xref: /openbmc/linux/drivers/regulator/core.c (revision de528723)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109 
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112 	if (rdev->constraints && rdev->constraints->name)
113 		return rdev->constraints->name;
114 	else if (rdev->desc->name)
115 		return rdev->desc->name;
116 	else
117 		return "";
118 }
119 
120 static bool have_full_constraints(void)
121 {
122 	return has_full_constraints || of_have_populated_dt();
123 }
124 
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127 	if (!rdev->constraints) {
128 		rdev_err(rdev, "no constraints\n");
129 		return false;
130 	}
131 
132 	if (rdev->constraints->valid_ops_mask & ops)
133 		return true;
134 
135 	return false;
136 }
137 
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:		regulator source
141  * @ww_ctx:		w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 					struct ww_acquire_ctx *ww_ctx)
151 {
152 	bool lock = false;
153 	int ret = 0;
154 
155 	mutex_lock(&regulator_nesting_mutex);
156 
157 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 		if (rdev->mutex_owner == current)
159 			rdev->ref_cnt++;
160 		else
161 			lock = true;
162 
163 		if (lock) {
164 			mutex_unlock(&regulator_nesting_mutex);
165 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 			mutex_lock(&regulator_nesting_mutex);
167 		}
168 	} else {
169 		lock = true;
170 	}
171 
172 	if (lock && ret != -EDEADLK) {
173 		rdev->ref_cnt++;
174 		rdev->mutex_owner = current;
175 	}
176 
177 	mutex_unlock(&regulator_nesting_mutex);
178 
179 	return ret;
180 }
181 
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:		regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194 	regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219 
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222 	struct regulator_dev *c_rdev;
223 	int i;
224 
225 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227 
228 		if (rdev->supply->rdev == c_rdev)
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 				       unsigned int n_coupled)
237 {
238 	struct regulator_dev *c_rdev;
239 	int i;
240 
241 	for (i = n_coupled; i > 0; i--) {
242 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 
244 		if (!c_rdev)
245 			continue;
246 
247 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 			regulator_unlock_recursive(
249 					c_rdev->supply->rdev,
250 					c_rdev->coupling_desc.n_coupled);
251 
252 		regulator_unlock(c_rdev);
253 	}
254 }
255 
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257 				    struct regulator_dev **new_contended_rdev,
258 				    struct regulator_dev **old_contended_rdev,
259 				    struct ww_acquire_ctx *ww_ctx)
260 {
261 	struct regulator_dev *c_rdev;
262 	int i, err;
263 
264 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266 
267 		if (!c_rdev)
268 			continue;
269 
270 		if (c_rdev != *old_contended_rdev) {
271 			err = regulator_lock_nested(c_rdev, ww_ctx);
272 			if (err) {
273 				if (err == -EDEADLK) {
274 					*new_contended_rdev = c_rdev;
275 					goto err_unlock;
276 				}
277 
278 				/* shouldn't happen */
279 				WARN_ON_ONCE(err != -EALREADY);
280 			}
281 		} else {
282 			*old_contended_rdev = NULL;
283 		}
284 
285 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 			err = regulator_lock_recursive(c_rdev->supply->rdev,
287 						       new_contended_rdev,
288 						       old_contended_rdev,
289 						       ww_ctx);
290 			if (err) {
291 				regulator_unlock(c_rdev);
292 				goto err_unlock;
293 			}
294 		}
295 	}
296 
297 	return 0;
298 
299 err_unlock:
300 	regulator_unlock_recursive(rdev, i);
301 
302 	return err;
303 }
304 
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *				regulators
308  * @rdev:			regulator source
309  * @ww_ctx:			w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 				       struct ww_acquire_ctx *ww_ctx)
315 {
316 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 	ww_acquire_fini(ww_ctx);
318 }
319 
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:			regulator source
323  * @ww_ctx:			w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329 				     struct ww_acquire_ctx *ww_ctx)
330 {
331 	struct regulator_dev *new_contended_rdev = NULL;
332 	struct regulator_dev *old_contended_rdev = NULL;
333 	int err;
334 
335 	mutex_lock(&regulator_list_mutex);
336 
337 	ww_acquire_init(ww_ctx, &regulator_ww_class);
338 
339 	do {
340 		if (new_contended_rdev) {
341 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 			old_contended_rdev = new_contended_rdev;
343 			old_contended_rdev->ref_cnt++;
344 		}
345 
346 		err = regulator_lock_recursive(rdev,
347 					       &new_contended_rdev,
348 					       &old_contended_rdev,
349 					       ww_ctx);
350 
351 		if (old_contended_rdev)
352 			regulator_unlock(old_contended_rdev);
353 
354 	} while (err == -EDEADLK);
355 
356 	ww_acquire_done(ww_ctx);
357 
358 	mutex_unlock(&regulator_list_mutex);
359 }
360 
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373 						  const char *prop_name)
374 {
375 	struct device_node *regnode = NULL;
376 	struct device_node *child = NULL;
377 
378 	for_each_child_of_node(parent, child) {
379 		regnode = of_parse_phandle(child, prop_name, 0);
380 
381 		if (!regnode) {
382 			regnode = of_get_child_regulator(child, prop_name);
383 			if (regnode)
384 				goto err_node_put;
385 		} else {
386 			goto err_node_put;
387 		}
388 	}
389 	return NULL;
390 
391 err_node_put:
392 	of_node_put(child);
393 	return regnode;
394 }
395 
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407 	struct device_node *regnode = NULL;
408 	char prop_name[32]; /* 32 is max size of property name */
409 
410 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411 
412 	snprintf(prop_name, 32, "%s-supply", supply);
413 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414 
415 	if (!regnode) {
416 		regnode = of_get_child_regulator(dev->of_node, prop_name);
417 		if (regnode)
418 			return regnode;
419 
420 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 				prop_name, dev->of_node);
422 		return NULL;
423 	}
424 	return regnode;
425 }
426 
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429 			    int *min_uV, int *max_uV)
430 {
431 	BUG_ON(*min_uV > *max_uV);
432 
433 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 		rdev_err(rdev, "voltage operation not allowed\n");
435 		return -EPERM;
436 	}
437 
438 	if (*max_uV > rdev->constraints->max_uV)
439 		*max_uV = rdev->constraints->max_uV;
440 	if (*min_uV < rdev->constraints->min_uV)
441 		*min_uV = rdev->constraints->min_uV;
442 
443 	if (*min_uV > *max_uV) {
444 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 			 *min_uV, *max_uV);
446 		return -EINVAL;
447 	}
448 
449 	return 0;
450 }
451 
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457 
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462 			      int *min_uV, int *max_uV,
463 			      suspend_state_t state)
464 {
465 	struct regulator *regulator;
466 	struct regulator_voltage *voltage;
467 
468 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 		voltage = &regulator->voltage[state];
470 		/*
471 		 * Assume consumers that didn't say anything are OK
472 		 * with anything in the constraint range.
473 		 */
474 		if (!voltage->min_uV && !voltage->max_uV)
475 			continue;
476 
477 		if (*max_uV > voltage->max_uV)
478 			*max_uV = voltage->max_uV;
479 		if (*min_uV < voltage->min_uV)
480 			*min_uV = voltage->min_uV;
481 	}
482 
483 	if (*min_uV > *max_uV) {
484 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 			*min_uV, *max_uV);
486 		return -EINVAL;
487 	}
488 
489 	return 0;
490 }
491 
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494 					int *min_uA, int *max_uA)
495 {
496 	BUG_ON(*min_uA > *max_uA);
497 
498 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 		rdev_err(rdev, "current operation not allowed\n");
500 		return -EPERM;
501 	}
502 
503 	if (*max_uA > rdev->constraints->max_uA)
504 		*max_uA = rdev->constraints->max_uA;
505 	if (*min_uA < rdev->constraints->min_uA)
506 		*min_uA = rdev->constraints->min_uA;
507 
508 	if (*min_uA > *max_uA) {
509 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 			 *min_uA, *max_uA);
511 		return -EINVAL;
512 	}
513 
514 	return 0;
515 }
516 
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519 				    unsigned int *mode)
520 {
521 	switch (*mode) {
522 	case REGULATOR_MODE_FAST:
523 	case REGULATOR_MODE_NORMAL:
524 	case REGULATOR_MODE_IDLE:
525 	case REGULATOR_MODE_STANDBY:
526 		break;
527 	default:
528 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 		return -EINVAL;
530 	}
531 
532 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 		rdev_err(rdev, "mode operation not allowed\n");
534 		return -EPERM;
535 	}
536 
537 	/* The modes are bitmasks, the most power hungry modes having
538 	 * the lowest values. If the requested mode isn't supported
539 	 * try higher modes. */
540 	while (*mode) {
541 		if (rdev->constraints->valid_modes_mask & *mode)
542 			return 0;
543 		*mode /= 2;
544 	}
545 
546 	return -EINVAL;
547 }
548 
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552 	if (rdev->constraints == NULL)
553 		return NULL;
554 
555 	switch (state) {
556 	case PM_SUSPEND_STANDBY:
557 		return &rdev->constraints->state_standby;
558 	case PM_SUSPEND_MEM:
559 		return &rdev->constraints->state_mem;
560 	case PM_SUSPEND_MAX:
561 		return &rdev->constraints->state_disk;
562 	default:
563 		return NULL;
564 	}
565 }
566 
567 static ssize_t regulator_uV_show(struct device *dev,
568 				struct device_attribute *attr, char *buf)
569 {
570 	struct regulator_dev *rdev = dev_get_drvdata(dev);
571 	int uV;
572 
573 	regulator_lock(rdev);
574 	uV = regulator_get_voltage_rdev(rdev);
575 	regulator_unlock(rdev);
576 
577 	if (uV < 0)
578 		return uV;
579 	return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582 
583 static ssize_t regulator_uA_show(struct device *dev,
584 				struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591 
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 			 char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 
597 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600 
601 static const char *regulator_opmode_to_str(int mode)
602 {
603 	switch (mode) {
604 	case REGULATOR_MODE_FAST:
605 		return "fast";
606 	case REGULATOR_MODE_NORMAL:
607 		return "normal";
608 	case REGULATOR_MODE_IDLE:
609 		return "idle";
610 	case REGULATOR_MODE_STANDBY:
611 		return "standby";
612 	}
613 	return "unknown";
614 }
615 
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620 
621 static ssize_t regulator_opmode_show(struct device *dev,
622 				    struct device_attribute *attr, char *buf)
623 {
624 	struct regulator_dev *rdev = dev_get_drvdata(dev);
625 
626 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629 
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632 	if (state > 0)
633 		return sprintf(buf, "enabled\n");
634 	else if (state == 0)
635 		return sprintf(buf, "disabled\n");
636 	else
637 		return sprintf(buf, "unknown\n");
638 }
639 
640 static ssize_t regulator_state_show(struct device *dev,
641 				   struct device_attribute *attr, char *buf)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 	ssize_t ret;
645 
646 	regulator_lock(rdev);
647 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 	regulator_unlock(rdev);
649 
650 	return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653 
654 static ssize_t regulator_status_show(struct device *dev,
655 				   struct device_attribute *attr, char *buf)
656 {
657 	struct regulator_dev *rdev = dev_get_drvdata(dev);
658 	int status;
659 	char *label;
660 
661 	status = rdev->desc->ops->get_status(rdev);
662 	if (status < 0)
663 		return status;
664 
665 	switch (status) {
666 	case REGULATOR_STATUS_OFF:
667 		label = "off";
668 		break;
669 	case REGULATOR_STATUS_ON:
670 		label = "on";
671 		break;
672 	case REGULATOR_STATUS_ERROR:
673 		label = "error";
674 		break;
675 	case REGULATOR_STATUS_FAST:
676 		label = "fast";
677 		break;
678 	case REGULATOR_STATUS_NORMAL:
679 		label = "normal";
680 		break;
681 	case REGULATOR_STATUS_IDLE:
682 		label = "idle";
683 		break;
684 	case REGULATOR_STATUS_STANDBY:
685 		label = "standby";
686 		break;
687 	case REGULATOR_STATUS_BYPASS:
688 		label = "bypass";
689 		break;
690 	case REGULATOR_STATUS_UNDEFINED:
691 		label = "undefined";
692 		break;
693 	default:
694 		return -ERANGE;
695 	}
696 
697 	return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700 
701 static ssize_t regulator_min_uA_show(struct device *dev,
702 				    struct device_attribute *attr, char *buf)
703 {
704 	struct regulator_dev *rdev = dev_get_drvdata(dev);
705 
706 	if (!rdev->constraints)
707 		return sprintf(buf, "constraint not defined\n");
708 
709 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712 
713 static ssize_t regulator_max_uA_show(struct device *dev,
714 				    struct device_attribute *attr, char *buf)
715 {
716 	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 
718 	if (!rdev->constraints)
719 		return sprintf(buf, "constraint not defined\n");
720 
721 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724 
725 static ssize_t regulator_min_uV_show(struct device *dev,
726 				    struct device_attribute *attr, char *buf)
727 {
728 	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 
730 	if (!rdev->constraints)
731 		return sprintf(buf, "constraint not defined\n");
732 
733 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736 
737 static ssize_t regulator_max_uV_show(struct device *dev,
738 				    struct device_attribute *attr, char *buf)
739 {
740 	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 
742 	if (!rdev->constraints)
743 		return sprintf(buf, "constraint not defined\n");
744 
745 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748 
749 static ssize_t regulator_total_uA_show(struct device *dev,
750 				      struct device_attribute *attr, char *buf)
751 {
752 	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 	struct regulator *regulator;
754 	int uA = 0;
755 
756 	regulator_lock(rdev);
757 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 		if (regulator->enable_count)
759 			uA += regulator->uA_load;
760 	}
761 	regulator_unlock(rdev);
762 	return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765 
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 			      char *buf)
768 {
769 	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 	return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773 
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 			 char *buf)
776 {
777 	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 
779 	switch (rdev->desc->type) {
780 	case REGULATOR_VOLTAGE:
781 		return sprintf(buf, "voltage\n");
782 	case REGULATOR_CURRENT:
783 		return sprintf(buf, "current\n");
784 	}
785 	return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788 
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 				struct device_attribute *attr, char *buf)
791 {
792 	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 
794 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 		regulator_suspend_mem_uV_show, NULL);
798 
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 				struct device_attribute *attr, char *buf)
801 {
802 	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 
804 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 		regulator_suspend_disk_uV_show, NULL);
808 
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 				struct device_attribute *attr, char *buf)
811 {
812 	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 
814 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 		regulator_suspend_standby_uV_show, NULL);
818 
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 				struct device_attribute *attr, char *buf)
821 {
822 	struct regulator_dev *rdev = dev_get_drvdata(dev);
823 
824 	return regulator_print_opmode(buf,
825 		rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828 		regulator_suspend_mem_mode_show, NULL);
829 
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 				struct device_attribute *attr, char *buf)
832 {
833 	struct regulator_dev *rdev = dev_get_drvdata(dev);
834 
835 	return regulator_print_opmode(buf,
836 		rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839 		regulator_suspend_disk_mode_show, NULL);
840 
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 				struct device_attribute *attr, char *buf)
843 {
844 	struct regulator_dev *rdev = dev_get_drvdata(dev);
845 
846 	return regulator_print_opmode(buf,
847 		rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850 		regulator_suspend_standby_mode_show, NULL);
851 
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 				   struct device_attribute *attr, char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 
857 	return regulator_print_state(buf,
858 			rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861 		regulator_suspend_mem_state_show, NULL);
862 
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 				   struct device_attribute *attr, char *buf)
865 {
866 	struct regulator_dev *rdev = dev_get_drvdata(dev);
867 
868 	return regulator_print_state(buf,
869 			rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872 		regulator_suspend_disk_state_show, NULL);
873 
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 				   struct device_attribute *attr, char *buf)
876 {
877 	struct regulator_dev *rdev = dev_get_drvdata(dev);
878 
879 	return regulator_print_state(buf,
880 			rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883 		regulator_suspend_standby_state_show, NULL);
884 
885 static ssize_t regulator_bypass_show(struct device *dev,
886 				     struct device_attribute *attr, char *buf)
887 {
888 	struct regulator_dev *rdev = dev_get_drvdata(dev);
889 	const char *report;
890 	bool bypass;
891 	int ret;
892 
893 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894 
895 	if (ret != 0)
896 		report = "unknown";
897 	else if (bypass)
898 		report = "enabled";
899 	else
900 		report = "disabled";
901 
902 	return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905 		   regulator_bypass_show, NULL);
906 
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911 	struct regulator *sibling;
912 	int current_uA = 0, output_uV, input_uV, err;
913 	unsigned int mode;
914 
915 	/*
916 	 * first check to see if we can set modes at all, otherwise just
917 	 * tell the consumer everything is OK.
918 	 */
919 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 		rdev_dbg(rdev, "DRMS operation not allowed\n");
921 		return 0;
922 	}
923 
924 	if (!rdev->desc->ops->get_optimum_mode &&
925 	    !rdev->desc->ops->set_load)
926 		return 0;
927 
928 	if (!rdev->desc->ops->set_mode &&
929 	    !rdev->desc->ops->set_load)
930 		return -EINVAL;
931 
932 	/* calc total requested load */
933 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 		if (sibling->enable_count)
935 			current_uA += sibling->uA_load;
936 	}
937 
938 	current_uA += rdev->constraints->system_load;
939 
940 	if (rdev->desc->ops->set_load) {
941 		/* set the optimum mode for our new total regulator load */
942 		err = rdev->desc->ops->set_load(rdev, current_uA);
943 		if (err < 0)
944 			rdev_err(rdev, "failed to set load %d\n", current_uA);
945 	} else {
946 		/* get output voltage */
947 		output_uV = regulator_get_voltage_rdev(rdev);
948 		if (output_uV <= 0) {
949 			rdev_err(rdev, "invalid output voltage found\n");
950 			return -EINVAL;
951 		}
952 
953 		/* get input voltage */
954 		input_uV = 0;
955 		if (rdev->supply)
956 			input_uV = regulator_get_voltage(rdev->supply);
957 		if (input_uV <= 0)
958 			input_uV = rdev->constraints->input_uV;
959 		if (input_uV <= 0) {
960 			rdev_err(rdev, "invalid input voltage found\n");
961 			return -EINVAL;
962 		}
963 
964 		/* now get the optimum mode for our new total regulator load */
965 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 							 output_uV, current_uA);
967 
968 		/* check the new mode is allowed */
969 		err = regulator_mode_constrain(rdev, &mode);
970 		if (err < 0) {
971 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 				 current_uA, input_uV, output_uV);
973 			return err;
974 		}
975 
976 		err = rdev->desc->ops->set_mode(rdev, mode);
977 		if (err < 0)
978 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 	}
980 
981 	return err;
982 }
983 
984 static int suspend_set_state(struct regulator_dev *rdev,
985 				    suspend_state_t state)
986 {
987 	int ret = 0;
988 	struct regulator_state *rstate;
989 
990 	rstate = regulator_get_suspend_state(rdev, state);
991 	if (rstate == NULL)
992 		return 0;
993 
994 	/* If we have no suspend mode configuration don't set anything;
995 	 * only warn if the driver implements set_suspend_voltage or
996 	 * set_suspend_mode callback.
997 	 */
998 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000 		if (rdev->desc->ops->set_suspend_voltage ||
1001 		    rdev->desc->ops->set_suspend_mode)
1002 			rdev_warn(rdev, "No configuration\n");
1003 		return 0;
1004 	}
1005 
1006 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 		rdev->desc->ops->set_suspend_enable)
1008 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 		rdev->desc->ops->set_suspend_disable)
1011 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 		ret = 0;
1014 
1015 	if (ret < 0) {
1016 		rdev_err(rdev, "failed to enabled/disable\n");
1017 		return ret;
1018 	}
1019 
1020 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 		if (ret < 0) {
1023 			rdev_err(rdev, "failed to set voltage\n");
1024 			return ret;
1025 		}
1026 	}
1027 
1028 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 		if (ret < 0) {
1031 			rdev_err(rdev, "failed to set mode\n");
1032 			return ret;
1033 		}
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041 	struct regulation_constraints *constraints = rdev->constraints;
1042 	char buf[160] = "";
1043 	size_t len = sizeof(buf) - 1;
1044 	int count = 0;
1045 	int ret;
1046 
1047 	if (constraints->min_uV && constraints->max_uV) {
1048 		if (constraints->min_uV == constraints->max_uV)
1049 			count += scnprintf(buf + count, len - count, "%d mV ",
1050 					   constraints->min_uV / 1000);
1051 		else
1052 			count += scnprintf(buf + count, len - count,
1053 					   "%d <--> %d mV ",
1054 					   constraints->min_uV / 1000,
1055 					   constraints->max_uV / 1000);
1056 	}
1057 
1058 	if (!constraints->min_uV ||
1059 	    constraints->min_uV != constraints->max_uV) {
1060 		ret = regulator_get_voltage_rdev(rdev);
1061 		if (ret > 0)
1062 			count += scnprintf(buf + count, len - count,
1063 					   "at %d mV ", ret / 1000);
1064 	}
1065 
1066 	if (constraints->uV_offset)
1067 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 				   constraints->uV_offset / 1000);
1069 
1070 	if (constraints->min_uA && constraints->max_uA) {
1071 		if (constraints->min_uA == constraints->max_uA)
1072 			count += scnprintf(buf + count, len - count, "%d mA ",
1073 					   constraints->min_uA / 1000);
1074 		else
1075 			count += scnprintf(buf + count, len - count,
1076 					   "%d <--> %d mA ",
1077 					   constraints->min_uA / 1000,
1078 					   constraints->max_uA / 1000);
1079 	}
1080 
1081 	if (!constraints->min_uA ||
1082 	    constraints->min_uA != constraints->max_uA) {
1083 		ret = _regulator_get_current_limit(rdev);
1084 		if (ret > 0)
1085 			count += scnprintf(buf + count, len - count,
1086 					   "at %d mA ", ret / 1000);
1087 	}
1088 
1089 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 		count += scnprintf(buf + count, len - count, "fast ");
1091 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 		count += scnprintf(buf + count, len - count, "normal ");
1093 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 		count += scnprintf(buf + count, len - count, "idle ");
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 		count += scnprintf(buf + count, len - count, "standby");
1097 
1098 	if (!count)
1099 		scnprintf(buf, len, "no parameters");
1100 
1101 	rdev_dbg(rdev, "%s\n", buf);
1102 
1103 	if ((constraints->min_uV != constraints->max_uV) &&
1104 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 		rdev_warn(rdev,
1106 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108 
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 	struct regulation_constraints *constraints)
1111 {
1112 	const struct regulator_ops *ops = rdev->desc->ops;
1113 	int ret;
1114 
1115 	/* do we need to apply the constraint voltage */
1116 	if (rdev->constraints->apply_uV &&
1117 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 		int target_min, target_max;
1119 		int current_uV = regulator_get_voltage_rdev(rdev);
1120 
1121 		if (current_uV == -ENOTRECOVERABLE) {
1122 			/* This regulator can't be read and must be initialized */
1123 			rdev_info(rdev, "Setting %d-%duV\n",
1124 				  rdev->constraints->min_uV,
1125 				  rdev->constraints->max_uV);
1126 			_regulator_do_set_voltage(rdev,
1127 						  rdev->constraints->min_uV,
1128 						  rdev->constraints->max_uV);
1129 			current_uV = regulator_get_voltage_rdev(rdev);
1130 		}
1131 
1132 		if (current_uV < 0) {
1133 			rdev_err(rdev,
1134 				 "failed to get the current voltage(%d)\n",
1135 				 current_uV);
1136 			return current_uV;
1137 		}
1138 
1139 		/*
1140 		 * If we're below the minimum voltage move up to the
1141 		 * minimum voltage, if we're above the maximum voltage
1142 		 * then move down to the maximum.
1143 		 */
1144 		target_min = current_uV;
1145 		target_max = current_uV;
1146 
1147 		if (current_uV < rdev->constraints->min_uV) {
1148 			target_min = rdev->constraints->min_uV;
1149 			target_max = rdev->constraints->min_uV;
1150 		}
1151 
1152 		if (current_uV > rdev->constraints->max_uV) {
1153 			target_min = rdev->constraints->max_uV;
1154 			target_max = rdev->constraints->max_uV;
1155 		}
1156 
1157 		if (target_min != current_uV || target_max != current_uV) {
1158 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 				  current_uV, target_min, target_max);
1160 			ret = _regulator_do_set_voltage(
1161 				rdev, target_min, target_max);
1162 			if (ret < 0) {
1163 				rdev_err(rdev,
1164 					"failed to apply %d-%duV constraint(%d)\n",
1165 					target_min, target_max, ret);
1166 				return ret;
1167 			}
1168 		}
1169 	}
1170 
1171 	/* constrain machine-level voltage specs to fit
1172 	 * the actual range supported by this regulator.
1173 	 */
1174 	if (ops->list_voltage && rdev->desc->n_voltages) {
1175 		int	count = rdev->desc->n_voltages;
1176 		int	i;
1177 		int	min_uV = INT_MAX;
1178 		int	max_uV = INT_MIN;
1179 		int	cmin = constraints->min_uV;
1180 		int	cmax = constraints->max_uV;
1181 
1182 		/* it's safe to autoconfigure fixed-voltage supplies
1183 		   and the constraints are used by list_voltage. */
1184 		if (count == 1 && !cmin) {
1185 			cmin = 1;
1186 			cmax = INT_MAX;
1187 			constraints->min_uV = cmin;
1188 			constraints->max_uV = cmax;
1189 		}
1190 
1191 		/* voltage constraints are optional */
1192 		if ((cmin == 0) && (cmax == 0))
1193 			return 0;
1194 
1195 		/* else require explicit machine-level constraints */
1196 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 			rdev_err(rdev, "invalid voltage constraints\n");
1198 			return -EINVAL;
1199 		}
1200 
1201 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 		for (i = 0; i < count; i++) {
1203 			int	value;
1204 
1205 			value = ops->list_voltage(rdev, i);
1206 			if (value <= 0)
1207 				continue;
1208 
1209 			/* maybe adjust [min_uV..max_uV] */
1210 			if (value >= cmin && value < min_uV)
1211 				min_uV = value;
1212 			if (value <= cmax && value > max_uV)
1213 				max_uV = value;
1214 		}
1215 
1216 		/* final: [min_uV..max_uV] valid iff constraints valid */
1217 		if (max_uV < min_uV) {
1218 			rdev_err(rdev,
1219 				 "unsupportable voltage constraints %u-%uuV\n",
1220 				 min_uV, max_uV);
1221 			return -EINVAL;
1222 		}
1223 
1224 		/* use regulator's subset of machine constraints */
1225 		if (constraints->min_uV < min_uV) {
1226 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227 				 constraints->min_uV, min_uV);
1228 			constraints->min_uV = min_uV;
1229 		}
1230 		if (constraints->max_uV > max_uV) {
1231 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232 				 constraints->max_uV, max_uV);
1233 			constraints->max_uV = max_uV;
1234 		}
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241 	struct regulation_constraints *constraints)
1242 {
1243 	const struct regulator_ops *ops = rdev->desc->ops;
1244 	int ret;
1245 
1246 	if (!constraints->min_uA && !constraints->max_uA)
1247 		return 0;
1248 
1249 	if (constraints->min_uA > constraints->max_uA) {
1250 		rdev_err(rdev, "Invalid current constraints\n");
1251 		return -EINVAL;
1252 	}
1253 
1254 	if (!ops->set_current_limit || !ops->get_current_limit) {
1255 		rdev_warn(rdev, "Operation of current configuration missing\n");
1256 		return 0;
1257 	}
1258 
1259 	/* Set regulator current in constraints range */
1260 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1261 			constraints->max_uA);
1262 	if (ret < 0) {
1263 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264 		return ret;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1271 
1272 /**
1273  * set_machine_constraints - sets regulator constraints
1274  * @rdev: regulator source
1275  * @constraints: constraints to apply
1276  *
1277  * Allows platform initialisation code to define and constrain
1278  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279  * Constraints *must* be set by platform code in order for some
1280  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281  * set_mode.
1282  */
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284 	const struct regulation_constraints *constraints)
1285 {
1286 	int ret = 0;
1287 	const struct regulator_ops *ops = rdev->desc->ops;
1288 
1289 	if (constraints)
1290 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291 					    GFP_KERNEL);
1292 	else
1293 		rdev->constraints = kzalloc(sizeof(*constraints),
1294 					    GFP_KERNEL);
1295 	if (!rdev->constraints)
1296 		return -ENOMEM;
1297 
1298 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299 	if (ret != 0)
1300 		return ret;
1301 
1302 	ret = machine_constraints_current(rdev, rdev->constraints);
1303 	if (ret != 0)
1304 		return ret;
1305 
1306 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307 		ret = ops->set_input_current_limit(rdev,
1308 						   rdev->constraints->ilim_uA);
1309 		if (ret < 0) {
1310 			rdev_err(rdev, "failed to set input limit\n");
1311 			return ret;
1312 		}
1313 	}
1314 
1315 	/* do we need to setup our suspend state */
1316 	if (rdev->constraints->initial_state) {
1317 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318 		if (ret < 0) {
1319 			rdev_err(rdev, "failed to set suspend state\n");
1320 			return ret;
1321 		}
1322 	}
1323 
1324 	if (rdev->constraints->initial_mode) {
1325 		if (!ops->set_mode) {
1326 			rdev_err(rdev, "no set_mode operation\n");
1327 			return -EINVAL;
1328 		}
1329 
1330 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331 		if (ret < 0) {
1332 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333 			return ret;
1334 		}
1335 	} else if (rdev->constraints->system_load) {
1336 		/*
1337 		 * We'll only apply the initial system load if an
1338 		 * initial mode wasn't specified.
1339 		 */
1340 		drms_uA_update(rdev);
1341 	}
1342 
1343 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344 		&& ops->set_ramp_delay) {
1345 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346 		if (ret < 0) {
1347 			rdev_err(rdev, "failed to set ramp_delay\n");
1348 			return ret;
1349 		}
1350 	}
1351 
1352 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1353 		ret = ops->set_pull_down(rdev);
1354 		if (ret < 0) {
1355 			rdev_err(rdev, "failed to set pull down\n");
1356 			return ret;
1357 		}
1358 	}
1359 
1360 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1361 		ret = ops->set_soft_start(rdev);
1362 		if (ret < 0) {
1363 			rdev_err(rdev, "failed to set soft start\n");
1364 			return ret;
1365 		}
1366 	}
1367 
1368 	if (rdev->constraints->over_current_protection
1369 		&& ops->set_over_current_protection) {
1370 		ret = ops->set_over_current_protection(rdev);
1371 		if (ret < 0) {
1372 			rdev_err(rdev, "failed to set over current protection\n");
1373 			return ret;
1374 		}
1375 	}
1376 
1377 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378 		bool ad_state = (rdev->constraints->active_discharge ==
1379 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380 
1381 		ret = ops->set_active_discharge(rdev, ad_state);
1382 		if (ret < 0) {
1383 			rdev_err(rdev, "failed to set active discharge\n");
1384 			return ret;
1385 		}
1386 	}
1387 
1388 	/* If the constraints say the regulator should be on at this point
1389 	 * and we have control then make sure it is enabled.
1390 	 */
1391 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 		if (rdev->supply) {
1393 			ret = regulator_enable(rdev->supply);
1394 			if (ret < 0) {
1395 				_regulator_put(rdev->supply);
1396 				rdev->supply = NULL;
1397 				return ret;
1398 			}
1399 		}
1400 
1401 		ret = _regulator_do_enable(rdev);
1402 		if (ret < 0 && ret != -EINVAL) {
1403 			rdev_err(rdev, "failed to enable\n");
1404 			return ret;
1405 		}
1406 		rdev->use_count++;
1407 	}
1408 
1409 	print_constraints(rdev);
1410 	return 0;
1411 }
1412 
1413 /**
1414  * set_supply - set regulator supply regulator
1415  * @rdev: regulator name
1416  * @supply_rdev: supply regulator name
1417  *
1418  * Called by platform initialisation code to set the supply regulator for this
1419  * regulator. This ensures that a regulators supply will also be enabled by the
1420  * core if it's child is enabled.
1421  */
1422 static int set_supply(struct regulator_dev *rdev,
1423 		      struct regulator_dev *supply_rdev)
1424 {
1425 	int err;
1426 
1427 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428 
1429 	if (!try_module_get(supply_rdev->owner))
1430 		return -ENODEV;
1431 
1432 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 	if (rdev->supply == NULL) {
1434 		err = -ENOMEM;
1435 		return err;
1436 	}
1437 	supply_rdev->open_count++;
1438 
1439 	return 0;
1440 }
1441 
1442 /**
1443  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444  * @rdev:         regulator source
1445  * @consumer_dev_name: dev_name() string for device supply applies to
1446  * @supply:       symbolic name for supply
1447  *
1448  * Allows platform initialisation code to map physical regulator
1449  * sources to symbolic names for supplies for use by devices.  Devices
1450  * should use these symbolic names to request regulators, avoiding the
1451  * need to provide board-specific regulator names as platform data.
1452  */
1453 static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 				      const char *consumer_dev_name,
1455 				      const char *supply)
1456 {
1457 	struct regulator_map *node;
1458 	int has_dev;
1459 
1460 	if (supply == NULL)
1461 		return -EINVAL;
1462 
1463 	if (consumer_dev_name != NULL)
1464 		has_dev = 1;
1465 	else
1466 		has_dev = 0;
1467 
1468 	list_for_each_entry(node, &regulator_map_list, list) {
1469 		if (node->dev_name && consumer_dev_name) {
1470 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471 				continue;
1472 		} else if (node->dev_name || consumer_dev_name) {
1473 			continue;
1474 		}
1475 
1476 		if (strcmp(node->supply, supply) != 0)
1477 			continue;
1478 
1479 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480 			 consumer_dev_name,
1481 			 dev_name(&node->regulator->dev),
1482 			 node->regulator->desc->name,
1483 			 supply,
1484 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485 		return -EBUSY;
1486 	}
1487 
1488 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489 	if (node == NULL)
1490 		return -ENOMEM;
1491 
1492 	node->regulator = rdev;
1493 	node->supply = supply;
1494 
1495 	if (has_dev) {
1496 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497 		if (node->dev_name == NULL) {
1498 			kfree(node);
1499 			return -ENOMEM;
1500 		}
1501 	}
1502 
1503 	list_add(&node->list, &regulator_map_list);
1504 	return 0;
1505 }
1506 
1507 static void unset_regulator_supplies(struct regulator_dev *rdev)
1508 {
1509 	struct regulator_map *node, *n;
1510 
1511 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1512 		if (rdev == node->regulator) {
1513 			list_del(&node->list);
1514 			kfree(node->dev_name);
1515 			kfree(node);
1516 		}
1517 	}
1518 }
1519 
1520 #ifdef CONFIG_DEBUG_FS
1521 static ssize_t constraint_flags_read_file(struct file *file,
1522 					  char __user *user_buf,
1523 					  size_t count, loff_t *ppos)
1524 {
1525 	const struct regulator *regulator = file->private_data;
1526 	const struct regulation_constraints *c = regulator->rdev->constraints;
1527 	char *buf;
1528 	ssize_t ret;
1529 
1530 	if (!c)
1531 		return 0;
1532 
1533 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534 	if (!buf)
1535 		return -ENOMEM;
1536 
1537 	ret = snprintf(buf, PAGE_SIZE,
1538 			"always_on: %u\n"
1539 			"boot_on: %u\n"
1540 			"apply_uV: %u\n"
1541 			"ramp_disable: %u\n"
1542 			"soft_start: %u\n"
1543 			"pull_down: %u\n"
1544 			"over_current_protection: %u\n",
1545 			c->always_on,
1546 			c->boot_on,
1547 			c->apply_uV,
1548 			c->ramp_disable,
1549 			c->soft_start,
1550 			c->pull_down,
1551 			c->over_current_protection);
1552 
1553 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554 	kfree(buf);
1555 
1556 	return ret;
1557 }
1558 
1559 #endif
1560 
1561 static const struct file_operations constraint_flags_fops = {
1562 #ifdef CONFIG_DEBUG_FS
1563 	.open = simple_open,
1564 	.read = constraint_flags_read_file,
1565 	.llseek = default_llseek,
1566 #endif
1567 };
1568 
1569 #define REG_STR_SIZE	64
1570 
1571 static struct regulator *create_regulator(struct regulator_dev *rdev,
1572 					  struct device *dev,
1573 					  const char *supply_name)
1574 {
1575 	struct regulator *regulator;
1576 	char buf[REG_STR_SIZE];
1577 	int err, size;
1578 
1579 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580 	if (regulator == NULL)
1581 		return NULL;
1582 
1583 	regulator_lock(rdev);
1584 	regulator->rdev = rdev;
1585 	list_add(&regulator->list, &rdev->consumer_list);
1586 
1587 	if (dev) {
1588 		regulator->dev = dev;
1589 
1590 		/* Add a link to the device sysfs entry */
1591 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592 				dev->kobj.name, supply_name);
1593 		if (size >= REG_STR_SIZE)
1594 			goto overflow_err;
1595 
1596 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597 		if (regulator->supply_name == NULL)
1598 			goto overflow_err;
1599 
1600 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601 					buf);
1602 		if (err) {
1603 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604 				  dev->kobj.name, err);
1605 			/* non-fatal */
1606 		}
1607 	} else {
1608 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609 		if (regulator->supply_name == NULL)
1610 			goto overflow_err;
1611 	}
1612 
1613 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614 						rdev->debugfs);
1615 	if (!regulator->debugfs) {
1616 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617 	} else {
1618 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619 				   &regulator->uA_load);
1620 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624 		debugfs_create_file("constraint_flags", 0444,
1625 				    regulator->debugfs, regulator,
1626 				    &constraint_flags_fops);
1627 	}
1628 
1629 	/*
1630 	 * Check now if the regulator is an always on regulator - if
1631 	 * it is then we don't need to do nearly so much work for
1632 	 * enable/disable calls.
1633 	 */
1634 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 	    _regulator_is_enabled(rdev))
1636 		regulator->always_on = true;
1637 
1638 	regulator_unlock(rdev);
1639 	return regulator;
1640 overflow_err:
1641 	list_del(&regulator->list);
1642 	kfree(regulator);
1643 	regulator_unlock(rdev);
1644 	return NULL;
1645 }
1646 
1647 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648 {
1649 	if (rdev->constraints && rdev->constraints->enable_time)
1650 		return rdev->constraints->enable_time;
1651 	if (rdev->desc->ops->enable_time)
1652 		return rdev->desc->ops->enable_time(rdev);
1653 	return rdev->desc->enable_time;
1654 }
1655 
1656 static struct regulator_supply_alias *regulator_find_supply_alias(
1657 		struct device *dev, const char *supply)
1658 {
1659 	struct regulator_supply_alias *map;
1660 
1661 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1662 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663 			return map;
1664 
1665 	return NULL;
1666 }
1667 
1668 static void regulator_supply_alias(struct device **dev, const char **supply)
1669 {
1670 	struct regulator_supply_alias *map;
1671 
1672 	map = regulator_find_supply_alias(*dev, *supply);
1673 	if (map) {
1674 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675 				*supply, map->alias_supply,
1676 				dev_name(map->alias_dev));
1677 		*dev = map->alias_dev;
1678 		*supply = map->alias_supply;
1679 	}
1680 }
1681 
1682 static int regulator_match(struct device *dev, const void *data)
1683 {
1684 	struct regulator_dev *r = dev_to_rdev(dev);
1685 
1686 	return strcmp(rdev_get_name(r), data) == 0;
1687 }
1688 
1689 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690 {
1691 	struct device *dev;
1692 
1693 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1694 
1695 	return dev ? dev_to_rdev(dev) : NULL;
1696 }
1697 
1698 /**
1699  * regulator_dev_lookup - lookup a regulator device.
1700  * @dev: device for regulator "consumer".
1701  * @supply: Supply name or regulator ID.
1702  *
1703  * If successful, returns a struct regulator_dev that corresponds to the name
1704  * @supply and with the embedded struct device refcount incremented by one.
1705  * The refcount must be dropped by calling put_device().
1706  * On failure one of the following ERR-PTR-encoded values is returned:
1707  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708  * in the future.
1709  */
1710 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711 						  const char *supply)
1712 {
1713 	struct regulator_dev *r = NULL;
1714 	struct device_node *node;
1715 	struct regulator_map *map;
1716 	const char *devname = NULL;
1717 
1718 	regulator_supply_alias(&dev, &supply);
1719 
1720 	/* first do a dt based lookup */
1721 	if (dev && dev->of_node) {
1722 		node = of_get_regulator(dev, supply);
1723 		if (node) {
1724 			r = of_find_regulator_by_node(node);
1725 			if (r)
1726 				return r;
1727 
1728 			/*
1729 			 * We have a node, but there is no device.
1730 			 * assume it has not registered yet.
1731 			 */
1732 			return ERR_PTR(-EPROBE_DEFER);
1733 		}
1734 	}
1735 
1736 	/* if not found, try doing it non-dt way */
1737 	if (dev)
1738 		devname = dev_name(dev);
1739 
1740 	mutex_lock(&regulator_list_mutex);
1741 	list_for_each_entry(map, &regulator_map_list, list) {
1742 		/* If the mapping has a device set up it must match */
1743 		if (map->dev_name &&
1744 		    (!devname || strcmp(map->dev_name, devname)))
1745 			continue;
1746 
1747 		if (strcmp(map->supply, supply) == 0 &&
1748 		    get_device(&map->regulator->dev)) {
1749 			r = map->regulator;
1750 			break;
1751 		}
1752 	}
1753 	mutex_unlock(&regulator_list_mutex);
1754 
1755 	if (r)
1756 		return r;
1757 
1758 	r = regulator_lookup_by_name(supply);
1759 	if (r)
1760 		return r;
1761 
1762 	return ERR_PTR(-ENODEV);
1763 }
1764 
1765 static int regulator_resolve_supply(struct regulator_dev *rdev)
1766 {
1767 	struct regulator_dev *r;
1768 	struct device *dev = rdev->dev.parent;
1769 	int ret;
1770 
1771 	/* No supply to resolve? */
1772 	if (!rdev->supply_name)
1773 		return 0;
1774 
1775 	/* Supply already resolved? */
1776 	if (rdev->supply)
1777 		return 0;
1778 
1779 	r = regulator_dev_lookup(dev, rdev->supply_name);
1780 	if (IS_ERR(r)) {
1781 		ret = PTR_ERR(r);
1782 
1783 		/* Did the lookup explicitly defer for us? */
1784 		if (ret == -EPROBE_DEFER)
1785 			return ret;
1786 
1787 		if (have_full_constraints()) {
1788 			r = dummy_regulator_rdev;
1789 			get_device(&r->dev);
1790 		} else {
1791 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792 				rdev->supply_name, rdev->desc->name);
1793 			return -EPROBE_DEFER;
1794 		}
1795 	}
1796 
1797 	/*
1798 	 * If the supply's parent device is not the same as the
1799 	 * regulator's parent device, then ensure the parent device
1800 	 * is bound before we resolve the supply, in case the parent
1801 	 * device get probe deferred and unregisters the supply.
1802 	 */
1803 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804 		if (!device_is_bound(r->dev.parent)) {
1805 			put_device(&r->dev);
1806 			return -EPROBE_DEFER;
1807 		}
1808 	}
1809 
1810 	/* Recursively resolve the supply of the supply */
1811 	ret = regulator_resolve_supply(r);
1812 	if (ret < 0) {
1813 		put_device(&r->dev);
1814 		return ret;
1815 	}
1816 
1817 	ret = set_supply(rdev, r);
1818 	if (ret < 0) {
1819 		put_device(&r->dev);
1820 		return ret;
1821 	}
1822 
1823 	/*
1824 	 * In set_machine_constraints() we may have turned this regulator on
1825 	 * but we couldn't propagate to the supply if it hadn't been resolved
1826 	 * yet.  Do it now.
1827 	 */
1828 	if (rdev->use_count) {
1829 		ret = regulator_enable(rdev->supply);
1830 		if (ret < 0) {
1831 			_regulator_put(rdev->supply);
1832 			rdev->supply = NULL;
1833 			return ret;
1834 		}
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /* Internal regulator request function */
1841 struct regulator *_regulator_get(struct device *dev, const char *id,
1842 				 enum regulator_get_type get_type)
1843 {
1844 	struct regulator_dev *rdev;
1845 	struct regulator *regulator;
1846 	const char *devname = dev ? dev_name(dev) : "deviceless";
1847 	int ret;
1848 
1849 	if (get_type >= MAX_GET_TYPE) {
1850 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851 		return ERR_PTR(-EINVAL);
1852 	}
1853 
1854 	if (id == NULL) {
1855 		pr_err("get() with no identifier\n");
1856 		return ERR_PTR(-EINVAL);
1857 	}
1858 
1859 	rdev = regulator_dev_lookup(dev, id);
1860 	if (IS_ERR(rdev)) {
1861 		ret = PTR_ERR(rdev);
1862 
1863 		/*
1864 		 * If regulator_dev_lookup() fails with error other
1865 		 * than -ENODEV our job here is done, we simply return it.
1866 		 */
1867 		if (ret != -ENODEV)
1868 			return ERR_PTR(ret);
1869 
1870 		if (!have_full_constraints()) {
1871 			dev_warn(dev,
1872 				 "incomplete constraints, dummy supplies not allowed\n");
1873 			return ERR_PTR(-ENODEV);
1874 		}
1875 
1876 		switch (get_type) {
1877 		case NORMAL_GET:
1878 			/*
1879 			 * Assume that a regulator is physically present and
1880 			 * enabled, even if it isn't hooked up, and just
1881 			 * provide a dummy.
1882 			 */
1883 			dev_warn(dev,
1884 				 "%s supply %s not found, using dummy regulator\n",
1885 				 devname, id);
1886 			rdev = dummy_regulator_rdev;
1887 			get_device(&rdev->dev);
1888 			break;
1889 
1890 		case EXCLUSIVE_GET:
1891 			dev_warn(dev,
1892 				 "dummy supplies not allowed for exclusive requests\n");
1893 			/* fall through */
1894 
1895 		default:
1896 			return ERR_PTR(-ENODEV);
1897 		}
1898 	}
1899 
1900 	if (rdev->exclusive) {
1901 		regulator = ERR_PTR(-EPERM);
1902 		put_device(&rdev->dev);
1903 		return regulator;
1904 	}
1905 
1906 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907 		regulator = ERR_PTR(-EBUSY);
1908 		put_device(&rdev->dev);
1909 		return regulator;
1910 	}
1911 
1912 	mutex_lock(&regulator_list_mutex);
1913 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914 	mutex_unlock(&regulator_list_mutex);
1915 
1916 	if (ret != 0) {
1917 		regulator = ERR_PTR(-EPROBE_DEFER);
1918 		put_device(&rdev->dev);
1919 		return regulator;
1920 	}
1921 
1922 	ret = regulator_resolve_supply(rdev);
1923 	if (ret < 0) {
1924 		regulator = ERR_PTR(ret);
1925 		put_device(&rdev->dev);
1926 		return regulator;
1927 	}
1928 
1929 	if (!try_module_get(rdev->owner)) {
1930 		regulator = ERR_PTR(-EPROBE_DEFER);
1931 		put_device(&rdev->dev);
1932 		return regulator;
1933 	}
1934 
1935 	regulator = create_regulator(rdev, dev, id);
1936 	if (regulator == NULL) {
1937 		regulator = ERR_PTR(-ENOMEM);
1938 		put_device(&rdev->dev);
1939 		module_put(rdev->owner);
1940 		return regulator;
1941 	}
1942 
1943 	rdev->open_count++;
1944 	if (get_type == EXCLUSIVE_GET) {
1945 		rdev->exclusive = 1;
1946 
1947 		ret = _regulator_is_enabled(rdev);
1948 		if (ret > 0)
1949 			rdev->use_count = 1;
1950 		else
1951 			rdev->use_count = 0;
1952 	}
1953 
1954 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1955 
1956 	return regulator;
1957 }
1958 
1959 /**
1960  * regulator_get - lookup and obtain a reference to a regulator.
1961  * @dev: device for regulator "consumer"
1962  * @id: Supply name or regulator ID.
1963  *
1964  * Returns a struct regulator corresponding to the regulator producer,
1965  * or IS_ERR() condition containing errno.
1966  *
1967  * Use of supply names configured via regulator_set_device_supply() is
1968  * strongly encouraged.  It is recommended that the supply name used
1969  * should match the name used for the supply and/or the relevant
1970  * device pins in the datasheet.
1971  */
1972 struct regulator *regulator_get(struct device *dev, const char *id)
1973 {
1974 	return _regulator_get(dev, id, NORMAL_GET);
1975 }
1976 EXPORT_SYMBOL_GPL(regulator_get);
1977 
1978 /**
1979  * regulator_get_exclusive - obtain exclusive access to a regulator.
1980  * @dev: device for regulator "consumer"
1981  * @id: Supply name or regulator ID.
1982  *
1983  * Returns a struct regulator corresponding to the regulator producer,
1984  * or IS_ERR() condition containing errno.  Other consumers will be
1985  * unable to obtain this regulator while this reference is held and the
1986  * use count for the regulator will be initialised to reflect the current
1987  * state of the regulator.
1988  *
1989  * This is intended for use by consumers which cannot tolerate shared
1990  * use of the regulator such as those which need to force the
1991  * regulator off for correct operation of the hardware they are
1992  * controlling.
1993  *
1994  * Use of supply names configured via regulator_set_device_supply() is
1995  * strongly encouraged.  It is recommended that the supply name used
1996  * should match the name used for the supply and/or the relevant
1997  * device pins in the datasheet.
1998  */
1999 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000 {
2001 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2002 }
2003 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004 
2005 /**
2006  * regulator_get_optional - obtain optional access to a regulator.
2007  * @dev: device for regulator "consumer"
2008  * @id: Supply name or regulator ID.
2009  *
2010  * Returns a struct regulator corresponding to the regulator producer,
2011  * or IS_ERR() condition containing errno.
2012  *
2013  * This is intended for use by consumers for devices which can have
2014  * some supplies unconnected in normal use, such as some MMC devices.
2015  * It can allow the regulator core to provide stub supplies for other
2016  * supplies requested using normal regulator_get() calls without
2017  * disrupting the operation of drivers that can handle absent
2018  * supplies.
2019  *
2020  * Use of supply names configured via regulator_set_device_supply() is
2021  * strongly encouraged.  It is recommended that the supply name used
2022  * should match the name used for the supply and/or the relevant
2023  * device pins in the datasheet.
2024  */
2025 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026 {
2027 	return _regulator_get(dev, id, OPTIONAL_GET);
2028 }
2029 EXPORT_SYMBOL_GPL(regulator_get_optional);
2030 
2031 /* regulator_list_mutex lock held by regulator_put() */
2032 static void _regulator_put(struct regulator *regulator)
2033 {
2034 	struct regulator_dev *rdev;
2035 
2036 	if (IS_ERR_OR_NULL(regulator))
2037 		return;
2038 
2039 	lockdep_assert_held_once(&regulator_list_mutex);
2040 
2041 	/* Docs say you must disable before calling regulator_put() */
2042 	WARN_ON(regulator->enable_count);
2043 
2044 	rdev = regulator->rdev;
2045 
2046 	debugfs_remove_recursive(regulator->debugfs);
2047 
2048 	if (regulator->dev) {
2049 		device_link_remove(regulator->dev, &rdev->dev);
2050 
2051 		/* remove any sysfs entries */
2052 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053 	}
2054 
2055 	regulator_lock(rdev);
2056 	list_del(&regulator->list);
2057 
2058 	rdev->open_count--;
2059 	rdev->exclusive = 0;
2060 	put_device(&rdev->dev);
2061 	regulator_unlock(rdev);
2062 
2063 	kfree_const(regulator->supply_name);
2064 	kfree(regulator);
2065 
2066 	module_put(rdev->owner);
2067 }
2068 
2069 /**
2070  * regulator_put - "free" the regulator source
2071  * @regulator: regulator source
2072  *
2073  * Note: drivers must ensure that all regulator_enable calls made on this
2074  * regulator source are balanced by regulator_disable calls prior to calling
2075  * this function.
2076  */
2077 void regulator_put(struct regulator *regulator)
2078 {
2079 	mutex_lock(&regulator_list_mutex);
2080 	_regulator_put(regulator);
2081 	mutex_unlock(&regulator_list_mutex);
2082 }
2083 EXPORT_SYMBOL_GPL(regulator_put);
2084 
2085 /**
2086  * regulator_register_supply_alias - Provide device alias for supply lookup
2087  *
2088  * @dev: device that will be given as the regulator "consumer"
2089  * @id: Supply name or regulator ID
2090  * @alias_dev: device that should be used to lookup the supply
2091  * @alias_id: Supply name or regulator ID that should be used to lookup the
2092  * supply
2093  *
2094  * All lookups for id on dev will instead be conducted for alias_id on
2095  * alias_dev.
2096  */
2097 int regulator_register_supply_alias(struct device *dev, const char *id,
2098 				    struct device *alias_dev,
2099 				    const char *alias_id)
2100 {
2101 	struct regulator_supply_alias *map;
2102 
2103 	map = regulator_find_supply_alias(dev, id);
2104 	if (map)
2105 		return -EEXIST;
2106 
2107 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108 	if (!map)
2109 		return -ENOMEM;
2110 
2111 	map->src_dev = dev;
2112 	map->src_supply = id;
2113 	map->alias_dev = alias_dev;
2114 	map->alias_supply = alias_id;
2115 
2116 	list_add(&map->list, &regulator_supply_alias_list);
2117 
2118 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2120 
2121 	return 0;
2122 }
2123 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124 
2125 /**
2126  * regulator_unregister_supply_alias - Remove device alias
2127  *
2128  * @dev: device that will be given as the regulator "consumer"
2129  * @id: Supply name or regulator ID
2130  *
2131  * Remove a lookup alias if one exists for id on dev.
2132  */
2133 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134 {
2135 	struct regulator_supply_alias *map;
2136 
2137 	map = regulator_find_supply_alias(dev, id);
2138 	if (map) {
2139 		list_del(&map->list);
2140 		kfree(map);
2141 	}
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144 
2145 /**
2146  * regulator_bulk_register_supply_alias - register multiple aliases
2147  *
2148  * @dev: device that will be given as the regulator "consumer"
2149  * @id: List of supply names or regulator IDs
2150  * @alias_dev: device that should be used to lookup the supply
2151  * @alias_id: List of supply names or regulator IDs that should be used to
2152  * lookup the supply
2153  * @num_id: Number of aliases to register
2154  *
2155  * @return 0 on success, an errno on failure.
2156  *
2157  * This helper function allows drivers to register several supply
2158  * aliases in one operation.  If any of the aliases cannot be
2159  * registered any aliases that were registered will be removed
2160  * before returning to the caller.
2161  */
2162 int regulator_bulk_register_supply_alias(struct device *dev,
2163 					 const char *const *id,
2164 					 struct device *alias_dev,
2165 					 const char *const *alias_id,
2166 					 int num_id)
2167 {
2168 	int i;
2169 	int ret;
2170 
2171 	for (i = 0; i < num_id; ++i) {
2172 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173 						      alias_id[i]);
2174 		if (ret < 0)
2175 			goto err;
2176 	}
2177 
2178 	return 0;
2179 
2180 err:
2181 	dev_err(dev,
2182 		"Failed to create supply alias %s,%s -> %s,%s\n",
2183 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184 
2185 	while (--i >= 0)
2186 		regulator_unregister_supply_alias(dev, id[i]);
2187 
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191 
2192 /**
2193  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194  *
2195  * @dev: device that will be given as the regulator "consumer"
2196  * @id: List of supply names or regulator IDs
2197  * @num_id: Number of aliases to unregister
2198  *
2199  * This helper function allows drivers to unregister several supply
2200  * aliases in one operation.
2201  */
2202 void regulator_bulk_unregister_supply_alias(struct device *dev,
2203 					    const char *const *id,
2204 					    int num_id)
2205 {
2206 	int i;
2207 
2208 	for (i = 0; i < num_id; ++i)
2209 		regulator_unregister_supply_alias(dev, id[i]);
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212 
2213 
2214 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216 				const struct regulator_config *config)
2217 {
2218 	struct regulator_enable_gpio *pin;
2219 	struct gpio_desc *gpiod;
2220 
2221 	gpiod = config->ena_gpiod;
2222 
2223 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224 		if (pin->gpiod == gpiod) {
2225 			rdev_dbg(rdev, "GPIO is already used\n");
2226 			goto update_ena_gpio_to_rdev;
2227 		}
2228 	}
2229 
2230 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231 	if (pin == NULL)
2232 		return -ENOMEM;
2233 
2234 	pin->gpiod = gpiod;
2235 	list_add(&pin->list, &regulator_ena_gpio_list);
2236 
2237 update_ena_gpio_to_rdev:
2238 	pin->request_count++;
2239 	rdev->ena_pin = pin;
2240 	return 0;
2241 }
2242 
2243 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244 {
2245 	struct regulator_enable_gpio *pin, *n;
2246 
2247 	if (!rdev->ena_pin)
2248 		return;
2249 
2250 	/* Free the GPIO only in case of no use */
2251 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2253 			if (pin->request_count <= 1) {
2254 				pin->request_count = 0;
2255 				gpiod_put(pin->gpiod);
2256 				list_del(&pin->list);
2257 				kfree(pin);
2258 				rdev->ena_pin = NULL;
2259 				return;
2260 			} else {
2261 				pin->request_count--;
2262 			}
2263 		}
2264 	}
2265 }
2266 
2267 /**
2268  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269  * @rdev: regulator_dev structure
2270  * @enable: enable GPIO at initial use?
2271  *
2272  * GPIO is enabled in case of initial use. (enable_count is 0)
2273  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274  */
2275 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276 {
2277 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2278 
2279 	if (!pin)
2280 		return -EINVAL;
2281 
2282 	if (enable) {
2283 		/* Enable GPIO at initial use */
2284 		if (pin->enable_count == 0)
2285 			gpiod_set_value_cansleep(pin->gpiod, 1);
2286 
2287 		pin->enable_count++;
2288 	} else {
2289 		if (pin->enable_count > 1) {
2290 			pin->enable_count--;
2291 			return 0;
2292 		}
2293 
2294 		/* Disable GPIO if not used */
2295 		if (pin->enable_count <= 1) {
2296 			gpiod_set_value_cansleep(pin->gpiod, 0);
2297 			pin->enable_count = 0;
2298 		}
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 /**
2305  * _regulator_enable_delay - a delay helper function
2306  * @delay: time to delay in microseconds
2307  *
2308  * Delay for the requested amount of time as per the guidelines in:
2309  *
2310  *     Documentation/timers/timers-howto.rst
2311  *
2312  * The assumption here is that regulators will never be enabled in
2313  * atomic context and therefore sleeping functions can be used.
2314  */
2315 static void _regulator_enable_delay(unsigned int delay)
2316 {
2317 	unsigned int ms = delay / 1000;
2318 	unsigned int us = delay % 1000;
2319 
2320 	if (ms > 0) {
2321 		/*
2322 		 * For small enough values, handle super-millisecond
2323 		 * delays in the usleep_range() call below.
2324 		 */
2325 		if (ms < 20)
2326 			us += ms * 1000;
2327 		else
2328 			msleep(ms);
2329 	}
2330 
2331 	/*
2332 	 * Give the scheduler some room to coalesce with any other
2333 	 * wakeup sources. For delays shorter than 10 us, don't even
2334 	 * bother setting up high-resolution timers and just busy-
2335 	 * loop.
2336 	 */
2337 	if (us >= 10)
2338 		usleep_range(us, us + 100);
2339 	else
2340 		udelay(us);
2341 }
2342 
2343 static int _regulator_do_enable(struct regulator_dev *rdev)
2344 {
2345 	int ret, delay;
2346 
2347 	/* Query before enabling in case configuration dependent.  */
2348 	ret = _regulator_get_enable_time(rdev);
2349 	if (ret >= 0) {
2350 		delay = ret;
2351 	} else {
2352 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353 		delay = 0;
2354 	}
2355 
2356 	trace_regulator_enable(rdev_get_name(rdev));
2357 
2358 	if (rdev->desc->off_on_delay) {
2359 		/* if needed, keep a distance of off_on_delay from last time
2360 		 * this regulator was disabled.
2361 		 */
2362 		unsigned long start_jiffy = jiffies;
2363 		unsigned long intended, max_delay, remaining;
2364 
2365 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366 		intended = rdev->last_off_jiffy + max_delay;
2367 
2368 		if (time_before(start_jiffy, intended)) {
2369 			/* calc remaining jiffies to deal with one-time
2370 			 * timer wrapping.
2371 			 * in case of multiple timer wrapping, either it can be
2372 			 * detected by out-of-range remaining, or it cannot be
2373 			 * detected and we get a penalty of
2374 			 * _regulator_enable_delay().
2375 			 */
2376 			remaining = intended - start_jiffy;
2377 			if (remaining <= max_delay)
2378 				_regulator_enable_delay(
2379 						jiffies_to_usecs(remaining));
2380 		}
2381 	}
2382 
2383 	if (rdev->ena_pin) {
2384 		if (!rdev->ena_gpio_state) {
2385 			ret = regulator_ena_gpio_ctrl(rdev, true);
2386 			if (ret < 0)
2387 				return ret;
2388 			rdev->ena_gpio_state = 1;
2389 		}
2390 	} else if (rdev->desc->ops->enable) {
2391 		ret = rdev->desc->ops->enable(rdev);
2392 		if (ret < 0)
2393 			return ret;
2394 	} else {
2395 		return -EINVAL;
2396 	}
2397 
2398 	/* Allow the regulator to ramp; it would be useful to extend
2399 	 * this for bulk operations so that the regulators can ramp
2400 	 * together.  */
2401 	trace_regulator_enable_delay(rdev_get_name(rdev));
2402 
2403 	_regulator_enable_delay(delay);
2404 
2405 	trace_regulator_enable_complete(rdev_get_name(rdev));
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * _regulator_handle_consumer_enable - handle that a consumer enabled
2412  * @regulator: regulator source
2413  *
2414  * Some things on a regulator consumer (like the contribution towards total
2415  * load on the regulator) only have an effect when the consumer wants the
2416  * regulator enabled.  Explained in example with two consumers of the same
2417  * regulator:
2418  *   consumer A: set_load(100);       => total load = 0
2419  *   consumer A: regulator_enable();  => total load = 100
2420  *   consumer B: set_load(1000);      => total load = 100
2421  *   consumer B: regulator_enable();  => total load = 1100
2422  *   consumer A: regulator_disable(); => total_load = 1000
2423  *
2424  * This function (together with _regulator_handle_consumer_disable) is
2425  * responsible for keeping track of the refcount for a given regulator consumer
2426  * and applying / unapplying these things.
2427  *
2428  * Returns 0 upon no error; -error upon error.
2429  */
2430 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431 {
2432 	struct regulator_dev *rdev = regulator->rdev;
2433 
2434 	lockdep_assert_held_once(&rdev->mutex.base);
2435 
2436 	regulator->enable_count++;
2437 	if (regulator->uA_load && regulator->enable_count == 1)
2438 		return drms_uA_update(rdev);
2439 
2440 	return 0;
2441 }
2442 
2443 /**
2444  * _regulator_handle_consumer_disable - handle that a consumer disabled
2445  * @regulator: regulator source
2446  *
2447  * The opposite of _regulator_handle_consumer_enable().
2448  *
2449  * Returns 0 upon no error; -error upon error.
2450  */
2451 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452 {
2453 	struct regulator_dev *rdev = regulator->rdev;
2454 
2455 	lockdep_assert_held_once(&rdev->mutex.base);
2456 
2457 	if (!regulator->enable_count) {
2458 		rdev_err(rdev, "Underflow of regulator enable count\n");
2459 		return -EINVAL;
2460 	}
2461 
2462 	regulator->enable_count--;
2463 	if (regulator->uA_load && regulator->enable_count == 0)
2464 		return drms_uA_update(rdev);
2465 
2466 	return 0;
2467 }
2468 
2469 /* locks held by regulator_enable() */
2470 static int _regulator_enable(struct regulator *regulator)
2471 {
2472 	struct regulator_dev *rdev = regulator->rdev;
2473 	int ret;
2474 
2475 	lockdep_assert_held_once(&rdev->mutex.base);
2476 
2477 	if (rdev->use_count == 0 && rdev->supply) {
2478 		ret = _regulator_enable(rdev->supply);
2479 		if (ret < 0)
2480 			return ret;
2481 	}
2482 
2483 	/* balance only if there are regulators coupled */
2484 	if (rdev->coupling_desc.n_coupled > 1) {
2485 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486 		if (ret < 0)
2487 			goto err_disable_supply;
2488 	}
2489 
2490 	ret = _regulator_handle_consumer_enable(regulator);
2491 	if (ret < 0)
2492 		goto err_disable_supply;
2493 
2494 	if (rdev->use_count == 0) {
2495 		/* The regulator may on if it's not switchable or left on */
2496 		ret = _regulator_is_enabled(rdev);
2497 		if (ret == -EINVAL || ret == 0) {
2498 			if (!regulator_ops_is_valid(rdev,
2499 					REGULATOR_CHANGE_STATUS)) {
2500 				ret = -EPERM;
2501 				goto err_consumer_disable;
2502 			}
2503 
2504 			ret = _regulator_do_enable(rdev);
2505 			if (ret < 0)
2506 				goto err_consumer_disable;
2507 
2508 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509 					     NULL);
2510 		} else if (ret < 0) {
2511 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512 			goto err_consumer_disable;
2513 		}
2514 		/* Fallthrough on positive return values - already enabled */
2515 	}
2516 
2517 	rdev->use_count++;
2518 
2519 	return 0;
2520 
2521 err_consumer_disable:
2522 	_regulator_handle_consumer_disable(regulator);
2523 
2524 err_disable_supply:
2525 	if (rdev->use_count == 0 && rdev->supply)
2526 		_regulator_disable(rdev->supply);
2527 
2528 	return ret;
2529 }
2530 
2531 /**
2532  * regulator_enable - enable regulator output
2533  * @regulator: regulator source
2534  *
2535  * Request that the regulator be enabled with the regulator output at
2536  * the predefined voltage or current value.  Calls to regulator_enable()
2537  * must be balanced with calls to regulator_disable().
2538  *
2539  * NOTE: the output value can be set by other drivers, boot loader or may be
2540  * hardwired in the regulator.
2541  */
2542 int regulator_enable(struct regulator *regulator)
2543 {
2544 	struct regulator_dev *rdev = regulator->rdev;
2545 	struct ww_acquire_ctx ww_ctx;
2546 	int ret;
2547 
2548 	regulator_lock_dependent(rdev, &ww_ctx);
2549 	ret = _regulator_enable(regulator);
2550 	regulator_unlock_dependent(rdev, &ww_ctx);
2551 
2552 	return ret;
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_enable);
2555 
2556 static int _regulator_do_disable(struct regulator_dev *rdev)
2557 {
2558 	int ret;
2559 
2560 	trace_regulator_disable(rdev_get_name(rdev));
2561 
2562 	if (rdev->ena_pin) {
2563 		if (rdev->ena_gpio_state) {
2564 			ret = regulator_ena_gpio_ctrl(rdev, false);
2565 			if (ret < 0)
2566 				return ret;
2567 			rdev->ena_gpio_state = 0;
2568 		}
2569 
2570 	} else if (rdev->desc->ops->disable) {
2571 		ret = rdev->desc->ops->disable(rdev);
2572 		if (ret != 0)
2573 			return ret;
2574 	}
2575 
2576 	/* cares about last_off_jiffy only if off_on_delay is required by
2577 	 * device.
2578 	 */
2579 	if (rdev->desc->off_on_delay)
2580 		rdev->last_off_jiffy = jiffies;
2581 
2582 	trace_regulator_disable_complete(rdev_get_name(rdev));
2583 
2584 	return 0;
2585 }
2586 
2587 /* locks held by regulator_disable() */
2588 static int _regulator_disable(struct regulator *regulator)
2589 {
2590 	struct regulator_dev *rdev = regulator->rdev;
2591 	int ret = 0;
2592 
2593 	lockdep_assert_held_once(&rdev->mutex.base);
2594 
2595 	if (WARN(rdev->use_count <= 0,
2596 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597 		return -EIO;
2598 
2599 	/* are we the last user and permitted to disable ? */
2600 	if (rdev->use_count == 1 &&
2601 	    (rdev->constraints && !rdev->constraints->always_on)) {
2602 
2603 		/* we are last user */
2604 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605 			ret = _notifier_call_chain(rdev,
2606 						   REGULATOR_EVENT_PRE_DISABLE,
2607 						   NULL);
2608 			if (ret & NOTIFY_STOP_MASK)
2609 				return -EINVAL;
2610 
2611 			ret = _regulator_do_disable(rdev);
2612 			if (ret < 0) {
2613 				rdev_err(rdev, "failed to disable\n");
2614 				_notifier_call_chain(rdev,
2615 						REGULATOR_EVENT_ABORT_DISABLE,
2616 						NULL);
2617 				return ret;
2618 			}
2619 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620 					NULL);
2621 		}
2622 
2623 		rdev->use_count = 0;
2624 	} else if (rdev->use_count > 1) {
2625 		rdev->use_count--;
2626 	}
2627 
2628 	if (ret == 0)
2629 		ret = _regulator_handle_consumer_disable(regulator);
2630 
2631 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633 
2634 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635 		ret = _regulator_disable(rdev->supply);
2636 
2637 	return ret;
2638 }
2639 
2640 /**
2641  * regulator_disable - disable regulator output
2642  * @regulator: regulator source
2643  *
2644  * Disable the regulator output voltage or current.  Calls to
2645  * regulator_enable() must be balanced with calls to
2646  * regulator_disable().
2647  *
2648  * NOTE: this will only disable the regulator output if no other consumer
2649  * devices have it enabled, the regulator device supports disabling and
2650  * machine constraints permit this operation.
2651  */
2652 int regulator_disable(struct regulator *regulator)
2653 {
2654 	struct regulator_dev *rdev = regulator->rdev;
2655 	struct ww_acquire_ctx ww_ctx;
2656 	int ret;
2657 
2658 	regulator_lock_dependent(rdev, &ww_ctx);
2659 	ret = _regulator_disable(regulator);
2660 	regulator_unlock_dependent(rdev, &ww_ctx);
2661 
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_disable);
2665 
2666 /* locks held by regulator_force_disable() */
2667 static int _regulator_force_disable(struct regulator_dev *rdev)
2668 {
2669 	int ret = 0;
2670 
2671 	lockdep_assert_held_once(&rdev->mutex.base);
2672 
2673 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2675 	if (ret & NOTIFY_STOP_MASK)
2676 		return -EINVAL;
2677 
2678 	ret = _regulator_do_disable(rdev);
2679 	if (ret < 0) {
2680 		rdev_err(rdev, "failed to force disable\n");
2681 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683 		return ret;
2684 	}
2685 
2686 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687 			REGULATOR_EVENT_DISABLE, NULL);
2688 
2689 	return 0;
2690 }
2691 
2692 /**
2693  * regulator_force_disable - force disable regulator output
2694  * @regulator: regulator source
2695  *
2696  * Forcibly disable the regulator output voltage or current.
2697  * NOTE: this *will* disable the regulator output even if other consumer
2698  * devices have it enabled. This should be used for situations when device
2699  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700  */
2701 int regulator_force_disable(struct regulator *regulator)
2702 {
2703 	struct regulator_dev *rdev = regulator->rdev;
2704 	struct ww_acquire_ctx ww_ctx;
2705 	int ret;
2706 
2707 	regulator_lock_dependent(rdev, &ww_ctx);
2708 
2709 	ret = _regulator_force_disable(regulator->rdev);
2710 
2711 	if (rdev->coupling_desc.n_coupled > 1)
2712 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713 
2714 	if (regulator->uA_load) {
2715 		regulator->uA_load = 0;
2716 		ret = drms_uA_update(rdev);
2717 	}
2718 
2719 	if (rdev->use_count != 0 && rdev->supply)
2720 		_regulator_disable(rdev->supply);
2721 
2722 	regulator_unlock_dependent(rdev, &ww_ctx);
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL_GPL(regulator_force_disable);
2727 
2728 static void regulator_disable_work(struct work_struct *work)
2729 {
2730 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731 						  disable_work.work);
2732 	struct ww_acquire_ctx ww_ctx;
2733 	int count, i, ret;
2734 	struct regulator *regulator;
2735 	int total_count = 0;
2736 
2737 	regulator_lock_dependent(rdev, &ww_ctx);
2738 
2739 	/*
2740 	 * Workqueue functions queue the new work instance while the previous
2741 	 * work instance is being processed. Cancel the queued work instance
2742 	 * as the work instance under processing does the job of the queued
2743 	 * work instance.
2744 	 */
2745 	cancel_delayed_work(&rdev->disable_work);
2746 
2747 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748 		count = regulator->deferred_disables;
2749 
2750 		if (!count)
2751 			continue;
2752 
2753 		total_count += count;
2754 		regulator->deferred_disables = 0;
2755 
2756 		for (i = 0; i < count; i++) {
2757 			ret = _regulator_disable(regulator);
2758 			if (ret != 0)
2759 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760 		}
2761 	}
2762 	WARN_ON(!total_count);
2763 
2764 	if (rdev->coupling_desc.n_coupled > 1)
2765 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766 
2767 	regulator_unlock_dependent(rdev, &ww_ctx);
2768 }
2769 
2770 /**
2771  * regulator_disable_deferred - disable regulator output with delay
2772  * @regulator: regulator source
2773  * @ms: milliseconds until the regulator is disabled
2774  *
2775  * Execute regulator_disable() on the regulator after a delay.  This
2776  * is intended for use with devices that require some time to quiesce.
2777  *
2778  * NOTE: this will only disable the regulator output if no other consumer
2779  * devices have it enabled, the regulator device supports disabling and
2780  * machine constraints permit this operation.
2781  */
2782 int regulator_disable_deferred(struct regulator *regulator, int ms)
2783 {
2784 	struct regulator_dev *rdev = regulator->rdev;
2785 
2786 	if (!ms)
2787 		return regulator_disable(regulator);
2788 
2789 	regulator_lock(rdev);
2790 	regulator->deferred_disables++;
2791 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792 			 msecs_to_jiffies(ms));
2793 	regulator_unlock(rdev);
2794 
2795 	return 0;
2796 }
2797 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798 
2799 static int _regulator_is_enabled(struct regulator_dev *rdev)
2800 {
2801 	/* A GPIO control always takes precedence */
2802 	if (rdev->ena_pin)
2803 		return rdev->ena_gpio_state;
2804 
2805 	/* If we don't know then assume that the regulator is always on */
2806 	if (!rdev->desc->ops->is_enabled)
2807 		return 1;
2808 
2809 	return rdev->desc->ops->is_enabled(rdev);
2810 }
2811 
2812 static int _regulator_list_voltage(struct regulator_dev *rdev,
2813 				   unsigned selector, int lock)
2814 {
2815 	const struct regulator_ops *ops = rdev->desc->ops;
2816 	int ret;
2817 
2818 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819 		return rdev->desc->fixed_uV;
2820 
2821 	if (ops->list_voltage) {
2822 		if (selector >= rdev->desc->n_voltages)
2823 			return -EINVAL;
2824 		if (lock)
2825 			regulator_lock(rdev);
2826 		ret = ops->list_voltage(rdev, selector);
2827 		if (lock)
2828 			regulator_unlock(rdev);
2829 	} else if (rdev->is_switch && rdev->supply) {
2830 		ret = _regulator_list_voltage(rdev->supply->rdev,
2831 					      selector, lock);
2832 	} else {
2833 		return -EINVAL;
2834 	}
2835 
2836 	if (ret > 0) {
2837 		if (ret < rdev->constraints->min_uV)
2838 			ret = 0;
2839 		else if (ret > rdev->constraints->max_uV)
2840 			ret = 0;
2841 	}
2842 
2843 	return ret;
2844 }
2845 
2846 /**
2847  * regulator_is_enabled - is the regulator output enabled
2848  * @regulator: regulator source
2849  *
2850  * Returns positive if the regulator driver backing the source/client
2851  * has requested that the device be enabled, zero if it hasn't, else a
2852  * negative errno code.
2853  *
2854  * Note that the device backing this regulator handle can have multiple
2855  * users, so it might be enabled even if regulator_enable() was never
2856  * called for this particular source.
2857  */
2858 int regulator_is_enabled(struct regulator *regulator)
2859 {
2860 	int ret;
2861 
2862 	if (regulator->always_on)
2863 		return 1;
2864 
2865 	regulator_lock(regulator->rdev);
2866 	ret = _regulator_is_enabled(regulator->rdev);
2867 	regulator_unlock(regulator->rdev);
2868 
2869 	return ret;
2870 }
2871 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872 
2873 /**
2874  * regulator_count_voltages - count regulator_list_voltage() selectors
2875  * @regulator: regulator source
2876  *
2877  * Returns number of selectors, or negative errno.  Selectors are
2878  * numbered starting at zero, and typically correspond to bitfields
2879  * in hardware registers.
2880  */
2881 int regulator_count_voltages(struct regulator *regulator)
2882 {
2883 	struct regulator_dev	*rdev = regulator->rdev;
2884 
2885 	if (rdev->desc->n_voltages)
2886 		return rdev->desc->n_voltages;
2887 
2888 	if (!rdev->is_switch || !rdev->supply)
2889 		return -EINVAL;
2890 
2891 	return regulator_count_voltages(rdev->supply);
2892 }
2893 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894 
2895 /**
2896  * regulator_list_voltage - enumerate supported voltages
2897  * @regulator: regulator source
2898  * @selector: identify voltage to list
2899  * Context: can sleep
2900  *
2901  * Returns a voltage that can be passed to @regulator_set_voltage(),
2902  * zero if this selector code can't be used on this system, or a
2903  * negative errno.
2904  */
2905 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906 {
2907 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2908 }
2909 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910 
2911 /**
2912  * regulator_get_regmap - get the regulator's register map
2913  * @regulator: regulator source
2914  *
2915  * Returns the register map for the given regulator, or an ERR_PTR value
2916  * if the regulator doesn't use regmap.
2917  */
2918 struct regmap *regulator_get_regmap(struct regulator *regulator)
2919 {
2920 	struct regmap *map = regulator->rdev->regmap;
2921 
2922 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2923 }
2924 
2925 /**
2926  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927  * @regulator: regulator source
2928  * @vsel_reg: voltage selector register, output parameter
2929  * @vsel_mask: mask for voltage selector bitfield, output parameter
2930  *
2931  * Returns the hardware register offset and bitmask used for setting the
2932  * regulator voltage. This might be useful when configuring voltage-scaling
2933  * hardware or firmware that can make I2C requests behind the kernel's back,
2934  * for example.
2935  *
2936  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937  * and 0 is returned, otherwise a negative errno is returned.
2938  */
2939 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940 					 unsigned *vsel_reg,
2941 					 unsigned *vsel_mask)
2942 {
2943 	struct regulator_dev *rdev = regulator->rdev;
2944 	const struct regulator_ops *ops = rdev->desc->ops;
2945 
2946 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947 		return -EOPNOTSUPP;
2948 
2949 	*vsel_reg = rdev->desc->vsel_reg;
2950 	*vsel_mask = rdev->desc->vsel_mask;
2951 
2952 	 return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955 
2956 /**
2957  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958  * @regulator: regulator source
2959  * @selector: identify voltage to list
2960  *
2961  * Converts the selector to a hardware-specific voltage selector that can be
2962  * directly written to the regulator registers. The address of the voltage
2963  * register can be determined by calling @regulator_get_hardware_vsel_register.
2964  *
2965  * On error a negative errno is returned.
2966  */
2967 int regulator_list_hardware_vsel(struct regulator *regulator,
2968 				 unsigned selector)
2969 {
2970 	struct regulator_dev *rdev = regulator->rdev;
2971 	const struct regulator_ops *ops = rdev->desc->ops;
2972 
2973 	if (selector >= rdev->desc->n_voltages)
2974 		return -EINVAL;
2975 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976 		return -EOPNOTSUPP;
2977 
2978 	return selector;
2979 }
2980 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981 
2982 /**
2983  * regulator_get_linear_step - return the voltage step size between VSEL values
2984  * @regulator: regulator source
2985  *
2986  * Returns the voltage step size between VSEL values for linear
2987  * regulators, or return 0 if the regulator isn't a linear regulator.
2988  */
2989 unsigned int regulator_get_linear_step(struct regulator *regulator)
2990 {
2991 	struct regulator_dev *rdev = regulator->rdev;
2992 
2993 	return rdev->desc->uV_step;
2994 }
2995 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996 
2997 /**
2998  * regulator_is_supported_voltage - check if a voltage range can be supported
2999  *
3000  * @regulator: Regulator to check.
3001  * @min_uV: Minimum required voltage in uV.
3002  * @max_uV: Maximum required voltage in uV.
3003  *
3004  * Returns a boolean.
3005  */
3006 int regulator_is_supported_voltage(struct regulator *regulator,
3007 				   int min_uV, int max_uV)
3008 {
3009 	struct regulator_dev *rdev = regulator->rdev;
3010 	int i, voltages, ret;
3011 
3012 	/* If we can't change voltage check the current voltage */
3013 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014 		ret = regulator_get_voltage(regulator);
3015 		if (ret >= 0)
3016 			return min_uV <= ret && ret <= max_uV;
3017 		else
3018 			return ret;
3019 	}
3020 
3021 	/* Any voltage within constrains range is fine? */
3022 	if (rdev->desc->continuous_voltage_range)
3023 		return min_uV >= rdev->constraints->min_uV &&
3024 				max_uV <= rdev->constraints->max_uV;
3025 
3026 	ret = regulator_count_voltages(regulator);
3027 	if (ret < 0)
3028 		return 0;
3029 	voltages = ret;
3030 
3031 	for (i = 0; i < voltages; i++) {
3032 		ret = regulator_list_voltage(regulator, i);
3033 
3034 		if (ret >= min_uV && ret <= max_uV)
3035 			return 1;
3036 	}
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041 
3042 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043 				 int max_uV)
3044 {
3045 	const struct regulator_desc *desc = rdev->desc;
3046 
3047 	if (desc->ops->map_voltage)
3048 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049 
3050 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052 
3053 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055 
3056 	if (desc->ops->list_voltage ==
3057 		regulator_list_voltage_pickable_linear_range)
3058 		return regulator_map_voltage_pickable_linear_range(rdev,
3059 							min_uV, max_uV);
3060 
3061 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062 }
3063 
3064 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065 				       int min_uV, int max_uV,
3066 				       unsigned *selector)
3067 {
3068 	struct pre_voltage_change_data data;
3069 	int ret;
3070 
3071 	data.old_uV = regulator_get_voltage_rdev(rdev);
3072 	data.min_uV = min_uV;
3073 	data.max_uV = max_uV;
3074 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075 				   &data);
3076 	if (ret & NOTIFY_STOP_MASK)
3077 		return -EINVAL;
3078 
3079 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080 	if (ret >= 0)
3081 		return ret;
3082 
3083 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084 			     (void *)data.old_uV);
3085 
3086 	return ret;
3087 }
3088 
3089 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090 					   int uV, unsigned selector)
3091 {
3092 	struct pre_voltage_change_data data;
3093 	int ret;
3094 
3095 	data.old_uV = regulator_get_voltage_rdev(rdev);
3096 	data.min_uV = uV;
3097 	data.max_uV = uV;
3098 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099 				   &data);
3100 	if (ret & NOTIFY_STOP_MASK)
3101 		return -EINVAL;
3102 
3103 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104 	if (ret >= 0)
3105 		return ret;
3106 
3107 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108 			     (void *)data.old_uV);
3109 
3110 	return ret;
3111 }
3112 
3113 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114 					   int uV, int new_selector)
3115 {
3116 	const struct regulator_ops *ops = rdev->desc->ops;
3117 	int diff, old_sel, curr_sel, ret;
3118 
3119 	/* Stepping is only needed if the regulator is enabled. */
3120 	if (!_regulator_is_enabled(rdev))
3121 		goto final_set;
3122 
3123 	if (!ops->get_voltage_sel)
3124 		return -EINVAL;
3125 
3126 	old_sel = ops->get_voltage_sel(rdev);
3127 	if (old_sel < 0)
3128 		return old_sel;
3129 
3130 	diff = new_selector - old_sel;
3131 	if (diff == 0)
3132 		return 0; /* No change needed. */
3133 
3134 	if (diff > 0) {
3135 		/* Stepping up. */
3136 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3137 		     curr_sel < new_selector;
3138 		     curr_sel += rdev->desc->vsel_step) {
3139 			/*
3140 			 * Call the callback directly instead of using
3141 			 * _regulator_call_set_voltage_sel() as we don't
3142 			 * want to notify anyone yet. Same in the branch
3143 			 * below.
3144 			 */
3145 			ret = ops->set_voltage_sel(rdev, curr_sel);
3146 			if (ret)
3147 				goto try_revert;
3148 		}
3149 	} else {
3150 		/* Stepping down. */
3151 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3152 		     curr_sel > new_selector;
3153 		     curr_sel -= rdev->desc->vsel_step) {
3154 			ret = ops->set_voltage_sel(rdev, curr_sel);
3155 			if (ret)
3156 				goto try_revert;
3157 		}
3158 	}
3159 
3160 final_set:
3161 	/* The final selector will trigger the notifiers. */
3162 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163 
3164 try_revert:
3165 	/*
3166 	 * At least try to return to the previous voltage if setting a new
3167 	 * one failed.
3168 	 */
3169 	(void)ops->set_voltage_sel(rdev, old_sel);
3170 	return ret;
3171 }
3172 
3173 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174 				       int old_uV, int new_uV)
3175 {
3176 	unsigned int ramp_delay = 0;
3177 
3178 	if (rdev->constraints->ramp_delay)
3179 		ramp_delay = rdev->constraints->ramp_delay;
3180 	else if (rdev->desc->ramp_delay)
3181 		ramp_delay = rdev->desc->ramp_delay;
3182 	else if (rdev->constraints->settling_time)
3183 		return rdev->constraints->settling_time;
3184 	else if (rdev->constraints->settling_time_up &&
3185 		 (new_uV > old_uV))
3186 		return rdev->constraints->settling_time_up;
3187 	else if (rdev->constraints->settling_time_down &&
3188 		 (new_uV < old_uV))
3189 		return rdev->constraints->settling_time_down;
3190 
3191 	if (ramp_delay == 0) {
3192 		rdev_dbg(rdev, "ramp_delay not set\n");
3193 		return 0;
3194 	}
3195 
3196 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197 }
3198 
3199 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200 				     int min_uV, int max_uV)
3201 {
3202 	int ret;
3203 	int delay = 0;
3204 	int best_val = 0;
3205 	unsigned int selector;
3206 	int old_selector = -1;
3207 	const struct regulator_ops *ops = rdev->desc->ops;
3208 	int old_uV = regulator_get_voltage_rdev(rdev);
3209 
3210 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211 
3212 	min_uV += rdev->constraints->uV_offset;
3213 	max_uV += rdev->constraints->uV_offset;
3214 
3215 	/*
3216 	 * If we can't obtain the old selector there is not enough
3217 	 * info to call set_voltage_time_sel().
3218 	 */
3219 	if (_regulator_is_enabled(rdev) &&
3220 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221 		old_selector = ops->get_voltage_sel(rdev);
3222 		if (old_selector < 0)
3223 			return old_selector;
3224 	}
3225 
3226 	if (ops->set_voltage) {
3227 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228 						  &selector);
3229 
3230 		if (ret >= 0) {
3231 			if (ops->list_voltage)
3232 				best_val = ops->list_voltage(rdev,
3233 							     selector);
3234 			else
3235 				best_val = regulator_get_voltage_rdev(rdev);
3236 		}
3237 
3238 	} else if (ops->set_voltage_sel) {
3239 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240 		if (ret >= 0) {
3241 			best_val = ops->list_voltage(rdev, ret);
3242 			if (min_uV <= best_val && max_uV >= best_val) {
3243 				selector = ret;
3244 				if (old_selector == selector)
3245 					ret = 0;
3246 				else if (rdev->desc->vsel_step)
3247 					ret = _regulator_set_voltage_sel_step(
3248 						rdev, best_val, selector);
3249 				else
3250 					ret = _regulator_call_set_voltage_sel(
3251 						rdev, best_val, selector);
3252 			} else {
3253 				ret = -EINVAL;
3254 			}
3255 		}
3256 	} else {
3257 		ret = -EINVAL;
3258 	}
3259 
3260 	if (ret)
3261 		goto out;
3262 
3263 	if (ops->set_voltage_time_sel) {
3264 		/*
3265 		 * Call set_voltage_time_sel if successfully obtained
3266 		 * old_selector
3267 		 */
3268 		if (old_selector >= 0 && old_selector != selector)
3269 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3270 							  selector);
3271 	} else {
3272 		if (old_uV != best_val) {
3273 			if (ops->set_voltage_time)
3274 				delay = ops->set_voltage_time(rdev, old_uV,
3275 							      best_val);
3276 			else
3277 				delay = _regulator_set_voltage_time(rdev,
3278 								    old_uV,
3279 								    best_val);
3280 		}
3281 	}
3282 
3283 	if (delay < 0) {
3284 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285 		delay = 0;
3286 	}
3287 
3288 	/* Insert any necessary delays */
3289 	if (delay >= 1000) {
3290 		mdelay(delay / 1000);
3291 		udelay(delay % 1000);
3292 	} else if (delay) {
3293 		udelay(delay);
3294 	}
3295 
3296 	if (best_val >= 0) {
3297 		unsigned long data = best_val;
3298 
3299 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300 				     (void *)data);
3301 	}
3302 
3303 out:
3304 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305 
3306 	return ret;
3307 }
3308 
3309 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310 				  int min_uV, int max_uV, suspend_state_t state)
3311 {
3312 	struct regulator_state *rstate;
3313 	int uV, sel;
3314 
3315 	rstate = regulator_get_suspend_state(rdev, state);
3316 	if (rstate == NULL)
3317 		return -EINVAL;
3318 
3319 	if (min_uV < rstate->min_uV)
3320 		min_uV = rstate->min_uV;
3321 	if (max_uV > rstate->max_uV)
3322 		max_uV = rstate->max_uV;
3323 
3324 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325 	if (sel < 0)
3326 		return sel;
3327 
3328 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3329 	if (uV >= min_uV && uV <= max_uV)
3330 		rstate->uV = uV;
3331 
3332 	return 0;
3333 }
3334 
3335 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336 					  int min_uV, int max_uV,
3337 					  suspend_state_t state)
3338 {
3339 	struct regulator_dev *rdev = regulator->rdev;
3340 	struct regulator_voltage *voltage = &regulator->voltage[state];
3341 	int ret = 0;
3342 	int old_min_uV, old_max_uV;
3343 	int current_uV;
3344 
3345 	/* If we're setting the same range as last time the change
3346 	 * should be a noop (some cpufreq implementations use the same
3347 	 * voltage for multiple frequencies, for example).
3348 	 */
3349 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350 		goto out;
3351 
3352 	/* If we're trying to set a range that overlaps the current voltage,
3353 	 * return successfully even though the regulator does not support
3354 	 * changing the voltage.
3355 	 */
3356 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357 		current_uV = regulator_get_voltage_rdev(rdev);
3358 		if (min_uV <= current_uV && current_uV <= max_uV) {
3359 			voltage->min_uV = min_uV;
3360 			voltage->max_uV = max_uV;
3361 			goto out;
3362 		}
3363 	}
3364 
3365 	/* sanity check */
3366 	if (!rdev->desc->ops->set_voltage &&
3367 	    !rdev->desc->ops->set_voltage_sel) {
3368 		ret = -EINVAL;
3369 		goto out;
3370 	}
3371 
3372 	/* constraints check */
3373 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374 	if (ret < 0)
3375 		goto out;
3376 
3377 	/* restore original values in case of error */
3378 	old_min_uV = voltage->min_uV;
3379 	old_max_uV = voltage->max_uV;
3380 	voltage->min_uV = min_uV;
3381 	voltage->max_uV = max_uV;
3382 
3383 	/* for not coupled regulators this will just set the voltage */
3384 	ret = regulator_balance_voltage(rdev, state);
3385 	if (ret < 0) {
3386 		voltage->min_uV = old_min_uV;
3387 		voltage->max_uV = old_max_uV;
3388 	}
3389 
3390 out:
3391 	return ret;
3392 }
3393 
3394 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395 			       int max_uV, suspend_state_t state)
3396 {
3397 	int best_supply_uV = 0;
3398 	int supply_change_uV = 0;
3399 	int ret;
3400 
3401 	if (rdev->supply &&
3402 	    regulator_ops_is_valid(rdev->supply->rdev,
3403 				   REGULATOR_CHANGE_VOLTAGE) &&
3404 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405 					   rdev->desc->ops->get_voltage_sel))) {
3406 		int current_supply_uV;
3407 		int selector;
3408 
3409 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410 		if (selector < 0) {
3411 			ret = selector;
3412 			goto out;
3413 		}
3414 
3415 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416 		if (best_supply_uV < 0) {
3417 			ret = best_supply_uV;
3418 			goto out;
3419 		}
3420 
3421 		best_supply_uV += rdev->desc->min_dropout_uV;
3422 
3423 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424 		if (current_supply_uV < 0) {
3425 			ret = current_supply_uV;
3426 			goto out;
3427 		}
3428 
3429 		supply_change_uV = best_supply_uV - current_supply_uV;
3430 	}
3431 
3432 	if (supply_change_uV > 0) {
3433 		ret = regulator_set_voltage_unlocked(rdev->supply,
3434 				best_supply_uV, INT_MAX, state);
3435 		if (ret) {
3436 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437 					ret);
3438 			goto out;
3439 		}
3440 	}
3441 
3442 	if (state == PM_SUSPEND_ON)
3443 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444 	else
3445 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446 							max_uV, state);
3447 	if (ret < 0)
3448 		goto out;
3449 
3450 	if (supply_change_uV < 0) {
3451 		ret = regulator_set_voltage_unlocked(rdev->supply,
3452 				best_supply_uV, INT_MAX, state);
3453 		if (ret)
3454 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455 					ret);
3456 		/* No need to fail here */
3457 		ret = 0;
3458 	}
3459 
3460 out:
3461 	return ret;
3462 }
3463 
3464 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465 					int *current_uV, int *min_uV)
3466 {
3467 	struct regulation_constraints *constraints = rdev->constraints;
3468 
3469 	/* Limit voltage change only if necessary */
3470 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471 		return 1;
3472 
3473 	if (*current_uV < 0) {
3474 		*current_uV = regulator_get_voltage_rdev(rdev);
3475 
3476 		if (*current_uV < 0)
3477 			return *current_uV;
3478 	}
3479 
3480 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481 		return 1;
3482 
3483 	/* Clamp target voltage within the given step */
3484 	if (*current_uV < *min_uV)
3485 		*min_uV = min(*current_uV + constraints->max_uV_step,
3486 			      *min_uV);
3487 	else
3488 		*min_uV = max(*current_uV - constraints->max_uV_step,
3489 			      *min_uV);
3490 
3491 	return 0;
3492 }
3493 
3494 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495 					 int *current_uV,
3496 					 int *min_uV, int *max_uV,
3497 					 suspend_state_t state,
3498 					 int n_coupled)
3499 {
3500 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3501 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502 	struct regulation_constraints *constraints = rdev->constraints;
3503 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504 	int max_current_uV = 0, min_current_uV = INT_MAX;
3505 	int highest_min_uV = 0, target_uV, possible_uV;
3506 	int i, ret, max_spread;
3507 	bool done;
3508 
3509 	*current_uV = -1;
3510 
3511 	/*
3512 	 * If there are no coupled regulators, simply set the voltage
3513 	 * demanded by consumers.
3514 	 */
3515 	if (n_coupled == 1) {
3516 		/*
3517 		 * If consumers don't provide any demands, set voltage
3518 		 * to min_uV
3519 		 */
3520 		desired_min_uV = constraints->min_uV;
3521 		desired_max_uV = constraints->max_uV;
3522 
3523 		ret = regulator_check_consumers(rdev,
3524 						&desired_min_uV,
3525 						&desired_max_uV, state);
3526 		if (ret < 0)
3527 			return ret;
3528 
3529 		possible_uV = desired_min_uV;
3530 		done = true;
3531 
3532 		goto finish;
3533 	}
3534 
3535 	/* Find highest min desired voltage */
3536 	for (i = 0; i < n_coupled; i++) {
3537 		int tmp_min = 0;
3538 		int tmp_max = INT_MAX;
3539 
3540 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541 
3542 		ret = regulator_check_consumers(c_rdevs[i],
3543 						&tmp_min,
3544 						&tmp_max, state);
3545 		if (ret < 0)
3546 			return ret;
3547 
3548 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549 		if (ret < 0)
3550 			return ret;
3551 
3552 		highest_min_uV = max(highest_min_uV, tmp_min);
3553 
3554 		if (i == 0) {
3555 			desired_min_uV = tmp_min;
3556 			desired_max_uV = tmp_max;
3557 		}
3558 	}
3559 
3560 	max_spread = constraints->max_spread[0];
3561 
3562 	/*
3563 	 * Let target_uV be equal to the desired one if possible.
3564 	 * If not, set it to minimum voltage, allowed by other coupled
3565 	 * regulators.
3566 	 */
3567 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568 
3569 	/*
3570 	 * Find min and max voltages, which currently aren't violating
3571 	 * max_spread.
3572 	 */
3573 	for (i = 1; i < n_coupled; i++) {
3574 		int tmp_act;
3575 
3576 		if (!_regulator_is_enabled(c_rdevs[i]))
3577 			continue;
3578 
3579 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580 		if (tmp_act < 0)
3581 			return tmp_act;
3582 
3583 		min_current_uV = min(tmp_act, min_current_uV);
3584 		max_current_uV = max(tmp_act, max_current_uV);
3585 	}
3586 
3587 	/* There aren't any other regulators enabled */
3588 	if (max_current_uV == 0) {
3589 		possible_uV = target_uV;
3590 	} else {
3591 		/*
3592 		 * Correct target voltage, so as it currently isn't
3593 		 * violating max_spread
3594 		 */
3595 		possible_uV = max(target_uV, max_current_uV - max_spread);
3596 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3597 	}
3598 
3599 	if (possible_uV > desired_max_uV)
3600 		return -EINVAL;
3601 
3602 	done = (possible_uV == target_uV);
3603 	desired_min_uV = possible_uV;
3604 
3605 finish:
3606 	/* Apply max_uV_step constraint if necessary */
3607 	if (state == PM_SUSPEND_ON) {
3608 		ret = regulator_limit_voltage_step(rdev, current_uV,
3609 						   &desired_min_uV);
3610 		if (ret < 0)
3611 			return ret;
3612 
3613 		if (ret == 0)
3614 			done = false;
3615 	}
3616 
3617 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3618 	if (n_coupled > 1 && *current_uV == -1) {
3619 
3620 		if (_regulator_is_enabled(rdev)) {
3621 			ret = regulator_get_voltage_rdev(rdev);
3622 			if (ret < 0)
3623 				return ret;
3624 
3625 			*current_uV = ret;
3626 		} else {
3627 			*current_uV = desired_min_uV;
3628 		}
3629 	}
3630 
3631 	*min_uV = desired_min_uV;
3632 	*max_uV = desired_max_uV;
3633 
3634 	return done;
3635 }
3636 
3637 static int regulator_balance_voltage(struct regulator_dev *rdev,
3638 				     suspend_state_t state)
3639 {
3640 	struct regulator_dev **c_rdevs;
3641 	struct regulator_dev *best_rdev;
3642 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 	struct regulator_coupler *coupler = c_desc->coupler;
3644 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645 	unsigned int delta, best_delta;
3646 	unsigned long c_rdev_done = 0;
3647 	bool best_c_rdev_done;
3648 
3649 	c_rdevs = c_desc->coupled_rdevs;
3650 	n_coupled = c_desc->n_coupled;
3651 
3652 	/*
3653 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3654 	 * other coupled regulators.
3655 	 */
3656 	if (state != PM_SUSPEND_ON)
3657 		n_coupled = 1;
3658 
3659 	if (c_desc->n_resolved < n_coupled) {
3660 		rdev_err(rdev, "Not all coupled regulators registered\n");
3661 		return -EPERM;
3662 	}
3663 
3664 	/* Invoke custom balancer for customized couplers */
3665 	if (coupler && coupler->balance_voltage)
3666 		return coupler->balance_voltage(coupler, rdev, state);
3667 
3668 	/*
3669 	 * Find the best possible voltage change on each loop. Leave the loop
3670 	 * if there isn't any possible change.
3671 	 */
3672 	do {
3673 		best_c_rdev_done = false;
3674 		best_delta = 0;
3675 		best_min_uV = 0;
3676 		best_max_uV = 0;
3677 		best_c_rdev = 0;
3678 		best_rdev = NULL;
3679 
3680 		/*
3681 		 * Find highest difference between optimal voltage
3682 		 * and current voltage.
3683 		 */
3684 		for (i = 0; i < n_coupled; i++) {
3685 			/*
3686 			 * optimal_uV is the best voltage that can be set for
3687 			 * i-th regulator at the moment without violating
3688 			 * max_spread constraint in order to balance
3689 			 * the coupled voltages.
3690 			 */
3691 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692 
3693 			if (test_bit(i, &c_rdev_done))
3694 				continue;
3695 
3696 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3697 							    &current_uV,
3698 							    &optimal_uV,
3699 							    &optimal_max_uV,
3700 							    state, n_coupled);
3701 			if (ret < 0)
3702 				goto out;
3703 
3704 			delta = abs(optimal_uV - current_uV);
3705 
3706 			if (delta && best_delta <= delta) {
3707 				best_c_rdev_done = ret;
3708 				best_delta = delta;
3709 				best_rdev = c_rdevs[i];
3710 				best_min_uV = optimal_uV;
3711 				best_max_uV = optimal_max_uV;
3712 				best_c_rdev = i;
3713 			}
3714 		}
3715 
3716 		/* Nothing to change, return successfully */
3717 		if (!best_rdev) {
3718 			ret = 0;
3719 			goto out;
3720 		}
3721 
3722 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723 						 best_max_uV, state);
3724 
3725 		if (ret < 0)
3726 			goto out;
3727 
3728 		if (best_c_rdev_done)
3729 			set_bit(best_c_rdev, &c_rdev_done);
3730 
3731 	} while (n_coupled > 1);
3732 
3733 out:
3734 	return ret;
3735 }
3736 
3737 /**
3738  * regulator_set_voltage - set regulator output voltage
3739  * @regulator: regulator source
3740  * @min_uV: Minimum required voltage in uV
3741  * @max_uV: Maximum acceptable voltage in uV
3742  *
3743  * Sets a voltage regulator to the desired output voltage. This can be set
3744  * during any regulator state. IOW, regulator can be disabled or enabled.
3745  *
3746  * If the regulator is enabled then the voltage will change to the new value
3747  * immediately otherwise if the regulator is disabled the regulator will
3748  * output at the new voltage when enabled.
3749  *
3750  * NOTE: If the regulator is shared between several devices then the lowest
3751  * request voltage that meets the system constraints will be used.
3752  * Regulator system constraints must be set for this regulator before
3753  * calling this function otherwise this call will fail.
3754  */
3755 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756 {
3757 	struct ww_acquire_ctx ww_ctx;
3758 	int ret;
3759 
3760 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761 
3762 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763 					     PM_SUSPEND_ON);
3764 
3765 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766 
3767 	return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770 
3771 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772 					   suspend_state_t state, bool en)
3773 {
3774 	struct regulator_state *rstate;
3775 
3776 	rstate = regulator_get_suspend_state(rdev, state);
3777 	if (rstate == NULL)
3778 		return -EINVAL;
3779 
3780 	if (!rstate->changeable)
3781 		return -EPERM;
3782 
3783 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784 
3785 	return 0;
3786 }
3787 
3788 int regulator_suspend_enable(struct regulator_dev *rdev,
3789 				    suspend_state_t state)
3790 {
3791 	return regulator_suspend_toggle(rdev, state, true);
3792 }
3793 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794 
3795 int regulator_suspend_disable(struct regulator_dev *rdev,
3796 				     suspend_state_t state)
3797 {
3798 	struct regulator *regulator;
3799 	struct regulator_voltage *voltage;
3800 
3801 	/*
3802 	 * if any consumer wants this regulator device keeping on in
3803 	 * suspend states, don't set it as disabled.
3804 	 */
3805 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806 		voltage = &regulator->voltage[state];
3807 		if (voltage->min_uV || voltage->max_uV)
3808 			return 0;
3809 	}
3810 
3811 	return regulator_suspend_toggle(rdev, state, false);
3812 }
3813 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814 
3815 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816 					  int min_uV, int max_uV,
3817 					  suspend_state_t state)
3818 {
3819 	struct regulator_dev *rdev = regulator->rdev;
3820 	struct regulator_state *rstate;
3821 
3822 	rstate = regulator_get_suspend_state(rdev, state);
3823 	if (rstate == NULL)
3824 		return -EINVAL;
3825 
3826 	if (rstate->min_uV == rstate->max_uV) {
3827 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828 		return -EPERM;
3829 	}
3830 
3831 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832 }
3833 
3834 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835 				  int max_uV, suspend_state_t state)
3836 {
3837 	struct ww_acquire_ctx ww_ctx;
3838 	int ret;
3839 
3840 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842 		return -EINVAL;
3843 
3844 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845 
3846 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847 					     max_uV, state);
3848 
3849 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850 
3851 	return ret;
3852 }
3853 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854 
3855 /**
3856  * regulator_set_voltage_time - get raise/fall time
3857  * @regulator: regulator source
3858  * @old_uV: starting voltage in microvolts
3859  * @new_uV: target voltage in microvolts
3860  *
3861  * Provided with the starting and ending voltage, this function attempts to
3862  * calculate the time in microseconds required to rise or fall to this new
3863  * voltage.
3864  */
3865 int regulator_set_voltage_time(struct regulator *regulator,
3866 			       int old_uV, int new_uV)
3867 {
3868 	struct regulator_dev *rdev = regulator->rdev;
3869 	const struct regulator_ops *ops = rdev->desc->ops;
3870 	int old_sel = -1;
3871 	int new_sel = -1;
3872 	int voltage;
3873 	int i;
3874 
3875 	if (ops->set_voltage_time)
3876 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3877 	else if (!ops->set_voltage_time_sel)
3878 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879 
3880 	/* Currently requires operations to do this */
3881 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3882 		return -EINVAL;
3883 
3884 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3885 		/* We only look for exact voltage matches here */
3886 		voltage = regulator_list_voltage(regulator, i);
3887 		if (voltage < 0)
3888 			return -EINVAL;
3889 		if (voltage == 0)
3890 			continue;
3891 		if (voltage == old_uV)
3892 			old_sel = i;
3893 		if (voltage == new_uV)
3894 			new_sel = i;
3895 	}
3896 
3897 	if (old_sel < 0 || new_sel < 0)
3898 		return -EINVAL;
3899 
3900 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903 
3904 /**
3905  * regulator_set_voltage_time_sel - get raise/fall time
3906  * @rdev: regulator source device
3907  * @old_selector: selector for starting voltage
3908  * @new_selector: selector for target voltage
3909  *
3910  * Provided with the starting and target voltage selectors, this function
3911  * returns time in microseconds required to rise or fall to this new voltage
3912  *
3913  * Drivers providing ramp_delay in regulation_constraints can use this as their
3914  * set_voltage_time_sel() operation.
3915  */
3916 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917 				   unsigned int old_selector,
3918 				   unsigned int new_selector)
3919 {
3920 	int old_volt, new_volt;
3921 
3922 	/* sanity check */
3923 	if (!rdev->desc->ops->list_voltage)
3924 		return -EINVAL;
3925 
3926 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928 
3929 	if (rdev->desc->ops->set_voltage_time)
3930 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931 							 new_volt);
3932 	else
3933 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934 }
3935 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936 
3937 /**
3938  * regulator_sync_voltage - re-apply last regulator output voltage
3939  * @regulator: regulator source
3940  *
3941  * Re-apply the last configured voltage.  This is intended to be used
3942  * where some external control source the consumer is cooperating with
3943  * has caused the configured voltage to change.
3944  */
3945 int regulator_sync_voltage(struct regulator *regulator)
3946 {
3947 	struct regulator_dev *rdev = regulator->rdev;
3948 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949 	int ret, min_uV, max_uV;
3950 
3951 	regulator_lock(rdev);
3952 
3953 	if (!rdev->desc->ops->set_voltage &&
3954 	    !rdev->desc->ops->set_voltage_sel) {
3955 		ret = -EINVAL;
3956 		goto out;
3957 	}
3958 
3959 	/* This is only going to work if we've had a voltage configured. */
3960 	if (!voltage->min_uV && !voltage->max_uV) {
3961 		ret = -EINVAL;
3962 		goto out;
3963 	}
3964 
3965 	min_uV = voltage->min_uV;
3966 	max_uV = voltage->max_uV;
3967 
3968 	/* This should be a paranoia check... */
3969 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970 	if (ret < 0)
3971 		goto out;
3972 
3973 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974 	if (ret < 0)
3975 		goto out;
3976 
3977 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978 
3979 out:
3980 	regulator_unlock(rdev);
3981 	return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984 
3985 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986 {
3987 	int sel, ret;
3988 	bool bypassed;
3989 
3990 	if (rdev->desc->ops->get_bypass) {
3991 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992 		if (ret < 0)
3993 			return ret;
3994 		if (bypassed) {
3995 			/* if bypassed the regulator must have a supply */
3996 			if (!rdev->supply) {
3997 				rdev_err(rdev,
3998 					 "bypassed regulator has no supply!\n");
3999 				return -EPROBE_DEFER;
4000 			}
4001 
4002 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4003 		}
4004 	}
4005 
4006 	if (rdev->desc->ops->get_voltage_sel) {
4007 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4008 		if (sel < 0)
4009 			return sel;
4010 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4011 	} else if (rdev->desc->ops->get_voltage) {
4012 		ret = rdev->desc->ops->get_voltage(rdev);
4013 	} else if (rdev->desc->ops->list_voltage) {
4014 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4015 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016 		ret = rdev->desc->fixed_uV;
4017 	} else if (rdev->supply) {
4018 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019 	} else {
4020 		return -EINVAL;
4021 	}
4022 
4023 	if (ret < 0)
4024 		return ret;
4025 	return ret - rdev->constraints->uV_offset;
4026 }
4027 
4028 /**
4029  * regulator_get_voltage - get regulator output voltage
4030  * @regulator: regulator source
4031  *
4032  * This returns the current regulator voltage in uV.
4033  *
4034  * NOTE: If the regulator is disabled it will return the voltage value. This
4035  * function should not be used to determine regulator state.
4036  */
4037 int regulator_get_voltage(struct regulator *regulator)
4038 {
4039 	struct ww_acquire_ctx ww_ctx;
4040 	int ret;
4041 
4042 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043 	ret = regulator_get_voltage_rdev(regulator->rdev);
4044 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045 
4046 	return ret;
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049 
4050 /**
4051  * regulator_set_current_limit - set regulator output current limit
4052  * @regulator: regulator source
4053  * @min_uA: Minimum supported current in uA
4054  * @max_uA: Maximum supported current in uA
4055  *
4056  * Sets current sink to the desired output current. This can be set during
4057  * any regulator state. IOW, regulator can be disabled or enabled.
4058  *
4059  * If the regulator is enabled then the current will change to the new value
4060  * immediately otherwise if the regulator is disabled the regulator will
4061  * output at the new current when enabled.
4062  *
4063  * NOTE: Regulator system constraints must be set for this regulator before
4064  * calling this function otherwise this call will fail.
4065  */
4066 int regulator_set_current_limit(struct regulator *regulator,
4067 			       int min_uA, int max_uA)
4068 {
4069 	struct regulator_dev *rdev = regulator->rdev;
4070 	int ret;
4071 
4072 	regulator_lock(rdev);
4073 
4074 	/* sanity check */
4075 	if (!rdev->desc->ops->set_current_limit) {
4076 		ret = -EINVAL;
4077 		goto out;
4078 	}
4079 
4080 	/* constraints check */
4081 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082 	if (ret < 0)
4083 		goto out;
4084 
4085 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086 out:
4087 	regulator_unlock(rdev);
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091 
4092 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093 {
4094 	/* sanity check */
4095 	if (!rdev->desc->ops->get_current_limit)
4096 		return -EINVAL;
4097 
4098 	return rdev->desc->ops->get_current_limit(rdev);
4099 }
4100 
4101 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102 {
4103 	int ret;
4104 
4105 	regulator_lock(rdev);
4106 	ret = _regulator_get_current_limit_unlocked(rdev);
4107 	regulator_unlock(rdev);
4108 
4109 	return ret;
4110 }
4111 
4112 /**
4113  * regulator_get_current_limit - get regulator output current
4114  * @regulator: regulator source
4115  *
4116  * This returns the current supplied by the specified current sink in uA.
4117  *
4118  * NOTE: If the regulator is disabled it will return the current value. This
4119  * function should not be used to determine regulator state.
4120  */
4121 int regulator_get_current_limit(struct regulator *regulator)
4122 {
4123 	return _regulator_get_current_limit(regulator->rdev);
4124 }
4125 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126 
4127 /**
4128  * regulator_set_mode - set regulator operating mode
4129  * @regulator: regulator source
4130  * @mode: operating mode - one of the REGULATOR_MODE constants
4131  *
4132  * Set regulator operating mode to increase regulator efficiency or improve
4133  * regulation performance.
4134  *
4135  * NOTE: Regulator system constraints must be set for this regulator before
4136  * calling this function otherwise this call will fail.
4137  */
4138 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139 {
4140 	struct regulator_dev *rdev = regulator->rdev;
4141 	int ret;
4142 	int regulator_curr_mode;
4143 
4144 	regulator_lock(rdev);
4145 
4146 	/* sanity check */
4147 	if (!rdev->desc->ops->set_mode) {
4148 		ret = -EINVAL;
4149 		goto out;
4150 	}
4151 
4152 	/* return if the same mode is requested */
4153 	if (rdev->desc->ops->get_mode) {
4154 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155 		if (regulator_curr_mode == mode) {
4156 			ret = 0;
4157 			goto out;
4158 		}
4159 	}
4160 
4161 	/* constraints check */
4162 	ret = regulator_mode_constrain(rdev, &mode);
4163 	if (ret < 0)
4164 		goto out;
4165 
4166 	ret = rdev->desc->ops->set_mode(rdev, mode);
4167 out:
4168 	regulator_unlock(rdev);
4169 	return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_set_mode);
4172 
4173 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174 {
4175 	/* sanity check */
4176 	if (!rdev->desc->ops->get_mode)
4177 		return -EINVAL;
4178 
4179 	return rdev->desc->ops->get_mode(rdev);
4180 }
4181 
4182 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183 {
4184 	int ret;
4185 
4186 	regulator_lock(rdev);
4187 	ret = _regulator_get_mode_unlocked(rdev);
4188 	regulator_unlock(rdev);
4189 
4190 	return ret;
4191 }
4192 
4193 /**
4194  * regulator_get_mode - get regulator operating mode
4195  * @regulator: regulator source
4196  *
4197  * Get the current regulator operating mode.
4198  */
4199 unsigned int regulator_get_mode(struct regulator *regulator)
4200 {
4201 	return _regulator_get_mode(regulator->rdev);
4202 }
4203 EXPORT_SYMBOL_GPL(regulator_get_mode);
4204 
4205 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206 					unsigned int *flags)
4207 {
4208 	int ret;
4209 
4210 	regulator_lock(rdev);
4211 
4212 	/* sanity check */
4213 	if (!rdev->desc->ops->get_error_flags) {
4214 		ret = -EINVAL;
4215 		goto out;
4216 	}
4217 
4218 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219 out:
4220 	regulator_unlock(rdev);
4221 	return ret;
4222 }
4223 
4224 /**
4225  * regulator_get_error_flags - get regulator error information
4226  * @regulator: regulator source
4227  * @flags: pointer to store error flags
4228  *
4229  * Get the current regulator error information.
4230  */
4231 int regulator_get_error_flags(struct regulator *regulator,
4232 				unsigned int *flags)
4233 {
4234 	return _regulator_get_error_flags(regulator->rdev, flags);
4235 }
4236 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237 
4238 /**
4239  * regulator_set_load - set regulator load
4240  * @regulator: regulator source
4241  * @uA_load: load current
4242  *
4243  * Notifies the regulator core of a new device load. This is then used by
4244  * DRMS (if enabled by constraints) to set the most efficient regulator
4245  * operating mode for the new regulator loading.
4246  *
4247  * Consumer devices notify their supply regulator of the maximum power
4248  * they will require (can be taken from device datasheet in the power
4249  * consumption tables) when they change operational status and hence power
4250  * state. Examples of operational state changes that can affect power
4251  * consumption are :-
4252  *
4253  *    o Device is opened / closed.
4254  *    o Device I/O is about to begin or has just finished.
4255  *    o Device is idling in between work.
4256  *
4257  * This information is also exported via sysfs to userspace.
4258  *
4259  * DRMS will sum the total requested load on the regulator and change
4260  * to the most efficient operating mode if platform constraints allow.
4261  *
4262  * NOTE: when a regulator consumer requests to have a regulator
4263  * disabled then any load that consumer requested no longer counts
4264  * toward the total requested load.  If the regulator is re-enabled
4265  * then the previously requested load will start counting again.
4266  *
4267  * If a regulator is an always-on regulator then an individual consumer's
4268  * load will still be removed if that consumer is fully disabled.
4269  *
4270  * On error a negative errno is returned.
4271  */
4272 int regulator_set_load(struct regulator *regulator, int uA_load)
4273 {
4274 	struct regulator_dev *rdev = regulator->rdev;
4275 	int old_uA_load;
4276 	int ret = 0;
4277 
4278 	regulator_lock(rdev);
4279 	old_uA_load = regulator->uA_load;
4280 	regulator->uA_load = uA_load;
4281 	if (regulator->enable_count && old_uA_load != uA_load) {
4282 		ret = drms_uA_update(rdev);
4283 		if (ret < 0)
4284 			regulator->uA_load = old_uA_load;
4285 	}
4286 	regulator_unlock(rdev);
4287 
4288 	return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_set_load);
4291 
4292 /**
4293  * regulator_allow_bypass - allow the regulator to go into bypass mode
4294  *
4295  * @regulator: Regulator to configure
4296  * @enable: enable or disable bypass mode
4297  *
4298  * Allow the regulator to go into bypass mode if all other consumers
4299  * for the regulator also enable bypass mode and the machine
4300  * constraints allow this.  Bypass mode means that the regulator is
4301  * simply passing the input directly to the output with no regulation.
4302  */
4303 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304 {
4305 	struct regulator_dev *rdev = regulator->rdev;
4306 	int ret = 0;
4307 
4308 	if (!rdev->desc->ops->set_bypass)
4309 		return 0;
4310 
4311 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312 		return 0;
4313 
4314 	regulator_lock(rdev);
4315 
4316 	if (enable && !regulator->bypass) {
4317 		rdev->bypass_count++;
4318 
4319 		if (rdev->bypass_count == rdev->open_count) {
4320 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4321 			if (ret != 0)
4322 				rdev->bypass_count--;
4323 		}
4324 
4325 	} else if (!enable && regulator->bypass) {
4326 		rdev->bypass_count--;
4327 
4328 		if (rdev->bypass_count != rdev->open_count) {
4329 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4330 			if (ret != 0)
4331 				rdev->bypass_count++;
4332 		}
4333 	}
4334 
4335 	if (ret == 0)
4336 		regulator->bypass = enable;
4337 
4338 	regulator_unlock(rdev);
4339 
4340 	return ret;
4341 }
4342 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343 
4344 /**
4345  * regulator_register_notifier - register regulator event notifier
4346  * @regulator: regulator source
4347  * @nb: notifier block
4348  *
4349  * Register notifier block to receive regulator events.
4350  */
4351 int regulator_register_notifier(struct regulator *regulator,
4352 			      struct notifier_block *nb)
4353 {
4354 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4355 						nb);
4356 }
4357 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358 
4359 /**
4360  * regulator_unregister_notifier - unregister regulator event notifier
4361  * @regulator: regulator source
4362  * @nb: notifier block
4363  *
4364  * Unregister regulator event notifier block.
4365  */
4366 int regulator_unregister_notifier(struct regulator *regulator,
4367 				struct notifier_block *nb)
4368 {
4369 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4370 						  nb);
4371 }
4372 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373 
4374 /* notify regulator consumers and downstream regulator consumers.
4375  * Note mutex must be held by caller.
4376  */
4377 static int _notifier_call_chain(struct regulator_dev *rdev,
4378 				  unsigned long event, void *data)
4379 {
4380 	/* call rdev chain first */
4381 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382 }
4383 
4384 /**
4385  * regulator_bulk_get - get multiple regulator consumers
4386  *
4387  * @dev:           Device to supply
4388  * @num_consumers: Number of consumers to register
4389  * @consumers:     Configuration of consumers; clients are stored here.
4390  *
4391  * @return 0 on success, an errno on failure.
4392  *
4393  * This helper function allows drivers to get several regulator
4394  * consumers in one operation.  If any of the regulators cannot be
4395  * acquired then any regulators that were allocated will be freed
4396  * before returning to the caller.
4397  */
4398 int regulator_bulk_get(struct device *dev, int num_consumers,
4399 		       struct regulator_bulk_data *consumers)
4400 {
4401 	int i;
4402 	int ret;
4403 
4404 	for (i = 0; i < num_consumers; i++)
4405 		consumers[i].consumer = NULL;
4406 
4407 	for (i = 0; i < num_consumers; i++) {
4408 		consumers[i].consumer = regulator_get(dev,
4409 						      consumers[i].supply);
4410 		if (IS_ERR(consumers[i].consumer)) {
4411 			ret = PTR_ERR(consumers[i].consumer);
4412 			consumers[i].consumer = NULL;
4413 			goto err;
4414 		}
4415 	}
4416 
4417 	return 0;
4418 
4419 err:
4420 	if (ret != -EPROBE_DEFER)
4421 		dev_err(dev, "Failed to get supply '%s': %d\n",
4422 			consumers[i].supply, ret);
4423 	else
4424 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425 			consumers[i].supply);
4426 
4427 	while (--i >= 0)
4428 		regulator_put(consumers[i].consumer);
4429 
4430 	return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433 
4434 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435 {
4436 	struct regulator_bulk_data *bulk = data;
4437 
4438 	bulk->ret = regulator_enable(bulk->consumer);
4439 }
4440 
4441 /**
4442  * regulator_bulk_enable - enable multiple regulator consumers
4443  *
4444  * @num_consumers: Number of consumers
4445  * @consumers:     Consumer data; clients are stored here.
4446  * @return         0 on success, an errno on failure
4447  *
4448  * This convenience API allows consumers to enable multiple regulator
4449  * clients in a single API call.  If any consumers cannot be enabled
4450  * then any others that were enabled will be disabled again prior to
4451  * return.
4452  */
4453 int regulator_bulk_enable(int num_consumers,
4454 			  struct regulator_bulk_data *consumers)
4455 {
4456 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457 	int i;
4458 	int ret = 0;
4459 
4460 	for (i = 0; i < num_consumers; i++) {
4461 		async_schedule_domain(regulator_bulk_enable_async,
4462 				      &consumers[i], &async_domain);
4463 	}
4464 
4465 	async_synchronize_full_domain(&async_domain);
4466 
4467 	/* If any consumer failed we need to unwind any that succeeded */
4468 	for (i = 0; i < num_consumers; i++) {
4469 		if (consumers[i].ret != 0) {
4470 			ret = consumers[i].ret;
4471 			goto err;
4472 		}
4473 	}
4474 
4475 	return 0;
4476 
4477 err:
4478 	for (i = 0; i < num_consumers; i++) {
4479 		if (consumers[i].ret < 0)
4480 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481 			       consumers[i].ret);
4482 		else
4483 			regulator_disable(consumers[i].consumer);
4484 	}
4485 
4486 	return ret;
4487 }
4488 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489 
4490 /**
4491  * regulator_bulk_disable - disable multiple regulator consumers
4492  *
4493  * @num_consumers: Number of consumers
4494  * @consumers:     Consumer data; clients are stored here.
4495  * @return         0 on success, an errno on failure
4496  *
4497  * This convenience API allows consumers to disable multiple regulator
4498  * clients in a single API call.  If any consumers cannot be disabled
4499  * then any others that were disabled will be enabled again prior to
4500  * return.
4501  */
4502 int regulator_bulk_disable(int num_consumers,
4503 			   struct regulator_bulk_data *consumers)
4504 {
4505 	int i;
4506 	int ret, r;
4507 
4508 	for (i = num_consumers - 1; i >= 0; --i) {
4509 		ret = regulator_disable(consumers[i].consumer);
4510 		if (ret != 0)
4511 			goto err;
4512 	}
4513 
4514 	return 0;
4515 
4516 err:
4517 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518 	for (++i; i < num_consumers; ++i) {
4519 		r = regulator_enable(consumers[i].consumer);
4520 		if (r != 0)
4521 			pr_err("Failed to re-enable %s: %d\n",
4522 			       consumers[i].supply, r);
4523 	}
4524 
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528 
4529 /**
4530  * regulator_bulk_force_disable - force disable multiple regulator consumers
4531  *
4532  * @num_consumers: Number of consumers
4533  * @consumers:     Consumer data; clients are stored here.
4534  * @return         0 on success, an errno on failure
4535  *
4536  * This convenience API allows consumers to forcibly disable multiple regulator
4537  * clients in a single API call.
4538  * NOTE: This should be used for situations when device damage will
4539  * likely occur if the regulators are not disabled (e.g. over temp).
4540  * Although regulator_force_disable function call for some consumers can
4541  * return error numbers, the function is called for all consumers.
4542  */
4543 int regulator_bulk_force_disable(int num_consumers,
4544 			   struct regulator_bulk_data *consumers)
4545 {
4546 	int i;
4547 	int ret = 0;
4548 
4549 	for (i = 0; i < num_consumers; i++) {
4550 		consumers[i].ret =
4551 			    regulator_force_disable(consumers[i].consumer);
4552 
4553 		/* Store first error for reporting */
4554 		if (consumers[i].ret && !ret)
4555 			ret = consumers[i].ret;
4556 	}
4557 
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561 
4562 /**
4563  * regulator_bulk_free - free multiple regulator consumers
4564  *
4565  * @num_consumers: Number of consumers
4566  * @consumers:     Consumer data; clients are stored here.
4567  *
4568  * This convenience API allows consumers to free multiple regulator
4569  * clients in a single API call.
4570  */
4571 void regulator_bulk_free(int num_consumers,
4572 			 struct regulator_bulk_data *consumers)
4573 {
4574 	int i;
4575 
4576 	for (i = 0; i < num_consumers; i++) {
4577 		regulator_put(consumers[i].consumer);
4578 		consumers[i].consumer = NULL;
4579 	}
4580 }
4581 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582 
4583 /**
4584  * regulator_notifier_call_chain - call regulator event notifier
4585  * @rdev: regulator source
4586  * @event: notifier block
4587  * @data: callback-specific data.
4588  *
4589  * Called by regulator drivers to notify clients a regulator event has
4590  * occurred. We also notify regulator clients downstream.
4591  * Note lock must be held by caller.
4592  */
4593 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594 				  unsigned long event, void *data)
4595 {
4596 	lockdep_assert_held_once(&rdev->mutex.base);
4597 
4598 	_notifier_call_chain(rdev, event, data);
4599 	return NOTIFY_DONE;
4600 
4601 }
4602 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603 
4604 /**
4605  * regulator_mode_to_status - convert a regulator mode into a status
4606  *
4607  * @mode: Mode to convert
4608  *
4609  * Convert a regulator mode into a status.
4610  */
4611 int regulator_mode_to_status(unsigned int mode)
4612 {
4613 	switch (mode) {
4614 	case REGULATOR_MODE_FAST:
4615 		return REGULATOR_STATUS_FAST;
4616 	case REGULATOR_MODE_NORMAL:
4617 		return REGULATOR_STATUS_NORMAL;
4618 	case REGULATOR_MODE_IDLE:
4619 		return REGULATOR_STATUS_IDLE;
4620 	case REGULATOR_MODE_STANDBY:
4621 		return REGULATOR_STATUS_STANDBY;
4622 	default:
4623 		return REGULATOR_STATUS_UNDEFINED;
4624 	}
4625 }
4626 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627 
4628 static struct attribute *regulator_dev_attrs[] = {
4629 	&dev_attr_name.attr,
4630 	&dev_attr_num_users.attr,
4631 	&dev_attr_type.attr,
4632 	&dev_attr_microvolts.attr,
4633 	&dev_attr_microamps.attr,
4634 	&dev_attr_opmode.attr,
4635 	&dev_attr_state.attr,
4636 	&dev_attr_status.attr,
4637 	&dev_attr_bypass.attr,
4638 	&dev_attr_requested_microamps.attr,
4639 	&dev_attr_min_microvolts.attr,
4640 	&dev_attr_max_microvolts.attr,
4641 	&dev_attr_min_microamps.attr,
4642 	&dev_attr_max_microamps.attr,
4643 	&dev_attr_suspend_standby_state.attr,
4644 	&dev_attr_suspend_mem_state.attr,
4645 	&dev_attr_suspend_disk_state.attr,
4646 	&dev_attr_suspend_standby_microvolts.attr,
4647 	&dev_attr_suspend_mem_microvolts.attr,
4648 	&dev_attr_suspend_disk_microvolts.attr,
4649 	&dev_attr_suspend_standby_mode.attr,
4650 	&dev_attr_suspend_mem_mode.attr,
4651 	&dev_attr_suspend_disk_mode.attr,
4652 	NULL
4653 };
4654 
4655 /*
4656  * To avoid cluttering sysfs (and memory) with useless state, only
4657  * create attributes that can be meaningfully displayed.
4658  */
4659 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660 					 struct attribute *attr, int idx)
4661 {
4662 	struct device *dev = kobj_to_dev(kobj);
4663 	struct regulator_dev *rdev = dev_to_rdev(dev);
4664 	const struct regulator_ops *ops = rdev->desc->ops;
4665 	umode_t mode = attr->mode;
4666 
4667 	/* these three are always present */
4668 	if (attr == &dev_attr_name.attr ||
4669 	    attr == &dev_attr_num_users.attr ||
4670 	    attr == &dev_attr_type.attr)
4671 		return mode;
4672 
4673 	/* some attributes need specific methods to be displayed */
4674 	if (attr == &dev_attr_microvolts.attr) {
4675 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679 			return mode;
4680 		return 0;
4681 	}
4682 
4683 	if (attr == &dev_attr_microamps.attr)
4684 		return ops->get_current_limit ? mode : 0;
4685 
4686 	if (attr == &dev_attr_opmode.attr)
4687 		return ops->get_mode ? mode : 0;
4688 
4689 	if (attr == &dev_attr_state.attr)
4690 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691 
4692 	if (attr == &dev_attr_status.attr)
4693 		return ops->get_status ? mode : 0;
4694 
4695 	if (attr == &dev_attr_bypass.attr)
4696 		return ops->get_bypass ? mode : 0;
4697 
4698 	/* constraints need specific supporting methods */
4699 	if (attr == &dev_attr_min_microvolts.attr ||
4700 	    attr == &dev_attr_max_microvolts.attr)
4701 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702 
4703 	if (attr == &dev_attr_min_microamps.attr ||
4704 	    attr == &dev_attr_max_microamps.attr)
4705 		return ops->set_current_limit ? mode : 0;
4706 
4707 	if (attr == &dev_attr_suspend_standby_state.attr ||
4708 	    attr == &dev_attr_suspend_mem_state.attr ||
4709 	    attr == &dev_attr_suspend_disk_state.attr)
4710 		return mode;
4711 
4712 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4714 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4715 		return ops->set_suspend_voltage ? mode : 0;
4716 
4717 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4718 	    attr == &dev_attr_suspend_mem_mode.attr ||
4719 	    attr == &dev_attr_suspend_disk_mode.attr)
4720 		return ops->set_suspend_mode ? mode : 0;
4721 
4722 	return mode;
4723 }
4724 
4725 static const struct attribute_group regulator_dev_group = {
4726 	.attrs = regulator_dev_attrs,
4727 	.is_visible = regulator_attr_is_visible,
4728 };
4729 
4730 static const struct attribute_group *regulator_dev_groups[] = {
4731 	&regulator_dev_group,
4732 	NULL
4733 };
4734 
4735 static void regulator_dev_release(struct device *dev)
4736 {
4737 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4738 
4739 	kfree(rdev->constraints);
4740 	of_node_put(rdev->dev.of_node);
4741 	kfree(rdev);
4742 }
4743 
4744 static void rdev_init_debugfs(struct regulator_dev *rdev)
4745 {
4746 	struct device *parent = rdev->dev.parent;
4747 	const char *rname = rdev_get_name(rdev);
4748 	char name[NAME_MAX];
4749 
4750 	/* Avoid duplicate debugfs directory names */
4751 	if (parent && rname == rdev->desc->name) {
4752 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753 			 rname);
4754 		rname = name;
4755 	}
4756 
4757 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758 	if (!rdev->debugfs) {
4759 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4760 		return;
4761 	}
4762 
4763 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764 			   &rdev->use_count);
4765 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766 			   &rdev->open_count);
4767 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768 			   &rdev->bypass_count);
4769 }
4770 
4771 static int regulator_register_resolve_supply(struct device *dev, void *data)
4772 {
4773 	struct regulator_dev *rdev = dev_to_rdev(dev);
4774 
4775 	if (regulator_resolve_supply(rdev))
4776 		rdev_dbg(rdev, "unable to resolve supply\n");
4777 
4778 	return 0;
4779 }
4780 
4781 int regulator_coupler_register(struct regulator_coupler *coupler)
4782 {
4783 	mutex_lock(&regulator_list_mutex);
4784 	list_add_tail(&coupler->list, &regulator_coupler_list);
4785 	mutex_unlock(&regulator_list_mutex);
4786 
4787 	return 0;
4788 }
4789 
4790 static struct regulator_coupler *
4791 regulator_find_coupler(struct regulator_dev *rdev)
4792 {
4793 	struct regulator_coupler *coupler;
4794 	int err;
4795 
4796 	/*
4797 	 * Note that regulators are appended to the list and the generic
4798 	 * coupler is registered first, hence it will be attached at last
4799 	 * if nobody cared.
4800 	 */
4801 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4802 		err = coupler->attach_regulator(coupler, rdev);
4803 		if (!err) {
4804 			if (!coupler->balance_voltage &&
4805 			    rdev->coupling_desc.n_coupled > 2)
4806 				goto err_unsupported;
4807 
4808 			return coupler;
4809 		}
4810 
4811 		if (err < 0)
4812 			return ERR_PTR(err);
4813 
4814 		if (err == 1)
4815 			continue;
4816 
4817 		break;
4818 	}
4819 
4820 	return ERR_PTR(-EINVAL);
4821 
4822 err_unsupported:
4823 	if (coupler->detach_regulator)
4824 		coupler->detach_regulator(coupler, rdev);
4825 
4826 	rdev_err(rdev,
4827 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4828 
4829 	return ERR_PTR(-EPERM);
4830 }
4831 
4832 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833 {
4834 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4836 	int n_coupled = c_desc->n_coupled;
4837 	struct regulator_dev *c_rdev;
4838 	int i;
4839 
4840 	for (i = 1; i < n_coupled; i++) {
4841 		/* already resolved */
4842 		if (c_desc->coupled_rdevs[i])
4843 			continue;
4844 
4845 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846 
4847 		if (!c_rdev)
4848 			continue;
4849 
4850 		if (c_rdev->coupling_desc.coupler != coupler) {
4851 			rdev_err(rdev, "coupler mismatch with %s\n",
4852 				 rdev_get_name(c_rdev));
4853 			return;
4854 		}
4855 
4856 		regulator_lock(c_rdev);
4857 
4858 		c_desc->coupled_rdevs[i] = c_rdev;
4859 		c_desc->n_resolved++;
4860 
4861 		regulator_unlock(c_rdev);
4862 
4863 		regulator_resolve_coupling(c_rdev);
4864 	}
4865 }
4866 
4867 static void regulator_remove_coupling(struct regulator_dev *rdev)
4868 {
4869 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871 	struct regulator_dev *__c_rdev, *c_rdev;
4872 	unsigned int __n_coupled, n_coupled;
4873 	int i, k;
4874 	int err;
4875 
4876 	n_coupled = c_desc->n_coupled;
4877 
4878 	for (i = 1; i < n_coupled; i++) {
4879 		c_rdev = c_desc->coupled_rdevs[i];
4880 
4881 		if (!c_rdev)
4882 			continue;
4883 
4884 		regulator_lock(c_rdev);
4885 
4886 		__c_desc = &c_rdev->coupling_desc;
4887 		__n_coupled = __c_desc->n_coupled;
4888 
4889 		for (k = 1; k < __n_coupled; k++) {
4890 			__c_rdev = __c_desc->coupled_rdevs[k];
4891 
4892 			if (__c_rdev == rdev) {
4893 				__c_desc->coupled_rdevs[k] = NULL;
4894 				__c_desc->n_resolved--;
4895 				break;
4896 			}
4897 		}
4898 
4899 		regulator_unlock(c_rdev);
4900 
4901 		c_desc->coupled_rdevs[i] = NULL;
4902 		c_desc->n_resolved--;
4903 	}
4904 
4905 	if (coupler && coupler->detach_regulator) {
4906 		err = coupler->detach_regulator(coupler, rdev);
4907 		if (err)
4908 			rdev_err(rdev, "failed to detach from coupler: %d\n",
4909 				 err);
4910 	}
4911 
4912 	kfree(rdev->coupling_desc.coupled_rdevs);
4913 	rdev->coupling_desc.coupled_rdevs = NULL;
4914 }
4915 
4916 static int regulator_init_coupling(struct regulator_dev *rdev)
4917 {
4918 	int err, n_phandles;
4919 	size_t alloc_size;
4920 
4921 	if (!IS_ENABLED(CONFIG_OF))
4922 		n_phandles = 0;
4923 	else
4924 		n_phandles = of_get_n_coupled(rdev);
4925 
4926 	alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927 
4928 	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929 	if (!rdev->coupling_desc.coupled_rdevs)
4930 		return -ENOMEM;
4931 
4932 	/*
4933 	 * Every regulator should always have coupling descriptor filled with
4934 	 * at least pointer to itself.
4935 	 */
4936 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4938 	rdev->coupling_desc.n_resolved++;
4939 
4940 	/* regulator isn't coupled */
4941 	if (n_phandles == 0)
4942 		return 0;
4943 
4944 	if (!of_check_coupling_data(rdev))
4945 		return -EPERM;
4946 
4947 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948 	if (IS_ERR(rdev->coupling_desc.coupler)) {
4949 		err = PTR_ERR(rdev->coupling_desc.coupler);
4950 		rdev_err(rdev, "failed to get coupler: %d\n", err);
4951 		return err;
4952 	}
4953 
4954 	return 0;
4955 }
4956 
4957 static int generic_coupler_attach(struct regulator_coupler *coupler,
4958 				  struct regulator_dev *rdev)
4959 {
4960 	if (rdev->coupling_desc.n_coupled > 2) {
4961 		rdev_err(rdev,
4962 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963 		return -EPERM;
4964 	}
4965 
4966 	return 0;
4967 }
4968 
4969 static struct regulator_coupler generic_regulator_coupler = {
4970 	.attach_regulator = generic_coupler_attach,
4971 };
4972 
4973 /**
4974  * regulator_register - register regulator
4975  * @regulator_desc: regulator to register
4976  * @cfg: runtime configuration for regulator
4977  *
4978  * Called by regulator drivers to register a regulator.
4979  * Returns a valid pointer to struct regulator_dev on success
4980  * or an ERR_PTR() on error.
4981  */
4982 struct regulator_dev *
4983 regulator_register(const struct regulator_desc *regulator_desc,
4984 		   const struct regulator_config *cfg)
4985 {
4986 	const struct regulation_constraints *constraints = NULL;
4987 	const struct regulator_init_data *init_data;
4988 	struct regulator_config *config = NULL;
4989 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4990 	struct regulator_dev *rdev;
4991 	bool dangling_cfg_gpiod = false;
4992 	bool dangling_of_gpiod = false;
4993 	struct device *dev;
4994 	int ret, i;
4995 
4996 	if (cfg == NULL)
4997 		return ERR_PTR(-EINVAL);
4998 	if (cfg->ena_gpiod)
4999 		dangling_cfg_gpiod = true;
5000 	if (regulator_desc == NULL) {
5001 		ret = -EINVAL;
5002 		goto rinse;
5003 	}
5004 
5005 	dev = cfg->dev;
5006 	WARN_ON(!dev);
5007 
5008 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009 		ret = -EINVAL;
5010 		goto rinse;
5011 	}
5012 
5013 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014 	    regulator_desc->type != REGULATOR_CURRENT) {
5015 		ret = -EINVAL;
5016 		goto rinse;
5017 	}
5018 
5019 	/* Only one of each should be implemented */
5020 	WARN_ON(regulator_desc->ops->get_voltage &&
5021 		regulator_desc->ops->get_voltage_sel);
5022 	WARN_ON(regulator_desc->ops->set_voltage &&
5023 		regulator_desc->ops->set_voltage_sel);
5024 
5025 	/* If we're using selectors we must implement list_voltage. */
5026 	if (regulator_desc->ops->get_voltage_sel &&
5027 	    !regulator_desc->ops->list_voltage) {
5028 		ret = -EINVAL;
5029 		goto rinse;
5030 	}
5031 	if (regulator_desc->ops->set_voltage_sel &&
5032 	    !regulator_desc->ops->list_voltage) {
5033 		ret = -EINVAL;
5034 		goto rinse;
5035 	}
5036 
5037 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038 	if (rdev == NULL) {
5039 		ret = -ENOMEM;
5040 		goto rinse;
5041 	}
5042 
5043 	/*
5044 	 * Duplicate the config so the driver could override it after
5045 	 * parsing init data.
5046 	 */
5047 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048 	if (config == NULL) {
5049 		kfree(rdev);
5050 		ret = -ENOMEM;
5051 		goto rinse;
5052 	}
5053 
5054 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055 					       &rdev->dev.of_node);
5056 	/*
5057 	 * We need to keep track of any GPIO descriptor coming from the
5058 	 * device tree until we have handled it over to the core. If the
5059 	 * config that was passed in to this function DOES NOT contain
5060 	 * a descriptor, and the config after this call DOES contain
5061 	 * a descriptor, we definitely got one from parsing the device
5062 	 * tree.
5063 	 */
5064 	if (!cfg->ena_gpiod && config->ena_gpiod)
5065 		dangling_of_gpiod = true;
5066 	if (!init_data) {
5067 		init_data = config->init_data;
5068 		rdev->dev.of_node = of_node_get(config->of_node);
5069 	}
5070 
5071 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5072 	rdev->reg_data = config->driver_data;
5073 	rdev->owner = regulator_desc->owner;
5074 	rdev->desc = regulator_desc;
5075 	if (config->regmap)
5076 		rdev->regmap = config->regmap;
5077 	else if (dev_get_regmap(dev, NULL))
5078 		rdev->regmap = dev_get_regmap(dev, NULL);
5079 	else if (dev->parent)
5080 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5081 	INIT_LIST_HEAD(&rdev->consumer_list);
5082 	INIT_LIST_HEAD(&rdev->list);
5083 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5084 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5085 
5086 	/* preform any regulator specific init */
5087 	if (init_data && init_data->regulator_init) {
5088 		ret = init_data->regulator_init(rdev->reg_data);
5089 		if (ret < 0)
5090 			goto clean;
5091 	}
5092 
5093 	if (config->ena_gpiod) {
5094 		mutex_lock(&regulator_list_mutex);
5095 		ret = regulator_ena_gpio_request(rdev, config);
5096 		mutex_unlock(&regulator_list_mutex);
5097 		if (ret != 0) {
5098 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5099 				 ret);
5100 			goto clean;
5101 		}
5102 		/* The regulator core took over the GPIO descriptor */
5103 		dangling_cfg_gpiod = false;
5104 		dangling_of_gpiod = false;
5105 	}
5106 
5107 	/* register with sysfs */
5108 	rdev->dev.class = &regulator_class;
5109 	rdev->dev.parent = dev;
5110 	dev_set_name(&rdev->dev, "regulator.%lu",
5111 		    (unsigned long) atomic_inc_return(&regulator_no));
5112 
5113 	/* set regulator constraints */
5114 	if (init_data)
5115 		constraints = &init_data->constraints;
5116 
5117 	if (init_data && init_data->supply_regulator)
5118 		rdev->supply_name = init_data->supply_regulator;
5119 	else if (regulator_desc->supply_name)
5120 		rdev->supply_name = regulator_desc->supply_name;
5121 
5122 	/*
5123 	 * Attempt to resolve the regulator supply, if specified,
5124 	 * but don't return an error if we fail because we will try
5125 	 * to resolve it again later as more regulators are added.
5126 	 */
5127 	if (regulator_resolve_supply(rdev))
5128 		rdev_dbg(rdev, "unable to resolve supply\n");
5129 
5130 	ret = set_machine_constraints(rdev, constraints);
5131 	if (ret < 0)
5132 		goto wash;
5133 
5134 	mutex_lock(&regulator_list_mutex);
5135 	ret = regulator_init_coupling(rdev);
5136 	mutex_unlock(&regulator_list_mutex);
5137 	if (ret < 0)
5138 		goto wash;
5139 
5140 	/* add consumers devices */
5141 	if (init_data) {
5142 		mutex_lock(&regulator_list_mutex);
5143 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5144 			ret = set_consumer_device_supply(rdev,
5145 				init_data->consumer_supplies[i].dev_name,
5146 				init_data->consumer_supplies[i].supply);
5147 			if (ret < 0) {
5148 				mutex_unlock(&regulator_list_mutex);
5149 				dev_err(dev, "Failed to set supply %s\n",
5150 					init_data->consumer_supplies[i].supply);
5151 				goto unset_supplies;
5152 			}
5153 		}
5154 		mutex_unlock(&regulator_list_mutex);
5155 	}
5156 
5157 	if (!rdev->desc->ops->get_voltage &&
5158 	    !rdev->desc->ops->list_voltage &&
5159 	    !rdev->desc->fixed_uV)
5160 		rdev->is_switch = true;
5161 
5162 	dev_set_drvdata(&rdev->dev, rdev);
5163 	ret = device_register(&rdev->dev);
5164 	if (ret != 0) {
5165 		put_device(&rdev->dev);
5166 		goto unset_supplies;
5167 	}
5168 
5169 	rdev_init_debugfs(rdev);
5170 
5171 	/* try to resolve regulators coupling since a new one was registered */
5172 	mutex_lock(&regulator_list_mutex);
5173 	regulator_resolve_coupling(rdev);
5174 	mutex_unlock(&regulator_list_mutex);
5175 
5176 	/* try to resolve regulators supply since a new one was registered */
5177 	class_for_each_device(&regulator_class, NULL, NULL,
5178 			      regulator_register_resolve_supply);
5179 	kfree(config);
5180 	return rdev;
5181 
5182 unset_supplies:
5183 	mutex_lock(&regulator_list_mutex);
5184 	unset_regulator_supplies(rdev);
5185 	regulator_remove_coupling(rdev);
5186 	mutex_unlock(&regulator_list_mutex);
5187 wash:
5188 	kfree(rdev->constraints);
5189 	mutex_lock(&regulator_list_mutex);
5190 	regulator_ena_gpio_free(rdev);
5191 	mutex_unlock(&regulator_list_mutex);
5192 clean:
5193 	if (dangling_of_gpiod)
5194 		gpiod_put(config->ena_gpiod);
5195 	kfree(rdev);
5196 	kfree(config);
5197 rinse:
5198 	if (dangling_cfg_gpiod)
5199 		gpiod_put(cfg->ena_gpiod);
5200 	return ERR_PTR(ret);
5201 }
5202 EXPORT_SYMBOL_GPL(regulator_register);
5203 
5204 /**
5205  * regulator_unregister - unregister regulator
5206  * @rdev: regulator to unregister
5207  *
5208  * Called by regulator drivers to unregister a regulator.
5209  */
5210 void regulator_unregister(struct regulator_dev *rdev)
5211 {
5212 	if (rdev == NULL)
5213 		return;
5214 
5215 	if (rdev->supply) {
5216 		while (rdev->use_count--)
5217 			regulator_disable(rdev->supply);
5218 		regulator_put(rdev->supply);
5219 	}
5220 
5221 	flush_work(&rdev->disable_work.work);
5222 
5223 	mutex_lock(&regulator_list_mutex);
5224 
5225 	debugfs_remove_recursive(rdev->debugfs);
5226 	WARN_ON(rdev->open_count);
5227 	regulator_remove_coupling(rdev);
5228 	unset_regulator_supplies(rdev);
5229 	list_del(&rdev->list);
5230 	regulator_ena_gpio_free(rdev);
5231 	device_unregister(&rdev->dev);
5232 
5233 	mutex_unlock(&regulator_list_mutex);
5234 }
5235 EXPORT_SYMBOL_GPL(regulator_unregister);
5236 
5237 #ifdef CONFIG_SUSPEND
5238 /**
5239  * regulator_suspend - prepare regulators for system wide suspend
5240  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5241  *
5242  * Configure each regulator with it's suspend operating parameters for state.
5243  */
5244 static int regulator_suspend(struct device *dev)
5245 {
5246 	struct regulator_dev *rdev = dev_to_rdev(dev);
5247 	suspend_state_t state = pm_suspend_target_state;
5248 	int ret;
5249 
5250 	regulator_lock(rdev);
5251 	ret = suspend_set_state(rdev, state);
5252 	regulator_unlock(rdev);
5253 
5254 	return ret;
5255 }
5256 
5257 static int regulator_resume(struct device *dev)
5258 {
5259 	suspend_state_t state = pm_suspend_target_state;
5260 	struct regulator_dev *rdev = dev_to_rdev(dev);
5261 	struct regulator_state *rstate;
5262 	int ret = 0;
5263 
5264 	rstate = regulator_get_suspend_state(rdev, state);
5265 	if (rstate == NULL)
5266 		return 0;
5267 
5268 	regulator_lock(rdev);
5269 
5270 	if (rdev->desc->ops->resume &&
5271 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5272 	     rstate->enabled == DISABLE_IN_SUSPEND))
5273 		ret = rdev->desc->ops->resume(rdev);
5274 
5275 	regulator_unlock(rdev);
5276 
5277 	return ret;
5278 }
5279 #else /* !CONFIG_SUSPEND */
5280 
5281 #define regulator_suspend	NULL
5282 #define regulator_resume	NULL
5283 
5284 #endif /* !CONFIG_SUSPEND */
5285 
5286 #ifdef CONFIG_PM
5287 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5288 	.suspend	= regulator_suspend,
5289 	.resume		= regulator_resume,
5290 };
5291 #endif
5292 
5293 struct class regulator_class = {
5294 	.name = "regulator",
5295 	.dev_release = regulator_dev_release,
5296 	.dev_groups = regulator_dev_groups,
5297 #ifdef CONFIG_PM
5298 	.pm = &regulator_pm_ops,
5299 #endif
5300 };
5301 /**
5302  * regulator_has_full_constraints - the system has fully specified constraints
5303  *
5304  * Calling this function will cause the regulator API to disable all
5305  * regulators which have a zero use count and don't have an always_on
5306  * constraint in a late_initcall.
5307  *
5308  * The intention is that this will become the default behaviour in a
5309  * future kernel release so users are encouraged to use this facility
5310  * now.
5311  */
5312 void regulator_has_full_constraints(void)
5313 {
5314 	has_full_constraints = 1;
5315 }
5316 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5317 
5318 /**
5319  * rdev_get_drvdata - get rdev regulator driver data
5320  * @rdev: regulator
5321  *
5322  * Get rdev regulator driver private data. This call can be used in the
5323  * regulator driver context.
5324  */
5325 void *rdev_get_drvdata(struct regulator_dev *rdev)
5326 {
5327 	return rdev->reg_data;
5328 }
5329 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5330 
5331 /**
5332  * regulator_get_drvdata - get regulator driver data
5333  * @regulator: regulator
5334  *
5335  * Get regulator driver private data. This call can be used in the consumer
5336  * driver context when non API regulator specific functions need to be called.
5337  */
5338 void *regulator_get_drvdata(struct regulator *regulator)
5339 {
5340 	return regulator->rdev->reg_data;
5341 }
5342 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5343 
5344 /**
5345  * regulator_set_drvdata - set regulator driver data
5346  * @regulator: regulator
5347  * @data: data
5348  */
5349 void regulator_set_drvdata(struct regulator *regulator, void *data)
5350 {
5351 	regulator->rdev->reg_data = data;
5352 }
5353 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5354 
5355 /**
5356  * regulator_get_id - get regulator ID
5357  * @rdev: regulator
5358  */
5359 int rdev_get_id(struct regulator_dev *rdev)
5360 {
5361 	return rdev->desc->id;
5362 }
5363 EXPORT_SYMBOL_GPL(rdev_get_id);
5364 
5365 struct device *rdev_get_dev(struct regulator_dev *rdev)
5366 {
5367 	return &rdev->dev;
5368 }
5369 EXPORT_SYMBOL_GPL(rdev_get_dev);
5370 
5371 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5372 {
5373 	return rdev->regmap;
5374 }
5375 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5376 
5377 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5378 {
5379 	return reg_init_data->driver_data;
5380 }
5381 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5382 
5383 #ifdef CONFIG_DEBUG_FS
5384 static int supply_map_show(struct seq_file *sf, void *data)
5385 {
5386 	struct regulator_map *map;
5387 
5388 	list_for_each_entry(map, &regulator_map_list, list) {
5389 		seq_printf(sf, "%s -> %s.%s\n",
5390 				rdev_get_name(map->regulator), map->dev_name,
5391 				map->supply);
5392 	}
5393 
5394 	return 0;
5395 }
5396 DEFINE_SHOW_ATTRIBUTE(supply_map);
5397 
5398 struct summary_data {
5399 	struct seq_file *s;
5400 	struct regulator_dev *parent;
5401 	int level;
5402 };
5403 
5404 static void regulator_summary_show_subtree(struct seq_file *s,
5405 					   struct regulator_dev *rdev,
5406 					   int level);
5407 
5408 static int regulator_summary_show_children(struct device *dev, void *data)
5409 {
5410 	struct regulator_dev *rdev = dev_to_rdev(dev);
5411 	struct summary_data *summary_data = data;
5412 
5413 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5414 		regulator_summary_show_subtree(summary_data->s, rdev,
5415 					       summary_data->level + 1);
5416 
5417 	return 0;
5418 }
5419 
5420 static void regulator_summary_show_subtree(struct seq_file *s,
5421 					   struct regulator_dev *rdev,
5422 					   int level)
5423 {
5424 	struct regulation_constraints *c;
5425 	struct regulator *consumer;
5426 	struct summary_data summary_data;
5427 	unsigned int opmode;
5428 
5429 	if (!rdev)
5430 		return;
5431 
5432 	opmode = _regulator_get_mode_unlocked(rdev);
5433 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5434 		   level * 3 + 1, "",
5435 		   30 - level * 3, rdev_get_name(rdev),
5436 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5437 		   regulator_opmode_to_str(opmode));
5438 
5439 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5440 	seq_printf(s, "%5dmA ",
5441 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5442 
5443 	c = rdev->constraints;
5444 	if (c) {
5445 		switch (rdev->desc->type) {
5446 		case REGULATOR_VOLTAGE:
5447 			seq_printf(s, "%5dmV %5dmV ",
5448 				   c->min_uV / 1000, c->max_uV / 1000);
5449 			break;
5450 		case REGULATOR_CURRENT:
5451 			seq_printf(s, "%5dmA %5dmA ",
5452 				   c->min_uA / 1000, c->max_uA / 1000);
5453 			break;
5454 		}
5455 	}
5456 
5457 	seq_puts(s, "\n");
5458 
5459 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5460 		if (consumer->dev && consumer->dev->class == &regulator_class)
5461 			continue;
5462 
5463 		seq_printf(s, "%*s%-*s ",
5464 			   (level + 1) * 3 + 1, "",
5465 			   30 - (level + 1) * 3,
5466 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5467 
5468 		switch (rdev->desc->type) {
5469 		case REGULATOR_VOLTAGE:
5470 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5471 				   consumer->enable_count,
5472 				   consumer->uA_load / 1000,
5473 				   consumer->uA_load && !consumer->enable_count ?
5474 				   '*' : ' ',
5475 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5476 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5477 			break;
5478 		case REGULATOR_CURRENT:
5479 			break;
5480 		}
5481 
5482 		seq_puts(s, "\n");
5483 	}
5484 
5485 	summary_data.s = s;
5486 	summary_data.level = level;
5487 	summary_data.parent = rdev;
5488 
5489 	class_for_each_device(&regulator_class, NULL, &summary_data,
5490 			      regulator_summary_show_children);
5491 }
5492 
5493 struct summary_lock_data {
5494 	struct ww_acquire_ctx *ww_ctx;
5495 	struct regulator_dev **new_contended_rdev;
5496 	struct regulator_dev **old_contended_rdev;
5497 };
5498 
5499 static int regulator_summary_lock_one(struct device *dev, void *data)
5500 {
5501 	struct regulator_dev *rdev = dev_to_rdev(dev);
5502 	struct summary_lock_data *lock_data = data;
5503 	int ret = 0;
5504 
5505 	if (rdev != *lock_data->old_contended_rdev) {
5506 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5507 
5508 		if (ret == -EDEADLK)
5509 			*lock_data->new_contended_rdev = rdev;
5510 		else
5511 			WARN_ON_ONCE(ret);
5512 	} else {
5513 		*lock_data->old_contended_rdev = NULL;
5514 	}
5515 
5516 	return ret;
5517 }
5518 
5519 static int regulator_summary_unlock_one(struct device *dev, void *data)
5520 {
5521 	struct regulator_dev *rdev = dev_to_rdev(dev);
5522 	struct summary_lock_data *lock_data = data;
5523 
5524 	if (lock_data) {
5525 		if (rdev == *lock_data->new_contended_rdev)
5526 			return -EDEADLK;
5527 	}
5528 
5529 	regulator_unlock(rdev);
5530 
5531 	return 0;
5532 }
5533 
5534 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5535 				      struct regulator_dev **new_contended_rdev,
5536 				      struct regulator_dev **old_contended_rdev)
5537 {
5538 	struct summary_lock_data lock_data;
5539 	int ret;
5540 
5541 	lock_data.ww_ctx = ww_ctx;
5542 	lock_data.new_contended_rdev = new_contended_rdev;
5543 	lock_data.old_contended_rdev = old_contended_rdev;
5544 
5545 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5546 				    regulator_summary_lock_one);
5547 	if (ret)
5548 		class_for_each_device(&regulator_class, NULL, &lock_data,
5549 				      regulator_summary_unlock_one);
5550 
5551 	return ret;
5552 }
5553 
5554 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5555 {
5556 	struct regulator_dev *new_contended_rdev = NULL;
5557 	struct regulator_dev *old_contended_rdev = NULL;
5558 	int err;
5559 
5560 	mutex_lock(&regulator_list_mutex);
5561 
5562 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5563 
5564 	do {
5565 		if (new_contended_rdev) {
5566 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5567 			old_contended_rdev = new_contended_rdev;
5568 			old_contended_rdev->ref_cnt++;
5569 		}
5570 
5571 		err = regulator_summary_lock_all(ww_ctx,
5572 						 &new_contended_rdev,
5573 						 &old_contended_rdev);
5574 
5575 		if (old_contended_rdev)
5576 			regulator_unlock(old_contended_rdev);
5577 
5578 	} while (err == -EDEADLK);
5579 
5580 	ww_acquire_done(ww_ctx);
5581 }
5582 
5583 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5584 {
5585 	class_for_each_device(&regulator_class, NULL, NULL,
5586 			      regulator_summary_unlock_one);
5587 	ww_acquire_fini(ww_ctx);
5588 
5589 	mutex_unlock(&regulator_list_mutex);
5590 }
5591 
5592 static int regulator_summary_show_roots(struct device *dev, void *data)
5593 {
5594 	struct regulator_dev *rdev = dev_to_rdev(dev);
5595 	struct seq_file *s = data;
5596 
5597 	if (!rdev->supply)
5598 		regulator_summary_show_subtree(s, rdev, 0);
5599 
5600 	return 0;
5601 }
5602 
5603 static int regulator_summary_show(struct seq_file *s, void *data)
5604 {
5605 	struct ww_acquire_ctx ww_ctx;
5606 
5607 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5608 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5609 
5610 	regulator_summary_lock(&ww_ctx);
5611 
5612 	class_for_each_device(&regulator_class, NULL, s,
5613 			      regulator_summary_show_roots);
5614 
5615 	regulator_summary_unlock(&ww_ctx);
5616 
5617 	return 0;
5618 }
5619 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5620 #endif /* CONFIG_DEBUG_FS */
5621 
5622 static int __init regulator_init(void)
5623 {
5624 	int ret;
5625 
5626 	ret = class_register(&regulator_class);
5627 
5628 	debugfs_root = debugfs_create_dir("regulator", NULL);
5629 	if (!debugfs_root)
5630 		pr_warn("regulator: Failed to create debugfs directory\n");
5631 
5632 #ifdef CONFIG_DEBUG_FS
5633 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5634 			    &supply_map_fops);
5635 
5636 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5637 			    NULL, &regulator_summary_fops);
5638 #endif
5639 	regulator_dummy_init();
5640 
5641 	regulator_coupler_register(&generic_regulator_coupler);
5642 
5643 	return ret;
5644 }
5645 
5646 /* init early to allow our consumers to complete system booting */
5647 core_initcall(regulator_init);
5648 
5649 static int regulator_late_cleanup(struct device *dev, void *data)
5650 {
5651 	struct regulator_dev *rdev = dev_to_rdev(dev);
5652 	const struct regulator_ops *ops = rdev->desc->ops;
5653 	struct regulation_constraints *c = rdev->constraints;
5654 	int enabled, ret;
5655 
5656 	if (c && c->always_on)
5657 		return 0;
5658 
5659 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5660 		return 0;
5661 
5662 	regulator_lock(rdev);
5663 
5664 	if (rdev->use_count)
5665 		goto unlock;
5666 
5667 	/* If we can't read the status assume it's on. */
5668 	if (ops->is_enabled)
5669 		enabled = ops->is_enabled(rdev);
5670 	else
5671 		enabled = 1;
5672 
5673 	if (!enabled)
5674 		goto unlock;
5675 
5676 	if (have_full_constraints()) {
5677 		/* We log since this may kill the system if it goes
5678 		 * wrong. */
5679 		rdev_info(rdev, "disabling\n");
5680 		ret = _regulator_do_disable(rdev);
5681 		if (ret != 0)
5682 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5683 	} else {
5684 		/* The intention is that in future we will
5685 		 * assume that full constraints are provided
5686 		 * so warn even if we aren't going to do
5687 		 * anything here.
5688 		 */
5689 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5690 	}
5691 
5692 unlock:
5693 	regulator_unlock(rdev);
5694 
5695 	return 0;
5696 }
5697 
5698 static void regulator_init_complete_work_function(struct work_struct *work)
5699 {
5700 	/*
5701 	 * Regulators may had failed to resolve their input supplies
5702 	 * when were registered, either because the input supply was
5703 	 * not registered yet or because its parent device was not
5704 	 * bound yet. So attempt to resolve the input supplies for
5705 	 * pending regulators before trying to disable unused ones.
5706 	 */
5707 	class_for_each_device(&regulator_class, NULL, NULL,
5708 			      regulator_register_resolve_supply);
5709 
5710 	/* If we have a full configuration then disable any regulators
5711 	 * we have permission to change the status for and which are
5712 	 * not in use or always_on.  This is effectively the default
5713 	 * for DT and ACPI as they have full constraints.
5714 	 */
5715 	class_for_each_device(&regulator_class, NULL, NULL,
5716 			      regulator_late_cleanup);
5717 }
5718 
5719 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5720 			    regulator_init_complete_work_function);
5721 
5722 static int __init regulator_init_complete(void)
5723 {
5724 	/*
5725 	 * Since DT doesn't provide an idiomatic mechanism for
5726 	 * enabling full constraints and since it's much more natural
5727 	 * with DT to provide them just assume that a DT enabled
5728 	 * system has full constraints.
5729 	 */
5730 	if (of_have_populated_dt())
5731 		has_full_constraints = true;
5732 
5733 	/*
5734 	 * We punt completion for an arbitrary amount of time since
5735 	 * systems like distros will load many drivers from userspace
5736 	 * so consumers might not always be ready yet, this is
5737 	 * particularly an issue with laptops where this might bounce
5738 	 * the display off then on.  Ideally we'd get a notification
5739 	 * from userspace when this happens but we don't so just wait
5740 	 * a bit and hope we waited long enough.  It'd be better if
5741 	 * we'd only do this on systems that need it, and a kernel
5742 	 * command line option might be useful.
5743 	 */
5744 	schedule_delayed_work(&regulator_init_complete_work,
5745 			      msecs_to_jiffies(30000));
5746 
5747 	return 0;
5748 }
5749 late_initcall_sync(regulator_init_complete);
5750