1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 /** 129 * of_get_regulator - get a regulator device node based on supply name 130 * @dev: Device pointer for the consumer (of regulator) device 131 * @supply: regulator supply name 132 * 133 * Extract the regulator device node corresponding to the supply name. 134 * returns the device node corresponding to the regulator if found, else 135 * returns NULL. 136 */ 137 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 138 { 139 struct device_node *regnode = NULL; 140 char prop_name[32]; /* 32 is max size of property name */ 141 142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 143 144 snprintf(prop_name, 32, "%s-supply", supply); 145 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 146 147 if (!regnode) { 148 dev_dbg(dev, "Looking up %s property in node %s failed", 149 prop_name, dev->of_node->full_name); 150 return NULL; 151 } 152 return regnode; 153 } 154 155 static int _regulator_can_change_status(struct regulator_dev *rdev) 156 { 157 if (!rdev->constraints) 158 return 0; 159 160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 161 return 1; 162 else 163 return 0; 164 } 165 166 /* Platform voltage constraint check */ 167 static int regulator_check_voltage(struct regulator_dev *rdev, 168 int *min_uV, int *max_uV) 169 { 170 BUG_ON(*min_uV > *max_uV); 171 172 if (!rdev->constraints) { 173 rdev_err(rdev, "no constraints\n"); 174 return -ENODEV; 175 } 176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 177 rdev_err(rdev, "operation not allowed\n"); 178 return -EPERM; 179 } 180 181 if (*max_uV > rdev->constraints->max_uV) 182 *max_uV = rdev->constraints->max_uV; 183 if (*min_uV < rdev->constraints->min_uV) 184 *min_uV = rdev->constraints->min_uV; 185 186 if (*min_uV > *max_uV) { 187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 188 *min_uV, *max_uV); 189 return -EINVAL; 190 } 191 192 return 0; 193 } 194 195 /* Make sure we select a voltage that suits the needs of all 196 * regulator consumers 197 */ 198 static int regulator_check_consumers(struct regulator_dev *rdev, 199 int *min_uV, int *max_uV) 200 { 201 struct regulator *regulator; 202 203 list_for_each_entry(regulator, &rdev->consumer_list, list) { 204 /* 205 * Assume consumers that didn't say anything are OK 206 * with anything in the constraint range. 207 */ 208 if (!regulator->min_uV && !regulator->max_uV) 209 continue; 210 211 if (*max_uV > regulator->max_uV) 212 *max_uV = regulator->max_uV; 213 if (*min_uV < regulator->min_uV) 214 *min_uV = regulator->min_uV; 215 } 216 217 if (*min_uV > *max_uV) { 218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 219 *min_uV, *max_uV); 220 return -EINVAL; 221 } 222 223 return 0; 224 } 225 226 /* current constraint check */ 227 static int regulator_check_current_limit(struct regulator_dev *rdev, 228 int *min_uA, int *max_uA) 229 { 230 BUG_ON(*min_uA > *max_uA); 231 232 if (!rdev->constraints) { 233 rdev_err(rdev, "no constraints\n"); 234 return -ENODEV; 235 } 236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 237 rdev_err(rdev, "operation not allowed\n"); 238 return -EPERM; 239 } 240 241 if (*max_uA > rdev->constraints->max_uA) 242 *max_uA = rdev->constraints->max_uA; 243 if (*min_uA < rdev->constraints->min_uA) 244 *min_uA = rdev->constraints->min_uA; 245 246 if (*min_uA > *max_uA) { 247 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 248 *min_uA, *max_uA); 249 return -EINVAL; 250 } 251 252 return 0; 253 } 254 255 /* operating mode constraint check */ 256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 257 { 258 switch (*mode) { 259 case REGULATOR_MODE_FAST: 260 case REGULATOR_MODE_NORMAL: 261 case REGULATOR_MODE_IDLE: 262 case REGULATOR_MODE_STANDBY: 263 break; 264 default: 265 rdev_err(rdev, "invalid mode %x specified\n", *mode); 266 return -EINVAL; 267 } 268 269 if (!rdev->constraints) { 270 rdev_err(rdev, "no constraints\n"); 271 return -ENODEV; 272 } 273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 274 rdev_err(rdev, "operation not allowed\n"); 275 return -EPERM; 276 } 277 278 /* The modes are bitmasks, the most power hungry modes having 279 * the lowest values. If the requested mode isn't supported 280 * try higher modes. */ 281 while (*mode) { 282 if (rdev->constraints->valid_modes_mask & *mode) 283 return 0; 284 *mode /= 2; 285 } 286 287 return -EINVAL; 288 } 289 290 /* dynamic regulator mode switching constraint check */ 291 static int regulator_check_drms(struct regulator_dev *rdev) 292 { 293 if (!rdev->constraints) { 294 rdev_err(rdev, "no constraints\n"); 295 return -ENODEV; 296 } 297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 298 rdev_err(rdev, "operation not allowed\n"); 299 return -EPERM; 300 } 301 return 0; 302 } 303 304 static ssize_t regulator_uV_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct regulator_dev *rdev = dev_get_drvdata(dev); 308 ssize_t ret; 309 310 mutex_lock(&rdev->mutex); 311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 312 mutex_unlock(&rdev->mutex); 313 314 return ret; 315 } 316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 317 318 static ssize_t regulator_uA_show(struct device *dev, 319 struct device_attribute *attr, char *buf) 320 { 321 struct regulator_dev *rdev = dev_get_drvdata(dev); 322 323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 324 } 325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 326 327 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 332 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 333 } 334 static DEVICE_ATTR_RO(name); 335 336 static ssize_t regulator_print_opmode(char *buf, int mode) 337 { 338 switch (mode) { 339 case REGULATOR_MODE_FAST: 340 return sprintf(buf, "fast\n"); 341 case REGULATOR_MODE_NORMAL: 342 return sprintf(buf, "normal\n"); 343 case REGULATOR_MODE_IDLE: 344 return sprintf(buf, "idle\n"); 345 case REGULATOR_MODE_STANDBY: 346 return sprintf(buf, "standby\n"); 347 } 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_opmode_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 356 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 357 } 358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 359 360 static ssize_t regulator_print_state(char *buf, int state) 361 { 362 if (state > 0) 363 return sprintf(buf, "enabled\n"); 364 else if (state == 0) 365 return sprintf(buf, "disabled\n"); 366 else 367 return sprintf(buf, "unknown\n"); 368 } 369 370 static ssize_t regulator_state_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 ssize_t ret; 375 376 mutex_lock(&rdev->mutex); 377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 378 mutex_unlock(&rdev->mutex); 379 380 return ret; 381 } 382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 383 384 static ssize_t regulator_status_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct regulator_dev *rdev = dev_get_drvdata(dev); 388 int status; 389 char *label; 390 391 status = rdev->desc->ops->get_status(rdev); 392 if (status < 0) 393 return status; 394 395 switch (status) { 396 case REGULATOR_STATUS_OFF: 397 label = "off"; 398 break; 399 case REGULATOR_STATUS_ON: 400 label = "on"; 401 break; 402 case REGULATOR_STATUS_ERROR: 403 label = "error"; 404 break; 405 case REGULATOR_STATUS_FAST: 406 label = "fast"; 407 break; 408 case REGULATOR_STATUS_NORMAL: 409 label = "normal"; 410 break; 411 case REGULATOR_STATUS_IDLE: 412 label = "idle"; 413 break; 414 case REGULATOR_STATUS_STANDBY: 415 label = "standby"; 416 break; 417 case REGULATOR_STATUS_BYPASS: 418 label = "bypass"; 419 break; 420 case REGULATOR_STATUS_UNDEFINED: 421 label = "undefined"; 422 break; 423 default: 424 return -ERANGE; 425 } 426 427 return sprintf(buf, "%s\n", label); 428 } 429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 430 431 static ssize_t regulator_min_uA_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct regulator_dev *rdev = dev_get_drvdata(dev); 435 436 if (!rdev->constraints) 437 return sprintf(buf, "constraint not defined\n"); 438 439 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 440 } 441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 442 443 static ssize_t regulator_max_uA_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct regulator_dev *rdev = dev_get_drvdata(dev); 447 448 if (!rdev->constraints) 449 return sprintf(buf, "constraint not defined\n"); 450 451 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 452 } 453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 454 455 static ssize_t regulator_min_uV_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct regulator_dev *rdev = dev_get_drvdata(dev); 459 460 if (!rdev->constraints) 461 return sprintf(buf, "constraint not defined\n"); 462 463 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 464 } 465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 466 467 static ssize_t regulator_max_uV_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct regulator_dev *rdev = dev_get_drvdata(dev); 471 472 if (!rdev->constraints) 473 return sprintf(buf, "constraint not defined\n"); 474 475 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 476 } 477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 478 479 static ssize_t regulator_total_uA_show(struct device *dev, 480 struct device_attribute *attr, char *buf) 481 { 482 struct regulator_dev *rdev = dev_get_drvdata(dev); 483 struct regulator *regulator; 484 int uA = 0; 485 486 mutex_lock(&rdev->mutex); 487 list_for_each_entry(regulator, &rdev->consumer_list, list) 488 uA += regulator->uA_load; 489 mutex_unlock(&rdev->mutex); 490 return sprintf(buf, "%d\n", uA); 491 } 492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 493 494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 495 char *buf) 496 { 497 struct regulator_dev *rdev = dev_get_drvdata(dev); 498 return sprintf(buf, "%d\n", rdev->use_count); 499 } 500 static DEVICE_ATTR_RO(num_users); 501 502 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 503 char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 507 switch (rdev->desc->type) { 508 case REGULATOR_VOLTAGE: 509 return sprintf(buf, "voltage\n"); 510 case REGULATOR_CURRENT: 511 return sprintf(buf, "current\n"); 512 } 513 return sprintf(buf, "unknown\n"); 514 } 515 static DEVICE_ATTR_RO(type); 516 517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 518 struct device_attribute *attr, char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 523 } 524 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 525 regulator_suspend_mem_uV_show, NULL); 526 527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 528 struct device_attribute *attr, char *buf) 529 { 530 struct regulator_dev *rdev = dev_get_drvdata(dev); 531 532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 533 } 534 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 535 regulator_suspend_disk_uV_show, NULL); 536 537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 543 } 544 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 545 regulator_suspend_standby_uV_show, NULL); 546 547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct regulator_dev *rdev = dev_get_drvdata(dev); 551 552 return regulator_print_opmode(buf, 553 rdev->constraints->state_mem.mode); 554 } 555 static DEVICE_ATTR(suspend_mem_mode, 0444, 556 regulator_suspend_mem_mode_show, NULL); 557 558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 559 struct device_attribute *attr, char *buf) 560 { 561 struct regulator_dev *rdev = dev_get_drvdata(dev); 562 563 return regulator_print_opmode(buf, 564 rdev->constraints->state_disk.mode); 565 } 566 static DEVICE_ATTR(suspend_disk_mode, 0444, 567 regulator_suspend_disk_mode_show, NULL); 568 569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct regulator_dev *rdev = dev_get_drvdata(dev); 573 574 return regulator_print_opmode(buf, 575 rdev->constraints->state_standby.mode); 576 } 577 static DEVICE_ATTR(suspend_standby_mode, 0444, 578 regulator_suspend_standby_mode_show, NULL); 579 580 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return regulator_print_state(buf, 586 rdev->constraints->state_mem.enabled); 587 } 588 static DEVICE_ATTR(suspend_mem_state, 0444, 589 regulator_suspend_mem_state_show, NULL); 590 591 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct regulator_dev *rdev = dev_get_drvdata(dev); 595 596 return regulator_print_state(buf, 597 rdev->constraints->state_disk.enabled); 598 } 599 static DEVICE_ATTR(suspend_disk_state, 0444, 600 regulator_suspend_disk_state_show, NULL); 601 602 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct regulator_dev *rdev = dev_get_drvdata(dev); 606 607 return regulator_print_state(buf, 608 rdev->constraints->state_standby.enabled); 609 } 610 static DEVICE_ATTR(suspend_standby_state, 0444, 611 regulator_suspend_standby_state_show, NULL); 612 613 static ssize_t regulator_bypass_show(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct regulator_dev *rdev = dev_get_drvdata(dev); 617 const char *report; 618 bool bypass; 619 int ret; 620 621 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 622 623 if (ret != 0) 624 report = "unknown"; 625 else if (bypass) 626 report = "enabled"; 627 else 628 report = "disabled"; 629 630 return sprintf(buf, "%s\n", report); 631 } 632 static DEVICE_ATTR(bypass, 0444, 633 regulator_bypass_show, NULL); 634 635 /* Calculate the new optimum regulator operating mode based on the new total 636 * consumer load. All locks held by caller */ 637 static int drms_uA_update(struct regulator_dev *rdev) 638 { 639 struct regulator *sibling; 640 int current_uA = 0, output_uV, input_uV, err; 641 unsigned int mode; 642 643 /* 644 * first check to see if we can set modes at all, otherwise just 645 * tell the consumer everything is OK. 646 */ 647 err = regulator_check_drms(rdev); 648 if (err < 0) 649 return 0; 650 651 if (!rdev->desc->ops->get_optimum_mode) 652 return 0; 653 654 if (!rdev->desc->ops->set_mode) 655 return -EINVAL; 656 657 /* get output voltage */ 658 output_uV = _regulator_get_voltage(rdev); 659 if (output_uV <= 0) { 660 rdev_err(rdev, "invalid output voltage found\n"); 661 return -EINVAL; 662 } 663 664 /* get input voltage */ 665 input_uV = 0; 666 if (rdev->supply) 667 input_uV = regulator_get_voltage(rdev->supply); 668 if (input_uV <= 0) 669 input_uV = rdev->constraints->input_uV; 670 if (input_uV <= 0) { 671 rdev_err(rdev, "invalid input voltage found\n"); 672 return -EINVAL; 673 } 674 675 /* calc total requested load */ 676 list_for_each_entry(sibling, &rdev->consumer_list, list) 677 current_uA += sibling->uA_load; 678 679 /* now get the optimum mode for our new total regulator load */ 680 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 681 output_uV, current_uA); 682 683 /* check the new mode is allowed */ 684 err = regulator_mode_constrain(rdev, &mode); 685 if (err < 0) { 686 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 687 current_uA, input_uV, output_uV); 688 return err; 689 } 690 691 err = rdev->desc->ops->set_mode(rdev, mode); 692 if (err < 0) 693 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 694 695 return err; 696 } 697 698 static int suspend_set_state(struct regulator_dev *rdev, 699 struct regulator_state *rstate) 700 { 701 int ret = 0; 702 703 /* If we have no suspend mode configration don't set anything; 704 * only warn if the driver implements set_suspend_voltage or 705 * set_suspend_mode callback. 706 */ 707 if (!rstate->enabled && !rstate->disabled) { 708 if (rdev->desc->ops->set_suspend_voltage || 709 rdev->desc->ops->set_suspend_mode) 710 rdev_warn(rdev, "No configuration\n"); 711 return 0; 712 } 713 714 if (rstate->enabled && rstate->disabled) { 715 rdev_err(rdev, "invalid configuration\n"); 716 return -EINVAL; 717 } 718 719 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 720 ret = rdev->desc->ops->set_suspend_enable(rdev); 721 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 722 ret = rdev->desc->ops->set_suspend_disable(rdev); 723 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 724 ret = 0; 725 726 if (ret < 0) { 727 rdev_err(rdev, "failed to enabled/disable\n"); 728 return ret; 729 } 730 731 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 732 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 733 if (ret < 0) { 734 rdev_err(rdev, "failed to set voltage\n"); 735 return ret; 736 } 737 } 738 739 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 740 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 741 if (ret < 0) { 742 rdev_err(rdev, "failed to set mode\n"); 743 return ret; 744 } 745 } 746 return ret; 747 } 748 749 /* locks held by caller */ 750 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 751 { 752 if (!rdev->constraints) 753 return -EINVAL; 754 755 switch (state) { 756 case PM_SUSPEND_STANDBY: 757 return suspend_set_state(rdev, 758 &rdev->constraints->state_standby); 759 case PM_SUSPEND_MEM: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_mem); 762 case PM_SUSPEND_MAX: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_disk); 765 default: 766 return -EINVAL; 767 } 768 } 769 770 static void print_constraints(struct regulator_dev *rdev) 771 { 772 struct regulation_constraints *constraints = rdev->constraints; 773 char buf[80] = ""; 774 int count = 0; 775 int ret; 776 777 if (constraints->min_uV && constraints->max_uV) { 778 if (constraints->min_uV == constraints->max_uV) 779 count += sprintf(buf + count, "%d mV ", 780 constraints->min_uV / 1000); 781 else 782 count += sprintf(buf + count, "%d <--> %d mV ", 783 constraints->min_uV / 1000, 784 constraints->max_uV / 1000); 785 } 786 787 if (!constraints->min_uV || 788 constraints->min_uV != constraints->max_uV) { 789 ret = _regulator_get_voltage(rdev); 790 if (ret > 0) 791 count += sprintf(buf + count, "at %d mV ", ret / 1000); 792 } 793 794 if (constraints->uV_offset) 795 count += sprintf(buf, "%dmV offset ", 796 constraints->uV_offset / 1000); 797 798 if (constraints->min_uA && constraints->max_uA) { 799 if (constraints->min_uA == constraints->max_uA) 800 count += sprintf(buf + count, "%d mA ", 801 constraints->min_uA / 1000); 802 else 803 count += sprintf(buf + count, "%d <--> %d mA ", 804 constraints->min_uA / 1000, 805 constraints->max_uA / 1000); 806 } 807 808 if (!constraints->min_uA || 809 constraints->min_uA != constraints->max_uA) { 810 ret = _regulator_get_current_limit(rdev); 811 if (ret > 0) 812 count += sprintf(buf + count, "at %d mA ", ret / 1000); 813 } 814 815 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 816 count += sprintf(buf + count, "fast "); 817 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 818 count += sprintf(buf + count, "normal "); 819 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 820 count += sprintf(buf + count, "idle "); 821 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 822 count += sprintf(buf + count, "standby"); 823 824 if (!count) 825 sprintf(buf, "no parameters"); 826 827 rdev_dbg(rdev, "%s\n", buf); 828 829 if ((constraints->min_uV != constraints->max_uV) && 830 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 831 rdev_warn(rdev, 832 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 833 } 834 835 static int machine_constraints_voltage(struct regulator_dev *rdev, 836 struct regulation_constraints *constraints) 837 { 838 const struct regulator_ops *ops = rdev->desc->ops; 839 int ret; 840 841 /* do we need to apply the constraint voltage */ 842 if (rdev->constraints->apply_uV && 843 rdev->constraints->min_uV == rdev->constraints->max_uV) { 844 int current_uV = _regulator_get_voltage(rdev); 845 if (current_uV < 0) { 846 rdev_err(rdev, 847 "failed to get the current voltage(%d)\n", 848 current_uV); 849 return current_uV; 850 } 851 if (current_uV < rdev->constraints->min_uV || 852 current_uV > rdev->constraints->max_uV) { 853 ret = _regulator_do_set_voltage( 854 rdev, rdev->constraints->min_uV, 855 rdev->constraints->max_uV); 856 if (ret < 0) { 857 rdev_err(rdev, 858 "failed to apply %duV constraint(%d)\n", 859 rdev->constraints->min_uV, ret); 860 return ret; 861 } 862 } 863 } 864 865 /* constrain machine-level voltage specs to fit 866 * the actual range supported by this regulator. 867 */ 868 if (ops->list_voltage && rdev->desc->n_voltages) { 869 int count = rdev->desc->n_voltages; 870 int i; 871 int min_uV = INT_MAX; 872 int max_uV = INT_MIN; 873 int cmin = constraints->min_uV; 874 int cmax = constraints->max_uV; 875 876 /* it's safe to autoconfigure fixed-voltage supplies 877 and the constraints are used by list_voltage. */ 878 if (count == 1 && !cmin) { 879 cmin = 1; 880 cmax = INT_MAX; 881 constraints->min_uV = cmin; 882 constraints->max_uV = cmax; 883 } 884 885 /* voltage constraints are optional */ 886 if ((cmin == 0) && (cmax == 0)) 887 return 0; 888 889 /* else require explicit machine-level constraints */ 890 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 891 rdev_err(rdev, "invalid voltage constraints\n"); 892 return -EINVAL; 893 } 894 895 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 896 for (i = 0; i < count; i++) { 897 int value; 898 899 value = ops->list_voltage(rdev, i); 900 if (value <= 0) 901 continue; 902 903 /* maybe adjust [min_uV..max_uV] */ 904 if (value >= cmin && value < min_uV) 905 min_uV = value; 906 if (value <= cmax && value > max_uV) 907 max_uV = value; 908 } 909 910 /* final: [min_uV..max_uV] valid iff constraints valid */ 911 if (max_uV < min_uV) { 912 rdev_err(rdev, 913 "unsupportable voltage constraints %u-%uuV\n", 914 min_uV, max_uV); 915 return -EINVAL; 916 } 917 918 /* use regulator's subset of machine constraints */ 919 if (constraints->min_uV < min_uV) { 920 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 921 constraints->min_uV, min_uV); 922 constraints->min_uV = min_uV; 923 } 924 if (constraints->max_uV > max_uV) { 925 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 926 constraints->max_uV, max_uV); 927 constraints->max_uV = max_uV; 928 } 929 } 930 931 return 0; 932 } 933 934 static int machine_constraints_current(struct regulator_dev *rdev, 935 struct regulation_constraints *constraints) 936 { 937 const struct regulator_ops *ops = rdev->desc->ops; 938 int ret; 939 940 if (!constraints->min_uA && !constraints->max_uA) 941 return 0; 942 943 if (constraints->min_uA > constraints->max_uA) { 944 rdev_err(rdev, "Invalid current constraints\n"); 945 return -EINVAL; 946 } 947 948 if (!ops->set_current_limit || !ops->get_current_limit) { 949 rdev_warn(rdev, "Operation of current configuration missing\n"); 950 return 0; 951 } 952 953 /* Set regulator current in constraints range */ 954 ret = ops->set_current_limit(rdev, constraints->min_uA, 955 constraints->max_uA); 956 if (ret < 0) { 957 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 958 return ret; 959 } 960 961 return 0; 962 } 963 964 static int _regulator_do_enable(struct regulator_dev *rdev); 965 966 /** 967 * set_machine_constraints - sets regulator constraints 968 * @rdev: regulator source 969 * @constraints: constraints to apply 970 * 971 * Allows platform initialisation code to define and constrain 972 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 973 * Constraints *must* be set by platform code in order for some 974 * regulator operations to proceed i.e. set_voltage, set_current_limit, 975 * set_mode. 976 */ 977 static int set_machine_constraints(struct regulator_dev *rdev, 978 const struct regulation_constraints *constraints) 979 { 980 int ret = 0; 981 const struct regulator_ops *ops = rdev->desc->ops; 982 983 if (constraints) 984 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 985 GFP_KERNEL); 986 else 987 rdev->constraints = kzalloc(sizeof(*constraints), 988 GFP_KERNEL); 989 if (!rdev->constraints) 990 return -ENOMEM; 991 992 ret = machine_constraints_voltage(rdev, rdev->constraints); 993 if (ret != 0) 994 goto out; 995 996 ret = machine_constraints_current(rdev, rdev->constraints); 997 if (ret != 0) 998 goto out; 999 1000 /* do we need to setup our suspend state */ 1001 if (rdev->constraints->initial_state) { 1002 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1003 if (ret < 0) { 1004 rdev_err(rdev, "failed to set suspend state\n"); 1005 goto out; 1006 } 1007 } 1008 1009 if (rdev->constraints->initial_mode) { 1010 if (!ops->set_mode) { 1011 rdev_err(rdev, "no set_mode operation\n"); 1012 ret = -EINVAL; 1013 goto out; 1014 } 1015 1016 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1017 if (ret < 0) { 1018 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1019 goto out; 1020 } 1021 } 1022 1023 /* If the constraints say the regulator should be on at this point 1024 * and we have control then make sure it is enabled. 1025 */ 1026 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1027 ret = _regulator_do_enable(rdev); 1028 if (ret < 0 && ret != -EINVAL) { 1029 rdev_err(rdev, "failed to enable\n"); 1030 goto out; 1031 } 1032 } 1033 1034 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1035 && ops->set_ramp_delay) { 1036 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1037 if (ret < 0) { 1038 rdev_err(rdev, "failed to set ramp_delay\n"); 1039 goto out; 1040 } 1041 } 1042 1043 print_constraints(rdev); 1044 return 0; 1045 out: 1046 kfree(rdev->constraints); 1047 rdev->constraints = NULL; 1048 return ret; 1049 } 1050 1051 /** 1052 * set_supply - set regulator supply regulator 1053 * @rdev: regulator name 1054 * @supply_rdev: supply regulator name 1055 * 1056 * Called by platform initialisation code to set the supply regulator for this 1057 * regulator. This ensures that a regulators supply will also be enabled by the 1058 * core if it's child is enabled. 1059 */ 1060 static int set_supply(struct regulator_dev *rdev, 1061 struct regulator_dev *supply_rdev) 1062 { 1063 int err; 1064 1065 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1066 1067 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1068 if (rdev->supply == NULL) { 1069 err = -ENOMEM; 1070 return err; 1071 } 1072 supply_rdev->open_count++; 1073 1074 return 0; 1075 } 1076 1077 /** 1078 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1079 * @rdev: regulator source 1080 * @consumer_dev_name: dev_name() string for device supply applies to 1081 * @supply: symbolic name for supply 1082 * 1083 * Allows platform initialisation code to map physical regulator 1084 * sources to symbolic names for supplies for use by devices. Devices 1085 * should use these symbolic names to request regulators, avoiding the 1086 * need to provide board-specific regulator names as platform data. 1087 */ 1088 static int set_consumer_device_supply(struct regulator_dev *rdev, 1089 const char *consumer_dev_name, 1090 const char *supply) 1091 { 1092 struct regulator_map *node; 1093 int has_dev; 1094 1095 if (supply == NULL) 1096 return -EINVAL; 1097 1098 if (consumer_dev_name != NULL) 1099 has_dev = 1; 1100 else 1101 has_dev = 0; 1102 1103 list_for_each_entry(node, ®ulator_map_list, list) { 1104 if (node->dev_name && consumer_dev_name) { 1105 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1106 continue; 1107 } else if (node->dev_name || consumer_dev_name) { 1108 continue; 1109 } 1110 1111 if (strcmp(node->supply, supply) != 0) 1112 continue; 1113 1114 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1115 consumer_dev_name, 1116 dev_name(&node->regulator->dev), 1117 node->regulator->desc->name, 1118 supply, 1119 dev_name(&rdev->dev), rdev_get_name(rdev)); 1120 return -EBUSY; 1121 } 1122 1123 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1124 if (node == NULL) 1125 return -ENOMEM; 1126 1127 node->regulator = rdev; 1128 node->supply = supply; 1129 1130 if (has_dev) { 1131 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1132 if (node->dev_name == NULL) { 1133 kfree(node); 1134 return -ENOMEM; 1135 } 1136 } 1137 1138 list_add(&node->list, ®ulator_map_list); 1139 return 0; 1140 } 1141 1142 static void unset_regulator_supplies(struct regulator_dev *rdev) 1143 { 1144 struct regulator_map *node, *n; 1145 1146 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1147 if (rdev == node->regulator) { 1148 list_del(&node->list); 1149 kfree(node->dev_name); 1150 kfree(node); 1151 } 1152 } 1153 } 1154 1155 #define REG_STR_SIZE 64 1156 1157 static struct regulator *create_regulator(struct regulator_dev *rdev, 1158 struct device *dev, 1159 const char *supply_name) 1160 { 1161 struct regulator *regulator; 1162 char buf[REG_STR_SIZE]; 1163 int err, size; 1164 1165 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1166 if (regulator == NULL) 1167 return NULL; 1168 1169 mutex_lock(&rdev->mutex); 1170 regulator->rdev = rdev; 1171 list_add(®ulator->list, &rdev->consumer_list); 1172 1173 if (dev) { 1174 regulator->dev = dev; 1175 1176 /* Add a link to the device sysfs entry */ 1177 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1178 dev->kobj.name, supply_name); 1179 if (size >= REG_STR_SIZE) 1180 goto overflow_err; 1181 1182 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1183 if (regulator->supply_name == NULL) 1184 goto overflow_err; 1185 1186 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1187 buf); 1188 if (err) { 1189 rdev_warn(rdev, "could not add device link %s err %d\n", 1190 dev->kobj.name, err); 1191 /* non-fatal */ 1192 } 1193 } else { 1194 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1195 if (regulator->supply_name == NULL) 1196 goto overflow_err; 1197 } 1198 1199 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1200 rdev->debugfs); 1201 if (!regulator->debugfs) { 1202 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1203 } else { 1204 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1205 ®ulator->uA_load); 1206 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1207 ®ulator->min_uV); 1208 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1209 ®ulator->max_uV); 1210 } 1211 1212 /* 1213 * Check now if the regulator is an always on regulator - if 1214 * it is then we don't need to do nearly so much work for 1215 * enable/disable calls. 1216 */ 1217 if (!_regulator_can_change_status(rdev) && 1218 _regulator_is_enabled(rdev)) 1219 regulator->always_on = true; 1220 1221 mutex_unlock(&rdev->mutex); 1222 return regulator; 1223 overflow_err: 1224 list_del(®ulator->list); 1225 kfree(regulator); 1226 mutex_unlock(&rdev->mutex); 1227 return NULL; 1228 } 1229 1230 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1231 { 1232 if (rdev->constraints && rdev->constraints->enable_time) 1233 return rdev->constraints->enable_time; 1234 if (!rdev->desc->ops->enable_time) 1235 return rdev->desc->enable_time; 1236 return rdev->desc->ops->enable_time(rdev); 1237 } 1238 1239 static struct regulator_supply_alias *regulator_find_supply_alias( 1240 struct device *dev, const char *supply) 1241 { 1242 struct regulator_supply_alias *map; 1243 1244 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1245 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1246 return map; 1247 1248 return NULL; 1249 } 1250 1251 static void regulator_supply_alias(struct device **dev, const char **supply) 1252 { 1253 struct regulator_supply_alias *map; 1254 1255 map = regulator_find_supply_alias(*dev, *supply); 1256 if (map) { 1257 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1258 *supply, map->alias_supply, 1259 dev_name(map->alias_dev)); 1260 *dev = map->alias_dev; 1261 *supply = map->alias_supply; 1262 } 1263 } 1264 1265 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1266 const char *supply, 1267 int *ret) 1268 { 1269 struct regulator_dev *r; 1270 struct device_node *node; 1271 struct regulator_map *map; 1272 const char *devname = NULL; 1273 1274 regulator_supply_alias(&dev, &supply); 1275 1276 /* first do a dt based lookup */ 1277 if (dev && dev->of_node) { 1278 node = of_get_regulator(dev, supply); 1279 if (node) { 1280 list_for_each_entry(r, ®ulator_list, list) 1281 if (r->dev.parent && 1282 node == r->dev.of_node) 1283 return r; 1284 *ret = -EPROBE_DEFER; 1285 return NULL; 1286 } else { 1287 /* 1288 * If we couldn't even get the node then it's 1289 * not just that the device didn't register 1290 * yet, there's no node and we'll never 1291 * succeed. 1292 */ 1293 *ret = -ENODEV; 1294 } 1295 } 1296 1297 /* if not found, try doing it non-dt way */ 1298 if (dev) 1299 devname = dev_name(dev); 1300 1301 list_for_each_entry(r, ®ulator_list, list) 1302 if (strcmp(rdev_get_name(r), supply) == 0) 1303 return r; 1304 1305 list_for_each_entry(map, ®ulator_map_list, list) { 1306 /* If the mapping has a device set up it must match */ 1307 if (map->dev_name && 1308 (!devname || strcmp(map->dev_name, devname))) 1309 continue; 1310 1311 if (strcmp(map->supply, supply) == 0) 1312 return map->regulator; 1313 } 1314 1315 1316 return NULL; 1317 } 1318 1319 /* Internal regulator request function */ 1320 static struct regulator *_regulator_get(struct device *dev, const char *id, 1321 bool exclusive, bool allow_dummy) 1322 { 1323 struct regulator_dev *rdev; 1324 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1325 const char *devname = NULL; 1326 int ret; 1327 1328 if (id == NULL) { 1329 pr_err("get() with no identifier\n"); 1330 return ERR_PTR(-EINVAL); 1331 } 1332 1333 if (dev) 1334 devname = dev_name(dev); 1335 1336 if (have_full_constraints()) 1337 ret = -ENODEV; 1338 else 1339 ret = -EPROBE_DEFER; 1340 1341 mutex_lock(®ulator_list_mutex); 1342 1343 rdev = regulator_dev_lookup(dev, id, &ret); 1344 if (rdev) 1345 goto found; 1346 1347 regulator = ERR_PTR(ret); 1348 1349 /* 1350 * If we have return value from dev_lookup fail, we do not expect to 1351 * succeed, so, quit with appropriate error value 1352 */ 1353 if (ret && ret != -ENODEV) 1354 goto out; 1355 1356 if (!devname) 1357 devname = "deviceless"; 1358 1359 /* 1360 * Assume that a regulator is physically present and enabled 1361 * even if it isn't hooked up and just provide a dummy. 1362 */ 1363 if (have_full_constraints() && allow_dummy) { 1364 pr_warn("%s supply %s not found, using dummy regulator\n", 1365 devname, id); 1366 1367 rdev = dummy_regulator_rdev; 1368 goto found; 1369 /* Don't log an error when called from regulator_get_optional() */ 1370 } else if (!have_full_constraints() || exclusive) { 1371 dev_warn(dev, "dummy supplies not allowed\n"); 1372 } 1373 1374 mutex_unlock(®ulator_list_mutex); 1375 return regulator; 1376 1377 found: 1378 if (rdev->exclusive) { 1379 regulator = ERR_PTR(-EPERM); 1380 goto out; 1381 } 1382 1383 if (exclusive && rdev->open_count) { 1384 regulator = ERR_PTR(-EBUSY); 1385 goto out; 1386 } 1387 1388 if (!try_module_get(rdev->owner)) 1389 goto out; 1390 1391 regulator = create_regulator(rdev, dev, id); 1392 if (regulator == NULL) { 1393 regulator = ERR_PTR(-ENOMEM); 1394 module_put(rdev->owner); 1395 goto out; 1396 } 1397 1398 rdev->open_count++; 1399 if (exclusive) { 1400 rdev->exclusive = 1; 1401 1402 ret = _regulator_is_enabled(rdev); 1403 if (ret > 0) 1404 rdev->use_count = 1; 1405 else 1406 rdev->use_count = 0; 1407 } 1408 1409 out: 1410 mutex_unlock(®ulator_list_mutex); 1411 1412 return regulator; 1413 } 1414 1415 /** 1416 * regulator_get - lookup and obtain a reference to a regulator. 1417 * @dev: device for regulator "consumer" 1418 * @id: Supply name or regulator ID. 1419 * 1420 * Returns a struct regulator corresponding to the regulator producer, 1421 * or IS_ERR() condition containing errno. 1422 * 1423 * Use of supply names configured via regulator_set_device_supply() is 1424 * strongly encouraged. It is recommended that the supply name used 1425 * should match the name used for the supply and/or the relevant 1426 * device pins in the datasheet. 1427 */ 1428 struct regulator *regulator_get(struct device *dev, const char *id) 1429 { 1430 return _regulator_get(dev, id, false, true); 1431 } 1432 EXPORT_SYMBOL_GPL(regulator_get); 1433 1434 /** 1435 * regulator_get_exclusive - obtain exclusive access to a regulator. 1436 * @dev: device for regulator "consumer" 1437 * @id: Supply name or regulator ID. 1438 * 1439 * Returns a struct regulator corresponding to the regulator producer, 1440 * or IS_ERR() condition containing errno. Other consumers will be 1441 * unable to obtain this regulator while this reference is held and the 1442 * use count for the regulator will be initialised to reflect the current 1443 * state of the regulator. 1444 * 1445 * This is intended for use by consumers which cannot tolerate shared 1446 * use of the regulator such as those which need to force the 1447 * regulator off for correct operation of the hardware they are 1448 * controlling. 1449 * 1450 * Use of supply names configured via regulator_set_device_supply() is 1451 * strongly encouraged. It is recommended that the supply name used 1452 * should match the name used for the supply and/or the relevant 1453 * device pins in the datasheet. 1454 */ 1455 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1456 { 1457 return _regulator_get(dev, id, true, false); 1458 } 1459 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1460 1461 /** 1462 * regulator_get_optional - obtain optional access to a regulator. 1463 * @dev: device for regulator "consumer" 1464 * @id: Supply name or regulator ID. 1465 * 1466 * Returns a struct regulator corresponding to the regulator producer, 1467 * or IS_ERR() condition containing errno. 1468 * 1469 * This is intended for use by consumers for devices which can have 1470 * some supplies unconnected in normal use, such as some MMC devices. 1471 * It can allow the regulator core to provide stub supplies for other 1472 * supplies requested using normal regulator_get() calls without 1473 * disrupting the operation of drivers that can handle absent 1474 * supplies. 1475 * 1476 * Use of supply names configured via regulator_set_device_supply() is 1477 * strongly encouraged. It is recommended that the supply name used 1478 * should match the name used for the supply and/or the relevant 1479 * device pins in the datasheet. 1480 */ 1481 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1482 { 1483 return _regulator_get(dev, id, false, false); 1484 } 1485 EXPORT_SYMBOL_GPL(regulator_get_optional); 1486 1487 /* regulator_list_mutex lock held by regulator_put() */ 1488 static void _regulator_put(struct regulator *regulator) 1489 { 1490 struct regulator_dev *rdev; 1491 1492 if (regulator == NULL || IS_ERR(regulator)) 1493 return; 1494 1495 rdev = regulator->rdev; 1496 1497 debugfs_remove_recursive(regulator->debugfs); 1498 1499 /* remove any sysfs entries */ 1500 if (regulator->dev) 1501 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1502 mutex_lock(&rdev->mutex); 1503 kfree(regulator->supply_name); 1504 list_del(®ulator->list); 1505 kfree(regulator); 1506 1507 rdev->open_count--; 1508 rdev->exclusive = 0; 1509 mutex_unlock(&rdev->mutex); 1510 1511 module_put(rdev->owner); 1512 } 1513 1514 /** 1515 * regulator_put - "free" the regulator source 1516 * @regulator: regulator source 1517 * 1518 * Note: drivers must ensure that all regulator_enable calls made on this 1519 * regulator source are balanced by regulator_disable calls prior to calling 1520 * this function. 1521 */ 1522 void regulator_put(struct regulator *regulator) 1523 { 1524 mutex_lock(®ulator_list_mutex); 1525 _regulator_put(regulator); 1526 mutex_unlock(®ulator_list_mutex); 1527 } 1528 EXPORT_SYMBOL_GPL(regulator_put); 1529 1530 /** 1531 * regulator_register_supply_alias - Provide device alias for supply lookup 1532 * 1533 * @dev: device that will be given as the regulator "consumer" 1534 * @id: Supply name or regulator ID 1535 * @alias_dev: device that should be used to lookup the supply 1536 * @alias_id: Supply name or regulator ID that should be used to lookup the 1537 * supply 1538 * 1539 * All lookups for id on dev will instead be conducted for alias_id on 1540 * alias_dev. 1541 */ 1542 int regulator_register_supply_alias(struct device *dev, const char *id, 1543 struct device *alias_dev, 1544 const char *alias_id) 1545 { 1546 struct regulator_supply_alias *map; 1547 1548 map = regulator_find_supply_alias(dev, id); 1549 if (map) 1550 return -EEXIST; 1551 1552 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1553 if (!map) 1554 return -ENOMEM; 1555 1556 map->src_dev = dev; 1557 map->src_supply = id; 1558 map->alias_dev = alias_dev; 1559 map->alias_supply = alias_id; 1560 1561 list_add(&map->list, ®ulator_supply_alias_list); 1562 1563 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1564 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1565 1566 return 0; 1567 } 1568 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1569 1570 /** 1571 * regulator_unregister_supply_alias - Remove device alias 1572 * 1573 * @dev: device that will be given as the regulator "consumer" 1574 * @id: Supply name or regulator ID 1575 * 1576 * Remove a lookup alias if one exists for id on dev. 1577 */ 1578 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1579 { 1580 struct regulator_supply_alias *map; 1581 1582 map = regulator_find_supply_alias(dev, id); 1583 if (map) { 1584 list_del(&map->list); 1585 kfree(map); 1586 } 1587 } 1588 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1589 1590 /** 1591 * regulator_bulk_register_supply_alias - register multiple aliases 1592 * 1593 * @dev: device that will be given as the regulator "consumer" 1594 * @id: List of supply names or regulator IDs 1595 * @alias_dev: device that should be used to lookup the supply 1596 * @alias_id: List of supply names or regulator IDs that should be used to 1597 * lookup the supply 1598 * @num_id: Number of aliases to register 1599 * 1600 * @return 0 on success, an errno on failure. 1601 * 1602 * This helper function allows drivers to register several supply 1603 * aliases in one operation. If any of the aliases cannot be 1604 * registered any aliases that were registered will be removed 1605 * before returning to the caller. 1606 */ 1607 int regulator_bulk_register_supply_alias(struct device *dev, 1608 const char *const *id, 1609 struct device *alias_dev, 1610 const char *const *alias_id, 1611 int num_id) 1612 { 1613 int i; 1614 int ret; 1615 1616 for (i = 0; i < num_id; ++i) { 1617 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1618 alias_id[i]); 1619 if (ret < 0) 1620 goto err; 1621 } 1622 1623 return 0; 1624 1625 err: 1626 dev_err(dev, 1627 "Failed to create supply alias %s,%s -> %s,%s\n", 1628 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1629 1630 while (--i >= 0) 1631 regulator_unregister_supply_alias(dev, id[i]); 1632 1633 return ret; 1634 } 1635 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1636 1637 /** 1638 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1639 * 1640 * @dev: device that will be given as the regulator "consumer" 1641 * @id: List of supply names or regulator IDs 1642 * @num_id: Number of aliases to unregister 1643 * 1644 * This helper function allows drivers to unregister several supply 1645 * aliases in one operation. 1646 */ 1647 void regulator_bulk_unregister_supply_alias(struct device *dev, 1648 const char *const *id, 1649 int num_id) 1650 { 1651 int i; 1652 1653 for (i = 0; i < num_id; ++i) 1654 regulator_unregister_supply_alias(dev, id[i]); 1655 } 1656 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1657 1658 1659 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1660 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1661 const struct regulator_config *config) 1662 { 1663 struct regulator_enable_gpio *pin; 1664 struct gpio_desc *gpiod; 1665 int ret; 1666 1667 gpiod = gpio_to_desc(config->ena_gpio); 1668 1669 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1670 if (pin->gpiod == gpiod) { 1671 rdev_dbg(rdev, "GPIO %d is already used\n", 1672 config->ena_gpio); 1673 goto update_ena_gpio_to_rdev; 1674 } 1675 } 1676 1677 ret = gpio_request_one(config->ena_gpio, 1678 GPIOF_DIR_OUT | config->ena_gpio_flags, 1679 rdev_get_name(rdev)); 1680 if (ret) 1681 return ret; 1682 1683 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1684 if (pin == NULL) { 1685 gpio_free(config->ena_gpio); 1686 return -ENOMEM; 1687 } 1688 1689 pin->gpiod = gpiod; 1690 pin->ena_gpio_invert = config->ena_gpio_invert; 1691 list_add(&pin->list, ®ulator_ena_gpio_list); 1692 1693 update_ena_gpio_to_rdev: 1694 pin->request_count++; 1695 rdev->ena_pin = pin; 1696 return 0; 1697 } 1698 1699 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1700 { 1701 struct regulator_enable_gpio *pin, *n; 1702 1703 if (!rdev->ena_pin) 1704 return; 1705 1706 /* Free the GPIO only in case of no use */ 1707 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1708 if (pin->gpiod == rdev->ena_pin->gpiod) { 1709 if (pin->request_count <= 1) { 1710 pin->request_count = 0; 1711 gpiod_put(pin->gpiod); 1712 list_del(&pin->list); 1713 kfree(pin); 1714 rdev->ena_pin = NULL; 1715 return; 1716 } else { 1717 pin->request_count--; 1718 } 1719 } 1720 } 1721 } 1722 1723 /** 1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1725 * @rdev: regulator_dev structure 1726 * @enable: enable GPIO at initial use? 1727 * 1728 * GPIO is enabled in case of initial use. (enable_count is 0) 1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1730 */ 1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1732 { 1733 struct regulator_enable_gpio *pin = rdev->ena_pin; 1734 1735 if (!pin) 1736 return -EINVAL; 1737 1738 if (enable) { 1739 /* Enable GPIO at initial use */ 1740 if (pin->enable_count == 0) 1741 gpiod_set_value_cansleep(pin->gpiod, 1742 !pin->ena_gpio_invert); 1743 1744 pin->enable_count++; 1745 } else { 1746 if (pin->enable_count > 1) { 1747 pin->enable_count--; 1748 return 0; 1749 } 1750 1751 /* Disable GPIO if not used */ 1752 if (pin->enable_count <= 1) { 1753 gpiod_set_value_cansleep(pin->gpiod, 1754 pin->ena_gpio_invert); 1755 pin->enable_count = 0; 1756 } 1757 } 1758 1759 return 0; 1760 } 1761 1762 /** 1763 * _regulator_enable_delay - a delay helper function 1764 * @delay: time to delay in microseconds 1765 * 1766 * Delay for the requested amount of time as per the guidelines in: 1767 * 1768 * Documentation/timers/timers-howto.txt 1769 * 1770 * The assumption here is that regulators will never be enabled in 1771 * atomic context and therefore sleeping functions can be used. 1772 */ 1773 static void _regulator_enable_delay(unsigned int delay) 1774 { 1775 unsigned int ms = delay / 1000; 1776 unsigned int us = delay % 1000; 1777 1778 if (ms > 0) { 1779 /* 1780 * For small enough values, handle super-millisecond 1781 * delays in the usleep_range() call below. 1782 */ 1783 if (ms < 20) 1784 us += ms * 1000; 1785 else 1786 msleep(ms); 1787 } 1788 1789 /* 1790 * Give the scheduler some room to coalesce with any other 1791 * wakeup sources. For delays shorter than 10 us, don't even 1792 * bother setting up high-resolution timers and just busy- 1793 * loop. 1794 */ 1795 if (us >= 10) 1796 usleep_range(us, us + 100); 1797 else 1798 udelay(us); 1799 } 1800 1801 static int _regulator_do_enable(struct regulator_dev *rdev) 1802 { 1803 int ret, delay; 1804 1805 /* Query before enabling in case configuration dependent. */ 1806 ret = _regulator_get_enable_time(rdev); 1807 if (ret >= 0) { 1808 delay = ret; 1809 } else { 1810 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1811 delay = 0; 1812 } 1813 1814 trace_regulator_enable(rdev_get_name(rdev)); 1815 1816 if (rdev->desc->off_on_delay) { 1817 /* if needed, keep a distance of off_on_delay from last time 1818 * this regulator was disabled. 1819 */ 1820 unsigned long start_jiffy = jiffies; 1821 unsigned long intended, max_delay, remaining; 1822 1823 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1824 intended = rdev->last_off_jiffy + max_delay; 1825 1826 if (time_before(start_jiffy, intended)) { 1827 /* calc remaining jiffies to deal with one-time 1828 * timer wrapping. 1829 * in case of multiple timer wrapping, either it can be 1830 * detected by out-of-range remaining, or it cannot be 1831 * detected and we gets a panelty of 1832 * _regulator_enable_delay(). 1833 */ 1834 remaining = intended - start_jiffy; 1835 if (remaining <= max_delay) 1836 _regulator_enable_delay( 1837 jiffies_to_usecs(remaining)); 1838 } 1839 } 1840 1841 if (rdev->ena_pin) { 1842 ret = regulator_ena_gpio_ctrl(rdev, true); 1843 if (ret < 0) 1844 return ret; 1845 rdev->ena_gpio_state = 1; 1846 } else if (rdev->desc->ops->enable) { 1847 ret = rdev->desc->ops->enable(rdev); 1848 if (ret < 0) 1849 return ret; 1850 } else { 1851 return -EINVAL; 1852 } 1853 1854 /* Allow the regulator to ramp; it would be useful to extend 1855 * this for bulk operations so that the regulators can ramp 1856 * together. */ 1857 trace_regulator_enable_delay(rdev_get_name(rdev)); 1858 1859 _regulator_enable_delay(delay); 1860 1861 trace_regulator_enable_complete(rdev_get_name(rdev)); 1862 1863 return 0; 1864 } 1865 1866 /* locks held by regulator_enable() */ 1867 static int _regulator_enable(struct regulator_dev *rdev) 1868 { 1869 int ret; 1870 1871 /* check voltage and requested load before enabling */ 1872 if (rdev->constraints && 1873 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1874 drms_uA_update(rdev); 1875 1876 if (rdev->use_count == 0) { 1877 /* The regulator may on if it's not switchable or left on */ 1878 ret = _regulator_is_enabled(rdev); 1879 if (ret == -EINVAL || ret == 0) { 1880 if (!_regulator_can_change_status(rdev)) 1881 return -EPERM; 1882 1883 ret = _regulator_do_enable(rdev); 1884 if (ret < 0) 1885 return ret; 1886 1887 } else if (ret < 0) { 1888 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1889 return ret; 1890 } 1891 /* Fallthrough on positive return values - already enabled */ 1892 } 1893 1894 rdev->use_count++; 1895 1896 return 0; 1897 } 1898 1899 /** 1900 * regulator_enable - enable regulator output 1901 * @regulator: regulator source 1902 * 1903 * Request that the regulator be enabled with the regulator output at 1904 * the predefined voltage or current value. Calls to regulator_enable() 1905 * must be balanced with calls to regulator_disable(). 1906 * 1907 * NOTE: the output value can be set by other drivers, boot loader or may be 1908 * hardwired in the regulator. 1909 */ 1910 int regulator_enable(struct regulator *regulator) 1911 { 1912 struct regulator_dev *rdev = regulator->rdev; 1913 int ret = 0; 1914 1915 if (regulator->always_on) 1916 return 0; 1917 1918 if (rdev->supply) { 1919 ret = regulator_enable(rdev->supply); 1920 if (ret != 0) 1921 return ret; 1922 } 1923 1924 mutex_lock(&rdev->mutex); 1925 ret = _regulator_enable(rdev); 1926 mutex_unlock(&rdev->mutex); 1927 1928 if (ret != 0 && rdev->supply) 1929 regulator_disable(rdev->supply); 1930 1931 return ret; 1932 } 1933 EXPORT_SYMBOL_GPL(regulator_enable); 1934 1935 static int _regulator_do_disable(struct regulator_dev *rdev) 1936 { 1937 int ret; 1938 1939 trace_regulator_disable(rdev_get_name(rdev)); 1940 1941 if (rdev->ena_pin) { 1942 ret = regulator_ena_gpio_ctrl(rdev, false); 1943 if (ret < 0) 1944 return ret; 1945 rdev->ena_gpio_state = 0; 1946 1947 } else if (rdev->desc->ops->disable) { 1948 ret = rdev->desc->ops->disable(rdev); 1949 if (ret != 0) 1950 return ret; 1951 } 1952 1953 /* cares about last_off_jiffy only if off_on_delay is required by 1954 * device. 1955 */ 1956 if (rdev->desc->off_on_delay) 1957 rdev->last_off_jiffy = jiffies; 1958 1959 trace_regulator_disable_complete(rdev_get_name(rdev)); 1960 1961 return 0; 1962 } 1963 1964 /* locks held by regulator_disable() */ 1965 static int _regulator_disable(struct regulator_dev *rdev) 1966 { 1967 int ret = 0; 1968 1969 if (WARN(rdev->use_count <= 0, 1970 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1971 return -EIO; 1972 1973 /* are we the last user and permitted to disable ? */ 1974 if (rdev->use_count == 1 && 1975 (rdev->constraints && !rdev->constraints->always_on)) { 1976 1977 /* we are last user */ 1978 if (_regulator_can_change_status(rdev)) { 1979 ret = _notifier_call_chain(rdev, 1980 REGULATOR_EVENT_PRE_DISABLE, 1981 NULL); 1982 if (ret & NOTIFY_STOP_MASK) 1983 return -EINVAL; 1984 1985 ret = _regulator_do_disable(rdev); 1986 if (ret < 0) { 1987 rdev_err(rdev, "failed to disable\n"); 1988 _notifier_call_chain(rdev, 1989 REGULATOR_EVENT_ABORT_DISABLE, 1990 NULL); 1991 return ret; 1992 } 1993 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1994 NULL); 1995 } 1996 1997 rdev->use_count = 0; 1998 } else if (rdev->use_count > 1) { 1999 2000 if (rdev->constraints && 2001 (rdev->constraints->valid_ops_mask & 2002 REGULATOR_CHANGE_DRMS)) 2003 drms_uA_update(rdev); 2004 2005 rdev->use_count--; 2006 } 2007 2008 return ret; 2009 } 2010 2011 /** 2012 * regulator_disable - disable regulator output 2013 * @regulator: regulator source 2014 * 2015 * Disable the regulator output voltage or current. Calls to 2016 * regulator_enable() must be balanced with calls to 2017 * regulator_disable(). 2018 * 2019 * NOTE: this will only disable the regulator output if no other consumer 2020 * devices have it enabled, the regulator device supports disabling and 2021 * machine constraints permit this operation. 2022 */ 2023 int regulator_disable(struct regulator *regulator) 2024 { 2025 struct regulator_dev *rdev = regulator->rdev; 2026 int ret = 0; 2027 2028 if (regulator->always_on) 2029 return 0; 2030 2031 mutex_lock(&rdev->mutex); 2032 ret = _regulator_disable(rdev); 2033 mutex_unlock(&rdev->mutex); 2034 2035 if (ret == 0 && rdev->supply) 2036 regulator_disable(rdev->supply); 2037 2038 return ret; 2039 } 2040 EXPORT_SYMBOL_GPL(regulator_disable); 2041 2042 /* locks held by regulator_force_disable() */ 2043 static int _regulator_force_disable(struct regulator_dev *rdev) 2044 { 2045 int ret = 0; 2046 2047 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2048 REGULATOR_EVENT_PRE_DISABLE, NULL); 2049 if (ret & NOTIFY_STOP_MASK) 2050 return -EINVAL; 2051 2052 ret = _regulator_do_disable(rdev); 2053 if (ret < 0) { 2054 rdev_err(rdev, "failed to force disable\n"); 2055 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2056 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2057 return ret; 2058 } 2059 2060 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2061 REGULATOR_EVENT_DISABLE, NULL); 2062 2063 return 0; 2064 } 2065 2066 /** 2067 * regulator_force_disable - force disable regulator output 2068 * @regulator: regulator source 2069 * 2070 * Forcibly disable the regulator output voltage or current. 2071 * NOTE: this *will* disable the regulator output even if other consumer 2072 * devices have it enabled. This should be used for situations when device 2073 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2074 */ 2075 int regulator_force_disable(struct regulator *regulator) 2076 { 2077 struct regulator_dev *rdev = regulator->rdev; 2078 int ret; 2079 2080 mutex_lock(&rdev->mutex); 2081 regulator->uA_load = 0; 2082 ret = _regulator_force_disable(regulator->rdev); 2083 mutex_unlock(&rdev->mutex); 2084 2085 if (rdev->supply) 2086 while (rdev->open_count--) 2087 regulator_disable(rdev->supply); 2088 2089 return ret; 2090 } 2091 EXPORT_SYMBOL_GPL(regulator_force_disable); 2092 2093 static void regulator_disable_work(struct work_struct *work) 2094 { 2095 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2096 disable_work.work); 2097 int count, i, ret; 2098 2099 mutex_lock(&rdev->mutex); 2100 2101 BUG_ON(!rdev->deferred_disables); 2102 2103 count = rdev->deferred_disables; 2104 rdev->deferred_disables = 0; 2105 2106 for (i = 0; i < count; i++) { 2107 ret = _regulator_disable(rdev); 2108 if (ret != 0) 2109 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2110 } 2111 2112 mutex_unlock(&rdev->mutex); 2113 2114 if (rdev->supply) { 2115 for (i = 0; i < count; i++) { 2116 ret = regulator_disable(rdev->supply); 2117 if (ret != 0) { 2118 rdev_err(rdev, 2119 "Supply disable failed: %d\n", ret); 2120 } 2121 } 2122 } 2123 } 2124 2125 /** 2126 * regulator_disable_deferred - disable regulator output with delay 2127 * @regulator: regulator source 2128 * @ms: miliseconds until the regulator is disabled 2129 * 2130 * Execute regulator_disable() on the regulator after a delay. This 2131 * is intended for use with devices that require some time to quiesce. 2132 * 2133 * NOTE: this will only disable the regulator output if no other consumer 2134 * devices have it enabled, the regulator device supports disabling and 2135 * machine constraints permit this operation. 2136 */ 2137 int regulator_disable_deferred(struct regulator *regulator, int ms) 2138 { 2139 struct regulator_dev *rdev = regulator->rdev; 2140 int ret; 2141 2142 if (regulator->always_on) 2143 return 0; 2144 2145 if (!ms) 2146 return regulator_disable(regulator); 2147 2148 mutex_lock(&rdev->mutex); 2149 rdev->deferred_disables++; 2150 mutex_unlock(&rdev->mutex); 2151 2152 ret = queue_delayed_work(system_power_efficient_wq, 2153 &rdev->disable_work, 2154 msecs_to_jiffies(ms)); 2155 if (ret < 0) 2156 return ret; 2157 else 2158 return 0; 2159 } 2160 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2161 2162 static int _regulator_is_enabled(struct regulator_dev *rdev) 2163 { 2164 /* A GPIO control always takes precedence */ 2165 if (rdev->ena_pin) 2166 return rdev->ena_gpio_state; 2167 2168 /* If we don't know then assume that the regulator is always on */ 2169 if (!rdev->desc->ops->is_enabled) 2170 return 1; 2171 2172 return rdev->desc->ops->is_enabled(rdev); 2173 } 2174 2175 /** 2176 * regulator_is_enabled - is the regulator output enabled 2177 * @regulator: regulator source 2178 * 2179 * Returns positive if the regulator driver backing the source/client 2180 * has requested that the device be enabled, zero if it hasn't, else a 2181 * negative errno code. 2182 * 2183 * Note that the device backing this regulator handle can have multiple 2184 * users, so it might be enabled even if regulator_enable() was never 2185 * called for this particular source. 2186 */ 2187 int regulator_is_enabled(struct regulator *regulator) 2188 { 2189 int ret; 2190 2191 if (regulator->always_on) 2192 return 1; 2193 2194 mutex_lock(®ulator->rdev->mutex); 2195 ret = _regulator_is_enabled(regulator->rdev); 2196 mutex_unlock(®ulator->rdev->mutex); 2197 2198 return ret; 2199 } 2200 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2201 2202 /** 2203 * regulator_can_change_voltage - check if regulator can change voltage 2204 * @regulator: regulator source 2205 * 2206 * Returns positive if the regulator driver backing the source/client 2207 * can change its voltage, false otherwise. Useful for detecting fixed 2208 * or dummy regulators and disabling voltage change logic in the client 2209 * driver. 2210 */ 2211 int regulator_can_change_voltage(struct regulator *regulator) 2212 { 2213 struct regulator_dev *rdev = regulator->rdev; 2214 2215 if (rdev->constraints && 2216 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2217 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2218 return 1; 2219 2220 if (rdev->desc->continuous_voltage_range && 2221 rdev->constraints->min_uV && rdev->constraints->max_uV && 2222 rdev->constraints->min_uV != rdev->constraints->max_uV) 2223 return 1; 2224 } 2225 2226 return 0; 2227 } 2228 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2229 2230 /** 2231 * regulator_count_voltages - count regulator_list_voltage() selectors 2232 * @regulator: regulator source 2233 * 2234 * Returns number of selectors, or negative errno. Selectors are 2235 * numbered starting at zero, and typically correspond to bitfields 2236 * in hardware registers. 2237 */ 2238 int regulator_count_voltages(struct regulator *regulator) 2239 { 2240 struct regulator_dev *rdev = regulator->rdev; 2241 2242 if (rdev->desc->n_voltages) 2243 return rdev->desc->n_voltages; 2244 2245 if (!rdev->supply) 2246 return -EINVAL; 2247 2248 return regulator_count_voltages(rdev->supply); 2249 } 2250 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2251 2252 /** 2253 * regulator_list_voltage - enumerate supported voltages 2254 * @regulator: regulator source 2255 * @selector: identify voltage to list 2256 * Context: can sleep 2257 * 2258 * Returns a voltage that can be passed to @regulator_set_voltage(), 2259 * zero if this selector code can't be used on this system, or a 2260 * negative errno. 2261 */ 2262 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2263 { 2264 struct regulator_dev *rdev = regulator->rdev; 2265 const struct regulator_ops *ops = rdev->desc->ops; 2266 int ret; 2267 2268 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2269 return rdev->desc->fixed_uV; 2270 2271 if (ops->list_voltage) { 2272 if (selector >= rdev->desc->n_voltages) 2273 return -EINVAL; 2274 mutex_lock(&rdev->mutex); 2275 ret = ops->list_voltage(rdev, selector); 2276 mutex_unlock(&rdev->mutex); 2277 } else if (rdev->supply) { 2278 ret = regulator_list_voltage(rdev->supply, selector); 2279 } else { 2280 return -EINVAL; 2281 } 2282 2283 if (ret > 0) { 2284 if (ret < rdev->constraints->min_uV) 2285 ret = 0; 2286 else if (ret > rdev->constraints->max_uV) 2287 ret = 0; 2288 } 2289 2290 return ret; 2291 } 2292 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2293 2294 /** 2295 * regulator_get_regmap - get the regulator's register map 2296 * @regulator: regulator source 2297 * 2298 * Returns the register map for the given regulator, or an ERR_PTR value 2299 * if the regulator doesn't use regmap. 2300 */ 2301 struct regmap *regulator_get_regmap(struct regulator *regulator) 2302 { 2303 struct regmap *map = regulator->rdev->regmap; 2304 2305 return map ? map : ERR_PTR(-EOPNOTSUPP); 2306 } 2307 2308 /** 2309 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2310 * @regulator: regulator source 2311 * @vsel_reg: voltage selector register, output parameter 2312 * @vsel_mask: mask for voltage selector bitfield, output parameter 2313 * 2314 * Returns the hardware register offset and bitmask used for setting the 2315 * regulator voltage. This might be useful when configuring voltage-scaling 2316 * hardware or firmware that can make I2C requests behind the kernel's back, 2317 * for example. 2318 * 2319 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2320 * and 0 is returned, otherwise a negative errno is returned. 2321 */ 2322 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2323 unsigned *vsel_reg, 2324 unsigned *vsel_mask) 2325 { 2326 struct regulator_dev *rdev = regulator->rdev; 2327 const struct regulator_ops *ops = rdev->desc->ops; 2328 2329 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2330 return -EOPNOTSUPP; 2331 2332 *vsel_reg = rdev->desc->vsel_reg; 2333 *vsel_mask = rdev->desc->vsel_mask; 2334 2335 return 0; 2336 } 2337 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2338 2339 /** 2340 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2341 * @regulator: regulator source 2342 * @selector: identify voltage to list 2343 * 2344 * Converts the selector to a hardware-specific voltage selector that can be 2345 * directly written to the regulator registers. The address of the voltage 2346 * register can be determined by calling @regulator_get_hardware_vsel_register. 2347 * 2348 * On error a negative errno is returned. 2349 */ 2350 int regulator_list_hardware_vsel(struct regulator *regulator, 2351 unsigned selector) 2352 { 2353 struct regulator_dev *rdev = regulator->rdev; 2354 const struct regulator_ops *ops = rdev->desc->ops; 2355 2356 if (selector >= rdev->desc->n_voltages) 2357 return -EINVAL; 2358 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2359 return -EOPNOTSUPP; 2360 2361 return selector; 2362 } 2363 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2364 2365 /** 2366 * regulator_get_linear_step - return the voltage step size between VSEL values 2367 * @regulator: regulator source 2368 * 2369 * Returns the voltage step size between VSEL values for linear 2370 * regulators, or return 0 if the regulator isn't a linear regulator. 2371 */ 2372 unsigned int regulator_get_linear_step(struct regulator *regulator) 2373 { 2374 struct regulator_dev *rdev = regulator->rdev; 2375 2376 return rdev->desc->uV_step; 2377 } 2378 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2379 2380 /** 2381 * regulator_is_supported_voltage - check if a voltage range can be supported 2382 * 2383 * @regulator: Regulator to check. 2384 * @min_uV: Minimum required voltage in uV. 2385 * @max_uV: Maximum required voltage in uV. 2386 * 2387 * Returns a boolean or a negative error code. 2388 */ 2389 int regulator_is_supported_voltage(struct regulator *regulator, 2390 int min_uV, int max_uV) 2391 { 2392 struct regulator_dev *rdev = regulator->rdev; 2393 int i, voltages, ret; 2394 2395 /* If we can't change voltage check the current voltage */ 2396 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2397 ret = regulator_get_voltage(regulator); 2398 if (ret >= 0) 2399 return min_uV <= ret && ret <= max_uV; 2400 else 2401 return ret; 2402 } 2403 2404 /* Any voltage within constrains range is fine? */ 2405 if (rdev->desc->continuous_voltage_range) 2406 return min_uV >= rdev->constraints->min_uV && 2407 max_uV <= rdev->constraints->max_uV; 2408 2409 ret = regulator_count_voltages(regulator); 2410 if (ret < 0) 2411 return ret; 2412 voltages = ret; 2413 2414 for (i = 0; i < voltages; i++) { 2415 ret = regulator_list_voltage(regulator, i); 2416 2417 if (ret >= min_uV && ret <= max_uV) 2418 return 1; 2419 } 2420 2421 return 0; 2422 } 2423 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2424 2425 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2426 int min_uV, int max_uV, 2427 unsigned *selector) 2428 { 2429 struct pre_voltage_change_data data; 2430 int ret; 2431 2432 data.old_uV = _regulator_get_voltage(rdev); 2433 data.min_uV = min_uV; 2434 data.max_uV = max_uV; 2435 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2436 &data); 2437 if (ret & NOTIFY_STOP_MASK) 2438 return -EINVAL; 2439 2440 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2441 if (ret >= 0) 2442 return ret; 2443 2444 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2445 (void *)data.old_uV); 2446 2447 return ret; 2448 } 2449 2450 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2451 int uV, unsigned selector) 2452 { 2453 struct pre_voltage_change_data data; 2454 int ret; 2455 2456 data.old_uV = _regulator_get_voltage(rdev); 2457 data.min_uV = uV; 2458 data.max_uV = uV; 2459 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2460 &data); 2461 if (ret & NOTIFY_STOP_MASK) 2462 return -EINVAL; 2463 2464 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2465 if (ret >= 0) 2466 return ret; 2467 2468 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2469 (void *)data.old_uV); 2470 2471 return ret; 2472 } 2473 2474 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2475 int min_uV, int max_uV) 2476 { 2477 int ret; 2478 int delay = 0; 2479 int best_val = 0; 2480 unsigned int selector; 2481 int old_selector = -1; 2482 2483 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2484 2485 min_uV += rdev->constraints->uV_offset; 2486 max_uV += rdev->constraints->uV_offset; 2487 2488 /* 2489 * If we can't obtain the old selector there is not enough 2490 * info to call set_voltage_time_sel(). 2491 */ 2492 if (_regulator_is_enabled(rdev) && 2493 rdev->desc->ops->set_voltage_time_sel && 2494 rdev->desc->ops->get_voltage_sel) { 2495 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2496 if (old_selector < 0) 2497 return old_selector; 2498 } 2499 2500 if (rdev->desc->ops->set_voltage) { 2501 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2502 &selector); 2503 2504 if (ret >= 0) { 2505 if (rdev->desc->ops->list_voltage) 2506 best_val = rdev->desc->ops->list_voltage(rdev, 2507 selector); 2508 else 2509 best_val = _regulator_get_voltage(rdev); 2510 } 2511 2512 } else if (rdev->desc->ops->set_voltage_sel) { 2513 if (rdev->desc->ops->map_voltage) { 2514 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2515 max_uV); 2516 } else { 2517 if (rdev->desc->ops->list_voltage == 2518 regulator_list_voltage_linear) 2519 ret = regulator_map_voltage_linear(rdev, 2520 min_uV, max_uV); 2521 else if (rdev->desc->ops->list_voltage == 2522 regulator_list_voltage_linear_range) 2523 ret = regulator_map_voltage_linear_range(rdev, 2524 min_uV, max_uV); 2525 else 2526 ret = regulator_map_voltage_iterate(rdev, 2527 min_uV, max_uV); 2528 } 2529 2530 if (ret >= 0) { 2531 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2532 if (min_uV <= best_val && max_uV >= best_val) { 2533 selector = ret; 2534 if (old_selector == selector) 2535 ret = 0; 2536 else 2537 ret = _regulator_call_set_voltage_sel( 2538 rdev, best_val, selector); 2539 } else { 2540 ret = -EINVAL; 2541 } 2542 } 2543 } else { 2544 ret = -EINVAL; 2545 } 2546 2547 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2548 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2549 && old_selector != selector) { 2550 2551 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2552 old_selector, selector); 2553 if (delay < 0) { 2554 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2555 delay); 2556 delay = 0; 2557 } 2558 2559 /* Insert any necessary delays */ 2560 if (delay >= 1000) { 2561 mdelay(delay / 1000); 2562 udelay(delay % 1000); 2563 } else if (delay) { 2564 udelay(delay); 2565 } 2566 } 2567 2568 if (ret == 0 && best_val >= 0) { 2569 unsigned long data = best_val; 2570 2571 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2572 (void *)data); 2573 } 2574 2575 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2576 2577 return ret; 2578 } 2579 2580 /** 2581 * regulator_set_voltage - set regulator output voltage 2582 * @regulator: regulator source 2583 * @min_uV: Minimum required voltage in uV 2584 * @max_uV: Maximum acceptable voltage in uV 2585 * 2586 * Sets a voltage regulator to the desired output voltage. This can be set 2587 * during any regulator state. IOW, regulator can be disabled or enabled. 2588 * 2589 * If the regulator is enabled then the voltage will change to the new value 2590 * immediately otherwise if the regulator is disabled the regulator will 2591 * output at the new voltage when enabled. 2592 * 2593 * NOTE: If the regulator is shared between several devices then the lowest 2594 * request voltage that meets the system constraints will be used. 2595 * Regulator system constraints must be set for this regulator before 2596 * calling this function otherwise this call will fail. 2597 */ 2598 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2599 { 2600 struct regulator_dev *rdev = regulator->rdev; 2601 int ret = 0; 2602 int old_min_uV, old_max_uV; 2603 int current_uV; 2604 2605 mutex_lock(&rdev->mutex); 2606 2607 /* If we're setting the same range as last time the change 2608 * should be a noop (some cpufreq implementations use the same 2609 * voltage for multiple frequencies, for example). 2610 */ 2611 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2612 goto out; 2613 2614 /* If we're trying to set a range that overlaps the current voltage, 2615 * return succesfully even though the regulator does not support 2616 * changing the voltage. 2617 */ 2618 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2619 current_uV = _regulator_get_voltage(rdev); 2620 if (min_uV <= current_uV && current_uV <= max_uV) { 2621 regulator->min_uV = min_uV; 2622 regulator->max_uV = max_uV; 2623 goto out; 2624 } 2625 } 2626 2627 /* sanity check */ 2628 if (!rdev->desc->ops->set_voltage && 2629 !rdev->desc->ops->set_voltage_sel) { 2630 ret = -EINVAL; 2631 goto out; 2632 } 2633 2634 /* constraints check */ 2635 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2636 if (ret < 0) 2637 goto out; 2638 2639 /* restore original values in case of error */ 2640 old_min_uV = regulator->min_uV; 2641 old_max_uV = regulator->max_uV; 2642 regulator->min_uV = min_uV; 2643 regulator->max_uV = max_uV; 2644 2645 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2646 if (ret < 0) 2647 goto out2; 2648 2649 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2650 if (ret < 0) 2651 goto out2; 2652 2653 out: 2654 mutex_unlock(&rdev->mutex); 2655 return ret; 2656 out2: 2657 regulator->min_uV = old_min_uV; 2658 regulator->max_uV = old_max_uV; 2659 mutex_unlock(&rdev->mutex); 2660 return ret; 2661 } 2662 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2663 2664 /** 2665 * regulator_set_voltage_time - get raise/fall time 2666 * @regulator: regulator source 2667 * @old_uV: starting voltage in microvolts 2668 * @new_uV: target voltage in microvolts 2669 * 2670 * Provided with the starting and ending voltage, this function attempts to 2671 * calculate the time in microseconds required to rise or fall to this new 2672 * voltage. 2673 */ 2674 int regulator_set_voltage_time(struct regulator *regulator, 2675 int old_uV, int new_uV) 2676 { 2677 struct regulator_dev *rdev = regulator->rdev; 2678 const struct regulator_ops *ops = rdev->desc->ops; 2679 int old_sel = -1; 2680 int new_sel = -1; 2681 int voltage; 2682 int i; 2683 2684 /* Currently requires operations to do this */ 2685 if (!ops->list_voltage || !ops->set_voltage_time_sel 2686 || !rdev->desc->n_voltages) 2687 return -EINVAL; 2688 2689 for (i = 0; i < rdev->desc->n_voltages; i++) { 2690 /* We only look for exact voltage matches here */ 2691 voltage = regulator_list_voltage(regulator, i); 2692 if (voltage < 0) 2693 return -EINVAL; 2694 if (voltage == 0) 2695 continue; 2696 if (voltage == old_uV) 2697 old_sel = i; 2698 if (voltage == new_uV) 2699 new_sel = i; 2700 } 2701 2702 if (old_sel < 0 || new_sel < 0) 2703 return -EINVAL; 2704 2705 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2706 } 2707 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2708 2709 /** 2710 * regulator_set_voltage_time_sel - get raise/fall time 2711 * @rdev: regulator source device 2712 * @old_selector: selector for starting voltage 2713 * @new_selector: selector for target voltage 2714 * 2715 * Provided with the starting and target voltage selectors, this function 2716 * returns time in microseconds required to rise or fall to this new voltage 2717 * 2718 * Drivers providing ramp_delay in regulation_constraints can use this as their 2719 * set_voltage_time_sel() operation. 2720 */ 2721 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2722 unsigned int old_selector, 2723 unsigned int new_selector) 2724 { 2725 unsigned int ramp_delay = 0; 2726 int old_volt, new_volt; 2727 2728 if (rdev->constraints->ramp_delay) 2729 ramp_delay = rdev->constraints->ramp_delay; 2730 else if (rdev->desc->ramp_delay) 2731 ramp_delay = rdev->desc->ramp_delay; 2732 2733 if (ramp_delay == 0) { 2734 rdev_warn(rdev, "ramp_delay not set\n"); 2735 return 0; 2736 } 2737 2738 /* sanity check */ 2739 if (!rdev->desc->ops->list_voltage) 2740 return -EINVAL; 2741 2742 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2743 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2744 2745 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2746 } 2747 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2748 2749 /** 2750 * regulator_sync_voltage - re-apply last regulator output voltage 2751 * @regulator: regulator source 2752 * 2753 * Re-apply the last configured voltage. This is intended to be used 2754 * where some external control source the consumer is cooperating with 2755 * has caused the configured voltage to change. 2756 */ 2757 int regulator_sync_voltage(struct regulator *regulator) 2758 { 2759 struct regulator_dev *rdev = regulator->rdev; 2760 int ret, min_uV, max_uV; 2761 2762 mutex_lock(&rdev->mutex); 2763 2764 if (!rdev->desc->ops->set_voltage && 2765 !rdev->desc->ops->set_voltage_sel) { 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 2770 /* This is only going to work if we've had a voltage configured. */ 2771 if (!regulator->min_uV && !regulator->max_uV) { 2772 ret = -EINVAL; 2773 goto out; 2774 } 2775 2776 min_uV = regulator->min_uV; 2777 max_uV = regulator->max_uV; 2778 2779 /* This should be a paranoia check... */ 2780 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2781 if (ret < 0) 2782 goto out; 2783 2784 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2785 if (ret < 0) 2786 goto out; 2787 2788 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2789 2790 out: 2791 mutex_unlock(&rdev->mutex); 2792 return ret; 2793 } 2794 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2795 2796 static int _regulator_get_voltage(struct regulator_dev *rdev) 2797 { 2798 int sel, ret; 2799 2800 if (rdev->desc->ops->get_voltage_sel) { 2801 sel = rdev->desc->ops->get_voltage_sel(rdev); 2802 if (sel < 0) 2803 return sel; 2804 ret = rdev->desc->ops->list_voltage(rdev, sel); 2805 } else if (rdev->desc->ops->get_voltage) { 2806 ret = rdev->desc->ops->get_voltage(rdev); 2807 } else if (rdev->desc->ops->list_voltage) { 2808 ret = rdev->desc->ops->list_voltage(rdev, 0); 2809 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2810 ret = rdev->desc->fixed_uV; 2811 } else if (rdev->supply) { 2812 ret = regulator_get_voltage(rdev->supply); 2813 } else { 2814 return -EINVAL; 2815 } 2816 2817 if (ret < 0) 2818 return ret; 2819 return ret - rdev->constraints->uV_offset; 2820 } 2821 2822 /** 2823 * regulator_get_voltage - get regulator output voltage 2824 * @regulator: regulator source 2825 * 2826 * This returns the current regulator voltage in uV. 2827 * 2828 * NOTE: If the regulator is disabled it will return the voltage value. This 2829 * function should not be used to determine regulator state. 2830 */ 2831 int regulator_get_voltage(struct regulator *regulator) 2832 { 2833 int ret; 2834 2835 mutex_lock(®ulator->rdev->mutex); 2836 2837 ret = _regulator_get_voltage(regulator->rdev); 2838 2839 mutex_unlock(®ulator->rdev->mutex); 2840 2841 return ret; 2842 } 2843 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2844 2845 /** 2846 * regulator_set_current_limit - set regulator output current limit 2847 * @regulator: regulator source 2848 * @min_uA: Minimum supported current in uA 2849 * @max_uA: Maximum supported current in uA 2850 * 2851 * Sets current sink to the desired output current. This can be set during 2852 * any regulator state. IOW, regulator can be disabled or enabled. 2853 * 2854 * If the regulator is enabled then the current will change to the new value 2855 * immediately otherwise if the regulator is disabled the regulator will 2856 * output at the new current when enabled. 2857 * 2858 * NOTE: Regulator system constraints must be set for this regulator before 2859 * calling this function otherwise this call will fail. 2860 */ 2861 int regulator_set_current_limit(struct regulator *regulator, 2862 int min_uA, int max_uA) 2863 { 2864 struct regulator_dev *rdev = regulator->rdev; 2865 int ret; 2866 2867 mutex_lock(&rdev->mutex); 2868 2869 /* sanity check */ 2870 if (!rdev->desc->ops->set_current_limit) { 2871 ret = -EINVAL; 2872 goto out; 2873 } 2874 2875 /* constraints check */ 2876 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2877 if (ret < 0) 2878 goto out; 2879 2880 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2881 out: 2882 mutex_unlock(&rdev->mutex); 2883 return ret; 2884 } 2885 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2886 2887 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2888 { 2889 int ret; 2890 2891 mutex_lock(&rdev->mutex); 2892 2893 /* sanity check */ 2894 if (!rdev->desc->ops->get_current_limit) { 2895 ret = -EINVAL; 2896 goto out; 2897 } 2898 2899 ret = rdev->desc->ops->get_current_limit(rdev); 2900 out: 2901 mutex_unlock(&rdev->mutex); 2902 return ret; 2903 } 2904 2905 /** 2906 * regulator_get_current_limit - get regulator output current 2907 * @regulator: regulator source 2908 * 2909 * This returns the current supplied by the specified current sink in uA. 2910 * 2911 * NOTE: If the regulator is disabled it will return the current value. This 2912 * function should not be used to determine regulator state. 2913 */ 2914 int regulator_get_current_limit(struct regulator *regulator) 2915 { 2916 return _regulator_get_current_limit(regulator->rdev); 2917 } 2918 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2919 2920 /** 2921 * regulator_set_mode - set regulator operating mode 2922 * @regulator: regulator source 2923 * @mode: operating mode - one of the REGULATOR_MODE constants 2924 * 2925 * Set regulator operating mode to increase regulator efficiency or improve 2926 * regulation performance. 2927 * 2928 * NOTE: Regulator system constraints must be set for this regulator before 2929 * calling this function otherwise this call will fail. 2930 */ 2931 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2932 { 2933 struct regulator_dev *rdev = regulator->rdev; 2934 int ret; 2935 int regulator_curr_mode; 2936 2937 mutex_lock(&rdev->mutex); 2938 2939 /* sanity check */ 2940 if (!rdev->desc->ops->set_mode) { 2941 ret = -EINVAL; 2942 goto out; 2943 } 2944 2945 /* return if the same mode is requested */ 2946 if (rdev->desc->ops->get_mode) { 2947 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2948 if (regulator_curr_mode == mode) { 2949 ret = 0; 2950 goto out; 2951 } 2952 } 2953 2954 /* constraints check */ 2955 ret = regulator_mode_constrain(rdev, &mode); 2956 if (ret < 0) 2957 goto out; 2958 2959 ret = rdev->desc->ops->set_mode(rdev, mode); 2960 out: 2961 mutex_unlock(&rdev->mutex); 2962 return ret; 2963 } 2964 EXPORT_SYMBOL_GPL(regulator_set_mode); 2965 2966 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2967 { 2968 int ret; 2969 2970 mutex_lock(&rdev->mutex); 2971 2972 /* sanity check */ 2973 if (!rdev->desc->ops->get_mode) { 2974 ret = -EINVAL; 2975 goto out; 2976 } 2977 2978 ret = rdev->desc->ops->get_mode(rdev); 2979 out: 2980 mutex_unlock(&rdev->mutex); 2981 return ret; 2982 } 2983 2984 /** 2985 * regulator_get_mode - get regulator operating mode 2986 * @regulator: regulator source 2987 * 2988 * Get the current regulator operating mode. 2989 */ 2990 unsigned int regulator_get_mode(struct regulator *regulator) 2991 { 2992 return _regulator_get_mode(regulator->rdev); 2993 } 2994 EXPORT_SYMBOL_GPL(regulator_get_mode); 2995 2996 /** 2997 * regulator_set_optimum_mode - set regulator optimum operating mode 2998 * @regulator: regulator source 2999 * @uA_load: load current 3000 * 3001 * Notifies the regulator core of a new device load. This is then used by 3002 * DRMS (if enabled by constraints) to set the most efficient regulator 3003 * operating mode for the new regulator loading. 3004 * 3005 * Consumer devices notify their supply regulator of the maximum power 3006 * they will require (can be taken from device datasheet in the power 3007 * consumption tables) when they change operational status and hence power 3008 * state. Examples of operational state changes that can affect power 3009 * consumption are :- 3010 * 3011 * o Device is opened / closed. 3012 * o Device I/O is about to begin or has just finished. 3013 * o Device is idling in between work. 3014 * 3015 * This information is also exported via sysfs to userspace. 3016 * 3017 * DRMS will sum the total requested load on the regulator and change 3018 * to the most efficient operating mode if platform constraints allow. 3019 * 3020 * Returns the new regulator mode or error. 3021 */ 3022 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 3023 { 3024 struct regulator_dev *rdev = regulator->rdev; 3025 int ret; 3026 3027 mutex_lock(&rdev->mutex); 3028 regulator->uA_load = uA_load; 3029 ret = drms_uA_update(rdev); 3030 mutex_unlock(&rdev->mutex); 3031 3032 return ret; 3033 } 3034 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 3035 3036 /** 3037 * regulator_allow_bypass - allow the regulator to go into bypass mode 3038 * 3039 * @regulator: Regulator to configure 3040 * @enable: enable or disable bypass mode 3041 * 3042 * Allow the regulator to go into bypass mode if all other consumers 3043 * for the regulator also enable bypass mode and the machine 3044 * constraints allow this. Bypass mode means that the regulator is 3045 * simply passing the input directly to the output with no regulation. 3046 */ 3047 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3048 { 3049 struct regulator_dev *rdev = regulator->rdev; 3050 int ret = 0; 3051 3052 if (!rdev->desc->ops->set_bypass) 3053 return 0; 3054 3055 if (rdev->constraints && 3056 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3057 return 0; 3058 3059 mutex_lock(&rdev->mutex); 3060 3061 if (enable && !regulator->bypass) { 3062 rdev->bypass_count++; 3063 3064 if (rdev->bypass_count == rdev->open_count) { 3065 ret = rdev->desc->ops->set_bypass(rdev, enable); 3066 if (ret != 0) 3067 rdev->bypass_count--; 3068 } 3069 3070 } else if (!enable && regulator->bypass) { 3071 rdev->bypass_count--; 3072 3073 if (rdev->bypass_count != rdev->open_count) { 3074 ret = rdev->desc->ops->set_bypass(rdev, enable); 3075 if (ret != 0) 3076 rdev->bypass_count++; 3077 } 3078 } 3079 3080 if (ret == 0) 3081 regulator->bypass = enable; 3082 3083 mutex_unlock(&rdev->mutex); 3084 3085 return ret; 3086 } 3087 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3088 3089 /** 3090 * regulator_register_notifier - register regulator event notifier 3091 * @regulator: regulator source 3092 * @nb: notifier block 3093 * 3094 * Register notifier block to receive regulator events. 3095 */ 3096 int regulator_register_notifier(struct regulator *regulator, 3097 struct notifier_block *nb) 3098 { 3099 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3100 nb); 3101 } 3102 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3103 3104 /** 3105 * regulator_unregister_notifier - unregister regulator event notifier 3106 * @regulator: regulator source 3107 * @nb: notifier block 3108 * 3109 * Unregister regulator event notifier block. 3110 */ 3111 int regulator_unregister_notifier(struct regulator *regulator, 3112 struct notifier_block *nb) 3113 { 3114 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3115 nb); 3116 } 3117 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3118 3119 /* notify regulator consumers and downstream regulator consumers. 3120 * Note mutex must be held by caller. 3121 */ 3122 static int _notifier_call_chain(struct regulator_dev *rdev, 3123 unsigned long event, void *data) 3124 { 3125 /* call rdev chain first */ 3126 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3127 } 3128 3129 /** 3130 * regulator_bulk_get - get multiple regulator consumers 3131 * 3132 * @dev: Device to supply 3133 * @num_consumers: Number of consumers to register 3134 * @consumers: Configuration of consumers; clients are stored here. 3135 * 3136 * @return 0 on success, an errno on failure. 3137 * 3138 * This helper function allows drivers to get several regulator 3139 * consumers in one operation. If any of the regulators cannot be 3140 * acquired then any regulators that were allocated will be freed 3141 * before returning to the caller. 3142 */ 3143 int regulator_bulk_get(struct device *dev, int num_consumers, 3144 struct regulator_bulk_data *consumers) 3145 { 3146 int i; 3147 int ret; 3148 3149 for (i = 0; i < num_consumers; i++) 3150 consumers[i].consumer = NULL; 3151 3152 for (i = 0; i < num_consumers; i++) { 3153 consumers[i].consumer = regulator_get(dev, 3154 consumers[i].supply); 3155 if (IS_ERR(consumers[i].consumer)) { 3156 ret = PTR_ERR(consumers[i].consumer); 3157 dev_err(dev, "Failed to get supply '%s': %d\n", 3158 consumers[i].supply, ret); 3159 consumers[i].consumer = NULL; 3160 goto err; 3161 } 3162 } 3163 3164 return 0; 3165 3166 err: 3167 while (--i >= 0) 3168 regulator_put(consumers[i].consumer); 3169 3170 return ret; 3171 } 3172 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3173 3174 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3175 { 3176 struct regulator_bulk_data *bulk = data; 3177 3178 bulk->ret = regulator_enable(bulk->consumer); 3179 } 3180 3181 /** 3182 * regulator_bulk_enable - enable multiple regulator consumers 3183 * 3184 * @num_consumers: Number of consumers 3185 * @consumers: Consumer data; clients are stored here. 3186 * @return 0 on success, an errno on failure 3187 * 3188 * This convenience API allows consumers to enable multiple regulator 3189 * clients in a single API call. If any consumers cannot be enabled 3190 * then any others that were enabled will be disabled again prior to 3191 * return. 3192 */ 3193 int regulator_bulk_enable(int num_consumers, 3194 struct regulator_bulk_data *consumers) 3195 { 3196 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3197 int i; 3198 int ret = 0; 3199 3200 for (i = 0; i < num_consumers; i++) { 3201 if (consumers[i].consumer->always_on) 3202 consumers[i].ret = 0; 3203 else 3204 async_schedule_domain(regulator_bulk_enable_async, 3205 &consumers[i], &async_domain); 3206 } 3207 3208 async_synchronize_full_domain(&async_domain); 3209 3210 /* If any consumer failed we need to unwind any that succeeded */ 3211 for (i = 0; i < num_consumers; i++) { 3212 if (consumers[i].ret != 0) { 3213 ret = consumers[i].ret; 3214 goto err; 3215 } 3216 } 3217 3218 return 0; 3219 3220 err: 3221 for (i = 0; i < num_consumers; i++) { 3222 if (consumers[i].ret < 0) 3223 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3224 consumers[i].ret); 3225 else 3226 regulator_disable(consumers[i].consumer); 3227 } 3228 3229 return ret; 3230 } 3231 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3232 3233 /** 3234 * regulator_bulk_disable - disable multiple regulator consumers 3235 * 3236 * @num_consumers: Number of consumers 3237 * @consumers: Consumer data; clients are stored here. 3238 * @return 0 on success, an errno on failure 3239 * 3240 * This convenience API allows consumers to disable multiple regulator 3241 * clients in a single API call. If any consumers cannot be disabled 3242 * then any others that were disabled will be enabled again prior to 3243 * return. 3244 */ 3245 int regulator_bulk_disable(int num_consumers, 3246 struct regulator_bulk_data *consumers) 3247 { 3248 int i; 3249 int ret, r; 3250 3251 for (i = num_consumers - 1; i >= 0; --i) { 3252 ret = regulator_disable(consumers[i].consumer); 3253 if (ret != 0) 3254 goto err; 3255 } 3256 3257 return 0; 3258 3259 err: 3260 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3261 for (++i; i < num_consumers; ++i) { 3262 r = regulator_enable(consumers[i].consumer); 3263 if (r != 0) 3264 pr_err("Failed to reename %s: %d\n", 3265 consumers[i].supply, r); 3266 } 3267 3268 return ret; 3269 } 3270 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3271 3272 /** 3273 * regulator_bulk_force_disable - force disable multiple regulator consumers 3274 * 3275 * @num_consumers: Number of consumers 3276 * @consumers: Consumer data; clients are stored here. 3277 * @return 0 on success, an errno on failure 3278 * 3279 * This convenience API allows consumers to forcibly disable multiple regulator 3280 * clients in a single API call. 3281 * NOTE: This should be used for situations when device damage will 3282 * likely occur if the regulators are not disabled (e.g. over temp). 3283 * Although regulator_force_disable function call for some consumers can 3284 * return error numbers, the function is called for all consumers. 3285 */ 3286 int regulator_bulk_force_disable(int num_consumers, 3287 struct regulator_bulk_data *consumers) 3288 { 3289 int i; 3290 int ret; 3291 3292 for (i = 0; i < num_consumers; i++) 3293 consumers[i].ret = 3294 regulator_force_disable(consumers[i].consumer); 3295 3296 for (i = 0; i < num_consumers; i++) { 3297 if (consumers[i].ret != 0) { 3298 ret = consumers[i].ret; 3299 goto out; 3300 } 3301 } 3302 3303 return 0; 3304 out: 3305 return ret; 3306 } 3307 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3308 3309 /** 3310 * regulator_bulk_free - free multiple regulator consumers 3311 * 3312 * @num_consumers: Number of consumers 3313 * @consumers: Consumer data; clients are stored here. 3314 * 3315 * This convenience API allows consumers to free multiple regulator 3316 * clients in a single API call. 3317 */ 3318 void regulator_bulk_free(int num_consumers, 3319 struct regulator_bulk_data *consumers) 3320 { 3321 int i; 3322 3323 for (i = 0; i < num_consumers; i++) { 3324 regulator_put(consumers[i].consumer); 3325 consumers[i].consumer = NULL; 3326 } 3327 } 3328 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3329 3330 /** 3331 * regulator_notifier_call_chain - call regulator event notifier 3332 * @rdev: regulator source 3333 * @event: notifier block 3334 * @data: callback-specific data. 3335 * 3336 * Called by regulator drivers to notify clients a regulator event has 3337 * occurred. We also notify regulator clients downstream. 3338 * Note lock must be held by caller. 3339 */ 3340 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3341 unsigned long event, void *data) 3342 { 3343 _notifier_call_chain(rdev, event, data); 3344 return NOTIFY_DONE; 3345 3346 } 3347 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3348 3349 /** 3350 * regulator_mode_to_status - convert a regulator mode into a status 3351 * 3352 * @mode: Mode to convert 3353 * 3354 * Convert a regulator mode into a status. 3355 */ 3356 int regulator_mode_to_status(unsigned int mode) 3357 { 3358 switch (mode) { 3359 case REGULATOR_MODE_FAST: 3360 return REGULATOR_STATUS_FAST; 3361 case REGULATOR_MODE_NORMAL: 3362 return REGULATOR_STATUS_NORMAL; 3363 case REGULATOR_MODE_IDLE: 3364 return REGULATOR_STATUS_IDLE; 3365 case REGULATOR_MODE_STANDBY: 3366 return REGULATOR_STATUS_STANDBY; 3367 default: 3368 return REGULATOR_STATUS_UNDEFINED; 3369 } 3370 } 3371 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3372 3373 static struct attribute *regulator_dev_attrs[] = { 3374 &dev_attr_name.attr, 3375 &dev_attr_num_users.attr, 3376 &dev_attr_type.attr, 3377 &dev_attr_microvolts.attr, 3378 &dev_attr_microamps.attr, 3379 &dev_attr_opmode.attr, 3380 &dev_attr_state.attr, 3381 &dev_attr_status.attr, 3382 &dev_attr_bypass.attr, 3383 &dev_attr_requested_microamps.attr, 3384 &dev_attr_min_microvolts.attr, 3385 &dev_attr_max_microvolts.attr, 3386 &dev_attr_min_microamps.attr, 3387 &dev_attr_max_microamps.attr, 3388 &dev_attr_suspend_standby_state.attr, 3389 &dev_attr_suspend_mem_state.attr, 3390 &dev_attr_suspend_disk_state.attr, 3391 &dev_attr_suspend_standby_microvolts.attr, 3392 &dev_attr_suspend_mem_microvolts.attr, 3393 &dev_attr_suspend_disk_microvolts.attr, 3394 &dev_attr_suspend_standby_mode.attr, 3395 &dev_attr_suspend_mem_mode.attr, 3396 &dev_attr_suspend_disk_mode.attr, 3397 NULL 3398 }; 3399 3400 /* 3401 * To avoid cluttering sysfs (and memory) with useless state, only 3402 * create attributes that can be meaningfully displayed. 3403 */ 3404 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3405 struct attribute *attr, int idx) 3406 { 3407 struct device *dev = kobj_to_dev(kobj); 3408 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3409 const struct regulator_ops *ops = rdev->desc->ops; 3410 umode_t mode = attr->mode; 3411 3412 /* these three are always present */ 3413 if (attr == &dev_attr_name.attr || 3414 attr == &dev_attr_num_users.attr || 3415 attr == &dev_attr_type.attr) 3416 return mode; 3417 3418 /* some attributes need specific methods to be displayed */ 3419 if (attr == &dev_attr_microvolts.attr) { 3420 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3421 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3422 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3423 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3424 return mode; 3425 return 0; 3426 } 3427 3428 if (attr == &dev_attr_microamps.attr) 3429 return ops->get_current_limit ? mode : 0; 3430 3431 if (attr == &dev_attr_opmode.attr) 3432 return ops->get_mode ? mode : 0; 3433 3434 if (attr == &dev_attr_state.attr) 3435 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3436 3437 if (attr == &dev_attr_status.attr) 3438 return ops->get_status ? mode : 0; 3439 3440 if (attr == &dev_attr_bypass.attr) 3441 return ops->get_bypass ? mode : 0; 3442 3443 /* some attributes are type-specific */ 3444 if (attr == &dev_attr_requested_microamps.attr) 3445 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3446 3447 /* all the other attributes exist to support constraints; 3448 * don't show them if there are no constraints, or if the 3449 * relevant supporting methods are missing. 3450 */ 3451 if (!rdev->constraints) 3452 return 0; 3453 3454 /* constraints need specific supporting methods */ 3455 if (attr == &dev_attr_min_microvolts.attr || 3456 attr == &dev_attr_max_microvolts.attr) 3457 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3458 3459 if (attr == &dev_attr_min_microamps.attr || 3460 attr == &dev_attr_max_microamps.attr) 3461 return ops->set_current_limit ? mode : 0; 3462 3463 if (attr == &dev_attr_suspend_standby_state.attr || 3464 attr == &dev_attr_suspend_mem_state.attr || 3465 attr == &dev_attr_suspend_disk_state.attr) 3466 return mode; 3467 3468 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3469 attr == &dev_attr_suspend_mem_microvolts.attr || 3470 attr == &dev_attr_suspend_disk_microvolts.attr) 3471 return ops->set_suspend_voltage ? mode : 0; 3472 3473 if (attr == &dev_attr_suspend_standby_mode.attr || 3474 attr == &dev_attr_suspend_mem_mode.attr || 3475 attr == &dev_attr_suspend_disk_mode.attr) 3476 return ops->set_suspend_mode ? mode : 0; 3477 3478 return mode; 3479 } 3480 3481 static const struct attribute_group regulator_dev_group = { 3482 .attrs = regulator_dev_attrs, 3483 .is_visible = regulator_attr_is_visible, 3484 }; 3485 3486 static const struct attribute_group *regulator_dev_groups[] = { 3487 ®ulator_dev_group, 3488 NULL 3489 }; 3490 3491 static void regulator_dev_release(struct device *dev) 3492 { 3493 struct regulator_dev *rdev = dev_get_drvdata(dev); 3494 kfree(rdev); 3495 } 3496 3497 static struct class regulator_class = { 3498 .name = "regulator", 3499 .dev_release = regulator_dev_release, 3500 .dev_groups = regulator_dev_groups, 3501 }; 3502 3503 static void rdev_init_debugfs(struct regulator_dev *rdev) 3504 { 3505 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3506 if (!rdev->debugfs) { 3507 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3508 return; 3509 } 3510 3511 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3512 &rdev->use_count); 3513 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3514 &rdev->open_count); 3515 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3516 &rdev->bypass_count); 3517 } 3518 3519 /** 3520 * regulator_register - register regulator 3521 * @regulator_desc: regulator to register 3522 * @cfg: runtime configuration for regulator 3523 * 3524 * Called by regulator drivers to register a regulator. 3525 * Returns a valid pointer to struct regulator_dev on success 3526 * or an ERR_PTR() on error. 3527 */ 3528 struct regulator_dev * 3529 regulator_register(const struct regulator_desc *regulator_desc, 3530 const struct regulator_config *cfg) 3531 { 3532 const struct regulation_constraints *constraints = NULL; 3533 const struct regulator_init_data *init_data; 3534 struct regulator_config *config = NULL; 3535 static atomic_t regulator_no = ATOMIC_INIT(-1); 3536 struct regulator_dev *rdev; 3537 struct device *dev; 3538 int ret, i; 3539 const char *supply = NULL; 3540 3541 if (regulator_desc == NULL || cfg == NULL) 3542 return ERR_PTR(-EINVAL); 3543 3544 dev = cfg->dev; 3545 WARN_ON(!dev); 3546 3547 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3548 return ERR_PTR(-EINVAL); 3549 3550 if (regulator_desc->type != REGULATOR_VOLTAGE && 3551 regulator_desc->type != REGULATOR_CURRENT) 3552 return ERR_PTR(-EINVAL); 3553 3554 /* Only one of each should be implemented */ 3555 WARN_ON(regulator_desc->ops->get_voltage && 3556 regulator_desc->ops->get_voltage_sel); 3557 WARN_ON(regulator_desc->ops->set_voltage && 3558 regulator_desc->ops->set_voltage_sel); 3559 3560 /* If we're using selectors we must implement list_voltage. */ 3561 if (regulator_desc->ops->get_voltage_sel && 3562 !regulator_desc->ops->list_voltage) { 3563 return ERR_PTR(-EINVAL); 3564 } 3565 if (regulator_desc->ops->set_voltage_sel && 3566 !regulator_desc->ops->list_voltage) { 3567 return ERR_PTR(-EINVAL); 3568 } 3569 3570 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3571 if (rdev == NULL) 3572 return ERR_PTR(-ENOMEM); 3573 3574 /* 3575 * Duplicate the config so the driver could override it after 3576 * parsing init data. 3577 */ 3578 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3579 if (config == NULL) { 3580 kfree(rdev); 3581 return ERR_PTR(-ENOMEM); 3582 } 3583 3584 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3585 &rdev->dev.of_node); 3586 if (!init_data) { 3587 init_data = config->init_data; 3588 rdev->dev.of_node = of_node_get(config->of_node); 3589 } 3590 3591 mutex_lock(®ulator_list_mutex); 3592 3593 mutex_init(&rdev->mutex); 3594 rdev->reg_data = config->driver_data; 3595 rdev->owner = regulator_desc->owner; 3596 rdev->desc = regulator_desc; 3597 if (config->regmap) 3598 rdev->regmap = config->regmap; 3599 else if (dev_get_regmap(dev, NULL)) 3600 rdev->regmap = dev_get_regmap(dev, NULL); 3601 else if (dev->parent) 3602 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3603 INIT_LIST_HEAD(&rdev->consumer_list); 3604 INIT_LIST_HEAD(&rdev->list); 3605 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3606 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3607 3608 /* preform any regulator specific init */ 3609 if (init_data && init_data->regulator_init) { 3610 ret = init_data->regulator_init(rdev->reg_data); 3611 if (ret < 0) 3612 goto clean; 3613 } 3614 3615 /* register with sysfs */ 3616 rdev->dev.class = ®ulator_class; 3617 rdev->dev.parent = dev; 3618 dev_set_name(&rdev->dev, "regulator.%lu", 3619 (unsigned long) atomic_inc_return(®ulator_no)); 3620 ret = device_register(&rdev->dev); 3621 if (ret != 0) { 3622 put_device(&rdev->dev); 3623 goto clean; 3624 } 3625 3626 dev_set_drvdata(&rdev->dev, rdev); 3627 3628 if ((config->ena_gpio || config->ena_gpio_initialized) && 3629 gpio_is_valid(config->ena_gpio)) { 3630 ret = regulator_ena_gpio_request(rdev, config); 3631 if (ret != 0) { 3632 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3633 config->ena_gpio, ret); 3634 goto wash; 3635 } 3636 3637 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3638 rdev->ena_gpio_state = 1; 3639 3640 if (config->ena_gpio_invert) 3641 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3642 } 3643 3644 /* set regulator constraints */ 3645 if (init_data) 3646 constraints = &init_data->constraints; 3647 3648 ret = set_machine_constraints(rdev, constraints); 3649 if (ret < 0) 3650 goto scrub; 3651 3652 if (init_data && init_data->supply_regulator) 3653 supply = init_data->supply_regulator; 3654 else if (regulator_desc->supply_name) 3655 supply = regulator_desc->supply_name; 3656 3657 if (supply) { 3658 struct regulator_dev *r; 3659 3660 r = regulator_dev_lookup(dev, supply, &ret); 3661 3662 if (ret == -ENODEV) { 3663 /* 3664 * No supply was specified for this regulator and 3665 * there will never be one. 3666 */ 3667 ret = 0; 3668 goto add_dev; 3669 } else if (!r) { 3670 dev_err(dev, "Failed to find supply %s\n", supply); 3671 ret = -EPROBE_DEFER; 3672 goto scrub; 3673 } 3674 3675 ret = set_supply(rdev, r); 3676 if (ret < 0) 3677 goto scrub; 3678 3679 /* Enable supply if rail is enabled */ 3680 if (_regulator_is_enabled(rdev)) { 3681 ret = regulator_enable(rdev->supply); 3682 if (ret < 0) 3683 goto scrub; 3684 } 3685 } 3686 3687 add_dev: 3688 /* add consumers devices */ 3689 if (init_data) { 3690 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3691 ret = set_consumer_device_supply(rdev, 3692 init_data->consumer_supplies[i].dev_name, 3693 init_data->consumer_supplies[i].supply); 3694 if (ret < 0) { 3695 dev_err(dev, "Failed to set supply %s\n", 3696 init_data->consumer_supplies[i].supply); 3697 goto unset_supplies; 3698 } 3699 } 3700 } 3701 3702 list_add(&rdev->list, ®ulator_list); 3703 3704 rdev_init_debugfs(rdev); 3705 out: 3706 mutex_unlock(®ulator_list_mutex); 3707 kfree(config); 3708 return rdev; 3709 3710 unset_supplies: 3711 unset_regulator_supplies(rdev); 3712 3713 scrub: 3714 if (rdev->supply) 3715 _regulator_put(rdev->supply); 3716 regulator_ena_gpio_free(rdev); 3717 kfree(rdev->constraints); 3718 wash: 3719 device_unregister(&rdev->dev); 3720 /* device core frees rdev */ 3721 rdev = ERR_PTR(ret); 3722 goto out; 3723 3724 clean: 3725 kfree(rdev); 3726 rdev = ERR_PTR(ret); 3727 goto out; 3728 } 3729 EXPORT_SYMBOL_GPL(regulator_register); 3730 3731 /** 3732 * regulator_unregister - unregister regulator 3733 * @rdev: regulator to unregister 3734 * 3735 * Called by regulator drivers to unregister a regulator. 3736 */ 3737 void regulator_unregister(struct regulator_dev *rdev) 3738 { 3739 if (rdev == NULL) 3740 return; 3741 3742 if (rdev->supply) { 3743 while (rdev->use_count--) 3744 regulator_disable(rdev->supply); 3745 regulator_put(rdev->supply); 3746 } 3747 mutex_lock(®ulator_list_mutex); 3748 debugfs_remove_recursive(rdev->debugfs); 3749 flush_work(&rdev->disable_work.work); 3750 WARN_ON(rdev->open_count); 3751 unset_regulator_supplies(rdev); 3752 list_del(&rdev->list); 3753 kfree(rdev->constraints); 3754 regulator_ena_gpio_free(rdev); 3755 of_node_put(rdev->dev.of_node); 3756 device_unregister(&rdev->dev); 3757 mutex_unlock(®ulator_list_mutex); 3758 } 3759 EXPORT_SYMBOL_GPL(regulator_unregister); 3760 3761 /** 3762 * regulator_suspend_prepare - prepare regulators for system wide suspend 3763 * @state: system suspend state 3764 * 3765 * Configure each regulator with it's suspend operating parameters for state. 3766 * This will usually be called by machine suspend code prior to supending. 3767 */ 3768 int regulator_suspend_prepare(suspend_state_t state) 3769 { 3770 struct regulator_dev *rdev; 3771 int ret = 0; 3772 3773 /* ON is handled by regulator active state */ 3774 if (state == PM_SUSPEND_ON) 3775 return -EINVAL; 3776 3777 mutex_lock(®ulator_list_mutex); 3778 list_for_each_entry(rdev, ®ulator_list, list) { 3779 3780 mutex_lock(&rdev->mutex); 3781 ret = suspend_prepare(rdev, state); 3782 mutex_unlock(&rdev->mutex); 3783 3784 if (ret < 0) { 3785 rdev_err(rdev, "failed to prepare\n"); 3786 goto out; 3787 } 3788 } 3789 out: 3790 mutex_unlock(®ulator_list_mutex); 3791 return ret; 3792 } 3793 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3794 3795 /** 3796 * regulator_suspend_finish - resume regulators from system wide suspend 3797 * 3798 * Turn on regulators that might be turned off by regulator_suspend_prepare 3799 * and that should be turned on according to the regulators properties. 3800 */ 3801 int regulator_suspend_finish(void) 3802 { 3803 struct regulator_dev *rdev; 3804 int ret = 0, error; 3805 3806 mutex_lock(®ulator_list_mutex); 3807 list_for_each_entry(rdev, ®ulator_list, list) { 3808 mutex_lock(&rdev->mutex); 3809 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3810 error = _regulator_do_enable(rdev); 3811 if (error) 3812 ret = error; 3813 } else { 3814 if (!have_full_constraints()) 3815 goto unlock; 3816 if (!_regulator_is_enabled(rdev)) 3817 goto unlock; 3818 3819 error = _regulator_do_disable(rdev); 3820 if (error) 3821 ret = error; 3822 } 3823 unlock: 3824 mutex_unlock(&rdev->mutex); 3825 } 3826 mutex_unlock(®ulator_list_mutex); 3827 return ret; 3828 } 3829 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3830 3831 /** 3832 * regulator_has_full_constraints - the system has fully specified constraints 3833 * 3834 * Calling this function will cause the regulator API to disable all 3835 * regulators which have a zero use count and don't have an always_on 3836 * constraint in a late_initcall. 3837 * 3838 * The intention is that this will become the default behaviour in a 3839 * future kernel release so users are encouraged to use this facility 3840 * now. 3841 */ 3842 void regulator_has_full_constraints(void) 3843 { 3844 has_full_constraints = 1; 3845 } 3846 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3847 3848 /** 3849 * rdev_get_drvdata - get rdev regulator driver data 3850 * @rdev: regulator 3851 * 3852 * Get rdev regulator driver private data. This call can be used in the 3853 * regulator driver context. 3854 */ 3855 void *rdev_get_drvdata(struct regulator_dev *rdev) 3856 { 3857 return rdev->reg_data; 3858 } 3859 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3860 3861 /** 3862 * regulator_get_drvdata - get regulator driver data 3863 * @regulator: regulator 3864 * 3865 * Get regulator driver private data. This call can be used in the consumer 3866 * driver context when non API regulator specific functions need to be called. 3867 */ 3868 void *regulator_get_drvdata(struct regulator *regulator) 3869 { 3870 return regulator->rdev->reg_data; 3871 } 3872 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3873 3874 /** 3875 * regulator_set_drvdata - set regulator driver data 3876 * @regulator: regulator 3877 * @data: data 3878 */ 3879 void regulator_set_drvdata(struct regulator *regulator, void *data) 3880 { 3881 regulator->rdev->reg_data = data; 3882 } 3883 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3884 3885 /** 3886 * regulator_get_id - get regulator ID 3887 * @rdev: regulator 3888 */ 3889 int rdev_get_id(struct regulator_dev *rdev) 3890 { 3891 return rdev->desc->id; 3892 } 3893 EXPORT_SYMBOL_GPL(rdev_get_id); 3894 3895 struct device *rdev_get_dev(struct regulator_dev *rdev) 3896 { 3897 return &rdev->dev; 3898 } 3899 EXPORT_SYMBOL_GPL(rdev_get_dev); 3900 3901 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3902 { 3903 return reg_init_data->driver_data; 3904 } 3905 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3906 3907 #ifdef CONFIG_DEBUG_FS 3908 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3909 size_t count, loff_t *ppos) 3910 { 3911 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3912 ssize_t len, ret = 0; 3913 struct regulator_map *map; 3914 3915 if (!buf) 3916 return -ENOMEM; 3917 3918 list_for_each_entry(map, ®ulator_map_list, list) { 3919 len = snprintf(buf + ret, PAGE_SIZE - ret, 3920 "%s -> %s.%s\n", 3921 rdev_get_name(map->regulator), map->dev_name, 3922 map->supply); 3923 if (len >= 0) 3924 ret += len; 3925 if (ret > PAGE_SIZE) { 3926 ret = PAGE_SIZE; 3927 break; 3928 } 3929 } 3930 3931 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3932 3933 kfree(buf); 3934 3935 return ret; 3936 } 3937 #endif 3938 3939 static const struct file_operations supply_map_fops = { 3940 #ifdef CONFIG_DEBUG_FS 3941 .read = supply_map_read_file, 3942 .llseek = default_llseek, 3943 #endif 3944 }; 3945 3946 static int __init regulator_init(void) 3947 { 3948 int ret; 3949 3950 ret = class_register(®ulator_class); 3951 3952 debugfs_root = debugfs_create_dir("regulator", NULL); 3953 if (!debugfs_root) 3954 pr_warn("regulator: Failed to create debugfs directory\n"); 3955 3956 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3957 &supply_map_fops); 3958 3959 regulator_dummy_init(); 3960 3961 return ret; 3962 } 3963 3964 /* init early to allow our consumers to complete system booting */ 3965 core_initcall(regulator_init); 3966 3967 static int __init regulator_init_complete(void) 3968 { 3969 struct regulator_dev *rdev; 3970 const struct regulator_ops *ops; 3971 struct regulation_constraints *c; 3972 int enabled, ret; 3973 3974 /* 3975 * Since DT doesn't provide an idiomatic mechanism for 3976 * enabling full constraints and since it's much more natural 3977 * with DT to provide them just assume that a DT enabled 3978 * system has full constraints. 3979 */ 3980 if (of_have_populated_dt()) 3981 has_full_constraints = true; 3982 3983 mutex_lock(®ulator_list_mutex); 3984 3985 /* If we have a full configuration then disable any regulators 3986 * we have permission to change the status for and which are 3987 * not in use or always_on. This is effectively the default 3988 * for DT and ACPI as they have full constraints. 3989 */ 3990 list_for_each_entry(rdev, ®ulator_list, list) { 3991 ops = rdev->desc->ops; 3992 c = rdev->constraints; 3993 3994 if (c && c->always_on) 3995 continue; 3996 3997 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 3998 continue; 3999 4000 mutex_lock(&rdev->mutex); 4001 4002 if (rdev->use_count) 4003 goto unlock; 4004 4005 /* If we can't read the status assume it's on. */ 4006 if (ops->is_enabled) 4007 enabled = ops->is_enabled(rdev); 4008 else 4009 enabled = 1; 4010 4011 if (!enabled) 4012 goto unlock; 4013 4014 if (have_full_constraints()) { 4015 /* We log since this may kill the system if it 4016 * goes wrong. */ 4017 rdev_info(rdev, "disabling\n"); 4018 ret = _regulator_do_disable(rdev); 4019 if (ret != 0) 4020 rdev_err(rdev, "couldn't disable: %d\n", ret); 4021 } else { 4022 /* The intention is that in future we will 4023 * assume that full constraints are provided 4024 * so warn even if we aren't going to do 4025 * anything here. 4026 */ 4027 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4028 } 4029 4030 unlock: 4031 mutex_unlock(&rdev->mutex); 4032 } 4033 4034 mutex_unlock(®ulator_list_mutex); 4035 4036 return 0; 4037 } 4038 late_initcall_sync(regulator_init_complete); 4039