xref: /openbmc/linux/drivers/regulator/core.c (revision e7065e20)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regulator/of_regulator.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
35 
36 #include "dummy.h"
37 
38 #define rdev_crit(rdev, fmt, ...)					\
39 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...)					\
41 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...)					\
43 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...)					\
45 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...)					\
47 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_list);
51 static LIST_HEAD(regulator_map_list);
52 static bool has_full_constraints;
53 static bool board_wants_dummy_regulator;
54 
55 static struct dentry *debugfs_root;
56 
57 /*
58  * struct regulator_map
59  *
60  * Used to provide symbolic supply names to devices.
61  */
62 struct regulator_map {
63 	struct list_head list;
64 	const char *dev_name;   /* The dev_name() for the consumer */
65 	const char *supply;
66 	struct regulator_dev *regulator;
67 };
68 
69 /*
70  * struct regulator
71  *
72  * One for each consumer device.
73  */
74 struct regulator {
75 	struct device *dev;
76 	struct list_head list;
77 	int uA_load;
78 	int min_uV;
79 	int max_uV;
80 	char *supply_name;
81 	struct device_attribute dev_attr;
82 	struct regulator_dev *rdev;
83 	struct dentry *debugfs;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator_dev *rdev);
88 static int _regulator_get_voltage(struct regulator_dev *rdev);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static void _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 
99 static const char *rdev_get_name(struct regulator_dev *rdev)
100 {
101 	if (rdev->constraints && rdev->constraints->name)
102 		return rdev->constraints->name;
103 	else if (rdev->desc->name)
104 		return rdev->desc->name;
105 	else
106 		return "";
107 }
108 
109 /* gets the regulator for a given consumer device */
110 static struct regulator *get_device_regulator(struct device *dev)
111 {
112 	struct regulator *regulator = NULL;
113 	struct regulator_dev *rdev;
114 
115 	mutex_lock(&regulator_list_mutex);
116 	list_for_each_entry(rdev, &regulator_list, list) {
117 		mutex_lock(&rdev->mutex);
118 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
119 			if (regulator->dev == dev) {
120 				mutex_unlock(&rdev->mutex);
121 				mutex_unlock(&regulator_list_mutex);
122 				return regulator;
123 			}
124 		}
125 		mutex_unlock(&rdev->mutex);
126 	}
127 	mutex_unlock(&regulator_list_mutex);
128 	return NULL;
129 }
130 
131 /**
132  * of_get_regulator - get a regulator device node based on supply name
133  * @dev: Device pointer for the consumer (of regulator) device
134  * @supply: regulator supply name
135  *
136  * Extract the regulator device node corresponding to the supply name.
137  * retruns the device node corresponding to the regulator if found, else
138  * returns NULL.
139  */
140 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141 {
142 	struct device_node *regnode = NULL;
143 	char prop_name[32]; /* 32 is max size of property name */
144 
145 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146 
147 	snprintf(prop_name, 32, "%s-supply", supply);
148 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149 
150 	if (!regnode) {
151 		dev_dbg(dev, "Looking up %s property in node %s failed",
152 				prop_name, dev->of_node->full_name);
153 		return NULL;
154 	}
155 	return regnode;
156 }
157 
158 /* Platform voltage constraint check */
159 static int regulator_check_voltage(struct regulator_dev *rdev,
160 				   int *min_uV, int *max_uV)
161 {
162 	BUG_ON(*min_uV > *max_uV);
163 
164 	if (!rdev->constraints) {
165 		rdev_err(rdev, "no constraints\n");
166 		return -ENODEV;
167 	}
168 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169 		rdev_err(rdev, "operation not allowed\n");
170 		return -EPERM;
171 	}
172 
173 	if (*max_uV > rdev->constraints->max_uV)
174 		*max_uV = rdev->constraints->max_uV;
175 	if (*min_uV < rdev->constraints->min_uV)
176 		*min_uV = rdev->constraints->min_uV;
177 
178 	if (*min_uV > *max_uV) {
179 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180 			 *min_uV, *max_uV);
181 		return -EINVAL;
182 	}
183 
184 	return 0;
185 }
186 
187 /* Make sure we select a voltage that suits the needs of all
188  * regulator consumers
189  */
190 static int regulator_check_consumers(struct regulator_dev *rdev,
191 				     int *min_uV, int *max_uV)
192 {
193 	struct regulator *regulator;
194 
195 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196 		/*
197 		 * Assume consumers that didn't say anything are OK
198 		 * with anything in the constraint range.
199 		 */
200 		if (!regulator->min_uV && !regulator->max_uV)
201 			continue;
202 
203 		if (*max_uV > regulator->max_uV)
204 			*max_uV = regulator->max_uV;
205 		if (*min_uV < regulator->min_uV)
206 			*min_uV = regulator->min_uV;
207 	}
208 
209 	if (*min_uV > *max_uV)
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /* current constraint check */
216 static int regulator_check_current_limit(struct regulator_dev *rdev,
217 					int *min_uA, int *max_uA)
218 {
219 	BUG_ON(*min_uA > *max_uA);
220 
221 	if (!rdev->constraints) {
222 		rdev_err(rdev, "no constraints\n");
223 		return -ENODEV;
224 	}
225 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226 		rdev_err(rdev, "operation not allowed\n");
227 		return -EPERM;
228 	}
229 
230 	if (*max_uA > rdev->constraints->max_uA)
231 		*max_uA = rdev->constraints->max_uA;
232 	if (*min_uA < rdev->constraints->min_uA)
233 		*min_uA = rdev->constraints->min_uA;
234 
235 	if (*min_uA > *max_uA) {
236 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237 			 *min_uA, *max_uA);
238 		return -EINVAL;
239 	}
240 
241 	return 0;
242 }
243 
244 /* operating mode constraint check */
245 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246 {
247 	switch (*mode) {
248 	case REGULATOR_MODE_FAST:
249 	case REGULATOR_MODE_NORMAL:
250 	case REGULATOR_MODE_IDLE:
251 	case REGULATOR_MODE_STANDBY:
252 		break;
253 	default:
254 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255 		return -EINVAL;
256 	}
257 
258 	if (!rdev->constraints) {
259 		rdev_err(rdev, "no constraints\n");
260 		return -ENODEV;
261 	}
262 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263 		rdev_err(rdev, "operation not allowed\n");
264 		return -EPERM;
265 	}
266 
267 	/* The modes are bitmasks, the most power hungry modes having
268 	 * the lowest values. If the requested mode isn't supported
269 	 * try higher modes. */
270 	while (*mode) {
271 		if (rdev->constraints->valid_modes_mask & *mode)
272 			return 0;
273 		*mode /= 2;
274 	}
275 
276 	return -EINVAL;
277 }
278 
279 /* dynamic regulator mode switching constraint check */
280 static int regulator_check_drms(struct regulator_dev *rdev)
281 {
282 	if (!rdev->constraints) {
283 		rdev_err(rdev, "no constraints\n");
284 		return -ENODEV;
285 	}
286 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287 		rdev_err(rdev, "operation not allowed\n");
288 		return -EPERM;
289 	}
290 	return 0;
291 }
292 
293 static ssize_t device_requested_uA_show(struct device *dev,
294 			     struct device_attribute *attr, char *buf)
295 {
296 	struct regulator *regulator;
297 
298 	regulator = get_device_regulator(dev);
299 	if (regulator == NULL)
300 		return 0;
301 
302 	return sprintf(buf, "%d\n", regulator->uA_load);
303 }
304 
305 static ssize_t regulator_uV_show(struct device *dev,
306 				struct device_attribute *attr, char *buf)
307 {
308 	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 	ssize_t ret;
310 
311 	mutex_lock(&rdev->mutex);
312 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313 	mutex_unlock(&rdev->mutex);
314 
315 	return ret;
316 }
317 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 
319 static ssize_t regulator_uA_show(struct device *dev,
320 				struct device_attribute *attr, char *buf)
321 {
322 	struct regulator_dev *rdev = dev_get_drvdata(dev);
323 
324 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325 }
326 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327 
328 static ssize_t regulator_name_show(struct device *dev,
329 			     struct device_attribute *attr, char *buf)
330 {
331 	struct regulator_dev *rdev = dev_get_drvdata(dev);
332 
333 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 }
335 
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	default:
418 		return -ERANGE;
419 	}
420 
421 	return sprintf(buf, "%s\n", label);
422 }
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424 
425 static ssize_t regulator_min_uA_show(struct device *dev,
426 				    struct device_attribute *attr, char *buf)
427 {
428 	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 
430 	if (!rdev->constraints)
431 		return sprintf(buf, "constraint not defined\n");
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434 }
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 
437 static ssize_t regulator_max_uA_show(struct device *dev,
438 				    struct device_attribute *attr, char *buf)
439 {
440 	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 
442 	if (!rdev->constraints)
443 		return sprintf(buf, "constraint not defined\n");
444 
445 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446 }
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 
449 static ssize_t regulator_min_uV_show(struct device *dev,
450 				    struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 
454 	if (!rdev->constraints)
455 		return sprintf(buf, "constraint not defined\n");
456 
457 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458 }
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 
461 static ssize_t regulator_max_uV_show(struct device *dev,
462 				    struct device_attribute *attr, char *buf)
463 {
464 	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 
466 	if (!rdev->constraints)
467 		return sprintf(buf, "constraint not defined\n");
468 
469 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470 }
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 
473 static ssize_t regulator_total_uA_show(struct device *dev,
474 				      struct device_attribute *attr, char *buf)
475 {
476 	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 	struct regulator *regulator;
478 	int uA = 0;
479 
480 	mutex_lock(&rdev->mutex);
481 	list_for_each_entry(regulator, &rdev->consumer_list, list)
482 		uA += regulator->uA_load;
483 	mutex_unlock(&rdev->mutex);
484 	return sprintf(buf, "%d\n", uA);
485 }
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487 
488 static ssize_t regulator_num_users_show(struct device *dev,
489 				      struct device_attribute *attr, char *buf)
490 {
491 	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 	return sprintf(buf, "%d\n", rdev->use_count);
493 }
494 
495 static ssize_t regulator_type_show(struct device *dev,
496 				  struct device_attribute *attr, char *buf)
497 {
498 	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 
500 	switch (rdev->desc->type) {
501 	case REGULATOR_VOLTAGE:
502 		return sprintf(buf, "voltage\n");
503 	case REGULATOR_CURRENT:
504 		return sprintf(buf, "current\n");
505 	}
506 	return sprintf(buf, "unknown\n");
507 }
508 
509 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510 				struct device_attribute *attr, char *buf)
511 {
512 	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 
514 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515 }
516 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517 		regulator_suspend_mem_uV_show, NULL);
518 
519 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520 				struct device_attribute *attr, char *buf)
521 {
522 	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 
524 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525 }
526 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527 		regulator_suspend_disk_uV_show, NULL);
528 
529 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530 				struct device_attribute *attr, char *buf)
531 {
532 	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 
534 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535 }
536 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537 		regulator_suspend_standby_uV_show, NULL);
538 
539 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540 				struct device_attribute *attr, char *buf)
541 {
542 	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 
544 	return regulator_print_opmode(buf,
545 		rdev->constraints->state_mem.mode);
546 }
547 static DEVICE_ATTR(suspend_mem_mode, 0444,
548 		regulator_suspend_mem_mode_show, NULL);
549 
550 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551 				struct device_attribute *attr, char *buf)
552 {
553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 
555 	return regulator_print_opmode(buf,
556 		rdev->constraints->state_disk.mode);
557 }
558 static DEVICE_ATTR(suspend_disk_mode, 0444,
559 		regulator_suspend_disk_mode_show, NULL);
560 
561 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562 				struct device_attribute *attr, char *buf)
563 {
564 	struct regulator_dev *rdev = dev_get_drvdata(dev);
565 
566 	return regulator_print_opmode(buf,
567 		rdev->constraints->state_standby.mode);
568 }
569 static DEVICE_ATTR(suspend_standby_mode, 0444,
570 		regulator_suspend_standby_mode_show, NULL);
571 
572 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573 				   struct device_attribute *attr, char *buf)
574 {
575 	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 
577 	return regulator_print_state(buf,
578 			rdev->constraints->state_mem.enabled);
579 }
580 static DEVICE_ATTR(suspend_mem_state, 0444,
581 		regulator_suspend_mem_state_show, NULL);
582 
583 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584 				   struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return regulator_print_state(buf,
589 			rdev->constraints->state_disk.enabled);
590 }
591 static DEVICE_ATTR(suspend_disk_state, 0444,
592 		regulator_suspend_disk_state_show, NULL);
593 
594 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595 				   struct device_attribute *attr, char *buf)
596 {
597 	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 
599 	return regulator_print_state(buf,
600 			rdev->constraints->state_standby.enabled);
601 }
602 static DEVICE_ATTR(suspend_standby_state, 0444,
603 		regulator_suspend_standby_state_show, NULL);
604 
605 
606 /*
607  * These are the only attributes are present for all regulators.
608  * Other attributes are a function of regulator functionality.
609  */
610 static struct device_attribute regulator_dev_attrs[] = {
611 	__ATTR(name, 0444, regulator_name_show, NULL),
612 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
613 	__ATTR(type, 0444, regulator_type_show, NULL),
614 	__ATTR_NULL,
615 };
616 
617 static void regulator_dev_release(struct device *dev)
618 {
619 	struct regulator_dev *rdev = dev_get_drvdata(dev);
620 	kfree(rdev);
621 }
622 
623 static struct class regulator_class = {
624 	.name = "regulator",
625 	.dev_release = regulator_dev_release,
626 	.dev_attrs = regulator_dev_attrs,
627 };
628 
629 /* Calculate the new optimum regulator operating mode based on the new total
630  * consumer load. All locks held by caller */
631 static void drms_uA_update(struct regulator_dev *rdev)
632 {
633 	struct regulator *sibling;
634 	int current_uA = 0, output_uV, input_uV, err;
635 	unsigned int mode;
636 
637 	err = regulator_check_drms(rdev);
638 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639 	    (!rdev->desc->ops->get_voltage &&
640 	     !rdev->desc->ops->get_voltage_sel) ||
641 	    !rdev->desc->ops->set_mode)
642 		return;
643 
644 	/* get output voltage */
645 	output_uV = _regulator_get_voltage(rdev);
646 	if (output_uV <= 0)
647 		return;
648 
649 	/* get input voltage */
650 	input_uV = 0;
651 	if (rdev->supply)
652 		input_uV = _regulator_get_voltage(rdev);
653 	if (input_uV <= 0)
654 		input_uV = rdev->constraints->input_uV;
655 	if (input_uV <= 0)
656 		return;
657 
658 	/* calc total requested load */
659 	list_for_each_entry(sibling, &rdev->consumer_list, list)
660 		current_uA += sibling->uA_load;
661 
662 	/* now get the optimum mode for our new total regulator load */
663 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664 						  output_uV, current_uA);
665 
666 	/* check the new mode is allowed */
667 	err = regulator_mode_constrain(rdev, &mode);
668 	if (err == 0)
669 		rdev->desc->ops->set_mode(rdev, mode);
670 }
671 
672 static int suspend_set_state(struct regulator_dev *rdev,
673 	struct regulator_state *rstate)
674 {
675 	int ret = 0;
676 	bool can_set_state;
677 
678 	can_set_state = rdev->desc->ops->set_suspend_enable &&
679 		rdev->desc->ops->set_suspend_disable;
680 
681 	/* If we have no suspend mode configration don't set anything;
682 	 * only warn if the driver actually makes the suspend mode
683 	 * configurable.
684 	 */
685 	if (!rstate->enabled && !rstate->disabled) {
686 		if (can_set_state)
687 			rdev_warn(rdev, "No configuration\n");
688 		return 0;
689 	}
690 
691 	if (rstate->enabled && rstate->disabled) {
692 		rdev_err(rdev, "invalid configuration\n");
693 		return -EINVAL;
694 	}
695 
696 	if (!can_set_state) {
697 		rdev_err(rdev, "no way to set suspend state\n");
698 		return -EINVAL;
699 	}
700 
701 	if (rstate->enabled)
702 		ret = rdev->desc->ops->set_suspend_enable(rdev);
703 	else
704 		ret = rdev->desc->ops->set_suspend_disable(rdev);
705 	if (ret < 0) {
706 		rdev_err(rdev, "failed to enabled/disable\n");
707 		return ret;
708 	}
709 
710 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712 		if (ret < 0) {
713 			rdev_err(rdev, "failed to set voltage\n");
714 			return ret;
715 		}
716 	}
717 
718 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720 		if (ret < 0) {
721 			rdev_err(rdev, "failed to set mode\n");
722 			return ret;
723 		}
724 	}
725 	return ret;
726 }
727 
728 /* locks held by caller */
729 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730 {
731 	if (!rdev->constraints)
732 		return -EINVAL;
733 
734 	switch (state) {
735 	case PM_SUSPEND_STANDBY:
736 		return suspend_set_state(rdev,
737 			&rdev->constraints->state_standby);
738 	case PM_SUSPEND_MEM:
739 		return suspend_set_state(rdev,
740 			&rdev->constraints->state_mem);
741 	case PM_SUSPEND_MAX:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_disk);
744 	default:
745 		return -EINVAL;
746 	}
747 }
748 
749 static void print_constraints(struct regulator_dev *rdev)
750 {
751 	struct regulation_constraints *constraints = rdev->constraints;
752 	char buf[80] = "";
753 	int count = 0;
754 	int ret;
755 
756 	if (constraints->min_uV && constraints->max_uV) {
757 		if (constraints->min_uV == constraints->max_uV)
758 			count += sprintf(buf + count, "%d mV ",
759 					 constraints->min_uV / 1000);
760 		else
761 			count += sprintf(buf + count, "%d <--> %d mV ",
762 					 constraints->min_uV / 1000,
763 					 constraints->max_uV / 1000);
764 	}
765 
766 	if (!constraints->min_uV ||
767 	    constraints->min_uV != constraints->max_uV) {
768 		ret = _regulator_get_voltage(rdev);
769 		if (ret > 0)
770 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
771 	}
772 
773 	if (constraints->uV_offset)
774 		count += sprintf(buf, "%dmV offset ",
775 				 constraints->uV_offset / 1000);
776 
777 	if (constraints->min_uA && constraints->max_uA) {
778 		if (constraints->min_uA == constraints->max_uA)
779 			count += sprintf(buf + count, "%d mA ",
780 					 constraints->min_uA / 1000);
781 		else
782 			count += sprintf(buf + count, "%d <--> %d mA ",
783 					 constraints->min_uA / 1000,
784 					 constraints->max_uA / 1000);
785 	}
786 
787 	if (!constraints->min_uA ||
788 	    constraints->min_uA != constraints->max_uA) {
789 		ret = _regulator_get_current_limit(rdev);
790 		if (ret > 0)
791 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792 	}
793 
794 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795 		count += sprintf(buf + count, "fast ");
796 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797 		count += sprintf(buf + count, "normal ");
798 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799 		count += sprintf(buf + count, "idle ");
800 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801 		count += sprintf(buf + count, "standby");
802 
803 	rdev_info(rdev, "%s\n", buf);
804 
805 	if ((constraints->min_uV != constraints->max_uV) &&
806 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807 		rdev_warn(rdev,
808 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809 }
810 
811 static int machine_constraints_voltage(struct regulator_dev *rdev,
812 	struct regulation_constraints *constraints)
813 {
814 	struct regulator_ops *ops = rdev->desc->ops;
815 	int ret;
816 
817 	/* do we need to apply the constraint voltage */
818 	if (rdev->constraints->apply_uV &&
819 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
820 		ret = _regulator_do_set_voltage(rdev,
821 						rdev->constraints->min_uV,
822 						rdev->constraints->max_uV);
823 		if (ret < 0) {
824 			rdev_err(rdev, "failed to apply %duV constraint\n",
825 				 rdev->constraints->min_uV);
826 			return ret;
827 		}
828 	}
829 
830 	/* constrain machine-level voltage specs to fit
831 	 * the actual range supported by this regulator.
832 	 */
833 	if (ops->list_voltage && rdev->desc->n_voltages) {
834 		int	count = rdev->desc->n_voltages;
835 		int	i;
836 		int	min_uV = INT_MAX;
837 		int	max_uV = INT_MIN;
838 		int	cmin = constraints->min_uV;
839 		int	cmax = constraints->max_uV;
840 
841 		/* it's safe to autoconfigure fixed-voltage supplies
842 		   and the constraints are used by list_voltage. */
843 		if (count == 1 && !cmin) {
844 			cmin = 1;
845 			cmax = INT_MAX;
846 			constraints->min_uV = cmin;
847 			constraints->max_uV = cmax;
848 		}
849 
850 		/* voltage constraints are optional */
851 		if ((cmin == 0) && (cmax == 0))
852 			return 0;
853 
854 		/* else require explicit machine-level constraints */
855 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856 			rdev_err(rdev, "invalid voltage constraints\n");
857 			return -EINVAL;
858 		}
859 
860 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861 		for (i = 0; i < count; i++) {
862 			int	value;
863 
864 			value = ops->list_voltage(rdev, i);
865 			if (value <= 0)
866 				continue;
867 
868 			/* maybe adjust [min_uV..max_uV] */
869 			if (value >= cmin && value < min_uV)
870 				min_uV = value;
871 			if (value <= cmax && value > max_uV)
872 				max_uV = value;
873 		}
874 
875 		/* final: [min_uV..max_uV] valid iff constraints valid */
876 		if (max_uV < min_uV) {
877 			rdev_err(rdev, "unsupportable voltage constraints\n");
878 			return -EINVAL;
879 		}
880 
881 		/* use regulator's subset of machine constraints */
882 		if (constraints->min_uV < min_uV) {
883 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884 				 constraints->min_uV, min_uV);
885 			constraints->min_uV = min_uV;
886 		}
887 		if (constraints->max_uV > max_uV) {
888 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889 				 constraints->max_uV, max_uV);
890 			constraints->max_uV = max_uV;
891 		}
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  * set_machine_constraints - sets regulator constraints
899  * @rdev: regulator source
900  * @constraints: constraints to apply
901  *
902  * Allows platform initialisation code to define and constrain
903  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904  * Constraints *must* be set by platform code in order for some
905  * regulator operations to proceed i.e. set_voltage, set_current_limit,
906  * set_mode.
907  */
908 static int set_machine_constraints(struct regulator_dev *rdev,
909 	const struct regulation_constraints *constraints)
910 {
911 	int ret = 0;
912 	struct regulator_ops *ops = rdev->desc->ops;
913 
914 	if (constraints)
915 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916 					    GFP_KERNEL);
917 	else
918 		rdev->constraints = kzalloc(sizeof(*constraints),
919 					    GFP_KERNEL);
920 	if (!rdev->constraints)
921 		return -ENOMEM;
922 
923 	ret = machine_constraints_voltage(rdev, rdev->constraints);
924 	if (ret != 0)
925 		goto out;
926 
927 	/* do we need to setup our suspend state */
928 	if (rdev->constraints->initial_state) {
929 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930 		if (ret < 0) {
931 			rdev_err(rdev, "failed to set suspend state\n");
932 			goto out;
933 		}
934 	}
935 
936 	if (rdev->constraints->initial_mode) {
937 		if (!ops->set_mode) {
938 			rdev_err(rdev, "no set_mode operation\n");
939 			ret = -EINVAL;
940 			goto out;
941 		}
942 
943 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944 		if (ret < 0) {
945 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946 			goto out;
947 		}
948 	}
949 
950 	/* If the constraints say the regulator should be on at this point
951 	 * and we have control then make sure it is enabled.
952 	 */
953 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954 	    ops->enable) {
955 		ret = ops->enable(rdev);
956 		if (ret < 0) {
957 			rdev_err(rdev, "failed to enable\n");
958 			goto out;
959 		}
960 	}
961 
962 	print_constraints(rdev);
963 	return 0;
964 out:
965 	kfree(rdev->constraints);
966 	rdev->constraints = NULL;
967 	return ret;
968 }
969 
970 /**
971  * set_supply - set regulator supply regulator
972  * @rdev: regulator name
973  * @supply_rdev: supply regulator name
974  *
975  * Called by platform initialisation code to set the supply regulator for this
976  * regulator. This ensures that a regulators supply will also be enabled by the
977  * core if it's child is enabled.
978  */
979 static int set_supply(struct regulator_dev *rdev,
980 		      struct regulator_dev *supply_rdev)
981 {
982 	int err;
983 
984 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985 
986 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987 	if (rdev->supply == NULL) {
988 		err = -ENOMEM;
989 		return err;
990 	}
991 
992 	return 0;
993 }
994 
995 /**
996  * set_consumer_device_supply - Bind a regulator to a symbolic supply
997  * @rdev:         regulator source
998  * @consumer_dev_name: dev_name() string for device supply applies to
999  * @supply:       symbolic name for supply
1000  *
1001  * Allows platform initialisation code to map physical regulator
1002  * sources to symbolic names for supplies for use by devices.  Devices
1003  * should use these symbolic names to request regulators, avoiding the
1004  * need to provide board-specific regulator names as platform data.
1005  */
1006 static int set_consumer_device_supply(struct regulator_dev *rdev,
1007 				      const char *consumer_dev_name,
1008 				      const char *supply)
1009 {
1010 	struct regulator_map *node;
1011 	int has_dev;
1012 
1013 	if (supply == NULL)
1014 		return -EINVAL;
1015 
1016 	if (consumer_dev_name != NULL)
1017 		has_dev = 1;
1018 	else
1019 		has_dev = 0;
1020 
1021 	list_for_each_entry(node, &regulator_map_list, list) {
1022 		if (node->dev_name && consumer_dev_name) {
1023 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024 				continue;
1025 		} else if (node->dev_name || consumer_dev_name) {
1026 			continue;
1027 		}
1028 
1029 		if (strcmp(node->supply, supply) != 0)
1030 			continue;
1031 
1032 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033 			 consumer_dev_name,
1034 			 dev_name(&node->regulator->dev),
1035 			 node->regulator->desc->name,
1036 			 supply,
1037 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1038 		return -EBUSY;
1039 	}
1040 
1041 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042 	if (node == NULL)
1043 		return -ENOMEM;
1044 
1045 	node->regulator = rdev;
1046 	node->supply = supply;
1047 
1048 	if (has_dev) {
1049 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050 		if (node->dev_name == NULL) {
1051 			kfree(node);
1052 			return -ENOMEM;
1053 		}
1054 	}
1055 
1056 	list_add(&node->list, &regulator_map_list);
1057 	return 0;
1058 }
1059 
1060 static void unset_regulator_supplies(struct regulator_dev *rdev)
1061 {
1062 	struct regulator_map *node, *n;
1063 
1064 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065 		if (rdev == node->regulator) {
1066 			list_del(&node->list);
1067 			kfree(node->dev_name);
1068 			kfree(node);
1069 		}
1070 	}
1071 }
1072 
1073 #define REG_STR_SIZE	64
1074 
1075 static struct regulator *create_regulator(struct regulator_dev *rdev,
1076 					  struct device *dev,
1077 					  const char *supply_name)
1078 {
1079 	struct regulator *regulator;
1080 	char buf[REG_STR_SIZE];
1081 	int err, size;
1082 
1083 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084 	if (regulator == NULL)
1085 		return NULL;
1086 
1087 	mutex_lock(&rdev->mutex);
1088 	regulator->rdev = rdev;
1089 	list_add(&regulator->list, &rdev->consumer_list);
1090 
1091 	if (dev) {
1092 		/* create a 'requested_microamps_name' sysfs entry */
1093 		size = scnprintf(buf, REG_STR_SIZE,
1094 				 "microamps_requested_%s-%s",
1095 				 dev_name(dev), supply_name);
1096 		if (size >= REG_STR_SIZE)
1097 			goto overflow_err;
1098 
1099 		regulator->dev = dev;
1100 		sysfs_attr_init(&regulator->dev_attr.attr);
1101 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102 		if (regulator->dev_attr.attr.name == NULL)
1103 			goto attr_name_err;
1104 
1105 		regulator->dev_attr.attr.mode = 0444;
1106 		regulator->dev_attr.show = device_requested_uA_show;
1107 		err = device_create_file(dev, &regulator->dev_attr);
1108 		if (err < 0) {
1109 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110 			goto attr_name_err;
1111 		}
1112 
1113 		/* also add a link to the device sysfs entry */
1114 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115 				 dev->kobj.name, supply_name);
1116 		if (size >= REG_STR_SIZE)
1117 			goto attr_err;
1118 
1119 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120 		if (regulator->supply_name == NULL)
1121 			goto attr_err;
1122 
1123 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124 					buf);
1125 		if (err) {
1126 			rdev_warn(rdev, "could not add device link %s err %d\n",
1127 				  dev->kobj.name, err);
1128 			goto link_name_err;
1129 		}
1130 	} else {
1131 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132 		if (regulator->supply_name == NULL)
1133 			goto attr_err;
1134 	}
1135 
1136 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137 						rdev->debugfs);
1138 	if (!regulator->debugfs) {
1139 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1140 	} else {
1141 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142 				   &regulator->uA_load);
1143 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144 				   &regulator->min_uV);
1145 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146 				   &regulator->max_uV);
1147 	}
1148 
1149 	mutex_unlock(&rdev->mutex);
1150 	return regulator;
1151 link_name_err:
1152 	kfree(regulator->supply_name);
1153 attr_err:
1154 	device_remove_file(regulator->dev, &regulator->dev_attr);
1155 attr_name_err:
1156 	kfree(regulator->dev_attr.attr.name);
1157 overflow_err:
1158 	list_del(&regulator->list);
1159 	kfree(regulator);
1160 	mutex_unlock(&rdev->mutex);
1161 	return NULL;
1162 }
1163 
1164 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1165 {
1166 	if (!rdev->desc->ops->enable_time)
1167 		return 0;
1168 	return rdev->desc->ops->enable_time(rdev);
1169 }
1170 
1171 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172 							 const char *supply)
1173 {
1174 	struct regulator_dev *r;
1175 	struct device_node *node;
1176 
1177 	/* first do a dt based lookup */
1178 	if (dev && dev->of_node) {
1179 		node = of_get_regulator(dev, supply);
1180 		if (node)
1181 			list_for_each_entry(r, &regulator_list, list)
1182 				if (r->dev.parent &&
1183 					node == r->dev.of_node)
1184 					return r;
1185 	}
1186 
1187 	/* if not found, try doing it non-dt way */
1188 	list_for_each_entry(r, &regulator_list, list)
1189 		if (strcmp(rdev_get_name(r), supply) == 0)
1190 			return r;
1191 
1192 	return NULL;
1193 }
1194 
1195 /* Internal regulator request function */
1196 static struct regulator *_regulator_get(struct device *dev, const char *id,
1197 					int exclusive)
1198 {
1199 	struct regulator_dev *rdev;
1200 	struct regulator_map *map;
1201 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1202 	const char *devname = NULL;
1203 	int ret;
1204 
1205 	if (id == NULL) {
1206 		pr_err("get() with no identifier\n");
1207 		return regulator;
1208 	}
1209 
1210 	if (dev)
1211 		devname = dev_name(dev);
1212 
1213 	mutex_lock(&regulator_list_mutex);
1214 
1215 	rdev = regulator_dev_lookup(dev, id);
1216 	if (rdev)
1217 		goto found;
1218 
1219 	list_for_each_entry(map, &regulator_map_list, list) {
1220 		/* If the mapping has a device set up it must match */
1221 		if (map->dev_name &&
1222 		    (!devname || strcmp(map->dev_name, devname)))
1223 			continue;
1224 
1225 		if (strcmp(map->supply, id) == 0) {
1226 			rdev = map->regulator;
1227 			goto found;
1228 		}
1229 	}
1230 
1231 	if (board_wants_dummy_regulator) {
1232 		rdev = dummy_regulator_rdev;
1233 		goto found;
1234 	}
1235 
1236 #ifdef CONFIG_REGULATOR_DUMMY
1237 	if (!devname)
1238 		devname = "deviceless";
1239 
1240 	/* If the board didn't flag that it was fully constrained then
1241 	 * substitute in a dummy regulator so consumers can continue.
1242 	 */
1243 	if (!has_full_constraints) {
1244 		pr_warn("%s supply %s not found, using dummy regulator\n",
1245 			devname, id);
1246 		rdev = dummy_regulator_rdev;
1247 		goto found;
1248 	}
1249 #endif
1250 
1251 	mutex_unlock(&regulator_list_mutex);
1252 	return regulator;
1253 
1254 found:
1255 	if (rdev->exclusive) {
1256 		regulator = ERR_PTR(-EPERM);
1257 		goto out;
1258 	}
1259 
1260 	if (exclusive && rdev->open_count) {
1261 		regulator = ERR_PTR(-EBUSY);
1262 		goto out;
1263 	}
1264 
1265 	if (!try_module_get(rdev->owner))
1266 		goto out;
1267 
1268 	regulator = create_regulator(rdev, dev, id);
1269 	if (regulator == NULL) {
1270 		regulator = ERR_PTR(-ENOMEM);
1271 		module_put(rdev->owner);
1272 		goto out;
1273 	}
1274 
1275 	rdev->open_count++;
1276 	if (exclusive) {
1277 		rdev->exclusive = 1;
1278 
1279 		ret = _regulator_is_enabled(rdev);
1280 		if (ret > 0)
1281 			rdev->use_count = 1;
1282 		else
1283 			rdev->use_count = 0;
1284 	}
1285 
1286 out:
1287 	mutex_unlock(&regulator_list_mutex);
1288 
1289 	return regulator;
1290 }
1291 
1292 /**
1293  * regulator_get - lookup and obtain a reference to a regulator.
1294  * @dev: device for regulator "consumer"
1295  * @id: Supply name or regulator ID.
1296  *
1297  * Returns a struct regulator corresponding to the regulator producer,
1298  * or IS_ERR() condition containing errno.
1299  *
1300  * Use of supply names configured via regulator_set_device_supply() is
1301  * strongly encouraged.  It is recommended that the supply name used
1302  * should match the name used for the supply and/or the relevant
1303  * device pins in the datasheet.
1304  */
1305 struct regulator *regulator_get(struct device *dev, const char *id)
1306 {
1307 	return _regulator_get(dev, id, 0);
1308 }
1309 EXPORT_SYMBOL_GPL(regulator_get);
1310 
1311 static void devm_regulator_release(struct device *dev, void *res)
1312 {
1313 	regulator_put(*(struct regulator **)res);
1314 }
1315 
1316 /**
1317  * devm_regulator_get - Resource managed regulator_get()
1318  * @dev: device for regulator "consumer"
1319  * @id: Supply name or regulator ID.
1320  *
1321  * Managed regulator_get(). Regulators returned from this function are
1322  * automatically regulator_put() on driver detach. See regulator_get() for more
1323  * information.
1324  */
1325 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1326 {
1327 	struct regulator **ptr, *regulator;
1328 
1329 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1330 	if (!ptr)
1331 		return ERR_PTR(-ENOMEM);
1332 
1333 	regulator = regulator_get(dev, id);
1334 	if (!IS_ERR(regulator)) {
1335 		*ptr = regulator;
1336 		devres_add(dev, ptr);
1337 	} else {
1338 		devres_free(ptr);
1339 	}
1340 
1341 	return regulator;
1342 }
1343 EXPORT_SYMBOL_GPL(devm_regulator_get);
1344 
1345 /**
1346  * regulator_get_exclusive - obtain exclusive access to a regulator.
1347  * @dev: device for regulator "consumer"
1348  * @id: Supply name or regulator ID.
1349  *
1350  * Returns a struct regulator corresponding to the regulator producer,
1351  * or IS_ERR() condition containing errno.  Other consumers will be
1352  * unable to obtain this reference is held and the use count for the
1353  * regulator will be initialised to reflect the current state of the
1354  * regulator.
1355  *
1356  * This is intended for use by consumers which cannot tolerate shared
1357  * use of the regulator such as those which need to force the
1358  * regulator off for correct operation of the hardware they are
1359  * controlling.
1360  *
1361  * Use of supply names configured via regulator_set_device_supply() is
1362  * strongly encouraged.  It is recommended that the supply name used
1363  * should match the name used for the supply and/or the relevant
1364  * device pins in the datasheet.
1365  */
1366 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1367 {
1368 	return _regulator_get(dev, id, 1);
1369 }
1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1371 
1372 /**
1373  * regulator_put - "free" the regulator source
1374  * @regulator: regulator source
1375  *
1376  * Note: drivers must ensure that all regulator_enable calls made on this
1377  * regulator source are balanced by regulator_disable calls prior to calling
1378  * this function.
1379  */
1380 void regulator_put(struct regulator *regulator)
1381 {
1382 	struct regulator_dev *rdev;
1383 
1384 	if (regulator == NULL || IS_ERR(regulator))
1385 		return;
1386 
1387 	mutex_lock(&regulator_list_mutex);
1388 	rdev = regulator->rdev;
1389 
1390 	debugfs_remove_recursive(regulator->debugfs);
1391 
1392 	/* remove any sysfs entries */
1393 	if (regulator->dev) {
1394 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1395 		device_remove_file(regulator->dev, &regulator->dev_attr);
1396 		kfree(regulator->dev_attr.attr.name);
1397 	}
1398 	kfree(regulator->supply_name);
1399 	list_del(&regulator->list);
1400 	kfree(regulator);
1401 
1402 	rdev->open_count--;
1403 	rdev->exclusive = 0;
1404 
1405 	module_put(rdev->owner);
1406 	mutex_unlock(&regulator_list_mutex);
1407 }
1408 EXPORT_SYMBOL_GPL(regulator_put);
1409 
1410 static int devm_regulator_match(struct device *dev, void *res, void *data)
1411 {
1412 	struct regulator **r = res;
1413 	if (!r || !*r) {
1414 		WARN_ON(!r || !*r);
1415 		return 0;
1416 	}
1417 	return *r == data;
1418 }
1419 
1420 /**
1421  * devm_regulator_put - Resource managed regulator_put()
1422  * @regulator: regulator to free
1423  *
1424  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425  * this function will not need to be called and the resource management
1426  * code will ensure that the resource is freed.
1427  */
1428 void devm_regulator_put(struct regulator *regulator)
1429 {
1430 	int rc;
1431 
1432 	rc = devres_destroy(regulator->dev, devm_regulator_release,
1433 			    devm_regulator_match, regulator);
1434 	WARN_ON(rc);
1435 }
1436 EXPORT_SYMBOL_GPL(devm_regulator_put);
1437 
1438 static int _regulator_can_change_status(struct regulator_dev *rdev)
1439 {
1440 	if (!rdev->constraints)
1441 		return 0;
1442 
1443 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1444 		return 1;
1445 	else
1446 		return 0;
1447 }
1448 
1449 /* locks held by regulator_enable() */
1450 static int _regulator_enable(struct regulator_dev *rdev)
1451 {
1452 	int ret, delay;
1453 
1454 	/* check voltage and requested load before enabling */
1455 	if (rdev->constraints &&
1456 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1457 		drms_uA_update(rdev);
1458 
1459 	if (rdev->use_count == 0) {
1460 		/* The regulator may on if it's not switchable or left on */
1461 		ret = _regulator_is_enabled(rdev);
1462 		if (ret == -EINVAL || ret == 0) {
1463 			if (!_regulator_can_change_status(rdev))
1464 				return -EPERM;
1465 
1466 			if (!rdev->desc->ops->enable)
1467 				return -EINVAL;
1468 
1469 			/* Query before enabling in case configuration
1470 			 * dependent.  */
1471 			ret = _regulator_get_enable_time(rdev);
1472 			if (ret >= 0) {
1473 				delay = ret;
1474 			} else {
1475 				rdev_warn(rdev, "enable_time() failed: %d\n",
1476 					   ret);
1477 				delay = 0;
1478 			}
1479 
1480 			trace_regulator_enable(rdev_get_name(rdev));
1481 
1482 			/* Allow the regulator to ramp; it would be useful
1483 			 * to extend this for bulk operations so that the
1484 			 * regulators can ramp together.  */
1485 			ret = rdev->desc->ops->enable(rdev);
1486 			if (ret < 0)
1487 				return ret;
1488 
1489 			trace_regulator_enable_delay(rdev_get_name(rdev));
1490 
1491 			if (delay >= 1000) {
1492 				mdelay(delay / 1000);
1493 				udelay(delay % 1000);
1494 			} else if (delay) {
1495 				udelay(delay);
1496 			}
1497 
1498 			trace_regulator_enable_complete(rdev_get_name(rdev));
1499 
1500 		} else if (ret < 0) {
1501 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1502 			return ret;
1503 		}
1504 		/* Fallthrough on positive return values - already enabled */
1505 	}
1506 
1507 	rdev->use_count++;
1508 
1509 	return 0;
1510 }
1511 
1512 /**
1513  * regulator_enable - enable regulator output
1514  * @regulator: regulator source
1515  *
1516  * Request that the regulator be enabled with the regulator output at
1517  * the predefined voltage or current value.  Calls to regulator_enable()
1518  * must be balanced with calls to regulator_disable().
1519  *
1520  * NOTE: the output value can be set by other drivers, boot loader or may be
1521  * hardwired in the regulator.
1522  */
1523 int regulator_enable(struct regulator *regulator)
1524 {
1525 	struct regulator_dev *rdev = regulator->rdev;
1526 	int ret = 0;
1527 
1528 	if (rdev->supply) {
1529 		ret = regulator_enable(rdev->supply);
1530 		if (ret != 0)
1531 			return ret;
1532 	}
1533 
1534 	mutex_lock(&rdev->mutex);
1535 	ret = _regulator_enable(rdev);
1536 	mutex_unlock(&rdev->mutex);
1537 
1538 	if (ret != 0 && rdev->supply)
1539 		regulator_disable(rdev->supply);
1540 
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_enable);
1544 
1545 /* locks held by regulator_disable() */
1546 static int _regulator_disable(struct regulator_dev *rdev)
1547 {
1548 	int ret = 0;
1549 
1550 	if (WARN(rdev->use_count <= 0,
1551 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1552 		return -EIO;
1553 
1554 	/* are we the last user and permitted to disable ? */
1555 	if (rdev->use_count == 1 &&
1556 	    (rdev->constraints && !rdev->constraints->always_on)) {
1557 
1558 		/* we are last user */
1559 		if (_regulator_can_change_status(rdev) &&
1560 		    rdev->desc->ops->disable) {
1561 			trace_regulator_disable(rdev_get_name(rdev));
1562 
1563 			ret = rdev->desc->ops->disable(rdev);
1564 			if (ret < 0) {
1565 				rdev_err(rdev, "failed to disable\n");
1566 				return ret;
1567 			}
1568 
1569 			trace_regulator_disable_complete(rdev_get_name(rdev));
1570 
1571 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1572 					     NULL);
1573 		}
1574 
1575 		rdev->use_count = 0;
1576 	} else if (rdev->use_count > 1) {
1577 
1578 		if (rdev->constraints &&
1579 			(rdev->constraints->valid_ops_mask &
1580 			REGULATOR_CHANGE_DRMS))
1581 			drms_uA_update(rdev);
1582 
1583 		rdev->use_count--;
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 /**
1590  * regulator_disable - disable regulator output
1591  * @regulator: regulator source
1592  *
1593  * Disable the regulator output voltage or current.  Calls to
1594  * regulator_enable() must be balanced with calls to
1595  * regulator_disable().
1596  *
1597  * NOTE: this will only disable the regulator output if no other consumer
1598  * devices have it enabled, the regulator device supports disabling and
1599  * machine constraints permit this operation.
1600  */
1601 int regulator_disable(struct regulator *regulator)
1602 {
1603 	struct regulator_dev *rdev = regulator->rdev;
1604 	int ret = 0;
1605 
1606 	mutex_lock(&rdev->mutex);
1607 	ret = _regulator_disable(rdev);
1608 	mutex_unlock(&rdev->mutex);
1609 
1610 	if (ret == 0 && rdev->supply)
1611 		regulator_disable(rdev->supply);
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_disable);
1616 
1617 /* locks held by regulator_force_disable() */
1618 static int _regulator_force_disable(struct regulator_dev *rdev)
1619 {
1620 	int ret = 0;
1621 
1622 	/* force disable */
1623 	if (rdev->desc->ops->disable) {
1624 		/* ah well, who wants to live forever... */
1625 		ret = rdev->desc->ops->disable(rdev);
1626 		if (ret < 0) {
1627 			rdev_err(rdev, "failed to force disable\n");
1628 			return ret;
1629 		}
1630 		/* notify other consumers that power has been forced off */
1631 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1632 			REGULATOR_EVENT_DISABLE, NULL);
1633 	}
1634 
1635 	return ret;
1636 }
1637 
1638 /**
1639  * regulator_force_disable - force disable regulator output
1640  * @regulator: regulator source
1641  *
1642  * Forcibly disable the regulator output voltage or current.
1643  * NOTE: this *will* disable the regulator output even if other consumer
1644  * devices have it enabled. This should be used for situations when device
1645  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1646  */
1647 int regulator_force_disable(struct regulator *regulator)
1648 {
1649 	struct regulator_dev *rdev = regulator->rdev;
1650 	int ret;
1651 
1652 	mutex_lock(&rdev->mutex);
1653 	regulator->uA_load = 0;
1654 	ret = _regulator_force_disable(regulator->rdev);
1655 	mutex_unlock(&rdev->mutex);
1656 
1657 	if (rdev->supply)
1658 		while (rdev->open_count--)
1659 			regulator_disable(rdev->supply);
1660 
1661 	return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_force_disable);
1664 
1665 static void regulator_disable_work(struct work_struct *work)
1666 {
1667 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1668 						  disable_work.work);
1669 	int count, i, ret;
1670 
1671 	mutex_lock(&rdev->mutex);
1672 
1673 	BUG_ON(!rdev->deferred_disables);
1674 
1675 	count = rdev->deferred_disables;
1676 	rdev->deferred_disables = 0;
1677 
1678 	for (i = 0; i < count; i++) {
1679 		ret = _regulator_disable(rdev);
1680 		if (ret != 0)
1681 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1682 	}
1683 
1684 	mutex_unlock(&rdev->mutex);
1685 
1686 	if (rdev->supply) {
1687 		for (i = 0; i < count; i++) {
1688 			ret = regulator_disable(rdev->supply);
1689 			if (ret != 0) {
1690 				rdev_err(rdev,
1691 					 "Supply disable failed: %d\n", ret);
1692 			}
1693 		}
1694 	}
1695 }
1696 
1697 /**
1698  * regulator_disable_deferred - disable regulator output with delay
1699  * @regulator: regulator source
1700  * @ms: miliseconds until the regulator is disabled
1701  *
1702  * Execute regulator_disable() on the regulator after a delay.  This
1703  * is intended for use with devices that require some time to quiesce.
1704  *
1705  * NOTE: this will only disable the regulator output if no other consumer
1706  * devices have it enabled, the regulator device supports disabling and
1707  * machine constraints permit this operation.
1708  */
1709 int regulator_disable_deferred(struct regulator *regulator, int ms)
1710 {
1711 	struct regulator_dev *rdev = regulator->rdev;
1712 	int ret;
1713 
1714 	mutex_lock(&rdev->mutex);
1715 	rdev->deferred_disables++;
1716 	mutex_unlock(&rdev->mutex);
1717 
1718 	ret = schedule_delayed_work(&rdev->disable_work,
1719 				    msecs_to_jiffies(ms));
1720 	if (ret < 0)
1721 		return ret;
1722 	else
1723 		return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1726 
1727 static int _regulator_is_enabled(struct regulator_dev *rdev)
1728 {
1729 	/* If we don't know then assume that the regulator is always on */
1730 	if (!rdev->desc->ops->is_enabled)
1731 		return 1;
1732 
1733 	return rdev->desc->ops->is_enabled(rdev);
1734 }
1735 
1736 /**
1737  * regulator_is_enabled - is the regulator output enabled
1738  * @regulator: regulator source
1739  *
1740  * Returns positive if the regulator driver backing the source/client
1741  * has requested that the device be enabled, zero if it hasn't, else a
1742  * negative errno code.
1743  *
1744  * Note that the device backing this regulator handle can have multiple
1745  * users, so it might be enabled even if regulator_enable() was never
1746  * called for this particular source.
1747  */
1748 int regulator_is_enabled(struct regulator *regulator)
1749 {
1750 	int ret;
1751 
1752 	mutex_lock(&regulator->rdev->mutex);
1753 	ret = _regulator_is_enabled(regulator->rdev);
1754 	mutex_unlock(&regulator->rdev->mutex);
1755 
1756 	return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1759 
1760 /**
1761  * regulator_count_voltages - count regulator_list_voltage() selectors
1762  * @regulator: regulator source
1763  *
1764  * Returns number of selectors, or negative errno.  Selectors are
1765  * numbered starting at zero, and typically correspond to bitfields
1766  * in hardware registers.
1767  */
1768 int regulator_count_voltages(struct regulator *regulator)
1769 {
1770 	struct regulator_dev	*rdev = regulator->rdev;
1771 
1772 	return rdev->desc->n_voltages ? : -EINVAL;
1773 }
1774 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1775 
1776 /**
1777  * regulator_list_voltage - enumerate supported voltages
1778  * @regulator: regulator source
1779  * @selector: identify voltage to list
1780  * Context: can sleep
1781  *
1782  * Returns a voltage that can be passed to @regulator_set_voltage(),
1783  * zero if this selector code can't be used on this system, or a
1784  * negative errno.
1785  */
1786 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1787 {
1788 	struct regulator_dev	*rdev = regulator->rdev;
1789 	struct regulator_ops	*ops = rdev->desc->ops;
1790 	int			ret;
1791 
1792 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1793 		return -EINVAL;
1794 
1795 	mutex_lock(&rdev->mutex);
1796 	ret = ops->list_voltage(rdev, selector);
1797 	mutex_unlock(&rdev->mutex);
1798 
1799 	if (ret > 0) {
1800 		if (ret < rdev->constraints->min_uV)
1801 			ret = 0;
1802 		else if (ret > rdev->constraints->max_uV)
1803 			ret = 0;
1804 	}
1805 
1806 	return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1809 
1810 /**
1811  * regulator_is_supported_voltage - check if a voltage range can be supported
1812  *
1813  * @regulator: Regulator to check.
1814  * @min_uV: Minimum required voltage in uV.
1815  * @max_uV: Maximum required voltage in uV.
1816  *
1817  * Returns a boolean or a negative error code.
1818  */
1819 int regulator_is_supported_voltage(struct regulator *regulator,
1820 				   int min_uV, int max_uV)
1821 {
1822 	int i, voltages, ret;
1823 
1824 	ret = regulator_count_voltages(regulator);
1825 	if (ret < 0)
1826 		return ret;
1827 	voltages = ret;
1828 
1829 	for (i = 0; i < voltages; i++) {
1830 		ret = regulator_list_voltage(regulator, i);
1831 
1832 		if (ret >= min_uV && ret <= max_uV)
1833 			return 1;
1834 	}
1835 
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1839 
1840 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1841 				     int min_uV, int max_uV)
1842 {
1843 	int ret;
1844 	int delay = 0;
1845 	unsigned int selector;
1846 
1847 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1848 
1849 	min_uV += rdev->constraints->uV_offset;
1850 	max_uV += rdev->constraints->uV_offset;
1851 
1852 	if (rdev->desc->ops->set_voltage) {
1853 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1854 						   &selector);
1855 
1856 		if (rdev->desc->ops->list_voltage)
1857 			selector = rdev->desc->ops->list_voltage(rdev,
1858 								 selector);
1859 		else
1860 			selector = -1;
1861 	} else if (rdev->desc->ops->set_voltage_sel) {
1862 		int best_val = INT_MAX;
1863 		int i;
1864 
1865 		selector = 0;
1866 
1867 		/* Find the smallest voltage that falls within the specified
1868 		 * range.
1869 		 */
1870 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1871 			ret = rdev->desc->ops->list_voltage(rdev, i);
1872 			if (ret < 0)
1873 				continue;
1874 
1875 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1876 				best_val = ret;
1877 				selector = i;
1878 			}
1879 		}
1880 
1881 		/*
1882 		 * If we can't obtain the old selector there is not enough
1883 		 * info to call set_voltage_time_sel().
1884 		 */
1885 		if (rdev->desc->ops->set_voltage_time_sel &&
1886 		    rdev->desc->ops->get_voltage_sel) {
1887 			unsigned int old_selector = 0;
1888 
1889 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1890 			if (ret < 0)
1891 				return ret;
1892 			old_selector = ret;
1893 			ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1894 						old_selector, selector);
1895 			if (ret < 0)
1896 				rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
1897 			else
1898 				delay = ret;
1899 		}
1900 
1901 		if (best_val != INT_MAX) {
1902 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1903 			selector = best_val;
1904 		} else {
1905 			ret = -EINVAL;
1906 		}
1907 	} else {
1908 		ret = -EINVAL;
1909 	}
1910 
1911 	/* Insert any necessary delays */
1912 	if (delay >= 1000) {
1913 		mdelay(delay / 1000);
1914 		udelay(delay % 1000);
1915 	} else if (delay) {
1916 		udelay(delay);
1917 	}
1918 
1919 	if (ret == 0)
1920 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1921 				     NULL);
1922 
1923 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1924 
1925 	return ret;
1926 }
1927 
1928 /**
1929  * regulator_set_voltage - set regulator output voltage
1930  * @regulator: regulator source
1931  * @min_uV: Minimum required voltage in uV
1932  * @max_uV: Maximum acceptable voltage in uV
1933  *
1934  * Sets a voltage regulator to the desired output voltage. This can be set
1935  * during any regulator state. IOW, regulator can be disabled or enabled.
1936  *
1937  * If the regulator is enabled then the voltage will change to the new value
1938  * immediately otherwise if the regulator is disabled the regulator will
1939  * output at the new voltage when enabled.
1940  *
1941  * NOTE: If the regulator is shared between several devices then the lowest
1942  * request voltage that meets the system constraints will be used.
1943  * Regulator system constraints must be set for this regulator before
1944  * calling this function otherwise this call will fail.
1945  */
1946 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1947 {
1948 	struct regulator_dev *rdev = regulator->rdev;
1949 	int ret = 0;
1950 
1951 	mutex_lock(&rdev->mutex);
1952 
1953 	/* If we're setting the same range as last time the change
1954 	 * should be a noop (some cpufreq implementations use the same
1955 	 * voltage for multiple frequencies, for example).
1956 	 */
1957 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1958 		goto out;
1959 
1960 	/* sanity check */
1961 	if (!rdev->desc->ops->set_voltage &&
1962 	    !rdev->desc->ops->set_voltage_sel) {
1963 		ret = -EINVAL;
1964 		goto out;
1965 	}
1966 
1967 	/* constraints check */
1968 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1969 	if (ret < 0)
1970 		goto out;
1971 	regulator->min_uV = min_uV;
1972 	regulator->max_uV = max_uV;
1973 
1974 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1975 	if (ret < 0)
1976 		goto out;
1977 
1978 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1979 
1980 out:
1981 	mutex_unlock(&rdev->mutex);
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1985 
1986 /**
1987  * regulator_set_voltage_time - get raise/fall time
1988  * @regulator: regulator source
1989  * @old_uV: starting voltage in microvolts
1990  * @new_uV: target voltage in microvolts
1991  *
1992  * Provided with the starting and ending voltage, this function attempts to
1993  * calculate the time in microseconds required to rise or fall to this new
1994  * voltage.
1995  */
1996 int regulator_set_voltage_time(struct regulator *regulator,
1997 			       int old_uV, int new_uV)
1998 {
1999 	struct regulator_dev	*rdev = regulator->rdev;
2000 	struct regulator_ops	*ops = rdev->desc->ops;
2001 	int old_sel = -1;
2002 	int new_sel = -1;
2003 	int voltage;
2004 	int i;
2005 
2006 	/* Currently requires operations to do this */
2007 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2008 	    || !rdev->desc->n_voltages)
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2012 		/* We only look for exact voltage matches here */
2013 		voltage = regulator_list_voltage(regulator, i);
2014 		if (voltage < 0)
2015 			return -EINVAL;
2016 		if (voltage == 0)
2017 			continue;
2018 		if (voltage == old_uV)
2019 			old_sel = i;
2020 		if (voltage == new_uV)
2021 			new_sel = i;
2022 	}
2023 
2024 	if (old_sel < 0 || new_sel < 0)
2025 		return -EINVAL;
2026 
2027 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2028 }
2029 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2030 
2031 /**
2032  * regulator_sync_voltage - re-apply last regulator output voltage
2033  * @regulator: regulator source
2034  *
2035  * Re-apply the last configured voltage.  This is intended to be used
2036  * where some external control source the consumer is cooperating with
2037  * has caused the configured voltage to change.
2038  */
2039 int regulator_sync_voltage(struct regulator *regulator)
2040 {
2041 	struct regulator_dev *rdev = regulator->rdev;
2042 	int ret, min_uV, max_uV;
2043 
2044 	mutex_lock(&rdev->mutex);
2045 
2046 	if (!rdev->desc->ops->set_voltage &&
2047 	    !rdev->desc->ops->set_voltage_sel) {
2048 		ret = -EINVAL;
2049 		goto out;
2050 	}
2051 
2052 	/* This is only going to work if we've had a voltage configured. */
2053 	if (!regulator->min_uV && !regulator->max_uV) {
2054 		ret = -EINVAL;
2055 		goto out;
2056 	}
2057 
2058 	min_uV = regulator->min_uV;
2059 	max_uV = regulator->max_uV;
2060 
2061 	/* This should be a paranoia check... */
2062 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2063 	if (ret < 0)
2064 		goto out;
2065 
2066 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2067 	if (ret < 0)
2068 		goto out;
2069 
2070 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2071 
2072 out:
2073 	mutex_unlock(&rdev->mutex);
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2077 
2078 static int _regulator_get_voltage(struct regulator_dev *rdev)
2079 {
2080 	int sel, ret;
2081 
2082 	if (rdev->desc->ops->get_voltage_sel) {
2083 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2084 		if (sel < 0)
2085 			return sel;
2086 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2087 	} else if (rdev->desc->ops->get_voltage) {
2088 		ret = rdev->desc->ops->get_voltage(rdev);
2089 	} else {
2090 		return -EINVAL;
2091 	}
2092 
2093 	if (ret < 0)
2094 		return ret;
2095 	return ret - rdev->constraints->uV_offset;
2096 }
2097 
2098 /**
2099  * regulator_get_voltage - get regulator output voltage
2100  * @regulator: regulator source
2101  *
2102  * This returns the current regulator voltage in uV.
2103  *
2104  * NOTE: If the regulator is disabled it will return the voltage value. This
2105  * function should not be used to determine regulator state.
2106  */
2107 int regulator_get_voltage(struct regulator *regulator)
2108 {
2109 	int ret;
2110 
2111 	mutex_lock(&regulator->rdev->mutex);
2112 
2113 	ret = _regulator_get_voltage(regulator->rdev);
2114 
2115 	mutex_unlock(&regulator->rdev->mutex);
2116 
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2120 
2121 /**
2122  * regulator_set_current_limit - set regulator output current limit
2123  * @regulator: regulator source
2124  * @min_uA: Minimuum supported current in uA
2125  * @max_uA: Maximum supported current in uA
2126  *
2127  * Sets current sink to the desired output current. This can be set during
2128  * any regulator state. IOW, regulator can be disabled or enabled.
2129  *
2130  * If the regulator is enabled then the current will change to the new value
2131  * immediately otherwise if the regulator is disabled the regulator will
2132  * output at the new current when enabled.
2133  *
2134  * NOTE: Regulator system constraints must be set for this regulator before
2135  * calling this function otherwise this call will fail.
2136  */
2137 int regulator_set_current_limit(struct regulator *regulator,
2138 			       int min_uA, int max_uA)
2139 {
2140 	struct regulator_dev *rdev = regulator->rdev;
2141 	int ret;
2142 
2143 	mutex_lock(&rdev->mutex);
2144 
2145 	/* sanity check */
2146 	if (!rdev->desc->ops->set_current_limit) {
2147 		ret = -EINVAL;
2148 		goto out;
2149 	}
2150 
2151 	/* constraints check */
2152 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2153 	if (ret < 0)
2154 		goto out;
2155 
2156 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2157 out:
2158 	mutex_unlock(&rdev->mutex);
2159 	return ret;
2160 }
2161 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2162 
2163 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2164 {
2165 	int ret;
2166 
2167 	mutex_lock(&rdev->mutex);
2168 
2169 	/* sanity check */
2170 	if (!rdev->desc->ops->get_current_limit) {
2171 		ret = -EINVAL;
2172 		goto out;
2173 	}
2174 
2175 	ret = rdev->desc->ops->get_current_limit(rdev);
2176 out:
2177 	mutex_unlock(&rdev->mutex);
2178 	return ret;
2179 }
2180 
2181 /**
2182  * regulator_get_current_limit - get regulator output current
2183  * @regulator: regulator source
2184  *
2185  * This returns the current supplied by the specified current sink in uA.
2186  *
2187  * NOTE: If the regulator is disabled it will return the current value. This
2188  * function should not be used to determine regulator state.
2189  */
2190 int regulator_get_current_limit(struct regulator *regulator)
2191 {
2192 	return _regulator_get_current_limit(regulator->rdev);
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2195 
2196 /**
2197  * regulator_set_mode - set regulator operating mode
2198  * @regulator: regulator source
2199  * @mode: operating mode - one of the REGULATOR_MODE constants
2200  *
2201  * Set regulator operating mode to increase regulator efficiency or improve
2202  * regulation performance.
2203  *
2204  * NOTE: Regulator system constraints must be set for this regulator before
2205  * calling this function otherwise this call will fail.
2206  */
2207 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2208 {
2209 	struct regulator_dev *rdev = regulator->rdev;
2210 	int ret;
2211 	int regulator_curr_mode;
2212 
2213 	mutex_lock(&rdev->mutex);
2214 
2215 	/* sanity check */
2216 	if (!rdev->desc->ops->set_mode) {
2217 		ret = -EINVAL;
2218 		goto out;
2219 	}
2220 
2221 	/* return if the same mode is requested */
2222 	if (rdev->desc->ops->get_mode) {
2223 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2224 		if (regulator_curr_mode == mode) {
2225 			ret = 0;
2226 			goto out;
2227 		}
2228 	}
2229 
2230 	/* constraints check */
2231 	ret = regulator_mode_constrain(rdev, &mode);
2232 	if (ret < 0)
2233 		goto out;
2234 
2235 	ret = rdev->desc->ops->set_mode(rdev, mode);
2236 out:
2237 	mutex_unlock(&rdev->mutex);
2238 	return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_set_mode);
2241 
2242 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2243 {
2244 	int ret;
2245 
2246 	mutex_lock(&rdev->mutex);
2247 
2248 	/* sanity check */
2249 	if (!rdev->desc->ops->get_mode) {
2250 		ret = -EINVAL;
2251 		goto out;
2252 	}
2253 
2254 	ret = rdev->desc->ops->get_mode(rdev);
2255 out:
2256 	mutex_unlock(&rdev->mutex);
2257 	return ret;
2258 }
2259 
2260 /**
2261  * regulator_get_mode - get regulator operating mode
2262  * @regulator: regulator source
2263  *
2264  * Get the current regulator operating mode.
2265  */
2266 unsigned int regulator_get_mode(struct regulator *regulator)
2267 {
2268 	return _regulator_get_mode(regulator->rdev);
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_get_mode);
2271 
2272 /**
2273  * regulator_set_optimum_mode - set regulator optimum operating mode
2274  * @regulator: regulator source
2275  * @uA_load: load current
2276  *
2277  * Notifies the regulator core of a new device load. This is then used by
2278  * DRMS (if enabled by constraints) to set the most efficient regulator
2279  * operating mode for the new regulator loading.
2280  *
2281  * Consumer devices notify their supply regulator of the maximum power
2282  * they will require (can be taken from device datasheet in the power
2283  * consumption tables) when they change operational status and hence power
2284  * state. Examples of operational state changes that can affect power
2285  * consumption are :-
2286  *
2287  *    o Device is opened / closed.
2288  *    o Device I/O is about to begin or has just finished.
2289  *    o Device is idling in between work.
2290  *
2291  * This information is also exported via sysfs to userspace.
2292  *
2293  * DRMS will sum the total requested load on the regulator and change
2294  * to the most efficient operating mode if platform constraints allow.
2295  *
2296  * Returns the new regulator mode or error.
2297  */
2298 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2299 {
2300 	struct regulator_dev *rdev = regulator->rdev;
2301 	struct regulator *consumer;
2302 	int ret, output_uV, input_uV, total_uA_load = 0;
2303 	unsigned int mode;
2304 
2305 	mutex_lock(&rdev->mutex);
2306 
2307 	/*
2308 	 * first check to see if we can set modes at all, otherwise just
2309 	 * tell the consumer everything is OK.
2310 	 */
2311 	regulator->uA_load = uA_load;
2312 	ret = regulator_check_drms(rdev);
2313 	if (ret < 0) {
2314 		ret = 0;
2315 		goto out;
2316 	}
2317 
2318 	if (!rdev->desc->ops->get_optimum_mode)
2319 		goto out;
2320 
2321 	/*
2322 	 * we can actually do this so any errors are indicators of
2323 	 * potential real failure.
2324 	 */
2325 	ret = -EINVAL;
2326 
2327 	/* get output voltage */
2328 	output_uV = _regulator_get_voltage(rdev);
2329 	if (output_uV <= 0) {
2330 		rdev_err(rdev, "invalid output voltage found\n");
2331 		goto out;
2332 	}
2333 
2334 	/* get input voltage */
2335 	input_uV = 0;
2336 	if (rdev->supply)
2337 		input_uV = regulator_get_voltage(rdev->supply);
2338 	if (input_uV <= 0)
2339 		input_uV = rdev->constraints->input_uV;
2340 	if (input_uV <= 0) {
2341 		rdev_err(rdev, "invalid input voltage found\n");
2342 		goto out;
2343 	}
2344 
2345 	/* calc total requested load for this regulator */
2346 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2347 		total_uA_load += consumer->uA_load;
2348 
2349 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2350 						 input_uV, output_uV,
2351 						 total_uA_load);
2352 	ret = regulator_mode_constrain(rdev, &mode);
2353 	if (ret < 0) {
2354 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2355 			 total_uA_load, input_uV, output_uV);
2356 		goto out;
2357 	}
2358 
2359 	ret = rdev->desc->ops->set_mode(rdev, mode);
2360 	if (ret < 0) {
2361 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2362 		goto out;
2363 	}
2364 	ret = mode;
2365 out:
2366 	mutex_unlock(&rdev->mutex);
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2370 
2371 /**
2372  * regulator_register_notifier - register regulator event notifier
2373  * @regulator: regulator source
2374  * @nb: notifier block
2375  *
2376  * Register notifier block to receive regulator events.
2377  */
2378 int regulator_register_notifier(struct regulator *regulator,
2379 			      struct notifier_block *nb)
2380 {
2381 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2382 						nb);
2383 }
2384 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2385 
2386 /**
2387  * regulator_unregister_notifier - unregister regulator event notifier
2388  * @regulator: regulator source
2389  * @nb: notifier block
2390  *
2391  * Unregister regulator event notifier block.
2392  */
2393 int regulator_unregister_notifier(struct regulator *regulator,
2394 				struct notifier_block *nb)
2395 {
2396 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2397 						  nb);
2398 }
2399 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2400 
2401 /* notify regulator consumers and downstream regulator consumers.
2402  * Note mutex must be held by caller.
2403  */
2404 static void _notifier_call_chain(struct regulator_dev *rdev,
2405 				  unsigned long event, void *data)
2406 {
2407 	/* call rdev chain first */
2408 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2409 }
2410 
2411 /**
2412  * regulator_bulk_get - get multiple regulator consumers
2413  *
2414  * @dev:           Device to supply
2415  * @num_consumers: Number of consumers to register
2416  * @consumers:     Configuration of consumers; clients are stored here.
2417  *
2418  * @return 0 on success, an errno on failure.
2419  *
2420  * This helper function allows drivers to get several regulator
2421  * consumers in one operation.  If any of the regulators cannot be
2422  * acquired then any regulators that were allocated will be freed
2423  * before returning to the caller.
2424  */
2425 int regulator_bulk_get(struct device *dev, int num_consumers,
2426 		       struct regulator_bulk_data *consumers)
2427 {
2428 	int i;
2429 	int ret;
2430 
2431 	for (i = 0; i < num_consumers; i++)
2432 		consumers[i].consumer = NULL;
2433 
2434 	for (i = 0; i < num_consumers; i++) {
2435 		consumers[i].consumer = regulator_get(dev,
2436 						      consumers[i].supply);
2437 		if (IS_ERR(consumers[i].consumer)) {
2438 			ret = PTR_ERR(consumers[i].consumer);
2439 			dev_err(dev, "Failed to get supply '%s': %d\n",
2440 				consumers[i].supply, ret);
2441 			consumers[i].consumer = NULL;
2442 			goto err;
2443 		}
2444 	}
2445 
2446 	return 0;
2447 
2448 err:
2449 	while (--i >= 0)
2450 		regulator_put(consumers[i].consumer);
2451 
2452 	return ret;
2453 }
2454 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2455 
2456 /**
2457  * devm_regulator_bulk_get - managed get multiple regulator consumers
2458  *
2459  * @dev:           Device to supply
2460  * @num_consumers: Number of consumers to register
2461  * @consumers:     Configuration of consumers; clients are stored here.
2462  *
2463  * @return 0 on success, an errno on failure.
2464  *
2465  * This helper function allows drivers to get several regulator
2466  * consumers in one operation with management, the regulators will
2467  * automatically be freed when the device is unbound.  If any of the
2468  * regulators cannot be acquired then any regulators that were
2469  * allocated will be freed before returning to the caller.
2470  */
2471 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2472 			    struct regulator_bulk_data *consumers)
2473 {
2474 	int i;
2475 	int ret;
2476 
2477 	for (i = 0; i < num_consumers; i++)
2478 		consumers[i].consumer = NULL;
2479 
2480 	for (i = 0; i < num_consumers; i++) {
2481 		consumers[i].consumer = devm_regulator_get(dev,
2482 							   consumers[i].supply);
2483 		if (IS_ERR(consumers[i].consumer)) {
2484 			ret = PTR_ERR(consumers[i].consumer);
2485 			dev_err(dev, "Failed to get supply '%s': %d\n",
2486 				consumers[i].supply, ret);
2487 			consumers[i].consumer = NULL;
2488 			goto err;
2489 		}
2490 	}
2491 
2492 	return 0;
2493 
2494 err:
2495 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2496 		devm_regulator_put(consumers[i].consumer);
2497 
2498 	return ret;
2499 }
2500 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2501 
2502 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2503 {
2504 	struct regulator_bulk_data *bulk = data;
2505 
2506 	bulk->ret = regulator_enable(bulk->consumer);
2507 }
2508 
2509 /**
2510  * regulator_bulk_enable - enable multiple regulator consumers
2511  *
2512  * @num_consumers: Number of consumers
2513  * @consumers:     Consumer data; clients are stored here.
2514  * @return         0 on success, an errno on failure
2515  *
2516  * This convenience API allows consumers to enable multiple regulator
2517  * clients in a single API call.  If any consumers cannot be enabled
2518  * then any others that were enabled will be disabled again prior to
2519  * return.
2520  */
2521 int regulator_bulk_enable(int num_consumers,
2522 			  struct regulator_bulk_data *consumers)
2523 {
2524 	LIST_HEAD(async_domain);
2525 	int i;
2526 	int ret = 0;
2527 
2528 	for (i = 0; i < num_consumers; i++)
2529 		async_schedule_domain(regulator_bulk_enable_async,
2530 				      &consumers[i], &async_domain);
2531 
2532 	async_synchronize_full_domain(&async_domain);
2533 
2534 	/* If any consumer failed we need to unwind any that succeeded */
2535 	for (i = 0; i < num_consumers; i++) {
2536 		if (consumers[i].ret != 0) {
2537 			ret = consumers[i].ret;
2538 			goto err;
2539 		}
2540 	}
2541 
2542 	return 0;
2543 
2544 err:
2545 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2546 	while (--i >= 0)
2547 		regulator_disable(consumers[i].consumer);
2548 
2549 	return ret;
2550 }
2551 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2552 
2553 /**
2554  * regulator_bulk_disable - disable multiple regulator consumers
2555  *
2556  * @num_consumers: Number of consumers
2557  * @consumers:     Consumer data; clients are stored here.
2558  * @return         0 on success, an errno on failure
2559  *
2560  * This convenience API allows consumers to disable multiple regulator
2561  * clients in a single API call.  If any consumers cannot be disabled
2562  * then any others that were disabled will be enabled again prior to
2563  * return.
2564  */
2565 int regulator_bulk_disable(int num_consumers,
2566 			   struct regulator_bulk_data *consumers)
2567 {
2568 	int i;
2569 	int ret;
2570 
2571 	for (i = num_consumers - 1; i >= 0; --i) {
2572 		ret = regulator_disable(consumers[i].consumer);
2573 		if (ret != 0)
2574 			goto err;
2575 	}
2576 
2577 	return 0;
2578 
2579 err:
2580 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2581 	for (++i; i < num_consumers; ++i)
2582 		regulator_enable(consumers[i].consumer);
2583 
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2587 
2588 /**
2589  * regulator_bulk_force_disable - force disable multiple regulator consumers
2590  *
2591  * @num_consumers: Number of consumers
2592  * @consumers:     Consumer data; clients are stored here.
2593  * @return         0 on success, an errno on failure
2594  *
2595  * This convenience API allows consumers to forcibly disable multiple regulator
2596  * clients in a single API call.
2597  * NOTE: This should be used for situations when device damage will
2598  * likely occur if the regulators are not disabled (e.g. over temp).
2599  * Although regulator_force_disable function call for some consumers can
2600  * return error numbers, the function is called for all consumers.
2601  */
2602 int regulator_bulk_force_disable(int num_consumers,
2603 			   struct regulator_bulk_data *consumers)
2604 {
2605 	int i;
2606 	int ret;
2607 
2608 	for (i = 0; i < num_consumers; i++)
2609 		consumers[i].ret =
2610 			    regulator_force_disable(consumers[i].consumer);
2611 
2612 	for (i = 0; i < num_consumers; i++) {
2613 		if (consumers[i].ret != 0) {
2614 			ret = consumers[i].ret;
2615 			goto out;
2616 		}
2617 	}
2618 
2619 	return 0;
2620 out:
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2624 
2625 /**
2626  * regulator_bulk_free - free multiple regulator consumers
2627  *
2628  * @num_consumers: Number of consumers
2629  * @consumers:     Consumer data; clients are stored here.
2630  *
2631  * This convenience API allows consumers to free multiple regulator
2632  * clients in a single API call.
2633  */
2634 void regulator_bulk_free(int num_consumers,
2635 			 struct regulator_bulk_data *consumers)
2636 {
2637 	int i;
2638 
2639 	for (i = 0; i < num_consumers; i++) {
2640 		regulator_put(consumers[i].consumer);
2641 		consumers[i].consumer = NULL;
2642 	}
2643 }
2644 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2645 
2646 /**
2647  * regulator_notifier_call_chain - call regulator event notifier
2648  * @rdev: regulator source
2649  * @event: notifier block
2650  * @data: callback-specific data.
2651  *
2652  * Called by regulator drivers to notify clients a regulator event has
2653  * occurred. We also notify regulator clients downstream.
2654  * Note lock must be held by caller.
2655  */
2656 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2657 				  unsigned long event, void *data)
2658 {
2659 	_notifier_call_chain(rdev, event, data);
2660 	return NOTIFY_DONE;
2661 
2662 }
2663 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2664 
2665 /**
2666  * regulator_mode_to_status - convert a regulator mode into a status
2667  *
2668  * @mode: Mode to convert
2669  *
2670  * Convert a regulator mode into a status.
2671  */
2672 int regulator_mode_to_status(unsigned int mode)
2673 {
2674 	switch (mode) {
2675 	case REGULATOR_MODE_FAST:
2676 		return REGULATOR_STATUS_FAST;
2677 	case REGULATOR_MODE_NORMAL:
2678 		return REGULATOR_STATUS_NORMAL;
2679 	case REGULATOR_MODE_IDLE:
2680 		return REGULATOR_STATUS_IDLE;
2681 	case REGULATOR_STATUS_STANDBY:
2682 		return REGULATOR_STATUS_STANDBY;
2683 	default:
2684 		return 0;
2685 	}
2686 }
2687 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2688 
2689 /*
2690  * To avoid cluttering sysfs (and memory) with useless state, only
2691  * create attributes that can be meaningfully displayed.
2692  */
2693 static int add_regulator_attributes(struct regulator_dev *rdev)
2694 {
2695 	struct device		*dev = &rdev->dev;
2696 	struct regulator_ops	*ops = rdev->desc->ops;
2697 	int			status = 0;
2698 
2699 	/* some attributes need specific methods to be displayed */
2700 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2701 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2702 		status = device_create_file(dev, &dev_attr_microvolts);
2703 		if (status < 0)
2704 			return status;
2705 	}
2706 	if (ops->get_current_limit) {
2707 		status = device_create_file(dev, &dev_attr_microamps);
2708 		if (status < 0)
2709 			return status;
2710 	}
2711 	if (ops->get_mode) {
2712 		status = device_create_file(dev, &dev_attr_opmode);
2713 		if (status < 0)
2714 			return status;
2715 	}
2716 	if (ops->is_enabled) {
2717 		status = device_create_file(dev, &dev_attr_state);
2718 		if (status < 0)
2719 			return status;
2720 	}
2721 	if (ops->get_status) {
2722 		status = device_create_file(dev, &dev_attr_status);
2723 		if (status < 0)
2724 			return status;
2725 	}
2726 
2727 	/* some attributes are type-specific */
2728 	if (rdev->desc->type == REGULATOR_CURRENT) {
2729 		status = device_create_file(dev, &dev_attr_requested_microamps);
2730 		if (status < 0)
2731 			return status;
2732 	}
2733 
2734 	/* all the other attributes exist to support constraints;
2735 	 * don't show them if there are no constraints, or if the
2736 	 * relevant supporting methods are missing.
2737 	 */
2738 	if (!rdev->constraints)
2739 		return status;
2740 
2741 	/* constraints need specific supporting methods */
2742 	if (ops->set_voltage || ops->set_voltage_sel) {
2743 		status = device_create_file(dev, &dev_attr_min_microvolts);
2744 		if (status < 0)
2745 			return status;
2746 		status = device_create_file(dev, &dev_attr_max_microvolts);
2747 		if (status < 0)
2748 			return status;
2749 	}
2750 	if (ops->set_current_limit) {
2751 		status = device_create_file(dev, &dev_attr_min_microamps);
2752 		if (status < 0)
2753 			return status;
2754 		status = device_create_file(dev, &dev_attr_max_microamps);
2755 		if (status < 0)
2756 			return status;
2757 	}
2758 
2759 	/* suspend mode constraints need multiple supporting methods */
2760 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2761 		return status;
2762 
2763 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2764 	if (status < 0)
2765 		return status;
2766 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2767 	if (status < 0)
2768 		return status;
2769 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2770 	if (status < 0)
2771 		return status;
2772 
2773 	if (ops->set_suspend_voltage) {
2774 		status = device_create_file(dev,
2775 				&dev_attr_suspend_standby_microvolts);
2776 		if (status < 0)
2777 			return status;
2778 		status = device_create_file(dev,
2779 				&dev_attr_suspend_mem_microvolts);
2780 		if (status < 0)
2781 			return status;
2782 		status = device_create_file(dev,
2783 				&dev_attr_suspend_disk_microvolts);
2784 		if (status < 0)
2785 			return status;
2786 	}
2787 
2788 	if (ops->set_suspend_mode) {
2789 		status = device_create_file(dev,
2790 				&dev_attr_suspend_standby_mode);
2791 		if (status < 0)
2792 			return status;
2793 		status = device_create_file(dev,
2794 				&dev_attr_suspend_mem_mode);
2795 		if (status < 0)
2796 			return status;
2797 		status = device_create_file(dev,
2798 				&dev_attr_suspend_disk_mode);
2799 		if (status < 0)
2800 			return status;
2801 	}
2802 
2803 	return status;
2804 }
2805 
2806 static void rdev_init_debugfs(struct regulator_dev *rdev)
2807 {
2808 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2809 	if (!rdev->debugfs) {
2810 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2811 		return;
2812 	}
2813 
2814 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2815 			   &rdev->use_count);
2816 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2817 			   &rdev->open_count);
2818 }
2819 
2820 /**
2821  * regulator_register - register regulator
2822  * @regulator_desc: regulator to register
2823  * @dev: struct device for the regulator
2824  * @init_data: platform provided init data, passed through by driver
2825  * @driver_data: private regulator data
2826  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2827  *           NULL).
2828  *
2829  * Called by regulator drivers to register a regulator.
2830  * Returns 0 on success.
2831  */
2832 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2833 	struct device *dev, const struct regulator_init_data *init_data,
2834 	void *driver_data, struct device_node *of_node)
2835 {
2836 	const struct regulation_constraints *constraints = NULL;
2837 	static atomic_t regulator_no = ATOMIC_INIT(0);
2838 	struct regulator_dev *rdev;
2839 	int ret, i;
2840 	const char *supply = NULL;
2841 
2842 	if (regulator_desc == NULL)
2843 		return ERR_PTR(-EINVAL);
2844 
2845 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2846 		return ERR_PTR(-EINVAL);
2847 
2848 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2849 	    regulator_desc->type != REGULATOR_CURRENT)
2850 		return ERR_PTR(-EINVAL);
2851 
2852 	/* Only one of each should be implemented */
2853 	WARN_ON(regulator_desc->ops->get_voltage &&
2854 		regulator_desc->ops->get_voltage_sel);
2855 	WARN_ON(regulator_desc->ops->set_voltage &&
2856 		regulator_desc->ops->set_voltage_sel);
2857 
2858 	/* If we're using selectors we must implement list_voltage. */
2859 	if (regulator_desc->ops->get_voltage_sel &&
2860 	    !regulator_desc->ops->list_voltage) {
2861 		return ERR_PTR(-EINVAL);
2862 	}
2863 	if (regulator_desc->ops->set_voltage_sel &&
2864 	    !regulator_desc->ops->list_voltage) {
2865 		return ERR_PTR(-EINVAL);
2866 	}
2867 
2868 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2869 	if (rdev == NULL)
2870 		return ERR_PTR(-ENOMEM);
2871 
2872 	mutex_lock(&regulator_list_mutex);
2873 
2874 	mutex_init(&rdev->mutex);
2875 	rdev->reg_data = driver_data;
2876 	rdev->owner = regulator_desc->owner;
2877 	rdev->desc = regulator_desc;
2878 	INIT_LIST_HEAD(&rdev->consumer_list);
2879 	INIT_LIST_HEAD(&rdev->list);
2880 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2881 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2882 
2883 	/* preform any regulator specific init */
2884 	if (init_data && init_data->regulator_init) {
2885 		ret = init_data->regulator_init(rdev->reg_data);
2886 		if (ret < 0)
2887 			goto clean;
2888 	}
2889 
2890 	/* register with sysfs */
2891 	rdev->dev.class = &regulator_class;
2892 	rdev->dev.of_node = of_node;
2893 	rdev->dev.parent = dev;
2894 	dev_set_name(&rdev->dev, "regulator.%d",
2895 		     atomic_inc_return(&regulator_no) - 1);
2896 	ret = device_register(&rdev->dev);
2897 	if (ret != 0) {
2898 		put_device(&rdev->dev);
2899 		goto clean;
2900 	}
2901 
2902 	dev_set_drvdata(&rdev->dev, rdev);
2903 
2904 	/* set regulator constraints */
2905 	if (init_data)
2906 		constraints = &init_data->constraints;
2907 
2908 	ret = set_machine_constraints(rdev, constraints);
2909 	if (ret < 0)
2910 		goto scrub;
2911 
2912 	/* add attributes supported by this regulator */
2913 	ret = add_regulator_attributes(rdev);
2914 	if (ret < 0)
2915 		goto scrub;
2916 
2917 	if (init_data && init_data->supply_regulator)
2918 		supply = init_data->supply_regulator;
2919 	else if (regulator_desc->supply_name)
2920 		supply = regulator_desc->supply_name;
2921 
2922 	if (supply) {
2923 		struct regulator_dev *r;
2924 
2925 		r = regulator_dev_lookup(dev, supply);
2926 
2927 		if (!r) {
2928 			dev_err(dev, "Failed to find supply %s\n", supply);
2929 			ret = -EPROBE_DEFER;
2930 			goto scrub;
2931 		}
2932 
2933 		ret = set_supply(rdev, r);
2934 		if (ret < 0)
2935 			goto scrub;
2936 
2937 		/* Enable supply if rail is enabled */
2938 		if (rdev->desc->ops->is_enabled &&
2939 				rdev->desc->ops->is_enabled(rdev)) {
2940 			ret = regulator_enable(rdev->supply);
2941 			if (ret < 0)
2942 				goto scrub;
2943 		}
2944 	}
2945 
2946 	/* add consumers devices */
2947 	if (init_data) {
2948 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2949 			ret = set_consumer_device_supply(rdev,
2950 				init_data->consumer_supplies[i].dev_name,
2951 				init_data->consumer_supplies[i].supply);
2952 			if (ret < 0) {
2953 				dev_err(dev, "Failed to set supply %s\n",
2954 					init_data->consumer_supplies[i].supply);
2955 				goto unset_supplies;
2956 			}
2957 		}
2958 	}
2959 
2960 	list_add(&rdev->list, &regulator_list);
2961 
2962 	rdev_init_debugfs(rdev);
2963 out:
2964 	mutex_unlock(&regulator_list_mutex);
2965 	return rdev;
2966 
2967 unset_supplies:
2968 	unset_regulator_supplies(rdev);
2969 
2970 scrub:
2971 	kfree(rdev->constraints);
2972 	device_unregister(&rdev->dev);
2973 	/* device core frees rdev */
2974 	rdev = ERR_PTR(ret);
2975 	goto out;
2976 
2977 clean:
2978 	kfree(rdev);
2979 	rdev = ERR_PTR(ret);
2980 	goto out;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_register);
2983 
2984 /**
2985  * regulator_unregister - unregister regulator
2986  * @rdev: regulator to unregister
2987  *
2988  * Called by regulator drivers to unregister a regulator.
2989  */
2990 void regulator_unregister(struct regulator_dev *rdev)
2991 {
2992 	if (rdev == NULL)
2993 		return;
2994 
2995 	if (rdev->supply)
2996 		regulator_put(rdev->supply);
2997 	mutex_lock(&regulator_list_mutex);
2998 	debugfs_remove_recursive(rdev->debugfs);
2999 	flush_work_sync(&rdev->disable_work.work);
3000 	WARN_ON(rdev->open_count);
3001 	unset_regulator_supplies(rdev);
3002 	list_del(&rdev->list);
3003 	kfree(rdev->constraints);
3004 	device_unregister(&rdev->dev);
3005 	mutex_unlock(&regulator_list_mutex);
3006 }
3007 EXPORT_SYMBOL_GPL(regulator_unregister);
3008 
3009 /**
3010  * regulator_suspend_prepare - prepare regulators for system wide suspend
3011  * @state: system suspend state
3012  *
3013  * Configure each regulator with it's suspend operating parameters for state.
3014  * This will usually be called by machine suspend code prior to supending.
3015  */
3016 int regulator_suspend_prepare(suspend_state_t state)
3017 {
3018 	struct regulator_dev *rdev;
3019 	int ret = 0;
3020 
3021 	/* ON is handled by regulator active state */
3022 	if (state == PM_SUSPEND_ON)
3023 		return -EINVAL;
3024 
3025 	mutex_lock(&regulator_list_mutex);
3026 	list_for_each_entry(rdev, &regulator_list, list) {
3027 
3028 		mutex_lock(&rdev->mutex);
3029 		ret = suspend_prepare(rdev, state);
3030 		mutex_unlock(&rdev->mutex);
3031 
3032 		if (ret < 0) {
3033 			rdev_err(rdev, "failed to prepare\n");
3034 			goto out;
3035 		}
3036 	}
3037 out:
3038 	mutex_unlock(&regulator_list_mutex);
3039 	return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3042 
3043 /**
3044  * regulator_suspend_finish - resume regulators from system wide suspend
3045  *
3046  * Turn on regulators that might be turned off by regulator_suspend_prepare
3047  * and that should be turned on according to the regulators properties.
3048  */
3049 int regulator_suspend_finish(void)
3050 {
3051 	struct regulator_dev *rdev;
3052 	int ret = 0, error;
3053 
3054 	mutex_lock(&regulator_list_mutex);
3055 	list_for_each_entry(rdev, &regulator_list, list) {
3056 		struct regulator_ops *ops = rdev->desc->ops;
3057 
3058 		mutex_lock(&rdev->mutex);
3059 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3060 				ops->enable) {
3061 			error = ops->enable(rdev);
3062 			if (error)
3063 				ret = error;
3064 		} else {
3065 			if (!has_full_constraints)
3066 				goto unlock;
3067 			if (!ops->disable)
3068 				goto unlock;
3069 			if (ops->is_enabled && !ops->is_enabled(rdev))
3070 				goto unlock;
3071 
3072 			error = ops->disable(rdev);
3073 			if (error)
3074 				ret = error;
3075 		}
3076 unlock:
3077 		mutex_unlock(&rdev->mutex);
3078 	}
3079 	mutex_unlock(&regulator_list_mutex);
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3083 
3084 /**
3085  * regulator_has_full_constraints - the system has fully specified constraints
3086  *
3087  * Calling this function will cause the regulator API to disable all
3088  * regulators which have a zero use count and don't have an always_on
3089  * constraint in a late_initcall.
3090  *
3091  * The intention is that this will become the default behaviour in a
3092  * future kernel release so users are encouraged to use this facility
3093  * now.
3094  */
3095 void regulator_has_full_constraints(void)
3096 {
3097 	has_full_constraints = 1;
3098 }
3099 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3100 
3101 /**
3102  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3103  *
3104  * Calling this function will cause the regulator API to provide a
3105  * dummy regulator to consumers if no physical regulator is found,
3106  * allowing most consumers to proceed as though a regulator were
3107  * configured.  This allows systems such as those with software
3108  * controllable regulators for the CPU core only to be brought up more
3109  * readily.
3110  */
3111 void regulator_use_dummy_regulator(void)
3112 {
3113 	board_wants_dummy_regulator = true;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3116 
3117 /**
3118  * rdev_get_drvdata - get rdev regulator driver data
3119  * @rdev: regulator
3120  *
3121  * Get rdev regulator driver private data. This call can be used in the
3122  * regulator driver context.
3123  */
3124 void *rdev_get_drvdata(struct regulator_dev *rdev)
3125 {
3126 	return rdev->reg_data;
3127 }
3128 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3129 
3130 /**
3131  * regulator_get_drvdata - get regulator driver data
3132  * @regulator: regulator
3133  *
3134  * Get regulator driver private data. This call can be used in the consumer
3135  * driver context when non API regulator specific functions need to be called.
3136  */
3137 void *regulator_get_drvdata(struct regulator *regulator)
3138 {
3139 	return regulator->rdev->reg_data;
3140 }
3141 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3142 
3143 /**
3144  * regulator_set_drvdata - set regulator driver data
3145  * @regulator: regulator
3146  * @data: data
3147  */
3148 void regulator_set_drvdata(struct regulator *regulator, void *data)
3149 {
3150 	regulator->rdev->reg_data = data;
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3153 
3154 /**
3155  * regulator_get_id - get regulator ID
3156  * @rdev: regulator
3157  */
3158 int rdev_get_id(struct regulator_dev *rdev)
3159 {
3160 	return rdev->desc->id;
3161 }
3162 EXPORT_SYMBOL_GPL(rdev_get_id);
3163 
3164 struct device *rdev_get_dev(struct regulator_dev *rdev)
3165 {
3166 	return &rdev->dev;
3167 }
3168 EXPORT_SYMBOL_GPL(rdev_get_dev);
3169 
3170 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3171 {
3172 	return reg_init_data->driver_data;
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3175 
3176 #ifdef CONFIG_DEBUG_FS
3177 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3178 				    size_t count, loff_t *ppos)
3179 {
3180 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3181 	ssize_t len, ret = 0;
3182 	struct regulator_map *map;
3183 
3184 	if (!buf)
3185 		return -ENOMEM;
3186 
3187 	list_for_each_entry(map, &regulator_map_list, list) {
3188 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3189 			       "%s -> %s.%s\n",
3190 			       rdev_get_name(map->regulator), map->dev_name,
3191 			       map->supply);
3192 		if (len >= 0)
3193 			ret += len;
3194 		if (ret > PAGE_SIZE) {
3195 			ret = PAGE_SIZE;
3196 			break;
3197 		}
3198 	}
3199 
3200 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3201 
3202 	kfree(buf);
3203 
3204 	return ret;
3205 }
3206 #endif
3207 
3208 static const struct file_operations supply_map_fops = {
3209 #ifdef CONFIG_DEBUG_FS
3210 	.read = supply_map_read_file,
3211 	.llseek = default_llseek,
3212 #endif
3213 };
3214 
3215 static int __init regulator_init(void)
3216 {
3217 	int ret;
3218 
3219 	ret = class_register(&regulator_class);
3220 
3221 	debugfs_root = debugfs_create_dir("regulator", NULL);
3222 	if (!debugfs_root)
3223 		pr_warn("regulator: Failed to create debugfs directory\n");
3224 
3225 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3226 			    &supply_map_fops);
3227 
3228 	regulator_dummy_init();
3229 
3230 	return ret;
3231 }
3232 
3233 /* init early to allow our consumers to complete system booting */
3234 core_initcall(regulator_init);
3235 
3236 static int __init regulator_init_complete(void)
3237 {
3238 	struct regulator_dev *rdev;
3239 	struct regulator_ops *ops;
3240 	struct regulation_constraints *c;
3241 	int enabled, ret;
3242 
3243 	mutex_lock(&regulator_list_mutex);
3244 
3245 	/* If we have a full configuration then disable any regulators
3246 	 * which are not in use or always_on.  This will become the
3247 	 * default behaviour in the future.
3248 	 */
3249 	list_for_each_entry(rdev, &regulator_list, list) {
3250 		ops = rdev->desc->ops;
3251 		c = rdev->constraints;
3252 
3253 		if (!ops->disable || (c && c->always_on))
3254 			continue;
3255 
3256 		mutex_lock(&rdev->mutex);
3257 
3258 		if (rdev->use_count)
3259 			goto unlock;
3260 
3261 		/* If we can't read the status assume it's on. */
3262 		if (ops->is_enabled)
3263 			enabled = ops->is_enabled(rdev);
3264 		else
3265 			enabled = 1;
3266 
3267 		if (!enabled)
3268 			goto unlock;
3269 
3270 		if (has_full_constraints) {
3271 			/* We log since this may kill the system if it
3272 			 * goes wrong. */
3273 			rdev_info(rdev, "disabling\n");
3274 			ret = ops->disable(rdev);
3275 			if (ret != 0) {
3276 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3277 			}
3278 		} else {
3279 			/* The intention is that in future we will
3280 			 * assume that full constraints are provided
3281 			 * so warn even if we aren't going to do
3282 			 * anything here.
3283 			 */
3284 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3285 		}
3286 
3287 unlock:
3288 		mutex_unlock(&rdev->mutex);
3289 	}
3290 
3291 	mutex_unlock(&regulator_list_mutex);
3292 
3293 	return 0;
3294 }
3295 late_initcall(regulator_init_complete);
3296