vsel_reg, 2657 unsigned *vsel_mask) 2658 { 2659 struct regulator_dev *rdev = regulator->rdev; 2660 const struct regulator_ops *ops = rdev->desc->ops; 2661 2662 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2663 return -EOPNOTSUPP; 2664 2665 *vsel_reg = rdev->desc->vsel_reg; 2666 *vsel_mask = rdev->desc->vsel_mask; 2667 2668 return 0; 2669 } 2670 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2671 2672 /** 2673 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2674 * @regulator: regulator source 2675 * @selector: identify voltage to list 2676 * 2677 * Converts the selector to a hardware-specific voltage selector that can be 2678 * directly written to the regulator registers. The address of the voltage 2679 * register can be determined by calling @regulator_get_hardware_vsel_register. 2680 * 2681 * On error a negative errno is returned. 2682 */ 2683 int regulator_list_hardware_vsel(struct regulator *regulator, 2684 unsigned selector) 2685 { 2686 struct regulator_dev *rdev = regulator->rdev; 2687 const struct regulator_ops *ops = rdev->desc->ops; 2688 2689 if (selector >= rdev->desc->n_voltages) 2690 return -EINVAL; 2691 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2692 return -EOPNOTSUPP; 2693 2694 return selector; 2695 } 2696 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2697 2698 /** 2699 * regulator_get_linear_step - return the voltage step size between VSEL values 2700 * @regulator: regulator source 2701 * 2702 * Returns the voltage step size between VSEL values for linear 2703 * regulators, or return 0 if the regulator isn't a linear regulator. 2704 */ 2705 unsigned int regulator_get_linear_step(struct regulator *regulator) 2706 { 2707 struct regulator_dev *rdev = regulator->rdev; 2708 2709 return rdev->desc->uV_step; 2710 } 2711 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2712 2713 /** 2714 * regulator_is_supported_voltage - check if a voltage range can be supported 2715 * 2716 * @regulator: Regulator to check. 2717 * @min_uV: Minimum required voltage in uV. 2718 * @max_uV: Maximum required voltage in uV. 2719 * 2720 * Returns a boolean or a negative error code. 2721 */ 2722 int regulator_is_supported_voltage(struct regulator *regulator, 2723 int min_uV, int max_uV) 2724 { 2725 struct regulator_dev *rdev = regulator->rdev; 2726 int i, voltages, ret; 2727 2728 /* If we can't change voltage check the current voltage */ 2729 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2730 ret = regulator_get_voltage(regulator); 2731 if (ret >= 0) 2732 return min_uV <= ret && ret <= max_uV; 2733 else 2734 return ret; 2735 } 2736 2737 /* Any voltage within constrains range is fine? */ 2738 if (rdev->desc->continuous_voltage_range) 2739 return min_uV >= rdev->constraints->min_uV && 2740 max_uV <= rdev->constraints->max_uV; 2741 2742 ret = regulator_count_voltages(regulator); 2743 if (ret < 0) 2744 return ret; 2745 voltages = ret; 2746 2747 for (i = 0; i < voltages; i++) { 2748 ret = regulator_list_voltage(regulator, i); 2749 2750 if (ret >= min_uV && ret <= max_uV) 2751 return 1; 2752 } 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2757 2758 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2759 int max_uV) 2760 { 2761 const struct regulator_desc *desc = rdev->desc; 2762 2763 if (desc->ops->map_voltage) 2764 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2765 2766 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2767 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2768 2769 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2770 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2771 2772 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2773 } 2774 2775 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2776 int min_uV, int max_uV, 2777 unsigned *selector) 2778 { 2779 struct pre_voltage_change_data data; 2780 int ret; 2781 2782 data.old_uV = _regulator_get_voltage(rdev); 2783 data.min_uV = min_uV; 2784 data.max_uV = max_uV; 2785 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2786 &data); 2787 if (ret & NOTIFY_STOP_MASK) 2788 return -EINVAL; 2789 2790 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2791 if (ret >= 0) 2792 return ret; 2793 2794 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2795 (void *)data.old_uV); 2796 2797 return ret; 2798 } 2799 2800 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2801 int uV, unsigned selector) 2802 { 2803 struct pre_voltage_change_data data; 2804 int ret; 2805 2806 data.old_uV = _regulator_get_voltage(rdev); 2807 data.min_uV = uV; 2808 data.max_uV = uV; 2809 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2810 &data); 2811 if (ret & NOTIFY_STOP_MASK) 2812 return -EINVAL; 2813 2814 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2815 if (ret >= 0) 2816 return ret; 2817 2818 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2819 (void *)data.old_uV); 2820 2821 return ret; 2822 } 2823 2824 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2825 int old_uV, int new_uV) 2826 { 2827 unsigned int ramp_delay = 0; 2828 2829 if (rdev->constraints->ramp_delay) 2830 ramp_delay = rdev->constraints->ramp_delay; 2831 else if (rdev->desc->ramp_delay) 2832 ramp_delay = rdev->desc->ramp_delay; 2833 else if (rdev->constraints->settling_time) 2834 return rdev->constraints->settling_time; 2835 else if (rdev->constraints->settling_time_up && 2836 (new_uV > old_uV)) 2837 return rdev->constraints->settling_time_up; 2838 else if (rdev->constraints->settling_time_down && 2839 (new_uV < old_uV)) 2840 return rdev->constraints->settling_time_down; 2841 2842 if (ramp_delay == 0) { 2843 rdev_dbg(rdev, "ramp_delay not set\n"); 2844 return 0; 2845 } 2846 2847 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2848 } 2849 2850 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2851 int min_uV, int max_uV) 2852 { 2853 int ret; 2854 int delay = 0; 2855 int best_val = 0; 2856 unsigned int selector; 2857 int old_selector = -1; 2858 const struct regulator_ops *ops = rdev->desc->ops; 2859 int old_uV = _regulator_get_voltage(rdev); 2860 2861 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2862 2863 min_uV += rdev->constraints->uV_offset; 2864 max_uV += rdev->constraints->uV_offset; 2865 2866 /* 2867 * If we can't obtain the old selector there is not enough 2868 * info to call set_voltage_time_sel(). 2869 */ 2870 if (_regulator_is_enabled(rdev) && 2871 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2872 old_selector = ops->get_voltage_sel(rdev); 2873 if (old_selector < 0) 2874 return old_selector; 2875 } 2876 2877 if (ops->set_voltage) { 2878 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2879 &selector); 2880 2881 if (ret >= 0) { 2882 if (ops->list_voltage) 2883 best_val = ops->list_voltage(rdev, 2884 selector); 2885 else 2886 best_val = _regulator_get_voltage(rdev); 2887 } 2888 2889 } else if (ops->set_voltage_sel) { 2890 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2891 if (ret >= 0) { 2892 best_val = ops->list_voltage(rdev, ret); 2893 if (min_uV <= best_val && max_uV >= best_val) { 2894 selector = ret; 2895 if (old_selector == selector) 2896 ret = 0; 2897 else 2898 ret = _regulator_call_set_voltage_sel( 2899 rdev, best_val, selector); 2900 } else { 2901 ret = -EINVAL; 2902 } 2903 } 2904 } else { 2905 ret = -EINVAL; 2906 } 2907 2908 if (ret) 2909 goto out; 2910 2911 if (ops->set_voltage_time_sel) { 2912 /* 2913 * Call set_voltage_time_sel if successfully obtained 2914 * old_selector 2915 */ 2916 if (old_selector >= 0 && old_selector != selector) 2917 delay = ops->set_voltage_time_sel(rdev, old_selector, 2918 selector); 2919 } else { 2920 if (old_uV != best_val) { 2921 if (ops->set_voltage_time) 2922 delay = ops->set_voltage_time(rdev, old_uV, 2923 best_val); 2924 else 2925 delay = _regulator_set_voltage_time(rdev, 2926 old_uV, 2927 best_val); 2928 } 2929 } 2930 2931 if (delay < 0) { 2932 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2933 delay = 0; 2934 } 2935 2936 /* Insert any necessary delays */ 2937 if (delay >= 1000) { 2938 mdelay(delay / 1000); 2939 udelay(delay % 1000); 2940 } else if (delay) { 2941 udelay(delay); 2942 } 2943 2944 if (best_val >= 0) { 2945 unsigned long data = best_val; 2946 2947 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2948 (void *)data); 2949 } 2950 2951 out: 2952 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2953 2954 return ret; 2955 } 2956 2957 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 2958 int min_uV, int max_uV, suspend_state_t state) 2959 { 2960 struct regulator_state *rstate; 2961 int uV, sel; 2962 2963 rstate = regulator_get_suspend_state(rdev, state); 2964 if (rstate == NULL) 2965 return -EINVAL; 2966 2967 if (min_uV < rstate->min_uV) 2968 min_uV = rstate->min_uV; 2969 if (max_uV > rstate->max_uV) 2970 max_uV = rstate->max_uV; 2971 2972 sel = regulator_map_voltage(rdev, min_uV, max_uV); 2973 if (sel < 0) 2974 return sel; 2975 2976 uV = rdev->desc->ops->list_voltage(rdev, sel); 2977 if (uV >= min_uV && uV <= max_uV) 2978 rstate->uV = uV; 2979 2980 return 0; 2981 } 2982 2983 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2984 int min_uV, int max_uV, 2985 suspend_state_t state) 2986 { 2987 struct regulator_dev *rdev = regulator->rdev; 2988 struct regulator_voltage *voltage = ®ulator->voltage[state]; 2989 int ret = 0; 2990 int old_min_uV, old_max_uV; 2991 int current_uV; 2992 int best_supply_uV = 0; 2993 int supply_change_uV = 0; 2994 2995 /* If we're setting the same range as last time the change 2996 * should be a noop (some cpufreq implementations use the same 2997 * voltage for multiple frequencies, for example). 2998 */ 2999 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3000 goto out; 3001 3002 /* If we're trying to set a range that overlaps the current voltage, 3003 * return successfully even though the regulator does not support 3004 * changing the voltage. 3005 */ 3006 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3007 current_uV = _regulator_get_voltage(rdev); 3008 if (min_uV <= current_uV && current_uV <= max_uV) { 3009 voltage->min_uV = min_uV; 3010 voltage->max_uV = max_uV; 3011 goto out; 3012 } 3013 } 3014 3015 /* sanity check */ 3016 if (!rdev->desc->ops->set_voltage && 3017 !rdev->desc->ops->set_voltage_sel) { 3018 ret = -EINVAL; 3019 goto out; 3020 } 3021 3022 /* constraints check */ 3023 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3024 if (ret < 0) 3025 goto out; 3026 3027 /* restore original values in case of error */ 3028 old_min_uV = voltage->min_uV; 3029 old_max_uV = voltage->max_uV; 3030 voltage->min_uV = min_uV; 3031 voltage->max_uV = max_uV; 3032 3033 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state); 3034 if (ret < 0) 3035 goto out2; 3036 3037 if (rdev->supply && 3038 regulator_ops_is_valid(rdev->supply->rdev, 3039 REGULATOR_CHANGE_VOLTAGE) && 3040 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3041 rdev->desc->ops->get_voltage_sel))) { 3042 int current_supply_uV; 3043 int selector; 3044 3045 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3046 if (selector < 0) { 3047 ret = selector; 3048 goto out2; 3049 } 3050 3051 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3052 if (best_supply_uV < 0) { 3053 ret = best_supply_uV; 3054 goto out2; 3055 } 3056 3057 best_supply_uV += rdev->desc->min_dropout_uV; 3058 3059 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 3060 if (current_supply_uV < 0) { 3061 ret = current_supply_uV; 3062 goto out2; 3063 } 3064 3065 supply_change_uV = best_supply_uV - current_supply_uV; 3066 } 3067 3068 if (supply_change_uV > 0) { 3069 ret = regulator_set_voltage_unlocked(rdev->supply, 3070 best_supply_uV, INT_MAX, state); 3071 if (ret) { 3072 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3073 ret); 3074 goto out2; 3075 } 3076 } 3077 3078 if (state == PM_SUSPEND_ON) 3079 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3080 else 3081 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3082 max_uV, state); 3083 if (ret < 0) 3084 goto out2; 3085 3086 if (supply_change_uV < 0) { 3087 ret = regulator_set_voltage_unlocked(rdev->supply, 3088 best_supply_uV, INT_MAX, state); 3089 if (ret) 3090 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3091 ret); 3092 /* No need to fail here */ 3093 ret = 0; 3094 } 3095 3096 out: 3097 return ret; 3098 out2: 3099 voltage->min_uV = old_min_uV; 3100 voltage->max_uV = old_max_uV; 3101 3102 return ret; 3103 } 3104 3105 /** 3106 * regulator_set_voltage - set regulator output voltage 3107 * @regulator: regulator source 3108 * @min_uV: Minimum required voltage in uV 3109 * @max_uV: Maximum acceptable voltage in uV 3110 * 3111 * Sets a voltage regulator to the desired output voltage. This can be set 3112 * during any regulator state. IOW, regulator can be disabled or enabled. 3113 * 3114 * If the regulator is enabled then the voltage will change to the new value 3115 * immediately otherwise if the regulator is disabled the regulator will 3116 * output at the new voltage when enabled. 3117 * 3118 * NOTE: If the regulator is shared between several devices then the lowest 3119 * request voltage that meets the system constraints will be used. 3120 * Regulator system constraints must be set for this regulator before 3121 * calling this function otherwise this call will fail. 3122 */ 3123 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3124 { 3125 int ret = 0; 3126 3127 regulator_lock_supply(regulator->rdev); 3128 3129 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3130 PM_SUSPEND_ON); 3131 3132 regulator_unlock_supply(regulator->rdev); 3133 3134 return ret; 3135 } 3136 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3137 3138 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3139 suspend_state_t state, bool en) 3140 { 3141 struct regulator_state *rstate; 3142 3143 rstate = regulator_get_suspend_state(rdev, state); 3144 if (rstate == NULL) 3145 return -EINVAL; 3146 3147 if (!rstate->changeable) 3148 return -EPERM; 3149 3150 rstate->enabled = en; 3151 3152 return 0; 3153 } 3154 3155 int regulator_suspend_enable(struct regulator_dev *rdev, 3156 suspend_state_t state) 3157 { 3158 return regulator_suspend_toggle(rdev, state, true); 3159 } 3160 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3161 3162 int regulator_suspend_disable(struct regulator_dev *rdev, 3163 suspend_state_t state) 3164 { 3165 struct regulator *regulator; 3166 struct regulator_voltage *voltage; 3167 3168 /* 3169 * if any consumer wants this regulator device keeping on in 3170 * suspend states, don't set it as disabled. 3171 */ 3172 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3173 voltage = ®ulator->voltage[state]; 3174 if (voltage->min_uV || voltage->max_uV) 3175 return 0; 3176 } 3177 3178 return regulator_suspend_toggle(rdev, state, false); 3179 } 3180 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3181 3182 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3183 int min_uV, int max_uV, 3184 suspend_state_t state) 3185 { 3186 struct regulator_dev *rdev = regulator->rdev; 3187 struct regulator_state *rstate; 3188 3189 rstate = regulator_get_suspend_state(rdev, state); 3190 if (rstate == NULL) 3191 return -EINVAL; 3192 3193 if (rstate->min_uV == rstate->max_uV) { 3194 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3195 return -EPERM; 3196 } 3197 3198 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3199 } 3200 3201 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3202 int max_uV, suspend_state_t state) 3203 { 3204 int ret = 0; 3205 3206 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3207 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3208 return -EINVAL; 3209 3210 regulator_lock_supply(regulator->rdev); 3211 3212 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3213 max_uV, state); 3214 3215 regulator_unlock_supply(regulator->rdev); 3216 3217 return ret; 3218 } 3219 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3220 3221 /** 3222 * regulator_set_voltage_time - get raise/fall time 3223 * @regulator: regulator source 3224 * @old_uV: starting voltage in microvolts 3225 * @new_uV: target voltage in microvolts 3226 * 3227 * Provided with the starting and ending voltage, this function attempts to 3228 * calculate the time in microseconds required to rise or fall to this new 3229 * voltage. 3230 */ 3231 int regulator_set_voltage_time(struct regulator *regulator, 3232 int old_uV, int new_uV) 3233 { 3234 struct regulator_dev *rdev = regulator->rdev; 3235 const struct regulator_ops *ops = rdev->desc->ops; 3236 int old_sel = -1; 3237 int new_sel = -1; 3238 int voltage; 3239 int i; 3240 3241 if (ops->set_voltage_time) 3242 return ops->set_voltage_time(rdev, old_uV, new_uV); 3243 else if (!ops->set_voltage_time_sel) 3244 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3245 3246 /* Currently requires operations to do this */ 3247 if (!ops->list_voltage || !rdev->desc->n_voltages) 3248 return -EINVAL; 3249 3250 for (i = 0; i < rdev->desc->n_voltages; i++) { 3251 /* We only look for exact voltage matches here */ 3252 voltage = regulator_list_voltage(regulator, i); 3253 if (voltage < 0) 3254 return -EINVAL; 3255 if (voltage == 0) 3256 continue; 3257 if (voltage == old_uV) 3258 old_sel = i; 3259 if (voltage == new_uV) 3260 new_sel = i; 3261 } 3262 3263 if (old_sel < 0 || new_sel < 0) 3264 return -EINVAL; 3265 3266 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3267 } 3268 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3269 3270 /** 3271 * regulator_set_voltage_time_sel - get raise/fall time 3272 * @rdev: regulator source device 3273 * @old_selector: selector for starting voltage 3274 * @new_selector: selector for target voltage 3275 * 3276 * Provided with the starting and target voltage selectors, this function 3277 * returns time in microseconds required to rise or fall to this new voltage 3278 * 3279 * Drivers providing ramp_delay in regulation_constraints can use this as their 3280 * set_voltage_time_sel() operation. 3281 */ 3282 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3283 unsigned int old_selector, 3284 unsigned int new_selector) 3285 { 3286 int old_volt, new_volt; 3287 3288 /* sanity check */ 3289 if (!rdev->desc->ops->list_voltage) 3290 return -EINVAL; 3291 3292 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3293 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3294 3295 if (rdev->desc->ops->set_voltage_time) 3296 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3297 new_volt); 3298 else 3299 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3300 } 3301 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3302 3303 /** 3304 * regulator_sync_voltage - re-apply last regulator output voltage 3305 * @regulator: regulator source 3306 * 3307 * Re-apply the last configured voltage. This is intended to be used 3308 * where some external control source the consumer is cooperating with 3309 * has caused the configured voltage to change. 3310 */ 3311 int regulator_sync_voltage(struct regulator *regulator) 3312 { 3313 struct regulator_dev *rdev = regulator->rdev; 3314 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3315 int ret, min_uV, max_uV; 3316 3317 regulator_lock(rdev); 3318 3319 if (!rdev->desc->ops->set_voltage && 3320 !rdev->desc->ops->set_voltage_sel) { 3321 ret = -EINVAL; 3322 goto out; 3323 } 3324 3325 /* This is only going to work if we've had a voltage configured. */ 3326 if (!voltage->min_uV && !voltage->max_uV) { 3327 ret = -EINVAL; 3328 goto out; 3329 } 3330 3331 min_uV = voltage->min_uV; 3332 max_uV = voltage->max_uV; 3333 3334 /* This should be a paranoia check... */ 3335 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3336 if (ret < 0) 3337 goto out; 3338 3339 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3340 if (ret < 0) 3341 goto out; 3342 3343 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3344 3345 out: 3346 regulator_unlock(rdev); 3347 return ret; 3348 } 3349 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3350 3351 static int _regulator_get_voltage(struct regulator_dev *rdev) 3352 { 3353 int sel, ret; 3354 bool bypassed; 3355 3356 if (rdev->desc->ops->get_bypass) { 3357 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3358 if (ret < 0) 3359 return ret; 3360 if (bypassed) { 3361 /* if bypassed the regulator must have a supply */ 3362 if (!rdev->supply) { 3363 rdev_err(rdev, 3364 "bypassed regulator has no supply!\n"); 3365 return -EPROBE_DEFER; 3366 } 3367 3368 return _regulator_get_voltage(rdev->supply->rdev); 3369 } 3370 } 3371 3372 if (rdev->desc->ops->get_voltage_sel) { 3373 sel = rdev->desc->ops->get_voltage_sel(rdev); 3374 if (sel < 0) 3375 return sel; 3376 ret = rdev->desc->ops->list_voltage(rdev, sel); 3377 } else if (rdev->desc->ops->get_voltage) { 3378 ret = rdev->desc->ops->get_voltage(rdev); 3379 } else if (rdev->desc->ops->list_voltage) { 3380 ret = rdev->desc->ops->list_voltage(rdev, 0); 3381 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3382 ret = rdev->desc->fixed_uV; 3383 } else if (rdev->supply) { 3384 ret = _regulator_get_voltage(rdev->supply->rdev); 3385 } else { 3386 return -EINVAL; 3387 } 3388 3389 if (ret < 0) 3390 return ret; 3391 return ret - rdev->constraints->uV_offset; 3392 } 3393 3394 /** 3395 * regulator_get_voltage - get regulator output voltage 3396 * @regulator: regulator source 3397 * 3398 * This returns the current regulator voltage in uV. 3399 * 3400 * NOTE: If the regulator is disabled it will return the voltage value. This 3401 * function should not be used to determine regulator state. 3402 */ 3403 int regulator_get_voltage(struct regulator *regulator) 3404 { 3405 int ret; 3406 3407 regulator_lock_supply(regulator->rdev); 3408 3409 ret = _regulator_get_voltage(regulator->rdev); 3410 3411 regulator_unlock_supply(regulator->rdev); 3412 3413 return ret; 3414 } 3415 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3416 3417 /** 3418 * regulator_set_current_limit - set regulator output current limit 3419 * @regulator: regulator source 3420 * @min_uA: Minimum supported current in uA 3421 * @max_uA: Maximum supported current in uA 3422 * 3423 * Sets current sink to the desired output current. This can be set during 3424 * any regulator state. IOW, regulator can be disabled or enabled. 3425 * 3426 * If the regulator is enabled then the current will change to the new value 3427 * immediately otherwise if the regulator is disabled the regulator will 3428 * output at the new current when enabled. 3429 * 3430 * NOTE: Regulator system constraints must be set for this regulator before 3431 * calling this function otherwise this call will fail. 3432 */ 3433 int regulator_set_current_limit(struct regulator *regulator, 3434 int min_uA, int max_uA) 3435 { 3436 struct regulator_dev *rdev = regulator->rdev; 3437 int ret; 3438 3439 regulator_lock(rdev); 3440 3441 /* sanity check */ 3442 if (!rdev->desc->ops->set_current_limit) { 3443 ret = -EINVAL; 3444 goto out; 3445 } 3446 3447 /* constraints check */ 3448 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3449 if (ret < 0) 3450 goto out; 3451 3452 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3453 out: 3454 regulator_unlock(rdev); 3455 return ret; 3456 } 3457 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3458 3459 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3460 { 3461 int ret; 3462 3463 regulator_lock(rdev); 3464 3465 /* sanity check */ 3466 if (!rdev->desc->ops->get_current_limit) { 3467 ret = -EINVAL; 3468 goto out; 3469 } 3470 3471 ret = rdev->desc->ops->get_current_limit(rdev); 3472 out: 3473 regulator_unlock(rdev); 3474 return ret; 3475 } 3476 3477 /** 3478 * regulator_get_current_limit - get regulator output current 3479 * @regulator: regulator source 3480 * 3481 * This returns the current supplied by the specified current sink in uA. 3482 * 3483 * NOTE: If the regulator is disabled it will return the current value. This 3484 * function should not be used to determine regulator state. 3485 */ 3486 int regulator_get_current_limit(struct regulator *regulator) 3487 { 3488 return _regulator_get_current_limit(regulator->rdev); 3489 } 3490 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3491 3492 /** 3493 * regulator_set_mode - set regulator operating mode 3494 * @regulator: regulator source 3495 * @mode: operating mode - one of the REGULATOR_MODE constants 3496 * 3497 * Set regulator operating mode to increase regulator efficiency or improve 3498 * regulation performance. 3499 * 3500 * NOTE: Regulator system constraints must be set for this regulator before 3501 * calling this function otherwise this call will fail. 3502 */ 3503 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3504 { 3505 struct regulator_dev *rdev = regulator->rdev; 3506 int ret; 3507 int regulator_curr_mode; 3508 3509 regulator_lock(rdev); 3510 3511 /* sanity check */ 3512 if (!rdev->desc->ops->set_mode) { 3513 ret = -EINVAL; 3514 goto out; 3515 } 3516 3517 /* return if the same mode is requested */ 3518 if (rdev->desc->ops->get_mode) { 3519 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3520 if (regulator_curr_mode == mode) { 3521 ret = 0; 3522 goto out; 3523 } 3524 } 3525 3526 /* constraints check */ 3527 ret = regulator_mode_constrain(rdev, &mode); 3528 if (ret < 0) 3529 goto out; 3530 3531 ret = rdev->desc->ops->set_mode(rdev, mode); 3532 out: 3533 regulator_unlock(rdev); 3534 return ret; 3535 } 3536 EXPORT_SYMBOL_GPL(regulator_set_mode); 3537 3538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3539 { 3540 int ret; 3541 3542 regulator_lock(rdev); 3543 3544 /* sanity check */ 3545 if (!rdev->desc->ops->get_mode) { 3546 ret = -EINVAL; 3547 goto out; 3548 } 3549 3550 ret = rdev->desc->ops->get_mode(rdev); 3551 out: 3552 regulator_unlock(rdev); 3553 return ret; 3554 } 3555 3556 /** 3557 * regulator_get_mode - get regulator operating mode 3558 * @regulator: regulator source 3559 * 3560 * Get the current regulator operating mode. 3561 */ 3562 unsigned int regulator_get_mode(struct regulator *regulator) 3563 { 3564 return _regulator_get_mode(regulator->rdev); 3565 } 3566 EXPORT_SYMBOL_GPL(regulator_get_mode); 3567 3568 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3569 unsigned int *flags) 3570 { 3571 int ret; 3572 3573 regulator_lock(rdev); 3574 3575 /* sanity check */ 3576 if (!rdev->desc->ops->get_error_flags) { 3577 ret = -EINVAL; 3578 goto out; 3579 } 3580 3581 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3582 out: 3583 regulator_unlock(rdev); 3584 return ret; 3585 } 3586 3587 /** 3588 * regulator_get_error_flags - get regulator error information 3589 * @regulator: regulator source 3590 * @flags: pointer to store error flags 3591 * 3592 * Get the current regulator error information. 3593 */ 3594 int regulator_get_error_flags(struct regulator *regulator, 3595 unsigned int *flags) 3596 { 3597 return _regulator_get_error_flags(regulator->rdev, flags); 3598 } 3599 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3600 3601 /** 3602 * regulator_set_load - set regulator load 3603 * @regulator: regulator source 3604 * @uA_load: load current 3605 * 3606 * Notifies the regulator core of a new device load. This is then used by 3607 * DRMS (if enabled by constraints) to set the most efficient regulator 3608 * operating mode for the new regulator loading. 3609 * 3610 * Consumer devices notify their supply regulator of the maximum power 3611 * they will require (can be taken from device datasheet in the power 3612 * consumption tables) when they change operational status and hence power 3613 * state. Examples of operational state changes that can affect power 3614 * consumption are :- 3615 * 3616 * o Device is opened / closed. 3617 * o Device I/O is about to begin or has just finished. 3618 * o Device is idling in between work. 3619 * 3620 * This information is also exported via sysfs to userspace. 3621 * 3622 * DRMS will sum the total requested load on the regulator and change 3623 * to the most efficient operating mode if platform constraints allow. 3624 * 3625 * On error a negative errno is returned. 3626 */ 3627 int regulator_set_load(struct regulator *regulator, int uA_load) 3628 { 3629 struct regulator_dev *rdev = regulator->rdev; 3630 int ret; 3631 3632 regulator_lock(rdev); 3633 regulator->uA_load = uA_load; 3634 ret = drms_uA_update(rdev); 3635 regulator_unlock(rdev); 3636 3637 return ret; 3638 } 3639 EXPORT_SYMBOL_GPL(regulator_set_load); 3640 3641 /** 3642 * regulator_allow_bypass - allow the regulator to go into bypass mode 3643 * 3644 * @regulator: Regulator to configure 3645 * @enable: enable or disable bypass mode 3646 * 3647 * Allow the regulator to go into bypass mode if all other consumers 3648 * for the regulator also enable bypass mode and the machine 3649 * constraints allow this. Bypass mode means that the regulator is 3650 * simply passing the input directly to the output with no regulation. 3651 */ 3652 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3653 { 3654 struct regulator_dev *rdev = regulator->rdev; 3655 int ret = 0; 3656 3657 if (!rdev->desc->ops->set_bypass) 3658 return 0; 3659 3660 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3661 return 0; 3662 3663 regulator_lock(rdev); 3664 3665 if (enable && !regulator->bypass) { 3666 rdev->bypass_count++; 3667 3668 if (rdev->bypass_count == rdev->open_count) { 3669 ret = rdev->desc->ops->set_bypass(rdev, enable); 3670 if (ret != 0) 3671 rdev->bypass_count--; 3672 } 3673 3674 } else if (!enable && regulator->bypass) { 3675 rdev->bypass_count--; 3676 3677 if (rdev->bypass_count != rdev->open_count) { 3678 ret = rdev->desc->ops->set_bypass(rdev, enable); 3679 if (ret != 0) 3680 rdev->bypass_count++; 3681 } 3682 } 3683 3684 if (ret == 0) 3685 regulator->bypass = enable; 3686 3687 regulator_unlock(rdev); 3688 3689 return ret; 3690 } 3691 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3692 3693 /** 3694 * regulator_register_notifier - register regulator event notifier 3695 * @regulator: regulator source 3696 * @nb: notifier block 3697 * 3698 * Register notifier block to receive regulator events. 3699 */ 3700 int regulator_register_notifier(struct regulator *regulator, 3701 struct notifier_block *nb) 3702 { 3703 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3704 nb); 3705 } 3706 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3707 3708 /** 3709 * regulator_unregister_notifier - unregister regulator event notifier 3710 * @regulator: regulator source 3711 * @nb: notifier block 3712 * 3713 * Unregister regulator event notifier block. 3714 */ 3715 int regulator_unregister_notifier(struct regulator *regulator, 3716 struct notifier_block *nb) 3717 { 3718 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3719 nb); 3720 } 3721 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3722 3723 /* notify regulator consumers and downstream regulator consumers. 3724 * Note mutex must be held by caller. 3725 */ 3726 static int _notifier_call_chain(struct regulator_dev *rdev, 3727 unsigned long event, void *data) 3728 { 3729 /* call rdev chain first */ 3730 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3731 } 3732 3733 /** 3734 * regulator_bulk_get - get multiple regulator consumers 3735 * 3736 * @dev: Device to supply 3737 * @num_consumers: Number of consumers to register 3738 * @consumers: Configuration of consumers; clients are stored here. 3739 * 3740 * @return 0 on success, an errno on failure. 3741 * 3742 * This helper function allows drivers to get several regulator 3743 * consumers in one operation. If any of the regulators cannot be 3744 * acquired then any regulators that were allocated will be freed 3745 * before returning to the caller. 3746 */ 3747 int regulator_bulk_get(struct device *dev, int num_consumers, 3748 struct regulator_bulk_data *consumers) 3749 { 3750 int i; 3751 int ret; 3752 3753 for (i = 0; i < num_consumers; i++) 3754 consumers[i].consumer = NULL; 3755 3756 for (i = 0; i < num_consumers; i++) { 3757 consumers[i].consumer = regulator_get(dev, 3758 consumers[i].supply); 3759 if (IS_ERR(consumers[i].consumer)) { 3760 ret = PTR_ERR(consumers[i].consumer); 3761 dev_err(dev, "Failed to get supply '%s': %d\n", 3762 consumers[i].supply, ret); 3763 consumers[i].consumer = NULL; 3764 goto err; 3765 } 3766 } 3767 3768 return 0; 3769 3770 err: 3771 while (--i >= 0) 3772 regulator_put(consumers[i].consumer); 3773 3774 return ret; 3775 } 3776 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3777 3778 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3779 { 3780 struct regulator_bulk_data *bulk = data; 3781 3782 bulk->ret = regulator_enable(bulk->consumer); 3783 } 3784 3785 /** 3786 * regulator_bulk_enable - enable multiple regulator consumers 3787 * 3788 * @num_consumers: Number of consumers 3789 * @consumers: Consumer data; clients are stored here. 3790 * @return 0 on success, an errno on failure 3791 * 3792 * This convenience API allows consumers to enable multiple regulator 3793 * clients in a single API call. If any consumers cannot be enabled 3794 * then any others that were enabled will be disabled again prior to 3795 * return. 3796 */ 3797 int regulator_bulk_enable(int num_consumers, 3798 struct regulator_bulk_data *consumers) 3799 { 3800 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3801 int i; 3802 int ret = 0; 3803 3804 for (i = 0; i < num_consumers; i++) { 3805 if (consumers[i].consumer->always_on) 3806 consumers[i].ret = 0; 3807 else 3808 async_schedule_domain(regulator_bulk_enable_async, 3809 &consumers[i], &async_domain); 3810 } 3811 3812 async_synchronize_full_domain(&async_domain); 3813 3814 /* If any consumer failed we need to unwind any that succeeded */ 3815 for (i = 0; i < num_consumers; i++) { 3816 if (consumers[i].ret != 0) { 3817 ret = consumers[i].ret; 3818 goto err; 3819 } 3820 } 3821 3822 return 0; 3823 3824 err: 3825 for (i = 0; i < num_consumers; i++) { 3826 if (consumers[i].ret < 0) 3827 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3828 consumers[i].ret); 3829 else 3830 regulator_disable(consumers[i].consumer); 3831 } 3832 3833 return ret; 3834 } 3835 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3836 3837 /** 3838 * regulator_bulk_disable - disable multiple regulator consumers 3839 * 3840 * @num_consumers: Number of consumers 3841 * @consumers: Consumer data; clients are stored here. 3842 * @return 0 on success, an errno on failure 3843 * 3844 * This convenience API allows consumers to disable multiple regulator 3845 * clients in a single API call. If any consumers cannot be disabled 3846 * then any others that were disabled will be enabled again prior to 3847 * return. 3848 */ 3849 int regulator_bulk_disable(int num_consumers, 3850 struct regulator_bulk_data *consumers) 3851 { 3852 int i; 3853 int ret, r; 3854 3855 for (i = num_consumers - 1; i >= 0; --i) { 3856 ret = regulator_disable(consumers[i].consumer); 3857 if (ret != 0) 3858 goto err; 3859 } 3860 3861 return 0; 3862 3863 err: 3864 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3865 for (++i; i < num_consumers; ++i) { 3866 r = regulator_enable(consumers[i].consumer); 3867 if (r != 0) 3868 pr_err("Failed to re-enable %s: %d\n", 3869 consumers[i].supply, r); 3870 } 3871 3872 return ret; 3873 } 3874 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3875 3876 /** 3877 * regulator_bulk_force_disable - force disable multiple regulator consumers 3878 * 3879 * @num_consumers: Number of consumers 3880 * @consumers: Consumer data; clients are stored here. 3881 * @return 0 on success, an errno on failure 3882 * 3883 * This convenience API allows consumers to forcibly disable multiple regulator 3884 * clients in a single API call. 3885 * NOTE: This should be used for situations when device damage will 3886 * likely occur if the regulators are not disabled (e.g. over temp). 3887 * Although regulator_force_disable function call for some consumers can 3888 * return error numbers, the function is called for all consumers. 3889 */ 3890 int regulator_bulk_force_disable(int num_consumers, 3891 struct regulator_bulk_data *consumers) 3892 { 3893 int i; 3894 int ret = 0; 3895 3896 for (i = 0; i < num_consumers; i++) { 3897 consumers[i].ret = 3898 regulator_force_disable(consumers[i].consumer); 3899 3900 /* Store first error for reporting */ 3901 if (consumers[i].ret && !ret) 3902 ret = consumers[i].ret; 3903 } 3904 3905 return ret; 3906 } 3907 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3908 3909 /** 3910 * regulator_bulk_free - free multiple regulator consumers 3911 * 3912 * @num_consumers: Number of consumers 3913 * @consumers: Consumer data; clients are stored here. 3914 * 3915 * This convenience API allows consumers to free multiple regulator 3916 * clients in a single API call. 3917 */ 3918 void regulator_bulk_free(int num_consumers, 3919 struct regulator_bulk_data *consumers) 3920 { 3921 int i; 3922 3923 for (i = 0; i < num_consumers; i++) { 3924 regulator_put(consumers[i].consumer); 3925 consumers[i].consumer = NULL; 3926 } 3927 } 3928 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3929 3930 /** 3931 * regulator_notifier_call_chain - call regulator event notifier 3932 * @rdev: regulator source 3933 * @event: notifier block 3934 * @data: callback-specific data. 3935 * 3936 * Called by regulator drivers to notify clients a regulator event has 3937 * occurred. We also notify regulator clients downstream. 3938 * Note lock must be held by caller. 3939 */ 3940 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3941 unsigned long event, void *data) 3942 { 3943 lockdep_assert_held_once(&rdev->mutex); 3944 3945 _notifier_call_chain(rdev, event, data); 3946 return NOTIFY_DONE; 3947 3948 } 3949 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3950 3951 /** 3952 * regulator_mode_to_status - convert a regulator mode into a status 3953 * 3954 * @mode: Mode to convert 3955 * 3956 * Convert a regulator mode into a status. 3957 */ 3958 int regulator_mode_to_status(unsigned int mode) 3959 { 3960 switch (mode) { 3961 case REGULATOR_MODE_FAST: 3962 return REGULATOR_STATUS_FAST; 3963 case REGULATOR_MODE_NORMAL: 3964 return REGULATOR_STATUS_NORMAL; 3965 case REGULATOR_MODE_IDLE: 3966 return REGULATOR_STATUS_IDLE; 3967 case REGULATOR_MODE_STANDBY: 3968 return REGULATOR_STATUS_STANDBY; 3969 default: 3970 return REGULATOR_STATUS_UNDEFINED; 3971 } 3972 } 3973 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3974 3975 static struct attribute *regulator_dev_attrs[] = { 3976 &dev_attr_name.attr, 3977 &dev_attr_num_users.attr, 3978 &dev_attr_type.attr, 3979 &dev_attr_microvolts.attr, 3980 &dev_attr_microamps.attr, 3981 &dev_attr_opmode.attr, 3982 &dev_attr_state.attr, 3983 &dev_attr_status.attr, 3984 &dev_attr_bypass.attr, 3985 &dev_attr_requested_microamps.attr, 3986 &dev_attr_min_microvolts.attr, 3987 &dev_attr_max_microvolts.attr, 3988 &dev_attr_min_microamps.attr, 3989 &dev_attr_max_microamps.attr, 3990 &dev_attr_suspend_standby_state.attr, 3991 &dev_attr_suspend_mem_state.attr, 3992 &dev_attr_suspend_disk_state.attr, 3993 &dev_attr_suspend_standby_microvolts.attr, 3994 &dev_attr_suspend_mem_microvolts.attr, 3995 &dev_attr_suspend_disk_microvolts.attr, 3996 &dev_attr_suspend_standby_mode.attr, 3997 &dev_attr_suspend_mem_mode.attr, 3998 &dev_attr_suspend_disk_mode.attr, 3999 NULL 4000 }; 4001 4002 /* 4003 * To avoid cluttering sysfs (and memory) with useless state, only 4004 * create attributes that can be meaningfully displayed. 4005 */ 4006 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4007 struct attribute *attr, int idx) 4008 { 4009 struct device *dev = kobj_to_dev(kobj); 4010 struct regulator_dev *rdev = dev_to_rdev(dev); 4011 const struct regulator_ops *ops = rdev->desc->ops; 4012 umode_t mode = attr->mode; 4013 4014 /* these three are always present */ 4015 if (attr == &dev_attr_name.attr || 4016 attr == &dev_attr_num_users.attr || 4017 attr == &dev_attr_type.attr) 4018 return mode; 4019 4020 /* some attributes need specific methods to be displayed */ 4021 if (attr == &dev_attr_microvolts.attr) { 4022 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4023 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4024 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4025 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4026 return mode; 4027 return 0; 4028 } 4029 4030 if (attr == &dev_attr_microamps.attr) 4031 return ops->get_current_limit ? mode : 0; 4032 4033 if (attr == &dev_attr_opmode.attr) 4034 return ops->get_mode ? mode : 0; 4035 4036 if (attr == &dev_attr_state.attr) 4037 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4038 4039 if (attr == &dev_attr_status.attr) 4040 return ops->get_status ? mode : 0; 4041 4042 if (attr == &dev_attr_bypass.attr) 4043 return ops->get_bypass ? mode : 0; 4044 4045 /* some attributes are type-specific */ 4046 if (attr == &dev_attr_requested_microamps.attr) 4047 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 4048 4049 /* constraints need specific supporting methods */ 4050 if (attr == &dev_attr_min_microvolts.attr || 4051 attr == &dev_attr_max_microvolts.attr) 4052 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4053 4054 if (attr == &dev_attr_min_microamps.attr || 4055 attr == &dev_attr_max_microamps.attr) 4056 return ops->set_current_limit ? mode : 0; 4057 4058 if (attr == &dev_attr_suspend_standby_state.attr || 4059 attr == &dev_attr_suspend_mem_state.attr || 4060 attr == &dev_attr_suspend_disk_state.attr) 4061 return mode; 4062 4063 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4064 attr == &dev_attr_suspend_mem_microvolts.attr || 4065 attr == &dev_attr_suspend_disk_microvolts.attr) 4066 return ops->set_suspend_voltage ? mode : 0; 4067 4068 if (attr == &dev_attr_suspend_standby_mode.attr || 4069 attr == &dev_attr_suspend_mem_mode.attr || 4070 attr == &dev_attr_suspend_disk_mode.attr) 4071 return ops->set_suspend_mode ? mode : 0; 4072 4073 return mode; 4074 } 4075 4076 static const struct attribute_group regulator_dev_group = { 4077 .attrs = regulator_dev_attrs, 4078 .is_visible = regulator_attr_is_visible, 4079 }; 4080 4081 static const struct attribute_group *regulator_dev_groups[] = { 4082 ®ulator_dev_group, 4083 NULL 4084 }; 4085 4086 static void regulator_dev_release(struct device *dev) 4087 { 4088 struct regulator_dev *rdev = dev_get_drvdata(dev); 4089 4090 kfree(rdev->constraints); 4091 of_node_put(rdev->dev.of_node); 4092 kfree(rdev); 4093 } 4094 4095 static void rdev_init_debugfs(struct regulator_dev *rdev) 4096 { 4097 struct device *parent = rdev->dev.parent; 4098 const char *rname = rdev_get_name(rdev); 4099 char name[NAME_MAX]; 4100 4101 /* Avoid duplicate debugfs directory names */ 4102 if (parent && rname == rdev->desc->name) { 4103 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4104 rname); 4105 rname = name; 4106 } 4107 4108 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4109 if (!rdev->debugfs) { 4110 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4111 return; 4112 } 4113 4114 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4115 &rdev->use_count); 4116 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4117 &rdev->open_count); 4118 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4119 &rdev->bypass_count); 4120 } 4121 4122 static int regulator_register_resolve_supply(struct device *dev, void *data) 4123 { 4124 struct regulator_dev *rdev = dev_to_rdev(dev); 4125 4126 if (regulator_resolve_supply(rdev)) 4127 rdev_dbg(rdev, "unable to resolve supply\n"); 4128 4129 return 0; 4130 } 4131 4132 static int regulator_fill_coupling_array(struct regulator_dev *rdev) 4133 { 4134 struct coupling_desc *c_desc = &rdev->coupling_desc; 4135 int n_coupled = c_desc->n_coupled; 4136 struct regulator_dev *c_rdev; 4137 int i; 4138 4139 for (i = 1; i < n_coupled; i++) { 4140 /* already resolved */ 4141 if (c_desc->coupled_rdevs[i]) 4142 continue; 4143 4144 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4145 4146 if (c_rdev) { 4147 c_desc->coupled_rdevs[i] = c_rdev; 4148 c_desc->n_resolved++; 4149 } 4150 } 4151 4152 if (rdev->coupling_desc.n_resolved < n_coupled) 4153 return -1; 4154 else 4155 return 0; 4156 } 4157 4158 static int regulator_register_fill_coupling_array(struct device *dev, 4159 void *data) 4160 { 4161 struct regulator_dev *rdev = dev_to_rdev(dev); 4162 4163 if (!IS_ENABLED(CONFIG_OF)) 4164 return 0; 4165 4166 if (regulator_fill_coupling_array(rdev)) 4167 rdev_dbg(rdev, "unable to resolve coupling\n"); 4168 4169 return 0; 4170 } 4171 4172 static int regulator_resolve_coupling(struct regulator_dev *rdev) 4173 { 4174 int n_phandles; 4175 4176 if (!IS_ENABLED(CONFIG_OF)) 4177 n_phandles = 0; 4178 else 4179 n_phandles = of_get_n_coupled(rdev); 4180 4181 if (n_phandles + 1 > MAX_COUPLED) { 4182 rdev_err(rdev, "too many regulators coupled\n"); 4183 return -EPERM; 4184 } 4185 4186 /* 4187 * Every regulator should always have coupling descriptor filled with 4188 * at least pointer to itself. 4189 */ 4190 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4191 rdev->coupling_desc.n_coupled = n_phandles + 1; 4192 rdev->coupling_desc.n_resolved++; 4193 4194 /* regulator isn't coupled */ 4195 if (n_phandles == 0) 4196 return 0; 4197 4198 /* regulator, which can't change its voltage, can't be coupled */ 4199 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 4200 rdev_err(rdev, "voltage operation not allowed\n"); 4201 return -EPERM; 4202 } 4203 4204 if (rdev->constraints->max_spread <= 0) { 4205 rdev_err(rdev, "wrong max_spread value\n"); 4206 return -EPERM; 4207 } 4208 4209 if (!of_check_coupling_data(rdev)) 4210 return -EPERM; 4211 4212 /* 4213 * After everything has been checked, try to fill rdevs array 4214 * with pointers to regulators parsed from device tree. If some 4215 * regulators are not registered yet, retry in late init call 4216 */ 4217 regulator_fill_coupling_array(rdev); 4218 4219 return 0; 4220 } 4221 4222 /** 4223 * regulator_register - register regulator 4224 * @regulator_desc: regulator to register 4225 * @cfg: runtime configuration for regulator 4226 * 4227 * Called by regulator drivers to register a regulator. 4228 * Returns a valid pointer to struct regulator_dev on success 4229 * or an ERR_PTR() on error. 4230 */ 4231 struct regulator_dev * 4232 regulator_register(const struct regulator_desc *regulator_desc, 4233 const struct regulator_config *cfg) 4234 { 4235 const struct regulation_constraints *constraints = NULL; 4236 const struct regulator_init_data *init_data; 4237 struct regulator_config *config = NULL; 4238 static atomic_t regulator_no = ATOMIC_INIT(-1); 4239 struct regulator_dev *rdev; 4240 struct device *dev; 4241 int ret, i; 4242 4243 if (regulator_desc == NULL || cfg == NULL) 4244 return ERR_PTR(-EINVAL); 4245 4246 dev = cfg->dev; 4247 WARN_ON(!dev); 4248 4249 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 4250 return ERR_PTR(-EINVAL); 4251 4252 if (regulator_desc->type != REGULATOR_VOLTAGE && 4253 regulator_desc->type != REGULATOR_CURRENT) 4254 return ERR_PTR(-EINVAL); 4255 4256 /* Only one of each should be implemented */ 4257 WARN_ON(regulator_desc->ops->get_voltage && 4258 regulator_desc->ops->get_voltage_sel); 4259 WARN_ON(regulator_desc->ops->set_voltage && 4260 regulator_desc->ops->set_voltage_sel); 4261 4262 /* If we're using selectors we must implement list_voltage. */ 4263 if (regulator_desc->ops->get_voltage_sel && 4264 !regulator_desc->ops->list_voltage) { 4265 return ERR_PTR(-EINVAL); 4266 } 4267 if (regulator_desc->ops->set_voltage_sel && 4268 !regulator_desc->ops->list_voltage) { 4269 return ERR_PTR(-EINVAL); 4270 } 4271 4272 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4273 if (rdev == NULL) 4274 return ERR_PTR(-ENOMEM); 4275 4276 /* 4277 * Duplicate the config so the driver could override it after 4278 * parsing init data. 4279 */ 4280 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4281 if (config == NULL) { 4282 kfree(rdev); 4283 return ERR_PTR(-ENOMEM); 4284 } 4285 4286 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4287 &rdev->dev.of_node); 4288 if (!init_data) { 4289 init_data = config->init_data; 4290 rdev->dev.of_node = of_node_get(config->of_node); 4291 } 4292 4293 mutex_init(&rdev->mutex); 4294 rdev->reg_data = config->driver_data; 4295 rdev->owner = regulator_desc->owner; 4296 rdev->desc = regulator_desc; 4297 if (config->regmap) 4298 rdev->regmap = config->regmap; 4299 else if (dev_get_regmap(dev, NULL)) 4300 rdev->regmap = dev_get_regmap(dev, NULL); 4301 else if (dev->parent) 4302 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4303 INIT_LIST_HEAD(&rdev->consumer_list); 4304 INIT_LIST_HEAD(&rdev->list); 4305 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4306 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4307 4308 /* preform any regulator specific init */ 4309 if (init_data && init_data->regulator_init) { 4310 ret = init_data->regulator_init(rdev->reg_data); 4311 if (ret < 0) 4312 goto clean; 4313 } 4314 4315 if (config->ena_gpiod || 4316 ((config->ena_gpio || config->ena_gpio_initialized) && 4317 gpio_is_valid(config->ena_gpio))) { 4318 mutex_lock(®ulator_list_mutex); 4319 ret = regulator_ena_gpio_request(rdev, config); 4320 mutex_unlock(®ulator_list_mutex); 4321 if (ret != 0) { 4322 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4323 config->ena_gpio, ret); 4324 goto clean; 4325 } 4326 } 4327 4328 /* register with sysfs */ 4329 rdev->dev.class = ®ulator_class; 4330 rdev->dev.parent = dev; 4331 dev_set_name(&rdev->dev, "regulator.%lu", 4332 (unsigned long) atomic_inc_return(®ulator_no)); 4333 4334 /* set regulator constraints */ 4335 if (init_data) 4336 constraints = &init_data->constraints; 4337 4338 if (init_data && init_data->supply_regulator) 4339 rdev->supply_name = init_data->supply_regulator; 4340 else if (regulator_desc->supply_name) 4341 rdev->supply_name = regulator_desc->supply_name; 4342 4343 /* 4344 * Attempt to resolve the regulator supply, if specified, 4345 * but don't return an error if we fail because we will try 4346 * to resolve it again later as more regulators are added. 4347 */ 4348 if (regulator_resolve_supply(rdev)) 4349 rdev_dbg(rdev, "unable to resolve supply\n"); 4350 4351 ret = set_machine_constraints(rdev, constraints); 4352 if (ret < 0) 4353 goto wash; 4354 4355 mutex_lock(®ulator_list_mutex); 4356 ret = regulator_resolve_coupling(rdev); 4357 mutex_unlock(®ulator_list_mutex); 4358 4359 if (ret != 0) 4360 goto wash; 4361 4362 /* add consumers devices */ 4363 if (init_data) { 4364 mutex_lock(®ulator_list_mutex); 4365 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4366 ret = set_consumer_device_supply(rdev, 4367 init_data->consumer_supplies[i].dev_name, 4368 init_data->consumer_supplies[i].supply); 4369 if (ret < 0) { 4370 mutex_unlock(®ulator_list_mutex); 4371 dev_err(dev, "Failed to set supply %s\n", 4372 init_data->consumer_supplies[i].supply); 4373 goto unset_supplies; 4374 } 4375 } 4376 mutex_unlock(®ulator_list_mutex); 4377 } 4378 4379 if (!rdev->desc->ops->get_voltage && 4380 !rdev->desc->ops->list_voltage && 4381 !rdev->desc->fixed_uV) 4382 rdev->is_switch = true; 4383 4384 ret = device_register(&rdev->dev); 4385 if (ret != 0) { 4386 put_device(&rdev->dev); 4387 goto unset_supplies; 4388 } 4389 4390 dev_set_drvdata(&rdev->dev, rdev); 4391 rdev_init_debugfs(rdev); 4392 4393 /* try to resolve regulators supply since a new one was registered */ 4394 class_for_each_device(®ulator_class, NULL, NULL, 4395 regulator_register_resolve_supply); 4396 kfree(config); 4397 return rdev; 4398 4399 unset_supplies: 4400 mutex_lock(®ulator_list_mutex); 4401 unset_regulator_supplies(rdev); 4402 mutex_unlock(®ulator_list_mutex); 4403 wash: 4404 kfree(rdev->constraints); 4405 mutex_lock(®ulator_list_mutex); 4406 regulator_ena_gpio_free(rdev); 4407 mutex_unlock(®ulator_list_mutex); 4408 clean: 4409 kfree(rdev); 4410 kfree(config); 4411 return ERR_PTR(ret); 4412 } 4413 EXPORT_SYMBOL_GPL(regulator_register); 4414 4415 /** 4416 * regulator_unregister - unregister regulator 4417 * @rdev: regulator to unregister 4418 * 4419 * Called by regulator drivers to unregister a regulator. 4420 */ 4421 void regulator_unregister(struct regulator_dev *rdev) 4422 { 4423 if (rdev == NULL) 4424 return; 4425 4426 if (rdev->supply) { 4427 while (rdev->use_count--) 4428 regulator_disable(rdev->supply); 4429 regulator_put(rdev->supply); 4430 } 4431 mutex_lock(®ulator_list_mutex); 4432 debugfs_remove_recursive(rdev->debugfs); 4433 flush_work(&rdev->disable_work.work); 4434 WARN_ON(rdev->open_count); 4435 unset_regulator_supplies(rdev); 4436 list_del(&rdev->list); 4437 regulator_ena_gpio_free(rdev); 4438 mutex_unlock(®ulator_list_mutex); 4439 device_unregister(&rdev->dev); 4440 } 4441 EXPORT_SYMBOL_GPL(regulator_unregister); 4442 4443 #ifdef CONFIG_SUSPEND 4444 static int _regulator_suspend_late(struct device *dev, void *data) 4445 { 4446 struct regulator_dev *rdev = dev_to_rdev(dev); 4447 suspend_state_t *state = data; 4448 int ret; 4449 4450 regulator_lock(rdev); 4451 ret = suspend_set_state(rdev, *state); 4452 regulator_unlock(rdev); 4453 4454 return ret; 4455 } 4456 4457 /** 4458 * regulator_suspend_late - prepare regulators for system wide suspend 4459 * @state: system suspend state 4460 * 4461 * Configure each regulator with it's suspend operating parameters for state. 4462 */ 4463 static int regulator_suspend_late(struct device *dev) 4464 { 4465 suspend_state_t state = pm_suspend_target_state; 4466 4467 return class_for_each_device(®ulator_class, NULL, &state, 4468 _regulator_suspend_late); 4469 } 4470 4471 static int _regulator_resume_early(struct device *dev, void *data) 4472 { 4473 int ret = 0; 4474 struct regulator_dev *rdev = dev_to_rdev(dev); 4475 suspend_state_t *state = data; 4476 struct regulator_state *rstate; 4477 4478 rstate = regulator_get_suspend_state(rdev, *state); 4479 if (rstate == NULL) 4480 return 0; 4481 4482 regulator_lock(rdev); 4483 4484 if (rdev->desc->ops->resume_early && 4485 (rstate->enabled == ENABLE_IN_SUSPEND || 4486 rstate->enabled == DISABLE_IN_SUSPEND)) 4487 ret = rdev->desc->ops->resume_early(rdev); 4488 4489 regulator_unlock(rdev); 4490 4491 return ret; 4492 } 4493 4494 static int regulator_resume_early(struct device *dev) 4495 { 4496 suspend_state_t state = pm_suspend_target_state; 4497 4498 return class_for_each_device(®ulator_class, NULL, &state, 4499 _regulator_resume_early); 4500 } 4501 4502 #else /* !CONFIG_SUSPEND */ 4503 4504 #define regulator_suspend_late NULL 4505 #define regulator_resume_early NULL 4506 4507 #endif /* !CONFIG_SUSPEND */ 4508 4509 #ifdef CONFIG_PM 4510 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 4511 .suspend_late = regulator_suspend_late, 4512 .resume_early = regulator_resume_early, 4513 }; 4514 #endif 4515 4516 struct class regulator_class = { 4517 .name = "regulator", 4518 .dev_release = regulator_dev_release, 4519 .dev_groups = regulator_dev_groups, 4520 #ifdef CONFIG_PM 4521 .pm = ®ulator_pm_ops, 4522 #endif 4523 }; 4524 /** 4525 * regulator_has_full_constraints - the system has fully specified constraints 4526 * 4527 * Calling this function will cause the regulator API to disable all 4528 * regulators which have a zero use count and don't have an always_on 4529 * constraint in a late_initcall. 4530 * 4531 * The intention is that this will become the default behaviour in a 4532 * future kernel release so users are encouraged to use this facility 4533 * now. 4534 */ 4535 void regulator_has_full_constraints(void) 4536 { 4537 has_full_constraints = 1; 4538 } 4539 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4540 4541 /** 4542 * rdev_get_drvdata - get rdev regulator driver data 4543 * @rdev: regulator 4544 * 4545 * Get rdev regulator driver private data. This call can be used in the 4546 * regulator driver context. 4547 */ 4548 void *rdev_get_drvdata(struct regulator_dev *rdev) 4549 { 4550 return rdev->reg_data; 4551 } 4552 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4553 4554 /** 4555 * regulator_get_drvdata - get regulator driver data 4556 * @regulator: regulator 4557 * 4558 * Get regulator driver private data. This call can be used in the consumer 4559 * driver context when non API regulator specific functions need to be called. 4560 */ 4561 void *regulator_get_drvdata(struct regulator *regulator) 4562 { 4563 return regulator->rdev->reg_data; 4564 } 4565 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4566 4567 /** 4568 * regulator_set_drvdata - set regulator driver data 4569 * @regulator: regulator 4570 * @data: data 4571 */ 4572 void regulator_set_drvdata(struct regulator *regulator, void *data) 4573 { 4574 regulator->rdev->reg_data = data; 4575 } 4576 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4577 4578 /** 4579 * regulator_get_id - get regulator ID 4580 * @rdev: regulator 4581 */ 4582 int rdev_get_id(struct regulator_dev *rdev) 4583 { 4584 return rdev->desc->id; 4585 } 4586 EXPORT_SYMBOL_GPL(rdev_get_id); 4587 4588 struct device *rdev_get_dev(struct regulator_dev *rdev) 4589 { 4590 return &rdev->dev; 4591 } 4592 EXPORT_SYMBOL_GPL(rdev_get_dev); 4593 4594 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4595 { 4596 return reg_init_data->driver_data; 4597 } 4598 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4599 4600 #ifdef CONFIG_DEBUG_FS 4601 static int supply_map_show(struct seq_file *sf, void *data) 4602 { 4603 struct regulator_map *map; 4604 4605 list_for_each_entry(map, ®ulator_map_list, list) { 4606 seq_printf(sf, "%s -> %s.%s\n", 4607 rdev_get_name(map->regulator), map->dev_name, 4608 map->supply); 4609 } 4610 4611 return 0; 4612 } 4613 4614 static int supply_map_open(struct inode *inode, struct file *file) 4615 { 4616 return single_open(file, supply_map_show, inode->i_private); 4617 } 4618 #endif 4619 4620 static const struct file_operations supply_map_fops = { 4621 #ifdef CONFIG_DEBUG_FS 4622 .open = supply_map_open, 4623 .read = seq_read, 4624 .llseek = seq_lseek, 4625 .release = single_release, 4626 #endif 4627 }; 4628 4629 #ifdef CONFIG_DEBUG_FS 4630 struct summary_data { 4631 struct seq_file *s; 4632 struct regulator_dev *parent; 4633 int level; 4634 }; 4635 4636 static void regulator_summary_show_subtree(struct seq_file *s, 4637 struct regulator_dev *rdev, 4638 int level); 4639 4640 static int regulator_summary_show_children(struct device *dev, void *data) 4641 { 4642 struct regulator_dev *rdev = dev_to_rdev(dev); 4643 struct summary_data *summary_data = data; 4644 4645 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4646 regulator_summary_show_subtree(summary_data->s, rdev, 4647 summary_data->level + 1); 4648 4649 return 0; 4650 } 4651 4652 static void regulator_summary_show_subtree(struct seq_file *s, 4653 struct regulator_dev *rdev, 4654 int level) 4655 { 4656 struct regulation_constraints *c; 4657 struct regulator *consumer; 4658 struct summary_data summary_data; 4659 4660 if (!rdev) 4661 return; 4662 4663 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4664 level * 3 + 1, "", 4665 30 - level * 3, rdev_get_name(rdev), 4666 rdev->use_count, rdev->open_count, rdev->bypass_count); 4667 4668 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4669 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4670 4671 c = rdev->constraints; 4672 if (c) { 4673 switch (rdev->desc->type) { 4674 case REGULATOR_VOLTAGE: 4675 seq_printf(s, "%5dmV %5dmV ", 4676 c->min_uV / 1000, c->max_uV / 1000); 4677 break; 4678 case REGULATOR_CURRENT: 4679 seq_printf(s, "%5dmA %5dmA ", 4680 c->min_uA / 1000, c->max_uA / 1000); 4681 break; 4682 } 4683 } 4684 4685 seq_puts(s, "\n"); 4686 4687 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4688 if (consumer->dev && consumer->dev->class == ®ulator_class) 4689 continue; 4690 4691 seq_printf(s, "%*s%-*s ", 4692 (level + 1) * 3 + 1, "", 4693 30 - (level + 1) * 3, 4694 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4695 4696 switch (rdev->desc->type) { 4697 case REGULATOR_VOLTAGE: 4698 seq_printf(s, "%37dmV %5dmV", 4699 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 4700 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 4701 break; 4702 case REGULATOR_CURRENT: 4703 break; 4704 } 4705 4706 seq_puts(s, "\n"); 4707 } 4708 4709 summary_data.s = s; 4710 summary_data.level = level; 4711 summary_data.parent = rdev; 4712 4713 class_for_each_device(®ulator_class, NULL, &summary_data, 4714 regulator_summary_show_children); 4715 } 4716 4717 static int regulator_summary_show_roots(struct device *dev, void *data) 4718 { 4719 struct regulator_dev *rdev = dev_to_rdev(dev); 4720 struct seq_file *s = data; 4721 4722 if (!rdev->supply) 4723 regulator_summary_show_subtree(s, rdev, 0); 4724 4725 return 0; 4726 } 4727 4728 static int regulator_summary_show(struct seq_file *s, void *data) 4729 { 4730 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4731 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4732 4733 class_for_each_device(®ulator_class, NULL, s, 4734 regulator_summary_show_roots); 4735 4736 return 0; 4737 } 4738 4739 static int regulator_summary_open(struct inode *inode, struct file *file) 4740 { 4741 return single_open(file, regulator_summary_show, inode->i_private); 4742 } 4743 #endif 4744 4745 static const struct file_operations regulator_summary_fops = { 4746 #ifdef CONFIG_DEBUG_FS 4747 .open = regulator_summary_open, 4748 .read = seq_read, 4749 .llseek = seq_lseek, 4750 .release = single_release, 4751 #endif 4752 }; 4753 4754 static int __init regulator_init(void) 4755 { 4756 int ret; 4757 4758 ret = class_register(®ulator_class); 4759 4760 debugfs_root = debugfs_create_dir("regulator", NULL); 4761 if (!debugfs_root) 4762 pr_warn("regulator: Failed to create debugfs directory\n"); 4763 4764 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4765 &supply_map_fops); 4766 4767 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4768 NULL, ®ulator_summary_fops); 4769 4770 regulator_dummy_init(); 4771 4772 return ret; 4773 } 4774 4775 /* init early to allow our consumers to complete system booting */ 4776 core_initcall(regulator_init); 4777 4778 static int __init regulator_late_cleanup(struct device *dev, void *data) 4779 { 4780 struct regulator_dev *rdev = dev_to_rdev(dev); 4781 const struct regulator_ops *ops = rdev->desc->ops; 4782 struct regulation_constraints *c = rdev->constraints; 4783 int enabled, ret; 4784 4785 if (c && c->always_on) 4786 return 0; 4787 4788 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4789 return 0; 4790 4791 regulator_lock(rdev); 4792 4793 if (rdev->use_count) 4794 goto unlock; 4795 4796 /* If we can't read the status assume it's on. */ 4797 if (ops->is_enabled) 4798 enabled = ops->is_enabled(rdev); 4799 else 4800 enabled = 1; 4801 4802 if (!enabled) 4803 goto unlock; 4804 4805 if (have_full_constraints()) { 4806 /* We log since this may kill the system if it goes 4807 * wrong. */ 4808 rdev_info(rdev, "disabling\n"); 4809 ret = _regulator_do_disable(rdev); 4810 if (ret != 0) 4811 rdev_err(rdev, "couldn't disable: %d\n", ret); 4812 } else { 4813 /* The intention is that in future we will 4814 * assume that full constraints are provided 4815 * so warn even if we aren't going to do 4816 * anything here. 4817 */ 4818 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4819 } 4820 4821 unlock: 4822 regulator_unlock(rdev); 4823 4824 return 0; 4825 } 4826 4827 static int __init regulator_init_complete(void) 4828 { 4829 /* 4830 * Since DT doesn't provide an idiomatic mechanism for 4831 * enabling full constraints and since it's much more natural 4832 * with DT to provide them just assume that a DT enabled 4833 * system has full constraints. 4834 */ 4835 if (of_have_populated_dt()) 4836 has_full_constraints = true; 4837 4838 /* 4839 * Regulators may had failed to resolve their input supplies 4840 * when were registered, either because the input supply was 4841 * not registered yet or because its parent device was not 4842 * bound yet. So attempt to resolve the input supplies for 4843 * pending regulators before trying to disable unused ones. 4844 */ 4845 class_for_each_device(®ulator_class, NULL, NULL, 4846 regulator_register_resolve_supply); 4847 4848 /* If we have a full configuration then disable any regulators 4849 * we have permission to change the status for and which are 4850 * not in use or always_on. This is effectively the default 4851 * for DT and ACPI as they have full constraints. 4852 */ 4853 class_for_each_device(®ulator_class, NULL, NULL, 4854 regulator_late_cleanup); 4855 4856 class_for_each_device(®ulator_class, NULL, NULL, 4857 regulator_register_fill_coupling_array); 4858 4859 return 0; 4860 } 4861 late_initcall_sync(regulator_init_complete); 4862