xref: /openbmc/linux/drivers/regulator/core.c (revision e8e0929d)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32 
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39 	struct list_head list;
40 	const char *dev_name;   /* The dev_name() for the consumer */
41 	const char *supply;
42 	struct regulator_dev *regulator;
43 };
44 
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51 	struct device *dev;
52 	struct list_head list;
53 	int uA_load;
54 	int min_uV;
55 	int max_uV;
56 	char *supply_name;
57 	struct device_attribute dev_attr;
58 	struct regulator_dev *rdev;
59 };
60 
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 				  unsigned long event, void *data);
68 
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 	struct regulator *regulator = NULL;
73 	struct regulator_dev *rdev;
74 
75 	mutex_lock(&regulator_list_mutex);
76 	list_for_each_entry(rdev, &regulator_list, list) {
77 		mutex_lock(&rdev->mutex);
78 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 			if (regulator->dev == dev) {
80 				mutex_unlock(&rdev->mutex);
81 				mutex_unlock(&regulator_list_mutex);
82 				return regulator;
83 			}
84 		}
85 		mutex_unlock(&rdev->mutex);
86 	}
87 	mutex_unlock(&regulator_list_mutex);
88 	return NULL;
89 }
90 
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 				   int *min_uV, int *max_uV)
94 {
95 	BUG_ON(*min_uV > *max_uV);
96 
97 	if (!rdev->constraints) {
98 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 		       rdev->desc->name);
100 		return -ENODEV;
101 	}
102 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 		printk(KERN_ERR "%s: operation not allowed for %s\n",
104 		       __func__, rdev->desc->name);
105 		return -EPERM;
106 	}
107 
108 	if (*max_uV > rdev->constraints->max_uV)
109 		*max_uV = rdev->constraints->max_uV;
110 	if (*min_uV < rdev->constraints->min_uV)
111 		*min_uV = rdev->constraints->min_uV;
112 
113 	if (*min_uV > *max_uV)
114 		return -EINVAL;
115 
116 	return 0;
117 }
118 
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 					int *min_uA, int *max_uA)
122 {
123 	BUG_ON(*min_uA > *max_uA);
124 
125 	if (!rdev->constraints) {
126 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 		       rdev->desc->name);
128 		return -ENODEV;
129 	}
130 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 		printk(KERN_ERR "%s: operation not allowed for %s\n",
132 		       __func__, rdev->desc->name);
133 		return -EPERM;
134 	}
135 
136 	if (*max_uA > rdev->constraints->max_uA)
137 		*max_uA = rdev->constraints->max_uA;
138 	if (*min_uA < rdev->constraints->min_uA)
139 		*min_uA = rdev->constraints->min_uA;
140 
141 	if (*min_uA > *max_uA)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 	switch (mode) {
151 	case REGULATOR_MODE_FAST:
152 	case REGULATOR_MODE_NORMAL:
153 	case REGULATOR_MODE_IDLE:
154 	case REGULATOR_MODE_STANDBY:
155 		break;
156 	default:
157 		return -EINVAL;
158 	}
159 
160 	if (!rdev->constraints) {
161 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 		       rdev->desc->name);
163 		return -ENODEV;
164 	}
165 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 		printk(KERN_ERR "%s: operation not allowed for %s\n",
167 		       __func__, rdev->desc->name);
168 		return -EPERM;
169 	}
170 	if (!(rdev->constraints->valid_modes_mask & mode)) {
171 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 		       __func__, mode, rdev->desc->name);
173 		return -EINVAL;
174 	}
175 	return 0;
176 }
177 
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 	if (!rdev->constraints) {
182 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 		       rdev->desc->name);
184 		return -ENODEV;
185 	}
186 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 		printk(KERN_ERR "%s: operation not allowed for %s\n",
188 		       __func__, rdev->desc->name);
189 		return -EPERM;
190 	}
191 	return 0;
192 }
193 
194 static ssize_t device_requested_uA_show(struct device *dev,
195 			     struct device_attribute *attr, char *buf)
196 {
197 	struct regulator *regulator;
198 
199 	regulator = get_device_regulator(dev);
200 	if (regulator == NULL)
201 		return 0;
202 
203 	return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205 
206 static ssize_t regulator_uV_show(struct device *dev,
207 				struct device_attribute *attr, char *buf)
208 {
209 	struct regulator_dev *rdev = dev_get_drvdata(dev);
210 	ssize_t ret;
211 
212 	mutex_lock(&rdev->mutex);
213 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 	mutex_unlock(&rdev->mutex);
215 
216 	return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219 
220 static ssize_t regulator_uA_show(struct device *dev,
221 				struct device_attribute *attr, char *buf)
222 {
223 	struct regulator_dev *rdev = dev_get_drvdata(dev);
224 
225 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228 
229 static ssize_t regulator_name_show(struct device *dev,
230 			     struct device_attribute *attr, char *buf)
231 {
232 	struct regulator_dev *rdev = dev_get_drvdata(dev);
233 	const char *name;
234 
235 	if (rdev->constraints && rdev->constraints->name)
236 		name = rdev->constraints->name;
237 	else if (rdev->desc->name)
238 		name = rdev->desc->name;
239 	else
240 		name = "";
241 
242 	return sprintf(buf, "%s\n", name);
243 }
244 
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 	switch (mode) {
248 	case REGULATOR_MODE_FAST:
249 		return sprintf(buf, "fast\n");
250 	case REGULATOR_MODE_NORMAL:
251 		return sprintf(buf, "normal\n");
252 	case REGULATOR_MODE_IDLE:
253 		return sprintf(buf, "idle\n");
254 	case REGULATOR_MODE_STANDBY:
255 		return sprintf(buf, "standby\n");
256 	}
257 	return sprintf(buf, "unknown\n");
258 }
259 
260 static ssize_t regulator_opmode_show(struct device *dev,
261 				    struct device_attribute *attr, char *buf)
262 {
263 	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 
265 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268 
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 	if (state > 0)
272 		return sprintf(buf, "enabled\n");
273 	else if (state == 0)
274 		return sprintf(buf, "disabled\n");
275 	else
276 		return sprintf(buf, "unknown\n");
277 }
278 
279 static ssize_t regulator_state_show(struct device *dev,
280 				   struct device_attribute *attr, char *buf)
281 {
282 	struct regulator_dev *rdev = dev_get_drvdata(dev);
283 	ssize_t ret;
284 
285 	mutex_lock(&rdev->mutex);
286 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287 	mutex_unlock(&rdev->mutex);
288 
289 	return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292 
293 static ssize_t regulator_status_show(struct device *dev,
294 				   struct device_attribute *attr, char *buf)
295 {
296 	struct regulator_dev *rdev = dev_get_drvdata(dev);
297 	int status;
298 	char *label;
299 
300 	status = rdev->desc->ops->get_status(rdev);
301 	if (status < 0)
302 		return status;
303 
304 	switch (status) {
305 	case REGULATOR_STATUS_OFF:
306 		label = "off";
307 		break;
308 	case REGULATOR_STATUS_ON:
309 		label = "on";
310 		break;
311 	case REGULATOR_STATUS_ERROR:
312 		label = "error";
313 		break;
314 	case REGULATOR_STATUS_FAST:
315 		label = "fast";
316 		break;
317 	case REGULATOR_STATUS_NORMAL:
318 		label = "normal";
319 		break;
320 	case REGULATOR_STATUS_IDLE:
321 		label = "idle";
322 		break;
323 	case REGULATOR_STATUS_STANDBY:
324 		label = "standby";
325 		break;
326 	default:
327 		return -ERANGE;
328 	}
329 
330 	return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333 
334 static ssize_t regulator_min_uA_show(struct device *dev,
335 				    struct device_attribute *attr, char *buf)
336 {
337 	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 
339 	if (!rdev->constraints)
340 		return sprintf(buf, "constraint not defined\n");
341 
342 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345 
346 static ssize_t regulator_max_uA_show(struct device *dev,
347 				    struct device_attribute *attr, char *buf)
348 {
349 	struct regulator_dev *rdev = dev_get_drvdata(dev);
350 
351 	if (!rdev->constraints)
352 		return sprintf(buf, "constraint not defined\n");
353 
354 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357 
358 static ssize_t regulator_min_uV_show(struct device *dev,
359 				    struct device_attribute *attr, char *buf)
360 {
361 	struct regulator_dev *rdev = dev_get_drvdata(dev);
362 
363 	if (!rdev->constraints)
364 		return sprintf(buf, "constraint not defined\n");
365 
366 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369 
370 static ssize_t regulator_max_uV_show(struct device *dev,
371 				    struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 
375 	if (!rdev->constraints)
376 		return sprintf(buf, "constraint not defined\n");
377 
378 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381 
382 static ssize_t regulator_total_uA_show(struct device *dev,
383 				      struct device_attribute *attr, char *buf)
384 {
385 	struct regulator_dev *rdev = dev_get_drvdata(dev);
386 	struct regulator *regulator;
387 	int uA = 0;
388 
389 	mutex_lock(&rdev->mutex);
390 	list_for_each_entry(regulator, &rdev->consumer_list, list)
391 	    uA += regulator->uA_load;
392 	mutex_unlock(&rdev->mutex);
393 	return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396 
397 static ssize_t regulator_num_users_show(struct device *dev,
398 				      struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	return sprintf(buf, "%d\n", rdev->use_count);
402 }
403 
404 static ssize_t regulator_type_show(struct device *dev,
405 				  struct device_attribute *attr, char *buf)
406 {
407 	struct regulator_dev *rdev = dev_get_drvdata(dev);
408 
409 	switch (rdev->desc->type) {
410 	case REGULATOR_VOLTAGE:
411 		return sprintf(buf, "voltage\n");
412 	case REGULATOR_CURRENT:
413 		return sprintf(buf, "current\n");
414 	}
415 	return sprintf(buf, "unknown\n");
416 }
417 
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419 				struct device_attribute *attr, char *buf)
420 {
421 	struct regulator_dev *rdev = dev_get_drvdata(dev);
422 
423 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426 		regulator_suspend_mem_uV_show, NULL);
427 
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429 				struct device_attribute *attr, char *buf)
430 {
431 	struct regulator_dev *rdev = dev_get_drvdata(dev);
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436 		regulator_suspend_disk_uV_show, NULL);
437 
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439 				struct device_attribute *attr, char *buf)
440 {
441 	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 
443 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446 		regulator_suspend_standby_uV_show, NULL);
447 
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449 				struct device_attribute *attr, char *buf)
450 {
451 	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 
453 	return regulator_print_opmode(buf,
454 		rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457 		regulator_suspend_mem_mode_show, NULL);
458 
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460 				struct device_attribute *attr, char *buf)
461 {
462 	struct regulator_dev *rdev = dev_get_drvdata(dev);
463 
464 	return regulator_print_opmode(buf,
465 		rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468 		regulator_suspend_disk_mode_show, NULL);
469 
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471 				struct device_attribute *attr, char *buf)
472 {
473 	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 
475 	return regulator_print_opmode(buf,
476 		rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479 		regulator_suspend_standby_mode_show, NULL);
480 
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482 				   struct device_attribute *attr, char *buf)
483 {
484 	struct regulator_dev *rdev = dev_get_drvdata(dev);
485 
486 	return regulator_print_state(buf,
487 			rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490 		regulator_suspend_mem_state_show, NULL);
491 
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493 				   struct device_attribute *attr, char *buf)
494 {
495 	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 
497 	return regulator_print_state(buf,
498 			rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501 		regulator_suspend_disk_state_show, NULL);
502 
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504 				   struct device_attribute *attr, char *buf)
505 {
506 	struct regulator_dev *rdev = dev_get_drvdata(dev);
507 
508 	return regulator_print_state(buf,
509 			rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512 		regulator_suspend_standby_state_show, NULL);
513 
514 
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520 	__ATTR(name, 0444, regulator_name_show, NULL),
521 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
522 	__ATTR(type, 0444, regulator_type_show, NULL),
523 	__ATTR_NULL,
524 };
525 
526 static void regulator_dev_release(struct device *dev)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 	kfree(rdev);
530 }
531 
532 static struct class regulator_class = {
533 	.name = "regulator",
534 	.dev_release = regulator_dev_release,
535 	.dev_attrs = regulator_dev_attrs,
536 };
537 
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542 	struct regulator *sibling;
543 	int current_uA = 0, output_uV, input_uV, err;
544 	unsigned int mode;
545 
546 	err = regulator_check_drms(rdev);
547 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549 		return;
550 
551 	/* get output voltage */
552 	output_uV = rdev->desc->ops->get_voltage(rdev);
553 	if (output_uV <= 0)
554 		return;
555 
556 	/* get input voltage */
557 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559 	else
560 		input_uV = rdev->constraints->input_uV;
561 	if (input_uV <= 0)
562 		return;
563 
564 	/* calc total requested load */
565 	list_for_each_entry(sibling, &rdev->consumer_list, list)
566 	    current_uA += sibling->uA_load;
567 
568 	/* now get the optimum mode for our new total regulator load */
569 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570 						  output_uV, current_uA);
571 
572 	/* check the new mode is allowed */
573 	err = regulator_check_mode(rdev, mode);
574 	if (err == 0)
575 		rdev->desc->ops->set_mode(rdev, mode);
576 }
577 
578 static int suspend_set_state(struct regulator_dev *rdev,
579 	struct regulator_state *rstate)
580 {
581 	int ret = 0;
582 
583 	/* enable & disable are mandatory for suspend control */
584 	if (!rdev->desc->ops->set_suspend_enable ||
585 		!rdev->desc->ops->set_suspend_disable) {
586 		printk(KERN_ERR "%s: no way to set suspend state\n",
587 			__func__);
588 		return -EINVAL;
589 	}
590 
591 	if (rstate->enabled)
592 		ret = rdev->desc->ops->set_suspend_enable(rdev);
593 	else
594 		ret = rdev->desc->ops->set_suspend_disable(rdev);
595 	if (ret < 0) {
596 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597 		return ret;
598 	}
599 
600 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602 		if (ret < 0) {
603 			printk(KERN_ERR "%s: failed to set voltage\n",
604 				__func__);
605 			return ret;
606 		}
607 	}
608 
609 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611 		if (ret < 0) {
612 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
613 			return ret;
614 		}
615 	}
616 	return ret;
617 }
618 
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622 	if (!rdev->constraints)
623 		return -EINVAL;
624 
625 	switch (state) {
626 	case PM_SUSPEND_STANDBY:
627 		return suspend_set_state(rdev,
628 			&rdev->constraints->state_standby);
629 	case PM_SUSPEND_MEM:
630 		return suspend_set_state(rdev,
631 			&rdev->constraints->state_mem);
632 	case PM_SUSPEND_MAX:
633 		return suspend_set_state(rdev,
634 			&rdev->constraints->state_disk);
635 	default:
636 		return -EINVAL;
637 	}
638 }
639 
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642 	struct regulation_constraints *constraints = rdev->constraints;
643 	char buf[80];
644 	int count;
645 
646 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
647 		if (constraints->min_uV == constraints->max_uV)
648 			count = sprintf(buf, "%d mV ",
649 					constraints->min_uV / 1000);
650 		else
651 			count = sprintf(buf, "%d <--> %d mV ",
652 					constraints->min_uV / 1000,
653 					constraints->max_uV / 1000);
654 	} else {
655 		if (constraints->min_uA == constraints->max_uA)
656 			count = sprintf(buf, "%d mA ",
657 					constraints->min_uA / 1000);
658 		else
659 			count = sprintf(buf, "%d <--> %d mA ",
660 					constraints->min_uA / 1000,
661 					constraints->max_uA / 1000);
662 	}
663 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664 		count += sprintf(buf + count, "fast ");
665 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666 		count += sprintf(buf + count, "normal ");
667 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668 		count += sprintf(buf + count, "idle ");
669 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670 		count += sprintf(buf + count, "standby");
671 
672 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674 
675 /**
676  * set_machine_constraints - sets regulator constraints
677  * @rdev: regulator source
678  * @constraints: constraints to apply
679  *
680  * Allows platform initialisation code to define and constrain
681  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682  * Constraints *must* be set by platform code in order for some
683  * regulator operations to proceed i.e. set_voltage, set_current_limit,
684  * set_mode.
685  */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 	struct regulation_constraints *constraints)
688 {
689 	int ret = 0;
690 	const char *name;
691 	struct regulator_ops *ops = rdev->desc->ops;
692 
693 	if (constraints->name)
694 		name = constraints->name;
695 	else if (rdev->desc->name)
696 		name = rdev->desc->name;
697 	else
698 		name = "regulator";
699 
700 	/* constrain machine-level voltage specs to fit
701 	 * the actual range supported by this regulator.
702 	 */
703 	if (ops->list_voltage && rdev->desc->n_voltages) {
704 		int	count = rdev->desc->n_voltages;
705 		int	i;
706 		int	min_uV = INT_MAX;
707 		int	max_uV = INT_MIN;
708 		int	cmin = constraints->min_uV;
709 		int	cmax = constraints->max_uV;
710 
711 		/* it's safe to autoconfigure fixed-voltage supplies
712 		   and the constraints are used by list_voltage. */
713 		if (count == 1 && !cmin) {
714 			cmin = 1;
715 			cmax = INT_MAX;
716 			constraints->min_uV = cmin;
717 			constraints->max_uV = cmax;
718 		}
719 
720 		/* voltage constraints are optional */
721 		if ((cmin == 0) && (cmax == 0))
722 			goto out;
723 
724 		/* else require explicit machine-level constraints */
725 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726 			pr_err("%s: %s '%s' voltage constraints\n",
727 				       __func__, "invalid", name);
728 			ret = -EINVAL;
729 			goto out;
730 		}
731 
732 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 		for (i = 0; i < count; i++) {
734 			int	value;
735 
736 			value = ops->list_voltage(rdev, i);
737 			if (value <= 0)
738 				continue;
739 
740 			/* maybe adjust [min_uV..max_uV] */
741 			if (value >= cmin && value < min_uV)
742 				min_uV = value;
743 			if (value <= cmax && value > max_uV)
744 				max_uV = value;
745 		}
746 
747 		/* final: [min_uV..max_uV] valid iff constraints valid */
748 		if (max_uV < min_uV) {
749 			pr_err("%s: %s '%s' voltage constraints\n",
750 				       __func__, "unsupportable", name);
751 			ret = -EINVAL;
752 			goto out;
753 		}
754 
755 		/* use regulator's subset of machine constraints */
756 		if (constraints->min_uV < min_uV) {
757 			pr_debug("%s: override '%s' %s, %d -> %d\n",
758 				       __func__, name, "min_uV",
759 					constraints->min_uV, min_uV);
760 			constraints->min_uV = min_uV;
761 		}
762 		if (constraints->max_uV > max_uV) {
763 			pr_debug("%s: override '%s' %s, %d -> %d\n",
764 				       __func__, name, "max_uV",
765 					constraints->max_uV, max_uV);
766 			constraints->max_uV = max_uV;
767 		}
768 	}
769 
770 	rdev->constraints = constraints;
771 
772 	/* do we need to apply the constraint voltage */
773 	if (rdev->constraints->apply_uV &&
774 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
775 		ops->set_voltage) {
776 		ret = ops->set_voltage(rdev,
777 			rdev->constraints->min_uV, rdev->constraints->max_uV);
778 			if (ret < 0) {
779 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780 				       __func__,
781 				       rdev->constraints->min_uV, name);
782 				rdev->constraints = NULL;
783 				goto out;
784 			}
785 	}
786 
787 	/* do we need to setup our suspend state */
788 	if (constraints->initial_state) {
789 		ret = suspend_prepare(rdev, constraints->initial_state);
790 		if (ret < 0) {
791 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792 			       __func__, name);
793 			rdev->constraints = NULL;
794 			goto out;
795 		}
796 	}
797 
798 	if (constraints->initial_mode) {
799 		if (!ops->set_mode) {
800 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
801 			       __func__, name);
802 			ret = -EINVAL;
803 			goto out;
804 		}
805 
806 		ret = ops->set_mode(rdev, constraints->initial_mode);
807 		if (ret < 0) {
808 			printk(KERN_ERR
809 			       "%s: failed to set initial mode for %s: %d\n",
810 			       __func__, name, ret);
811 			goto out;
812 		}
813 	}
814 
815 	/* If the constraints say the regulator should be on at this point
816 	 * and we have control then make sure it is enabled.
817 	 */
818 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819 		ret = ops->enable(rdev);
820 		if (ret < 0) {
821 			printk(KERN_ERR "%s: failed to enable %s\n",
822 			       __func__, name);
823 			rdev->constraints = NULL;
824 			goto out;
825 		}
826 	}
827 
828 	print_constraints(rdev);
829 out:
830 	return ret;
831 }
832 
833 /**
834  * set_supply - set regulator supply regulator
835  * @rdev: regulator name
836  * @supply_rdev: supply regulator name
837  *
838  * Called by platform initialisation code to set the supply regulator for this
839  * regulator. This ensures that a regulators supply will also be enabled by the
840  * core if it's child is enabled.
841  */
842 static int set_supply(struct regulator_dev *rdev,
843 	struct regulator_dev *supply_rdev)
844 {
845 	int err;
846 
847 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848 				"supply");
849 	if (err) {
850 		printk(KERN_ERR
851 		       "%s: could not add device link %s err %d\n",
852 		       __func__, supply_rdev->dev.kobj.name, err);
853 		       goto out;
854 	}
855 	rdev->supply = supply_rdev;
856 	list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858 	return err;
859 }
860 
861 /**
862  * set_consumer_device_supply: Bind a regulator to a symbolic supply
863  * @rdev:         regulator source
864  * @consumer_dev: device the supply applies to
865  * @consumer_dev_name: dev_name() string for device supply applies to
866  * @supply:       symbolic name for supply
867  *
868  * Allows platform initialisation code to map physical regulator
869  * sources to symbolic names for supplies for use by devices.  Devices
870  * should use these symbolic names to request regulators, avoiding the
871  * need to provide board-specific regulator names as platform data.
872  *
873  * Only one of consumer_dev and consumer_dev_name may be specified.
874  */
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876 	struct device *consumer_dev, const char *consumer_dev_name,
877 	const char *supply)
878 {
879 	struct regulator_map *node;
880 	int has_dev;
881 
882 	if (consumer_dev && consumer_dev_name)
883 		return -EINVAL;
884 
885 	if (!consumer_dev_name && consumer_dev)
886 		consumer_dev_name = dev_name(consumer_dev);
887 
888 	if (supply == NULL)
889 		return -EINVAL;
890 
891 	if (consumer_dev_name != NULL)
892 		has_dev = 1;
893 	else
894 		has_dev = 0;
895 
896 	list_for_each_entry(node, &regulator_map_list, list) {
897 		if (consumer_dev_name != node->dev_name)
898 			continue;
899 		if (strcmp(node->supply, supply) != 0)
900 			continue;
901 
902 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903 				dev_name(&node->regulator->dev),
904 				node->regulator->desc->name,
905 				supply,
906 				dev_name(&rdev->dev), rdev->desc->name);
907 		return -EBUSY;
908 	}
909 
910 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911 	if (node == NULL)
912 		return -ENOMEM;
913 
914 	node->regulator = rdev;
915 	node->supply = supply;
916 
917 	if (has_dev) {
918 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919 		if (node->dev_name == NULL) {
920 			kfree(node);
921 			return -ENOMEM;
922 		}
923 	}
924 
925 	list_add(&node->list, &regulator_map_list);
926 	return 0;
927 }
928 
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930 	const char *consumer_dev_name, struct device *consumer_dev)
931 {
932 	struct regulator_map *node, *n;
933 
934 	if (consumer_dev && !consumer_dev_name)
935 		consumer_dev_name = dev_name(consumer_dev);
936 
937 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938 		if (rdev != node->regulator)
939 			continue;
940 
941 		if (consumer_dev_name && node->dev_name &&
942 		    strcmp(consumer_dev_name, node->dev_name))
943 			continue;
944 
945 		list_del(&node->list);
946 		kfree(node->dev_name);
947 		kfree(node);
948 		return;
949 	}
950 }
951 
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
953 {
954 	struct regulator_map *node, *n;
955 
956 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957 		if (rdev == node->regulator) {
958 			list_del(&node->list);
959 			kfree(node->dev_name);
960 			kfree(node);
961 			return;
962 		}
963 	}
964 }
965 
966 #define REG_STR_SIZE	32
967 
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969 					  struct device *dev,
970 					  const char *supply_name)
971 {
972 	struct regulator *regulator;
973 	char buf[REG_STR_SIZE];
974 	int err, size;
975 
976 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977 	if (regulator == NULL)
978 		return NULL;
979 
980 	mutex_lock(&rdev->mutex);
981 	regulator->rdev = rdev;
982 	list_add(&regulator->list, &rdev->consumer_list);
983 
984 	if (dev) {
985 		/* create a 'requested_microamps_name' sysfs entry */
986 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987 			supply_name);
988 		if (size >= REG_STR_SIZE)
989 			goto overflow_err;
990 
991 		regulator->dev = dev;
992 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993 		if (regulator->dev_attr.attr.name == NULL)
994 			goto attr_name_err;
995 
996 		regulator->dev_attr.attr.owner = THIS_MODULE;
997 		regulator->dev_attr.attr.mode = 0444;
998 		regulator->dev_attr.show = device_requested_uA_show;
999 		err = device_create_file(dev, &regulator->dev_attr);
1000 		if (err < 0) {
1001 			printk(KERN_WARNING "%s: could not add regulator_dev"
1002 				" load sysfs\n", __func__);
1003 			goto attr_name_err;
1004 		}
1005 
1006 		/* also add a link to the device sysfs entry */
1007 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008 				 dev->kobj.name, supply_name);
1009 		if (size >= REG_STR_SIZE)
1010 			goto attr_err;
1011 
1012 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013 		if (regulator->supply_name == NULL)
1014 			goto attr_err;
1015 
1016 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017 					buf);
1018 		if (err) {
1019 			printk(KERN_WARNING
1020 			       "%s: could not add device link %s err %d\n",
1021 			       __func__, dev->kobj.name, err);
1022 			device_remove_file(dev, &regulator->dev_attr);
1023 			goto link_name_err;
1024 		}
1025 	}
1026 	mutex_unlock(&rdev->mutex);
1027 	return regulator;
1028 link_name_err:
1029 	kfree(regulator->supply_name);
1030 attr_err:
1031 	device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033 	kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035 	list_del(&regulator->list);
1036 	kfree(regulator);
1037 	mutex_unlock(&rdev->mutex);
1038 	return NULL;
1039 }
1040 
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043 					int exclusive)
1044 {
1045 	struct regulator_dev *rdev;
1046 	struct regulator_map *map;
1047 	struct regulator *regulator = ERR_PTR(-ENODEV);
1048 	const char *devname = NULL;
1049 	int ret;
1050 
1051 	if (id == NULL) {
1052 		printk(KERN_ERR "regulator: get() with no identifier\n");
1053 		return regulator;
1054 	}
1055 
1056 	if (dev)
1057 		devname = dev_name(dev);
1058 
1059 	mutex_lock(&regulator_list_mutex);
1060 
1061 	list_for_each_entry(map, &regulator_map_list, list) {
1062 		/* If the mapping has a device set up it must match */
1063 		if (map->dev_name &&
1064 		    (!devname || strcmp(map->dev_name, devname)))
1065 			continue;
1066 
1067 		if (strcmp(map->supply, id) == 0) {
1068 			rdev = map->regulator;
1069 			goto found;
1070 		}
1071 	}
1072 	mutex_unlock(&regulator_list_mutex);
1073 	return regulator;
1074 
1075 found:
1076 	if (rdev->exclusive) {
1077 		regulator = ERR_PTR(-EPERM);
1078 		goto out;
1079 	}
1080 
1081 	if (exclusive && rdev->open_count) {
1082 		regulator = ERR_PTR(-EBUSY);
1083 		goto out;
1084 	}
1085 
1086 	if (!try_module_get(rdev->owner))
1087 		goto out;
1088 
1089 	regulator = create_regulator(rdev, dev, id);
1090 	if (regulator == NULL) {
1091 		regulator = ERR_PTR(-ENOMEM);
1092 		module_put(rdev->owner);
1093 	}
1094 
1095 	rdev->open_count++;
1096 	if (exclusive) {
1097 		rdev->exclusive = 1;
1098 
1099 		ret = _regulator_is_enabled(rdev);
1100 		if (ret > 0)
1101 			rdev->use_count = 1;
1102 		else
1103 			rdev->use_count = 0;
1104 	}
1105 
1106 out:
1107 	mutex_unlock(&regulator_list_mutex);
1108 
1109 	return regulator;
1110 }
1111 
1112 /**
1113  * regulator_get - lookup and obtain a reference to a regulator.
1114  * @dev: device for regulator "consumer"
1115  * @id: Supply name or regulator ID.
1116  *
1117  * Returns a struct regulator corresponding to the regulator producer,
1118  * or IS_ERR() condition containing errno.
1119  *
1120  * Use of supply names configured via regulator_set_device_supply() is
1121  * strongly encouraged.  It is recommended that the supply name used
1122  * should match the name used for the supply and/or the relevant
1123  * device pins in the datasheet.
1124  */
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1126 {
1127 	return _regulator_get(dev, id, 0);
1128 }
1129 EXPORT_SYMBOL_GPL(regulator_get);
1130 
1131 /**
1132  * regulator_get_exclusive - obtain exclusive access to a regulator.
1133  * @dev: device for regulator "consumer"
1134  * @id: Supply name or regulator ID.
1135  *
1136  * Returns a struct regulator corresponding to the regulator producer,
1137  * or IS_ERR() condition containing errno.  Other consumers will be
1138  * unable to obtain this reference is held and the use count for the
1139  * regulator will be initialised to reflect the current state of the
1140  * regulator.
1141  *
1142  * This is intended for use by consumers which cannot tolerate shared
1143  * use of the regulator such as those which need to force the
1144  * regulator off for correct operation of the hardware they are
1145  * controlling.
1146  *
1147  * Use of supply names configured via regulator_set_device_supply() is
1148  * strongly encouraged.  It is recommended that the supply name used
1149  * should match the name used for the supply and/or the relevant
1150  * device pins in the datasheet.
1151  */
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153 {
1154 	return _regulator_get(dev, id, 1);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157 
1158 /**
1159  * regulator_put - "free" the regulator source
1160  * @regulator: regulator source
1161  *
1162  * Note: drivers must ensure that all regulator_enable calls made on this
1163  * regulator source are balanced by regulator_disable calls prior to calling
1164  * this function.
1165  */
1166 void regulator_put(struct regulator *regulator)
1167 {
1168 	struct regulator_dev *rdev;
1169 
1170 	if (regulator == NULL || IS_ERR(regulator))
1171 		return;
1172 
1173 	mutex_lock(&regulator_list_mutex);
1174 	rdev = regulator->rdev;
1175 
1176 	/* remove any sysfs entries */
1177 	if (regulator->dev) {
1178 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179 		kfree(regulator->supply_name);
1180 		device_remove_file(regulator->dev, &regulator->dev_attr);
1181 		kfree(regulator->dev_attr.attr.name);
1182 	}
1183 	list_del(&regulator->list);
1184 	kfree(regulator);
1185 
1186 	rdev->open_count--;
1187 	rdev->exclusive = 0;
1188 
1189 	module_put(rdev->owner);
1190 	mutex_unlock(&regulator_list_mutex);
1191 }
1192 EXPORT_SYMBOL_GPL(regulator_put);
1193 
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1195 {
1196 	if (!rdev->constraints)
1197 		return 0;
1198 
1199 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200 		return 1;
1201 	else
1202 		return 0;
1203 }
1204 
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1207 {
1208 	int ret;
1209 
1210 	/* do we need to enable the supply regulator first */
1211 	if (rdev->supply) {
1212 		ret = _regulator_enable(rdev->supply);
1213 		if (ret < 0) {
1214 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215 			       __func__, rdev->desc->name, ret);
1216 			return ret;
1217 		}
1218 	}
1219 
1220 	/* check voltage and requested load before enabling */
1221 	if (rdev->constraints &&
1222 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223 		drms_uA_update(rdev);
1224 
1225 	if (rdev->use_count == 0) {
1226 		/* The regulator may on if it's not switchable or left on */
1227 		ret = _regulator_is_enabled(rdev);
1228 		if (ret == -EINVAL || ret == 0) {
1229 			if (!_regulator_can_change_status(rdev))
1230 				return -EPERM;
1231 
1232 			if (rdev->desc->ops->enable) {
1233 				ret = rdev->desc->ops->enable(rdev);
1234 				if (ret < 0)
1235 					return ret;
1236 			} else {
1237 				return -EINVAL;
1238 			}
1239 		} else if (ret < 0) {
1240 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241 			       __func__, rdev->desc->name, ret);
1242 			return ret;
1243 		}
1244 		/* Fallthrough on positive return values - already enabled */
1245 	}
1246 
1247 	rdev->use_count++;
1248 
1249 	return 0;
1250 }
1251 
1252 /**
1253  * regulator_enable - enable regulator output
1254  * @regulator: regulator source
1255  *
1256  * Request that the regulator be enabled with the regulator output at
1257  * the predefined voltage or current value.  Calls to regulator_enable()
1258  * must be balanced with calls to regulator_disable().
1259  *
1260  * NOTE: the output value can be set by other drivers, boot loader or may be
1261  * hardwired in the regulator.
1262  */
1263 int regulator_enable(struct regulator *regulator)
1264 {
1265 	struct regulator_dev *rdev = regulator->rdev;
1266 	int ret = 0;
1267 
1268 	mutex_lock(&rdev->mutex);
1269 	ret = _regulator_enable(rdev);
1270 	mutex_unlock(&rdev->mutex);
1271 	return ret;
1272 }
1273 EXPORT_SYMBOL_GPL(regulator_enable);
1274 
1275 /* locks held by regulator_disable() */
1276 static int _regulator_disable(struct regulator_dev *rdev)
1277 {
1278 	int ret = 0;
1279 
1280 	if (WARN(rdev->use_count <= 0,
1281 			"unbalanced disables for %s\n",
1282 			rdev->desc->name))
1283 		return -EIO;
1284 
1285 	/* are we the last user and permitted to disable ? */
1286 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1287 
1288 		/* we are last user */
1289 		if (_regulator_can_change_status(rdev) &&
1290 		    rdev->desc->ops->disable) {
1291 			ret = rdev->desc->ops->disable(rdev);
1292 			if (ret < 0) {
1293 				printk(KERN_ERR "%s: failed to disable %s\n",
1294 				       __func__, rdev->desc->name);
1295 				return ret;
1296 			}
1297 		}
1298 
1299 		/* decrease our supplies ref count and disable if required */
1300 		if (rdev->supply)
1301 			_regulator_disable(rdev->supply);
1302 
1303 		rdev->use_count = 0;
1304 	} else if (rdev->use_count > 1) {
1305 
1306 		if (rdev->constraints &&
1307 			(rdev->constraints->valid_ops_mask &
1308 			REGULATOR_CHANGE_DRMS))
1309 			drms_uA_update(rdev);
1310 
1311 		rdev->use_count--;
1312 	}
1313 	return ret;
1314 }
1315 
1316 /**
1317  * regulator_disable - disable regulator output
1318  * @regulator: regulator source
1319  *
1320  * Disable the regulator output voltage or current.  Calls to
1321  * regulator_enable() must be balanced with calls to
1322  * regulator_disable().
1323  *
1324  * NOTE: this will only disable the regulator output if no other consumer
1325  * devices have it enabled, the regulator device supports disabling and
1326  * machine constraints permit this operation.
1327  */
1328 int regulator_disable(struct regulator *regulator)
1329 {
1330 	struct regulator_dev *rdev = regulator->rdev;
1331 	int ret = 0;
1332 
1333 	mutex_lock(&rdev->mutex);
1334 	ret = _regulator_disable(rdev);
1335 	mutex_unlock(&rdev->mutex);
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL_GPL(regulator_disable);
1339 
1340 /* locks held by regulator_force_disable() */
1341 static int _regulator_force_disable(struct regulator_dev *rdev)
1342 {
1343 	int ret = 0;
1344 
1345 	/* force disable */
1346 	if (rdev->desc->ops->disable) {
1347 		/* ah well, who wants to live forever... */
1348 		ret = rdev->desc->ops->disable(rdev);
1349 		if (ret < 0) {
1350 			printk(KERN_ERR "%s: failed to force disable %s\n",
1351 			       __func__, rdev->desc->name);
1352 			return ret;
1353 		}
1354 		/* notify other consumers that power has been forced off */
1355 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1356 			NULL);
1357 	}
1358 
1359 	/* decrease our supplies ref count and disable if required */
1360 	if (rdev->supply)
1361 		_regulator_disable(rdev->supply);
1362 
1363 	rdev->use_count = 0;
1364 	return ret;
1365 }
1366 
1367 /**
1368  * regulator_force_disable - force disable regulator output
1369  * @regulator: regulator source
1370  *
1371  * Forcibly disable the regulator output voltage or current.
1372  * NOTE: this *will* disable the regulator output even if other consumer
1373  * devices have it enabled. This should be used for situations when device
1374  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1375  */
1376 int regulator_force_disable(struct regulator *regulator)
1377 {
1378 	int ret;
1379 
1380 	mutex_lock(&regulator->rdev->mutex);
1381 	regulator->uA_load = 0;
1382 	ret = _regulator_force_disable(regulator->rdev);
1383 	mutex_unlock(&regulator->rdev->mutex);
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(regulator_force_disable);
1387 
1388 static int _regulator_is_enabled(struct regulator_dev *rdev)
1389 {
1390 	/* sanity check */
1391 	if (!rdev->desc->ops->is_enabled)
1392 		return -EINVAL;
1393 
1394 	return rdev->desc->ops->is_enabled(rdev);
1395 }
1396 
1397 /**
1398  * regulator_is_enabled - is the regulator output enabled
1399  * @regulator: regulator source
1400  *
1401  * Returns positive if the regulator driver backing the source/client
1402  * has requested that the device be enabled, zero if it hasn't, else a
1403  * negative errno code.
1404  *
1405  * Note that the device backing this regulator handle can have multiple
1406  * users, so it might be enabled even if regulator_enable() was never
1407  * called for this particular source.
1408  */
1409 int regulator_is_enabled(struct regulator *regulator)
1410 {
1411 	int ret;
1412 
1413 	mutex_lock(&regulator->rdev->mutex);
1414 	ret = _regulator_is_enabled(regulator->rdev);
1415 	mutex_unlock(&regulator->rdev->mutex);
1416 
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1420 
1421 /**
1422  * regulator_count_voltages - count regulator_list_voltage() selectors
1423  * @regulator: regulator source
1424  *
1425  * Returns number of selectors, or negative errno.  Selectors are
1426  * numbered starting at zero, and typically correspond to bitfields
1427  * in hardware registers.
1428  */
1429 int regulator_count_voltages(struct regulator *regulator)
1430 {
1431 	struct regulator_dev	*rdev = regulator->rdev;
1432 
1433 	return rdev->desc->n_voltages ? : -EINVAL;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1436 
1437 /**
1438  * regulator_list_voltage - enumerate supported voltages
1439  * @regulator: regulator source
1440  * @selector: identify voltage to list
1441  * Context: can sleep
1442  *
1443  * Returns a voltage that can be passed to @regulator_set_voltage(),
1444  * zero if this selector code can't be used on this sytem, or a
1445  * negative errno.
1446  */
1447 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1448 {
1449 	struct regulator_dev	*rdev = regulator->rdev;
1450 	struct regulator_ops	*ops = rdev->desc->ops;
1451 	int			ret;
1452 
1453 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1454 		return -EINVAL;
1455 
1456 	mutex_lock(&rdev->mutex);
1457 	ret = ops->list_voltage(rdev, selector);
1458 	mutex_unlock(&rdev->mutex);
1459 
1460 	if (ret > 0) {
1461 		if (ret < rdev->constraints->min_uV)
1462 			ret = 0;
1463 		else if (ret > rdev->constraints->max_uV)
1464 			ret = 0;
1465 	}
1466 
1467 	return ret;
1468 }
1469 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1470 
1471 /**
1472  * regulator_is_supported_voltage - check if a voltage range can be supported
1473  *
1474  * @regulator: Regulator to check.
1475  * @min_uV: Minimum required voltage in uV.
1476  * @max_uV: Maximum required voltage in uV.
1477  *
1478  * Returns a boolean or a negative error code.
1479  */
1480 int regulator_is_supported_voltage(struct regulator *regulator,
1481 				   int min_uV, int max_uV)
1482 {
1483 	int i, voltages, ret;
1484 
1485 	ret = regulator_count_voltages(regulator);
1486 	if (ret < 0)
1487 		return ret;
1488 	voltages = ret;
1489 
1490 	for (i = 0; i < voltages; i++) {
1491 		ret = regulator_list_voltage(regulator, i);
1492 
1493 		if (ret >= min_uV && ret <= max_uV)
1494 			return 1;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 /**
1501  * regulator_set_voltage - set regulator output voltage
1502  * @regulator: regulator source
1503  * @min_uV: Minimum required voltage in uV
1504  * @max_uV: Maximum acceptable voltage in uV
1505  *
1506  * Sets a voltage regulator to the desired output voltage. This can be set
1507  * during any regulator state. IOW, regulator can be disabled or enabled.
1508  *
1509  * If the regulator is enabled then the voltage will change to the new value
1510  * immediately otherwise if the regulator is disabled the regulator will
1511  * output at the new voltage when enabled.
1512  *
1513  * NOTE: If the regulator is shared between several devices then the lowest
1514  * request voltage that meets the system constraints will be used.
1515  * Regulator system constraints must be set for this regulator before
1516  * calling this function otherwise this call will fail.
1517  */
1518 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1519 {
1520 	struct regulator_dev *rdev = regulator->rdev;
1521 	int ret;
1522 
1523 	mutex_lock(&rdev->mutex);
1524 
1525 	/* sanity check */
1526 	if (!rdev->desc->ops->set_voltage) {
1527 		ret = -EINVAL;
1528 		goto out;
1529 	}
1530 
1531 	/* constraints check */
1532 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1533 	if (ret < 0)
1534 		goto out;
1535 	regulator->min_uV = min_uV;
1536 	regulator->max_uV = max_uV;
1537 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1538 
1539 out:
1540 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1541 	mutex_unlock(&rdev->mutex);
1542 	return ret;
1543 }
1544 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1545 
1546 static int _regulator_get_voltage(struct regulator_dev *rdev)
1547 {
1548 	/* sanity check */
1549 	if (rdev->desc->ops->get_voltage)
1550 		return rdev->desc->ops->get_voltage(rdev);
1551 	else
1552 		return -EINVAL;
1553 }
1554 
1555 /**
1556  * regulator_get_voltage - get regulator output voltage
1557  * @regulator: regulator source
1558  *
1559  * This returns the current regulator voltage in uV.
1560  *
1561  * NOTE: If the regulator is disabled it will return the voltage value. This
1562  * function should not be used to determine regulator state.
1563  */
1564 int regulator_get_voltage(struct regulator *regulator)
1565 {
1566 	int ret;
1567 
1568 	mutex_lock(&regulator->rdev->mutex);
1569 
1570 	ret = _regulator_get_voltage(regulator->rdev);
1571 
1572 	mutex_unlock(&regulator->rdev->mutex);
1573 
1574 	return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1577 
1578 /**
1579  * regulator_set_current_limit - set regulator output current limit
1580  * @regulator: regulator source
1581  * @min_uA: Minimuum supported current in uA
1582  * @max_uA: Maximum supported current in uA
1583  *
1584  * Sets current sink to the desired output current. This can be set during
1585  * any regulator state. IOW, regulator can be disabled or enabled.
1586  *
1587  * If the regulator is enabled then the current will change to the new value
1588  * immediately otherwise if the regulator is disabled the regulator will
1589  * output at the new current when enabled.
1590  *
1591  * NOTE: Regulator system constraints must be set for this regulator before
1592  * calling this function otherwise this call will fail.
1593  */
1594 int regulator_set_current_limit(struct regulator *regulator,
1595 			       int min_uA, int max_uA)
1596 {
1597 	struct regulator_dev *rdev = regulator->rdev;
1598 	int ret;
1599 
1600 	mutex_lock(&rdev->mutex);
1601 
1602 	/* sanity check */
1603 	if (!rdev->desc->ops->set_current_limit) {
1604 		ret = -EINVAL;
1605 		goto out;
1606 	}
1607 
1608 	/* constraints check */
1609 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1610 	if (ret < 0)
1611 		goto out;
1612 
1613 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1614 out:
1615 	mutex_unlock(&rdev->mutex);
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1619 
1620 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1621 {
1622 	int ret;
1623 
1624 	mutex_lock(&rdev->mutex);
1625 
1626 	/* sanity check */
1627 	if (!rdev->desc->ops->get_current_limit) {
1628 		ret = -EINVAL;
1629 		goto out;
1630 	}
1631 
1632 	ret = rdev->desc->ops->get_current_limit(rdev);
1633 out:
1634 	mutex_unlock(&rdev->mutex);
1635 	return ret;
1636 }
1637 
1638 /**
1639  * regulator_get_current_limit - get regulator output current
1640  * @regulator: regulator source
1641  *
1642  * This returns the current supplied by the specified current sink in uA.
1643  *
1644  * NOTE: If the regulator is disabled it will return the current value. This
1645  * function should not be used to determine regulator state.
1646  */
1647 int regulator_get_current_limit(struct regulator *regulator)
1648 {
1649 	return _regulator_get_current_limit(regulator->rdev);
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1652 
1653 /**
1654  * regulator_set_mode - set regulator operating mode
1655  * @regulator: regulator source
1656  * @mode: operating mode - one of the REGULATOR_MODE constants
1657  *
1658  * Set regulator operating mode to increase regulator efficiency or improve
1659  * regulation performance.
1660  *
1661  * NOTE: Regulator system constraints must be set for this regulator before
1662  * calling this function otherwise this call will fail.
1663  */
1664 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1665 {
1666 	struct regulator_dev *rdev = regulator->rdev;
1667 	int ret;
1668 
1669 	mutex_lock(&rdev->mutex);
1670 
1671 	/* sanity check */
1672 	if (!rdev->desc->ops->set_mode) {
1673 		ret = -EINVAL;
1674 		goto out;
1675 	}
1676 
1677 	/* constraints check */
1678 	ret = regulator_check_mode(rdev, mode);
1679 	if (ret < 0)
1680 		goto out;
1681 
1682 	ret = rdev->desc->ops->set_mode(rdev, mode);
1683 out:
1684 	mutex_unlock(&rdev->mutex);
1685 	return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(regulator_set_mode);
1688 
1689 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1690 {
1691 	int ret;
1692 
1693 	mutex_lock(&rdev->mutex);
1694 
1695 	/* sanity check */
1696 	if (!rdev->desc->ops->get_mode) {
1697 		ret = -EINVAL;
1698 		goto out;
1699 	}
1700 
1701 	ret = rdev->desc->ops->get_mode(rdev);
1702 out:
1703 	mutex_unlock(&rdev->mutex);
1704 	return ret;
1705 }
1706 
1707 /**
1708  * regulator_get_mode - get regulator operating mode
1709  * @regulator: regulator source
1710  *
1711  * Get the current regulator operating mode.
1712  */
1713 unsigned int regulator_get_mode(struct regulator *regulator)
1714 {
1715 	return _regulator_get_mode(regulator->rdev);
1716 }
1717 EXPORT_SYMBOL_GPL(regulator_get_mode);
1718 
1719 /**
1720  * regulator_set_optimum_mode - set regulator optimum operating mode
1721  * @regulator: regulator source
1722  * @uA_load: load current
1723  *
1724  * Notifies the regulator core of a new device load. This is then used by
1725  * DRMS (if enabled by constraints) to set the most efficient regulator
1726  * operating mode for the new regulator loading.
1727  *
1728  * Consumer devices notify their supply regulator of the maximum power
1729  * they will require (can be taken from device datasheet in the power
1730  * consumption tables) when they change operational status and hence power
1731  * state. Examples of operational state changes that can affect power
1732  * consumption are :-
1733  *
1734  *    o Device is opened / closed.
1735  *    o Device I/O is about to begin or has just finished.
1736  *    o Device is idling in between work.
1737  *
1738  * This information is also exported via sysfs to userspace.
1739  *
1740  * DRMS will sum the total requested load on the regulator and change
1741  * to the most efficient operating mode if platform constraints allow.
1742  *
1743  * Returns the new regulator mode or error.
1744  */
1745 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1746 {
1747 	struct regulator_dev *rdev = regulator->rdev;
1748 	struct regulator *consumer;
1749 	int ret, output_uV, input_uV, total_uA_load = 0;
1750 	unsigned int mode;
1751 
1752 	mutex_lock(&rdev->mutex);
1753 
1754 	regulator->uA_load = uA_load;
1755 	ret = regulator_check_drms(rdev);
1756 	if (ret < 0)
1757 		goto out;
1758 	ret = -EINVAL;
1759 
1760 	/* sanity check */
1761 	if (!rdev->desc->ops->get_optimum_mode)
1762 		goto out;
1763 
1764 	/* get output voltage */
1765 	output_uV = rdev->desc->ops->get_voltage(rdev);
1766 	if (output_uV <= 0) {
1767 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1768 			__func__, rdev->desc->name);
1769 		goto out;
1770 	}
1771 
1772 	/* get input voltage */
1773 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1774 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1775 	else
1776 		input_uV = rdev->constraints->input_uV;
1777 	if (input_uV <= 0) {
1778 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1779 			__func__, rdev->desc->name);
1780 		goto out;
1781 	}
1782 
1783 	/* calc total requested load for this regulator */
1784 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1785 	    total_uA_load += consumer->uA_load;
1786 
1787 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1788 						 input_uV, output_uV,
1789 						 total_uA_load);
1790 	ret = regulator_check_mode(rdev, mode);
1791 	if (ret < 0) {
1792 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1793 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1794 			total_uA_load, input_uV, output_uV);
1795 		goto out;
1796 	}
1797 
1798 	ret = rdev->desc->ops->set_mode(rdev, mode);
1799 	if (ret < 0) {
1800 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1801 			__func__, mode, rdev->desc->name);
1802 		goto out;
1803 	}
1804 	ret = mode;
1805 out:
1806 	mutex_unlock(&rdev->mutex);
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1810 
1811 /**
1812  * regulator_register_notifier - register regulator event notifier
1813  * @regulator: regulator source
1814  * @nb: notifier block
1815  *
1816  * Register notifier block to receive regulator events.
1817  */
1818 int regulator_register_notifier(struct regulator *regulator,
1819 			      struct notifier_block *nb)
1820 {
1821 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1822 						nb);
1823 }
1824 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1825 
1826 /**
1827  * regulator_unregister_notifier - unregister regulator event notifier
1828  * @regulator: regulator source
1829  * @nb: notifier block
1830  *
1831  * Unregister regulator event notifier block.
1832  */
1833 int regulator_unregister_notifier(struct regulator *regulator,
1834 				struct notifier_block *nb)
1835 {
1836 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1837 						  nb);
1838 }
1839 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1840 
1841 /* notify regulator consumers and downstream regulator consumers.
1842  * Note mutex must be held by caller.
1843  */
1844 static void _notifier_call_chain(struct regulator_dev *rdev,
1845 				  unsigned long event, void *data)
1846 {
1847 	struct regulator_dev *_rdev;
1848 
1849 	/* call rdev chain first */
1850 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1851 
1852 	/* now notify regulator we supply */
1853 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1854 	  mutex_lock(&_rdev->mutex);
1855 	  _notifier_call_chain(_rdev, event, data);
1856 	  mutex_unlock(&_rdev->mutex);
1857 	}
1858 }
1859 
1860 /**
1861  * regulator_bulk_get - get multiple regulator consumers
1862  *
1863  * @dev:           Device to supply
1864  * @num_consumers: Number of consumers to register
1865  * @consumers:     Configuration of consumers; clients are stored here.
1866  *
1867  * @return 0 on success, an errno on failure.
1868  *
1869  * This helper function allows drivers to get several regulator
1870  * consumers in one operation.  If any of the regulators cannot be
1871  * acquired then any regulators that were allocated will be freed
1872  * before returning to the caller.
1873  */
1874 int regulator_bulk_get(struct device *dev, int num_consumers,
1875 		       struct regulator_bulk_data *consumers)
1876 {
1877 	int i;
1878 	int ret;
1879 
1880 	for (i = 0; i < num_consumers; i++)
1881 		consumers[i].consumer = NULL;
1882 
1883 	for (i = 0; i < num_consumers; i++) {
1884 		consumers[i].consumer = regulator_get(dev,
1885 						      consumers[i].supply);
1886 		if (IS_ERR(consumers[i].consumer)) {
1887 			dev_err(dev, "Failed to get supply '%s'\n",
1888 				consumers[i].supply);
1889 			ret = PTR_ERR(consumers[i].consumer);
1890 			consumers[i].consumer = NULL;
1891 			goto err;
1892 		}
1893 	}
1894 
1895 	return 0;
1896 
1897 err:
1898 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1899 		regulator_put(consumers[i].consumer);
1900 
1901 	return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1904 
1905 /**
1906  * regulator_bulk_enable - enable multiple regulator consumers
1907  *
1908  * @num_consumers: Number of consumers
1909  * @consumers:     Consumer data; clients are stored here.
1910  * @return         0 on success, an errno on failure
1911  *
1912  * This convenience API allows consumers to enable multiple regulator
1913  * clients in a single API call.  If any consumers cannot be enabled
1914  * then any others that were enabled will be disabled again prior to
1915  * return.
1916  */
1917 int regulator_bulk_enable(int num_consumers,
1918 			  struct regulator_bulk_data *consumers)
1919 {
1920 	int i;
1921 	int ret;
1922 
1923 	for (i = 0; i < num_consumers; i++) {
1924 		ret = regulator_enable(consumers[i].consumer);
1925 		if (ret != 0)
1926 			goto err;
1927 	}
1928 
1929 	return 0;
1930 
1931 err:
1932 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1933 	for (i = 0; i < num_consumers; i++)
1934 		regulator_disable(consumers[i].consumer);
1935 
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1939 
1940 /**
1941  * regulator_bulk_disable - disable multiple regulator consumers
1942  *
1943  * @num_consumers: Number of consumers
1944  * @consumers:     Consumer data; clients are stored here.
1945  * @return         0 on success, an errno on failure
1946  *
1947  * This convenience API allows consumers to disable multiple regulator
1948  * clients in a single API call.  If any consumers cannot be enabled
1949  * then any others that were disabled will be disabled again prior to
1950  * return.
1951  */
1952 int regulator_bulk_disable(int num_consumers,
1953 			   struct regulator_bulk_data *consumers)
1954 {
1955 	int i;
1956 	int ret;
1957 
1958 	for (i = 0; i < num_consumers; i++) {
1959 		ret = regulator_disable(consumers[i].consumer);
1960 		if (ret != 0)
1961 			goto err;
1962 	}
1963 
1964 	return 0;
1965 
1966 err:
1967 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1968 	for (i = 0; i < num_consumers; i++)
1969 		regulator_enable(consumers[i].consumer);
1970 
1971 	return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1974 
1975 /**
1976  * regulator_bulk_free - free multiple regulator consumers
1977  *
1978  * @num_consumers: Number of consumers
1979  * @consumers:     Consumer data; clients are stored here.
1980  *
1981  * This convenience API allows consumers to free multiple regulator
1982  * clients in a single API call.
1983  */
1984 void regulator_bulk_free(int num_consumers,
1985 			 struct regulator_bulk_data *consumers)
1986 {
1987 	int i;
1988 
1989 	for (i = 0; i < num_consumers; i++) {
1990 		regulator_put(consumers[i].consumer);
1991 		consumers[i].consumer = NULL;
1992 	}
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1995 
1996 /**
1997  * regulator_notifier_call_chain - call regulator event notifier
1998  * @rdev: regulator source
1999  * @event: notifier block
2000  * @data: callback-specific data.
2001  *
2002  * Called by regulator drivers to notify clients a regulator event has
2003  * occurred. We also notify regulator clients downstream.
2004  * Note lock must be held by caller.
2005  */
2006 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2007 				  unsigned long event, void *data)
2008 {
2009 	_notifier_call_chain(rdev, event, data);
2010 	return NOTIFY_DONE;
2011 
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2014 
2015 /**
2016  * regulator_mode_to_status - convert a regulator mode into a status
2017  *
2018  * @mode: Mode to convert
2019  *
2020  * Convert a regulator mode into a status.
2021  */
2022 int regulator_mode_to_status(unsigned int mode)
2023 {
2024 	switch (mode) {
2025 	case REGULATOR_MODE_FAST:
2026 		return REGULATOR_STATUS_FAST;
2027 	case REGULATOR_MODE_NORMAL:
2028 		return REGULATOR_STATUS_NORMAL;
2029 	case REGULATOR_MODE_IDLE:
2030 		return REGULATOR_STATUS_IDLE;
2031 	case REGULATOR_STATUS_STANDBY:
2032 		return REGULATOR_STATUS_STANDBY;
2033 	default:
2034 		return 0;
2035 	}
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2038 
2039 /*
2040  * To avoid cluttering sysfs (and memory) with useless state, only
2041  * create attributes that can be meaningfully displayed.
2042  */
2043 static int add_regulator_attributes(struct regulator_dev *rdev)
2044 {
2045 	struct device		*dev = &rdev->dev;
2046 	struct regulator_ops	*ops = rdev->desc->ops;
2047 	int			status = 0;
2048 
2049 	/* some attributes need specific methods to be displayed */
2050 	if (ops->get_voltage) {
2051 		status = device_create_file(dev, &dev_attr_microvolts);
2052 		if (status < 0)
2053 			return status;
2054 	}
2055 	if (ops->get_current_limit) {
2056 		status = device_create_file(dev, &dev_attr_microamps);
2057 		if (status < 0)
2058 			return status;
2059 	}
2060 	if (ops->get_mode) {
2061 		status = device_create_file(dev, &dev_attr_opmode);
2062 		if (status < 0)
2063 			return status;
2064 	}
2065 	if (ops->is_enabled) {
2066 		status = device_create_file(dev, &dev_attr_state);
2067 		if (status < 0)
2068 			return status;
2069 	}
2070 	if (ops->get_status) {
2071 		status = device_create_file(dev, &dev_attr_status);
2072 		if (status < 0)
2073 			return status;
2074 	}
2075 
2076 	/* some attributes are type-specific */
2077 	if (rdev->desc->type == REGULATOR_CURRENT) {
2078 		status = device_create_file(dev, &dev_attr_requested_microamps);
2079 		if (status < 0)
2080 			return status;
2081 	}
2082 
2083 	/* all the other attributes exist to support constraints;
2084 	 * don't show them if there are no constraints, or if the
2085 	 * relevant supporting methods are missing.
2086 	 */
2087 	if (!rdev->constraints)
2088 		return status;
2089 
2090 	/* constraints need specific supporting methods */
2091 	if (ops->set_voltage) {
2092 		status = device_create_file(dev, &dev_attr_min_microvolts);
2093 		if (status < 0)
2094 			return status;
2095 		status = device_create_file(dev, &dev_attr_max_microvolts);
2096 		if (status < 0)
2097 			return status;
2098 	}
2099 	if (ops->set_current_limit) {
2100 		status = device_create_file(dev, &dev_attr_min_microamps);
2101 		if (status < 0)
2102 			return status;
2103 		status = device_create_file(dev, &dev_attr_max_microamps);
2104 		if (status < 0)
2105 			return status;
2106 	}
2107 
2108 	/* suspend mode constraints need multiple supporting methods */
2109 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2110 		return status;
2111 
2112 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2113 	if (status < 0)
2114 		return status;
2115 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2116 	if (status < 0)
2117 		return status;
2118 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2119 	if (status < 0)
2120 		return status;
2121 
2122 	if (ops->set_suspend_voltage) {
2123 		status = device_create_file(dev,
2124 				&dev_attr_suspend_standby_microvolts);
2125 		if (status < 0)
2126 			return status;
2127 		status = device_create_file(dev,
2128 				&dev_attr_suspend_mem_microvolts);
2129 		if (status < 0)
2130 			return status;
2131 		status = device_create_file(dev,
2132 				&dev_attr_suspend_disk_microvolts);
2133 		if (status < 0)
2134 			return status;
2135 	}
2136 
2137 	if (ops->set_suspend_mode) {
2138 		status = device_create_file(dev,
2139 				&dev_attr_suspend_standby_mode);
2140 		if (status < 0)
2141 			return status;
2142 		status = device_create_file(dev,
2143 				&dev_attr_suspend_mem_mode);
2144 		if (status < 0)
2145 			return status;
2146 		status = device_create_file(dev,
2147 				&dev_attr_suspend_disk_mode);
2148 		if (status < 0)
2149 			return status;
2150 	}
2151 
2152 	return status;
2153 }
2154 
2155 /**
2156  * regulator_register - register regulator
2157  * @regulator_desc: regulator to register
2158  * @dev: struct device for the regulator
2159  * @init_data: platform provided init data, passed through by driver
2160  * @driver_data: private regulator data
2161  *
2162  * Called by regulator drivers to register a regulator.
2163  * Returns 0 on success.
2164  */
2165 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2166 	struct device *dev, struct regulator_init_data *init_data,
2167 	void *driver_data)
2168 {
2169 	static atomic_t regulator_no = ATOMIC_INIT(0);
2170 	struct regulator_dev *rdev;
2171 	int ret, i;
2172 
2173 	if (regulator_desc == NULL)
2174 		return ERR_PTR(-EINVAL);
2175 
2176 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2177 		return ERR_PTR(-EINVAL);
2178 
2179 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2180 	    regulator_desc->type != REGULATOR_CURRENT)
2181 		return ERR_PTR(-EINVAL);
2182 
2183 	if (!init_data)
2184 		return ERR_PTR(-EINVAL);
2185 
2186 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2187 	if (rdev == NULL)
2188 		return ERR_PTR(-ENOMEM);
2189 
2190 	mutex_lock(&regulator_list_mutex);
2191 
2192 	mutex_init(&rdev->mutex);
2193 	rdev->reg_data = driver_data;
2194 	rdev->owner = regulator_desc->owner;
2195 	rdev->desc = regulator_desc;
2196 	INIT_LIST_HEAD(&rdev->consumer_list);
2197 	INIT_LIST_HEAD(&rdev->supply_list);
2198 	INIT_LIST_HEAD(&rdev->list);
2199 	INIT_LIST_HEAD(&rdev->slist);
2200 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2201 
2202 	/* preform any regulator specific init */
2203 	if (init_data->regulator_init) {
2204 		ret = init_data->regulator_init(rdev->reg_data);
2205 		if (ret < 0)
2206 			goto clean;
2207 	}
2208 
2209 	/* register with sysfs */
2210 	rdev->dev.class = &regulator_class;
2211 	rdev->dev.parent = dev;
2212 	dev_set_name(&rdev->dev, "regulator.%d",
2213 		     atomic_inc_return(&regulator_no) - 1);
2214 	ret = device_register(&rdev->dev);
2215 	if (ret != 0)
2216 		goto clean;
2217 
2218 	dev_set_drvdata(&rdev->dev, rdev);
2219 
2220 	/* set regulator constraints */
2221 	ret = set_machine_constraints(rdev, &init_data->constraints);
2222 	if (ret < 0)
2223 		goto scrub;
2224 
2225 	/* add attributes supported by this regulator */
2226 	ret = add_regulator_attributes(rdev);
2227 	if (ret < 0)
2228 		goto scrub;
2229 
2230 	/* set supply regulator if it exists */
2231 	if (init_data->supply_regulator_dev) {
2232 		ret = set_supply(rdev,
2233 			dev_get_drvdata(init_data->supply_regulator_dev));
2234 		if (ret < 0)
2235 			goto scrub;
2236 	}
2237 
2238 	/* add consumers devices */
2239 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2240 		ret = set_consumer_device_supply(rdev,
2241 			init_data->consumer_supplies[i].dev,
2242 			init_data->consumer_supplies[i].dev_name,
2243 			init_data->consumer_supplies[i].supply);
2244 		if (ret < 0) {
2245 			for (--i; i >= 0; i--)
2246 				unset_consumer_device_supply(rdev,
2247 				    init_data->consumer_supplies[i].dev_name,
2248 				    init_data->consumer_supplies[i].dev);
2249 			goto scrub;
2250 		}
2251 	}
2252 
2253 	list_add(&rdev->list, &regulator_list);
2254 out:
2255 	mutex_unlock(&regulator_list_mutex);
2256 	return rdev;
2257 
2258 scrub:
2259 	device_unregister(&rdev->dev);
2260 	/* device core frees rdev */
2261 	rdev = ERR_PTR(ret);
2262 	goto out;
2263 
2264 clean:
2265 	kfree(rdev);
2266 	rdev = ERR_PTR(ret);
2267 	goto out;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_register);
2270 
2271 /**
2272  * regulator_unregister - unregister regulator
2273  * @rdev: regulator to unregister
2274  *
2275  * Called by regulator drivers to unregister a regulator.
2276  */
2277 void regulator_unregister(struct regulator_dev *rdev)
2278 {
2279 	if (rdev == NULL)
2280 		return;
2281 
2282 	mutex_lock(&regulator_list_mutex);
2283 	WARN_ON(rdev->open_count);
2284 	unset_regulator_supplies(rdev);
2285 	list_del(&rdev->list);
2286 	if (rdev->supply)
2287 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2288 	device_unregister(&rdev->dev);
2289 	mutex_unlock(&regulator_list_mutex);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_unregister);
2292 
2293 /**
2294  * regulator_suspend_prepare - prepare regulators for system wide suspend
2295  * @state: system suspend state
2296  *
2297  * Configure each regulator with it's suspend operating parameters for state.
2298  * This will usually be called by machine suspend code prior to supending.
2299  */
2300 int regulator_suspend_prepare(suspend_state_t state)
2301 {
2302 	struct regulator_dev *rdev;
2303 	int ret = 0;
2304 
2305 	/* ON is handled by regulator active state */
2306 	if (state == PM_SUSPEND_ON)
2307 		return -EINVAL;
2308 
2309 	mutex_lock(&regulator_list_mutex);
2310 	list_for_each_entry(rdev, &regulator_list, list) {
2311 
2312 		mutex_lock(&rdev->mutex);
2313 		ret = suspend_prepare(rdev, state);
2314 		mutex_unlock(&rdev->mutex);
2315 
2316 		if (ret < 0) {
2317 			printk(KERN_ERR "%s: failed to prepare %s\n",
2318 				__func__, rdev->desc->name);
2319 			goto out;
2320 		}
2321 	}
2322 out:
2323 	mutex_unlock(&regulator_list_mutex);
2324 	return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2327 
2328 /**
2329  * regulator_has_full_constraints - the system has fully specified constraints
2330  *
2331  * Calling this function will cause the regulator API to disable all
2332  * regulators which have a zero use count and don't have an always_on
2333  * constraint in a late_initcall.
2334  *
2335  * The intention is that this will become the default behaviour in a
2336  * future kernel release so users are encouraged to use this facility
2337  * now.
2338  */
2339 void regulator_has_full_constraints(void)
2340 {
2341 	has_full_constraints = 1;
2342 }
2343 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2344 
2345 /**
2346  * rdev_get_drvdata - get rdev regulator driver data
2347  * @rdev: regulator
2348  *
2349  * Get rdev regulator driver private data. This call can be used in the
2350  * regulator driver context.
2351  */
2352 void *rdev_get_drvdata(struct regulator_dev *rdev)
2353 {
2354 	return rdev->reg_data;
2355 }
2356 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2357 
2358 /**
2359  * regulator_get_drvdata - get regulator driver data
2360  * @regulator: regulator
2361  *
2362  * Get regulator driver private data. This call can be used in the consumer
2363  * driver context when non API regulator specific functions need to be called.
2364  */
2365 void *regulator_get_drvdata(struct regulator *regulator)
2366 {
2367 	return regulator->rdev->reg_data;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2370 
2371 /**
2372  * regulator_set_drvdata - set regulator driver data
2373  * @regulator: regulator
2374  * @data: data
2375  */
2376 void regulator_set_drvdata(struct regulator *regulator, void *data)
2377 {
2378 	regulator->rdev->reg_data = data;
2379 }
2380 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2381 
2382 /**
2383  * regulator_get_id - get regulator ID
2384  * @rdev: regulator
2385  */
2386 int rdev_get_id(struct regulator_dev *rdev)
2387 {
2388 	return rdev->desc->id;
2389 }
2390 EXPORT_SYMBOL_GPL(rdev_get_id);
2391 
2392 struct device *rdev_get_dev(struct regulator_dev *rdev)
2393 {
2394 	return &rdev->dev;
2395 }
2396 EXPORT_SYMBOL_GPL(rdev_get_dev);
2397 
2398 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2399 {
2400 	return reg_init_data->driver_data;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2403 
2404 static int __init regulator_init(void)
2405 {
2406 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2407 	return class_register(&regulator_class);
2408 }
2409 
2410 /* init early to allow our consumers to complete system booting */
2411 core_initcall(regulator_init);
2412 
2413 static int __init regulator_init_complete(void)
2414 {
2415 	struct regulator_dev *rdev;
2416 	struct regulator_ops *ops;
2417 	struct regulation_constraints *c;
2418 	int enabled, ret;
2419 	const char *name;
2420 
2421 	mutex_lock(&regulator_list_mutex);
2422 
2423 	/* If we have a full configuration then disable any regulators
2424 	 * which are not in use or always_on.  This will become the
2425 	 * default behaviour in the future.
2426 	 */
2427 	list_for_each_entry(rdev, &regulator_list, list) {
2428 		ops = rdev->desc->ops;
2429 		c = rdev->constraints;
2430 
2431 		if (c && c->name)
2432 			name = c->name;
2433 		else if (rdev->desc->name)
2434 			name = rdev->desc->name;
2435 		else
2436 			name = "regulator";
2437 
2438 		if (!ops->disable || (c && c->always_on))
2439 			continue;
2440 
2441 		mutex_lock(&rdev->mutex);
2442 
2443 		if (rdev->use_count)
2444 			goto unlock;
2445 
2446 		/* If we can't read the status assume it's on. */
2447 		if (ops->is_enabled)
2448 			enabled = ops->is_enabled(rdev);
2449 		else
2450 			enabled = 1;
2451 
2452 		if (!enabled)
2453 			goto unlock;
2454 
2455 		if (has_full_constraints) {
2456 			/* We log since this may kill the system if it
2457 			 * goes wrong. */
2458 			printk(KERN_INFO "%s: disabling %s\n",
2459 			       __func__, name);
2460 			ret = ops->disable(rdev);
2461 			if (ret != 0) {
2462 				printk(KERN_ERR
2463 				       "%s: couldn't disable %s: %d\n",
2464 				       __func__, name, ret);
2465 			}
2466 		} else {
2467 			/* The intention is that in future we will
2468 			 * assume that full constraints are provided
2469 			 * so warn even if we aren't going to do
2470 			 * anything here.
2471 			 */
2472 			printk(KERN_WARNING
2473 			       "%s: incomplete constraints, leaving %s on\n",
2474 			       __func__, name);
2475 		}
2476 
2477 unlock:
2478 		mutex_unlock(&rdev->mutex);
2479 	}
2480 
2481 	mutex_unlock(&regulator_list_mutex);
2482 
2483 	return 0;
2484 }
2485 late_initcall(regulator_init_complete);
2486