1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/mutex.h> 21 #include <linux/suspend.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/regulator/driver.h> 24 #include <linux/regulator/machine.h> 25 26 #define REGULATOR_VERSION "0.5" 27 28 static DEFINE_MUTEX(regulator_list_mutex); 29 static LIST_HEAD(regulator_list); 30 static LIST_HEAD(regulator_map_list); 31 static int has_full_constraints; 32 33 /* 34 * struct regulator_map 35 * 36 * Used to provide symbolic supply names to devices. 37 */ 38 struct regulator_map { 39 struct list_head list; 40 const char *dev_name; /* The dev_name() for the consumer */ 41 const char *supply; 42 struct regulator_dev *regulator; 43 }; 44 45 /* 46 * struct regulator 47 * 48 * One for each consumer device. 49 */ 50 struct regulator { 51 struct device *dev; 52 struct list_head list; 53 int uA_load; 54 int min_uV; 55 int max_uV; 56 char *supply_name; 57 struct device_attribute dev_attr; 58 struct regulator_dev *rdev; 59 }; 60 61 static int _regulator_is_enabled(struct regulator_dev *rdev); 62 static int _regulator_disable(struct regulator_dev *rdev); 63 static int _regulator_get_voltage(struct regulator_dev *rdev); 64 static int _regulator_get_current_limit(struct regulator_dev *rdev); 65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 66 static void _notifier_call_chain(struct regulator_dev *rdev, 67 unsigned long event, void *data); 68 69 /* gets the regulator for a given consumer device */ 70 static struct regulator *get_device_regulator(struct device *dev) 71 { 72 struct regulator *regulator = NULL; 73 struct regulator_dev *rdev; 74 75 mutex_lock(®ulator_list_mutex); 76 list_for_each_entry(rdev, ®ulator_list, list) { 77 mutex_lock(&rdev->mutex); 78 list_for_each_entry(regulator, &rdev->consumer_list, list) { 79 if (regulator->dev == dev) { 80 mutex_unlock(&rdev->mutex); 81 mutex_unlock(®ulator_list_mutex); 82 return regulator; 83 } 84 } 85 mutex_unlock(&rdev->mutex); 86 } 87 mutex_unlock(®ulator_list_mutex); 88 return NULL; 89 } 90 91 /* Platform voltage constraint check */ 92 static int regulator_check_voltage(struct regulator_dev *rdev, 93 int *min_uV, int *max_uV) 94 { 95 BUG_ON(*min_uV > *max_uV); 96 97 if (!rdev->constraints) { 98 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 99 rdev->desc->name); 100 return -ENODEV; 101 } 102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 103 printk(KERN_ERR "%s: operation not allowed for %s\n", 104 __func__, rdev->desc->name); 105 return -EPERM; 106 } 107 108 if (*max_uV > rdev->constraints->max_uV) 109 *max_uV = rdev->constraints->max_uV; 110 if (*min_uV < rdev->constraints->min_uV) 111 *min_uV = rdev->constraints->min_uV; 112 113 if (*min_uV > *max_uV) 114 return -EINVAL; 115 116 return 0; 117 } 118 119 /* current constraint check */ 120 static int regulator_check_current_limit(struct regulator_dev *rdev, 121 int *min_uA, int *max_uA) 122 { 123 BUG_ON(*min_uA > *max_uA); 124 125 if (!rdev->constraints) { 126 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 127 rdev->desc->name); 128 return -ENODEV; 129 } 130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 131 printk(KERN_ERR "%s: operation not allowed for %s\n", 132 __func__, rdev->desc->name); 133 return -EPERM; 134 } 135 136 if (*max_uA > rdev->constraints->max_uA) 137 *max_uA = rdev->constraints->max_uA; 138 if (*min_uA < rdev->constraints->min_uA) 139 *min_uA = rdev->constraints->min_uA; 140 141 if (*min_uA > *max_uA) 142 return -EINVAL; 143 144 return 0; 145 } 146 147 /* operating mode constraint check */ 148 static int regulator_check_mode(struct regulator_dev *rdev, int mode) 149 { 150 switch (mode) { 151 case REGULATOR_MODE_FAST: 152 case REGULATOR_MODE_NORMAL: 153 case REGULATOR_MODE_IDLE: 154 case REGULATOR_MODE_STANDBY: 155 break; 156 default: 157 return -EINVAL; 158 } 159 160 if (!rdev->constraints) { 161 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 162 rdev->desc->name); 163 return -ENODEV; 164 } 165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 166 printk(KERN_ERR "%s: operation not allowed for %s\n", 167 __func__, rdev->desc->name); 168 return -EPERM; 169 } 170 if (!(rdev->constraints->valid_modes_mask & mode)) { 171 printk(KERN_ERR "%s: invalid mode %x for %s\n", 172 __func__, mode, rdev->desc->name); 173 return -EINVAL; 174 } 175 return 0; 176 } 177 178 /* dynamic regulator mode switching constraint check */ 179 static int regulator_check_drms(struct regulator_dev *rdev) 180 { 181 if (!rdev->constraints) { 182 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 183 rdev->desc->name); 184 return -ENODEV; 185 } 186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 187 printk(KERN_ERR "%s: operation not allowed for %s\n", 188 __func__, rdev->desc->name); 189 return -EPERM; 190 } 191 return 0; 192 } 193 194 static ssize_t device_requested_uA_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct regulator *regulator; 198 199 regulator = get_device_regulator(dev); 200 if (regulator == NULL) 201 return 0; 202 203 return sprintf(buf, "%d\n", regulator->uA_load); 204 } 205 206 static ssize_t regulator_uV_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct regulator_dev *rdev = dev_get_drvdata(dev); 210 ssize_t ret; 211 212 mutex_lock(&rdev->mutex); 213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 214 mutex_unlock(&rdev->mutex); 215 216 return ret; 217 } 218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 219 220 static ssize_t regulator_uA_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct regulator_dev *rdev = dev_get_drvdata(dev); 224 225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 226 } 227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 228 229 static ssize_t regulator_name_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct regulator_dev *rdev = dev_get_drvdata(dev); 233 const char *name; 234 235 if (rdev->constraints && rdev->constraints->name) 236 name = rdev->constraints->name; 237 else if (rdev->desc->name) 238 name = rdev->desc->name; 239 else 240 name = ""; 241 242 return sprintf(buf, "%s\n", name); 243 } 244 245 static ssize_t regulator_print_opmode(char *buf, int mode) 246 { 247 switch (mode) { 248 case REGULATOR_MODE_FAST: 249 return sprintf(buf, "fast\n"); 250 case REGULATOR_MODE_NORMAL: 251 return sprintf(buf, "normal\n"); 252 case REGULATOR_MODE_IDLE: 253 return sprintf(buf, "idle\n"); 254 case REGULATOR_MODE_STANDBY: 255 return sprintf(buf, "standby\n"); 256 } 257 return sprintf(buf, "unknown\n"); 258 } 259 260 static ssize_t regulator_opmode_show(struct device *dev, 261 struct device_attribute *attr, char *buf) 262 { 263 struct regulator_dev *rdev = dev_get_drvdata(dev); 264 265 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 266 } 267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 268 269 static ssize_t regulator_print_state(char *buf, int state) 270 { 271 if (state > 0) 272 return sprintf(buf, "enabled\n"); 273 else if (state == 0) 274 return sprintf(buf, "disabled\n"); 275 else 276 return sprintf(buf, "unknown\n"); 277 } 278 279 static ssize_t regulator_state_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct regulator_dev *rdev = dev_get_drvdata(dev); 283 ssize_t ret; 284 285 mutex_lock(&rdev->mutex); 286 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 287 mutex_unlock(&rdev->mutex); 288 289 return ret; 290 } 291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 292 293 static ssize_t regulator_status_show(struct device *dev, 294 struct device_attribute *attr, char *buf) 295 { 296 struct regulator_dev *rdev = dev_get_drvdata(dev); 297 int status; 298 char *label; 299 300 status = rdev->desc->ops->get_status(rdev); 301 if (status < 0) 302 return status; 303 304 switch (status) { 305 case REGULATOR_STATUS_OFF: 306 label = "off"; 307 break; 308 case REGULATOR_STATUS_ON: 309 label = "on"; 310 break; 311 case REGULATOR_STATUS_ERROR: 312 label = "error"; 313 break; 314 case REGULATOR_STATUS_FAST: 315 label = "fast"; 316 break; 317 case REGULATOR_STATUS_NORMAL: 318 label = "normal"; 319 break; 320 case REGULATOR_STATUS_IDLE: 321 label = "idle"; 322 break; 323 case REGULATOR_STATUS_STANDBY: 324 label = "standby"; 325 break; 326 default: 327 return -ERANGE; 328 } 329 330 return sprintf(buf, "%s\n", label); 331 } 332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 333 334 static ssize_t regulator_min_uA_show(struct device *dev, 335 struct device_attribute *attr, char *buf) 336 { 337 struct regulator_dev *rdev = dev_get_drvdata(dev); 338 339 if (!rdev->constraints) 340 return sprintf(buf, "constraint not defined\n"); 341 342 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 343 } 344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 345 346 static ssize_t regulator_max_uA_show(struct device *dev, 347 struct device_attribute *attr, char *buf) 348 { 349 struct regulator_dev *rdev = dev_get_drvdata(dev); 350 351 if (!rdev->constraints) 352 return sprintf(buf, "constraint not defined\n"); 353 354 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 355 } 356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 357 358 static ssize_t regulator_min_uV_show(struct device *dev, 359 struct device_attribute *attr, char *buf) 360 { 361 struct regulator_dev *rdev = dev_get_drvdata(dev); 362 363 if (!rdev->constraints) 364 return sprintf(buf, "constraint not defined\n"); 365 366 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 367 } 368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 369 370 static ssize_t regulator_max_uV_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 375 if (!rdev->constraints) 376 return sprintf(buf, "constraint not defined\n"); 377 378 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 379 } 380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 381 382 static ssize_t regulator_total_uA_show(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct regulator_dev *rdev = dev_get_drvdata(dev); 386 struct regulator *regulator; 387 int uA = 0; 388 389 mutex_lock(&rdev->mutex); 390 list_for_each_entry(regulator, &rdev->consumer_list, list) 391 uA += regulator->uA_load; 392 mutex_unlock(&rdev->mutex); 393 return sprintf(buf, "%d\n", uA); 394 } 395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 396 397 static ssize_t regulator_num_users_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct regulator_dev *rdev = dev_get_drvdata(dev); 401 return sprintf(buf, "%d\n", rdev->use_count); 402 } 403 404 static ssize_t regulator_type_show(struct device *dev, 405 struct device_attribute *attr, char *buf) 406 { 407 struct regulator_dev *rdev = dev_get_drvdata(dev); 408 409 switch (rdev->desc->type) { 410 case REGULATOR_VOLTAGE: 411 return sprintf(buf, "voltage\n"); 412 case REGULATOR_CURRENT: 413 return sprintf(buf, "current\n"); 414 } 415 return sprintf(buf, "unknown\n"); 416 } 417 418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 419 struct device_attribute *attr, char *buf) 420 { 421 struct regulator_dev *rdev = dev_get_drvdata(dev); 422 423 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 424 } 425 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 426 regulator_suspend_mem_uV_show, NULL); 427 428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 429 struct device_attribute *attr, char *buf) 430 { 431 struct regulator_dev *rdev = dev_get_drvdata(dev); 432 433 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 434 } 435 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 436 regulator_suspend_disk_uV_show, NULL); 437 438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct regulator_dev *rdev = dev_get_drvdata(dev); 442 443 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 444 } 445 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 446 regulator_suspend_standby_uV_show, NULL); 447 448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 449 struct device_attribute *attr, char *buf) 450 { 451 struct regulator_dev *rdev = dev_get_drvdata(dev); 452 453 return regulator_print_opmode(buf, 454 rdev->constraints->state_mem.mode); 455 } 456 static DEVICE_ATTR(suspend_mem_mode, 0444, 457 regulator_suspend_mem_mode_show, NULL); 458 459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct regulator_dev *rdev = dev_get_drvdata(dev); 463 464 return regulator_print_opmode(buf, 465 rdev->constraints->state_disk.mode); 466 } 467 static DEVICE_ATTR(suspend_disk_mode, 0444, 468 regulator_suspend_disk_mode_show, NULL); 469 470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 471 struct device_attribute *attr, char *buf) 472 { 473 struct regulator_dev *rdev = dev_get_drvdata(dev); 474 475 return regulator_print_opmode(buf, 476 rdev->constraints->state_standby.mode); 477 } 478 static DEVICE_ATTR(suspend_standby_mode, 0444, 479 regulator_suspend_standby_mode_show, NULL); 480 481 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 482 struct device_attribute *attr, char *buf) 483 { 484 struct regulator_dev *rdev = dev_get_drvdata(dev); 485 486 return regulator_print_state(buf, 487 rdev->constraints->state_mem.enabled); 488 } 489 static DEVICE_ATTR(suspend_mem_state, 0444, 490 regulator_suspend_mem_state_show, NULL); 491 492 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct regulator_dev *rdev = dev_get_drvdata(dev); 496 497 return regulator_print_state(buf, 498 rdev->constraints->state_disk.enabled); 499 } 500 static DEVICE_ATTR(suspend_disk_state, 0444, 501 regulator_suspend_disk_state_show, NULL); 502 503 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 504 struct device_attribute *attr, char *buf) 505 { 506 struct regulator_dev *rdev = dev_get_drvdata(dev); 507 508 return regulator_print_state(buf, 509 rdev->constraints->state_standby.enabled); 510 } 511 static DEVICE_ATTR(suspend_standby_state, 0444, 512 regulator_suspend_standby_state_show, NULL); 513 514 515 /* 516 * These are the only attributes are present for all regulators. 517 * Other attributes are a function of regulator functionality. 518 */ 519 static struct device_attribute regulator_dev_attrs[] = { 520 __ATTR(name, 0444, regulator_name_show, NULL), 521 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 522 __ATTR(type, 0444, regulator_type_show, NULL), 523 __ATTR_NULL, 524 }; 525 526 static void regulator_dev_release(struct device *dev) 527 { 528 struct regulator_dev *rdev = dev_get_drvdata(dev); 529 kfree(rdev); 530 } 531 532 static struct class regulator_class = { 533 .name = "regulator", 534 .dev_release = regulator_dev_release, 535 .dev_attrs = regulator_dev_attrs, 536 }; 537 538 /* Calculate the new optimum regulator operating mode based on the new total 539 * consumer load. All locks held by caller */ 540 static void drms_uA_update(struct regulator_dev *rdev) 541 { 542 struct regulator *sibling; 543 int current_uA = 0, output_uV, input_uV, err; 544 unsigned int mode; 545 546 err = regulator_check_drms(rdev); 547 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 548 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode) 549 return; 550 551 /* get output voltage */ 552 output_uV = rdev->desc->ops->get_voltage(rdev); 553 if (output_uV <= 0) 554 return; 555 556 /* get input voltage */ 557 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 558 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 559 else 560 input_uV = rdev->constraints->input_uV; 561 if (input_uV <= 0) 562 return; 563 564 /* calc total requested load */ 565 list_for_each_entry(sibling, &rdev->consumer_list, list) 566 current_uA += sibling->uA_load; 567 568 /* now get the optimum mode for our new total regulator load */ 569 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 570 output_uV, current_uA); 571 572 /* check the new mode is allowed */ 573 err = regulator_check_mode(rdev, mode); 574 if (err == 0) 575 rdev->desc->ops->set_mode(rdev, mode); 576 } 577 578 static int suspend_set_state(struct regulator_dev *rdev, 579 struct regulator_state *rstate) 580 { 581 int ret = 0; 582 583 /* enable & disable are mandatory for suspend control */ 584 if (!rdev->desc->ops->set_suspend_enable || 585 !rdev->desc->ops->set_suspend_disable) { 586 printk(KERN_ERR "%s: no way to set suspend state\n", 587 __func__); 588 return -EINVAL; 589 } 590 591 if (rstate->enabled) 592 ret = rdev->desc->ops->set_suspend_enable(rdev); 593 else 594 ret = rdev->desc->ops->set_suspend_disable(rdev); 595 if (ret < 0) { 596 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); 597 return ret; 598 } 599 600 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 601 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 602 if (ret < 0) { 603 printk(KERN_ERR "%s: failed to set voltage\n", 604 __func__); 605 return ret; 606 } 607 } 608 609 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 610 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 611 if (ret < 0) { 612 printk(KERN_ERR "%s: failed to set mode\n", __func__); 613 return ret; 614 } 615 } 616 return ret; 617 } 618 619 /* locks held by caller */ 620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 621 { 622 if (!rdev->constraints) 623 return -EINVAL; 624 625 switch (state) { 626 case PM_SUSPEND_STANDBY: 627 return suspend_set_state(rdev, 628 &rdev->constraints->state_standby); 629 case PM_SUSPEND_MEM: 630 return suspend_set_state(rdev, 631 &rdev->constraints->state_mem); 632 case PM_SUSPEND_MAX: 633 return suspend_set_state(rdev, 634 &rdev->constraints->state_disk); 635 default: 636 return -EINVAL; 637 } 638 } 639 640 static void print_constraints(struct regulator_dev *rdev) 641 { 642 struct regulation_constraints *constraints = rdev->constraints; 643 char buf[80]; 644 int count; 645 646 if (rdev->desc->type == REGULATOR_VOLTAGE) { 647 if (constraints->min_uV == constraints->max_uV) 648 count = sprintf(buf, "%d mV ", 649 constraints->min_uV / 1000); 650 else 651 count = sprintf(buf, "%d <--> %d mV ", 652 constraints->min_uV / 1000, 653 constraints->max_uV / 1000); 654 } else { 655 if (constraints->min_uA == constraints->max_uA) 656 count = sprintf(buf, "%d mA ", 657 constraints->min_uA / 1000); 658 else 659 count = sprintf(buf, "%d <--> %d mA ", 660 constraints->min_uA / 1000, 661 constraints->max_uA / 1000); 662 } 663 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 664 count += sprintf(buf + count, "fast "); 665 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 666 count += sprintf(buf + count, "normal "); 667 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 668 count += sprintf(buf + count, "idle "); 669 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 670 count += sprintf(buf + count, "standby"); 671 672 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf); 673 } 674 675 /** 676 * set_machine_constraints - sets regulator constraints 677 * @rdev: regulator source 678 * @constraints: constraints to apply 679 * 680 * Allows platform initialisation code to define and constrain 681 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 682 * Constraints *must* be set by platform code in order for some 683 * regulator operations to proceed i.e. set_voltage, set_current_limit, 684 * set_mode. 685 */ 686 static int set_machine_constraints(struct regulator_dev *rdev, 687 struct regulation_constraints *constraints) 688 { 689 int ret = 0; 690 const char *name; 691 struct regulator_ops *ops = rdev->desc->ops; 692 693 if (constraints->name) 694 name = constraints->name; 695 else if (rdev->desc->name) 696 name = rdev->desc->name; 697 else 698 name = "regulator"; 699 700 /* constrain machine-level voltage specs to fit 701 * the actual range supported by this regulator. 702 */ 703 if (ops->list_voltage && rdev->desc->n_voltages) { 704 int count = rdev->desc->n_voltages; 705 int i; 706 int min_uV = INT_MAX; 707 int max_uV = INT_MIN; 708 int cmin = constraints->min_uV; 709 int cmax = constraints->max_uV; 710 711 /* it's safe to autoconfigure fixed-voltage supplies 712 and the constraints are used by list_voltage. */ 713 if (count == 1 && !cmin) { 714 cmin = 1; 715 cmax = INT_MAX; 716 constraints->min_uV = cmin; 717 constraints->max_uV = cmax; 718 } 719 720 /* voltage constraints are optional */ 721 if ((cmin == 0) && (cmax == 0)) 722 goto out; 723 724 /* else require explicit machine-level constraints */ 725 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 726 pr_err("%s: %s '%s' voltage constraints\n", 727 __func__, "invalid", name); 728 ret = -EINVAL; 729 goto out; 730 } 731 732 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 733 for (i = 0; i < count; i++) { 734 int value; 735 736 value = ops->list_voltage(rdev, i); 737 if (value <= 0) 738 continue; 739 740 /* maybe adjust [min_uV..max_uV] */ 741 if (value >= cmin && value < min_uV) 742 min_uV = value; 743 if (value <= cmax && value > max_uV) 744 max_uV = value; 745 } 746 747 /* final: [min_uV..max_uV] valid iff constraints valid */ 748 if (max_uV < min_uV) { 749 pr_err("%s: %s '%s' voltage constraints\n", 750 __func__, "unsupportable", name); 751 ret = -EINVAL; 752 goto out; 753 } 754 755 /* use regulator's subset of machine constraints */ 756 if (constraints->min_uV < min_uV) { 757 pr_debug("%s: override '%s' %s, %d -> %d\n", 758 __func__, name, "min_uV", 759 constraints->min_uV, min_uV); 760 constraints->min_uV = min_uV; 761 } 762 if (constraints->max_uV > max_uV) { 763 pr_debug("%s: override '%s' %s, %d -> %d\n", 764 __func__, name, "max_uV", 765 constraints->max_uV, max_uV); 766 constraints->max_uV = max_uV; 767 } 768 } 769 770 rdev->constraints = constraints; 771 772 /* do we need to apply the constraint voltage */ 773 if (rdev->constraints->apply_uV && 774 rdev->constraints->min_uV == rdev->constraints->max_uV && 775 ops->set_voltage) { 776 ret = ops->set_voltage(rdev, 777 rdev->constraints->min_uV, rdev->constraints->max_uV); 778 if (ret < 0) { 779 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", 780 __func__, 781 rdev->constraints->min_uV, name); 782 rdev->constraints = NULL; 783 goto out; 784 } 785 } 786 787 /* do we need to setup our suspend state */ 788 if (constraints->initial_state) { 789 ret = suspend_prepare(rdev, constraints->initial_state); 790 if (ret < 0) { 791 printk(KERN_ERR "%s: failed to set suspend state for %s\n", 792 __func__, name); 793 rdev->constraints = NULL; 794 goto out; 795 } 796 } 797 798 if (constraints->initial_mode) { 799 if (!ops->set_mode) { 800 printk(KERN_ERR "%s: no set_mode operation for %s\n", 801 __func__, name); 802 ret = -EINVAL; 803 goto out; 804 } 805 806 ret = ops->set_mode(rdev, constraints->initial_mode); 807 if (ret < 0) { 808 printk(KERN_ERR 809 "%s: failed to set initial mode for %s: %d\n", 810 __func__, name, ret); 811 goto out; 812 } 813 } 814 815 /* If the constraints say the regulator should be on at this point 816 * and we have control then make sure it is enabled. 817 */ 818 if ((constraints->always_on || constraints->boot_on) && ops->enable) { 819 ret = ops->enable(rdev); 820 if (ret < 0) { 821 printk(KERN_ERR "%s: failed to enable %s\n", 822 __func__, name); 823 rdev->constraints = NULL; 824 goto out; 825 } 826 } 827 828 print_constraints(rdev); 829 out: 830 return ret; 831 } 832 833 /** 834 * set_supply - set regulator supply regulator 835 * @rdev: regulator name 836 * @supply_rdev: supply regulator name 837 * 838 * Called by platform initialisation code to set the supply regulator for this 839 * regulator. This ensures that a regulators supply will also be enabled by the 840 * core if it's child is enabled. 841 */ 842 static int set_supply(struct regulator_dev *rdev, 843 struct regulator_dev *supply_rdev) 844 { 845 int err; 846 847 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, 848 "supply"); 849 if (err) { 850 printk(KERN_ERR 851 "%s: could not add device link %s err %d\n", 852 __func__, supply_rdev->dev.kobj.name, err); 853 goto out; 854 } 855 rdev->supply = supply_rdev; 856 list_add(&rdev->slist, &supply_rdev->supply_list); 857 out: 858 return err; 859 } 860 861 /** 862 * set_consumer_device_supply: Bind a regulator to a symbolic supply 863 * @rdev: regulator source 864 * @consumer_dev: device the supply applies to 865 * @consumer_dev_name: dev_name() string for device supply applies to 866 * @supply: symbolic name for supply 867 * 868 * Allows platform initialisation code to map physical regulator 869 * sources to symbolic names for supplies for use by devices. Devices 870 * should use these symbolic names to request regulators, avoiding the 871 * need to provide board-specific regulator names as platform data. 872 * 873 * Only one of consumer_dev and consumer_dev_name may be specified. 874 */ 875 static int set_consumer_device_supply(struct regulator_dev *rdev, 876 struct device *consumer_dev, const char *consumer_dev_name, 877 const char *supply) 878 { 879 struct regulator_map *node; 880 int has_dev; 881 882 if (consumer_dev && consumer_dev_name) 883 return -EINVAL; 884 885 if (!consumer_dev_name && consumer_dev) 886 consumer_dev_name = dev_name(consumer_dev); 887 888 if (supply == NULL) 889 return -EINVAL; 890 891 if (consumer_dev_name != NULL) 892 has_dev = 1; 893 else 894 has_dev = 0; 895 896 list_for_each_entry(node, ®ulator_map_list, list) { 897 if (consumer_dev_name != node->dev_name) 898 continue; 899 if (strcmp(node->supply, supply) != 0) 900 continue; 901 902 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", 903 dev_name(&node->regulator->dev), 904 node->regulator->desc->name, 905 supply, 906 dev_name(&rdev->dev), rdev->desc->name); 907 return -EBUSY; 908 } 909 910 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 911 if (node == NULL) 912 return -ENOMEM; 913 914 node->regulator = rdev; 915 node->supply = supply; 916 917 if (has_dev) { 918 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 919 if (node->dev_name == NULL) { 920 kfree(node); 921 return -ENOMEM; 922 } 923 } 924 925 list_add(&node->list, ®ulator_map_list); 926 return 0; 927 } 928 929 static void unset_consumer_device_supply(struct regulator_dev *rdev, 930 const char *consumer_dev_name, struct device *consumer_dev) 931 { 932 struct regulator_map *node, *n; 933 934 if (consumer_dev && !consumer_dev_name) 935 consumer_dev_name = dev_name(consumer_dev); 936 937 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 938 if (rdev != node->regulator) 939 continue; 940 941 if (consumer_dev_name && node->dev_name && 942 strcmp(consumer_dev_name, node->dev_name)) 943 continue; 944 945 list_del(&node->list); 946 kfree(node->dev_name); 947 kfree(node); 948 return; 949 } 950 } 951 952 static void unset_regulator_supplies(struct regulator_dev *rdev) 953 { 954 struct regulator_map *node, *n; 955 956 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 957 if (rdev == node->regulator) { 958 list_del(&node->list); 959 kfree(node->dev_name); 960 kfree(node); 961 return; 962 } 963 } 964 } 965 966 #define REG_STR_SIZE 32 967 968 static struct regulator *create_regulator(struct regulator_dev *rdev, 969 struct device *dev, 970 const char *supply_name) 971 { 972 struct regulator *regulator; 973 char buf[REG_STR_SIZE]; 974 int err, size; 975 976 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 977 if (regulator == NULL) 978 return NULL; 979 980 mutex_lock(&rdev->mutex); 981 regulator->rdev = rdev; 982 list_add(®ulator->list, &rdev->consumer_list); 983 984 if (dev) { 985 /* create a 'requested_microamps_name' sysfs entry */ 986 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", 987 supply_name); 988 if (size >= REG_STR_SIZE) 989 goto overflow_err; 990 991 regulator->dev = dev; 992 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 993 if (regulator->dev_attr.attr.name == NULL) 994 goto attr_name_err; 995 996 regulator->dev_attr.attr.owner = THIS_MODULE; 997 regulator->dev_attr.attr.mode = 0444; 998 regulator->dev_attr.show = device_requested_uA_show; 999 err = device_create_file(dev, ®ulator->dev_attr); 1000 if (err < 0) { 1001 printk(KERN_WARNING "%s: could not add regulator_dev" 1002 " load sysfs\n", __func__); 1003 goto attr_name_err; 1004 } 1005 1006 /* also add a link to the device sysfs entry */ 1007 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1008 dev->kobj.name, supply_name); 1009 if (size >= REG_STR_SIZE) 1010 goto attr_err; 1011 1012 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1013 if (regulator->supply_name == NULL) 1014 goto attr_err; 1015 1016 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1017 buf); 1018 if (err) { 1019 printk(KERN_WARNING 1020 "%s: could not add device link %s err %d\n", 1021 __func__, dev->kobj.name, err); 1022 device_remove_file(dev, ®ulator->dev_attr); 1023 goto link_name_err; 1024 } 1025 } 1026 mutex_unlock(&rdev->mutex); 1027 return regulator; 1028 link_name_err: 1029 kfree(regulator->supply_name); 1030 attr_err: 1031 device_remove_file(regulator->dev, ®ulator->dev_attr); 1032 attr_name_err: 1033 kfree(regulator->dev_attr.attr.name); 1034 overflow_err: 1035 list_del(®ulator->list); 1036 kfree(regulator); 1037 mutex_unlock(&rdev->mutex); 1038 return NULL; 1039 } 1040 1041 /* Internal regulator request function */ 1042 static struct regulator *_regulator_get(struct device *dev, const char *id, 1043 int exclusive) 1044 { 1045 struct regulator_dev *rdev; 1046 struct regulator_map *map; 1047 struct regulator *regulator = ERR_PTR(-ENODEV); 1048 const char *devname = NULL; 1049 int ret; 1050 1051 if (id == NULL) { 1052 printk(KERN_ERR "regulator: get() with no identifier\n"); 1053 return regulator; 1054 } 1055 1056 if (dev) 1057 devname = dev_name(dev); 1058 1059 mutex_lock(®ulator_list_mutex); 1060 1061 list_for_each_entry(map, ®ulator_map_list, list) { 1062 /* If the mapping has a device set up it must match */ 1063 if (map->dev_name && 1064 (!devname || strcmp(map->dev_name, devname))) 1065 continue; 1066 1067 if (strcmp(map->supply, id) == 0) { 1068 rdev = map->regulator; 1069 goto found; 1070 } 1071 } 1072 mutex_unlock(®ulator_list_mutex); 1073 return regulator; 1074 1075 found: 1076 if (rdev->exclusive) { 1077 regulator = ERR_PTR(-EPERM); 1078 goto out; 1079 } 1080 1081 if (exclusive && rdev->open_count) { 1082 regulator = ERR_PTR(-EBUSY); 1083 goto out; 1084 } 1085 1086 if (!try_module_get(rdev->owner)) 1087 goto out; 1088 1089 regulator = create_regulator(rdev, dev, id); 1090 if (regulator == NULL) { 1091 regulator = ERR_PTR(-ENOMEM); 1092 module_put(rdev->owner); 1093 } 1094 1095 rdev->open_count++; 1096 if (exclusive) { 1097 rdev->exclusive = 1; 1098 1099 ret = _regulator_is_enabled(rdev); 1100 if (ret > 0) 1101 rdev->use_count = 1; 1102 else 1103 rdev->use_count = 0; 1104 } 1105 1106 out: 1107 mutex_unlock(®ulator_list_mutex); 1108 1109 return regulator; 1110 } 1111 1112 /** 1113 * regulator_get - lookup and obtain a reference to a regulator. 1114 * @dev: device for regulator "consumer" 1115 * @id: Supply name or regulator ID. 1116 * 1117 * Returns a struct regulator corresponding to the regulator producer, 1118 * or IS_ERR() condition containing errno. 1119 * 1120 * Use of supply names configured via regulator_set_device_supply() is 1121 * strongly encouraged. It is recommended that the supply name used 1122 * should match the name used for the supply and/or the relevant 1123 * device pins in the datasheet. 1124 */ 1125 struct regulator *regulator_get(struct device *dev, const char *id) 1126 { 1127 return _regulator_get(dev, id, 0); 1128 } 1129 EXPORT_SYMBOL_GPL(regulator_get); 1130 1131 /** 1132 * regulator_get_exclusive - obtain exclusive access to a regulator. 1133 * @dev: device for regulator "consumer" 1134 * @id: Supply name or regulator ID. 1135 * 1136 * Returns a struct regulator corresponding to the regulator producer, 1137 * or IS_ERR() condition containing errno. Other consumers will be 1138 * unable to obtain this reference is held and the use count for the 1139 * regulator will be initialised to reflect the current state of the 1140 * regulator. 1141 * 1142 * This is intended for use by consumers which cannot tolerate shared 1143 * use of the regulator such as those which need to force the 1144 * regulator off for correct operation of the hardware they are 1145 * controlling. 1146 * 1147 * Use of supply names configured via regulator_set_device_supply() is 1148 * strongly encouraged. It is recommended that the supply name used 1149 * should match the name used for the supply and/or the relevant 1150 * device pins in the datasheet. 1151 */ 1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1153 { 1154 return _regulator_get(dev, id, 1); 1155 } 1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1157 1158 /** 1159 * regulator_put - "free" the regulator source 1160 * @regulator: regulator source 1161 * 1162 * Note: drivers must ensure that all regulator_enable calls made on this 1163 * regulator source are balanced by regulator_disable calls prior to calling 1164 * this function. 1165 */ 1166 void regulator_put(struct regulator *regulator) 1167 { 1168 struct regulator_dev *rdev; 1169 1170 if (regulator == NULL || IS_ERR(regulator)) 1171 return; 1172 1173 mutex_lock(®ulator_list_mutex); 1174 rdev = regulator->rdev; 1175 1176 /* remove any sysfs entries */ 1177 if (regulator->dev) { 1178 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1179 kfree(regulator->supply_name); 1180 device_remove_file(regulator->dev, ®ulator->dev_attr); 1181 kfree(regulator->dev_attr.attr.name); 1182 } 1183 list_del(®ulator->list); 1184 kfree(regulator); 1185 1186 rdev->open_count--; 1187 rdev->exclusive = 0; 1188 1189 module_put(rdev->owner); 1190 mutex_unlock(®ulator_list_mutex); 1191 } 1192 EXPORT_SYMBOL_GPL(regulator_put); 1193 1194 static int _regulator_can_change_status(struct regulator_dev *rdev) 1195 { 1196 if (!rdev->constraints) 1197 return 0; 1198 1199 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 1200 return 1; 1201 else 1202 return 0; 1203 } 1204 1205 /* locks held by regulator_enable() */ 1206 static int _regulator_enable(struct regulator_dev *rdev) 1207 { 1208 int ret; 1209 1210 /* do we need to enable the supply regulator first */ 1211 if (rdev->supply) { 1212 ret = _regulator_enable(rdev->supply); 1213 if (ret < 0) { 1214 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1215 __func__, rdev->desc->name, ret); 1216 return ret; 1217 } 1218 } 1219 1220 /* check voltage and requested load before enabling */ 1221 if (rdev->constraints && 1222 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1223 drms_uA_update(rdev); 1224 1225 if (rdev->use_count == 0) { 1226 /* The regulator may on if it's not switchable or left on */ 1227 ret = _regulator_is_enabled(rdev); 1228 if (ret == -EINVAL || ret == 0) { 1229 if (!_regulator_can_change_status(rdev)) 1230 return -EPERM; 1231 1232 if (rdev->desc->ops->enable) { 1233 ret = rdev->desc->ops->enable(rdev); 1234 if (ret < 0) 1235 return ret; 1236 } else { 1237 return -EINVAL; 1238 } 1239 } else if (ret < 0) { 1240 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n", 1241 __func__, rdev->desc->name, ret); 1242 return ret; 1243 } 1244 /* Fallthrough on positive return values - already enabled */ 1245 } 1246 1247 rdev->use_count++; 1248 1249 return 0; 1250 } 1251 1252 /** 1253 * regulator_enable - enable regulator output 1254 * @regulator: regulator source 1255 * 1256 * Request that the regulator be enabled with the regulator output at 1257 * the predefined voltage or current value. Calls to regulator_enable() 1258 * must be balanced with calls to regulator_disable(). 1259 * 1260 * NOTE: the output value can be set by other drivers, boot loader or may be 1261 * hardwired in the regulator. 1262 */ 1263 int regulator_enable(struct regulator *regulator) 1264 { 1265 struct regulator_dev *rdev = regulator->rdev; 1266 int ret = 0; 1267 1268 mutex_lock(&rdev->mutex); 1269 ret = _regulator_enable(rdev); 1270 mutex_unlock(&rdev->mutex); 1271 return ret; 1272 } 1273 EXPORT_SYMBOL_GPL(regulator_enable); 1274 1275 /* locks held by regulator_disable() */ 1276 static int _regulator_disable(struct regulator_dev *rdev) 1277 { 1278 int ret = 0; 1279 1280 if (WARN(rdev->use_count <= 0, 1281 "unbalanced disables for %s\n", 1282 rdev->desc->name)) 1283 return -EIO; 1284 1285 /* are we the last user and permitted to disable ? */ 1286 if (rdev->use_count == 1 && !rdev->constraints->always_on) { 1287 1288 /* we are last user */ 1289 if (_regulator_can_change_status(rdev) && 1290 rdev->desc->ops->disable) { 1291 ret = rdev->desc->ops->disable(rdev); 1292 if (ret < 0) { 1293 printk(KERN_ERR "%s: failed to disable %s\n", 1294 __func__, rdev->desc->name); 1295 return ret; 1296 } 1297 } 1298 1299 /* decrease our supplies ref count and disable if required */ 1300 if (rdev->supply) 1301 _regulator_disable(rdev->supply); 1302 1303 rdev->use_count = 0; 1304 } else if (rdev->use_count > 1) { 1305 1306 if (rdev->constraints && 1307 (rdev->constraints->valid_ops_mask & 1308 REGULATOR_CHANGE_DRMS)) 1309 drms_uA_update(rdev); 1310 1311 rdev->use_count--; 1312 } 1313 return ret; 1314 } 1315 1316 /** 1317 * regulator_disable - disable regulator output 1318 * @regulator: regulator source 1319 * 1320 * Disable the regulator output voltage or current. Calls to 1321 * regulator_enable() must be balanced with calls to 1322 * regulator_disable(). 1323 * 1324 * NOTE: this will only disable the regulator output if no other consumer 1325 * devices have it enabled, the regulator device supports disabling and 1326 * machine constraints permit this operation. 1327 */ 1328 int regulator_disable(struct regulator *regulator) 1329 { 1330 struct regulator_dev *rdev = regulator->rdev; 1331 int ret = 0; 1332 1333 mutex_lock(&rdev->mutex); 1334 ret = _regulator_disable(rdev); 1335 mutex_unlock(&rdev->mutex); 1336 return ret; 1337 } 1338 EXPORT_SYMBOL_GPL(regulator_disable); 1339 1340 /* locks held by regulator_force_disable() */ 1341 static int _regulator_force_disable(struct regulator_dev *rdev) 1342 { 1343 int ret = 0; 1344 1345 /* force disable */ 1346 if (rdev->desc->ops->disable) { 1347 /* ah well, who wants to live forever... */ 1348 ret = rdev->desc->ops->disable(rdev); 1349 if (ret < 0) { 1350 printk(KERN_ERR "%s: failed to force disable %s\n", 1351 __func__, rdev->desc->name); 1352 return ret; 1353 } 1354 /* notify other consumers that power has been forced off */ 1355 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, 1356 NULL); 1357 } 1358 1359 /* decrease our supplies ref count and disable if required */ 1360 if (rdev->supply) 1361 _regulator_disable(rdev->supply); 1362 1363 rdev->use_count = 0; 1364 return ret; 1365 } 1366 1367 /** 1368 * regulator_force_disable - force disable regulator output 1369 * @regulator: regulator source 1370 * 1371 * Forcibly disable the regulator output voltage or current. 1372 * NOTE: this *will* disable the regulator output even if other consumer 1373 * devices have it enabled. This should be used for situations when device 1374 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1375 */ 1376 int regulator_force_disable(struct regulator *regulator) 1377 { 1378 int ret; 1379 1380 mutex_lock(®ulator->rdev->mutex); 1381 regulator->uA_load = 0; 1382 ret = _regulator_force_disable(regulator->rdev); 1383 mutex_unlock(®ulator->rdev->mutex); 1384 return ret; 1385 } 1386 EXPORT_SYMBOL_GPL(regulator_force_disable); 1387 1388 static int _regulator_is_enabled(struct regulator_dev *rdev) 1389 { 1390 /* sanity check */ 1391 if (!rdev->desc->ops->is_enabled) 1392 return -EINVAL; 1393 1394 return rdev->desc->ops->is_enabled(rdev); 1395 } 1396 1397 /** 1398 * regulator_is_enabled - is the regulator output enabled 1399 * @regulator: regulator source 1400 * 1401 * Returns positive if the regulator driver backing the source/client 1402 * has requested that the device be enabled, zero if it hasn't, else a 1403 * negative errno code. 1404 * 1405 * Note that the device backing this regulator handle can have multiple 1406 * users, so it might be enabled even if regulator_enable() was never 1407 * called for this particular source. 1408 */ 1409 int regulator_is_enabled(struct regulator *regulator) 1410 { 1411 int ret; 1412 1413 mutex_lock(®ulator->rdev->mutex); 1414 ret = _regulator_is_enabled(regulator->rdev); 1415 mutex_unlock(®ulator->rdev->mutex); 1416 1417 return ret; 1418 } 1419 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1420 1421 /** 1422 * regulator_count_voltages - count regulator_list_voltage() selectors 1423 * @regulator: regulator source 1424 * 1425 * Returns number of selectors, or negative errno. Selectors are 1426 * numbered starting at zero, and typically correspond to bitfields 1427 * in hardware registers. 1428 */ 1429 int regulator_count_voltages(struct regulator *regulator) 1430 { 1431 struct regulator_dev *rdev = regulator->rdev; 1432 1433 return rdev->desc->n_voltages ? : -EINVAL; 1434 } 1435 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1436 1437 /** 1438 * regulator_list_voltage - enumerate supported voltages 1439 * @regulator: regulator source 1440 * @selector: identify voltage to list 1441 * Context: can sleep 1442 * 1443 * Returns a voltage that can be passed to @regulator_set_voltage(), 1444 * zero if this selector code can't be used on this sytem, or a 1445 * negative errno. 1446 */ 1447 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1448 { 1449 struct regulator_dev *rdev = regulator->rdev; 1450 struct regulator_ops *ops = rdev->desc->ops; 1451 int ret; 1452 1453 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1454 return -EINVAL; 1455 1456 mutex_lock(&rdev->mutex); 1457 ret = ops->list_voltage(rdev, selector); 1458 mutex_unlock(&rdev->mutex); 1459 1460 if (ret > 0) { 1461 if (ret < rdev->constraints->min_uV) 1462 ret = 0; 1463 else if (ret > rdev->constraints->max_uV) 1464 ret = 0; 1465 } 1466 1467 return ret; 1468 } 1469 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1470 1471 /** 1472 * regulator_is_supported_voltage - check if a voltage range can be supported 1473 * 1474 * @regulator: Regulator to check. 1475 * @min_uV: Minimum required voltage in uV. 1476 * @max_uV: Maximum required voltage in uV. 1477 * 1478 * Returns a boolean or a negative error code. 1479 */ 1480 int regulator_is_supported_voltage(struct regulator *regulator, 1481 int min_uV, int max_uV) 1482 { 1483 int i, voltages, ret; 1484 1485 ret = regulator_count_voltages(regulator); 1486 if (ret < 0) 1487 return ret; 1488 voltages = ret; 1489 1490 for (i = 0; i < voltages; i++) { 1491 ret = regulator_list_voltage(regulator, i); 1492 1493 if (ret >= min_uV && ret <= max_uV) 1494 return 1; 1495 } 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * regulator_set_voltage - set regulator output voltage 1502 * @regulator: regulator source 1503 * @min_uV: Minimum required voltage in uV 1504 * @max_uV: Maximum acceptable voltage in uV 1505 * 1506 * Sets a voltage regulator to the desired output voltage. This can be set 1507 * during any regulator state. IOW, regulator can be disabled or enabled. 1508 * 1509 * If the regulator is enabled then the voltage will change to the new value 1510 * immediately otherwise if the regulator is disabled the regulator will 1511 * output at the new voltage when enabled. 1512 * 1513 * NOTE: If the regulator is shared between several devices then the lowest 1514 * request voltage that meets the system constraints will be used. 1515 * Regulator system constraints must be set for this regulator before 1516 * calling this function otherwise this call will fail. 1517 */ 1518 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1519 { 1520 struct regulator_dev *rdev = regulator->rdev; 1521 int ret; 1522 1523 mutex_lock(&rdev->mutex); 1524 1525 /* sanity check */ 1526 if (!rdev->desc->ops->set_voltage) { 1527 ret = -EINVAL; 1528 goto out; 1529 } 1530 1531 /* constraints check */ 1532 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1533 if (ret < 0) 1534 goto out; 1535 regulator->min_uV = min_uV; 1536 regulator->max_uV = max_uV; 1537 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); 1538 1539 out: 1540 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); 1541 mutex_unlock(&rdev->mutex); 1542 return ret; 1543 } 1544 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1545 1546 static int _regulator_get_voltage(struct regulator_dev *rdev) 1547 { 1548 /* sanity check */ 1549 if (rdev->desc->ops->get_voltage) 1550 return rdev->desc->ops->get_voltage(rdev); 1551 else 1552 return -EINVAL; 1553 } 1554 1555 /** 1556 * regulator_get_voltage - get regulator output voltage 1557 * @regulator: regulator source 1558 * 1559 * This returns the current regulator voltage in uV. 1560 * 1561 * NOTE: If the regulator is disabled it will return the voltage value. This 1562 * function should not be used to determine regulator state. 1563 */ 1564 int regulator_get_voltage(struct regulator *regulator) 1565 { 1566 int ret; 1567 1568 mutex_lock(®ulator->rdev->mutex); 1569 1570 ret = _regulator_get_voltage(regulator->rdev); 1571 1572 mutex_unlock(®ulator->rdev->mutex); 1573 1574 return ret; 1575 } 1576 EXPORT_SYMBOL_GPL(regulator_get_voltage); 1577 1578 /** 1579 * regulator_set_current_limit - set regulator output current limit 1580 * @regulator: regulator source 1581 * @min_uA: Minimuum supported current in uA 1582 * @max_uA: Maximum supported current in uA 1583 * 1584 * Sets current sink to the desired output current. This can be set during 1585 * any regulator state. IOW, regulator can be disabled or enabled. 1586 * 1587 * If the regulator is enabled then the current will change to the new value 1588 * immediately otherwise if the regulator is disabled the regulator will 1589 * output at the new current when enabled. 1590 * 1591 * NOTE: Regulator system constraints must be set for this regulator before 1592 * calling this function otherwise this call will fail. 1593 */ 1594 int regulator_set_current_limit(struct regulator *regulator, 1595 int min_uA, int max_uA) 1596 { 1597 struct regulator_dev *rdev = regulator->rdev; 1598 int ret; 1599 1600 mutex_lock(&rdev->mutex); 1601 1602 /* sanity check */ 1603 if (!rdev->desc->ops->set_current_limit) { 1604 ret = -EINVAL; 1605 goto out; 1606 } 1607 1608 /* constraints check */ 1609 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 1610 if (ret < 0) 1611 goto out; 1612 1613 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 1614 out: 1615 mutex_unlock(&rdev->mutex); 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 1619 1620 static int _regulator_get_current_limit(struct regulator_dev *rdev) 1621 { 1622 int ret; 1623 1624 mutex_lock(&rdev->mutex); 1625 1626 /* sanity check */ 1627 if (!rdev->desc->ops->get_current_limit) { 1628 ret = -EINVAL; 1629 goto out; 1630 } 1631 1632 ret = rdev->desc->ops->get_current_limit(rdev); 1633 out: 1634 mutex_unlock(&rdev->mutex); 1635 return ret; 1636 } 1637 1638 /** 1639 * regulator_get_current_limit - get regulator output current 1640 * @regulator: regulator source 1641 * 1642 * This returns the current supplied by the specified current sink in uA. 1643 * 1644 * NOTE: If the regulator is disabled it will return the current value. This 1645 * function should not be used to determine regulator state. 1646 */ 1647 int regulator_get_current_limit(struct regulator *regulator) 1648 { 1649 return _regulator_get_current_limit(regulator->rdev); 1650 } 1651 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 1652 1653 /** 1654 * regulator_set_mode - set regulator operating mode 1655 * @regulator: regulator source 1656 * @mode: operating mode - one of the REGULATOR_MODE constants 1657 * 1658 * Set regulator operating mode to increase regulator efficiency or improve 1659 * regulation performance. 1660 * 1661 * NOTE: Regulator system constraints must be set for this regulator before 1662 * calling this function otherwise this call will fail. 1663 */ 1664 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 1665 { 1666 struct regulator_dev *rdev = regulator->rdev; 1667 int ret; 1668 1669 mutex_lock(&rdev->mutex); 1670 1671 /* sanity check */ 1672 if (!rdev->desc->ops->set_mode) { 1673 ret = -EINVAL; 1674 goto out; 1675 } 1676 1677 /* constraints check */ 1678 ret = regulator_check_mode(rdev, mode); 1679 if (ret < 0) 1680 goto out; 1681 1682 ret = rdev->desc->ops->set_mode(rdev, mode); 1683 out: 1684 mutex_unlock(&rdev->mutex); 1685 return ret; 1686 } 1687 EXPORT_SYMBOL_GPL(regulator_set_mode); 1688 1689 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 1690 { 1691 int ret; 1692 1693 mutex_lock(&rdev->mutex); 1694 1695 /* sanity check */ 1696 if (!rdev->desc->ops->get_mode) { 1697 ret = -EINVAL; 1698 goto out; 1699 } 1700 1701 ret = rdev->desc->ops->get_mode(rdev); 1702 out: 1703 mutex_unlock(&rdev->mutex); 1704 return ret; 1705 } 1706 1707 /** 1708 * regulator_get_mode - get regulator operating mode 1709 * @regulator: regulator source 1710 * 1711 * Get the current regulator operating mode. 1712 */ 1713 unsigned int regulator_get_mode(struct regulator *regulator) 1714 { 1715 return _regulator_get_mode(regulator->rdev); 1716 } 1717 EXPORT_SYMBOL_GPL(regulator_get_mode); 1718 1719 /** 1720 * regulator_set_optimum_mode - set regulator optimum operating mode 1721 * @regulator: regulator source 1722 * @uA_load: load current 1723 * 1724 * Notifies the regulator core of a new device load. This is then used by 1725 * DRMS (if enabled by constraints) to set the most efficient regulator 1726 * operating mode for the new regulator loading. 1727 * 1728 * Consumer devices notify their supply regulator of the maximum power 1729 * they will require (can be taken from device datasheet in the power 1730 * consumption tables) when they change operational status and hence power 1731 * state. Examples of operational state changes that can affect power 1732 * consumption are :- 1733 * 1734 * o Device is opened / closed. 1735 * o Device I/O is about to begin or has just finished. 1736 * o Device is idling in between work. 1737 * 1738 * This information is also exported via sysfs to userspace. 1739 * 1740 * DRMS will sum the total requested load on the regulator and change 1741 * to the most efficient operating mode if platform constraints allow. 1742 * 1743 * Returns the new regulator mode or error. 1744 */ 1745 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 1746 { 1747 struct regulator_dev *rdev = regulator->rdev; 1748 struct regulator *consumer; 1749 int ret, output_uV, input_uV, total_uA_load = 0; 1750 unsigned int mode; 1751 1752 mutex_lock(&rdev->mutex); 1753 1754 regulator->uA_load = uA_load; 1755 ret = regulator_check_drms(rdev); 1756 if (ret < 0) 1757 goto out; 1758 ret = -EINVAL; 1759 1760 /* sanity check */ 1761 if (!rdev->desc->ops->get_optimum_mode) 1762 goto out; 1763 1764 /* get output voltage */ 1765 output_uV = rdev->desc->ops->get_voltage(rdev); 1766 if (output_uV <= 0) { 1767 printk(KERN_ERR "%s: invalid output voltage found for %s\n", 1768 __func__, rdev->desc->name); 1769 goto out; 1770 } 1771 1772 /* get input voltage */ 1773 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 1774 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 1775 else 1776 input_uV = rdev->constraints->input_uV; 1777 if (input_uV <= 0) { 1778 printk(KERN_ERR "%s: invalid input voltage found for %s\n", 1779 __func__, rdev->desc->name); 1780 goto out; 1781 } 1782 1783 /* calc total requested load for this regulator */ 1784 list_for_each_entry(consumer, &rdev->consumer_list, list) 1785 total_uA_load += consumer->uA_load; 1786 1787 mode = rdev->desc->ops->get_optimum_mode(rdev, 1788 input_uV, output_uV, 1789 total_uA_load); 1790 ret = regulator_check_mode(rdev, mode); 1791 if (ret < 0) { 1792 printk(KERN_ERR "%s: failed to get optimum mode for %s @" 1793 " %d uA %d -> %d uV\n", __func__, rdev->desc->name, 1794 total_uA_load, input_uV, output_uV); 1795 goto out; 1796 } 1797 1798 ret = rdev->desc->ops->set_mode(rdev, mode); 1799 if (ret < 0) { 1800 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", 1801 __func__, mode, rdev->desc->name); 1802 goto out; 1803 } 1804 ret = mode; 1805 out: 1806 mutex_unlock(&rdev->mutex); 1807 return ret; 1808 } 1809 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 1810 1811 /** 1812 * regulator_register_notifier - register regulator event notifier 1813 * @regulator: regulator source 1814 * @nb: notifier block 1815 * 1816 * Register notifier block to receive regulator events. 1817 */ 1818 int regulator_register_notifier(struct regulator *regulator, 1819 struct notifier_block *nb) 1820 { 1821 return blocking_notifier_chain_register(®ulator->rdev->notifier, 1822 nb); 1823 } 1824 EXPORT_SYMBOL_GPL(regulator_register_notifier); 1825 1826 /** 1827 * regulator_unregister_notifier - unregister regulator event notifier 1828 * @regulator: regulator source 1829 * @nb: notifier block 1830 * 1831 * Unregister regulator event notifier block. 1832 */ 1833 int regulator_unregister_notifier(struct regulator *regulator, 1834 struct notifier_block *nb) 1835 { 1836 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 1837 nb); 1838 } 1839 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 1840 1841 /* notify regulator consumers and downstream regulator consumers. 1842 * Note mutex must be held by caller. 1843 */ 1844 static void _notifier_call_chain(struct regulator_dev *rdev, 1845 unsigned long event, void *data) 1846 { 1847 struct regulator_dev *_rdev; 1848 1849 /* call rdev chain first */ 1850 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 1851 1852 /* now notify regulator we supply */ 1853 list_for_each_entry(_rdev, &rdev->supply_list, slist) { 1854 mutex_lock(&_rdev->mutex); 1855 _notifier_call_chain(_rdev, event, data); 1856 mutex_unlock(&_rdev->mutex); 1857 } 1858 } 1859 1860 /** 1861 * regulator_bulk_get - get multiple regulator consumers 1862 * 1863 * @dev: Device to supply 1864 * @num_consumers: Number of consumers to register 1865 * @consumers: Configuration of consumers; clients are stored here. 1866 * 1867 * @return 0 on success, an errno on failure. 1868 * 1869 * This helper function allows drivers to get several regulator 1870 * consumers in one operation. If any of the regulators cannot be 1871 * acquired then any regulators that were allocated will be freed 1872 * before returning to the caller. 1873 */ 1874 int regulator_bulk_get(struct device *dev, int num_consumers, 1875 struct regulator_bulk_data *consumers) 1876 { 1877 int i; 1878 int ret; 1879 1880 for (i = 0; i < num_consumers; i++) 1881 consumers[i].consumer = NULL; 1882 1883 for (i = 0; i < num_consumers; i++) { 1884 consumers[i].consumer = regulator_get(dev, 1885 consumers[i].supply); 1886 if (IS_ERR(consumers[i].consumer)) { 1887 dev_err(dev, "Failed to get supply '%s'\n", 1888 consumers[i].supply); 1889 ret = PTR_ERR(consumers[i].consumer); 1890 consumers[i].consumer = NULL; 1891 goto err; 1892 } 1893 } 1894 1895 return 0; 1896 1897 err: 1898 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 1899 regulator_put(consumers[i].consumer); 1900 1901 return ret; 1902 } 1903 EXPORT_SYMBOL_GPL(regulator_bulk_get); 1904 1905 /** 1906 * regulator_bulk_enable - enable multiple regulator consumers 1907 * 1908 * @num_consumers: Number of consumers 1909 * @consumers: Consumer data; clients are stored here. 1910 * @return 0 on success, an errno on failure 1911 * 1912 * This convenience API allows consumers to enable multiple regulator 1913 * clients in a single API call. If any consumers cannot be enabled 1914 * then any others that were enabled will be disabled again prior to 1915 * return. 1916 */ 1917 int regulator_bulk_enable(int num_consumers, 1918 struct regulator_bulk_data *consumers) 1919 { 1920 int i; 1921 int ret; 1922 1923 for (i = 0; i < num_consumers; i++) { 1924 ret = regulator_enable(consumers[i].consumer); 1925 if (ret != 0) 1926 goto err; 1927 } 1928 1929 return 0; 1930 1931 err: 1932 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply); 1933 for (i = 0; i < num_consumers; i++) 1934 regulator_disable(consumers[i].consumer); 1935 1936 return ret; 1937 } 1938 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 1939 1940 /** 1941 * regulator_bulk_disable - disable multiple regulator consumers 1942 * 1943 * @num_consumers: Number of consumers 1944 * @consumers: Consumer data; clients are stored here. 1945 * @return 0 on success, an errno on failure 1946 * 1947 * This convenience API allows consumers to disable multiple regulator 1948 * clients in a single API call. If any consumers cannot be enabled 1949 * then any others that were disabled will be disabled again prior to 1950 * return. 1951 */ 1952 int regulator_bulk_disable(int num_consumers, 1953 struct regulator_bulk_data *consumers) 1954 { 1955 int i; 1956 int ret; 1957 1958 for (i = 0; i < num_consumers; i++) { 1959 ret = regulator_disable(consumers[i].consumer); 1960 if (ret != 0) 1961 goto err; 1962 } 1963 1964 return 0; 1965 1966 err: 1967 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply); 1968 for (i = 0; i < num_consumers; i++) 1969 regulator_enable(consumers[i].consumer); 1970 1971 return ret; 1972 } 1973 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 1974 1975 /** 1976 * regulator_bulk_free - free multiple regulator consumers 1977 * 1978 * @num_consumers: Number of consumers 1979 * @consumers: Consumer data; clients are stored here. 1980 * 1981 * This convenience API allows consumers to free multiple regulator 1982 * clients in a single API call. 1983 */ 1984 void regulator_bulk_free(int num_consumers, 1985 struct regulator_bulk_data *consumers) 1986 { 1987 int i; 1988 1989 for (i = 0; i < num_consumers; i++) { 1990 regulator_put(consumers[i].consumer); 1991 consumers[i].consumer = NULL; 1992 } 1993 } 1994 EXPORT_SYMBOL_GPL(regulator_bulk_free); 1995 1996 /** 1997 * regulator_notifier_call_chain - call regulator event notifier 1998 * @rdev: regulator source 1999 * @event: notifier block 2000 * @data: callback-specific data. 2001 * 2002 * Called by regulator drivers to notify clients a regulator event has 2003 * occurred. We also notify regulator clients downstream. 2004 * Note lock must be held by caller. 2005 */ 2006 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2007 unsigned long event, void *data) 2008 { 2009 _notifier_call_chain(rdev, event, data); 2010 return NOTIFY_DONE; 2011 2012 } 2013 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2014 2015 /** 2016 * regulator_mode_to_status - convert a regulator mode into a status 2017 * 2018 * @mode: Mode to convert 2019 * 2020 * Convert a regulator mode into a status. 2021 */ 2022 int regulator_mode_to_status(unsigned int mode) 2023 { 2024 switch (mode) { 2025 case REGULATOR_MODE_FAST: 2026 return REGULATOR_STATUS_FAST; 2027 case REGULATOR_MODE_NORMAL: 2028 return REGULATOR_STATUS_NORMAL; 2029 case REGULATOR_MODE_IDLE: 2030 return REGULATOR_STATUS_IDLE; 2031 case REGULATOR_STATUS_STANDBY: 2032 return REGULATOR_STATUS_STANDBY; 2033 default: 2034 return 0; 2035 } 2036 } 2037 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 2038 2039 /* 2040 * To avoid cluttering sysfs (and memory) with useless state, only 2041 * create attributes that can be meaningfully displayed. 2042 */ 2043 static int add_regulator_attributes(struct regulator_dev *rdev) 2044 { 2045 struct device *dev = &rdev->dev; 2046 struct regulator_ops *ops = rdev->desc->ops; 2047 int status = 0; 2048 2049 /* some attributes need specific methods to be displayed */ 2050 if (ops->get_voltage) { 2051 status = device_create_file(dev, &dev_attr_microvolts); 2052 if (status < 0) 2053 return status; 2054 } 2055 if (ops->get_current_limit) { 2056 status = device_create_file(dev, &dev_attr_microamps); 2057 if (status < 0) 2058 return status; 2059 } 2060 if (ops->get_mode) { 2061 status = device_create_file(dev, &dev_attr_opmode); 2062 if (status < 0) 2063 return status; 2064 } 2065 if (ops->is_enabled) { 2066 status = device_create_file(dev, &dev_attr_state); 2067 if (status < 0) 2068 return status; 2069 } 2070 if (ops->get_status) { 2071 status = device_create_file(dev, &dev_attr_status); 2072 if (status < 0) 2073 return status; 2074 } 2075 2076 /* some attributes are type-specific */ 2077 if (rdev->desc->type == REGULATOR_CURRENT) { 2078 status = device_create_file(dev, &dev_attr_requested_microamps); 2079 if (status < 0) 2080 return status; 2081 } 2082 2083 /* all the other attributes exist to support constraints; 2084 * don't show them if there are no constraints, or if the 2085 * relevant supporting methods are missing. 2086 */ 2087 if (!rdev->constraints) 2088 return status; 2089 2090 /* constraints need specific supporting methods */ 2091 if (ops->set_voltage) { 2092 status = device_create_file(dev, &dev_attr_min_microvolts); 2093 if (status < 0) 2094 return status; 2095 status = device_create_file(dev, &dev_attr_max_microvolts); 2096 if (status < 0) 2097 return status; 2098 } 2099 if (ops->set_current_limit) { 2100 status = device_create_file(dev, &dev_attr_min_microamps); 2101 if (status < 0) 2102 return status; 2103 status = device_create_file(dev, &dev_attr_max_microamps); 2104 if (status < 0) 2105 return status; 2106 } 2107 2108 /* suspend mode constraints need multiple supporting methods */ 2109 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 2110 return status; 2111 2112 status = device_create_file(dev, &dev_attr_suspend_standby_state); 2113 if (status < 0) 2114 return status; 2115 status = device_create_file(dev, &dev_attr_suspend_mem_state); 2116 if (status < 0) 2117 return status; 2118 status = device_create_file(dev, &dev_attr_suspend_disk_state); 2119 if (status < 0) 2120 return status; 2121 2122 if (ops->set_suspend_voltage) { 2123 status = device_create_file(dev, 2124 &dev_attr_suspend_standby_microvolts); 2125 if (status < 0) 2126 return status; 2127 status = device_create_file(dev, 2128 &dev_attr_suspend_mem_microvolts); 2129 if (status < 0) 2130 return status; 2131 status = device_create_file(dev, 2132 &dev_attr_suspend_disk_microvolts); 2133 if (status < 0) 2134 return status; 2135 } 2136 2137 if (ops->set_suspend_mode) { 2138 status = device_create_file(dev, 2139 &dev_attr_suspend_standby_mode); 2140 if (status < 0) 2141 return status; 2142 status = device_create_file(dev, 2143 &dev_attr_suspend_mem_mode); 2144 if (status < 0) 2145 return status; 2146 status = device_create_file(dev, 2147 &dev_attr_suspend_disk_mode); 2148 if (status < 0) 2149 return status; 2150 } 2151 2152 return status; 2153 } 2154 2155 /** 2156 * regulator_register - register regulator 2157 * @regulator_desc: regulator to register 2158 * @dev: struct device for the regulator 2159 * @init_data: platform provided init data, passed through by driver 2160 * @driver_data: private regulator data 2161 * 2162 * Called by regulator drivers to register a regulator. 2163 * Returns 0 on success. 2164 */ 2165 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 2166 struct device *dev, struct regulator_init_data *init_data, 2167 void *driver_data) 2168 { 2169 static atomic_t regulator_no = ATOMIC_INIT(0); 2170 struct regulator_dev *rdev; 2171 int ret, i; 2172 2173 if (regulator_desc == NULL) 2174 return ERR_PTR(-EINVAL); 2175 2176 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2177 return ERR_PTR(-EINVAL); 2178 2179 if (regulator_desc->type != REGULATOR_VOLTAGE && 2180 regulator_desc->type != REGULATOR_CURRENT) 2181 return ERR_PTR(-EINVAL); 2182 2183 if (!init_data) 2184 return ERR_PTR(-EINVAL); 2185 2186 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2187 if (rdev == NULL) 2188 return ERR_PTR(-ENOMEM); 2189 2190 mutex_lock(®ulator_list_mutex); 2191 2192 mutex_init(&rdev->mutex); 2193 rdev->reg_data = driver_data; 2194 rdev->owner = regulator_desc->owner; 2195 rdev->desc = regulator_desc; 2196 INIT_LIST_HEAD(&rdev->consumer_list); 2197 INIT_LIST_HEAD(&rdev->supply_list); 2198 INIT_LIST_HEAD(&rdev->list); 2199 INIT_LIST_HEAD(&rdev->slist); 2200 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2201 2202 /* preform any regulator specific init */ 2203 if (init_data->regulator_init) { 2204 ret = init_data->regulator_init(rdev->reg_data); 2205 if (ret < 0) 2206 goto clean; 2207 } 2208 2209 /* register with sysfs */ 2210 rdev->dev.class = ®ulator_class; 2211 rdev->dev.parent = dev; 2212 dev_set_name(&rdev->dev, "regulator.%d", 2213 atomic_inc_return(®ulator_no) - 1); 2214 ret = device_register(&rdev->dev); 2215 if (ret != 0) 2216 goto clean; 2217 2218 dev_set_drvdata(&rdev->dev, rdev); 2219 2220 /* set regulator constraints */ 2221 ret = set_machine_constraints(rdev, &init_data->constraints); 2222 if (ret < 0) 2223 goto scrub; 2224 2225 /* add attributes supported by this regulator */ 2226 ret = add_regulator_attributes(rdev); 2227 if (ret < 0) 2228 goto scrub; 2229 2230 /* set supply regulator if it exists */ 2231 if (init_data->supply_regulator_dev) { 2232 ret = set_supply(rdev, 2233 dev_get_drvdata(init_data->supply_regulator_dev)); 2234 if (ret < 0) 2235 goto scrub; 2236 } 2237 2238 /* add consumers devices */ 2239 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2240 ret = set_consumer_device_supply(rdev, 2241 init_data->consumer_supplies[i].dev, 2242 init_data->consumer_supplies[i].dev_name, 2243 init_data->consumer_supplies[i].supply); 2244 if (ret < 0) { 2245 for (--i; i >= 0; i--) 2246 unset_consumer_device_supply(rdev, 2247 init_data->consumer_supplies[i].dev_name, 2248 init_data->consumer_supplies[i].dev); 2249 goto scrub; 2250 } 2251 } 2252 2253 list_add(&rdev->list, ®ulator_list); 2254 out: 2255 mutex_unlock(®ulator_list_mutex); 2256 return rdev; 2257 2258 scrub: 2259 device_unregister(&rdev->dev); 2260 /* device core frees rdev */ 2261 rdev = ERR_PTR(ret); 2262 goto out; 2263 2264 clean: 2265 kfree(rdev); 2266 rdev = ERR_PTR(ret); 2267 goto out; 2268 } 2269 EXPORT_SYMBOL_GPL(regulator_register); 2270 2271 /** 2272 * regulator_unregister - unregister regulator 2273 * @rdev: regulator to unregister 2274 * 2275 * Called by regulator drivers to unregister a regulator. 2276 */ 2277 void regulator_unregister(struct regulator_dev *rdev) 2278 { 2279 if (rdev == NULL) 2280 return; 2281 2282 mutex_lock(®ulator_list_mutex); 2283 WARN_ON(rdev->open_count); 2284 unset_regulator_supplies(rdev); 2285 list_del(&rdev->list); 2286 if (rdev->supply) 2287 sysfs_remove_link(&rdev->dev.kobj, "supply"); 2288 device_unregister(&rdev->dev); 2289 mutex_unlock(®ulator_list_mutex); 2290 } 2291 EXPORT_SYMBOL_GPL(regulator_unregister); 2292 2293 /** 2294 * regulator_suspend_prepare - prepare regulators for system wide suspend 2295 * @state: system suspend state 2296 * 2297 * Configure each regulator with it's suspend operating parameters for state. 2298 * This will usually be called by machine suspend code prior to supending. 2299 */ 2300 int regulator_suspend_prepare(suspend_state_t state) 2301 { 2302 struct regulator_dev *rdev; 2303 int ret = 0; 2304 2305 /* ON is handled by regulator active state */ 2306 if (state == PM_SUSPEND_ON) 2307 return -EINVAL; 2308 2309 mutex_lock(®ulator_list_mutex); 2310 list_for_each_entry(rdev, ®ulator_list, list) { 2311 2312 mutex_lock(&rdev->mutex); 2313 ret = suspend_prepare(rdev, state); 2314 mutex_unlock(&rdev->mutex); 2315 2316 if (ret < 0) { 2317 printk(KERN_ERR "%s: failed to prepare %s\n", 2318 __func__, rdev->desc->name); 2319 goto out; 2320 } 2321 } 2322 out: 2323 mutex_unlock(®ulator_list_mutex); 2324 return ret; 2325 } 2326 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 2327 2328 /** 2329 * regulator_has_full_constraints - the system has fully specified constraints 2330 * 2331 * Calling this function will cause the regulator API to disable all 2332 * regulators which have a zero use count and don't have an always_on 2333 * constraint in a late_initcall. 2334 * 2335 * The intention is that this will become the default behaviour in a 2336 * future kernel release so users are encouraged to use this facility 2337 * now. 2338 */ 2339 void regulator_has_full_constraints(void) 2340 { 2341 has_full_constraints = 1; 2342 } 2343 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 2344 2345 /** 2346 * rdev_get_drvdata - get rdev regulator driver data 2347 * @rdev: regulator 2348 * 2349 * Get rdev regulator driver private data. This call can be used in the 2350 * regulator driver context. 2351 */ 2352 void *rdev_get_drvdata(struct regulator_dev *rdev) 2353 { 2354 return rdev->reg_data; 2355 } 2356 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 2357 2358 /** 2359 * regulator_get_drvdata - get regulator driver data 2360 * @regulator: regulator 2361 * 2362 * Get regulator driver private data. This call can be used in the consumer 2363 * driver context when non API regulator specific functions need to be called. 2364 */ 2365 void *regulator_get_drvdata(struct regulator *regulator) 2366 { 2367 return regulator->rdev->reg_data; 2368 } 2369 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 2370 2371 /** 2372 * regulator_set_drvdata - set regulator driver data 2373 * @regulator: regulator 2374 * @data: data 2375 */ 2376 void regulator_set_drvdata(struct regulator *regulator, void *data) 2377 { 2378 regulator->rdev->reg_data = data; 2379 } 2380 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 2381 2382 /** 2383 * regulator_get_id - get regulator ID 2384 * @rdev: regulator 2385 */ 2386 int rdev_get_id(struct regulator_dev *rdev) 2387 { 2388 return rdev->desc->id; 2389 } 2390 EXPORT_SYMBOL_GPL(rdev_get_id); 2391 2392 struct device *rdev_get_dev(struct regulator_dev *rdev) 2393 { 2394 return &rdev->dev; 2395 } 2396 EXPORT_SYMBOL_GPL(rdev_get_dev); 2397 2398 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 2399 { 2400 return reg_init_data->driver_data; 2401 } 2402 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 2403 2404 static int __init regulator_init(void) 2405 { 2406 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); 2407 return class_register(®ulator_class); 2408 } 2409 2410 /* init early to allow our consumers to complete system booting */ 2411 core_initcall(regulator_init); 2412 2413 static int __init regulator_init_complete(void) 2414 { 2415 struct regulator_dev *rdev; 2416 struct regulator_ops *ops; 2417 struct regulation_constraints *c; 2418 int enabled, ret; 2419 const char *name; 2420 2421 mutex_lock(®ulator_list_mutex); 2422 2423 /* If we have a full configuration then disable any regulators 2424 * which are not in use or always_on. This will become the 2425 * default behaviour in the future. 2426 */ 2427 list_for_each_entry(rdev, ®ulator_list, list) { 2428 ops = rdev->desc->ops; 2429 c = rdev->constraints; 2430 2431 if (c && c->name) 2432 name = c->name; 2433 else if (rdev->desc->name) 2434 name = rdev->desc->name; 2435 else 2436 name = "regulator"; 2437 2438 if (!ops->disable || (c && c->always_on)) 2439 continue; 2440 2441 mutex_lock(&rdev->mutex); 2442 2443 if (rdev->use_count) 2444 goto unlock; 2445 2446 /* If we can't read the status assume it's on. */ 2447 if (ops->is_enabled) 2448 enabled = ops->is_enabled(rdev); 2449 else 2450 enabled = 1; 2451 2452 if (!enabled) 2453 goto unlock; 2454 2455 if (has_full_constraints) { 2456 /* We log since this may kill the system if it 2457 * goes wrong. */ 2458 printk(KERN_INFO "%s: disabling %s\n", 2459 __func__, name); 2460 ret = ops->disable(rdev); 2461 if (ret != 0) { 2462 printk(KERN_ERR 2463 "%s: couldn't disable %s: %d\n", 2464 __func__, name, ret); 2465 } 2466 } else { 2467 /* The intention is that in future we will 2468 * assume that full constraints are provided 2469 * so warn even if we aren't going to do 2470 * anything here. 2471 */ 2472 printk(KERN_WARNING 2473 "%s: incomplete constraints, leaving %s on\n", 2474 __func__, name); 2475 } 2476 2477 unlock: 2478 mutex_unlock(&rdev->mutex); 2479 } 2480 2481 mutex_unlock(®ulator_list_mutex); 2482 2483 return 0; 2484 } 2485 late_initcall(regulator_init_complete); 2486