xref: /openbmc/linux/drivers/regulator/core.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 	struct device_node *regnode = NULL;
140 	char prop_name[32]; /* 32 is max size of property name */
141 
142 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 
144 	snprintf(prop_name, 32, "%s-supply", supply);
145 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 
147 	if (!regnode) {
148 		dev_dbg(dev, "Looking up %s property in node %s failed",
149 				prop_name, dev->of_node->full_name);
150 		return NULL;
151 	}
152 	return regnode;
153 }
154 
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 	if (!rdev->constraints)
158 		return 0;
159 
160 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 		return 1;
162 	else
163 		return 0;
164 }
165 
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 				   int *min_uV, int *max_uV)
169 {
170 	BUG_ON(*min_uV > *max_uV);
171 
172 	if (!rdev->constraints) {
173 		rdev_err(rdev, "no constraints\n");
174 		return -ENODEV;
175 	}
176 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 		rdev_err(rdev, "operation not allowed\n");
178 		return -EPERM;
179 	}
180 
181 	if (*max_uV > rdev->constraints->max_uV)
182 		*max_uV = rdev->constraints->max_uV;
183 	if (*min_uV < rdev->constraints->min_uV)
184 		*min_uV = rdev->constraints->min_uV;
185 
186 	if (*min_uV > *max_uV) {
187 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 			 *min_uV, *max_uV);
189 		return -EINVAL;
190 	}
191 
192 	return 0;
193 }
194 
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 				     int *min_uV, int *max_uV)
200 {
201 	struct regulator *regulator;
202 
203 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 		/*
205 		 * Assume consumers that didn't say anything are OK
206 		 * with anything in the constraint range.
207 		 */
208 		if (!regulator->min_uV && !regulator->max_uV)
209 			continue;
210 
211 		if (*max_uV > regulator->max_uV)
212 			*max_uV = regulator->max_uV;
213 		if (*min_uV < regulator->min_uV)
214 			*min_uV = regulator->min_uV;
215 	}
216 
217 	if (*min_uV > *max_uV) {
218 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 			*min_uV, *max_uV);
220 		return -EINVAL;
221 	}
222 
223 	return 0;
224 }
225 
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 					int *min_uA, int *max_uA)
229 {
230 	BUG_ON(*min_uA > *max_uA);
231 
232 	if (!rdev->constraints) {
233 		rdev_err(rdev, "no constraints\n");
234 		return -ENODEV;
235 	}
236 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 		rdev_err(rdev, "operation not allowed\n");
238 		return -EPERM;
239 	}
240 
241 	if (*max_uA > rdev->constraints->max_uA)
242 		*max_uA = rdev->constraints->max_uA;
243 	if (*min_uA < rdev->constraints->min_uA)
244 		*min_uA = rdev->constraints->min_uA;
245 
246 	if (*min_uA > *max_uA) {
247 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 			 *min_uA, *max_uA);
249 		return -EINVAL;
250 	}
251 
252 	return 0;
253 }
254 
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 	switch (*mode) {
259 	case REGULATOR_MODE_FAST:
260 	case REGULATOR_MODE_NORMAL:
261 	case REGULATOR_MODE_IDLE:
262 	case REGULATOR_MODE_STANDBY:
263 		break;
264 	default:
265 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 		return -EINVAL;
267 	}
268 
269 	if (!rdev->constraints) {
270 		rdev_err(rdev, "no constraints\n");
271 		return -ENODEV;
272 	}
273 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 		rdev_err(rdev, "operation not allowed\n");
275 		return -EPERM;
276 	}
277 
278 	/* The modes are bitmasks, the most power hungry modes having
279 	 * the lowest values. If the requested mode isn't supported
280 	 * try higher modes. */
281 	while (*mode) {
282 		if (rdev->constraints->valid_modes_mask & *mode)
283 			return 0;
284 		*mode /= 2;
285 	}
286 
287 	return -EINVAL;
288 }
289 
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 	if (!rdev->constraints) {
294 		rdev_err(rdev, "no constraints\n");
295 		return -ENODEV;
296 	}
297 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 		rdev_err(rdev, "operation not allowed\n");
299 		return -EPERM;
300 	}
301 	return 0;
302 }
303 
304 static ssize_t regulator_uV_show(struct device *dev,
305 				struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 	ssize_t ret;
309 
310 	mutex_lock(&rdev->mutex);
311 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 	mutex_unlock(&rdev->mutex);
313 
314 	return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 
318 static ssize_t regulator_uA_show(struct device *dev,
319 				struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 
323 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 			 char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 
332 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335 
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	case REGULATOR_STATUS_BYPASS:
418 		label = "bypass";
419 		break;
420 	case REGULATOR_STATUS_UNDEFINED:
421 		label = "undefined";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 			      char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501 
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 			 char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 
507 	switch (rdev->desc->type) {
508 	case REGULATOR_VOLTAGE:
509 		return sprintf(buf, "voltage\n");
510 	case REGULATOR_CURRENT:
511 		return sprintf(buf, "current\n");
512 	}
513 	return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516 
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 				struct device_attribute *attr, char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 
522 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 		regulator_suspend_mem_uV_show, NULL);
526 
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 				struct device_attribute *attr, char *buf)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 		regulator_suspend_disk_uV_show, NULL);
536 
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 		regulator_suspend_standby_uV_show, NULL);
546 
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 				struct device_attribute *attr, char *buf)
549 {
550 	struct regulator_dev *rdev = dev_get_drvdata(dev);
551 
552 	return regulator_print_opmode(buf,
553 		rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 		regulator_suspend_mem_mode_show, NULL);
557 
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 				struct device_attribute *attr, char *buf)
560 {
561 	struct regulator_dev *rdev = dev_get_drvdata(dev);
562 
563 	return regulator_print_opmode(buf,
564 		rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 		regulator_suspend_disk_mode_show, NULL);
568 
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 		regulator_suspend_standby_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 				   struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_state(buf,
586 			rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 		regulator_suspend_mem_state_show, NULL);
590 
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 				   struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_state(buf,
597 			rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 		regulator_suspend_disk_state_show, NULL);
601 
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 		regulator_suspend_standby_state_show, NULL);
612 
613 static ssize_t regulator_bypass_show(struct device *dev,
614 				     struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 	const char *report;
618 	bool bypass;
619 	int ret;
620 
621 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 
623 	if (ret != 0)
624 		report = "unknown";
625 	else if (bypass)
626 		report = "enabled";
627 	else
628 		report = "disabled";
629 
630 	return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 		   regulator_bypass_show, NULL);
634 
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 	struct regulator *sibling;
640 	int current_uA = 0, output_uV, input_uV, err;
641 	unsigned int mode;
642 
643 	/*
644 	 * first check to see if we can set modes at all, otherwise just
645 	 * tell the consumer everything is OK.
646 	 */
647 	err = regulator_check_drms(rdev);
648 	if (err < 0)
649 		return 0;
650 
651 	if (!rdev->desc->ops->get_optimum_mode)
652 		return 0;
653 
654 	if (!rdev->desc->ops->set_mode)
655 		return -EINVAL;
656 
657 	/* get output voltage */
658 	output_uV = _regulator_get_voltage(rdev);
659 	if (output_uV <= 0) {
660 		rdev_err(rdev, "invalid output voltage found\n");
661 		return -EINVAL;
662 	}
663 
664 	/* get input voltage */
665 	input_uV = 0;
666 	if (rdev->supply)
667 		input_uV = regulator_get_voltage(rdev->supply);
668 	if (input_uV <= 0)
669 		input_uV = rdev->constraints->input_uV;
670 	if (input_uV <= 0) {
671 		rdev_err(rdev, "invalid input voltage found\n");
672 		return -EINVAL;
673 	}
674 
675 	/* calc total requested load */
676 	list_for_each_entry(sibling, &rdev->consumer_list, list)
677 		current_uA += sibling->uA_load;
678 
679 	/* now get the optimum mode for our new total regulator load */
680 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
681 						  output_uV, current_uA);
682 
683 	/* check the new mode is allowed */
684 	err = regulator_mode_constrain(rdev, &mode);
685 	if (err < 0) {
686 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
687 			 current_uA, input_uV, output_uV);
688 		return err;
689 	}
690 
691 	err = rdev->desc->ops->set_mode(rdev, mode);
692 	if (err < 0)
693 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
694 
695 	return err;
696 }
697 
698 static int suspend_set_state(struct regulator_dev *rdev,
699 	struct regulator_state *rstate)
700 {
701 	int ret = 0;
702 
703 	/* If we have no suspend mode configration don't set anything;
704 	 * only warn if the driver implements set_suspend_voltage or
705 	 * set_suspend_mode callback.
706 	 */
707 	if (!rstate->enabled && !rstate->disabled) {
708 		if (rdev->desc->ops->set_suspend_voltage ||
709 		    rdev->desc->ops->set_suspend_mode)
710 			rdev_warn(rdev, "No configuration\n");
711 		return 0;
712 	}
713 
714 	if (rstate->enabled && rstate->disabled) {
715 		rdev_err(rdev, "invalid configuration\n");
716 		return -EINVAL;
717 	}
718 
719 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
720 		ret = rdev->desc->ops->set_suspend_enable(rdev);
721 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
722 		ret = rdev->desc->ops->set_suspend_disable(rdev);
723 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
724 		ret = 0;
725 
726 	if (ret < 0) {
727 		rdev_err(rdev, "failed to enabled/disable\n");
728 		return ret;
729 	}
730 
731 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
732 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
733 		if (ret < 0) {
734 			rdev_err(rdev, "failed to set voltage\n");
735 			return ret;
736 		}
737 	}
738 
739 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
740 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
741 		if (ret < 0) {
742 			rdev_err(rdev, "failed to set mode\n");
743 			return ret;
744 		}
745 	}
746 	return ret;
747 }
748 
749 /* locks held by caller */
750 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
751 {
752 	if (!rdev->constraints)
753 		return -EINVAL;
754 
755 	switch (state) {
756 	case PM_SUSPEND_STANDBY:
757 		return suspend_set_state(rdev,
758 			&rdev->constraints->state_standby);
759 	case PM_SUSPEND_MEM:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_mem);
762 	case PM_SUSPEND_MAX:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_disk);
765 	default:
766 		return -EINVAL;
767 	}
768 }
769 
770 static void print_constraints(struct regulator_dev *rdev)
771 {
772 	struct regulation_constraints *constraints = rdev->constraints;
773 	char buf[80] = "";
774 	int count = 0;
775 	int ret;
776 
777 	if (constraints->min_uV && constraints->max_uV) {
778 		if (constraints->min_uV == constraints->max_uV)
779 			count += sprintf(buf + count, "%d mV ",
780 					 constraints->min_uV / 1000);
781 		else
782 			count += sprintf(buf + count, "%d <--> %d mV ",
783 					 constraints->min_uV / 1000,
784 					 constraints->max_uV / 1000);
785 	}
786 
787 	if (!constraints->min_uV ||
788 	    constraints->min_uV != constraints->max_uV) {
789 		ret = _regulator_get_voltage(rdev);
790 		if (ret > 0)
791 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
792 	}
793 
794 	if (constraints->uV_offset)
795 		count += sprintf(buf, "%dmV offset ",
796 				 constraints->uV_offset / 1000);
797 
798 	if (constraints->min_uA && constraints->max_uA) {
799 		if (constraints->min_uA == constraints->max_uA)
800 			count += sprintf(buf + count, "%d mA ",
801 					 constraints->min_uA / 1000);
802 		else
803 			count += sprintf(buf + count, "%d <--> %d mA ",
804 					 constraints->min_uA / 1000,
805 					 constraints->max_uA / 1000);
806 	}
807 
808 	if (!constraints->min_uA ||
809 	    constraints->min_uA != constraints->max_uA) {
810 		ret = _regulator_get_current_limit(rdev);
811 		if (ret > 0)
812 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
813 	}
814 
815 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
816 		count += sprintf(buf + count, "fast ");
817 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
818 		count += sprintf(buf + count, "normal ");
819 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
820 		count += sprintf(buf + count, "idle ");
821 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
822 		count += sprintf(buf + count, "standby");
823 
824 	if (!count)
825 		sprintf(buf, "no parameters");
826 
827 	rdev_dbg(rdev, "%s\n", buf);
828 
829 	if ((constraints->min_uV != constraints->max_uV) &&
830 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
831 		rdev_warn(rdev,
832 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
833 }
834 
835 static int machine_constraints_voltage(struct regulator_dev *rdev,
836 	struct regulation_constraints *constraints)
837 {
838 	const struct regulator_ops *ops = rdev->desc->ops;
839 	int ret;
840 
841 	/* do we need to apply the constraint voltage */
842 	if (rdev->constraints->apply_uV &&
843 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
844 		int current_uV = _regulator_get_voltage(rdev);
845 		if (current_uV < 0) {
846 			rdev_err(rdev,
847 				 "failed to get the current voltage(%d)\n",
848 				 current_uV);
849 			return current_uV;
850 		}
851 		if (current_uV < rdev->constraints->min_uV ||
852 		    current_uV > rdev->constraints->max_uV) {
853 			ret = _regulator_do_set_voltage(
854 				rdev, rdev->constraints->min_uV,
855 				rdev->constraints->max_uV);
856 			if (ret < 0) {
857 				rdev_err(rdev,
858 					"failed to apply %duV constraint(%d)\n",
859 					rdev->constraints->min_uV, ret);
860 				return ret;
861 			}
862 		}
863 	}
864 
865 	/* constrain machine-level voltage specs to fit
866 	 * the actual range supported by this regulator.
867 	 */
868 	if (ops->list_voltage && rdev->desc->n_voltages) {
869 		int	count = rdev->desc->n_voltages;
870 		int	i;
871 		int	min_uV = INT_MAX;
872 		int	max_uV = INT_MIN;
873 		int	cmin = constraints->min_uV;
874 		int	cmax = constraints->max_uV;
875 
876 		/* it's safe to autoconfigure fixed-voltage supplies
877 		   and the constraints are used by list_voltage. */
878 		if (count == 1 && !cmin) {
879 			cmin = 1;
880 			cmax = INT_MAX;
881 			constraints->min_uV = cmin;
882 			constraints->max_uV = cmax;
883 		}
884 
885 		/* voltage constraints are optional */
886 		if ((cmin == 0) && (cmax == 0))
887 			return 0;
888 
889 		/* else require explicit machine-level constraints */
890 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
891 			rdev_err(rdev, "invalid voltage constraints\n");
892 			return -EINVAL;
893 		}
894 
895 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
896 		for (i = 0; i < count; i++) {
897 			int	value;
898 
899 			value = ops->list_voltage(rdev, i);
900 			if (value <= 0)
901 				continue;
902 
903 			/* maybe adjust [min_uV..max_uV] */
904 			if (value >= cmin && value < min_uV)
905 				min_uV = value;
906 			if (value <= cmax && value > max_uV)
907 				max_uV = value;
908 		}
909 
910 		/* final: [min_uV..max_uV] valid iff constraints valid */
911 		if (max_uV < min_uV) {
912 			rdev_err(rdev,
913 				 "unsupportable voltage constraints %u-%uuV\n",
914 				 min_uV, max_uV);
915 			return -EINVAL;
916 		}
917 
918 		/* use regulator's subset of machine constraints */
919 		if (constraints->min_uV < min_uV) {
920 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
921 				 constraints->min_uV, min_uV);
922 			constraints->min_uV = min_uV;
923 		}
924 		if (constraints->max_uV > max_uV) {
925 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
926 				 constraints->max_uV, max_uV);
927 			constraints->max_uV = max_uV;
928 		}
929 	}
930 
931 	return 0;
932 }
933 
934 static int machine_constraints_current(struct regulator_dev *rdev,
935 	struct regulation_constraints *constraints)
936 {
937 	const struct regulator_ops *ops = rdev->desc->ops;
938 	int ret;
939 
940 	if (!constraints->min_uA && !constraints->max_uA)
941 		return 0;
942 
943 	if (constraints->min_uA > constraints->max_uA) {
944 		rdev_err(rdev, "Invalid current constraints\n");
945 		return -EINVAL;
946 	}
947 
948 	if (!ops->set_current_limit || !ops->get_current_limit) {
949 		rdev_warn(rdev, "Operation of current configuration missing\n");
950 		return 0;
951 	}
952 
953 	/* Set regulator current in constraints range */
954 	ret = ops->set_current_limit(rdev, constraints->min_uA,
955 			constraints->max_uA);
956 	if (ret < 0) {
957 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
958 		return ret;
959 	}
960 
961 	return 0;
962 }
963 
964 static int _regulator_do_enable(struct regulator_dev *rdev);
965 
966 /**
967  * set_machine_constraints - sets regulator constraints
968  * @rdev: regulator source
969  * @constraints: constraints to apply
970  *
971  * Allows platform initialisation code to define and constrain
972  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
973  * Constraints *must* be set by platform code in order for some
974  * regulator operations to proceed i.e. set_voltage, set_current_limit,
975  * set_mode.
976  */
977 static int set_machine_constraints(struct regulator_dev *rdev,
978 	const struct regulation_constraints *constraints)
979 {
980 	int ret = 0;
981 	const struct regulator_ops *ops = rdev->desc->ops;
982 
983 	if (constraints)
984 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
985 					    GFP_KERNEL);
986 	else
987 		rdev->constraints = kzalloc(sizeof(*constraints),
988 					    GFP_KERNEL);
989 	if (!rdev->constraints)
990 		return -ENOMEM;
991 
992 	ret = machine_constraints_voltage(rdev, rdev->constraints);
993 	if (ret != 0)
994 		goto out;
995 
996 	ret = machine_constraints_current(rdev, rdev->constraints);
997 	if (ret != 0)
998 		goto out;
999 
1000 	/* do we need to setup our suspend state */
1001 	if (rdev->constraints->initial_state) {
1002 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1003 		if (ret < 0) {
1004 			rdev_err(rdev, "failed to set suspend state\n");
1005 			goto out;
1006 		}
1007 	}
1008 
1009 	if (rdev->constraints->initial_mode) {
1010 		if (!ops->set_mode) {
1011 			rdev_err(rdev, "no set_mode operation\n");
1012 			ret = -EINVAL;
1013 			goto out;
1014 		}
1015 
1016 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1017 		if (ret < 0) {
1018 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1019 			goto out;
1020 		}
1021 	}
1022 
1023 	/* If the constraints say the regulator should be on at this point
1024 	 * and we have control then make sure it is enabled.
1025 	 */
1026 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1027 		ret = _regulator_do_enable(rdev);
1028 		if (ret < 0 && ret != -EINVAL) {
1029 			rdev_err(rdev, "failed to enable\n");
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1035 		&& ops->set_ramp_delay) {
1036 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1037 		if (ret < 0) {
1038 			rdev_err(rdev, "failed to set ramp_delay\n");
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	print_constraints(rdev);
1044 	return 0;
1045 out:
1046 	kfree(rdev->constraints);
1047 	rdev->constraints = NULL;
1048 	return ret;
1049 }
1050 
1051 /**
1052  * set_supply - set regulator supply regulator
1053  * @rdev: regulator name
1054  * @supply_rdev: supply regulator name
1055  *
1056  * Called by platform initialisation code to set the supply regulator for this
1057  * regulator. This ensures that a regulators supply will also be enabled by the
1058  * core if it's child is enabled.
1059  */
1060 static int set_supply(struct regulator_dev *rdev,
1061 		      struct regulator_dev *supply_rdev)
1062 {
1063 	int err;
1064 
1065 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1066 
1067 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1068 	if (rdev->supply == NULL) {
1069 		err = -ENOMEM;
1070 		return err;
1071 	}
1072 	supply_rdev->open_count++;
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1079  * @rdev:         regulator source
1080  * @consumer_dev_name: dev_name() string for device supply applies to
1081  * @supply:       symbolic name for supply
1082  *
1083  * Allows platform initialisation code to map physical regulator
1084  * sources to symbolic names for supplies for use by devices.  Devices
1085  * should use these symbolic names to request regulators, avoiding the
1086  * need to provide board-specific regulator names as platform data.
1087  */
1088 static int set_consumer_device_supply(struct regulator_dev *rdev,
1089 				      const char *consumer_dev_name,
1090 				      const char *supply)
1091 {
1092 	struct regulator_map *node;
1093 	int has_dev;
1094 
1095 	if (supply == NULL)
1096 		return -EINVAL;
1097 
1098 	if (consumer_dev_name != NULL)
1099 		has_dev = 1;
1100 	else
1101 		has_dev = 0;
1102 
1103 	list_for_each_entry(node, &regulator_map_list, list) {
1104 		if (node->dev_name && consumer_dev_name) {
1105 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1106 				continue;
1107 		} else if (node->dev_name || consumer_dev_name) {
1108 			continue;
1109 		}
1110 
1111 		if (strcmp(node->supply, supply) != 0)
1112 			continue;
1113 
1114 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1115 			 consumer_dev_name,
1116 			 dev_name(&node->regulator->dev),
1117 			 node->regulator->desc->name,
1118 			 supply,
1119 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1120 		return -EBUSY;
1121 	}
1122 
1123 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1124 	if (node == NULL)
1125 		return -ENOMEM;
1126 
1127 	node->regulator = rdev;
1128 	node->supply = supply;
1129 
1130 	if (has_dev) {
1131 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1132 		if (node->dev_name == NULL) {
1133 			kfree(node);
1134 			return -ENOMEM;
1135 		}
1136 	}
1137 
1138 	list_add(&node->list, &regulator_map_list);
1139 	return 0;
1140 }
1141 
1142 static void unset_regulator_supplies(struct regulator_dev *rdev)
1143 {
1144 	struct regulator_map *node, *n;
1145 
1146 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1147 		if (rdev == node->regulator) {
1148 			list_del(&node->list);
1149 			kfree(node->dev_name);
1150 			kfree(node);
1151 		}
1152 	}
1153 }
1154 
1155 #define REG_STR_SIZE	64
1156 
1157 static struct regulator *create_regulator(struct regulator_dev *rdev,
1158 					  struct device *dev,
1159 					  const char *supply_name)
1160 {
1161 	struct regulator *regulator;
1162 	char buf[REG_STR_SIZE];
1163 	int err, size;
1164 
1165 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1166 	if (regulator == NULL)
1167 		return NULL;
1168 
1169 	mutex_lock(&rdev->mutex);
1170 	regulator->rdev = rdev;
1171 	list_add(&regulator->list, &rdev->consumer_list);
1172 
1173 	if (dev) {
1174 		regulator->dev = dev;
1175 
1176 		/* Add a link to the device sysfs entry */
1177 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1178 				 dev->kobj.name, supply_name);
1179 		if (size >= REG_STR_SIZE)
1180 			goto overflow_err;
1181 
1182 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1183 		if (regulator->supply_name == NULL)
1184 			goto overflow_err;
1185 
1186 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1187 					buf);
1188 		if (err) {
1189 			rdev_warn(rdev, "could not add device link %s err %d\n",
1190 				  dev->kobj.name, err);
1191 			/* non-fatal */
1192 		}
1193 	} else {
1194 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1195 		if (regulator->supply_name == NULL)
1196 			goto overflow_err;
1197 	}
1198 
1199 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1200 						rdev->debugfs);
1201 	if (!regulator->debugfs) {
1202 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1203 	} else {
1204 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1205 				   &regulator->uA_load);
1206 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1207 				   &regulator->min_uV);
1208 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1209 				   &regulator->max_uV);
1210 	}
1211 
1212 	/*
1213 	 * Check now if the regulator is an always on regulator - if
1214 	 * it is then we don't need to do nearly so much work for
1215 	 * enable/disable calls.
1216 	 */
1217 	if (!_regulator_can_change_status(rdev) &&
1218 	    _regulator_is_enabled(rdev))
1219 		regulator->always_on = true;
1220 
1221 	mutex_unlock(&rdev->mutex);
1222 	return regulator;
1223 overflow_err:
1224 	list_del(&regulator->list);
1225 	kfree(regulator);
1226 	mutex_unlock(&rdev->mutex);
1227 	return NULL;
1228 }
1229 
1230 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1231 {
1232 	if (rdev->constraints && rdev->constraints->enable_time)
1233 		return rdev->constraints->enable_time;
1234 	if (!rdev->desc->ops->enable_time)
1235 		return rdev->desc->enable_time;
1236 	return rdev->desc->ops->enable_time(rdev);
1237 }
1238 
1239 static struct regulator_supply_alias *regulator_find_supply_alias(
1240 		struct device *dev, const char *supply)
1241 {
1242 	struct regulator_supply_alias *map;
1243 
1244 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1245 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1246 			return map;
1247 
1248 	return NULL;
1249 }
1250 
1251 static void regulator_supply_alias(struct device **dev, const char **supply)
1252 {
1253 	struct regulator_supply_alias *map;
1254 
1255 	map = regulator_find_supply_alias(*dev, *supply);
1256 	if (map) {
1257 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1258 				*supply, map->alias_supply,
1259 				dev_name(map->alias_dev));
1260 		*dev = map->alias_dev;
1261 		*supply = map->alias_supply;
1262 	}
1263 }
1264 
1265 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1266 						  const char *supply,
1267 						  int *ret)
1268 {
1269 	struct regulator_dev *r;
1270 	struct device_node *node;
1271 	struct regulator_map *map;
1272 	const char *devname = NULL;
1273 
1274 	regulator_supply_alias(&dev, &supply);
1275 
1276 	/* first do a dt based lookup */
1277 	if (dev && dev->of_node) {
1278 		node = of_get_regulator(dev, supply);
1279 		if (node) {
1280 			list_for_each_entry(r, &regulator_list, list)
1281 				if (r->dev.parent &&
1282 					node == r->dev.of_node)
1283 					return r;
1284 			*ret = -EPROBE_DEFER;
1285 			return NULL;
1286 		} else {
1287 			/*
1288 			 * If we couldn't even get the node then it's
1289 			 * not just that the device didn't register
1290 			 * yet, there's no node and we'll never
1291 			 * succeed.
1292 			 */
1293 			*ret = -ENODEV;
1294 		}
1295 	}
1296 
1297 	/* if not found, try doing it non-dt way */
1298 	if (dev)
1299 		devname = dev_name(dev);
1300 
1301 	list_for_each_entry(r, &regulator_list, list)
1302 		if (strcmp(rdev_get_name(r), supply) == 0)
1303 			return r;
1304 
1305 	list_for_each_entry(map, &regulator_map_list, list) {
1306 		/* If the mapping has a device set up it must match */
1307 		if (map->dev_name &&
1308 		    (!devname || strcmp(map->dev_name, devname)))
1309 			continue;
1310 
1311 		if (strcmp(map->supply, supply) == 0)
1312 			return map->regulator;
1313 	}
1314 
1315 
1316 	return NULL;
1317 }
1318 
1319 /* Internal regulator request function */
1320 static struct regulator *_regulator_get(struct device *dev, const char *id,
1321 					bool exclusive, bool allow_dummy)
1322 {
1323 	struct regulator_dev *rdev;
1324 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1325 	const char *devname = NULL;
1326 	int ret;
1327 
1328 	if (id == NULL) {
1329 		pr_err("get() with no identifier\n");
1330 		return ERR_PTR(-EINVAL);
1331 	}
1332 
1333 	if (dev)
1334 		devname = dev_name(dev);
1335 
1336 	if (have_full_constraints())
1337 		ret = -ENODEV;
1338 	else
1339 		ret = -EPROBE_DEFER;
1340 
1341 	mutex_lock(&regulator_list_mutex);
1342 
1343 	rdev = regulator_dev_lookup(dev, id, &ret);
1344 	if (rdev)
1345 		goto found;
1346 
1347 	regulator = ERR_PTR(ret);
1348 
1349 	/*
1350 	 * If we have return value from dev_lookup fail, we do not expect to
1351 	 * succeed, so, quit with appropriate error value
1352 	 */
1353 	if (ret && ret != -ENODEV)
1354 		goto out;
1355 
1356 	if (!devname)
1357 		devname = "deviceless";
1358 
1359 	/*
1360 	 * Assume that a regulator is physically present and enabled
1361 	 * even if it isn't hooked up and just provide a dummy.
1362 	 */
1363 	if (have_full_constraints() && allow_dummy) {
1364 		pr_warn("%s supply %s not found, using dummy regulator\n",
1365 			devname, id);
1366 
1367 		rdev = dummy_regulator_rdev;
1368 		goto found;
1369 	/* Don't log an error when called from regulator_get_optional() */
1370 	} else if (!have_full_constraints() || exclusive) {
1371 		dev_warn(dev, "dummy supplies not allowed\n");
1372 	}
1373 
1374 	mutex_unlock(&regulator_list_mutex);
1375 	return regulator;
1376 
1377 found:
1378 	if (rdev->exclusive) {
1379 		regulator = ERR_PTR(-EPERM);
1380 		goto out;
1381 	}
1382 
1383 	if (exclusive && rdev->open_count) {
1384 		regulator = ERR_PTR(-EBUSY);
1385 		goto out;
1386 	}
1387 
1388 	if (!try_module_get(rdev->owner))
1389 		goto out;
1390 
1391 	regulator = create_regulator(rdev, dev, id);
1392 	if (regulator == NULL) {
1393 		regulator = ERR_PTR(-ENOMEM);
1394 		module_put(rdev->owner);
1395 		goto out;
1396 	}
1397 
1398 	rdev->open_count++;
1399 	if (exclusive) {
1400 		rdev->exclusive = 1;
1401 
1402 		ret = _regulator_is_enabled(rdev);
1403 		if (ret > 0)
1404 			rdev->use_count = 1;
1405 		else
1406 			rdev->use_count = 0;
1407 	}
1408 
1409 out:
1410 	mutex_unlock(&regulator_list_mutex);
1411 
1412 	return regulator;
1413 }
1414 
1415 /**
1416  * regulator_get - lookup and obtain a reference to a regulator.
1417  * @dev: device for regulator "consumer"
1418  * @id: Supply name or regulator ID.
1419  *
1420  * Returns a struct regulator corresponding to the regulator producer,
1421  * or IS_ERR() condition containing errno.
1422  *
1423  * Use of supply names configured via regulator_set_device_supply() is
1424  * strongly encouraged.  It is recommended that the supply name used
1425  * should match the name used for the supply and/or the relevant
1426  * device pins in the datasheet.
1427  */
1428 struct regulator *regulator_get(struct device *dev, const char *id)
1429 {
1430 	return _regulator_get(dev, id, false, true);
1431 }
1432 EXPORT_SYMBOL_GPL(regulator_get);
1433 
1434 /**
1435  * regulator_get_exclusive - obtain exclusive access to a regulator.
1436  * @dev: device for regulator "consumer"
1437  * @id: Supply name or regulator ID.
1438  *
1439  * Returns a struct regulator corresponding to the regulator producer,
1440  * or IS_ERR() condition containing errno.  Other consumers will be
1441  * unable to obtain this regulator while this reference is held and the
1442  * use count for the regulator will be initialised to reflect the current
1443  * state of the regulator.
1444  *
1445  * This is intended for use by consumers which cannot tolerate shared
1446  * use of the regulator such as those which need to force the
1447  * regulator off for correct operation of the hardware they are
1448  * controlling.
1449  *
1450  * Use of supply names configured via regulator_set_device_supply() is
1451  * strongly encouraged.  It is recommended that the supply name used
1452  * should match the name used for the supply and/or the relevant
1453  * device pins in the datasheet.
1454  */
1455 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1456 {
1457 	return _regulator_get(dev, id, true, false);
1458 }
1459 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1460 
1461 /**
1462  * regulator_get_optional - obtain optional access to a regulator.
1463  * @dev: device for regulator "consumer"
1464  * @id: Supply name or regulator ID.
1465  *
1466  * Returns a struct regulator corresponding to the regulator producer,
1467  * or IS_ERR() condition containing errno.
1468  *
1469  * This is intended for use by consumers for devices which can have
1470  * some supplies unconnected in normal use, such as some MMC devices.
1471  * It can allow the regulator core to provide stub supplies for other
1472  * supplies requested using normal regulator_get() calls without
1473  * disrupting the operation of drivers that can handle absent
1474  * supplies.
1475  *
1476  * Use of supply names configured via regulator_set_device_supply() is
1477  * strongly encouraged.  It is recommended that the supply name used
1478  * should match the name used for the supply and/or the relevant
1479  * device pins in the datasheet.
1480  */
1481 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1482 {
1483 	return _regulator_get(dev, id, false, false);
1484 }
1485 EXPORT_SYMBOL_GPL(regulator_get_optional);
1486 
1487 /* regulator_list_mutex lock held by regulator_put() */
1488 static void _regulator_put(struct regulator *regulator)
1489 {
1490 	struct regulator_dev *rdev;
1491 
1492 	if (regulator == NULL || IS_ERR(regulator))
1493 		return;
1494 
1495 	rdev = regulator->rdev;
1496 
1497 	debugfs_remove_recursive(regulator->debugfs);
1498 
1499 	/* remove any sysfs entries */
1500 	if (regulator->dev)
1501 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1502 	mutex_lock(&rdev->mutex);
1503 	kfree(regulator->supply_name);
1504 	list_del(&regulator->list);
1505 	kfree(regulator);
1506 
1507 	rdev->open_count--;
1508 	rdev->exclusive = 0;
1509 	mutex_unlock(&rdev->mutex);
1510 
1511 	module_put(rdev->owner);
1512 }
1513 
1514 /**
1515  * regulator_put - "free" the regulator source
1516  * @regulator: regulator source
1517  *
1518  * Note: drivers must ensure that all regulator_enable calls made on this
1519  * regulator source are balanced by regulator_disable calls prior to calling
1520  * this function.
1521  */
1522 void regulator_put(struct regulator *regulator)
1523 {
1524 	mutex_lock(&regulator_list_mutex);
1525 	_regulator_put(regulator);
1526 	mutex_unlock(&regulator_list_mutex);
1527 }
1528 EXPORT_SYMBOL_GPL(regulator_put);
1529 
1530 /**
1531  * regulator_register_supply_alias - Provide device alias for supply lookup
1532  *
1533  * @dev: device that will be given as the regulator "consumer"
1534  * @id: Supply name or regulator ID
1535  * @alias_dev: device that should be used to lookup the supply
1536  * @alias_id: Supply name or regulator ID that should be used to lookup the
1537  * supply
1538  *
1539  * All lookups for id on dev will instead be conducted for alias_id on
1540  * alias_dev.
1541  */
1542 int regulator_register_supply_alias(struct device *dev, const char *id,
1543 				    struct device *alias_dev,
1544 				    const char *alias_id)
1545 {
1546 	struct regulator_supply_alias *map;
1547 
1548 	map = regulator_find_supply_alias(dev, id);
1549 	if (map)
1550 		return -EEXIST;
1551 
1552 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1553 	if (!map)
1554 		return -ENOMEM;
1555 
1556 	map->src_dev = dev;
1557 	map->src_supply = id;
1558 	map->alias_dev = alias_dev;
1559 	map->alias_supply = alias_id;
1560 
1561 	list_add(&map->list, &regulator_supply_alias_list);
1562 
1563 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1564 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1565 
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1569 
1570 /**
1571  * regulator_unregister_supply_alias - Remove device alias
1572  *
1573  * @dev: device that will be given as the regulator "consumer"
1574  * @id: Supply name or regulator ID
1575  *
1576  * Remove a lookup alias if one exists for id on dev.
1577  */
1578 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1579 {
1580 	struct regulator_supply_alias *map;
1581 
1582 	map = regulator_find_supply_alias(dev, id);
1583 	if (map) {
1584 		list_del(&map->list);
1585 		kfree(map);
1586 	}
1587 }
1588 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1589 
1590 /**
1591  * regulator_bulk_register_supply_alias - register multiple aliases
1592  *
1593  * @dev: device that will be given as the regulator "consumer"
1594  * @id: List of supply names or regulator IDs
1595  * @alias_dev: device that should be used to lookup the supply
1596  * @alias_id: List of supply names or regulator IDs that should be used to
1597  * lookup the supply
1598  * @num_id: Number of aliases to register
1599  *
1600  * @return 0 on success, an errno on failure.
1601  *
1602  * This helper function allows drivers to register several supply
1603  * aliases in one operation.  If any of the aliases cannot be
1604  * registered any aliases that were registered will be removed
1605  * before returning to the caller.
1606  */
1607 int regulator_bulk_register_supply_alias(struct device *dev,
1608 					 const char *const *id,
1609 					 struct device *alias_dev,
1610 					 const char *const *alias_id,
1611 					 int num_id)
1612 {
1613 	int i;
1614 	int ret;
1615 
1616 	for (i = 0; i < num_id; ++i) {
1617 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1618 						      alias_id[i]);
1619 		if (ret < 0)
1620 			goto err;
1621 	}
1622 
1623 	return 0;
1624 
1625 err:
1626 	dev_err(dev,
1627 		"Failed to create supply alias %s,%s -> %s,%s\n",
1628 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1629 
1630 	while (--i >= 0)
1631 		regulator_unregister_supply_alias(dev, id[i]);
1632 
1633 	return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1636 
1637 /**
1638  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1639  *
1640  * @dev: device that will be given as the regulator "consumer"
1641  * @id: List of supply names or regulator IDs
1642  * @num_id: Number of aliases to unregister
1643  *
1644  * This helper function allows drivers to unregister several supply
1645  * aliases in one operation.
1646  */
1647 void regulator_bulk_unregister_supply_alias(struct device *dev,
1648 					    const char *const *id,
1649 					    int num_id)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < num_id; ++i)
1654 		regulator_unregister_supply_alias(dev, id[i]);
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1657 
1658 
1659 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1660 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1661 				const struct regulator_config *config)
1662 {
1663 	struct regulator_enable_gpio *pin;
1664 	struct gpio_desc *gpiod;
1665 	int ret;
1666 
1667 	gpiod = gpio_to_desc(config->ena_gpio);
1668 
1669 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1670 		if (pin->gpiod == gpiod) {
1671 			rdev_dbg(rdev, "GPIO %d is already used\n",
1672 				config->ena_gpio);
1673 			goto update_ena_gpio_to_rdev;
1674 		}
1675 	}
1676 
1677 	ret = gpio_request_one(config->ena_gpio,
1678 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1679 				rdev_get_name(rdev));
1680 	if (ret)
1681 		return ret;
1682 
1683 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1684 	if (pin == NULL) {
1685 		gpio_free(config->ena_gpio);
1686 		return -ENOMEM;
1687 	}
1688 
1689 	pin->gpiod = gpiod;
1690 	pin->ena_gpio_invert = config->ena_gpio_invert;
1691 	list_add(&pin->list, &regulator_ena_gpio_list);
1692 
1693 update_ena_gpio_to_rdev:
1694 	pin->request_count++;
1695 	rdev->ena_pin = pin;
1696 	return 0;
1697 }
1698 
1699 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1700 {
1701 	struct regulator_enable_gpio *pin, *n;
1702 
1703 	if (!rdev->ena_pin)
1704 		return;
1705 
1706 	/* Free the GPIO only in case of no use */
1707 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1708 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1709 			if (pin->request_count <= 1) {
1710 				pin->request_count = 0;
1711 				gpiod_put(pin->gpiod);
1712 				list_del(&pin->list);
1713 				kfree(pin);
1714 				rdev->ena_pin = NULL;
1715 				return;
1716 			} else {
1717 				pin->request_count--;
1718 			}
1719 		}
1720 	}
1721 }
1722 
1723 /**
1724  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725  * @rdev: regulator_dev structure
1726  * @enable: enable GPIO at initial use?
1727  *
1728  * GPIO is enabled in case of initial use. (enable_count is 0)
1729  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730  */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1734 
1735 	if (!pin)
1736 		return -EINVAL;
1737 
1738 	if (enable) {
1739 		/* Enable GPIO at initial use */
1740 		if (pin->enable_count == 0)
1741 			gpiod_set_value_cansleep(pin->gpiod,
1742 						 !pin->ena_gpio_invert);
1743 
1744 		pin->enable_count++;
1745 	} else {
1746 		if (pin->enable_count > 1) {
1747 			pin->enable_count--;
1748 			return 0;
1749 		}
1750 
1751 		/* Disable GPIO if not used */
1752 		if (pin->enable_count <= 1) {
1753 			gpiod_set_value_cansleep(pin->gpiod,
1754 						 pin->ena_gpio_invert);
1755 			pin->enable_count = 0;
1756 		}
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /**
1763  * _regulator_enable_delay - a delay helper function
1764  * @delay: time to delay in microseconds
1765  *
1766  * Delay for the requested amount of time as per the guidelines in:
1767  *
1768  *     Documentation/timers/timers-howto.txt
1769  *
1770  * The assumption here is that regulators will never be enabled in
1771  * atomic context and therefore sleeping functions can be used.
1772  */
1773 static void _regulator_enable_delay(unsigned int delay)
1774 {
1775 	unsigned int ms = delay / 1000;
1776 	unsigned int us = delay % 1000;
1777 
1778 	if (ms > 0) {
1779 		/*
1780 		 * For small enough values, handle super-millisecond
1781 		 * delays in the usleep_range() call below.
1782 		 */
1783 		if (ms < 20)
1784 			us += ms * 1000;
1785 		else
1786 			msleep(ms);
1787 	}
1788 
1789 	/*
1790 	 * Give the scheduler some room to coalesce with any other
1791 	 * wakeup sources. For delays shorter than 10 us, don't even
1792 	 * bother setting up high-resolution timers and just busy-
1793 	 * loop.
1794 	 */
1795 	if (us >= 10)
1796 		usleep_range(us, us + 100);
1797 	else
1798 		udelay(us);
1799 }
1800 
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1802 {
1803 	int ret, delay;
1804 
1805 	/* Query before enabling in case configuration dependent.  */
1806 	ret = _regulator_get_enable_time(rdev);
1807 	if (ret >= 0) {
1808 		delay = ret;
1809 	} else {
1810 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811 		delay = 0;
1812 	}
1813 
1814 	trace_regulator_enable(rdev_get_name(rdev));
1815 
1816 	if (rdev->desc->off_on_delay) {
1817 		/* if needed, keep a distance of off_on_delay from last time
1818 		 * this regulator was disabled.
1819 		 */
1820 		unsigned long start_jiffy = jiffies;
1821 		unsigned long intended, max_delay, remaining;
1822 
1823 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824 		intended = rdev->last_off_jiffy + max_delay;
1825 
1826 		if (time_before(start_jiffy, intended)) {
1827 			/* calc remaining jiffies to deal with one-time
1828 			 * timer wrapping.
1829 			 * in case of multiple timer wrapping, either it can be
1830 			 * detected by out-of-range remaining, or it cannot be
1831 			 * detected and we gets a panelty of
1832 			 * _regulator_enable_delay().
1833 			 */
1834 			remaining = intended - start_jiffy;
1835 			if (remaining <= max_delay)
1836 				_regulator_enable_delay(
1837 						jiffies_to_usecs(remaining));
1838 		}
1839 	}
1840 
1841 	if (rdev->ena_pin) {
1842 		ret = regulator_ena_gpio_ctrl(rdev, true);
1843 		if (ret < 0)
1844 			return ret;
1845 		rdev->ena_gpio_state = 1;
1846 	} else if (rdev->desc->ops->enable) {
1847 		ret = rdev->desc->ops->enable(rdev);
1848 		if (ret < 0)
1849 			return ret;
1850 	} else {
1851 		return -EINVAL;
1852 	}
1853 
1854 	/* Allow the regulator to ramp; it would be useful to extend
1855 	 * this for bulk operations so that the regulators can ramp
1856 	 * together.  */
1857 	trace_regulator_enable_delay(rdev_get_name(rdev));
1858 
1859 	_regulator_enable_delay(delay);
1860 
1861 	trace_regulator_enable_complete(rdev_get_name(rdev));
1862 
1863 	return 0;
1864 }
1865 
1866 /* locks held by regulator_enable() */
1867 static int _regulator_enable(struct regulator_dev *rdev)
1868 {
1869 	int ret;
1870 
1871 	/* check voltage and requested load before enabling */
1872 	if (rdev->constraints &&
1873 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874 		drms_uA_update(rdev);
1875 
1876 	if (rdev->use_count == 0) {
1877 		/* The regulator may on if it's not switchable or left on */
1878 		ret = _regulator_is_enabled(rdev);
1879 		if (ret == -EINVAL || ret == 0) {
1880 			if (!_regulator_can_change_status(rdev))
1881 				return -EPERM;
1882 
1883 			ret = _regulator_do_enable(rdev);
1884 			if (ret < 0)
1885 				return ret;
1886 
1887 		} else if (ret < 0) {
1888 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889 			return ret;
1890 		}
1891 		/* Fallthrough on positive return values - already enabled */
1892 	}
1893 
1894 	rdev->use_count++;
1895 
1896 	return 0;
1897 }
1898 
1899 /**
1900  * regulator_enable - enable regulator output
1901  * @regulator: regulator source
1902  *
1903  * Request that the regulator be enabled with the regulator output at
1904  * the predefined voltage or current value.  Calls to regulator_enable()
1905  * must be balanced with calls to regulator_disable().
1906  *
1907  * NOTE: the output value can be set by other drivers, boot loader or may be
1908  * hardwired in the regulator.
1909  */
1910 int regulator_enable(struct regulator *regulator)
1911 {
1912 	struct regulator_dev *rdev = regulator->rdev;
1913 	int ret = 0;
1914 
1915 	if (regulator->always_on)
1916 		return 0;
1917 
1918 	if (rdev->supply) {
1919 		ret = regulator_enable(rdev->supply);
1920 		if (ret != 0)
1921 			return ret;
1922 	}
1923 
1924 	mutex_lock(&rdev->mutex);
1925 	ret = _regulator_enable(rdev);
1926 	mutex_unlock(&rdev->mutex);
1927 
1928 	if (ret != 0 && rdev->supply)
1929 		regulator_disable(rdev->supply);
1930 
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(regulator_enable);
1934 
1935 static int _regulator_do_disable(struct regulator_dev *rdev)
1936 {
1937 	int ret;
1938 
1939 	trace_regulator_disable(rdev_get_name(rdev));
1940 
1941 	if (rdev->ena_pin) {
1942 		ret = regulator_ena_gpio_ctrl(rdev, false);
1943 		if (ret < 0)
1944 			return ret;
1945 		rdev->ena_gpio_state = 0;
1946 
1947 	} else if (rdev->desc->ops->disable) {
1948 		ret = rdev->desc->ops->disable(rdev);
1949 		if (ret != 0)
1950 			return ret;
1951 	}
1952 
1953 	/* cares about last_off_jiffy only if off_on_delay is required by
1954 	 * device.
1955 	 */
1956 	if (rdev->desc->off_on_delay)
1957 		rdev->last_off_jiffy = jiffies;
1958 
1959 	trace_regulator_disable_complete(rdev_get_name(rdev));
1960 
1961 	return 0;
1962 }
1963 
1964 /* locks held by regulator_disable() */
1965 static int _regulator_disable(struct regulator_dev *rdev)
1966 {
1967 	int ret = 0;
1968 
1969 	if (WARN(rdev->use_count <= 0,
1970 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1971 		return -EIO;
1972 
1973 	/* are we the last user and permitted to disable ? */
1974 	if (rdev->use_count == 1 &&
1975 	    (rdev->constraints && !rdev->constraints->always_on)) {
1976 
1977 		/* we are last user */
1978 		if (_regulator_can_change_status(rdev)) {
1979 			ret = _notifier_call_chain(rdev,
1980 						   REGULATOR_EVENT_PRE_DISABLE,
1981 						   NULL);
1982 			if (ret & NOTIFY_STOP_MASK)
1983 				return -EINVAL;
1984 
1985 			ret = _regulator_do_disable(rdev);
1986 			if (ret < 0) {
1987 				rdev_err(rdev, "failed to disable\n");
1988 				_notifier_call_chain(rdev,
1989 						REGULATOR_EVENT_ABORT_DISABLE,
1990 						NULL);
1991 				return ret;
1992 			}
1993 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1994 					NULL);
1995 		}
1996 
1997 		rdev->use_count = 0;
1998 	} else if (rdev->use_count > 1) {
1999 
2000 		if (rdev->constraints &&
2001 			(rdev->constraints->valid_ops_mask &
2002 			REGULATOR_CHANGE_DRMS))
2003 			drms_uA_update(rdev);
2004 
2005 		rdev->use_count--;
2006 	}
2007 
2008 	return ret;
2009 }
2010 
2011 /**
2012  * regulator_disable - disable regulator output
2013  * @regulator: regulator source
2014  *
2015  * Disable the regulator output voltage or current.  Calls to
2016  * regulator_enable() must be balanced with calls to
2017  * regulator_disable().
2018  *
2019  * NOTE: this will only disable the regulator output if no other consumer
2020  * devices have it enabled, the regulator device supports disabling and
2021  * machine constraints permit this operation.
2022  */
2023 int regulator_disable(struct regulator *regulator)
2024 {
2025 	struct regulator_dev *rdev = regulator->rdev;
2026 	int ret = 0;
2027 
2028 	if (regulator->always_on)
2029 		return 0;
2030 
2031 	mutex_lock(&rdev->mutex);
2032 	ret = _regulator_disable(rdev);
2033 	mutex_unlock(&rdev->mutex);
2034 
2035 	if (ret == 0 && rdev->supply)
2036 		regulator_disable(rdev->supply);
2037 
2038 	return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(regulator_disable);
2041 
2042 /* locks held by regulator_force_disable() */
2043 static int _regulator_force_disable(struct regulator_dev *rdev)
2044 {
2045 	int ret = 0;
2046 
2047 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2048 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2049 	if (ret & NOTIFY_STOP_MASK)
2050 		return -EINVAL;
2051 
2052 	ret = _regulator_do_disable(rdev);
2053 	if (ret < 0) {
2054 		rdev_err(rdev, "failed to force disable\n");
2055 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2056 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2057 		return ret;
2058 	}
2059 
2060 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2061 			REGULATOR_EVENT_DISABLE, NULL);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * regulator_force_disable - force disable regulator output
2068  * @regulator: regulator source
2069  *
2070  * Forcibly disable the regulator output voltage or current.
2071  * NOTE: this *will* disable the regulator output even if other consumer
2072  * devices have it enabled. This should be used for situations when device
2073  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2074  */
2075 int regulator_force_disable(struct regulator *regulator)
2076 {
2077 	struct regulator_dev *rdev = regulator->rdev;
2078 	int ret;
2079 
2080 	mutex_lock(&rdev->mutex);
2081 	regulator->uA_load = 0;
2082 	ret = _regulator_force_disable(regulator->rdev);
2083 	mutex_unlock(&rdev->mutex);
2084 
2085 	if (rdev->supply)
2086 		while (rdev->open_count--)
2087 			regulator_disable(rdev->supply);
2088 
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_force_disable);
2092 
2093 static void regulator_disable_work(struct work_struct *work)
2094 {
2095 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2096 						  disable_work.work);
2097 	int count, i, ret;
2098 
2099 	mutex_lock(&rdev->mutex);
2100 
2101 	BUG_ON(!rdev->deferred_disables);
2102 
2103 	count = rdev->deferred_disables;
2104 	rdev->deferred_disables = 0;
2105 
2106 	for (i = 0; i < count; i++) {
2107 		ret = _regulator_disable(rdev);
2108 		if (ret != 0)
2109 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2110 	}
2111 
2112 	mutex_unlock(&rdev->mutex);
2113 
2114 	if (rdev->supply) {
2115 		for (i = 0; i < count; i++) {
2116 			ret = regulator_disable(rdev->supply);
2117 			if (ret != 0) {
2118 				rdev_err(rdev,
2119 					 "Supply disable failed: %d\n", ret);
2120 			}
2121 		}
2122 	}
2123 }
2124 
2125 /**
2126  * regulator_disable_deferred - disable regulator output with delay
2127  * @regulator: regulator source
2128  * @ms: miliseconds until the regulator is disabled
2129  *
2130  * Execute regulator_disable() on the regulator after a delay.  This
2131  * is intended for use with devices that require some time to quiesce.
2132  *
2133  * NOTE: this will only disable the regulator output if no other consumer
2134  * devices have it enabled, the regulator device supports disabling and
2135  * machine constraints permit this operation.
2136  */
2137 int regulator_disable_deferred(struct regulator *regulator, int ms)
2138 {
2139 	struct regulator_dev *rdev = regulator->rdev;
2140 	int ret;
2141 
2142 	if (regulator->always_on)
2143 		return 0;
2144 
2145 	if (!ms)
2146 		return regulator_disable(regulator);
2147 
2148 	mutex_lock(&rdev->mutex);
2149 	rdev->deferred_disables++;
2150 	mutex_unlock(&rdev->mutex);
2151 
2152 	ret = queue_delayed_work(system_power_efficient_wq,
2153 				 &rdev->disable_work,
2154 				 msecs_to_jiffies(ms));
2155 	if (ret < 0)
2156 		return ret;
2157 	else
2158 		return 0;
2159 }
2160 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2161 
2162 static int _regulator_is_enabled(struct regulator_dev *rdev)
2163 {
2164 	/* A GPIO control always takes precedence */
2165 	if (rdev->ena_pin)
2166 		return rdev->ena_gpio_state;
2167 
2168 	/* If we don't know then assume that the regulator is always on */
2169 	if (!rdev->desc->ops->is_enabled)
2170 		return 1;
2171 
2172 	return rdev->desc->ops->is_enabled(rdev);
2173 }
2174 
2175 /**
2176  * regulator_is_enabled - is the regulator output enabled
2177  * @regulator: regulator source
2178  *
2179  * Returns positive if the regulator driver backing the source/client
2180  * has requested that the device be enabled, zero if it hasn't, else a
2181  * negative errno code.
2182  *
2183  * Note that the device backing this regulator handle can have multiple
2184  * users, so it might be enabled even if regulator_enable() was never
2185  * called for this particular source.
2186  */
2187 int regulator_is_enabled(struct regulator *regulator)
2188 {
2189 	int ret;
2190 
2191 	if (regulator->always_on)
2192 		return 1;
2193 
2194 	mutex_lock(&regulator->rdev->mutex);
2195 	ret = _regulator_is_enabled(regulator->rdev);
2196 	mutex_unlock(&regulator->rdev->mutex);
2197 
2198 	return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2201 
2202 /**
2203  * regulator_can_change_voltage - check if regulator can change voltage
2204  * @regulator: regulator source
2205  *
2206  * Returns positive if the regulator driver backing the source/client
2207  * can change its voltage, false otherwise. Useful for detecting fixed
2208  * or dummy regulators and disabling voltage change logic in the client
2209  * driver.
2210  */
2211 int regulator_can_change_voltage(struct regulator *regulator)
2212 {
2213 	struct regulator_dev	*rdev = regulator->rdev;
2214 
2215 	if (rdev->constraints &&
2216 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2217 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2218 			return 1;
2219 
2220 		if (rdev->desc->continuous_voltage_range &&
2221 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2222 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2223 			return 1;
2224 	}
2225 
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2229 
2230 /**
2231  * regulator_count_voltages - count regulator_list_voltage() selectors
2232  * @regulator: regulator source
2233  *
2234  * Returns number of selectors, or negative errno.  Selectors are
2235  * numbered starting at zero, and typically correspond to bitfields
2236  * in hardware registers.
2237  */
2238 int regulator_count_voltages(struct regulator *regulator)
2239 {
2240 	struct regulator_dev	*rdev = regulator->rdev;
2241 
2242 	if (rdev->desc->n_voltages)
2243 		return rdev->desc->n_voltages;
2244 
2245 	if (!rdev->supply)
2246 		return -EINVAL;
2247 
2248 	return regulator_count_voltages(rdev->supply);
2249 }
2250 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2251 
2252 /**
2253  * regulator_list_voltage - enumerate supported voltages
2254  * @regulator: regulator source
2255  * @selector: identify voltage to list
2256  * Context: can sleep
2257  *
2258  * Returns a voltage that can be passed to @regulator_set_voltage(),
2259  * zero if this selector code can't be used on this system, or a
2260  * negative errno.
2261  */
2262 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2263 {
2264 	struct regulator_dev *rdev = regulator->rdev;
2265 	const struct regulator_ops *ops = rdev->desc->ops;
2266 	int ret;
2267 
2268 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2269 		return rdev->desc->fixed_uV;
2270 
2271 	if (ops->list_voltage) {
2272 		if (selector >= rdev->desc->n_voltages)
2273 			return -EINVAL;
2274 		mutex_lock(&rdev->mutex);
2275 		ret = ops->list_voltage(rdev, selector);
2276 		mutex_unlock(&rdev->mutex);
2277 	} else if (rdev->supply) {
2278 		ret = regulator_list_voltage(rdev->supply, selector);
2279 	} else {
2280 		return -EINVAL;
2281 	}
2282 
2283 	if (ret > 0) {
2284 		if (ret < rdev->constraints->min_uV)
2285 			ret = 0;
2286 		else if (ret > rdev->constraints->max_uV)
2287 			ret = 0;
2288 	}
2289 
2290 	return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2293 
2294 /**
2295  * regulator_get_regmap - get the regulator's register map
2296  * @regulator: regulator source
2297  *
2298  * Returns the register map for the given regulator, or an ERR_PTR value
2299  * if the regulator doesn't use regmap.
2300  */
2301 struct regmap *regulator_get_regmap(struct regulator *regulator)
2302 {
2303 	struct regmap *map = regulator->rdev->regmap;
2304 
2305 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2306 }
2307 
2308 /**
2309  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2310  * @regulator: regulator source
2311  * @vsel_reg: voltage selector register, output parameter
2312  * @vsel_mask: mask for voltage selector bitfield, output parameter
2313  *
2314  * Returns the hardware register offset and bitmask used for setting the
2315  * regulator voltage. This might be useful when configuring voltage-scaling
2316  * hardware or firmware that can make I2C requests behind the kernel's back,
2317  * for example.
2318  *
2319  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2320  * and 0 is returned, otherwise a negative errno is returned.
2321  */
2322 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2323 					 unsigned *vsel_reg,
2324 					 unsigned *vsel_mask)
2325 {
2326 	struct regulator_dev *rdev = regulator->rdev;
2327 	const struct regulator_ops *ops = rdev->desc->ops;
2328 
2329 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2330 		return -EOPNOTSUPP;
2331 
2332 	 *vsel_reg = rdev->desc->vsel_reg;
2333 	 *vsel_mask = rdev->desc->vsel_mask;
2334 
2335 	 return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2338 
2339 /**
2340  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2341  * @regulator: regulator source
2342  * @selector: identify voltage to list
2343  *
2344  * Converts the selector to a hardware-specific voltage selector that can be
2345  * directly written to the regulator registers. The address of the voltage
2346  * register can be determined by calling @regulator_get_hardware_vsel_register.
2347  *
2348  * On error a negative errno is returned.
2349  */
2350 int regulator_list_hardware_vsel(struct regulator *regulator,
2351 				 unsigned selector)
2352 {
2353 	struct regulator_dev *rdev = regulator->rdev;
2354 	const struct regulator_ops *ops = rdev->desc->ops;
2355 
2356 	if (selector >= rdev->desc->n_voltages)
2357 		return -EINVAL;
2358 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2359 		return -EOPNOTSUPP;
2360 
2361 	return selector;
2362 }
2363 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2364 
2365 /**
2366  * regulator_get_linear_step - return the voltage step size between VSEL values
2367  * @regulator: regulator source
2368  *
2369  * Returns the voltage step size between VSEL values for linear
2370  * regulators, or return 0 if the regulator isn't a linear regulator.
2371  */
2372 unsigned int regulator_get_linear_step(struct regulator *regulator)
2373 {
2374 	struct regulator_dev *rdev = regulator->rdev;
2375 
2376 	return rdev->desc->uV_step;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2379 
2380 /**
2381  * regulator_is_supported_voltage - check if a voltage range can be supported
2382  *
2383  * @regulator: Regulator to check.
2384  * @min_uV: Minimum required voltage in uV.
2385  * @max_uV: Maximum required voltage in uV.
2386  *
2387  * Returns a boolean or a negative error code.
2388  */
2389 int regulator_is_supported_voltage(struct regulator *regulator,
2390 				   int min_uV, int max_uV)
2391 {
2392 	struct regulator_dev *rdev = regulator->rdev;
2393 	int i, voltages, ret;
2394 
2395 	/* If we can't change voltage check the current voltage */
2396 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2397 		ret = regulator_get_voltage(regulator);
2398 		if (ret >= 0)
2399 			return min_uV <= ret && ret <= max_uV;
2400 		else
2401 			return ret;
2402 	}
2403 
2404 	/* Any voltage within constrains range is fine? */
2405 	if (rdev->desc->continuous_voltage_range)
2406 		return min_uV >= rdev->constraints->min_uV &&
2407 				max_uV <= rdev->constraints->max_uV;
2408 
2409 	ret = regulator_count_voltages(regulator);
2410 	if (ret < 0)
2411 		return ret;
2412 	voltages = ret;
2413 
2414 	for (i = 0; i < voltages; i++) {
2415 		ret = regulator_list_voltage(regulator, i);
2416 
2417 		if (ret >= min_uV && ret <= max_uV)
2418 			return 1;
2419 	}
2420 
2421 	return 0;
2422 }
2423 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2424 
2425 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2426 				       int min_uV, int max_uV,
2427 				       unsigned *selector)
2428 {
2429 	struct pre_voltage_change_data data;
2430 	int ret;
2431 
2432 	data.old_uV = _regulator_get_voltage(rdev);
2433 	data.min_uV = min_uV;
2434 	data.max_uV = max_uV;
2435 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2436 				   &data);
2437 	if (ret & NOTIFY_STOP_MASK)
2438 		return -EINVAL;
2439 
2440 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2441 	if (ret >= 0)
2442 		return ret;
2443 
2444 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2445 			     (void *)data.old_uV);
2446 
2447 	return ret;
2448 }
2449 
2450 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2451 					   int uV, unsigned selector)
2452 {
2453 	struct pre_voltage_change_data data;
2454 	int ret;
2455 
2456 	data.old_uV = _regulator_get_voltage(rdev);
2457 	data.min_uV = uV;
2458 	data.max_uV = uV;
2459 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2460 				   &data);
2461 	if (ret & NOTIFY_STOP_MASK)
2462 		return -EINVAL;
2463 
2464 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2465 	if (ret >= 0)
2466 		return ret;
2467 
2468 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2469 			     (void *)data.old_uV);
2470 
2471 	return ret;
2472 }
2473 
2474 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2475 				     int min_uV, int max_uV)
2476 {
2477 	int ret;
2478 	int delay = 0;
2479 	int best_val = 0;
2480 	unsigned int selector;
2481 	int old_selector = -1;
2482 
2483 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2484 
2485 	min_uV += rdev->constraints->uV_offset;
2486 	max_uV += rdev->constraints->uV_offset;
2487 
2488 	/*
2489 	 * If we can't obtain the old selector there is not enough
2490 	 * info to call set_voltage_time_sel().
2491 	 */
2492 	if (_regulator_is_enabled(rdev) &&
2493 	    rdev->desc->ops->set_voltage_time_sel &&
2494 	    rdev->desc->ops->get_voltage_sel) {
2495 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2496 		if (old_selector < 0)
2497 			return old_selector;
2498 	}
2499 
2500 	if (rdev->desc->ops->set_voltage) {
2501 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2502 						  &selector);
2503 
2504 		if (ret >= 0) {
2505 			if (rdev->desc->ops->list_voltage)
2506 				best_val = rdev->desc->ops->list_voltage(rdev,
2507 									 selector);
2508 			else
2509 				best_val = _regulator_get_voltage(rdev);
2510 		}
2511 
2512 	} else if (rdev->desc->ops->set_voltage_sel) {
2513 		if (rdev->desc->ops->map_voltage) {
2514 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2515 							   max_uV);
2516 		} else {
2517 			if (rdev->desc->ops->list_voltage ==
2518 			    regulator_list_voltage_linear)
2519 				ret = regulator_map_voltage_linear(rdev,
2520 								min_uV, max_uV);
2521 			else if (rdev->desc->ops->list_voltage ==
2522 				 regulator_list_voltage_linear_range)
2523 				ret = regulator_map_voltage_linear_range(rdev,
2524 								min_uV, max_uV);
2525 			else
2526 				ret = regulator_map_voltage_iterate(rdev,
2527 								min_uV, max_uV);
2528 		}
2529 
2530 		if (ret >= 0) {
2531 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2532 			if (min_uV <= best_val && max_uV >= best_val) {
2533 				selector = ret;
2534 				if (old_selector == selector)
2535 					ret = 0;
2536 				else
2537 					ret = _regulator_call_set_voltage_sel(
2538 						rdev, best_val, selector);
2539 			} else {
2540 				ret = -EINVAL;
2541 			}
2542 		}
2543 	} else {
2544 		ret = -EINVAL;
2545 	}
2546 
2547 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2548 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2549 		&& old_selector != selector) {
2550 
2551 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2552 						old_selector, selector);
2553 		if (delay < 0) {
2554 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2555 				  delay);
2556 			delay = 0;
2557 		}
2558 
2559 		/* Insert any necessary delays */
2560 		if (delay >= 1000) {
2561 			mdelay(delay / 1000);
2562 			udelay(delay % 1000);
2563 		} else if (delay) {
2564 			udelay(delay);
2565 		}
2566 	}
2567 
2568 	if (ret == 0 && best_val >= 0) {
2569 		unsigned long data = best_val;
2570 
2571 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2572 				     (void *)data);
2573 	}
2574 
2575 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2576 
2577 	return ret;
2578 }
2579 
2580 /**
2581  * regulator_set_voltage - set regulator output voltage
2582  * @regulator: regulator source
2583  * @min_uV: Minimum required voltage in uV
2584  * @max_uV: Maximum acceptable voltage in uV
2585  *
2586  * Sets a voltage regulator to the desired output voltage. This can be set
2587  * during any regulator state. IOW, regulator can be disabled or enabled.
2588  *
2589  * If the regulator is enabled then the voltage will change to the new value
2590  * immediately otherwise if the regulator is disabled the regulator will
2591  * output at the new voltage when enabled.
2592  *
2593  * NOTE: If the regulator is shared between several devices then the lowest
2594  * request voltage that meets the system constraints will be used.
2595  * Regulator system constraints must be set for this regulator before
2596  * calling this function otherwise this call will fail.
2597  */
2598 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2599 {
2600 	struct regulator_dev *rdev = regulator->rdev;
2601 	int ret = 0;
2602 	int old_min_uV, old_max_uV;
2603 	int current_uV;
2604 
2605 	mutex_lock(&rdev->mutex);
2606 
2607 	/* If we're setting the same range as last time the change
2608 	 * should be a noop (some cpufreq implementations use the same
2609 	 * voltage for multiple frequencies, for example).
2610 	 */
2611 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2612 		goto out;
2613 
2614 	/* If we're trying to set a range that overlaps the current voltage,
2615 	 * return succesfully even though the regulator does not support
2616 	 * changing the voltage.
2617 	 */
2618 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2619 		current_uV = _regulator_get_voltage(rdev);
2620 		if (min_uV <= current_uV && current_uV <= max_uV) {
2621 			regulator->min_uV = min_uV;
2622 			regulator->max_uV = max_uV;
2623 			goto out;
2624 		}
2625 	}
2626 
2627 	/* sanity check */
2628 	if (!rdev->desc->ops->set_voltage &&
2629 	    !rdev->desc->ops->set_voltage_sel) {
2630 		ret = -EINVAL;
2631 		goto out;
2632 	}
2633 
2634 	/* constraints check */
2635 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2636 	if (ret < 0)
2637 		goto out;
2638 
2639 	/* restore original values in case of error */
2640 	old_min_uV = regulator->min_uV;
2641 	old_max_uV = regulator->max_uV;
2642 	regulator->min_uV = min_uV;
2643 	regulator->max_uV = max_uV;
2644 
2645 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2646 	if (ret < 0)
2647 		goto out2;
2648 
2649 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2650 	if (ret < 0)
2651 		goto out2;
2652 
2653 out:
2654 	mutex_unlock(&rdev->mutex);
2655 	return ret;
2656 out2:
2657 	regulator->min_uV = old_min_uV;
2658 	regulator->max_uV = old_max_uV;
2659 	mutex_unlock(&rdev->mutex);
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2663 
2664 /**
2665  * regulator_set_voltage_time - get raise/fall time
2666  * @regulator: regulator source
2667  * @old_uV: starting voltage in microvolts
2668  * @new_uV: target voltage in microvolts
2669  *
2670  * Provided with the starting and ending voltage, this function attempts to
2671  * calculate the time in microseconds required to rise or fall to this new
2672  * voltage.
2673  */
2674 int regulator_set_voltage_time(struct regulator *regulator,
2675 			       int old_uV, int new_uV)
2676 {
2677 	struct regulator_dev *rdev = regulator->rdev;
2678 	const struct regulator_ops *ops = rdev->desc->ops;
2679 	int old_sel = -1;
2680 	int new_sel = -1;
2681 	int voltage;
2682 	int i;
2683 
2684 	/* Currently requires operations to do this */
2685 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2686 	    || !rdev->desc->n_voltages)
2687 		return -EINVAL;
2688 
2689 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2690 		/* We only look for exact voltage matches here */
2691 		voltage = regulator_list_voltage(regulator, i);
2692 		if (voltage < 0)
2693 			return -EINVAL;
2694 		if (voltage == 0)
2695 			continue;
2696 		if (voltage == old_uV)
2697 			old_sel = i;
2698 		if (voltage == new_uV)
2699 			new_sel = i;
2700 	}
2701 
2702 	if (old_sel < 0 || new_sel < 0)
2703 		return -EINVAL;
2704 
2705 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2706 }
2707 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2708 
2709 /**
2710  * regulator_set_voltage_time_sel - get raise/fall time
2711  * @rdev: regulator source device
2712  * @old_selector: selector for starting voltage
2713  * @new_selector: selector for target voltage
2714  *
2715  * Provided with the starting and target voltage selectors, this function
2716  * returns time in microseconds required to rise or fall to this new voltage
2717  *
2718  * Drivers providing ramp_delay in regulation_constraints can use this as their
2719  * set_voltage_time_sel() operation.
2720  */
2721 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2722 				   unsigned int old_selector,
2723 				   unsigned int new_selector)
2724 {
2725 	unsigned int ramp_delay = 0;
2726 	int old_volt, new_volt;
2727 
2728 	if (rdev->constraints->ramp_delay)
2729 		ramp_delay = rdev->constraints->ramp_delay;
2730 	else if (rdev->desc->ramp_delay)
2731 		ramp_delay = rdev->desc->ramp_delay;
2732 
2733 	if (ramp_delay == 0) {
2734 		rdev_warn(rdev, "ramp_delay not set\n");
2735 		return 0;
2736 	}
2737 
2738 	/* sanity check */
2739 	if (!rdev->desc->ops->list_voltage)
2740 		return -EINVAL;
2741 
2742 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2743 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2744 
2745 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2748 
2749 /**
2750  * regulator_sync_voltage - re-apply last regulator output voltage
2751  * @regulator: regulator source
2752  *
2753  * Re-apply the last configured voltage.  This is intended to be used
2754  * where some external control source the consumer is cooperating with
2755  * has caused the configured voltage to change.
2756  */
2757 int regulator_sync_voltage(struct regulator *regulator)
2758 {
2759 	struct regulator_dev *rdev = regulator->rdev;
2760 	int ret, min_uV, max_uV;
2761 
2762 	mutex_lock(&rdev->mutex);
2763 
2764 	if (!rdev->desc->ops->set_voltage &&
2765 	    !rdev->desc->ops->set_voltage_sel) {
2766 		ret = -EINVAL;
2767 		goto out;
2768 	}
2769 
2770 	/* This is only going to work if we've had a voltage configured. */
2771 	if (!regulator->min_uV && !regulator->max_uV) {
2772 		ret = -EINVAL;
2773 		goto out;
2774 	}
2775 
2776 	min_uV = regulator->min_uV;
2777 	max_uV = regulator->max_uV;
2778 
2779 	/* This should be a paranoia check... */
2780 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2781 	if (ret < 0)
2782 		goto out;
2783 
2784 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2785 	if (ret < 0)
2786 		goto out;
2787 
2788 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2789 
2790 out:
2791 	mutex_unlock(&rdev->mutex);
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2795 
2796 static int _regulator_get_voltage(struct regulator_dev *rdev)
2797 {
2798 	int sel, ret;
2799 
2800 	if (rdev->desc->ops->get_voltage_sel) {
2801 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2802 		if (sel < 0)
2803 			return sel;
2804 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2805 	} else if (rdev->desc->ops->get_voltage) {
2806 		ret = rdev->desc->ops->get_voltage(rdev);
2807 	} else if (rdev->desc->ops->list_voltage) {
2808 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2809 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2810 		ret = rdev->desc->fixed_uV;
2811 	} else if (rdev->supply) {
2812 		ret = regulator_get_voltage(rdev->supply);
2813 	} else {
2814 		return -EINVAL;
2815 	}
2816 
2817 	if (ret < 0)
2818 		return ret;
2819 	return ret - rdev->constraints->uV_offset;
2820 }
2821 
2822 /**
2823  * regulator_get_voltage - get regulator output voltage
2824  * @regulator: regulator source
2825  *
2826  * This returns the current regulator voltage in uV.
2827  *
2828  * NOTE: If the regulator is disabled it will return the voltage value. This
2829  * function should not be used to determine regulator state.
2830  */
2831 int regulator_get_voltage(struct regulator *regulator)
2832 {
2833 	int ret;
2834 
2835 	mutex_lock(&regulator->rdev->mutex);
2836 
2837 	ret = _regulator_get_voltage(regulator->rdev);
2838 
2839 	mutex_unlock(&regulator->rdev->mutex);
2840 
2841 	return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2844 
2845 /**
2846  * regulator_set_current_limit - set regulator output current limit
2847  * @regulator: regulator source
2848  * @min_uA: Minimum supported current in uA
2849  * @max_uA: Maximum supported current in uA
2850  *
2851  * Sets current sink to the desired output current. This can be set during
2852  * any regulator state. IOW, regulator can be disabled or enabled.
2853  *
2854  * If the regulator is enabled then the current will change to the new value
2855  * immediately otherwise if the regulator is disabled the regulator will
2856  * output at the new current when enabled.
2857  *
2858  * NOTE: Regulator system constraints must be set for this regulator before
2859  * calling this function otherwise this call will fail.
2860  */
2861 int regulator_set_current_limit(struct regulator *regulator,
2862 			       int min_uA, int max_uA)
2863 {
2864 	struct regulator_dev *rdev = regulator->rdev;
2865 	int ret;
2866 
2867 	mutex_lock(&rdev->mutex);
2868 
2869 	/* sanity check */
2870 	if (!rdev->desc->ops->set_current_limit) {
2871 		ret = -EINVAL;
2872 		goto out;
2873 	}
2874 
2875 	/* constraints check */
2876 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2877 	if (ret < 0)
2878 		goto out;
2879 
2880 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2881 out:
2882 	mutex_unlock(&rdev->mutex);
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2886 
2887 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2888 {
2889 	int ret;
2890 
2891 	mutex_lock(&rdev->mutex);
2892 
2893 	/* sanity check */
2894 	if (!rdev->desc->ops->get_current_limit) {
2895 		ret = -EINVAL;
2896 		goto out;
2897 	}
2898 
2899 	ret = rdev->desc->ops->get_current_limit(rdev);
2900 out:
2901 	mutex_unlock(&rdev->mutex);
2902 	return ret;
2903 }
2904 
2905 /**
2906  * regulator_get_current_limit - get regulator output current
2907  * @regulator: regulator source
2908  *
2909  * This returns the current supplied by the specified current sink in uA.
2910  *
2911  * NOTE: If the regulator is disabled it will return the current value. This
2912  * function should not be used to determine regulator state.
2913  */
2914 int regulator_get_current_limit(struct regulator *regulator)
2915 {
2916 	return _regulator_get_current_limit(regulator->rdev);
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2919 
2920 /**
2921  * regulator_set_mode - set regulator operating mode
2922  * @regulator: regulator source
2923  * @mode: operating mode - one of the REGULATOR_MODE constants
2924  *
2925  * Set regulator operating mode to increase regulator efficiency or improve
2926  * regulation performance.
2927  *
2928  * NOTE: Regulator system constraints must be set for this regulator before
2929  * calling this function otherwise this call will fail.
2930  */
2931 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2932 {
2933 	struct regulator_dev *rdev = regulator->rdev;
2934 	int ret;
2935 	int regulator_curr_mode;
2936 
2937 	mutex_lock(&rdev->mutex);
2938 
2939 	/* sanity check */
2940 	if (!rdev->desc->ops->set_mode) {
2941 		ret = -EINVAL;
2942 		goto out;
2943 	}
2944 
2945 	/* return if the same mode is requested */
2946 	if (rdev->desc->ops->get_mode) {
2947 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2948 		if (regulator_curr_mode == mode) {
2949 			ret = 0;
2950 			goto out;
2951 		}
2952 	}
2953 
2954 	/* constraints check */
2955 	ret = regulator_mode_constrain(rdev, &mode);
2956 	if (ret < 0)
2957 		goto out;
2958 
2959 	ret = rdev->desc->ops->set_mode(rdev, mode);
2960 out:
2961 	mutex_unlock(&rdev->mutex);
2962 	return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_set_mode);
2965 
2966 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2967 {
2968 	int ret;
2969 
2970 	mutex_lock(&rdev->mutex);
2971 
2972 	/* sanity check */
2973 	if (!rdev->desc->ops->get_mode) {
2974 		ret = -EINVAL;
2975 		goto out;
2976 	}
2977 
2978 	ret = rdev->desc->ops->get_mode(rdev);
2979 out:
2980 	mutex_unlock(&rdev->mutex);
2981 	return ret;
2982 }
2983 
2984 /**
2985  * regulator_get_mode - get regulator operating mode
2986  * @regulator: regulator source
2987  *
2988  * Get the current regulator operating mode.
2989  */
2990 unsigned int regulator_get_mode(struct regulator *regulator)
2991 {
2992 	return _regulator_get_mode(regulator->rdev);
2993 }
2994 EXPORT_SYMBOL_GPL(regulator_get_mode);
2995 
2996 /**
2997  * regulator_set_optimum_mode - set regulator optimum operating mode
2998  * @regulator: regulator source
2999  * @uA_load: load current
3000  *
3001  * Notifies the regulator core of a new device load. This is then used by
3002  * DRMS (if enabled by constraints) to set the most efficient regulator
3003  * operating mode for the new regulator loading.
3004  *
3005  * Consumer devices notify their supply regulator of the maximum power
3006  * they will require (can be taken from device datasheet in the power
3007  * consumption tables) when they change operational status and hence power
3008  * state. Examples of operational state changes that can affect power
3009  * consumption are :-
3010  *
3011  *    o Device is opened / closed.
3012  *    o Device I/O is about to begin or has just finished.
3013  *    o Device is idling in between work.
3014  *
3015  * This information is also exported via sysfs to userspace.
3016  *
3017  * DRMS will sum the total requested load on the regulator and change
3018  * to the most efficient operating mode if platform constraints allow.
3019  *
3020  * Returns the new regulator mode or error.
3021  */
3022 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3023 {
3024 	struct regulator_dev *rdev = regulator->rdev;
3025 	int ret;
3026 
3027 	mutex_lock(&rdev->mutex);
3028 	regulator->uA_load = uA_load;
3029 	ret = drms_uA_update(rdev);
3030 	mutex_unlock(&rdev->mutex);
3031 
3032 	return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3035 
3036 /**
3037  * regulator_allow_bypass - allow the regulator to go into bypass mode
3038  *
3039  * @regulator: Regulator to configure
3040  * @enable: enable or disable bypass mode
3041  *
3042  * Allow the regulator to go into bypass mode if all other consumers
3043  * for the regulator also enable bypass mode and the machine
3044  * constraints allow this.  Bypass mode means that the regulator is
3045  * simply passing the input directly to the output with no regulation.
3046  */
3047 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3048 {
3049 	struct regulator_dev *rdev = regulator->rdev;
3050 	int ret = 0;
3051 
3052 	if (!rdev->desc->ops->set_bypass)
3053 		return 0;
3054 
3055 	if (rdev->constraints &&
3056 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3057 		return 0;
3058 
3059 	mutex_lock(&rdev->mutex);
3060 
3061 	if (enable && !regulator->bypass) {
3062 		rdev->bypass_count++;
3063 
3064 		if (rdev->bypass_count == rdev->open_count) {
3065 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3066 			if (ret != 0)
3067 				rdev->bypass_count--;
3068 		}
3069 
3070 	} else if (!enable && regulator->bypass) {
3071 		rdev->bypass_count--;
3072 
3073 		if (rdev->bypass_count != rdev->open_count) {
3074 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3075 			if (ret != 0)
3076 				rdev->bypass_count++;
3077 		}
3078 	}
3079 
3080 	if (ret == 0)
3081 		regulator->bypass = enable;
3082 
3083 	mutex_unlock(&rdev->mutex);
3084 
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3088 
3089 /**
3090  * regulator_register_notifier - register regulator event notifier
3091  * @regulator: regulator source
3092  * @nb: notifier block
3093  *
3094  * Register notifier block to receive regulator events.
3095  */
3096 int regulator_register_notifier(struct regulator *regulator,
3097 			      struct notifier_block *nb)
3098 {
3099 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3100 						nb);
3101 }
3102 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3103 
3104 /**
3105  * regulator_unregister_notifier - unregister regulator event notifier
3106  * @regulator: regulator source
3107  * @nb: notifier block
3108  *
3109  * Unregister regulator event notifier block.
3110  */
3111 int regulator_unregister_notifier(struct regulator *regulator,
3112 				struct notifier_block *nb)
3113 {
3114 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3115 						  nb);
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3118 
3119 /* notify regulator consumers and downstream regulator consumers.
3120  * Note mutex must be held by caller.
3121  */
3122 static int _notifier_call_chain(struct regulator_dev *rdev,
3123 				  unsigned long event, void *data)
3124 {
3125 	/* call rdev chain first */
3126 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3127 }
3128 
3129 /**
3130  * regulator_bulk_get - get multiple regulator consumers
3131  *
3132  * @dev:           Device to supply
3133  * @num_consumers: Number of consumers to register
3134  * @consumers:     Configuration of consumers; clients are stored here.
3135  *
3136  * @return 0 on success, an errno on failure.
3137  *
3138  * This helper function allows drivers to get several regulator
3139  * consumers in one operation.  If any of the regulators cannot be
3140  * acquired then any regulators that were allocated will be freed
3141  * before returning to the caller.
3142  */
3143 int regulator_bulk_get(struct device *dev, int num_consumers,
3144 		       struct regulator_bulk_data *consumers)
3145 {
3146 	int i;
3147 	int ret;
3148 
3149 	for (i = 0; i < num_consumers; i++)
3150 		consumers[i].consumer = NULL;
3151 
3152 	for (i = 0; i < num_consumers; i++) {
3153 		consumers[i].consumer = regulator_get(dev,
3154 						      consumers[i].supply);
3155 		if (IS_ERR(consumers[i].consumer)) {
3156 			ret = PTR_ERR(consumers[i].consumer);
3157 			dev_err(dev, "Failed to get supply '%s': %d\n",
3158 				consumers[i].supply, ret);
3159 			consumers[i].consumer = NULL;
3160 			goto err;
3161 		}
3162 	}
3163 
3164 	return 0;
3165 
3166 err:
3167 	while (--i >= 0)
3168 		regulator_put(consumers[i].consumer);
3169 
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3173 
3174 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3175 {
3176 	struct regulator_bulk_data *bulk = data;
3177 
3178 	bulk->ret = regulator_enable(bulk->consumer);
3179 }
3180 
3181 /**
3182  * regulator_bulk_enable - enable multiple regulator consumers
3183  *
3184  * @num_consumers: Number of consumers
3185  * @consumers:     Consumer data; clients are stored here.
3186  * @return         0 on success, an errno on failure
3187  *
3188  * This convenience API allows consumers to enable multiple regulator
3189  * clients in a single API call.  If any consumers cannot be enabled
3190  * then any others that were enabled will be disabled again prior to
3191  * return.
3192  */
3193 int regulator_bulk_enable(int num_consumers,
3194 			  struct regulator_bulk_data *consumers)
3195 {
3196 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3197 	int i;
3198 	int ret = 0;
3199 
3200 	for (i = 0; i < num_consumers; i++) {
3201 		if (consumers[i].consumer->always_on)
3202 			consumers[i].ret = 0;
3203 		else
3204 			async_schedule_domain(regulator_bulk_enable_async,
3205 					      &consumers[i], &async_domain);
3206 	}
3207 
3208 	async_synchronize_full_domain(&async_domain);
3209 
3210 	/* If any consumer failed we need to unwind any that succeeded */
3211 	for (i = 0; i < num_consumers; i++) {
3212 		if (consumers[i].ret != 0) {
3213 			ret = consumers[i].ret;
3214 			goto err;
3215 		}
3216 	}
3217 
3218 	return 0;
3219 
3220 err:
3221 	for (i = 0; i < num_consumers; i++) {
3222 		if (consumers[i].ret < 0)
3223 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3224 			       consumers[i].ret);
3225 		else
3226 			regulator_disable(consumers[i].consumer);
3227 	}
3228 
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3232 
3233 /**
3234  * regulator_bulk_disable - disable multiple regulator consumers
3235  *
3236  * @num_consumers: Number of consumers
3237  * @consumers:     Consumer data; clients are stored here.
3238  * @return         0 on success, an errno on failure
3239  *
3240  * This convenience API allows consumers to disable multiple regulator
3241  * clients in a single API call.  If any consumers cannot be disabled
3242  * then any others that were disabled will be enabled again prior to
3243  * return.
3244  */
3245 int regulator_bulk_disable(int num_consumers,
3246 			   struct regulator_bulk_data *consumers)
3247 {
3248 	int i;
3249 	int ret, r;
3250 
3251 	for (i = num_consumers - 1; i >= 0; --i) {
3252 		ret = regulator_disable(consumers[i].consumer);
3253 		if (ret != 0)
3254 			goto err;
3255 	}
3256 
3257 	return 0;
3258 
3259 err:
3260 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3261 	for (++i; i < num_consumers; ++i) {
3262 		r = regulator_enable(consumers[i].consumer);
3263 		if (r != 0)
3264 			pr_err("Failed to reename %s: %d\n",
3265 			       consumers[i].supply, r);
3266 	}
3267 
3268 	return ret;
3269 }
3270 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3271 
3272 /**
3273  * regulator_bulk_force_disable - force disable multiple regulator consumers
3274  *
3275  * @num_consumers: Number of consumers
3276  * @consumers:     Consumer data; clients are stored here.
3277  * @return         0 on success, an errno on failure
3278  *
3279  * This convenience API allows consumers to forcibly disable multiple regulator
3280  * clients in a single API call.
3281  * NOTE: This should be used for situations when device damage will
3282  * likely occur if the regulators are not disabled (e.g. over temp).
3283  * Although regulator_force_disable function call for some consumers can
3284  * return error numbers, the function is called for all consumers.
3285  */
3286 int regulator_bulk_force_disable(int num_consumers,
3287 			   struct regulator_bulk_data *consumers)
3288 {
3289 	int i;
3290 	int ret;
3291 
3292 	for (i = 0; i < num_consumers; i++)
3293 		consumers[i].ret =
3294 			    regulator_force_disable(consumers[i].consumer);
3295 
3296 	for (i = 0; i < num_consumers; i++) {
3297 		if (consumers[i].ret != 0) {
3298 			ret = consumers[i].ret;
3299 			goto out;
3300 		}
3301 	}
3302 
3303 	return 0;
3304 out:
3305 	return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3308 
3309 /**
3310  * regulator_bulk_free - free multiple regulator consumers
3311  *
3312  * @num_consumers: Number of consumers
3313  * @consumers:     Consumer data; clients are stored here.
3314  *
3315  * This convenience API allows consumers to free multiple regulator
3316  * clients in a single API call.
3317  */
3318 void regulator_bulk_free(int num_consumers,
3319 			 struct regulator_bulk_data *consumers)
3320 {
3321 	int i;
3322 
3323 	for (i = 0; i < num_consumers; i++) {
3324 		regulator_put(consumers[i].consumer);
3325 		consumers[i].consumer = NULL;
3326 	}
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3329 
3330 /**
3331  * regulator_notifier_call_chain - call regulator event notifier
3332  * @rdev: regulator source
3333  * @event: notifier block
3334  * @data: callback-specific data.
3335  *
3336  * Called by regulator drivers to notify clients a regulator event has
3337  * occurred. We also notify regulator clients downstream.
3338  * Note lock must be held by caller.
3339  */
3340 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3341 				  unsigned long event, void *data)
3342 {
3343 	_notifier_call_chain(rdev, event, data);
3344 	return NOTIFY_DONE;
3345 
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3348 
3349 /**
3350  * regulator_mode_to_status - convert a regulator mode into a status
3351  *
3352  * @mode: Mode to convert
3353  *
3354  * Convert a regulator mode into a status.
3355  */
3356 int regulator_mode_to_status(unsigned int mode)
3357 {
3358 	switch (mode) {
3359 	case REGULATOR_MODE_FAST:
3360 		return REGULATOR_STATUS_FAST;
3361 	case REGULATOR_MODE_NORMAL:
3362 		return REGULATOR_STATUS_NORMAL;
3363 	case REGULATOR_MODE_IDLE:
3364 		return REGULATOR_STATUS_IDLE;
3365 	case REGULATOR_MODE_STANDBY:
3366 		return REGULATOR_STATUS_STANDBY;
3367 	default:
3368 		return REGULATOR_STATUS_UNDEFINED;
3369 	}
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3372 
3373 static struct attribute *regulator_dev_attrs[] = {
3374 	&dev_attr_name.attr,
3375 	&dev_attr_num_users.attr,
3376 	&dev_attr_type.attr,
3377 	&dev_attr_microvolts.attr,
3378 	&dev_attr_microamps.attr,
3379 	&dev_attr_opmode.attr,
3380 	&dev_attr_state.attr,
3381 	&dev_attr_status.attr,
3382 	&dev_attr_bypass.attr,
3383 	&dev_attr_requested_microamps.attr,
3384 	&dev_attr_min_microvolts.attr,
3385 	&dev_attr_max_microvolts.attr,
3386 	&dev_attr_min_microamps.attr,
3387 	&dev_attr_max_microamps.attr,
3388 	&dev_attr_suspend_standby_state.attr,
3389 	&dev_attr_suspend_mem_state.attr,
3390 	&dev_attr_suspend_disk_state.attr,
3391 	&dev_attr_suspend_standby_microvolts.attr,
3392 	&dev_attr_suspend_mem_microvolts.attr,
3393 	&dev_attr_suspend_disk_microvolts.attr,
3394 	&dev_attr_suspend_standby_mode.attr,
3395 	&dev_attr_suspend_mem_mode.attr,
3396 	&dev_attr_suspend_disk_mode.attr,
3397 	NULL
3398 };
3399 
3400 /*
3401  * To avoid cluttering sysfs (and memory) with useless state, only
3402  * create attributes that can be meaningfully displayed.
3403  */
3404 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3405 					 struct attribute *attr, int idx)
3406 {
3407 	struct device *dev = kobj_to_dev(kobj);
3408 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3409 	const struct regulator_ops *ops = rdev->desc->ops;
3410 	umode_t mode = attr->mode;
3411 
3412 	/* these three are always present */
3413 	if (attr == &dev_attr_name.attr ||
3414 	    attr == &dev_attr_num_users.attr ||
3415 	    attr == &dev_attr_type.attr)
3416 		return mode;
3417 
3418 	/* some attributes need specific methods to be displayed */
3419 	if (attr == &dev_attr_microvolts.attr) {
3420 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3421 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3422 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3423 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3424 			return mode;
3425 		return 0;
3426 	}
3427 
3428 	if (attr == &dev_attr_microamps.attr)
3429 		return ops->get_current_limit ? mode : 0;
3430 
3431 	if (attr == &dev_attr_opmode.attr)
3432 		return ops->get_mode ? mode : 0;
3433 
3434 	if (attr == &dev_attr_state.attr)
3435 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3436 
3437 	if (attr == &dev_attr_status.attr)
3438 		return ops->get_status ? mode : 0;
3439 
3440 	if (attr == &dev_attr_bypass.attr)
3441 		return ops->get_bypass ? mode : 0;
3442 
3443 	/* some attributes are type-specific */
3444 	if (attr == &dev_attr_requested_microamps.attr)
3445 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3446 
3447 	/* all the other attributes exist to support constraints;
3448 	 * don't show them if there are no constraints, or if the
3449 	 * relevant supporting methods are missing.
3450 	 */
3451 	if (!rdev->constraints)
3452 		return 0;
3453 
3454 	/* constraints need specific supporting methods */
3455 	if (attr == &dev_attr_min_microvolts.attr ||
3456 	    attr == &dev_attr_max_microvolts.attr)
3457 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3458 
3459 	if (attr == &dev_attr_min_microamps.attr ||
3460 	    attr == &dev_attr_max_microamps.attr)
3461 		return ops->set_current_limit ? mode : 0;
3462 
3463 	if (attr == &dev_attr_suspend_standby_state.attr ||
3464 	    attr == &dev_attr_suspend_mem_state.attr ||
3465 	    attr == &dev_attr_suspend_disk_state.attr)
3466 		return mode;
3467 
3468 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3469 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3470 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3471 		return ops->set_suspend_voltage ? mode : 0;
3472 
3473 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3474 	    attr == &dev_attr_suspend_mem_mode.attr ||
3475 	    attr == &dev_attr_suspend_disk_mode.attr)
3476 		return ops->set_suspend_mode ? mode : 0;
3477 
3478 	return mode;
3479 }
3480 
3481 static const struct attribute_group regulator_dev_group = {
3482 	.attrs = regulator_dev_attrs,
3483 	.is_visible = regulator_attr_is_visible,
3484 };
3485 
3486 static const struct attribute_group *regulator_dev_groups[] = {
3487 	&regulator_dev_group,
3488 	NULL
3489 };
3490 
3491 static void regulator_dev_release(struct device *dev)
3492 {
3493 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3494 	kfree(rdev);
3495 }
3496 
3497 static struct class regulator_class = {
3498 	.name = "regulator",
3499 	.dev_release = regulator_dev_release,
3500 	.dev_groups = regulator_dev_groups,
3501 };
3502 
3503 static void rdev_init_debugfs(struct regulator_dev *rdev)
3504 {
3505 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3506 	if (!rdev->debugfs) {
3507 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3508 		return;
3509 	}
3510 
3511 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3512 			   &rdev->use_count);
3513 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3514 			   &rdev->open_count);
3515 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3516 			   &rdev->bypass_count);
3517 }
3518 
3519 /**
3520  * regulator_register - register regulator
3521  * @regulator_desc: regulator to register
3522  * @cfg: runtime configuration for regulator
3523  *
3524  * Called by regulator drivers to register a regulator.
3525  * Returns a valid pointer to struct regulator_dev on success
3526  * or an ERR_PTR() on error.
3527  */
3528 struct regulator_dev *
3529 regulator_register(const struct regulator_desc *regulator_desc,
3530 		   const struct regulator_config *cfg)
3531 {
3532 	const struct regulation_constraints *constraints = NULL;
3533 	const struct regulator_init_data *init_data;
3534 	struct regulator_config *config = NULL;
3535 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3536 	struct regulator_dev *rdev;
3537 	struct device *dev;
3538 	int ret, i;
3539 	const char *supply = NULL;
3540 
3541 	if (regulator_desc == NULL || cfg == NULL)
3542 		return ERR_PTR(-EINVAL);
3543 
3544 	dev = cfg->dev;
3545 	WARN_ON(!dev);
3546 
3547 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3548 		return ERR_PTR(-EINVAL);
3549 
3550 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3551 	    regulator_desc->type != REGULATOR_CURRENT)
3552 		return ERR_PTR(-EINVAL);
3553 
3554 	/* Only one of each should be implemented */
3555 	WARN_ON(regulator_desc->ops->get_voltage &&
3556 		regulator_desc->ops->get_voltage_sel);
3557 	WARN_ON(regulator_desc->ops->set_voltage &&
3558 		regulator_desc->ops->set_voltage_sel);
3559 
3560 	/* If we're using selectors we must implement list_voltage. */
3561 	if (regulator_desc->ops->get_voltage_sel &&
3562 	    !regulator_desc->ops->list_voltage) {
3563 		return ERR_PTR(-EINVAL);
3564 	}
3565 	if (regulator_desc->ops->set_voltage_sel &&
3566 	    !regulator_desc->ops->list_voltage) {
3567 		return ERR_PTR(-EINVAL);
3568 	}
3569 
3570 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3571 	if (rdev == NULL)
3572 		return ERR_PTR(-ENOMEM);
3573 
3574 	/*
3575 	 * Duplicate the config so the driver could override it after
3576 	 * parsing init data.
3577 	 */
3578 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3579 	if (config == NULL) {
3580 		kfree(rdev);
3581 		return ERR_PTR(-ENOMEM);
3582 	}
3583 
3584 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3585 					       &rdev->dev.of_node);
3586 	if (!init_data) {
3587 		init_data = config->init_data;
3588 		rdev->dev.of_node = of_node_get(config->of_node);
3589 	}
3590 
3591 	mutex_lock(&regulator_list_mutex);
3592 
3593 	mutex_init(&rdev->mutex);
3594 	rdev->reg_data = config->driver_data;
3595 	rdev->owner = regulator_desc->owner;
3596 	rdev->desc = regulator_desc;
3597 	if (config->regmap)
3598 		rdev->regmap = config->regmap;
3599 	else if (dev_get_regmap(dev, NULL))
3600 		rdev->regmap = dev_get_regmap(dev, NULL);
3601 	else if (dev->parent)
3602 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3603 	INIT_LIST_HEAD(&rdev->consumer_list);
3604 	INIT_LIST_HEAD(&rdev->list);
3605 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3606 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3607 
3608 	/* preform any regulator specific init */
3609 	if (init_data && init_data->regulator_init) {
3610 		ret = init_data->regulator_init(rdev->reg_data);
3611 		if (ret < 0)
3612 			goto clean;
3613 	}
3614 
3615 	/* register with sysfs */
3616 	rdev->dev.class = &regulator_class;
3617 	rdev->dev.parent = dev;
3618 	dev_set_name(&rdev->dev, "regulator.%lu",
3619 		    (unsigned long) atomic_inc_return(&regulator_no));
3620 	ret = device_register(&rdev->dev);
3621 	if (ret != 0) {
3622 		put_device(&rdev->dev);
3623 		goto clean;
3624 	}
3625 
3626 	dev_set_drvdata(&rdev->dev, rdev);
3627 
3628 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3629 	    gpio_is_valid(config->ena_gpio)) {
3630 		ret = regulator_ena_gpio_request(rdev, config);
3631 		if (ret != 0) {
3632 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3633 				 config->ena_gpio, ret);
3634 			goto wash;
3635 		}
3636 
3637 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3638 			rdev->ena_gpio_state = 1;
3639 
3640 		if (config->ena_gpio_invert)
3641 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3642 	}
3643 
3644 	/* set regulator constraints */
3645 	if (init_data)
3646 		constraints = &init_data->constraints;
3647 
3648 	ret = set_machine_constraints(rdev, constraints);
3649 	if (ret < 0)
3650 		goto scrub;
3651 
3652 	if (init_data && init_data->supply_regulator)
3653 		supply = init_data->supply_regulator;
3654 	else if (regulator_desc->supply_name)
3655 		supply = regulator_desc->supply_name;
3656 
3657 	if (supply) {
3658 		struct regulator_dev *r;
3659 
3660 		r = regulator_dev_lookup(dev, supply, &ret);
3661 
3662 		if (ret == -ENODEV) {
3663 			/*
3664 			 * No supply was specified for this regulator and
3665 			 * there will never be one.
3666 			 */
3667 			ret = 0;
3668 			goto add_dev;
3669 		} else if (!r) {
3670 			dev_err(dev, "Failed to find supply %s\n", supply);
3671 			ret = -EPROBE_DEFER;
3672 			goto scrub;
3673 		}
3674 
3675 		ret = set_supply(rdev, r);
3676 		if (ret < 0)
3677 			goto scrub;
3678 
3679 		/* Enable supply if rail is enabled */
3680 		if (_regulator_is_enabled(rdev)) {
3681 			ret = regulator_enable(rdev->supply);
3682 			if (ret < 0)
3683 				goto scrub;
3684 		}
3685 	}
3686 
3687 add_dev:
3688 	/* add consumers devices */
3689 	if (init_data) {
3690 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3691 			ret = set_consumer_device_supply(rdev,
3692 				init_data->consumer_supplies[i].dev_name,
3693 				init_data->consumer_supplies[i].supply);
3694 			if (ret < 0) {
3695 				dev_err(dev, "Failed to set supply %s\n",
3696 					init_data->consumer_supplies[i].supply);
3697 				goto unset_supplies;
3698 			}
3699 		}
3700 	}
3701 
3702 	list_add(&rdev->list, &regulator_list);
3703 
3704 	rdev_init_debugfs(rdev);
3705 out:
3706 	mutex_unlock(&regulator_list_mutex);
3707 	kfree(config);
3708 	return rdev;
3709 
3710 unset_supplies:
3711 	unset_regulator_supplies(rdev);
3712 
3713 scrub:
3714 	if (rdev->supply)
3715 		_regulator_put(rdev->supply);
3716 	regulator_ena_gpio_free(rdev);
3717 	kfree(rdev->constraints);
3718 wash:
3719 	device_unregister(&rdev->dev);
3720 	/* device core frees rdev */
3721 	rdev = ERR_PTR(ret);
3722 	goto out;
3723 
3724 clean:
3725 	kfree(rdev);
3726 	rdev = ERR_PTR(ret);
3727 	goto out;
3728 }
3729 EXPORT_SYMBOL_GPL(regulator_register);
3730 
3731 /**
3732  * regulator_unregister - unregister regulator
3733  * @rdev: regulator to unregister
3734  *
3735  * Called by regulator drivers to unregister a regulator.
3736  */
3737 void regulator_unregister(struct regulator_dev *rdev)
3738 {
3739 	if (rdev == NULL)
3740 		return;
3741 
3742 	if (rdev->supply) {
3743 		while (rdev->use_count--)
3744 			regulator_disable(rdev->supply);
3745 		regulator_put(rdev->supply);
3746 	}
3747 	mutex_lock(&regulator_list_mutex);
3748 	debugfs_remove_recursive(rdev->debugfs);
3749 	flush_work(&rdev->disable_work.work);
3750 	WARN_ON(rdev->open_count);
3751 	unset_regulator_supplies(rdev);
3752 	list_del(&rdev->list);
3753 	kfree(rdev->constraints);
3754 	regulator_ena_gpio_free(rdev);
3755 	of_node_put(rdev->dev.of_node);
3756 	device_unregister(&rdev->dev);
3757 	mutex_unlock(&regulator_list_mutex);
3758 }
3759 EXPORT_SYMBOL_GPL(regulator_unregister);
3760 
3761 /**
3762  * regulator_suspend_prepare - prepare regulators for system wide suspend
3763  * @state: system suspend state
3764  *
3765  * Configure each regulator with it's suspend operating parameters for state.
3766  * This will usually be called by machine suspend code prior to supending.
3767  */
3768 int regulator_suspend_prepare(suspend_state_t state)
3769 {
3770 	struct regulator_dev *rdev;
3771 	int ret = 0;
3772 
3773 	/* ON is handled by regulator active state */
3774 	if (state == PM_SUSPEND_ON)
3775 		return -EINVAL;
3776 
3777 	mutex_lock(&regulator_list_mutex);
3778 	list_for_each_entry(rdev, &regulator_list, list) {
3779 
3780 		mutex_lock(&rdev->mutex);
3781 		ret = suspend_prepare(rdev, state);
3782 		mutex_unlock(&rdev->mutex);
3783 
3784 		if (ret < 0) {
3785 			rdev_err(rdev, "failed to prepare\n");
3786 			goto out;
3787 		}
3788 	}
3789 out:
3790 	mutex_unlock(&regulator_list_mutex);
3791 	return ret;
3792 }
3793 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3794 
3795 /**
3796  * regulator_suspend_finish - resume regulators from system wide suspend
3797  *
3798  * Turn on regulators that might be turned off by regulator_suspend_prepare
3799  * and that should be turned on according to the regulators properties.
3800  */
3801 int regulator_suspend_finish(void)
3802 {
3803 	struct regulator_dev *rdev;
3804 	int ret = 0, error;
3805 
3806 	mutex_lock(&regulator_list_mutex);
3807 	list_for_each_entry(rdev, &regulator_list, list) {
3808 		mutex_lock(&rdev->mutex);
3809 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3810 			error = _regulator_do_enable(rdev);
3811 			if (error)
3812 				ret = error;
3813 		} else {
3814 			if (!have_full_constraints())
3815 				goto unlock;
3816 			if (!_regulator_is_enabled(rdev))
3817 				goto unlock;
3818 
3819 			error = _regulator_do_disable(rdev);
3820 			if (error)
3821 				ret = error;
3822 		}
3823 unlock:
3824 		mutex_unlock(&rdev->mutex);
3825 	}
3826 	mutex_unlock(&regulator_list_mutex);
3827 	return ret;
3828 }
3829 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3830 
3831 /**
3832  * regulator_has_full_constraints - the system has fully specified constraints
3833  *
3834  * Calling this function will cause the regulator API to disable all
3835  * regulators which have a zero use count and don't have an always_on
3836  * constraint in a late_initcall.
3837  *
3838  * The intention is that this will become the default behaviour in a
3839  * future kernel release so users are encouraged to use this facility
3840  * now.
3841  */
3842 void regulator_has_full_constraints(void)
3843 {
3844 	has_full_constraints = 1;
3845 }
3846 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3847 
3848 /**
3849  * rdev_get_drvdata - get rdev regulator driver data
3850  * @rdev: regulator
3851  *
3852  * Get rdev regulator driver private data. This call can be used in the
3853  * regulator driver context.
3854  */
3855 void *rdev_get_drvdata(struct regulator_dev *rdev)
3856 {
3857 	return rdev->reg_data;
3858 }
3859 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3860 
3861 /**
3862  * regulator_get_drvdata - get regulator driver data
3863  * @regulator: regulator
3864  *
3865  * Get regulator driver private data. This call can be used in the consumer
3866  * driver context when non API regulator specific functions need to be called.
3867  */
3868 void *regulator_get_drvdata(struct regulator *regulator)
3869 {
3870 	return regulator->rdev->reg_data;
3871 }
3872 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3873 
3874 /**
3875  * regulator_set_drvdata - set regulator driver data
3876  * @regulator: regulator
3877  * @data: data
3878  */
3879 void regulator_set_drvdata(struct regulator *regulator, void *data)
3880 {
3881 	regulator->rdev->reg_data = data;
3882 }
3883 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3884 
3885 /**
3886  * regulator_get_id - get regulator ID
3887  * @rdev: regulator
3888  */
3889 int rdev_get_id(struct regulator_dev *rdev)
3890 {
3891 	return rdev->desc->id;
3892 }
3893 EXPORT_SYMBOL_GPL(rdev_get_id);
3894 
3895 struct device *rdev_get_dev(struct regulator_dev *rdev)
3896 {
3897 	return &rdev->dev;
3898 }
3899 EXPORT_SYMBOL_GPL(rdev_get_dev);
3900 
3901 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3902 {
3903 	return reg_init_data->driver_data;
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3906 
3907 #ifdef CONFIG_DEBUG_FS
3908 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3909 				    size_t count, loff_t *ppos)
3910 {
3911 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3912 	ssize_t len, ret = 0;
3913 	struct regulator_map *map;
3914 
3915 	if (!buf)
3916 		return -ENOMEM;
3917 
3918 	list_for_each_entry(map, &regulator_map_list, list) {
3919 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3920 			       "%s -> %s.%s\n",
3921 			       rdev_get_name(map->regulator), map->dev_name,
3922 			       map->supply);
3923 		if (len >= 0)
3924 			ret += len;
3925 		if (ret > PAGE_SIZE) {
3926 			ret = PAGE_SIZE;
3927 			break;
3928 		}
3929 	}
3930 
3931 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3932 
3933 	kfree(buf);
3934 
3935 	return ret;
3936 }
3937 #endif
3938 
3939 static const struct file_operations supply_map_fops = {
3940 #ifdef CONFIG_DEBUG_FS
3941 	.read = supply_map_read_file,
3942 	.llseek = default_llseek,
3943 #endif
3944 };
3945 
3946 static int __init regulator_init(void)
3947 {
3948 	int ret;
3949 
3950 	ret = class_register(&regulator_class);
3951 
3952 	debugfs_root = debugfs_create_dir("regulator", NULL);
3953 	if (!debugfs_root)
3954 		pr_warn("regulator: Failed to create debugfs directory\n");
3955 
3956 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3957 			    &supply_map_fops);
3958 
3959 	regulator_dummy_init();
3960 
3961 	return ret;
3962 }
3963 
3964 /* init early to allow our consumers to complete system booting */
3965 core_initcall(regulator_init);
3966 
3967 static int __init regulator_init_complete(void)
3968 {
3969 	struct regulator_dev *rdev;
3970 	const struct regulator_ops *ops;
3971 	struct regulation_constraints *c;
3972 	int enabled, ret;
3973 
3974 	/*
3975 	 * Since DT doesn't provide an idiomatic mechanism for
3976 	 * enabling full constraints and since it's much more natural
3977 	 * with DT to provide them just assume that a DT enabled
3978 	 * system has full constraints.
3979 	 */
3980 	if (of_have_populated_dt())
3981 		has_full_constraints = true;
3982 
3983 	mutex_lock(&regulator_list_mutex);
3984 
3985 	/* If we have a full configuration then disable any regulators
3986 	 * we have permission to change the status for and which are
3987 	 * not in use or always_on.  This is effectively the default
3988 	 * for DT and ACPI as they have full constraints.
3989 	 */
3990 	list_for_each_entry(rdev, &regulator_list, list) {
3991 		ops = rdev->desc->ops;
3992 		c = rdev->constraints;
3993 
3994 		if (c && c->always_on)
3995 			continue;
3996 
3997 		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3998 			continue;
3999 
4000 		mutex_lock(&rdev->mutex);
4001 
4002 		if (rdev->use_count)
4003 			goto unlock;
4004 
4005 		/* If we can't read the status assume it's on. */
4006 		if (ops->is_enabled)
4007 			enabled = ops->is_enabled(rdev);
4008 		else
4009 			enabled = 1;
4010 
4011 		if (!enabled)
4012 			goto unlock;
4013 
4014 		if (have_full_constraints()) {
4015 			/* We log since this may kill the system if it
4016 			 * goes wrong. */
4017 			rdev_info(rdev, "disabling\n");
4018 			ret = _regulator_do_disable(rdev);
4019 			if (ret != 0)
4020 				rdev_err(rdev, "couldn't disable: %d\n", ret);
4021 		} else {
4022 			/* The intention is that in future we will
4023 			 * assume that full constraints are provided
4024 			 * so warn even if we aren't going to do
4025 			 * anything here.
4026 			 */
4027 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4028 		}
4029 
4030 unlock:
4031 		mutex_unlock(&rdev->mutex);
4032 	}
4033 
4034 	mutex_unlock(&regulator_list_mutex);
4035 
4036 	return 0;
4037 }
4038 late_initcall_sync(regulator_init_complete);
4039