1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static LIST_HEAD(regulator_coupler_list); 54 static bool has_full_constraints; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator_enable_gpio 72 * 73 * Management for shared enable GPIO pin 74 */ 75 struct regulator_enable_gpio { 76 struct list_head list; 77 struct gpio_desc *gpiod; 78 u32 enable_count; /* a number of enabled shared GPIO */ 79 u32 request_count; /* a number of requested shared GPIO */ 80 }; 81 82 /* 83 * struct regulator_supply_alias 84 * 85 * Used to map lookups for a supply onto an alternative device. 86 */ 87 struct regulator_supply_alias { 88 struct list_head list; 89 struct device *src_dev; 90 const char *src_supply; 91 struct device *alias_dev; 92 const char *alias_supply; 93 }; 94 95 static int _regulator_is_enabled(struct regulator_dev *rdev); 96 static int _regulator_disable(struct regulator *regulator); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static struct regulator *create_regulator(struct regulator_dev *rdev, 106 struct device *dev, 107 const char *supply_name); 108 static void _regulator_put(struct regulator *regulator); 109 110 const char *rdev_get_name(struct regulator_dev *rdev) 111 { 112 if (rdev->constraints && rdev->constraints->name) 113 return rdev->constraints->name; 114 else if (rdev->desc->name) 115 return rdev->desc->name; 116 else 117 return ""; 118 } 119 120 static bool have_full_constraints(void) 121 { 122 return has_full_constraints || of_have_populated_dt(); 123 } 124 125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 126 { 127 if (!rdev->constraints) { 128 rdev_err(rdev, "no constraints\n"); 129 return false; 130 } 131 132 if (rdev->constraints->valid_ops_mask & ops) 133 return true; 134 135 return false; 136 } 137 138 /** 139 * regulator_lock_nested - lock a single regulator 140 * @rdev: regulator source 141 * @ww_ctx: w/w mutex acquire context 142 * 143 * This function can be called many times by one task on 144 * a single regulator and its mutex will be locked only 145 * once. If a task, which is calling this function is other 146 * than the one, which initially locked the mutex, it will 147 * wait on mutex. 148 */ 149 static inline int regulator_lock_nested(struct regulator_dev *rdev, 150 struct ww_acquire_ctx *ww_ctx) 151 { 152 bool lock = false; 153 int ret = 0; 154 155 mutex_lock(®ulator_nesting_mutex); 156 157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 158 if (rdev->mutex_owner == current) 159 rdev->ref_cnt++; 160 else 161 lock = true; 162 163 if (lock) { 164 mutex_unlock(®ulator_nesting_mutex); 165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 166 mutex_lock(®ulator_nesting_mutex); 167 } 168 } else { 169 lock = true; 170 } 171 172 if (lock && ret != -EDEADLK) { 173 rdev->ref_cnt++; 174 rdev->mutex_owner = current; 175 } 176 177 mutex_unlock(®ulator_nesting_mutex); 178 179 return ret; 180 } 181 182 /** 183 * regulator_lock - lock a single regulator 184 * @rdev: regulator source 185 * 186 * This function can be called many times by one task on 187 * a single regulator and its mutex will be locked only 188 * once. If a task, which is calling this function is other 189 * than the one, which initially locked the mutex, it will 190 * wait on mutex. 191 */ 192 void regulator_lock(struct regulator_dev *rdev) 193 { 194 regulator_lock_nested(rdev, NULL); 195 } 196 EXPORT_SYMBOL_GPL(regulator_lock); 197 198 /** 199 * regulator_unlock - unlock a single regulator 200 * @rdev: regulator_source 201 * 202 * This function unlocks the mutex when the 203 * reference counter reaches 0. 204 */ 205 void regulator_unlock(struct regulator_dev *rdev) 206 { 207 mutex_lock(®ulator_nesting_mutex); 208 209 if (--rdev->ref_cnt == 0) { 210 rdev->mutex_owner = NULL; 211 ww_mutex_unlock(&rdev->mutex); 212 } 213 214 WARN_ON_ONCE(rdev->ref_cnt < 0); 215 216 mutex_unlock(®ulator_nesting_mutex); 217 } 218 EXPORT_SYMBOL_GPL(regulator_unlock); 219 220 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 221 { 222 struct regulator_dev *c_rdev; 223 int i; 224 225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 226 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 227 228 if (rdev->supply->rdev == c_rdev) 229 return true; 230 } 231 232 return false; 233 } 234 235 static void regulator_unlock_recursive(struct regulator_dev *rdev, 236 unsigned int n_coupled) 237 { 238 struct regulator_dev *c_rdev; 239 int i; 240 241 for (i = n_coupled; i > 0; i--) { 242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 243 244 if (!c_rdev) 245 continue; 246 247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 248 regulator_unlock_recursive( 249 c_rdev->supply->rdev, 250 c_rdev->coupling_desc.n_coupled); 251 252 regulator_unlock(c_rdev); 253 } 254 } 255 256 static int regulator_lock_recursive(struct regulator_dev *rdev, 257 struct regulator_dev **new_contended_rdev, 258 struct regulator_dev **old_contended_rdev, 259 struct ww_acquire_ctx *ww_ctx) 260 { 261 struct regulator_dev *c_rdev; 262 int i, err; 263 264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 265 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 266 267 if (!c_rdev) 268 continue; 269 270 if (c_rdev != *old_contended_rdev) { 271 err = regulator_lock_nested(c_rdev, ww_ctx); 272 if (err) { 273 if (err == -EDEADLK) { 274 *new_contended_rdev = c_rdev; 275 goto err_unlock; 276 } 277 278 /* shouldn't happen */ 279 WARN_ON_ONCE(err != -EALREADY); 280 } 281 } else { 282 *old_contended_rdev = NULL; 283 } 284 285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 286 err = regulator_lock_recursive(c_rdev->supply->rdev, 287 new_contended_rdev, 288 old_contended_rdev, 289 ww_ctx); 290 if (err) { 291 regulator_unlock(c_rdev); 292 goto err_unlock; 293 } 294 } 295 } 296 297 return 0; 298 299 err_unlock: 300 regulator_unlock_recursive(rdev, i); 301 302 return err; 303 } 304 305 /** 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 307 * regulators 308 * @rdev: regulator source 309 * @ww_ctx: w/w mutex acquire context 310 * 311 * Unlock all regulators related with rdev by coupling or supplying. 312 */ 313 static void regulator_unlock_dependent(struct regulator_dev *rdev, 314 struct ww_acquire_ctx *ww_ctx) 315 { 316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 317 ww_acquire_fini(ww_ctx); 318 } 319 320 /** 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 322 * @rdev: regulator source 323 * @ww_ctx: w/w mutex acquire context 324 * 325 * This function as a wrapper on regulator_lock_recursive(), which locks 326 * all regulators related with rdev by coupling or supplying. 327 */ 328 static void regulator_lock_dependent(struct regulator_dev *rdev, 329 struct ww_acquire_ctx *ww_ctx) 330 { 331 struct regulator_dev *new_contended_rdev = NULL; 332 struct regulator_dev *old_contended_rdev = NULL; 333 int err; 334 335 mutex_lock(®ulator_list_mutex); 336 337 ww_acquire_init(ww_ctx, ®ulator_ww_class); 338 339 do { 340 if (new_contended_rdev) { 341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 342 old_contended_rdev = new_contended_rdev; 343 old_contended_rdev->ref_cnt++; 344 } 345 346 err = regulator_lock_recursive(rdev, 347 &new_contended_rdev, 348 &old_contended_rdev, 349 ww_ctx); 350 351 if (old_contended_rdev) 352 regulator_unlock(old_contended_rdev); 353 354 } while (err == -EDEADLK); 355 356 ww_acquire_done(ww_ctx); 357 358 mutex_unlock(®ulator_list_mutex); 359 } 360 361 /** 362 * of_get_child_regulator - get a child regulator device node 363 * based on supply name 364 * @parent: Parent device node 365 * @prop_name: Combination regulator supply name and "-supply" 366 * 367 * Traverse all child nodes. 368 * Extract the child regulator device node corresponding to the supply name. 369 * returns the device node corresponding to the regulator if found, else 370 * returns NULL. 371 */ 372 static struct device_node *of_get_child_regulator(struct device_node *parent, 373 const char *prop_name) 374 { 375 struct device_node *regnode = NULL; 376 struct device_node *child = NULL; 377 378 for_each_child_of_node(parent, child) { 379 regnode = of_parse_phandle(child, prop_name, 0); 380 381 if (!regnode) { 382 regnode = of_get_child_regulator(child, prop_name); 383 if (regnode) 384 goto err_node_put; 385 } else { 386 goto err_node_put; 387 } 388 } 389 return NULL; 390 391 err_node_put: 392 of_node_put(child); 393 return regnode; 394 } 395 396 /** 397 * of_get_regulator - get a regulator device node based on supply name 398 * @dev: Device pointer for the consumer (of regulator) device 399 * @supply: regulator supply name 400 * 401 * Extract the regulator device node corresponding to the supply name. 402 * returns the device node corresponding to the regulator if found, else 403 * returns NULL. 404 */ 405 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 406 { 407 struct device_node *regnode = NULL; 408 char prop_name[32]; /* 32 is max size of property name */ 409 410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 411 412 snprintf(prop_name, 32, "%s-supply", supply); 413 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 414 415 if (!regnode) { 416 regnode = of_get_child_regulator(dev->of_node, prop_name); 417 if (regnode) 418 return regnode; 419 420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 421 prop_name, dev->of_node); 422 return NULL; 423 } 424 return regnode; 425 } 426 427 /* Platform voltage constraint check */ 428 int regulator_check_voltage(struct regulator_dev *rdev, 429 int *min_uV, int *max_uV) 430 { 431 BUG_ON(*min_uV > *max_uV); 432 433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 434 rdev_err(rdev, "voltage operation not allowed\n"); 435 return -EPERM; 436 } 437 438 if (*max_uV > rdev->constraints->max_uV) 439 *max_uV = rdev->constraints->max_uV; 440 if (*min_uV < rdev->constraints->min_uV) 441 *min_uV = rdev->constraints->min_uV; 442 443 if (*min_uV > *max_uV) { 444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 445 *min_uV, *max_uV); 446 return -EINVAL; 447 } 448 449 return 0; 450 } 451 452 /* return 0 if the state is valid */ 453 static int regulator_check_states(suspend_state_t state) 454 { 455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 456 } 457 458 /* Make sure we select a voltage that suits the needs of all 459 * regulator consumers 460 */ 461 int regulator_check_consumers(struct regulator_dev *rdev, 462 int *min_uV, int *max_uV, 463 suspend_state_t state) 464 { 465 struct regulator *regulator; 466 struct regulator_voltage *voltage; 467 468 list_for_each_entry(regulator, &rdev->consumer_list, list) { 469 voltage = ®ulator->voltage[state]; 470 /* 471 * Assume consumers that didn't say anything are OK 472 * with anything in the constraint range. 473 */ 474 if (!voltage->min_uV && !voltage->max_uV) 475 continue; 476 477 if (*max_uV > voltage->max_uV) 478 *max_uV = voltage->max_uV; 479 if (*min_uV < voltage->min_uV) 480 *min_uV = voltage->min_uV; 481 } 482 483 if (*min_uV > *max_uV) { 484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 485 *min_uV, *max_uV); 486 return -EINVAL; 487 } 488 489 return 0; 490 } 491 492 /* current constraint check */ 493 static int regulator_check_current_limit(struct regulator_dev *rdev, 494 int *min_uA, int *max_uA) 495 { 496 BUG_ON(*min_uA > *max_uA); 497 498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 499 rdev_err(rdev, "current operation not allowed\n"); 500 return -EPERM; 501 } 502 503 if (*max_uA > rdev->constraints->max_uA) 504 *max_uA = rdev->constraints->max_uA; 505 if (*min_uA < rdev->constraints->min_uA) 506 *min_uA = rdev->constraints->min_uA; 507 508 if (*min_uA > *max_uA) { 509 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 510 *min_uA, *max_uA); 511 return -EINVAL; 512 } 513 514 return 0; 515 } 516 517 /* operating mode constraint check */ 518 static int regulator_mode_constrain(struct regulator_dev *rdev, 519 unsigned int *mode) 520 { 521 switch (*mode) { 522 case REGULATOR_MODE_FAST: 523 case REGULATOR_MODE_NORMAL: 524 case REGULATOR_MODE_IDLE: 525 case REGULATOR_MODE_STANDBY: 526 break; 527 default: 528 rdev_err(rdev, "invalid mode %x specified\n", *mode); 529 return -EINVAL; 530 } 531 532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 533 rdev_err(rdev, "mode operation not allowed\n"); 534 return -EPERM; 535 } 536 537 /* The modes are bitmasks, the most power hungry modes having 538 * the lowest values. If the requested mode isn't supported 539 * try higher modes. */ 540 while (*mode) { 541 if (rdev->constraints->valid_modes_mask & *mode) 542 return 0; 543 *mode /= 2; 544 } 545 546 return -EINVAL; 547 } 548 549 static inline struct regulator_state * 550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 551 { 552 if (rdev->constraints == NULL) 553 return NULL; 554 555 switch (state) { 556 case PM_SUSPEND_STANDBY: 557 return &rdev->constraints->state_standby; 558 case PM_SUSPEND_MEM: 559 return &rdev->constraints->state_mem; 560 case PM_SUSPEND_MAX: 561 return &rdev->constraints->state_disk; 562 default: 563 return NULL; 564 } 565 } 566 567 static ssize_t regulator_uV_show(struct device *dev, 568 struct device_attribute *attr, char *buf) 569 { 570 struct regulator_dev *rdev = dev_get_drvdata(dev); 571 int uV; 572 573 regulator_lock(rdev); 574 uV = regulator_get_voltage_rdev(rdev); 575 regulator_unlock(rdev); 576 577 if (uV < 0) 578 return uV; 579 return sprintf(buf, "%d\n", uV); 580 } 581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 582 583 static ssize_t regulator_uA_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct regulator_dev *rdev = dev_get_drvdata(dev); 587 588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 589 } 590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 591 592 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 593 char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 598 } 599 static DEVICE_ATTR_RO(name); 600 601 static const char *regulator_opmode_to_str(int mode) 602 { 603 switch (mode) { 604 case REGULATOR_MODE_FAST: 605 return "fast"; 606 case REGULATOR_MODE_NORMAL: 607 return "normal"; 608 case REGULATOR_MODE_IDLE: 609 return "idle"; 610 case REGULATOR_MODE_STANDBY: 611 return "standby"; 612 } 613 return "unknown"; 614 } 615 616 static ssize_t regulator_print_opmode(char *buf, int mode) 617 { 618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 619 } 620 621 static ssize_t regulator_opmode_show(struct device *dev, 622 struct device_attribute *attr, char *buf) 623 { 624 struct regulator_dev *rdev = dev_get_drvdata(dev); 625 626 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 627 } 628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 629 630 static ssize_t regulator_print_state(char *buf, int state) 631 { 632 if (state > 0) 633 return sprintf(buf, "enabled\n"); 634 else if (state == 0) 635 return sprintf(buf, "disabled\n"); 636 else 637 return sprintf(buf, "unknown\n"); 638 } 639 640 static ssize_t regulator_state_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct regulator_dev *rdev = dev_get_drvdata(dev); 644 ssize_t ret; 645 646 regulator_lock(rdev); 647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 648 regulator_unlock(rdev); 649 650 return ret; 651 } 652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 653 654 static ssize_t regulator_status_show(struct device *dev, 655 struct device_attribute *attr, char *buf) 656 { 657 struct regulator_dev *rdev = dev_get_drvdata(dev); 658 int status; 659 char *label; 660 661 status = rdev->desc->ops->get_status(rdev); 662 if (status < 0) 663 return status; 664 665 switch (status) { 666 case REGULATOR_STATUS_OFF: 667 label = "off"; 668 break; 669 case REGULATOR_STATUS_ON: 670 label = "on"; 671 break; 672 case REGULATOR_STATUS_ERROR: 673 label = "error"; 674 break; 675 case REGULATOR_STATUS_FAST: 676 label = "fast"; 677 break; 678 case REGULATOR_STATUS_NORMAL: 679 label = "normal"; 680 break; 681 case REGULATOR_STATUS_IDLE: 682 label = "idle"; 683 break; 684 case REGULATOR_STATUS_STANDBY: 685 label = "standby"; 686 break; 687 case REGULATOR_STATUS_BYPASS: 688 label = "bypass"; 689 break; 690 case REGULATOR_STATUS_UNDEFINED: 691 label = "undefined"; 692 break; 693 default: 694 return -ERANGE; 695 } 696 697 return sprintf(buf, "%s\n", label); 698 } 699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 700 701 static ssize_t regulator_min_uA_show(struct device *dev, 702 struct device_attribute *attr, char *buf) 703 { 704 struct regulator_dev *rdev = dev_get_drvdata(dev); 705 706 if (!rdev->constraints) 707 return sprintf(buf, "constraint not defined\n"); 708 709 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 710 } 711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 712 713 static ssize_t regulator_max_uA_show(struct device *dev, 714 struct device_attribute *attr, char *buf) 715 { 716 struct regulator_dev *rdev = dev_get_drvdata(dev); 717 718 if (!rdev->constraints) 719 return sprintf(buf, "constraint not defined\n"); 720 721 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 722 } 723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 724 725 static ssize_t regulator_min_uV_show(struct device *dev, 726 struct device_attribute *attr, char *buf) 727 { 728 struct regulator_dev *rdev = dev_get_drvdata(dev); 729 730 if (!rdev->constraints) 731 return sprintf(buf, "constraint not defined\n"); 732 733 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 734 } 735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 736 737 static ssize_t regulator_max_uV_show(struct device *dev, 738 struct device_attribute *attr, char *buf) 739 { 740 struct regulator_dev *rdev = dev_get_drvdata(dev); 741 742 if (!rdev->constraints) 743 return sprintf(buf, "constraint not defined\n"); 744 745 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 746 } 747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 748 749 static ssize_t regulator_total_uA_show(struct device *dev, 750 struct device_attribute *attr, char *buf) 751 { 752 struct regulator_dev *rdev = dev_get_drvdata(dev); 753 struct regulator *regulator; 754 int uA = 0; 755 756 regulator_lock(rdev); 757 list_for_each_entry(regulator, &rdev->consumer_list, list) { 758 if (regulator->enable_count) 759 uA += regulator->uA_load; 760 } 761 regulator_unlock(rdev); 762 return sprintf(buf, "%d\n", uA); 763 } 764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 765 766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 767 char *buf) 768 { 769 struct regulator_dev *rdev = dev_get_drvdata(dev); 770 return sprintf(buf, "%d\n", rdev->use_count); 771 } 772 static DEVICE_ATTR_RO(num_users); 773 774 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 775 char *buf) 776 { 777 struct regulator_dev *rdev = dev_get_drvdata(dev); 778 779 switch (rdev->desc->type) { 780 case REGULATOR_VOLTAGE: 781 return sprintf(buf, "voltage\n"); 782 case REGULATOR_CURRENT: 783 return sprintf(buf, "current\n"); 784 } 785 return sprintf(buf, "unknown\n"); 786 } 787 static DEVICE_ATTR_RO(type); 788 789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 790 struct device_attribute *attr, char *buf) 791 { 792 struct regulator_dev *rdev = dev_get_drvdata(dev); 793 794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 795 } 796 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 797 regulator_suspend_mem_uV_show, NULL); 798 799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 805 } 806 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 807 regulator_suspend_disk_uV_show, NULL); 808 809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 815 } 816 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 817 regulator_suspend_standby_uV_show, NULL); 818 819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 820 struct device_attribute *attr, char *buf) 821 { 822 struct regulator_dev *rdev = dev_get_drvdata(dev); 823 824 return regulator_print_opmode(buf, 825 rdev->constraints->state_mem.mode); 826 } 827 static DEVICE_ATTR(suspend_mem_mode, 0444, 828 regulator_suspend_mem_mode_show, NULL); 829 830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 831 struct device_attribute *attr, char *buf) 832 { 833 struct regulator_dev *rdev = dev_get_drvdata(dev); 834 835 return regulator_print_opmode(buf, 836 rdev->constraints->state_disk.mode); 837 } 838 static DEVICE_ATTR(suspend_disk_mode, 0444, 839 regulator_suspend_disk_mode_show, NULL); 840 841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 842 struct device_attribute *attr, char *buf) 843 { 844 struct regulator_dev *rdev = dev_get_drvdata(dev); 845 846 return regulator_print_opmode(buf, 847 rdev->constraints->state_standby.mode); 848 } 849 static DEVICE_ATTR(suspend_standby_mode, 0444, 850 regulator_suspend_standby_mode_show, NULL); 851 852 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 857 return regulator_print_state(buf, 858 rdev->constraints->state_mem.enabled); 859 } 860 static DEVICE_ATTR(suspend_mem_state, 0444, 861 regulator_suspend_mem_state_show, NULL); 862 863 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 864 struct device_attribute *attr, char *buf) 865 { 866 struct regulator_dev *rdev = dev_get_drvdata(dev); 867 868 return regulator_print_state(buf, 869 rdev->constraints->state_disk.enabled); 870 } 871 static DEVICE_ATTR(suspend_disk_state, 0444, 872 regulator_suspend_disk_state_show, NULL); 873 874 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct regulator_dev *rdev = dev_get_drvdata(dev); 878 879 return regulator_print_state(buf, 880 rdev->constraints->state_standby.enabled); 881 } 882 static DEVICE_ATTR(suspend_standby_state, 0444, 883 regulator_suspend_standby_state_show, NULL); 884 885 static ssize_t regulator_bypass_show(struct device *dev, 886 struct device_attribute *attr, char *buf) 887 { 888 struct regulator_dev *rdev = dev_get_drvdata(dev); 889 const char *report; 890 bool bypass; 891 int ret; 892 893 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 894 895 if (ret != 0) 896 report = "unknown"; 897 else if (bypass) 898 report = "enabled"; 899 else 900 report = "disabled"; 901 902 return sprintf(buf, "%s\n", report); 903 } 904 static DEVICE_ATTR(bypass, 0444, 905 regulator_bypass_show, NULL); 906 907 /* Calculate the new optimum regulator operating mode based on the new total 908 * consumer load. All locks held by caller */ 909 static int drms_uA_update(struct regulator_dev *rdev) 910 { 911 struct regulator *sibling; 912 int current_uA = 0, output_uV, input_uV, err; 913 unsigned int mode; 914 915 /* 916 * first check to see if we can set modes at all, otherwise just 917 * tell the consumer everything is OK. 918 */ 919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 920 rdev_dbg(rdev, "DRMS operation not allowed\n"); 921 return 0; 922 } 923 924 if (!rdev->desc->ops->get_optimum_mode && 925 !rdev->desc->ops->set_load) 926 return 0; 927 928 if (!rdev->desc->ops->set_mode && 929 !rdev->desc->ops->set_load) 930 return -EINVAL; 931 932 /* calc total requested load */ 933 list_for_each_entry(sibling, &rdev->consumer_list, list) { 934 if (sibling->enable_count) 935 current_uA += sibling->uA_load; 936 } 937 938 current_uA += rdev->constraints->system_load; 939 940 if (rdev->desc->ops->set_load) { 941 /* set the optimum mode for our new total regulator load */ 942 err = rdev->desc->ops->set_load(rdev, current_uA); 943 if (err < 0) 944 rdev_err(rdev, "failed to set load %d\n", current_uA); 945 } else { 946 /* get output voltage */ 947 output_uV = regulator_get_voltage_rdev(rdev); 948 if (output_uV <= 0) { 949 rdev_err(rdev, "invalid output voltage found\n"); 950 return -EINVAL; 951 } 952 953 /* get input voltage */ 954 input_uV = 0; 955 if (rdev->supply) 956 input_uV = regulator_get_voltage(rdev->supply); 957 if (input_uV <= 0) 958 input_uV = rdev->constraints->input_uV; 959 if (input_uV <= 0) { 960 rdev_err(rdev, "invalid input voltage found\n"); 961 return -EINVAL; 962 } 963 964 /* now get the optimum mode for our new total regulator load */ 965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 966 output_uV, current_uA); 967 968 /* check the new mode is allowed */ 969 err = regulator_mode_constrain(rdev, &mode); 970 if (err < 0) { 971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 972 current_uA, input_uV, output_uV); 973 return err; 974 } 975 976 err = rdev->desc->ops->set_mode(rdev, mode); 977 if (err < 0) 978 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 979 } 980 981 return err; 982 } 983 984 static int suspend_set_state(struct regulator_dev *rdev, 985 suspend_state_t state) 986 { 987 int ret = 0; 988 struct regulator_state *rstate; 989 990 rstate = regulator_get_suspend_state(rdev, state); 991 if (rstate == NULL) 992 return 0; 993 994 /* If we have no suspend mode configuration don't set anything; 995 * only warn if the driver implements set_suspend_voltage or 996 * set_suspend_mode callback. 997 */ 998 if (rstate->enabled != ENABLE_IN_SUSPEND && 999 rstate->enabled != DISABLE_IN_SUSPEND) { 1000 if (rdev->desc->ops->set_suspend_voltage || 1001 rdev->desc->ops->set_suspend_mode) 1002 rdev_warn(rdev, "No configuration\n"); 1003 return 0; 1004 } 1005 1006 if (rstate->enabled == ENABLE_IN_SUSPEND && 1007 rdev->desc->ops->set_suspend_enable) 1008 ret = rdev->desc->ops->set_suspend_enable(rdev); 1009 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1010 rdev->desc->ops->set_suspend_disable) 1011 ret = rdev->desc->ops->set_suspend_disable(rdev); 1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1013 ret = 0; 1014 1015 if (ret < 0) { 1016 rdev_err(rdev, "failed to enabled/disable\n"); 1017 return ret; 1018 } 1019 1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1022 if (ret < 0) { 1023 rdev_err(rdev, "failed to set voltage\n"); 1024 return ret; 1025 } 1026 } 1027 1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1030 if (ret < 0) { 1031 rdev_err(rdev, "failed to set mode\n"); 1032 return ret; 1033 } 1034 } 1035 1036 return ret; 1037 } 1038 1039 static void print_constraints(struct regulator_dev *rdev) 1040 { 1041 struct regulation_constraints *constraints = rdev->constraints; 1042 char buf[160] = ""; 1043 size_t len = sizeof(buf) - 1; 1044 int count = 0; 1045 int ret; 1046 1047 if (constraints->min_uV && constraints->max_uV) { 1048 if (constraints->min_uV == constraints->max_uV) 1049 count += scnprintf(buf + count, len - count, "%d mV ", 1050 constraints->min_uV / 1000); 1051 else 1052 count += scnprintf(buf + count, len - count, 1053 "%d <--> %d mV ", 1054 constraints->min_uV / 1000, 1055 constraints->max_uV / 1000); 1056 } 1057 1058 if (!constraints->min_uV || 1059 constraints->min_uV != constraints->max_uV) { 1060 ret = regulator_get_voltage_rdev(rdev); 1061 if (ret > 0) 1062 count += scnprintf(buf + count, len - count, 1063 "at %d mV ", ret / 1000); 1064 } 1065 1066 if (constraints->uV_offset) 1067 count += scnprintf(buf + count, len - count, "%dmV offset ", 1068 constraints->uV_offset / 1000); 1069 1070 if (constraints->min_uA && constraints->max_uA) { 1071 if (constraints->min_uA == constraints->max_uA) 1072 count += scnprintf(buf + count, len - count, "%d mA ", 1073 constraints->min_uA / 1000); 1074 else 1075 count += scnprintf(buf + count, len - count, 1076 "%d <--> %d mA ", 1077 constraints->min_uA / 1000, 1078 constraints->max_uA / 1000); 1079 } 1080 1081 if (!constraints->min_uA || 1082 constraints->min_uA != constraints->max_uA) { 1083 ret = _regulator_get_current_limit(rdev); 1084 if (ret > 0) 1085 count += scnprintf(buf + count, len - count, 1086 "at %d mA ", ret / 1000); 1087 } 1088 1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1090 count += scnprintf(buf + count, len - count, "fast "); 1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1092 count += scnprintf(buf + count, len - count, "normal "); 1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1094 count += scnprintf(buf + count, len - count, "idle "); 1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1096 count += scnprintf(buf + count, len - count, "standby"); 1097 1098 if (!count) 1099 scnprintf(buf, len, "no parameters"); 1100 1101 rdev_dbg(rdev, "%s\n", buf); 1102 1103 if ((constraints->min_uV != constraints->max_uV) && 1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1105 rdev_warn(rdev, 1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1107 } 1108 1109 static int machine_constraints_voltage(struct regulator_dev *rdev, 1110 struct regulation_constraints *constraints) 1111 { 1112 const struct regulator_ops *ops = rdev->desc->ops; 1113 int ret; 1114 1115 /* do we need to apply the constraint voltage */ 1116 if (rdev->constraints->apply_uV && 1117 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1118 int target_min, target_max; 1119 int current_uV = regulator_get_voltage_rdev(rdev); 1120 1121 if (current_uV == -ENOTRECOVERABLE) { 1122 /* This regulator can't be read and must be initialized */ 1123 rdev_info(rdev, "Setting %d-%duV\n", 1124 rdev->constraints->min_uV, 1125 rdev->constraints->max_uV); 1126 _regulator_do_set_voltage(rdev, 1127 rdev->constraints->min_uV, 1128 rdev->constraints->max_uV); 1129 current_uV = regulator_get_voltage_rdev(rdev); 1130 } 1131 1132 if (current_uV < 0) { 1133 rdev_err(rdev, 1134 "failed to get the current voltage(%d)\n", 1135 current_uV); 1136 return current_uV; 1137 } 1138 1139 /* 1140 * If we're below the minimum voltage move up to the 1141 * minimum voltage, if we're above the maximum voltage 1142 * then move down to the maximum. 1143 */ 1144 target_min = current_uV; 1145 target_max = current_uV; 1146 1147 if (current_uV < rdev->constraints->min_uV) { 1148 target_min = rdev->constraints->min_uV; 1149 target_max = rdev->constraints->min_uV; 1150 } 1151 1152 if (current_uV > rdev->constraints->max_uV) { 1153 target_min = rdev->constraints->max_uV; 1154 target_max = rdev->constraints->max_uV; 1155 } 1156 1157 if (target_min != current_uV || target_max != current_uV) { 1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1159 current_uV, target_min, target_max); 1160 ret = _regulator_do_set_voltage( 1161 rdev, target_min, target_max); 1162 if (ret < 0) { 1163 rdev_err(rdev, 1164 "failed to apply %d-%duV constraint(%d)\n", 1165 target_min, target_max, ret); 1166 return ret; 1167 } 1168 } 1169 } 1170 1171 /* constrain machine-level voltage specs to fit 1172 * the actual range supported by this regulator. 1173 */ 1174 if (ops->list_voltage && rdev->desc->n_voltages) { 1175 int count = rdev->desc->n_voltages; 1176 int i; 1177 int min_uV = INT_MAX; 1178 int max_uV = INT_MIN; 1179 int cmin = constraints->min_uV; 1180 int cmax = constraints->max_uV; 1181 1182 /* it's safe to autoconfigure fixed-voltage supplies 1183 and the constraints are used by list_voltage. */ 1184 if (count == 1 && !cmin) { 1185 cmin = 1; 1186 cmax = INT_MAX; 1187 constraints->min_uV = cmin; 1188 constraints->max_uV = cmax; 1189 } 1190 1191 /* voltage constraints are optional */ 1192 if ((cmin == 0) && (cmax == 0)) 1193 return 0; 1194 1195 /* else require explicit machine-level constraints */ 1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1197 rdev_err(rdev, "invalid voltage constraints\n"); 1198 return -EINVAL; 1199 } 1200 1201 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1202 for (i = 0; i < count; i++) { 1203 int value; 1204 1205 value = ops->list_voltage(rdev, i); 1206 if (value <= 0) 1207 continue; 1208 1209 /* maybe adjust [min_uV..max_uV] */ 1210 if (value >= cmin && value < min_uV) 1211 min_uV = value; 1212 if (value <= cmax && value > max_uV) 1213 max_uV = value; 1214 } 1215 1216 /* final: [min_uV..max_uV] valid iff constraints valid */ 1217 if (max_uV < min_uV) { 1218 rdev_err(rdev, 1219 "unsupportable voltage constraints %u-%uuV\n", 1220 min_uV, max_uV); 1221 return -EINVAL; 1222 } 1223 1224 /* use regulator's subset of machine constraints */ 1225 if (constraints->min_uV < min_uV) { 1226 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1227 constraints->min_uV, min_uV); 1228 constraints->min_uV = min_uV; 1229 } 1230 if (constraints->max_uV > max_uV) { 1231 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1232 constraints->max_uV, max_uV); 1233 constraints->max_uV = max_uV; 1234 } 1235 } 1236 1237 return 0; 1238 } 1239 1240 static int machine_constraints_current(struct regulator_dev *rdev, 1241 struct regulation_constraints *constraints) 1242 { 1243 const struct regulator_ops *ops = rdev->desc->ops; 1244 int ret; 1245 1246 if (!constraints->min_uA && !constraints->max_uA) 1247 return 0; 1248 1249 if (constraints->min_uA > constraints->max_uA) { 1250 rdev_err(rdev, "Invalid current constraints\n"); 1251 return -EINVAL; 1252 } 1253 1254 if (!ops->set_current_limit || !ops->get_current_limit) { 1255 rdev_warn(rdev, "Operation of current configuration missing\n"); 1256 return 0; 1257 } 1258 1259 /* Set regulator current in constraints range */ 1260 ret = ops->set_current_limit(rdev, constraints->min_uA, 1261 constraints->max_uA); 1262 if (ret < 0) { 1263 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1264 return ret; 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int _regulator_do_enable(struct regulator_dev *rdev); 1271 1272 /** 1273 * set_machine_constraints - sets regulator constraints 1274 * @rdev: regulator source 1275 * @constraints: constraints to apply 1276 * 1277 * Allows platform initialisation code to define and constrain 1278 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1279 * Constraints *must* be set by platform code in order for some 1280 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1281 * set_mode. 1282 */ 1283 static int set_machine_constraints(struct regulator_dev *rdev, 1284 const struct regulation_constraints *constraints) 1285 { 1286 int ret = 0; 1287 const struct regulator_ops *ops = rdev->desc->ops; 1288 1289 if (constraints) 1290 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1291 GFP_KERNEL); 1292 else 1293 rdev->constraints = kzalloc(sizeof(*constraints), 1294 GFP_KERNEL); 1295 if (!rdev->constraints) 1296 return -ENOMEM; 1297 1298 ret = machine_constraints_voltage(rdev, rdev->constraints); 1299 if (ret != 0) 1300 return ret; 1301 1302 ret = machine_constraints_current(rdev, rdev->constraints); 1303 if (ret != 0) 1304 return ret; 1305 1306 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1307 ret = ops->set_input_current_limit(rdev, 1308 rdev->constraints->ilim_uA); 1309 if (ret < 0) { 1310 rdev_err(rdev, "failed to set input limit\n"); 1311 return ret; 1312 } 1313 } 1314 1315 /* do we need to setup our suspend state */ 1316 if (rdev->constraints->initial_state) { 1317 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1318 if (ret < 0) { 1319 rdev_err(rdev, "failed to set suspend state\n"); 1320 return ret; 1321 } 1322 } 1323 1324 if (rdev->constraints->initial_mode) { 1325 if (!ops->set_mode) { 1326 rdev_err(rdev, "no set_mode operation\n"); 1327 return -EINVAL; 1328 } 1329 1330 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1331 if (ret < 0) { 1332 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1333 return ret; 1334 } 1335 } else if (rdev->constraints->system_load) { 1336 /* 1337 * We'll only apply the initial system load if an 1338 * initial mode wasn't specified. 1339 */ 1340 drms_uA_update(rdev); 1341 } 1342 1343 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1344 && ops->set_ramp_delay) { 1345 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1346 if (ret < 0) { 1347 rdev_err(rdev, "failed to set ramp_delay\n"); 1348 return ret; 1349 } 1350 } 1351 1352 if (rdev->constraints->pull_down && ops->set_pull_down) { 1353 ret = ops->set_pull_down(rdev); 1354 if (ret < 0) { 1355 rdev_err(rdev, "failed to set pull down\n"); 1356 return ret; 1357 } 1358 } 1359 1360 if (rdev->constraints->soft_start && ops->set_soft_start) { 1361 ret = ops->set_soft_start(rdev); 1362 if (ret < 0) { 1363 rdev_err(rdev, "failed to set soft start\n"); 1364 return ret; 1365 } 1366 } 1367 1368 if (rdev->constraints->over_current_protection 1369 && ops->set_over_current_protection) { 1370 ret = ops->set_over_current_protection(rdev); 1371 if (ret < 0) { 1372 rdev_err(rdev, "failed to set over current protection\n"); 1373 return ret; 1374 } 1375 } 1376 1377 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1378 bool ad_state = (rdev->constraints->active_discharge == 1379 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1380 1381 ret = ops->set_active_discharge(rdev, ad_state); 1382 if (ret < 0) { 1383 rdev_err(rdev, "failed to set active discharge\n"); 1384 return ret; 1385 } 1386 } 1387 1388 /* If the constraints say the regulator should be on at this point 1389 * and we have control then make sure it is enabled. 1390 */ 1391 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1392 if (rdev->supply) { 1393 ret = regulator_enable(rdev->supply); 1394 if (ret < 0) { 1395 _regulator_put(rdev->supply); 1396 rdev->supply = NULL; 1397 return ret; 1398 } 1399 } 1400 1401 ret = _regulator_do_enable(rdev); 1402 if (ret < 0 && ret != -EINVAL) { 1403 rdev_err(rdev, "failed to enable\n"); 1404 return ret; 1405 } 1406 rdev->use_count++; 1407 } 1408 1409 print_constraints(rdev); 1410 return 0; 1411 } 1412 1413 /** 1414 * set_supply - set regulator supply regulator 1415 * @rdev: regulator name 1416 * @supply_rdev: supply regulator name 1417 * 1418 * Called by platform initialisation code to set the supply regulator for this 1419 * regulator. This ensures that a regulators supply will also be enabled by the 1420 * core if it's child is enabled. 1421 */ 1422 static int set_supply(struct regulator_dev *rdev, 1423 struct regulator_dev *supply_rdev) 1424 { 1425 int err; 1426 1427 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1428 1429 if (!try_module_get(supply_rdev->owner)) 1430 return -ENODEV; 1431 1432 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1433 if (rdev->supply == NULL) { 1434 err = -ENOMEM; 1435 return err; 1436 } 1437 supply_rdev->open_count++; 1438 1439 return 0; 1440 } 1441 1442 /** 1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1444 * @rdev: regulator source 1445 * @consumer_dev_name: dev_name() string for device supply applies to 1446 * @supply: symbolic name for supply 1447 * 1448 * Allows platform initialisation code to map physical regulator 1449 * sources to symbolic names for supplies for use by devices. Devices 1450 * should use these symbolic names to request regulators, avoiding the 1451 * need to provide board-specific regulator names as platform data. 1452 */ 1453 static int set_consumer_device_supply(struct regulator_dev *rdev, 1454 const char *consumer_dev_name, 1455 const char *supply) 1456 { 1457 struct regulator_map *node; 1458 int has_dev; 1459 1460 if (supply == NULL) 1461 return -EINVAL; 1462 1463 if (consumer_dev_name != NULL) 1464 has_dev = 1; 1465 else 1466 has_dev = 0; 1467 1468 list_for_each_entry(node, ®ulator_map_list, list) { 1469 if (node->dev_name && consumer_dev_name) { 1470 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1471 continue; 1472 } else if (node->dev_name || consumer_dev_name) { 1473 continue; 1474 } 1475 1476 if (strcmp(node->supply, supply) != 0) 1477 continue; 1478 1479 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1480 consumer_dev_name, 1481 dev_name(&node->regulator->dev), 1482 node->regulator->desc->name, 1483 supply, 1484 dev_name(&rdev->dev), rdev_get_name(rdev)); 1485 return -EBUSY; 1486 } 1487 1488 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1489 if (node == NULL) 1490 return -ENOMEM; 1491 1492 node->regulator = rdev; 1493 node->supply = supply; 1494 1495 if (has_dev) { 1496 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1497 if (node->dev_name == NULL) { 1498 kfree(node); 1499 return -ENOMEM; 1500 } 1501 } 1502 1503 list_add(&node->list, ®ulator_map_list); 1504 return 0; 1505 } 1506 1507 static void unset_regulator_supplies(struct regulator_dev *rdev) 1508 { 1509 struct regulator_map *node, *n; 1510 1511 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1512 if (rdev == node->regulator) { 1513 list_del(&node->list); 1514 kfree(node->dev_name); 1515 kfree(node); 1516 } 1517 } 1518 } 1519 1520 #ifdef CONFIG_DEBUG_FS 1521 static ssize_t constraint_flags_read_file(struct file *file, 1522 char __user *user_buf, 1523 size_t count, loff_t *ppos) 1524 { 1525 const struct regulator *regulator = file->private_data; 1526 const struct regulation_constraints *c = regulator->rdev->constraints; 1527 char *buf; 1528 ssize_t ret; 1529 1530 if (!c) 1531 return 0; 1532 1533 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1534 if (!buf) 1535 return -ENOMEM; 1536 1537 ret = snprintf(buf, PAGE_SIZE, 1538 "always_on: %u\n" 1539 "boot_on: %u\n" 1540 "apply_uV: %u\n" 1541 "ramp_disable: %u\n" 1542 "soft_start: %u\n" 1543 "pull_down: %u\n" 1544 "over_current_protection: %u\n", 1545 c->always_on, 1546 c->boot_on, 1547 c->apply_uV, 1548 c->ramp_disable, 1549 c->soft_start, 1550 c->pull_down, 1551 c->over_current_protection); 1552 1553 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1554 kfree(buf); 1555 1556 return ret; 1557 } 1558 1559 #endif 1560 1561 static const struct file_operations constraint_flags_fops = { 1562 #ifdef CONFIG_DEBUG_FS 1563 .open = simple_open, 1564 .read = constraint_flags_read_file, 1565 .llseek = default_llseek, 1566 #endif 1567 }; 1568 1569 #define REG_STR_SIZE 64 1570 1571 static struct regulator *create_regulator(struct regulator_dev *rdev, 1572 struct device *dev, 1573 const char *supply_name) 1574 { 1575 struct regulator *regulator; 1576 char buf[REG_STR_SIZE]; 1577 int err, size; 1578 1579 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1580 if (regulator == NULL) 1581 return NULL; 1582 1583 regulator_lock(rdev); 1584 regulator->rdev = rdev; 1585 list_add(®ulator->list, &rdev->consumer_list); 1586 1587 if (dev) { 1588 regulator->dev = dev; 1589 1590 /* Add a link to the device sysfs entry */ 1591 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1592 dev->kobj.name, supply_name); 1593 if (size >= REG_STR_SIZE) 1594 goto overflow_err; 1595 1596 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1597 if (regulator->supply_name == NULL) 1598 goto overflow_err; 1599 1600 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1601 buf); 1602 if (err) { 1603 rdev_dbg(rdev, "could not add device link %s err %d\n", 1604 dev->kobj.name, err); 1605 /* non-fatal */ 1606 } 1607 } else { 1608 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1609 if (regulator->supply_name == NULL) 1610 goto overflow_err; 1611 } 1612 1613 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1614 rdev->debugfs); 1615 if (!regulator->debugfs) { 1616 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1617 } else { 1618 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1619 ®ulator->uA_load); 1620 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1621 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1622 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1623 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1624 debugfs_create_file("constraint_flags", 0444, 1625 regulator->debugfs, regulator, 1626 &constraint_flags_fops); 1627 } 1628 1629 /* 1630 * Check now if the regulator is an always on regulator - if 1631 * it is then we don't need to do nearly so much work for 1632 * enable/disable calls. 1633 */ 1634 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1635 _regulator_is_enabled(rdev)) 1636 regulator->always_on = true; 1637 1638 regulator_unlock(rdev); 1639 return regulator; 1640 overflow_err: 1641 list_del(®ulator->list); 1642 kfree(regulator); 1643 regulator_unlock(rdev); 1644 return NULL; 1645 } 1646 1647 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1648 { 1649 if (rdev->constraints && rdev->constraints->enable_time) 1650 return rdev->constraints->enable_time; 1651 if (rdev->desc->ops->enable_time) 1652 return rdev->desc->ops->enable_time(rdev); 1653 return rdev->desc->enable_time; 1654 } 1655 1656 static struct regulator_supply_alias *regulator_find_supply_alias( 1657 struct device *dev, const char *supply) 1658 { 1659 struct regulator_supply_alias *map; 1660 1661 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1662 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1663 return map; 1664 1665 return NULL; 1666 } 1667 1668 static void regulator_supply_alias(struct device **dev, const char **supply) 1669 { 1670 struct regulator_supply_alias *map; 1671 1672 map = regulator_find_supply_alias(*dev, *supply); 1673 if (map) { 1674 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1675 *supply, map->alias_supply, 1676 dev_name(map->alias_dev)); 1677 *dev = map->alias_dev; 1678 *supply = map->alias_supply; 1679 } 1680 } 1681 1682 static int regulator_match(struct device *dev, const void *data) 1683 { 1684 struct regulator_dev *r = dev_to_rdev(dev); 1685 1686 return strcmp(rdev_get_name(r), data) == 0; 1687 } 1688 1689 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1690 { 1691 struct device *dev; 1692 1693 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1694 1695 return dev ? dev_to_rdev(dev) : NULL; 1696 } 1697 1698 /** 1699 * regulator_dev_lookup - lookup a regulator device. 1700 * @dev: device for regulator "consumer". 1701 * @supply: Supply name or regulator ID. 1702 * 1703 * If successful, returns a struct regulator_dev that corresponds to the name 1704 * @supply and with the embedded struct device refcount incremented by one. 1705 * The refcount must be dropped by calling put_device(). 1706 * On failure one of the following ERR-PTR-encoded values is returned: 1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1708 * in the future. 1709 */ 1710 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1711 const char *supply) 1712 { 1713 struct regulator_dev *r = NULL; 1714 struct device_node *node; 1715 struct regulator_map *map; 1716 const char *devname = NULL; 1717 1718 regulator_supply_alias(&dev, &supply); 1719 1720 /* first do a dt based lookup */ 1721 if (dev && dev->of_node) { 1722 node = of_get_regulator(dev, supply); 1723 if (node) { 1724 r = of_find_regulator_by_node(node); 1725 if (r) 1726 return r; 1727 1728 /* 1729 * We have a node, but there is no device. 1730 * assume it has not registered yet. 1731 */ 1732 return ERR_PTR(-EPROBE_DEFER); 1733 } 1734 } 1735 1736 /* if not found, try doing it non-dt way */ 1737 if (dev) 1738 devname = dev_name(dev); 1739 1740 mutex_lock(®ulator_list_mutex); 1741 list_for_each_entry(map, ®ulator_map_list, list) { 1742 /* If the mapping has a device set up it must match */ 1743 if (map->dev_name && 1744 (!devname || strcmp(map->dev_name, devname))) 1745 continue; 1746 1747 if (strcmp(map->supply, supply) == 0 && 1748 get_device(&map->regulator->dev)) { 1749 r = map->regulator; 1750 break; 1751 } 1752 } 1753 mutex_unlock(®ulator_list_mutex); 1754 1755 if (r) 1756 return r; 1757 1758 r = regulator_lookup_by_name(supply); 1759 if (r) 1760 return r; 1761 1762 return ERR_PTR(-ENODEV); 1763 } 1764 1765 static int regulator_resolve_supply(struct regulator_dev *rdev) 1766 { 1767 struct regulator_dev *r; 1768 struct device *dev = rdev->dev.parent; 1769 int ret; 1770 1771 /* No supply to resolve? */ 1772 if (!rdev->supply_name) 1773 return 0; 1774 1775 /* Supply already resolved? */ 1776 if (rdev->supply) 1777 return 0; 1778 1779 r = regulator_dev_lookup(dev, rdev->supply_name); 1780 if (IS_ERR(r)) { 1781 ret = PTR_ERR(r); 1782 1783 /* Did the lookup explicitly defer for us? */ 1784 if (ret == -EPROBE_DEFER) 1785 return ret; 1786 1787 if (have_full_constraints()) { 1788 r = dummy_regulator_rdev; 1789 get_device(&r->dev); 1790 } else { 1791 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1792 rdev->supply_name, rdev->desc->name); 1793 return -EPROBE_DEFER; 1794 } 1795 } 1796 1797 /* 1798 * If the supply's parent device is not the same as the 1799 * regulator's parent device, then ensure the parent device 1800 * is bound before we resolve the supply, in case the parent 1801 * device get probe deferred and unregisters the supply. 1802 */ 1803 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1804 if (!device_is_bound(r->dev.parent)) { 1805 put_device(&r->dev); 1806 return -EPROBE_DEFER; 1807 } 1808 } 1809 1810 /* Recursively resolve the supply of the supply */ 1811 ret = regulator_resolve_supply(r); 1812 if (ret < 0) { 1813 put_device(&r->dev); 1814 return ret; 1815 } 1816 1817 ret = set_supply(rdev, r); 1818 if (ret < 0) { 1819 put_device(&r->dev); 1820 return ret; 1821 } 1822 1823 /* 1824 * In set_machine_constraints() we may have turned this regulator on 1825 * but we couldn't propagate to the supply if it hadn't been resolved 1826 * yet. Do it now. 1827 */ 1828 if (rdev->use_count) { 1829 ret = regulator_enable(rdev->supply); 1830 if (ret < 0) { 1831 _regulator_put(rdev->supply); 1832 rdev->supply = NULL; 1833 return ret; 1834 } 1835 } 1836 1837 return 0; 1838 } 1839 1840 /* Internal regulator request function */ 1841 struct regulator *_regulator_get(struct device *dev, const char *id, 1842 enum regulator_get_type get_type) 1843 { 1844 struct regulator_dev *rdev; 1845 struct regulator *regulator; 1846 const char *devname = dev ? dev_name(dev) : "deviceless"; 1847 int ret; 1848 1849 if (get_type >= MAX_GET_TYPE) { 1850 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1851 return ERR_PTR(-EINVAL); 1852 } 1853 1854 if (id == NULL) { 1855 pr_err("get() with no identifier\n"); 1856 return ERR_PTR(-EINVAL); 1857 } 1858 1859 rdev = regulator_dev_lookup(dev, id); 1860 if (IS_ERR(rdev)) { 1861 ret = PTR_ERR(rdev); 1862 1863 /* 1864 * If regulator_dev_lookup() fails with error other 1865 * than -ENODEV our job here is done, we simply return it. 1866 */ 1867 if (ret != -ENODEV) 1868 return ERR_PTR(ret); 1869 1870 if (!have_full_constraints()) { 1871 dev_warn(dev, 1872 "incomplete constraints, dummy supplies not allowed\n"); 1873 return ERR_PTR(-ENODEV); 1874 } 1875 1876 switch (get_type) { 1877 case NORMAL_GET: 1878 /* 1879 * Assume that a regulator is physically present and 1880 * enabled, even if it isn't hooked up, and just 1881 * provide a dummy. 1882 */ 1883 dev_warn(dev, 1884 "%s supply %s not found, using dummy regulator\n", 1885 devname, id); 1886 rdev = dummy_regulator_rdev; 1887 get_device(&rdev->dev); 1888 break; 1889 1890 case EXCLUSIVE_GET: 1891 dev_warn(dev, 1892 "dummy supplies not allowed for exclusive requests\n"); 1893 /* fall through */ 1894 1895 default: 1896 return ERR_PTR(-ENODEV); 1897 } 1898 } 1899 1900 if (rdev->exclusive) { 1901 regulator = ERR_PTR(-EPERM); 1902 put_device(&rdev->dev); 1903 return regulator; 1904 } 1905 1906 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1907 regulator = ERR_PTR(-EBUSY); 1908 put_device(&rdev->dev); 1909 return regulator; 1910 } 1911 1912 mutex_lock(®ulator_list_mutex); 1913 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1914 mutex_unlock(®ulator_list_mutex); 1915 1916 if (ret != 0) { 1917 regulator = ERR_PTR(-EPROBE_DEFER); 1918 put_device(&rdev->dev); 1919 return regulator; 1920 } 1921 1922 ret = regulator_resolve_supply(rdev); 1923 if (ret < 0) { 1924 regulator = ERR_PTR(ret); 1925 put_device(&rdev->dev); 1926 return regulator; 1927 } 1928 1929 if (!try_module_get(rdev->owner)) { 1930 regulator = ERR_PTR(-EPROBE_DEFER); 1931 put_device(&rdev->dev); 1932 return regulator; 1933 } 1934 1935 regulator = create_regulator(rdev, dev, id); 1936 if (regulator == NULL) { 1937 regulator = ERR_PTR(-ENOMEM); 1938 put_device(&rdev->dev); 1939 module_put(rdev->owner); 1940 return regulator; 1941 } 1942 1943 rdev->open_count++; 1944 if (get_type == EXCLUSIVE_GET) { 1945 rdev->exclusive = 1; 1946 1947 ret = _regulator_is_enabled(rdev); 1948 if (ret > 0) 1949 rdev->use_count = 1; 1950 else 1951 rdev->use_count = 0; 1952 } 1953 1954 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1955 1956 return regulator; 1957 } 1958 1959 /** 1960 * regulator_get - lookup and obtain a reference to a regulator. 1961 * @dev: device for regulator "consumer" 1962 * @id: Supply name or regulator ID. 1963 * 1964 * Returns a struct regulator corresponding to the regulator producer, 1965 * or IS_ERR() condition containing errno. 1966 * 1967 * Use of supply names configured via regulator_set_device_supply() is 1968 * strongly encouraged. It is recommended that the supply name used 1969 * should match the name used for the supply and/or the relevant 1970 * device pins in the datasheet. 1971 */ 1972 struct regulator *regulator_get(struct device *dev, const char *id) 1973 { 1974 return _regulator_get(dev, id, NORMAL_GET); 1975 } 1976 EXPORT_SYMBOL_GPL(regulator_get); 1977 1978 /** 1979 * regulator_get_exclusive - obtain exclusive access to a regulator. 1980 * @dev: device for regulator "consumer" 1981 * @id: Supply name or regulator ID. 1982 * 1983 * Returns a struct regulator corresponding to the regulator producer, 1984 * or IS_ERR() condition containing errno. Other consumers will be 1985 * unable to obtain this regulator while this reference is held and the 1986 * use count for the regulator will be initialised to reflect the current 1987 * state of the regulator. 1988 * 1989 * This is intended for use by consumers which cannot tolerate shared 1990 * use of the regulator such as those which need to force the 1991 * regulator off for correct operation of the hardware they are 1992 * controlling. 1993 * 1994 * Use of supply names configured via regulator_set_device_supply() is 1995 * strongly encouraged. It is recommended that the supply name used 1996 * should match the name used for the supply and/or the relevant 1997 * device pins in the datasheet. 1998 */ 1999 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2000 { 2001 return _regulator_get(dev, id, EXCLUSIVE_GET); 2002 } 2003 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2004 2005 /** 2006 * regulator_get_optional - obtain optional access to a regulator. 2007 * @dev: device for regulator "consumer" 2008 * @id: Supply name or regulator ID. 2009 * 2010 * Returns a struct regulator corresponding to the regulator producer, 2011 * or IS_ERR() condition containing errno. 2012 * 2013 * This is intended for use by consumers for devices which can have 2014 * some supplies unconnected in normal use, such as some MMC devices. 2015 * It can allow the regulator core to provide stub supplies for other 2016 * supplies requested using normal regulator_get() calls without 2017 * disrupting the operation of drivers that can handle absent 2018 * supplies. 2019 * 2020 * Use of supply names configured via regulator_set_device_supply() is 2021 * strongly encouraged. It is recommended that the supply name used 2022 * should match the name used for the supply and/or the relevant 2023 * device pins in the datasheet. 2024 */ 2025 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2026 { 2027 return _regulator_get(dev, id, OPTIONAL_GET); 2028 } 2029 EXPORT_SYMBOL_GPL(regulator_get_optional); 2030 2031 /* regulator_list_mutex lock held by regulator_put() */ 2032 static void _regulator_put(struct regulator *regulator) 2033 { 2034 struct regulator_dev *rdev; 2035 2036 if (IS_ERR_OR_NULL(regulator)) 2037 return; 2038 2039 lockdep_assert_held_once(®ulator_list_mutex); 2040 2041 /* Docs say you must disable before calling regulator_put() */ 2042 WARN_ON(regulator->enable_count); 2043 2044 rdev = regulator->rdev; 2045 2046 debugfs_remove_recursive(regulator->debugfs); 2047 2048 if (regulator->dev) { 2049 device_link_remove(regulator->dev, &rdev->dev); 2050 2051 /* remove any sysfs entries */ 2052 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2053 } 2054 2055 regulator_lock(rdev); 2056 list_del(®ulator->list); 2057 2058 rdev->open_count--; 2059 rdev->exclusive = 0; 2060 put_device(&rdev->dev); 2061 regulator_unlock(rdev); 2062 2063 kfree_const(regulator->supply_name); 2064 kfree(regulator); 2065 2066 module_put(rdev->owner); 2067 } 2068 2069 /** 2070 * regulator_put - "free" the regulator source 2071 * @regulator: regulator source 2072 * 2073 * Note: drivers must ensure that all regulator_enable calls made on this 2074 * regulator source are balanced by regulator_disable calls prior to calling 2075 * this function. 2076 */ 2077 void regulator_put(struct regulator *regulator) 2078 { 2079 mutex_lock(®ulator_list_mutex); 2080 _regulator_put(regulator); 2081 mutex_unlock(®ulator_list_mutex); 2082 } 2083 EXPORT_SYMBOL_GPL(regulator_put); 2084 2085 /** 2086 * regulator_register_supply_alias - Provide device alias for supply lookup 2087 * 2088 * @dev: device that will be given as the regulator "consumer" 2089 * @id: Supply name or regulator ID 2090 * @alias_dev: device that should be used to lookup the supply 2091 * @alias_id: Supply name or regulator ID that should be used to lookup the 2092 * supply 2093 * 2094 * All lookups for id on dev will instead be conducted for alias_id on 2095 * alias_dev. 2096 */ 2097 int regulator_register_supply_alias(struct device *dev, const char *id, 2098 struct device *alias_dev, 2099 const char *alias_id) 2100 { 2101 struct regulator_supply_alias *map; 2102 2103 map = regulator_find_supply_alias(dev, id); 2104 if (map) 2105 return -EEXIST; 2106 2107 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2108 if (!map) 2109 return -ENOMEM; 2110 2111 map->src_dev = dev; 2112 map->src_supply = id; 2113 map->alias_dev = alias_dev; 2114 map->alias_supply = alias_id; 2115 2116 list_add(&map->list, ®ulator_supply_alias_list); 2117 2118 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2119 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2120 2121 return 0; 2122 } 2123 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2124 2125 /** 2126 * regulator_unregister_supply_alias - Remove device alias 2127 * 2128 * @dev: device that will be given as the regulator "consumer" 2129 * @id: Supply name or regulator ID 2130 * 2131 * Remove a lookup alias if one exists for id on dev. 2132 */ 2133 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2134 { 2135 struct regulator_supply_alias *map; 2136 2137 map = regulator_find_supply_alias(dev, id); 2138 if (map) { 2139 list_del(&map->list); 2140 kfree(map); 2141 } 2142 } 2143 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2144 2145 /** 2146 * regulator_bulk_register_supply_alias - register multiple aliases 2147 * 2148 * @dev: device that will be given as the regulator "consumer" 2149 * @id: List of supply names or regulator IDs 2150 * @alias_dev: device that should be used to lookup the supply 2151 * @alias_id: List of supply names or regulator IDs that should be used to 2152 * lookup the supply 2153 * @num_id: Number of aliases to register 2154 * 2155 * @return 0 on success, an errno on failure. 2156 * 2157 * This helper function allows drivers to register several supply 2158 * aliases in one operation. If any of the aliases cannot be 2159 * registered any aliases that were registered will be removed 2160 * before returning to the caller. 2161 */ 2162 int regulator_bulk_register_supply_alias(struct device *dev, 2163 const char *const *id, 2164 struct device *alias_dev, 2165 const char *const *alias_id, 2166 int num_id) 2167 { 2168 int i; 2169 int ret; 2170 2171 for (i = 0; i < num_id; ++i) { 2172 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2173 alias_id[i]); 2174 if (ret < 0) 2175 goto err; 2176 } 2177 2178 return 0; 2179 2180 err: 2181 dev_err(dev, 2182 "Failed to create supply alias %s,%s -> %s,%s\n", 2183 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2184 2185 while (--i >= 0) 2186 regulator_unregister_supply_alias(dev, id[i]); 2187 2188 return ret; 2189 } 2190 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2191 2192 /** 2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2194 * 2195 * @dev: device that will be given as the regulator "consumer" 2196 * @id: List of supply names or regulator IDs 2197 * @num_id: Number of aliases to unregister 2198 * 2199 * This helper function allows drivers to unregister several supply 2200 * aliases in one operation. 2201 */ 2202 void regulator_bulk_unregister_supply_alias(struct device *dev, 2203 const char *const *id, 2204 int num_id) 2205 { 2206 int i; 2207 2208 for (i = 0; i < num_id; ++i) 2209 regulator_unregister_supply_alias(dev, id[i]); 2210 } 2211 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2212 2213 2214 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2215 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2216 const struct regulator_config *config) 2217 { 2218 struct regulator_enable_gpio *pin; 2219 struct gpio_desc *gpiod; 2220 2221 gpiod = config->ena_gpiod; 2222 2223 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2224 if (pin->gpiod == gpiod) { 2225 rdev_dbg(rdev, "GPIO is already used\n"); 2226 goto update_ena_gpio_to_rdev; 2227 } 2228 } 2229 2230 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2231 if (pin == NULL) 2232 return -ENOMEM; 2233 2234 pin->gpiod = gpiod; 2235 list_add(&pin->list, ®ulator_ena_gpio_list); 2236 2237 update_ena_gpio_to_rdev: 2238 pin->request_count++; 2239 rdev->ena_pin = pin; 2240 return 0; 2241 } 2242 2243 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2244 { 2245 struct regulator_enable_gpio *pin, *n; 2246 2247 if (!rdev->ena_pin) 2248 return; 2249 2250 /* Free the GPIO only in case of no use */ 2251 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2252 if (pin->gpiod == rdev->ena_pin->gpiod) { 2253 if (pin->request_count <= 1) { 2254 pin->request_count = 0; 2255 gpiod_put(pin->gpiod); 2256 list_del(&pin->list); 2257 kfree(pin); 2258 rdev->ena_pin = NULL; 2259 return; 2260 } else { 2261 pin->request_count--; 2262 } 2263 } 2264 } 2265 } 2266 2267 /** 2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2269 * @rdev: regulator_dev structure 2270 * @enable: enable GPIO at initial use? 2271 * 2272 * GPIO is enabled in case of initial use. (enable_count is 0) 2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2274 */ 2275 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2276 { 2277 struct regulator_enable_gpio *pin = rdev->ena_pin; 2278 2279 if (!pin) 2280 return -EINVAL; 2281 2282 if (enable) { 2283 /* Enable GPIO at initial use */ 2284 if (pin->enable_count == 0) 2285 gpiod_set_value_cansleep(pin->gpiod, 1); 2286 2287 pin->enable_count++; 2288 } else { 2289 if (pin->enable_count > 1) { 2290 pin->enable_count--; 2291 return 0; 2292 } 2293 2294 /* Disable GPIO if not used */ 2295 if (pin->enable_count <= 1) { 2296 gpiod_set_value_cansleep(pin->gpiod, 0); 2297 pin->enable_count = 0; 2298 } 2299 } 2300 2301 return 0; 2302 } 2303 2304 /** 2305 * _regulator_enable_delay - a delay helper function 2306 * @delay: time to delay in microseconds 2307 * 2308 * Delay for the requested amount of time as per the guidelines in: 2309 * 2310 * Documentation/timers/timers-howto.rst 2311 * 2312 * The assumption here is that regulators will never be enabled in 2313 * atomic context and therefore sleeping functions can be used. 2314 */ 2315 static void _regulator_enable_delay(unsigned int delay) 2316 { 2317 unsigned int ms = delay / 1000; 2318 unsigned int us = delay % 1000; 2319 2320 if (ms > 0) { 2321 /* 2322 * For small enough values, handle super-millisecond 2323 * delays in the usleep_range() call below. 2324 */ 2325 if (ms < 20) 2326 us += ms * 1000; 2327 else 2328 msleep(ms); 2329 } 2330 2331 /* 2332 * Give the scheduler some room to coalesce with any other 2333 * wakeup sources. For delays shorter than 10 us, don't even 2334 * bother setting up high-resolution timers and just busy- 2335 * loop. 2336 */ 2337 if (us >= 10) 2338 usleep_range(us, us + 100); 2339 else 2340 udelay(us); 2341 } 2342 2343 static int _regulator_do_enable(struct regulator_dev *rdev) 2344 { 2345 int ret, delay; 2346 2347 /* Query before enabling in case configuration dependent. */ 2348 ret = _regulator_get_enable_time(rdev); 2349 if (ret >= 0) { 2350 delay = ret; 2351 } else { 2352 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2353 delay = 0; 2354 } 2355 2356 trace_regulator_enable(rdev_get_name(rdev)); 2357 2358 if (rdev->desc->off_on_delay) { 2359 /* if needed, keep a distance of off_on_delay from last time 2360 * this regulator was disabled. 2361 */ 2362 unsigned long start_jiffy = jiffies; 2363 unsigned long intended, max_delay, remaining; 2364 2365 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2366 intended = rdev->last_off_jiffy + max_delay; 2367 2368 if (time_before(start_jiffy, intended)) { 2369 /* calc remaining jiffies to deal with one-time 2370 * timer wrapping. 2371 * in case of multiple timer wrapping, either it can be 2372 * detected by out-of-range remaining, or it cannot be 2373 * detected and we get a penalty of 2374 * _regulator_enable_delay(). 2375 */ 2376 remaining = intended - start_jiffy; 2377 if (remaining <= max_delay) 2378 _regulator_enable_delay( 2379 jiffies_to_usecs(remaining)); 2380 } 2381 } 2382 2383 if (rdev->ena_pin) { 2384 if (!rdev->ena_gpio_state) { 2385 ret = regulator_ena_gpio_ctrl(rdev, true); 2386 if (ret < 0) 2387 return ret; 2388 rdev->ena_gpio_state = 1; 2389 } 2390 } else if (rdev->desc->ops->enable) { 2391 ret = rdev->desc->ops->enable(rdev); 2392 if (ret < 0) 2393 return ret; 2394 } else { 2395 return -EINVAL; 2396 } 2397 2398 /* Allow the regulator to ramp; it would be useful to extend 2399 * this for bulk operations so that the regulators can ramp 2400 * together. */ 2401 trace_regulator_enable_delay(rdev_get_name(rdev)); 2402 2403 _regulator_enable_delay(delay); 2404 2405 trace_regulator_enable_complete(rdev_get_name(rdev)); 2406 2407 return 0; 2408 } 2409 2410 /** 2411 * _regulator_handle_consumer_enable - handle that a consumer enabled 2412 * @regulator: regulator source 2413 * 2414 * Some things on a regulator consumer (like the contribution towards total 2415 * load on the regulator) only have an effect when the consumer wants the 2416 * regulator enabled. Explained in example with two consumers of the same 2417 * regulator: 2418 * consumer A: set_load(100); => total load = 0 2419 * consumer A: regulator_enable(); => total load = 100 2420 * consumer B: set_load(1000); => total load = 100 2421 * consumer B: regulator_enable(); => total load = 1100 2422 * consumer A: regulator_disable(); => total_load = 1000 2423 * 2424 * This function (together with _regulator_handle_consumer_disable) is 2425 * responsible for keeping track of the refcount for a given regulator consumer 2426 * and applying / unapplying these things. 2427 * 2428 * Returns 0 upon no error; -error upon error. 2429 */ 2430 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2431 { 2432 struct regulator_dev *rdev = regulator->rdev; 2433 2434 lockdep_assert_held_once(&rdev->mutex.base); 2435 2436 regulator->enable_count++; 2437 if (regulator->uA_load && regulator->enable_count == 1) 2438 return drms_uA_update(rdev); 2439 2440 return 0; 2441 } 2442 2443 /** 2444 * _regulator_handle_consumer_disable - handle that a consumer disabled 2445 * @regulator: regulator source 2446 * 2447 * The opposite of _regulator_handle_consumer_enable(). 2448 * 2449 * Returns 0 upon no error; -error upon error. 2450 */ 2451 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2452 { 2453 struct regulator_dev *rdev = regulator->rdev; 2454 2455 lockdep_assert_held_once(&rdev->mutex.base); 2456 2457 if (!regulator->enable_count) { 2458 rdev_err(rdev, "Underflow of regulator enable count\n"); 2459 return -EINVAL; 2460 } 2461 2462 regulator->enable_count--; 2463 if (regulator->uA_load && regulator->enable_count == 0) 2464 return drms_uA_update(rdev); 2465 2466 return 0; 2467 } 2468 2469 /* locks held by regulator_enable() */ 2470 static int _regulator_enable(struct regulator *regulator) 2471 { 2472 struct regulator_dev *rdev = regulator->rdev; 2473 int ret; 2474 2475 lockdep_assert_held_once(&rdev->mutex.base); 2476 2477 if (rdev->use_count == 0 && rdev->supply) { 2478 ret = _regulator_enable(rdev->supply); 2479 if (ret < 0) 2480 return ret; 2481 } 2482 2483 /* balance only if there are regulators coupled */ 2484 if (rdev->coupling_desc.n_coupled > 1) { 2485 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2486 if (ret < 0) 2487 goto err_disable_supply; 2488 } 2489 2490 ret = _regulator_handle_consumer_enable(regulator); 2491 if (ret < 0) 2492 goto err_disable_supply; 2493 2494 if (rdev->use_count == 0) { 2495 /* The regulator may on if it's not switchable or left on */ 2496 ret = _regulator_is_enabled(rdev); 2497 if (ret == -EINVAL || ret == 0) { 2498 if (!regulator_ops_is_valid(rdev, 2499 REGULATOR_CHANGE_STATUS)) { 2500 ret = -EPERM; 2501 goto err_consumer_disable; 2502 } 2503 2504 ret = _regulator_do_enable(rdev); 2505 if (ret < 0) 2506 goto err_consumer_disable; 2507 2508 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2509 NULL); 2510 } else if (ret < 0) { 2511 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2512 goto err_consumer_disable; 2513 } 2514 /* Fallthrough on positive return values - already enabled */ 2515 } 2516 2517 rdev->use_count++; 2518 2519 return 0; 2520 2521 err_consumer_disable: 2522 _regulator_handle_consumer_disable(regulator); 2523 2524 err_disable_supply: 2525 if (rdev->use_count == 0 && rdev->supply) 2526 _regulator_disable(rdev->supply); 2527 2528 return ret; 2529 } 2530 2531 /** 2532 * regulator_enable - enable regulator output 2533 * @regulator: regulator source 2534 * 2535 * Request that the regulator be enabled with the regulator output at 2536 * the predefined voltage or current value. Calls to regulator_enable() 2537 * must be balanced with calls to regulator_disable(). 2538 * 2539 * NOTE: the output value can be set by other drivers, boot loader or may be 2540 * hardwired in the regulator. 2541 */ 2542 int regulator_enable(struct regulator *regulator) 2543 { 2544 struct regulator_dev *rdev = regulator->rdev; 2545 struct ww_acquire_ctx ww_ctx; 2546 int ret; 2547 2548 regulator_lock_dependent(rdev, &ww_ctx); 2549 ret = _regulator_enable(regulator); 2550 regulator_unlock_dependent(rdev, &ww_ctx); 2551 2552 return ret; 2553 } 2554 EXPORT_SYMBOL_GPL(regulator_enable); 2555 2556 static int _regulator_do_disable(struct regulator_dev *rdev) 2557 { 2558 int ret; 2559 2560 trace_regulator_disable(rdev_get_name(rdev)); 2561 2562 if (rdev->ena_pin) { 2563 if (rdev->ena_gpio_state) { 2564 ret = regulator_ena_gpio_ctrl(rdev, false); 2565 if (ret < 0) 2566 return ret; 2567 rdev->ena_gpio_state = 0; 2568 } 2569 2570 } else if (rdev->desc->ops->disable) { 2571 ret = rdev->desc->ops->disable(rdev); 2572 if (ret != 0) 2573 return ret; 2574 } 2575 2576 /* cares about last_off_jiffy only if off_on_delay is required by 2577 * device. 2578 */ 2579 if (rdev->desc->off_on_delay) 2580 rdev->last_off_jiffy = jiffies; 2581 2582 trace_regulator_disable_complete(rdev_get_name(rdev)); 2583 2584 return 0; 2585 } 2586 2587 /* locks held by regulator_disable() */ 2588 static int _regulator_disable(struct regulator *regulator) 2589 { 2590 struct regulator_dev *rdev = regulator->rdev; 2591 int ret = 0; 2592 2593 lockdep_assert_held_once(&rdev->mutex.base); 2594 2595 if (WARN(rdev->use_count <= 0, 2596 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2597 return -EIO; 2598 2599 /* are we the last user and permitted to disable ? */ 2600 if (rdev->use_count == 1 && 2601 (rdev->constraints && !rdev->constraints->always_on)) { 2602 2603 /* we are last user */ 2604 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2605 ret = _notifier_call_chain(rdev, 2606 REGULATOR_EVENT_PRE_DISABLE, 2607 NULL); 2608 if (ret & NOTIFY_STOP_MASK) 2609 return -EINVAL; 2610 2611 ret = _regulator_do_disable(rdev); 2612 if (ret < 0) { 2613 rdev_err(rdev, "failed to disable\n"); 2614 _notifier_call_chain(rdev, 2615 REGULATOR_EVENT_ABORT_DISABLE, 2616 NULL); 2617 return ret; 2618 } 2619 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2620 NULL); 2621 } 2622 2623 rdev->use_count = 0; 2624 } else if (rdev->use_count > 1) { 2625 rdev->use_count--; 2626 } 2627 2628 if (ret == 0) 2629 ret = _regulator_handle_consumer_disable(regulator); 2630 2631 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2632 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2633 2634 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2635 ret = _regulator_disable(rdev->supply); 2636 2637 return ret; 2638 } 2639 2640 /** 2641 * regulator_disable - disable regulator output 2642 * @regulator: regulator source 2643 * 2644 * Disable the regulator output voltage or current. Calls to 2645 * regulator_enable() must be balanced with calls to 2646 * regulator_disable(). 2647 * 2648 * NOTE: this will only disable the regulator output if no other consumer 2649 * devices have it enabled, the regulator device supports disabling and 2650 * machine constraints permit this operation. 2651 */ 2652 int regulator_disable(struct regulator *regulator) 2653 { 2654 struct regulator_dev *rdev = regulator->rdev; 2655 struct ww_acquire_ctx ww_ctx; 2656 int ret; 2657 2658 regulator_lock_dependent(rdev, &ww_ctx); 2659 ret = _regulator_disable(regulator); 2660 regulator_unlock_dependent(rdev, &ww_ctx); 2661 2662 return ret; 2663 } 2664 EXPORT_SYMBOL_GPL(regulator_disable); 2665 2666 /* locks held by regulator_force_disable() */ 2667 static int _regulator_force_disable(struct regulator_dev *rdev) 2668 { 2669 int ret = 0; 2670 2671 lockdep_assert_held_once(&rdev->mutex.base); 2672 2673 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2674 REGULATOR_EVENT_PRE_DISABLE, NULL); 2675 if (ret & NOTIFY_STOP_MASK) 2676 return -EINVAL; 2677 2678 ret = _regulator_do_disable(rdev); 2679 if (ret < 0) { 2680 rdev_err(rdev, "failed to force disable\n"); 2681 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2682 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2683 return ret; 2684 } 2685 2686 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2687 REGULATOR_EVENT_DISABLE, NULL); 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * regulator_force_disable - force disable regulator output 2694 * @regulator: regulator source 2695 * 2696 * Forcibly disable the regulator output voltage or current. 2697 * NOTE: this *will* disable the regulator output even if other consumer 2698 * devices have it enabled. This should be used for situations when device 2699 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2700 */ 2701 int regulator_force_disable(struct regulator *regulator) 2702 { 2703 struct regulator_dev *rdev = regulator->rdev; 2704 struct ww_acquire_ctx ww_ctx; 2705 int ret; 2706 2707 regulator_lock_dependent(rdev, &ww_ctx); 2708 2709 ret = _regulator_force_disable(regulator->rdev); 2710 2711 if (rdev->coupling_desc.n_coupled > 1) 2712 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2713 2714 if (regulator->uA_load) { 2715 regulator->uA_load = 0; 2716 ret = drms_uA_update(rdev); 2717 } 2718 2719 if (rdev->use_count != 0 && rdev->supply) 2720 _regulator_disable(rdev->supply); 2721 2722 regulator_unlock_dependent(rdev, &ww_ctx); 2723 2724 return ret; 2725 } 2726 EXPORT_SYMBOL_GPL(regulator_force_disable); 2727 2728 static void regulator_disable_work(struct work_struct *work) 2729 { 2730 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2731 disable_work.work); 2732 struct ww_acquire_ctx ww_ctx; 2733 int count, i, ret; 2734 struct regulator *regulator; 2735 int total_count = 0; 2736 2737 regulator_lock_dependent(rdev, &ww_ctx); 2738 2739 /* 2740 * Workqueue functions queue the new work instance while the previous 2741 * work instance is being processed. Cancel the queued work instance 2742 * as the work instance under processing does the job of the queued 2743 * work instance. 2744 */ 2745 cancel_delayed_work(&rdev->disable_work); 2746 2747 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2748 count = regulator->deferred_disables; 2749 2750 if (!count) 2751 continue; 2752 2753 total_count += count; 2754 regulator->deferred_disables = 0; 2755 2756 for (i = 0; i < count; i++) { 2757 ret = _regulator_disable(regulator); 2758 if (ret != 0) 2759 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2760 } 2761 } 2762 WARN_ON(!total_count); 2763 2764 if (rdev->coupling_desc.n_coupled > 1) 2765 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2766 2767 regulator_unlock_dependent(rdev, &ww_ctx); 2768 } 2769 2770 /** 2771 * regulator_disable_deferred - disable regulator output with delay 2772 * @regulator: regulator source 2773 * @ms: milliseconds until the regulator is disabled 2774 * 2775 * Execute regulator_disable() on the regulator after a delay. This 2776 * is intended for use with devices that require some time to quiesce. 2777 * 2778 * NOTE: this will only disable the regulator output if no other consumer 2779 * devices have it enabled, the regulator device supports disabling and 2780 * machine constraints permit this operation. 2781 */ 2782 int regulator_disable_deferred(struct regulator *regulator, int ms) 2783 { 2784 struct regulator_dev *rdev = regulator->rdev; 2785 2786 if (!ms) 2787 return regulator_disable(regulator); 2788 2789 regulator_lock(rdev); 2790 regulator->deferred_disables++; 2791 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2792 msecs_to_jiffies(ms)); 2793 regulator_unlock(rdev); 2794 2795 return 0; 2796 } 2797 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2798 2799 static int _regulator_is_enabled(struct regulator_dev *rdev) 2800 { 2801 /* A GPIO control always takes precedence */ 2802 if (rdev->ena_pin) 2803 return rdev->ena_gpio_state; 2804 2805 /* If we don't know then assume that the regulator is always on */ 2806 if (!rdev->desc->ops->is_enabled) 2807 return 1; 2808 2809 return rdev->desc->ops->is_enabled(rdev); 2810 } 2811 2812 static int _regulator_list_voltage(struct regulator_dev *rdev, 2813 unsigned selector, int lock) 2814 { 2815 const struct regulator_ops *ops = rdev->desc->ops; 2816 int ret; 2817 2818 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2819 return rdev->desc->fixed_uV; 2820 2821 if (ops->list_voltage) { 2822 if (selector >= rdev->desc->n_voltages) 2823 return -EINVAL; 2824 if (lock) 2825 regulator_lock(rdev); 2826 ret = ops->list_voltage(rdev, selector); 2827 if (lock) 2828 regulator_unlock(rdev); 2829 } else if (rdev->is_switch && rdev->supply) { 2830 ret = _regulator_list_voltage(rdev->supply->rdev, 2831 selector, lock); 2832 } else { 2833 return -EINVAL; 2834 } 2835 2836 if (ret > 0) { 2837 if (ret < rdev->constraints->min_uV) 2838 ret = 0; 2839 else if (ret > rdev->constraints->max_uV) 2840 ret = 0; 2841 } 2842 2843 return ret; 2844 } 2845 2846 /** 2847 * regulator_is_enabled - is the regulator output enabled 2848 * @regulator: regulator source 2849 * 2850 * Returns positive if the regulator driver backing the source/client 2851 * has requested that the device be enabled, zero if it hasn't, else a 2852 * negative errno code. 2853 * 2854 * Note that the device backing this regulator handle can have multiple 2855 * users, so it might be enabled even if regulator_enable() was never 2856 * called for this particular source. 2857 */ 2858 int regulator_is_enabled(struct regulator *regulator) 2859 { 2860 int ret; 2861 2862 if (regulator->always_on) 2863 return 1; 2864 2865 regulator_lock(regulator->rdev); 2866 ret = _regulator_is_enabled(regulator->rdev); 2867 regulator_unlock(regulator->rdev); 2868 2869 return ret; 2870 } 2871 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2872 2873 /** 2874 * regulator_count_voltages - count regulator_list_voltage() selectors 2875 * @regulator: regulator source 2876 * 2877 * Returns number of selectors, or negative errno. Selectors are 2878 * numbered starting at zero, and typically correspond to bitfields 2879 * in hardware registers. 2880 */ 2881 int regulator_count_voltages(struct regulator *regulator) 2882 { 2883 struct regulator_dev *rdev = regulator->rdev; 2884 2885 if (rdev->desc->n_voltages) 2886 return rdev->desc->n_voltages; 2887 2888 if (!rdev->is_switch || !rdev->supply) 2889 return -EINVAL; 2890 2891 return regulator_count_voltages(rdev->supply); 2892 } 2893 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2894 2895 /** 2896 * regulator_list_voltage - enumerate supported voltages 2897 * @regulator: regulator source 2898 * @selector: identify voltage to list 2899 * Context: can sleep 2900 * 2901 * Returns a voltage that can be passed to @regulator_set_voltage(), 2902 * zero if this selector code can't be used on this system, or a 2903 * negative errno. 2904 */ 2905 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2906 { 2907 return _regulator_list_voltage(regulator->rdev, selector, 1); 2908 } 2909 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2910 2911 /** 2912 * regulator_get_regmap - get the regulator's register map 2913 * @regulator: regulator source 2914 * 2915 * Returns the register map for the given regulator, or an ERR_PTR value 2916 * if the regulator doesn't use regmap. 2917 */ 2918 struct regmap *regulator_get_regmap(struct regulator *regulator) 2919 { 2920 struct regmap *map = regulator->rdev->regmap; 2921 2922 return map ? map : ERR_PTR(-EOPNOTSUPP); 2923 } 2924 2925 /** 2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2927 * @regulator: regulator source 2928 * @vsel_reg: voltage selector register, output parameter 2929 * @vsel_mask: mask for voltage selector bitfield, output parameter 2930 * 2931 * Returns the hardware register offset and bitmask used for setting the 2932 * regulator voltage. This might be useful when configuring voltage-scaling 2933 * hardware or firmware that can make I2C requests behind the kernel's back, 2934 * for example. 2935 * 2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2937 * and 0 is returned, otherwise a negative errno is returned. 2938 */ 2939 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2940 unsigned *vsel_reg, 2941 unsigned *vsel_mask) 2942 { 2943 struct regulator_dev *rdev = regulator->rdev; 2944 const struct regulator_ops *ops = rdev->desc->ops; 2945 2946 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2947 return -EOPNOTSUPP; 2948 2949 *vsel_reg = rdev->desc->vsel_reg; 2950 *vsel_mask = rdev->desc->vsel_mask; 2951 2952 return 0; 2953 } 2954 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2955 2956 /** 2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2958 * @regulator: regulator source 2959 * @selector: identify voltage to list 2960 * 2961 * Converts the selector to a hardware-specific voltage selector that can be 2962 * directly written to the regulator registers. The address of the voltage 2963 * register can be determined by calling @regulator_get_hardware_vsel_register. 2964 * 2965 * On error a negative errno is returned. 2966 */ 2967 int regulator_list_hardware_vsel(struct regulator *regulator, 2968 unsigned selector) 2969 { 2970 struct regulator_dev *rdev = regulator->rdev; 2971 const struct regulator_ops *ops = rdev->desc->ops; 2972 2973 if (selector >= rdev->desc->n_voltages) 2974 return -EINVAL; 2975 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2976 return -EOPNOTSUPP; 2977 2978 return selector; 2979 } 2980 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2981 2982 /** 2983 * regulator_get_linear_step - return the voltage step size between VSEL values 2984 * @regulator: regulator source 2985 * 2986 * Returns the voltage step size between VSEL values for linear 2987 * regulators, or return 0 if the regulator isn't a linear regulator. 2988 */ 2989 unsigned int regulator_get_linear_step(struct regulator *regulator) 2990 { 2991 struct regulator_dev *rdev = regulator->rdev; 2992 2993 return rdev->desc->uV_step; 2994 } 2995 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2996 2997 /** 2998 * regulator_is_supported_voltage - check if a voltage range can be supported 2999 * 3000 * @regulator: Regulator to check. 3001 * @min_uV: Minimum required voltage in uV. 3002 * @max_uV: Maximum required voltage in uV. 3003 * 3004 * Returns a boolean. 3005 */ 3006 int regulator_is_supported_voltage(struct regulator *regulator, 3007 int min_uV, int max_uV) 3008 { 3009 struct regulator_dev *rdev = regulator->rdev; 3010 int i, voltages, ret; 3011 3012 /* If we can't change voltage check the current voltage */ 3013 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3014 ret = regulator_get_voltage(regulator); 3015 if (ret >= 0) 3016 return min_uV <= ret && ret <= max_uV; 3017 else 3018 return ret; 3019 } 3020 3021 /* Any voltage within constrains range is fine? */ 3022 if (rdev->desc->continuous_voltage_range) 3023 return min_uV >= rdev->constraints->min_uV && 3024 max_uV <= rdev->constraints->max_uV; 3025 3026 ret = regulator_count_voltages(regulator); 3027 if (ret < 0) 3028 return 0; 3029 voltages = ret; 3030 3031 for (i = 0; i < voltages; i++) { 3032 ret = regulator_list_voltage(regulator, i); 3033 3034 if (ret >= min_uV && ret <= max_uV) 3035 return 1; 3036 } 3037 3038 return 0; 3039 } 3040 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3041 3042 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3043 int max_uV) 3044 { 3045 const struct regulator_desc *desc = rdev->desc; 3046 3047 if (desc->ops->map_voltage) 3048 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3049 3050 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3051 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3052 3053 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3054 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3055 3056 if (desc->ops->list_voltage == 3057 regulator_list_voltage_pickable_linear_range) 3058 return regulator_map_voltage_pickable_linear_range(rdev, 3059 min_uV, max_uV); 3060 3061 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3062 } 3063 3064 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3065 int min_uV, int max_uV, 3066 unsigned *selector) 3067 { 3068 struct pre_voltage_change_data data; 3069 int ret; 3070 3071 data.old_uV = regulator_get_voltage_rdev(rdev); 3072 data.min_uV = min_uV; 3073 data.max_uV = max_uV; 3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3075 &data); 3076 if (ret & NOTIFY_STOP_MASK) 3077 return -EINVAL; 3078 3079 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3080 if (ret >= 0) 3081 return ret; 3082 3083 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3084 (void *)data.old_uV); 3085 3086 return ret; 3087 } 3088 3089 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3090 int uV, unsigned selector) 3091 { 3092 struct pre_voltage_change_data data; 3093 int ret; 3094 3095 data.old_uV = regulator_get_voltage_rdev(rdev); 3096 data.min_uV = uV; 3097 data.max_uV = uV; 3098 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3099 &data); 3100 if (ret & NOTIFY_STOP_MASK) 3101 return -EINVAL; 3102 3103 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3104 if (ret >= 0) 3105 return ret; 3106 3107 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3108 (void *)data.old_uV); 3109 3110 return ret; 3111 } 3112 3113 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3114 int uV, int new_selector) 3115 { 3116 const struct regulator_ops *ops = rdev->desc->ops; 3117 int diff, old_sel, curr_sel, ret; 3118 3119 /* Stepping is only needed if the regulator is enabled. */ 3120 if (!_regulator_is_enabled(rdev)) 3121 goto final_set; 3122 3123 if (!ops->get_voltage_sel) 3124 return -EINVAL; 3125 3126 old_sel = ops->get_voltage_sel(rdev); 3127 if (old_sel < 0) 3128 return old_sel; 3129 3130 diff = new_selector - old_sel; 3131 if (diff == 0) 3132 return 0; /* No change needed. */ 3133 3134 if (diff > 0) { 3135 /* Stepping up. */ 3136 for (curr_sel = old_sel + rdev->desc->vsel_step; 3137 curr_sel < new_selector; 3138 curr_sel += rdev->desc->vsel_step) { 3139 /* 3140 * Call the callback directly instead of using 3141 * _regulator_call_set_voltage_sel() as we don't 3142 * want to notify anyone yet. Same in the branch 3143 * below. 3144 */ 3145 ret = ops->set_voltage_sel(rdev, curr_sel); 3146 if (ret) 3147 goto try_revert; 3148 } 3149 } else { 3150 /* Stepping down. */ 3151 for (curr_sel = old_sel - rdev->desc->vsel_step; 3152 curr_sel > new_selector; 3153 curr_sel -= rdev->desc->vsel_step) { 3154 ret = ops->set_voltage_sel(rdev, curr_sel); 3155 if (ret) 3156 goto try_revert; 3157 } 3158 } 3159 3160 final_set: 3161 /* The final selector will trigger the notifiers. */ 3162 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3163 3164 try_revert: 3165 /* 3166 * At least try to return to the previous voltage if setting a new 3167 * one failed. 3168 */ 3169 (void)ops->set_voltage_sel(rdev, old_sel); 3170 return ret; 3171 } 3172 3173 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3174 int old_uV, int new_uV) 3175 { 3176 unsigned int ramp_delay = 0; 3177 3178 if (rdev->constraints->ramp_delay) 3179 ramp_delay = rdev->constraints->ramp_delay; 3180 else if (rdev->desc->ramp_delay) 3181 ramp_delay = rdev->desc->ramp_delay; 3182 else if (rdev->constraints->settling_time) 3183 return rdev->constraints->settling_time; 3184 else if (rdev->constraints->settling_time_up && 3185 (new_uV > old_uV)) 3186 return rdev->constraints->settling_time_up; 3187 else if (rdev->constraints->settling_time_down && 3188 (new_uV < old_uV)) 3189 return rdev->constraints->settling_time_down; 3190 3191 if (ramp_delay == 0) { 3192 rdev_dbg(rdev, "ramp_delay not set\n"); 3193 return 0; 3194 } 3195 3196 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3197 } 3198 3199 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3200 int min_uV, int max_uV) 3201 { 3202 int ret; 3203 int delay = 0; 3204 int best_val = 0; 3205 unsigned int selector; 3206 int old_selector = -1; 3207 const struct regulator_ops *ops = rdev->desc->ops; 3208 int old_uV = regulator_get_voltage_rdev(rdev); 3209 3210 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3211 3212 min_uV += rdev->constraints->uV_offset; 3213 max_uV += rdev->constraints->uV_offset; 3214 3215 /* 3216 * If we can't obtain the old selector there is not enough 3217 * info to call set_voltage_time_sel(). 3218 */ 3219 if (_regulator_is_enabled(rdev) && 3220 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3221 old_selector = ops->get_voltage_sel(rdev); 3222 if (old_selector < 0) 3223 return old_selector; 3224 } 3225 3226 if (ops->set_voltage) { 3227 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3228 &selector); 3229 3230 if (ret >= 0) { 3231 if (ops->list_voltage) 3232 best_val = ops->list_voltage(rdev, 3233 selector); 3234 else 3235 best_val = regulator_get_voltage_rdev(rdev); 3236 } 3237 3238 } else if (ops->set_voltage_sel) { 3239 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3240 if (ret >= 0) { 3241 best_val = ops->list_voltage(rdev, ret); 3242 if (min_uV <= best_val && max_uV >= best_val) { 3243 selector = ret; 3244 if (old_selector == selector) 3245 ret = 0; 3246 else if (rdev->desc->vsel_step) 3247 ret = _regulator_set_voltage_sel_step( 3248 rdev, best_val, selector); 3249 else 3250 ret = _regulator_call_set_voltage_sel( 3251 rdev, best_val, selector); 3252 } else { 3253 ret = -EINVAL; 3254 } 3255 } 3256 } else { 3257 ret = -EINVAL; 3258 } 3259 3260 if (ret) 3261 goto out; 3262 3263 if (ops->set_voltage_time_sel) { 3264 /* 3265 * Call set_voltage_time_sel if successfully obtained 3266 * old_selector 3267 */ 3268 if (old_selector >= 0 && old_selector != selector) 3269 delay = ops->set_voltage_time_sel(rdev, old_selector, 3270 selector); 3271 } else { 3272 if (old_uV != best_val) { 3273 if (ops->set_voltage_time) 3274 delay = ops->set_voltage_time(rdev, old_uV, 3275 best_val); 3276 else 3277 delay = _regulator_set_voltage_time(rdev, 3278 old_uV, 3279 best_val); 3280 } 3281 } 3282 3283 if (delay < 0) { 3284 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3285 delay = 0; 3286 } 3287 3288 /* Insert any necessary delays */ 3289 if (delay >= 1000) { 3290 mdelay(delay / 1000); 3291 udelay(delay % 1000); 3292 } else if (delay) { 3293 udelay(delay); 3294 } 3295 3296 if (best_val >= 0) { 3297 unsigned long data = best_val; 3298 3299 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3300 (void *)data); 3301 } 3302 3303 out: 3304 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3305 3306 return ret; 3307 } 3308 3309 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3310 int min_uV, int max_uV, suspend_state_t state) 3311 { 3312 struct regulator_state *rstate; 3313 int uV, sel; 3314 3315 rstate = regulator_get_suspend_state(rdev, state); 3316 if (rstate == NULL) 3317 return -EINVAL; 3318 3319 if (min_uV < rstate->min_uV) 3320 min_uV = rstate->min_uV; 3321 if (max_uV > rstate->max_uV) 3322 max_uV = rstate->max_uV; 3323 3324 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3325 if (sel < 0) 3326 return sel; 3327 3328 uV = rdev->desc->ops->list_voltage(rdev, sel); 3329 if (uV >= min_uV && uV <= max_uV) 3330 rstate->uV = uV; 3331 3332 return 0; 3333 } 3334 3335 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3336 int min_uV, int max_uV, 3337 suspend_state_t state) 3338 { 3339 struct regulator_dev *rdev = regulator->rdev; 3340 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3341 int ret = 0; 3342 int old_min_uV, old_max_uV; 3343 int current_uV; 3344 3345 /* If we're setting the same range as last time the change 3346 * should be a noop (some cpufreq implementations use the same 3347 * voltage for multiple frequencies, for example). 3348 */ 3349 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3350 goto out; 3351 3352 /* If we're trying to set a range that overlaps the current voltage, 3353 * return successfully even though the regulator does not support 3354 * changing the voltage. 3355 */ 3356 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3357 current_uV = regulator_get_voltage_rdev(rdev); 3358 if (min_uV <= current_uV && current_uV <= max_uV) { 3359 voltage->min_uV = min_uV; 3360 voltage->max_uV = max_uV; 3361 goto out; 3362 } 3363 } 3364 3365 /* sanity check */ 3366 if (!rdev->desc->ops->set_voltage && 3367 !rdev->desc->ops->set_voltage_sel) { 3368 ret = -EINVAL; 3369 goto out; 3370 } 3371 3372 /* constraints check */ 3373 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3374 if (ret < 0) 3375 goto out; 3376 3377 /* restore original values in case of error */ 3378 old_min_uV = voltage->min_uV; 3379 old_max_uV = voltage->max_uV; 3380 voltage->min_uV = min_uV; 3381 voltage->max_uV = max_uV; 3382 3383 /* for not coupled regulators this will just set the voltage */ 3384 ret = regulator_balance_voltage(rdev, state); 3385 if (ret < 0) { 3386 voltage->min_uV = old_min_uV; 3387 voltage->max_uV = old_max_uV; 3388 } 3389 3390 out: 3391 return ret; 3392 } 3393 3394 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3395 int max_uV, suspend_state_t state) 3396 { 3397 int best_supply_uV = 0; 3398 int supply_change_uV = 0; 3399 int ret; 3400 3401 if (rdev->supply && 3402 regulator_ops_is_valid(rdev->supply->rdev, 3403 REGULATOR_CHANGE_VOLTAGE) && 3404 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3405 rdev->desc->ops->get_voltage_sel))) { 3406 int current_supply_uV; 3407 int selector; 3408 3409 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3410 if (selector < 0) { 3411 ret = selector; 3412 goto out; 3413 } 3414 3415 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3416 if (best_supply_uV < 0) { 3417 ret = best_supply_uV; 3418 goto out; 3419 } 3420 3421 best_supply_uV += rdev->desc->min_dropout_uV; 3422 3423 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3424 if (current_supply_uV < 0) { 3425 ret = current_supply_uV; 3426 goto out; 3427 } 3428 3429 supply_change_uV = best_supply_uV - current_supply_uV; 3430 } 3431 3432 if (supply_change_uV > 0) { 3433 ret = regulator_set_voltage_unlocked(rdev->supply, 3434 best_supply_uV, INT_MAX, state); 3435 if (ret) { 3436 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3437 ret); 3438 goto out; 3439 } 3440 } 3441 3442 if (state == PM_SUSPEND_ON) 3443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3444 else 3445 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3446 max_uV, state); 3447 if (ret < 0) 3448 goto out; 3449 3450 if (supply_change_uV < 0) { 3451 ret = regulator_set_voltage_unlocked(rdev->supply, 3452 best_supply_uV, INT_MAX, state); 3453 if (ret) 3454 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3455 ret); 3456 /* No need to fail here */ 3457 ret = 0; 3458 } 3459 3460 out: 3461 return ret; 3462 } 3463 3464 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3465 int *current_uV, int *min_uV) 3466 { 3467 struct regulation_constraints *constraints = rdev->constraints; 3468 3469 /* Limit voltage change only if necessary */ 3470 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3471 return 1; 3472 3473 if (*current_uV < 0) { 3474 *current_uV = regulator_get_voltage_rdev(rdev); 3475 3476 if (*current_uV < 0) 3477 return *current_uV; 3478 } 3479 3480 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3481 return 1; 3482 3483 /* Clamp target voltage within the given step */ 3484 if (*current_uV < *min_uV) 3485 *min_uV = min(*current_uV + constraints->max_uV_step, 3486 *min_uV); 3487 else 3488 *min_uV = max(*current_uV - constraints->max_uV_step, 3489 *min_uV); 3490 3491 return 0; 3492 } 3493 3494 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3495 int *current_uV, 3496 int *min_uV, int *max_uV, 3497 suspend_state_t state, 3498 int n_coupled) 3499 { 3500 struct coupling_desc *c_desc = &rdev->coupling_desc; 3501 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3502 struct regulation_constraints *constraints = rdev->constraints; 3503 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3504 int max_current_uV = 0, min_current_uV = INT_MAX; 3505 int highest_min_uV = 0, target_uV, possible_uV; 3506 int i, ret, max_spread; 3507 bool done; 3508 3509 *current_uV = -1; 3510 3511 /* 3512 * If there are no coupled regulators, simply set the voltage 3513 * demanded by consumers. 3514 */ 3515 if (n_coupled == 1) { 3516 /* 3517 * If consumers don't provide any demands, set voltage 3518 * to min_uV 3519 */ 3520 desired_min_uV = constraints->min_uV; 3521 desired_max_uV = constraints->max_uV; 3522 3523 ret = regulator_check_consumers(rdev, 3524 &desired_min_uV, 3525 &desired_max_uV, state); 3526 if (ret < 0) 3527 return ret; 3528 3529 possible_uV = desired_min_uV; 3530 done = true; 3531 3532 goto finish; 3533 } 3534 3535 /* Find highest min desired voltage */ 3536 for (i = 0; i < n_coupled; i++) { 3537 int tmp_min = 0; 3538 int tmp_max = INT_MAX; 3539 3540 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3541 3542 ret = regulator_check_consumers(c_rdevs[i], 3543 &tmp_min, 3544 &tmp_max, state); 3545 if (ret < 0) 3546 return ret; 3547 3548 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3549 if (ret < 0) 3550 return ret; 3551 3552 highest_min_uV = max(highest_min_uV, tmp_min); 3553 3554 if (i == 0) { 3555 desired_min_uV = tmp_min; 3556 desired_max_uV = tmp_max; 3557 } 3558 } 3559 3560 max_spread = constraints->max_spread[0]; 3561 3562 /* 3563 * Let target_uV be equal to the desired one if possible. 3564 * If not, set it to minimum voltage, allowed by other coupled 3565 * regulators. 3566 */ 3567 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3568 3569 /* 3570 * Find min and max voltages, which currently aren't violating 3571 * max_spread. 3572 */ 3573 for (i = 1; i < n_coupled; i++) { 3574 int tmp_act; 3575 3576 if (!_regulator_is_enabled(c_rdevs[i])) 3577 continue; 3578 3579 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3580 if (tmp_act < 0) 3581 return tmp_act; 3582 3583 min_current_uV = min(tmp_act, min_current_uV); 3584 max_current_uV = max(tmp_act, max_current_uV); 3585 } 3586 3587 /* There aren't any other regulators enabled */ 3588 if (max_current_uV == 0) { 3589 possible_uV = target_uV; 3590 } else { 3591 /* 3592 * Correct target voltage, so as it currently isn't 3593 * violating max_spread 3594 */ 3595 possible_uV = max(target_uV, max_current_uV - max_spread); 3596 possible_uV = min(possible_uV, min_current_uV + max_spread); 3597 } 3598 3599 if (possible_uV > desired_max_uV) 3600 return -EINVAL; 3601 3602 done = (possible_uV == target_uV); 3603 desired_min_uV = possible_uV; 3604 3605 finish: 3606 /* Apply max_uV_step constraint if necessary */ 3607 if (state == PM_SUSPEND_ON) { 3608 ret = regulator_limit_voltage_step(rdev, current_uV, 3609 &desired_min_uV); 3610 if (ret < 0) 3611 return ret; 3612 3613 if (ret == 0) 3614 done = false; 3615 } 3616 3617 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3618 if (n_coupled > 1 && *current_uV == -1) { 3619 3620 if (_regulator_is_enabled(rdev)) { 3621 ret = regulator_get_voltage_rdev(rdev); 3622 if (ret < 0) 3623 return ret; 3624 3625 *current_uV = ret; 3626 } else { 3627 *current_uV = desired_min_uV; 3628 } 3629 } 3630 3631 *min_uV = desired_min_uV; 3632 *max_uV = desired_max_uV; 3633 3634 return done; 3635 } 3636 3637 static int regulator_balance_voltage(struct regulator_dev *rdev, 3638 suspend_state_t state) 3639 { 3640 struct regulator_dev **c_rdevs; 3641 struct regulator_dev *best_rdev; 3642 struct coupling_desc *c_desc = &rdev->coupling_desc; 3643 struct regulator_coupler *coupler = c_desc->coupler; 3644 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3645 unsigned int delta, best_delta; 3646 unsigned long c_rdev_done = 0; 3647 bool best_c_rdev_done; 3648 3649 c_rdevs = c_desc->coupled_rdevs; 3650 n_coupled = c_desc->n_coupled; 3651 3652 /* 3653 * If system is in a state other than PM_SUSPEND_ON, don't check 3654 * other coupled regulators. 3655 */ 3656 if (state != PM_SUSPEND_ON) 3657 n_coupled = 1; 3658 3659 if (c_desc->n_resolved < n_coupled) { 3660 rdev_err(rdev, "Not all coupled regulators registered\n"); 3661 return -EPERM; 3662 } 3663 3664 /* Invoke custom balancer for customized couplers */ 3665 if (coupler && coupler->balance_voltage) 3666 return coupler->balance_voltage(coupler, rdev, state); 3667 3668 /* 3669 * Find the best possible voltage change on each loop. Leave the loop 3670 * if there isn't any possible change. 3671 */ 3672 do { 3673 best_c_rdev_done = false; 3674 best_delta = 0; 3675 best_min_uV = 0; 3676 best_max_uV = 0; 3677 best_c_rdev = 0; 3678 best_rdev = NULL; 3679 3680 /* 3681 * Find highest difference between optimal voltage 3682 * and current voltage. 3683 */ 3684 for (i = 0; i < n_coupled; i++) { 3685 /* 3686 * optimal_uV is the best voltage that can be set for 3687 * i-th regulator at the moment without violating 3688 * max_spread constraint in order to balance 3689 * the coupled voltages. 3690 */ 3691 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3692 3693 if (test_bit(i, &c_rdev_done)) 3694 continue; 3695 3696 ret = regulator_get_optimal_voltage(c_rdevs[i], 3697 ¤t_uV, 3698 &optimal_uV, 3699 &optimal_max_uV, 3700 state, n_coupled); 3701 if (ret < 0) 3702 goto out; 3703 3704 delta = abs(optimal_uV - current_uV); 3705 3706 if (delta && best_delta <= delta) { 3707 best_c_rdev_done = ret; 3708 best_delta = delta; 3709 best_rdev = c_rdevs[i]; 3710 best_min_uV = optimal_uV; 3711 best_max_uV = optimal_max_uV; 3712 best_c_rdev = i; 3713 } 3714 } 3715 3716 /* Nothing to change, return successfully */ 3717 if (!best_rdev) { 3718 ret = 0; 3719 goto out; 3720 } 3721 3722 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3723 best_max_uV, state); 3724 3725 if (ret < 0) 3726 goto out; 3727 3728 if (best_c_rdev_done) 3729 set_bit(best_c_rdev, &c_rdev_done); 3730 3731 } while (n_coupled > 1); 3732 3733 out: 3734 return ret; 3735 } 3736 3737 /** 3738 * regulator_set_voltage - set regulator output voltage 3739 * @regulator: regulator source 3740 * @min_uV: Minimum required voltage in uV 3741 * @max_uV: Maximum acceptable voltage in uV 3742 * 3743 * Sets a voltage regulator to the desired output voltage. This can be set 3744 * during any regulator state. IOW, regulator can be disabled or enabled. 3745 * 3746 * If the regulator is enabled then the voltage will change to the new value 3747 * immediately otherwise if the regulator is disabled the regulator will 3748 * output at the new voltage when enabled. 3749 * 3750 * NOTE: If the regulator is shared between several devices then the lowest 3751 * request voltage that meets the system constraints will be used. 3752 * Regulator system constraints must be set for this regulator before 3753 * calling this function otherwise this call will fail. 3754 */ 3755 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3756 { 3757 struct ww_acquire_ctx ww_ctx; 3758 int ret; 3759 3760 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3761 3762 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3763 PM_SUSPEND_ON); 3764 3765 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3766 3767 return ret; 3768 } 3769 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3770 3771 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3772 suspend_state_t state, bool en) 3773 { 3774 struct regulator_state *rstate; 3775 3776 rstate = regulator_get_suspend_state(rdev, state); 3777 if (rstate == NULL) 3778 return -EINVAL; 3779 3780 if (!rstate->changeable) 3781 return -EPERM; 3782 3783 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3784 3785 return 0; 3786 } 3787 3788 int regulator_suspend_enable(struct regulator_dev *rdev, 3789 suspend_state_t state) 3790 { 3791 return regulator_suspend_toggle(rdev, state, true); 3792 } 3793 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3794 3795 int regulator_suspend_disable(struct regulator_dev *rdev, 3796 suspend_state_t state) 3797 { 3798 struct regulator *regulator; 3799 struct regulator_voltage *voltage; 3800 3801 /* 3802 * if any consumer wants this regulator device keeping on in 3803 * suspend states, don't set it as disabled. 3804 */ 3805 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3806 voltage = ®ulator->voltage[state]; 3807 if (voltage->min_uV || voltage->max_uV) 3808 return 0; 3809 } 3810 3811 return regulator_suspend_toggle(rdev, state, false); 3812 } 3813 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3814 3815 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3816 int min_uV, int max_uV, 3817 suspend_state_t state) 3818 { 3819 struct regulator_dev *rdev = regulator->rdev; 3820 struct regulator_state *rstate; 3821 3822 rstate = regulator_get_suspend_state(rdev, state); 3823 if (rstate == NULL) 3824 return -EINVAL; 3825 3826 if (rstate->min_uV == rstate->max_uV) { 3827 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3828 return -EPERM; 3829 } 3830 3831 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3832 } 3833 3834 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3835 int max_uV, suspend_state_t state) 3836 { 3837 struct ww_acquire_ctx ww_ctx; 3838 int ret; 3839 3840 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3841 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3842 return -EINVAL; 3843 3844 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3845 3846 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3847 max_uV, state); 3848 3849 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3850 3851 return ret; 3852 } 3853 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3854 3855 /** 3856 * regulator_set_voltage_time - get raise/fall time 3857 * @regulator: regulator source 3858 * @old_uV: starting voltage in microvolts 3859 * @new_uV: target voltage in microvolts 3860 * 3861 * Provided with the starting and ending voltage, this function attempts to 3862 * calculate the time in microseconds required to rise or fall to this new 3863 * voltage. 3864 */ 3865 int regulator_set_voltage_time(struct regulator *regulator, 3866 int old_uV, int new_uV) 3867 { 3868 struct regulator_dev *rdev = regulator->rdev; 3869 const struct regulator_ops *ops = rdev->desc->ops; 3870 int old_sel = -1; 3871 int new_sel = -1; 3872 int voltage; 3873 int i; 3874 3875 if (ops->set_voltage_time) 3876 return ops->set_voltage_time(rdev, old_uV, new_uV); 3877 else if (!ops->set_voltage_time_sel) 3878 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3879 3880 /* Currently requires operations to do this */ 3881 if (!ops->list_voltage || !rdev->desc->n_voltages) 3882 return -EINVAL; 3883 3884 for (i = 0; i < rdev->desc->n_voltages; i++) { 3885 /* We only look for exact voltage matches here */ 3886 voltage = regulator_list_voltage(regulator, i); 3887 if (voltage < 0) 3888 return -EINVAL; 3889 if (voltage == 0) 3890 continue; 3891 if (voltage == old_uV) 3892 old_sel = i; 3893 if (voltage == new_uV) 3894 new_sel = i; 3895 } 3896 3897 if (old_sel < 0 || new_sel < 0) 3898 return -EINVAL; 3899 3900 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3901 } 3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3903 3904 /** 3905 * regulator_set_voltage_time_sel - get raise/fall time 3906 * @rdev: regulator source device 3907 * @old_selector: selector for starting voltage 3908 * @new_selector: selector for target voltage 3909 * 3910 * Provided with the starting and target voltage selectors, this function 3911 * returns time in microseconds required to rise or fall to this new voltage 3912 * 3913 * Drivers providing ramp_delay in regulation_constraints can use this as their 3914 * set_voltage_time_sel() operation. 3915 */ 3916 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3917 unsigned int old_selector, 3918 unsigned int new_selector) 3919 { 3920 int old_volt, new_volt; 3921 3922 /* sanity check */ 3923 if (!rdev->desc->ops->list_voltage) 3924 return -EINVAL; 3925 3926 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3927 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3928 3929 if (rdev->desc->ops->set_voltage_time) 3930 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3931 new_volt); 3932 else 3933 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3934 } 3935 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3936 3937 /** 3938 * regulator_sync_voltage - re-apply last regulator output voltage 3939 * @regulator: regulator source 3940 * 3941 * Re-apply the last configured voltage. This is intended to be used 3942 * where some external control source the consumer is cooperating with 3943 * has caused the configured voltage to change. 3944 */ 3945 int regulator_sync_voltage(struct regulator *regulator) 3946 { 3947 struct regulator_dev *rdev = regulator->rdev; 3948 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3949 int ret, min_uV, max_uV; 3950 3951 regulator_lock(rdev); 3952 3953 if (!rdev->desc->ops->set_voltage && 3954 !rdev->desc->ops->set_voltage_sel) { 3955 ret = -EINVAL; 3956 goto out; 3957 } 3958 3959 /* This is only going to work if we've had a voltage configured. */ 3960 if (!voltage->min_uV && !voltage->max_uV) { 3961 ret = -EINVAL; 3962 goto out; 3963 } 3964 3965 min_uV = voltage->min_uV; 3966 max_uV = voltage->max_uV; 3967 3968 /* This should be a paranoia check... */ 3969 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3970 if (ret < 0) 3971 goto out; 3972 3973 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3974 if (ret < 0) 3975 goto out; 3976 3977 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3978 3979 out: 3980 regulator_unlock(rdev); 3981 return ret; 3982 } 3983 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3984 3985 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 3986 { 3987 int sel, ret; 3988 bool bypassed; 3989 3990 if (rdev->desc->ops->get_bypass) { 3991 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3992 if (ret < 0) 3993 return ret; 3994 if (bypassed) { 3995 /* if bypassed the regulator must have a supply */ 3996 if (!rdev->supply) { 3997 rdev_err(rdev, 3998 "bypassed regulator has no supply!\n"); 3999 return -EPROBE_DEFER; 4000 } 4001 4002 return regulator_get_voltage_rdev(rdev->supply->rdev); 4003 } 4004 } 4005 4006 if (rdev->desc->ops->get_voltage_sel) { 4007 sel = rdev->desc->ops->get_voltage_sel(rdev); 4008 if (sel < 0) 4009 return sel; 4010 ret = rdev->desc->ops->list_voltage(rdev, sel); 4011 } else if (rdev->desc->ops->get_voltage) { 4012 ret = rdev->desc->ops->get_voltage(rdev); 4013 } else if (rdev->desc->ops->list_voltage) { 4014 ret = rdev->desc->ops->list_voltage(rdev, 0); 4015 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4016 ret = rdev->desc->fixed_uV; 4017 } else if (rdev->supply) { 4018 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4019 } else { 4020 return -EINVAL; 4021 } 4022 4023 if (ret < 0) 4024 return ret; 4025 return ret - rdev->constraints->uV_offset; 4026 } 4027 4028 /** 4029 * regulator_get_voltage - get regulator output voltage 4030 * @regulator: regulator source 4031 * 4032 * This returns the current regulator voltage in uV. 4033 * 4034 * NOTE: If the regulator is disabled it will return the voltage value. This 4035 * function should not be used to determine regulator state. 4036 */ 4037 int regulator_get_voltage(struct regulator *regulator) 4038 { 4039 struct ww_acquire_ctx ww_ctx; 4040 int ret; 4041 4042 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4043 ret = regulator_get_voltage_rdev(regulator->rdev); 4044 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4045 4046 return ret; 4047 } 4048 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4049 4050 /** 4051 * regulator_set_current_limit - set regulator output current limit 4052 * @regulator: regulator source 4053 * @min_uA: Minimum supported current in uA 4054 * @max_uA: Maximum supported current in uA 4055 * 4056 * Sets current sink to the desired output current. This can be set during 4057 * any regulator state. IOW, regulator can be disabled or enabled. 4058 * 4059 * If the regulator is enabled then the current will change to the new value 4060 * immediately otherwise if the regulator is disabled the regulator will 4061 * output at the new current when enabled. 4062 * 4063 * NOTE: Regulator system constraints must be set for this regulator before 4064 * calling this function otherwise this call will fail. 4065 */ 4066 int regulator_set_current_limit(struct regulator *regulator, 4067 int min_uA, int max_uA) 4068 { 4069 struct regulator_dev *rdev = regulator->rdev; 4070 int ret; 4071 4072 regulator_lock(rdev); 4073 4074 /* sanity check */ 4075 if (!rdev->desc->ops->set_current_limit) { 4076 ret = -EINVAL; 4077 goto out; 4078 } 4079 4080 /* constraints check */ 4081 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4082 if (ret < 0) 4083 goto out; 4084 4085 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4086 out: 4087 regulator_unlock(rdev); 4088 return ret; 4089 } 4090 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4091 4092 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4093 { 4094 /* sanity check */ 4095 if (!rdev->desc->ops->get_current_limit) 4096 return -EINVAL; 4097 4098 return rdev->desc->ops->get_current_limit(rdev); 4099 } 4100 4101 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4102 { 4103 int ret; 4104 4105 regulator_lock(rdev); 4106 ret = _regulator_get_current_limit_unlocked(rdev); 4107 regulator_unlock(rdev); 4108 4109 return ret; 4110 } 4111 4112 /** 4113 * regulator_get_current_limit - get regulator output current 4114 * @regulator: regulator source 4115 * 4116 * This returns the current supplied by the specified current sink in uA. 4117 * 4118 * NOTE: If the regulator is disabled it will return the current value. This 4119 * function should not be used to determine regulator state. 4120 */ 4121 int regulator_get_current_limit(struct regulator *regulator) 4122 { 4123 return _regulator_get_current_limit(regulator->rdev); 4124 } 4125 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4126 4127 /** 4128 * regulator_set_mode - set regulator operating mode 4129 * @regulator: regulator source 4130 * @mode: operating mode - one of the REGULATOR_MODE constants 4131 * 4132 * Set regulator operating mode to increase regulator efficiency or improve 4133 * regulation performance. 4134 * 4135 * NOTE: Regulator system constraints must be set for this regulator before 4136 * calling this function otherwise this call will fail. 4137 */ 4138 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4139 { 4140 struct regulator_dev *rdev = regulator->rdev; 4141 int ret; 4142 int regulator_curr_mode; 4143 4144 regulator_lock(rdev); 4145 4146 /* sanity check */ 4147 if (!rdev->desc->ops->set_mode) { 4148 ret = -EINVAL; 4149 goto out; 4150 } 4151 4152 /* return if the same mode is requested */ 4153 if (rdev->desc->ops->get_mode) { 4154 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4155 if (regulator_curr_mode == mode) { 4156 ret = 0; 4157 goto out; 4158 } 4159 } 4160 4161 /* constraints check */ 4162 ret = regulator_mode_constrain(rdev, &mode); 4163 if (ret < 0) 4164 goto out; 4165 4166 ret = rdev->desc->ops->set_mode(rdev, mode); 4167 out: 4168 regulator_unlock(rdev); 4169 return ret; 4170 } 4171 EXPORT_SYMBOL_GPL(regulator_set_mode); 4172 4173 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4174 { 4175 /* sanity check */ 4176 if (!rdev->desc->ops->get_mode) 4177 return -EINVAL; 4178 4179 return rdev->desc->ops->get_mode(rdev); 4180 } 4181 4182 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4183 { 4184 int ret; 4185 4186 regulator_lock(rdev); 4187 ret = _regulator_get_mode_unlocked(rdev); 4188 regulator_unlock(rdev); 4189 4190 return ret; 4191 } 4192 4193 /** 4194 * regulator_get_mode - get regulator operating mode 4195 * @regulator: regulator source 4196 * 4197 * Get the current regulator operating mode. 4198 */ 4199 unsigned int regulator_get_mode(struct regulator *regulator) 4200 { 4201 return _regulator_get_mode(regulator->rdev); 4202 } 4203 EXPORT_SYMBOL_GPL(regulator_get_mode); 4204 4205 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4206 unsigned int *flags) 4207 { 4208 int ret; 4209 4210 regulator_lock(rdev); 4211 4212 /* sanity check */ 4213 if (!rdev->desc->ops->get_error_flags) { 4214 ret = -EINVAL; 4215 goto out; 4216 } 4217 4218 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4219 out: 4220 regulator_unlock(rdev); 4221 return ret; 4222 } 4223 4224 /** 4225 * regulator_get_error_flags - get regulator error information 4226 * @regulator: regulator source 4227 * @flags: pointer to store error flags 4228 * 4229 * Get the current regulator error information. 4230 */ 4231 int regulator_get_error_flags(struct regulator *regulator, 4232 unsigned int *flags) 4233 { 4234 return _regulator_get_error_flags(regulator->rdev, flags); 4235 } 4236 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4237 4238 /** 4239 * regulator_set_load - set regulator load 4240 * @regulator: regulator source 4241 * @uA_load: load current 4242 * 4243 * Notifies the regulator core of a new device load. This is then used by 4244 * DRMS (if enabled by constraints) to set the most efficient regulator 4245 * operating mode for the new regulator loading. 4246 * 4247 * Consumer devices notify their supply regulator of the maximum power 4248 * they will require (can be taken from device datasheet in the power 4249 * consumption tables) when they change operational status and hence power 4250 * state. Examples of operational state changes that can affect power 4251 * consumption are :- 4252 * 4253 * o Device is opened / closed. 4254 * o Device I/O is about to begin or has just finished. 4255 * o Device is idling in between work. 4256 * 4257 * This information is also exported via sysfs to userspace. 4258 * 4259 * DRMS will sum the total requested load on the regulator and change 4260 * to the most efficient operating mode if platform constraints allow. 4261 * 4262 * NOTE: when a regulator consumer requests to have a regulator 4263 * disabled then any load that consumer requested no longer counts 4264 * toward the total requested load. If the regulator is re-enabled 4265 * then the previously requested load will start counting again. 4266 * 4267 * If a regulator is an always-on regulator then an individual consumer's 4268 * load will still be removed if that consumer is fully disabled. 4269 * 4270 * On error a negative errno is returned. 4271 */ 4272 int regulator_set_load(struct regulator *regulator, int uA_load) 4273 { 4274 struct regulator_dev *rdev = regulator->rdev; 4275 int old_uA_load; 4276 int ret = 0; 4277 4278 regulator_lock(rdev); 4279 old_uA_load = regulator->uA_load; 4280 regulator->uA_load = uA_load; 4281 if (regulator->enable_count && old_uA_load != uA_load) { 4282 ret = drms_uA_update(rdev); 4283 if (ret < 0) 4284 regulator->uA_load = old_uA_load; 4285 } 4286 regulator_unlock(rdev); 4287 4288 return ret; 4289 } 4290 EXPORT_SYMBOL_GPL(regulator_set_load); 4291 4292 /** 4293 * regulator_allow_bypass - allow the regulator to go into bypass mode 4294 * 4295 * @regulator: Regulator to configure 4296 * @enable: enable or disable bypass mode 4297 * 4298 * Allow the regulator to go into bypass mode if all other consumers 4299 * for the regulator also enable bypass mode and the machine 4300 * constraints allow this. Bypass mode means that the regulator is 4301 * simply passing the input directly to the output with no regulation. 4302 */ 4303 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4304 { 4305 struct regulator_dev *rdev = regulator->rdev; 4306 int ret = 0; 4307 4308 if (!rdev->desc->ops->set_bypass) 4309 return 0; 4310 4311 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4312 return 0; 4313 4314 regulator_lock(rdev); 4315 4316 if (enable && !regulator->bypass) { 4317 rdev->bypass_count++; 4318 4319 if (rdev->bypass_count == rdev->open_count) { 4320 ret = rdev->desc->ops->set_bypass(rdev, enable); 4321 if (ret != 0) 4322 rdev->bypass_count--; 4323 } 4324 4325 } else if (!enable && regulator->bypass) { 4326 rdev->bypass_count--; 4327 4328 if (rdev->bypass_count != rdev->open_count) { 4329 ret = rdev->desc->ops->set_bypass(rdev, enable); 4330 if (ret != 0) 4331 rdev->bypass_count++; 4332 } 4333 } 4334 4335 if (ret == 0) 4336 regulator->bypass = enable; 4337 4338 regulator_unlock(rdev); 4339 4340 return ret; 4341 } 4342 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4343 4344 /** 4345 * regulator_register_notifier - register regulator event notifier 4346 * @regulator: regulator source 4347 * @nb: notifier block 4348 * 4349 * Register notifier block to receive regulator events. 4350 */ 4351 int regulator_register_notifier(struct regulator *regulator, 4352 struct notifier_block *nb) 4353 { 4354 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4355 nb); 4356 } 4357 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4358 4359 /** 4360 * regulator_unregister_notifier - unregister regulator event notifier 4361 * @regulator: regulator source 4362 * @nb: notifier block 4363 * 4364 * Unregister regulator event notifier block. 4365 */ 4366 int regulator_unregister_notifier(struct regulator *regulator, 4367 struct notifier_block *nb) 4368 { 4369 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4370 nb); 4371 } 4372 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4373 4374 /* notify regulator consumers and downstream regulator consumers. 4375 * Note mutex must be held by caller. 4376 */ 4377 static int _notifier_call_chain(struct regulator_dev *rdev, 4378 unsigned long event, void *data) 4379 { 4380 /* call rdev chain first */ 4381 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4382 } 4383 4384 /** 4385 * regulator_bulk_get - get multiple regulator consumers 4386 * 4387 * @dev: Device to supply 4388 * @num_consumers: Number of consumers to register 4389 * @consumers: Configuration of consumers; clients are stored here. 4390 * 4391 * @return 0 on success, an errno on failure. 4392 * 4393 * This helper function allows drivers to get several regulator 4394 * consumers in one operation. If any of the regulators cannot be 4395 * acquired then any regulators that were allocated will be freed 4396 * before returning to the caller. 4397 */ 4398 int regulator_bulk_get(struct device *dev, int num_consumers, 4399 struct regulator_bulk_data *consumers) 4400 { 4401 int i; 4402 int ret; 4403 4404 for (i = 0; i < num_consumers; i++) 4405 consumers[i].consumer = NULL; 4406 4407 for (i = 0; i < num_consumers; i++) { 4408 consumers[i].consumer = regulator_get(dev, 4409 consumers[i].supply); 4410 if (IS_ERR(consumers[i].consumer)) { 4411 ret = PTR_ERR(consumers[i].consumer); 4412 consumers[i].consumer = NULL; 4413 goto err; 4414 } 4415 } 4416 4417 return 0; 4418 4419 err: 4420 if (ret != -EPROBE_DEFER) 4421 dev_err(dev, "Failed to get supply '%s': %d\n", 4422 consumers[i].supply, ret); 4423 else 4424 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4425 consumers[i].supply); 4426 4427 while (--i >= 0) 4428 regulator_put(consumers[i].consumer); 4429 4430 return ret; 4431 } 4432 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4433 4434 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4435 { 4436 struct regulator_bulk_data *bulk = data; 4437 4438 bulk->ret = regulator_enable(bulk->consumer); 4439 } 4440 4441 /** 4442 * regulator_bulk_enable - enable multiple regulator consumers 4443 * 4444 * @num_consumers: Number of consumers 4445 * @consumers: Consumer data; clients are stored here. 4446 * @return 0 on success, an errno on failure 4447 * 4448 * This convenience API allows consumers to enable multiple regulator 4449 * clients in a single API call. If any consumers cannot be enabled 4450 * then any others that were enabled will be disabled again prior to 4451 * return. 4452 */ 4453 int regulator_bulk_enable(int num_consumers, 4454 struct regulator_bulk_data *consumers) 4455 { 4456 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4457 int i; 4458 int ret = 0; 4459 4460 for (i = 0; i < num_consumers; i++) { 4461 async_schedule_domain(regulator_bulk_enable_async, 4462 &consumers[i], &async_domain); 4463 } 4464 4465 async_synchronize_full_domain(&async_domain); 4466 4467 /* If any consumer failed we need to unwind any that succeeded */ 4468 for (i = 0; i < num_consumers; i++) { 4469 if (consumers[i].ret != 0) { 4470 ret = consumers[i].ret; 4471 goto err; 4472 } 4473 } 4474 4475 return 0; 4476 4477 err: 4478 for (i = 0; i < num_consumers; i++) { 4479 if (consumers[i].ret < 0) 4480 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4481 consumers[i].ret); 4482 else 4483 regulator_disable(consumers[i].consumer); 4484 } 4485 4486 return ret; 4487 } 4488 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4489 4490 /** 4491 * regulator_bulk_disable - disable multiple regulator consumers 4492 * 4493 * @num_consumers: Number of consumers 4494 * @consumers: Consumer data; clients are stored here. 4495 * @return 0 on success, an errno on failure 4496 * 4497 * This convenience API allows consumers to disable multiple regulator 4498 * clients in a single API call. If any consumers cannot be disabled 4499 * then any others that were disabled will be enabled again prior to 4500 * return. 4501 */ 4502 int regulator_bulk_disable(int num_consumers, 4503 struct regulator_bulk_data *consumers) 4504 { 4505 int i; 4506 int ret, r; 4507 4508 for (i = num_consumers - 1; i >= 0; --i) { 4509 ret = regulator_disable(consumers[i].consumer); 4510 if (ret != 0) 4511 goto err; 4512 } 4513 4514 return 0; 4515 4516 err: 4517 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4518 for (++i; i < num_consumers; ++i) { 4519 r = regulator_enable(consumers[i].consumer); 4520 if (r != 0) 4521 pr_err("Failed to re-enable %s: %d\n", 4522 consumers[i].supply, r); 4523 } 4524 4525 return ret; 4526 } 4527 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4528 4529 /** 4530 * regulator_bulk_force_disable - force disable multiple regulator consumers 4531 * 4532 * @num_consumers: Number of consumers 4533 * @consumers: Consumer data; clients are stored here. 4534 * @return 0 on success, an errno on failure 4535 * 4536 * This convenience API allows consumers to forcibly disable multiple regulator 4537 * clients in a single API call. 4538 * NOTE: This should be used for situations when device damage will 4539 * likely occur if the regulators are not disabled (e.g. over temp). 4540 * Although regulator_force_disable function call for some consumers can 4541 * return error numbers, the function is called for all consumers. 4542 */ 4543 int regulator_bulk_force_disable(int num_consumers, 4544 struct regulator_bulk_data *consumers) 4545 { 4546 int i; 4547 int ret = 0; 4548 4549 for (i = 0; i < num_consumers; i++) { 4550 consumers[i].ret = 4551 regulator_force_disable(consumers[i].consumer); 4552 4553 /* Store first error for reporting */ 4554 if (consumers[i].ret && !ret) 4555 ret = consumers[i].ret; 4556 } 4557 4558 return ret; 4559 } 4560 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4561 4562 /** 4563 * regulator_bulk_free - free multiple regulator consumers 4564 * 4565 * @num_consumers: Number of consumers 4566 * @consumers: Consumer data; clients are stored here. 4567 * 4568 * This convenience API allows consumers to free multiple regulator 4569 * clients in a single API call. 4570 */ 4571 void regulator_bulk_free(int num_consumers, 4572 struct regulator_bulk_data *consumers) 4573 { 4574 int i; 4575 4576 for (i = 0; i < num_consumers; i++) { 4577 regulator_put(consumers[i].consumer); 4578 consumers[i].consumer = NULL; 4579 } 4580 } 4581 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4582 4583 /** 4584 * regulator_notifier_call_chain - call regulator event notifier 4585 * @rdev: regulator source 4586 * @event: notifier block 4587 * @data: callback-specific data. 4588 * 4589 * Called by regulator drivers to notify clients a regulator event has 4590 * occurred. We also notify regulator clients downstream. 4591 * Note lock must be held by caller. 4592 */ 4593 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4594 unsigned long event, void *data) 4595 { 4596 lockdep_assert_held_once(&rdev->mutex.base); 4597 4598 _notifier_call_chain(rdev, event, data); 4599 return NOTIFY_DONE; 4600 4601 } 4602 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4603 4604 /** 4605 * regulator_mode_to_status - convert a regulator mode into a status 4606 * 4607 * @mode: Mode to convert 4608 * 4609 * Convert a regulator mode into a status. 4610 */ 4611 int regulator_mode_to_status(unsigned int mode) 4612 { 4613 switch (mode) { 4614 case REGULATOR_MODE_FAST: 4615 return REGULATOR_STATUS_FAST; 4616 case REGULATOR_MODE_NORMAL: 4617 return REGULATOR_STATUS_NORMAL; 4618 case REGULATOR_MODE_IDLE: 4619 return REGULATOR_STATUS_IDLE; 4620 case REGULATOR_MODE_STANDBY: 4621 return REGULATOR_STATUS_STANDBY; 4622 default: 4623 return REGULATOR_STATUS_UNDEFINED; 4624 } 4625 } 4626 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4627 4628 static struct attribute *regulator_dev_attrs[] = { 4629 &dev_attr_name.attr, 4630 &dev_attr_num_users.attr, 4631 &dev_attr_type.attr, 4632 &dev_attr_microvolts.attr, 4633 &dev_attr_microamps.attr, 4634 &dev_attr_opmode.attr, 4635 &dev_attr_state.attr, 4636 &dev_attr_status.attr, 4637 &dev_attr_bypass.attr, 4638 &dev_attr_requested_microamps.attr, 4639 &dev_attr_min_microvolts.attr, 4640 &dev_attr_max_microvolts.attr, 4641 &dev_attr_min_microamps.attr, 4642 &dev_attr_max_microamps.attr, 4643 &dev_attr_suspend_standby_state.attr, 4644 &dev_attr_suspend_mem_state.attr, 4645 &dev_attr_suspend_disk_state.attr, 4646 &dev_attr_suspend_standby_microvolts.attr, 4647 &dev_attr_suspend_mem_microvolts.attr, 4648 &dev_attr_suspend_disk_microvolts.attr, 4649 &dev_attr_suspend_standby_mode.attr, 4650 &dev_attr_suspend_mem_mode.attr, 4651 &dev_attr_suspend_disk_mode.attr, 4652 NULL 4653 }; 4654 4655 /* 4656 * To avoid cluttering sysfs (and memory) with useless state, only 4657 * create attributes that can be meaningfully displayed. 4658 */ 4659 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4660 struct attribute *attr, int idx) 4661 { 4662 struct device *dev = kobj_to_dev(kobj); 4663 struct regulator_dev *rdev = dev_to_rdev(dev); 4664 const struct regulator_ops *ops = rdev->desc->ops; 4665 umode_t mode = attr->mode; 4666 4667 /* these three are always present */ 4668 if (attr == &dev_attr_name.attr || 4669 attr == &dev_attr_num_users.attr || 4670 attr == &dev_attr_type.attr) 4671 return mode; 4672 4673 /* some attributes need specific methods to be displayed */ 4674 if (attr == &dev_attr_microvolts.attr) { 4675 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4676 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4677 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4678 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4679 return mode; 4680 return 0; 4681 } 4682 4683 if (attr == &dev_attr_microamps.attr) 4684 return ops->get_current_limit ? mode : 0; 4685 4686 if (attr == &dev_attr_opmode.attr) 4687 return ops->get_mode ? mode : 0; 4688 4689 if (attr == &dev_attr_state.attr) 4690 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4691 4692 if (attr == &dev_attr_status.attr) 4693 return ops->get_status ? mode : 0; 4694 4695 if (attr == &dev_attr_bypass.attr) 4696 return ops->get_bypass ? mode : 0; 4697 4698 /* constraints need specific supporting methods */ 4699 if (attr == &dev_attr_min_microvolts.attr || 4700 attr == &dev_attr_max_microvolts.attr) 4701 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4702 4703 if (attr == &dev_attr_min_microamps.attr || 4704 attr == &dev_attr_max_microamps.attr) 4705 return ops->set_current_limit ? mode : 0; 4706 4707 if (attr == &dev_attr_suspend_standby_state.attr || 4708 attr == &dev_attr_suspend_mem_state.attr || 4709 attr == &dev_attr_suspend_disk_state.attr) 4710 return mode; 4711 4712 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4713 attr == &dev_attr_suspend_mem_microvolts.attr || 4714 attr == &dev_attr_suspend_disk_microvolts.attr) 4715 return ops->set_suspend_voltage ? mode : 0; 4716 4717 if (attr == &dev_attr_suspend_standby_mode.attr || 4718 attr == &dev_attr_suspend_mem_mode.attr || 4719 attr == &dev_attr_suspend_disk_mode.attr) 4720 return ops->set_suspend_mode ? mode : 0; 4721 4722 return mode; 4723 } 4724 4725 static const struct attribute_group regulator_dev_group = { 4726 .attrs = regulator_dev_attrs, 4727 .is_visible = regulator_attr_is_visible, 4728 }; 4729 4730 static const struct attribute_group *regulator_dev_groups[] = { 4731 ®ulator_dev_group, 4732 NULL 4733 }; 4734 4735 static void regulator_dev_release(struct device *dev) 4736 { 4737 struct regulator_dev *rdev = dev_get_drvdata(dev); 4738 4739 kfree(rdev->constraints); 4740 of_node_put(rdev->dev.of_node); 4741 kfree(rdev); 4742 } 4743 4744 static void rdev_init_debugfs(struct regulator_dev *rdev) 4745 { 4746 struct device *parent = rdev->dev.parent; 4747 const char *rname = rdev_get_name(rdev); 4748 char name[NAME_MAX]; 4749 4750 /* Avoid duplicate debugfs directory names */ 4751 if (parent && rname == rdev->desc->name) { 4752 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4753 rname); 4754 rname = name; 4755 } 4756 4757 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4758 if (!rdev->debugfs) { 4759 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4760 return; 4761 } 4762 4763 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4764 &rdev->use_count); 4765 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4766 &rdev->open_count); 4767 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4768 &rdev->bypass_count); 4769 } 4770 4771 static int regulator_register_resolve_supply(struct device *dev, void *data) 4772 { 4773 struct regulator_dev *rdev = dev_to_rdev(dev); 4774 4775 if (regulator_resolve_supply(rdev)) 4776 rdev_dbg(rdev, "unable to resolve supply\n"); 4777 4778 return 0; 4779 } 4780 4781 int regulator_coupler_register(struct regulator_coupler *coupler) 4782 { 4783 mutex_lock(®ulator_list_mutex); 4784 list_add_tail(&coupler->list, ®ulator_coupler_list); 4785 mutex_unlock(®ulator_list_mutex); 4786 4787 return 0; 4788 } 4789 4790 static struct regulator_coupler * 4791 regulator_find_coupler(struct regulator_dev *rdev) 4792 { 4793 struct regulator_coupler *coupler; 4794 int err; 4795 4796 /* 4797 * Note that regulators are appended to the list and the generic 4798 * coupler is registered first, hence it will be attached at last 4799 * if nobody cared. 4800 */ 4801 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 4802 err = coupler->attach_regulator(coupler, rdev); 4803 if (!err) { 4804 if (!coupler->balance_voltage && 4805 rdev->coupling_desc.n_coupled > 2) 4806 goto err_unsupported; 4807 4808 return coupler; 4809 } 4810 4811 if (err < 0) 4812 return ERR_PTR(err); 4813 4814 if (err == 1) 4815 continue; 4816 4817 break; 4818 } 4819 4820 return ERR_PTR(-EINVAL); 4821 4822 err_unsupported: 4823 if (coupler->detach_regulator) 4824 coupler->detach_regulator(coupler, rdev); 4825 4826 rdev_err(rdev, 4827 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4828 4829 return ERR_PTR(-EPERM); 4830 } 4831 4832 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4833 { 4834 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4835 struct coupling_desc *c_desc = &rdev->coupling_desc; 4836 int n_coupled = c_desc->n_coupled; 4837 struct regulator_dev *c_rdev; 4838 int i; 4839 4840 for (i = 1; i < n_coupled; i++) { 4841 /* already resolved */ 4842 if (c_desc->coupled_rdevs[i]) 4843 continue; 4844 4845 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4846 4847 if (!c_rdev) 4848 continue; 4849 4850 if (c_rdev->coupling_desc.coupler != coupler) { 4851 rdev_err(rdev, "coupler mismatch with %s\n", 4852 rdev_get_name(c_rdev)); 4853 return; 4854 } 4855 4856 regulator_lock(c_rdev); 4857 4858 c_desc->coupled_rdevs[i] = c_rdev; 4859 c_desc->n_resolved++; 4860 4861 regulator_unlock(c_rdev); 4862 4863 regulator_resolve_coupling(c_rdev); 4864 } 4865 } 4866 4867 static void regulator_remove_coupling(struct regulator_dev *rdev) 4868 { 4869 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4870 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4871 struct regulator_dev *__c_rdev, *c_rdev; 4872 unsigned int __n_coupled, n_coupled; 4873 int i, k; 4874 int err; 4875 4876 n_coupled = c_desc->n_coupled; 4877 4878 for (i = 1; i < n_coupled; i++) { 4879 c_rdev = c_desc->coupled_rdevs[i]; 4880 4881 if (!c_rdev) 4882 continue; 4883 4884 regulator_lock(c_rdev); 4885 4886 __c_desc = &c_rdev->coupling_desc; 4887 __n_coupled = __c_desc->n_coupled; 4888 4889 for (k = 1; k < __n_coupled; k++) { 4890 __c_rdev = __c_desc->coupled_rdevs[k]; 4891 4892 if (__c_rdev == rdev) { 4893 __c_desc->coupled_rdevs[k] = NULL; 4894 __c_desc->n_resolved--; 4895 break; 4896 } 4897 } 4898 4899 regulator_unlock(c_rdev); 4900 4901 c_desc->coupled_rdevs[i] = NULL; 4902 c_desc->n_resolved--; 4903 } 4904 4905 if (coupler && coupler->detach_regulator) { 4906 err = coupler->detach_regulator(coupler, rdev); 4907 if (err) 4908 rdev_err(rdev, "failed to detach from coupler: %d\n", 4909 err); 4910 } 4911 4912 kfree(rdev->coupling_desc.coupled_rdevs); 4913 rdev->coupling_desc.coupled_rdevs = NULL; 4914 } 4915 4916 static int regulator_init_coupling(struct regulator_dev *rdev) 4917 { 4918 int err, n_phandles; 4919 size_t alloc_size; 4920 4921 if (!IS_ENABLED(CONFIG_OF)) 4922 n_phandles = 0; 4923 else 4924 n_phandles = of_get_n_coupled(rdev); 4925 4926 alloc_size = sizeof(*rdev) * (n_phandles + 1); 4927 4928 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL); 4929 if (!rdev->coupling_desc.coupled_rdevs) 4930 return -ENOMEM; 4931 4932 /* 4933 * Every regulator should always have coupling descriptor filled with 4934 * at least pointer to itself. 4935 */ 4936 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4937 rdev->coupling_desc.n_coupled = n_phandles + 1; 4938 rdev->coupling_desc.n_resolved++; 4939 4940 /* regulator isn't coupled */ 4941 if (n_phandles == 0) 4942 return 0; 4943 4944 if (!of_check_coupling_data(rdev)) 4945 return -EPERM; 4946 4947 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 4948 if (IS_ERR(rdev->coupling_desc.coupler)) { 4949 err = PTR_ERR(rdev->coupling_desc.coupler); 4950 rdev_err(rdev, "failed to get coupler: %d\n", err); 4951 return err; 4952 } 4953 4954 return 0; 4955 } 4956 4957 static int generic_coupler_attach(struct regulator_coupler *coupler, 4958 struct regulator_dev *rdev) 4959 { 4960 if (rdev->coupling_desc.n_coupled > 2) { 4961 rdev_err(rdev, 4962 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4963 return -EPERM; 4964 } 4965 4966 return 0; 4967 } 4968 4969 static struct regulator_coupler generic_regulator_coupler = { 4970 .attach_regulator = generic_coupler_attach, 4971 }; 4972 4973 /** 4974 * regulator_register - register regulator 4975 * @regulator_desc: regulator to register 4976 * @cfg: runtime configuration for regulator 4977 * 4978 * Called by regulator drivers to register a regulator. 4979 * Returns a valid pointer to struct regulator_dev on success 4980 * or an ERR_PTR() on error. 4981 */ 4982 struct regulator_dev * 4983 regulator_register(const struct regulator_desc *regulator_desc, 4984 const struct regulator_config *cfg) 4985 { 4986 const struct regulation_constraints *constraints = NULL; 4987 const struct regulator_init_data *init_data; 4988 struct regulator_config *config = NULL; 4989 static atomic_t regulator_no = ATOMIC_INIT(-1); 4990 struct regulator_dev *rdev; 4991 bool dangling_cfg_gpiod = false; 4992 bool dangling_of_gpiod = false; 4993 struct device *dev; 4994 int ret, i; 4995 4996 if (cfg == NULL) 4997 return ERR_PTR(-EINVAL); 4998 if (cfg->ena_gpiod) 4999 dangling_cfg_gpiod = true; 5000 if (regulator_desc == NULL) { 5001 ret = -EINVAL; 5002 goto rinse; 5003 } 5004 5005 dev = cfg->dev; 5006 WARN_ON(!dev); 5007 5008 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5009 ret = -EINVAL; 5010 goto rinse; 5011 } 5012 5013 if (regulator_desc->type != REGULATOR_VOLTAGE && 5014 regulator_desc->type != REGULATOR_CURRENT) { 5015 ret = -EINVAL; 5016 goto rinse; 5017 } 5018 5019 /* Only one of each should be implemented */ 5020 WARN_ON(regulator_desc->ops->get_voltage && 5021 regulator_desc->ops->get_voltage_sel); 5022 WARN_ON(regulator_desc->ops->set_voltage && 5023 regulator_desc->ops->set_voltage_sel); 5024 5025 /* If we're using selectors we must implement list_voltage. */ 5026 if (regulator_desc->ops->get_voltage_sel && 5027 !regulator_desc->ops->list_voltage) { 5028 ret = -EINVAL; 5029 goto rinse; 5030 } 5031 if (regulator_desc->ops->set_voltage_sel && 5032 !regulator_desc->ops->list_voltage) { 5033 ret = -EINVAL; 5034 goto rinse; 5035 } 5036 5037 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5038 if (rdev == NULL) { 5039 ret = -ENOMEM; 5040 goto rinse; 5041 } 5042 5043 /* 5044 * Duplicate the config so the driver could override it after 5045 * parsing init data. 5046 */ 5047 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5048 if (config == NULL) { 5049 kfree(rdev); 5050 ret = -ENOMEM; 5051 goto rinse; 5052 } 5053 5054 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5055 &rdev->dev.of_node); 5056 /* 5057 * We need to keep track of any GPIO descriptor coming from the 5058 * device tree until we have handled it over to the core. If the 5059 * config that was passed in to this function DOES NOT contain 5060 * a descriptor, and the config after this call DOES contain 5061 * a descriptor, we definitely got one from parsing the device 5062 * tree. 5063 */ 5064 if (!cfg->ena_gpiod && config->ena_gpiod) 5065 dangling_of_gpiod = true; 5066 if (!init_data) { 5067 init_data = config->init_data; 5068 rdev->dev.of_node = of_node_get(config->of_node); 5069 } 5070 5071 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5072 rdev->reg_data = config->driver_data; 5073 rdev->owner = regulator_desc->owner; 5074 rdev->desc = regulator_desc; 5075 if (config->regmap) 5076 rdev->regmap = config->regmap; 5077 else if (dev_get_regmap(dev, NULL)) 5078 rdev->regmap = dev_get_regmap(dev, NULL); 5079 else if (dev->parent) 5080 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5081 INIT_LIST_HEAD(&rdev->consumer_list); 5082 INIT_LIST_HEAD(&rdev->list); 5083 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5084 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5085 5086 /* preform any regulator specific init */ 5087 if (init_data && init_data->regulator_init) { 5088 ret = init_data->regulator_init(rdev->reg_data); 5089 if (ret < 0) 5090 goto clean; 5091 } 5092 5093 if (config->ena_gpiod) { 5094 mutex_lock(®ulator_list_mutex); 5095 ret = regulator_ena_gpio_request(rdev, config); 5096 mutex_unlock(®ulator_list_mutex); 5097 if (ret != 0) { 5098 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 5099 ret); 5100 goto clean; 5101 } 5102 /* The regulator core took over the GPIO descriptor */ 5103 dangling_cfg_gpiod = false; 5104 dangling_of_gpiod = false; 5105 } 5106 5107 /* register with sysfs */ 5108 rdev->dev.class = ®ulator_class; 5109 rdev->dev.parent = dev; 5110 dev_set_name(&rdev->dev, "regulator.%lu", 5111 (unsigned long) atomic_inc_return(®ulator_no)); 5112 5113 /* set regulator constraints */ 5114 if (init_data) 5115 constraints = &init_data->constraints; 5116 5117 if (init_data && init_data->supply_regulator) 5118 rdev->supply_name = init_data->supply_regulator; 5119 else if (regulator_desc->supply_name) 5120 rdev->supply_name = regulator_desc->supply_name; 5121 5122 /* 5123 * Attempt to resolve the regulator supply, if specified, 5124 * but don't return an error if we fail because we will try 5125 * to resolve it again later as more regulators are added. 5126 */ 5127 if (regulator_resolve_supply(rdev)) 5128 rdev_dbg(rdev, "unable to resolve supply\n"); 5129 5130 ret = set_machine_constraints(rdev, constraints); 5131 if (ret < 0) 5132 goto wash; 5133 5134 mutex_lock(®ulator_list_mutex); 5135 ret = regulator_init_coupling(rdev); 5136 mutex_unlock(®ulator_list_mutex); 5137 if (ret < 0) 5138 goto wash; 5139 5140 /* add consumers devices */ 5141 if (init_data) { 5142 mutex_lock(®ulator_list_mutex); 5143 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5144 ret = set_consumer_device_supply(rdev, 5145 init_data->consumer_supplies[i].dev_name, 5146 init_data->consumer_supplies[i].supply); 5147 if (ret < 0) { 5148 mutex_unlock(®ulator_list_mutex); 5149 dev_err(dev, "Failed to set supply %s\n", 5150 init_data->consumer_supplies[i].supply); 5151 goto unset_supplies; 5152 } 5153 } 5154 mutex_unlock(®ulator_list_mutex); 5155 } 5156 5157 if (!rdev->desc->ops->get_voltage && 5158 !rdev->desc->ops->list_voltage && 5159 !rdev->desc->fixed_uV) 5160 rdev->is_switch = true; 5161 5162 dev_set_drvdata(&rdev->dev, rdev); 5163 ret = device_register(&rdev->dev); 5164 if (ret != 0) { 5165 put_device(&rdev->dev); 5166 goto unset_supplies; 5167 } 5168 5169 rdev_init_debugfs(rdev); 5170 5171 /* try to resolve regulators coupling since a new one was registered */ 5172 mutex_lock(®ulator_list_mutex); 5173 regulator_resolve_coupling(rdev); 5174 mutex_unlock(®ulator_list_mutex); 5175 5176 /* try to resolve regulators supply since a new one was registered */ 5177 class_for_each_device(®ulator_class, NULL, NULL, 5178 regulator_register_resolve_supply); 5179 kfree(config); 5180 return rdev; 5181 5182 unset_supplies: 5183 mutex_lock(®ulator_list_mutex); 5184 unset_regulator_supplies(rdev); 5185 regulator_remove_coupling(rdev); 5186 mutex_unlock(®ulator_list_mutex); 5187 wash: 5188 kfree(rdev->constraints); 5189 mutex_lock(®ulator_list_mutex); 5190 regulator_ena_gpio_free(rdev); 5191 mutex_unlock(®ulator_list_mutex); 5192 clean: 5193 if (dangling_of_gpiod) 5194 gpiod_put(config->ena_gpiod); 5195 kfree(rdev); 5196 kfree(config); 5197 rinse: 5198 if (dangling_cfg_gpiod) 5199 gpiod_put(cfg->ena_gpiod); 5200 return ERR_PTR(ret); 5201 } 5202 EXPORT_SYMBOL_GPL(regulator_register); 5203 5204 /** 5205 * regulator_unregister - unregister regulator 5206 * @rdev: regulator to unregister 5207 * 5208 * Called by regulator drivers to unregister a regulator. 5209 */ 5210 void regulator_unregister(struct regulator_dev *rdev) 5211 { 5212 if (rdev == NULL) 5213 return; 5214 5215 if (rdev->supply) { 5216 while (rdev->use_count--) 5217 regulator_disable(rdev->supply); 5218 regulator_put(rdev->supply); 5219 } 5220 5221 flush_work(&rdev->disable_work.work); 5222 5223 mutex_lock(®ulator_list_mutex); 5224 5225 debugfs_remove_recursive(rdev->debugfs); 5226 WARN_ON(rdev->open_count); 5227 regulator_remove_coupling(rdev); 5228 unset_regulator_supplies(rdev); 5229 list_del(&rdev->list); 5230 regulator_ena_gpio_free(rdev); 5231 device_unregister(&rdev->dev); 5232 5233 mutex_unlock(®ulator_list_mutex); 5234 } 5235 EXPORT_SYMBOL_GPL(regulator_unregister); 5236 5237 #ifdef CONFIG_SUSPEND 5238 /** 5239 * regulator_suspend - prepare regulators for system wide suspend 5240 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5241 * 5242 * Configure each regulator with it's suspend operating parameters for state. 5243 */ 5244 static int regulator_suspend(struct device *dev) 5245 { 5246 struct regulator_dev *rdev = dev_to_rdev(dev); 5247 suspend_state_t state = pm_suspend_target_state; 5248 int ret; 5249 5250 regulator_lock(rdev); 5251 ret = suspend_set_state(rdev, state); 5252 regulator_unlock(rdev); 5253 5254 return ret; 5255 } 5256 5257 static int regulator_resume(struct device *dev) 5258 { 5259 suspend_state_t state = pm_suspend_target_state; 5260 struct regulator_dev *rdev = dev_to_rdev(dev); 5261 struct regulator_state *rstate; 5262 int ret = 0; 5263 5264 rstate = regulator_get_suspend_state(rdev, state); 5265 if (rstate == NULL) 5266 return 0; 5267 5268 regulator_lock(rdev); 5269 5270 if (rdev->desc->ops->resume && 5271 (rstate->enabled == ENABLE_IN_SUSPEND || 5272 rstate->enabled == DISABLE_IN_SUSPEND)) 5273 ret = rdev->desc->ops->resume(rdev); 5274 5275 regulator_unlock(rdev); 5276 5277 return ret; 5278 } 5279 #else /* !CONFIG_SUSPEND */ 5280 5281 #define regulator_suspend NULL 5282 #define regulator_resume NULL 5283 5284 #endif /* !CONFIG_SUSPEND */ 5285 5286 #ifdef CONFIG_PM 5287 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5288 .suspend = regulator_suspend, 5289 .resume = regulator_resume, 5290 }; 5291 #endif 5292 5293 struct class regulator_class = { 5294 .name = "regulator", 5295 .dev_release = regulator_dev_release, 5296 .dev_groups = regulator_dev_groups, 5297 #ifdef CONFIG_PM 5298 .pm = ®ulator_pm_ops, 5299 #endif 5300 }; 5301 /** 5302 * regulator_has_full_constraints - the system has fully specified constraints 5303 * 5304 * Calling this function will cause the regulator API to disable all 5305 * regulators which have a zero use count and don't have an always_on 5306 * constraint in a late_initcall. 5307 * 5308 * The intention is that this will become the default behaviour in a 5309 * future kernel release so users are encouraged to use this facility 5310 * now. 5311 */ 5312 void regulator_has_full_constraints(void) 5313 { 5314 has_full_constraints = 1; 5315 } 5316 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5317 5318 /** 5319 * rdev_get_drvdata - get rdev regulator driver data 5320 * @rdev: regulator 5321 * 5322 * Get rdev regulator driver private data. This call can be used in the 5323 * regulator driver context. 5324 */ 5325 void *rdev_get_drvdata(struct regulator_dev *rdev) 5326 { 5327 return rdev->reg_data; 5328 } 5329 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5330 5331 /** 5332 * regulator_get_drvdata - get regulator driver data 5333 * @regulator: regulator 5334 * 5335 * Get regulator driver private data. This call can be used in the consumer 5336 * driver context when non API regulator specific functions need to be called. 5337 */ 5338 void *regulator_get_drvdata(struct regulator *regulator) 5339 { 5340 return regulator->rdev->reg_data; 5341 } 5342 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5343 5344 /** 5345 * regulator_set_drvdata - set regulator driver data 5346 * @regulator: regulator 5347 * @data: data 5348 */ 5349 void regulator_set_drvdata(struct regulator *regulator, void *data) 5350 { 5351 regulator->rdev->reg_data = data; 5352 } 5353 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5354 5355 /** 5356 * regulator_get_id - get regulator ID 5357 * @rdev: regulator 5358 */ 5359 int rdev_get_id(struct regulator_dev *rdev) 5360 { 5361 return rdev->desc->id; 5362 } 5363 EXPORT_SYMBOL_GPL(rdev_get_id); 5364 5365 struct device *rdev_get_dev(struct regulator_dev *rdev) 5366 { 5367 return &rdev->dev; 5368 } 5369 EXPORT_SYMBOL_GPL(rdev_get_dev); 5370 5371 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5372 { 5373 return rdev->regmap; 5374 } 5375 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5376 5377 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5378 { 5379 return reg_init_data->driver_data; 5380 } 5381 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5382 5383 #ifdef CONFIG_DEBUG_FS 5384 static int supply_map_show(struct seq_file *sf, void *data) 5385 { 5386 struct regulator_map *map; 5387 5388 list_for_each_entry(map, ®ulator_map_list, list) { 5389 seq_printf(sf, "%s -> %s.%s\n", 5390 rdev_get_name(map->regulator), map->dev_name, 5391 map->supply); 5392 } 5393 5394 return 0; 5395 } 5396 DEFINE_SHOW_ATTRIBUTE(supply_map); 5397 5398 struct summary_data { 5399 struct seq_file *s; 5400 struct regulator_dev *parent; 5401 int level; 5402 }; 5403 5404 static void regulator_summary_show_subtree(struct seq_file *s, 5405 struct regulator_dev *rdev, 5406 int level); 5407 5408 static int regulator_summary_show_children(struct device *dev, void *data) 5409 { 5410 struct regulator_dev *rdev = dev_to_rdev(dev); 5411 struct summary_data *summary_data = data; 5412 5413 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5414 regulator_summary_show_subtree(summary_data->s, rdev, 5415 summary_data->level + 1); 5416 5417 return 0; 5418 } 5419 5420 static void regulator_summary_show_subtree(struct seq_file *s, 5421 struct regulator_dev *rdev, 5422 int level) 5423 { 5424 struct regulation_constraints *c; 5425 struct regulator *consumer; 5426 struct summary_data summary_data; 5427 unsigned int opmode; 5428 5429 if (!rdev) 5430 return; 5431 5432 opmode = _regulator_get_mode_unlocked(rdev); 5433 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5434 level * 3 + 1, "", 5435 30 - level * 3, rdev_get_name(rdev), 5436 rdev->use_count, rdev->open_count, rdev->bypass_count, 5437 regulator_opmode_to_str(opmode)); 5438 5439 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5440 seq_printf(s, "%5dmA ", 5441 _regulator_get_current_limit_unlocked(rdev) / 1000); 5442 5443 c = rdev->constraints; 5444 if (c) { 5445 switch (rdev->desc->type) { 5446 case REGULATOR_VOLTAGE: 5447 seq_printf(s, "%5dmV %5dmV ", 5448 c->min_uV / 1000, c->max_uV / 1000); 5449 break; 5450 case REGULATOR_CURRENT: 5451 seq_printf(s, "%5dmA %5dmA ", 5452 c->min_uA / 1000, c->max_uA / 1000); 5453 break; 5454 } 5455 } 5456 5457 seq_puts(s, "\n"); 5458 5459 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5460 if (consumer->dev && consumer->dev->class == ®ulator_class) 5461 continue; 5462 5463 seq_printf(s, "%*s%-*s ", 5464 (level + 1) * 3 + 1, "", 5465 30 - (level + 1) * 3, 5466 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5467 5468 switch (rdev->desc->type) { 5469 case REGULATOR_VOLTAGE: 5470 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5471 consumer->enable_count, 5472 consumer->uA_load / 1000, 5473 consumer->uA_load && !consumer->enable_count ? 5474 '*' : ' ', 5475 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5476 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5477 break; 5478 case REGULATOR_CURRENT: 5479 break; 5480 } 5481 5482 seq_puts(s, "\n"); 5483 } 5484 5485 summary_data.s = s; 5486 summary_data.level = level; 5487 summary_data.parent = rdev; 5488 5489 class_for_each_device(®ulator_class, NULL, &summary_data, 5490 regulator_summary_show_children); 5491 } 5492 5493 struct summary_lock_data { 5494 struct ww_acquire_ctx *ww_ctx; 5495 struct regulator_dev **new_contended_rdev; 5496 struct regulator_dev **old_contended_rdev; 5497 }; 5498 5499 static int regulator_summary_lock_one(struct device *dev, void *data) 5500 { 5501 struct regulator_dev *rdev = dev_to_rdev(dev); 5502 struct summary_lock_data *lock_data = data; 5503 int ret = 0; 5504 5505 if (rdev != *lock_data->old_contended_rdev) { 5506 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5507 5508 if (ret == -EDEADLK) 5509 *lock_data->new_contended_rdev = rdev; 5510 else 5511 WARN_ON_ONCE(ret); 5512 } else { 5513 *lock_data->old_contended_rdev = NULL; 5514 } 5515 5516 return ret; 5517 } 5518 5519 static int regulator_summary_unlock_one(struct device *dev, void *data) 5520 { 5521 struct regulator_dev *rdev = dev_to_rdev(dev); 5522 struct summary_lock_data *lock_data = data; 5523 5524 if (lock_data) { 5525 if (rdev == *lock_data->new_contended_rdev) 5526 return -EDEADLK; 5527 } 5528 5529 regulator_unlock(rdev); 5530 5531 return 0; 5532 } 5533 5534 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5535 struct regulator_dev **new_contended_rdev, 5536 struct regulator_dev **old_contended_rdev) 5537 { 5538 struct summary_lock_data lock_data; 5539 int ret; 5540 5541 lock_data.ww_ctx = ww_ctx; 5542 lock_data.new_contended_rdev = new_contended_rdev; 5543 lock_data.old_contended_rdev = old_contended_rdev; 5544 5545 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5546 regulator_summary_lock_one); 5547 if (ret) 5548 class_for_each_device(®ulator_class, NULL, &lock_data, 5549 regulator_summary_unlock_one); 5550 5551 return ret; 5552 } 5553 5554 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5555 { 5556 struct regulator_dev *new_contended_rdev = NULL; 5557 struct regulator_dev *old_contended_rdev = NULL; 5558 int err; 5559 5560 mutex_lock(®ulator_list_mutex); 5561 5562 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5563 5564 do { 5565 if (new_contended_rdev) { 5566 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5567 old_contended_rdev = new_contended_rdev; 5568 old_contended_rdev->ref_cnt++; 5569 } 5570 5571 err = regulator_summary_lock_all(ww_ctx, 5572 &new_contended_rdev, 5573 &old_contended_rdev); 5574 5575 if (old_contended_rdev) 5576 regulator_unlock(old_contended_rdev); 5577 5578 } while (err == -EDEADLK); 5579 5580 ww_acquire_done(ww_ctx); 5581 } 5582 5583 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5584 { 5585 class_for_each_device(®ulator_class, NULL, NULL, 5586 regulator_summary_unlock_one); 5587 ww_acquire_fini(ww_ctx); 5588 5589 mutex_unlock(®ulator_list_mutex); 5590 } 5591 5592 static int regulator_summary_show_roots(struct device *dev, void *data) 5593 { 5594 struct regulator_dev *rdev = dev_to_rdev(dev); 5595 struct seq_file *s = data; 5596 5597 if (!rdev->supply) 5598 regulator_summary_show_subtree(s, rdev, 0); 5599 5600 return 0; 5601 } 5602 5603 static int regulator_summary_show(struct seq_file *s, void *data) 5604 { 5605 struct ww_acquire_ctx ww_ctx; 5606 5607 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5608 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5609 5610 regulator_summary_lock(&ww_ctx); 5611 5612 class_for_each_device(®ulator_class, NULL, s, 5613 regulator_summary_show_roots); 5614 5615 regulator_summary_unlock(&ww_ctx); 5616 5617 return 0; 5618 } 5619 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5620 #endif /* CONFIG_DEBUG_FS */ 5621 5622 static int __init regulator_init(void) 5623 { 5624 int ret; 5625 5626 ret = class_register(®ulator_class); 5627 5628 debugfs_root = debugfs_create_dir("regulator", NULL); 5629 if (!debugfs_root) 5630 pr_warn("regulator: Failed to create debugfs directory\n"); 5631 5632 #ifdef CONFIG_DEBUG_FS 5633 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5634 &supply_map_fops); 5635 5636 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5637 NULL, ®ulator_summary_fops); 5638 #endif 5639 regulator_dummy_init(); 5640 5641 regulator_coupler_register(&generic_regulator_coupler); 5642 5643 return ret; 5644 } 5645 5646 /* init early to allow our consumers to complete system booting */ 5647 core_initcall(regulator_init); 5648 5649 static int regulator_late_cleanup(struct device *dev, void *data) 5650 { 5651 struct regulator_dev *rdev = dev_to_rdev(dev); 5652 const struct regulator_ops *ops = rdev->desc->ops; 5653 struct regulation_constraints *c = rdev->constraints; 5654 int enabled, ret; 5655 5656 if (c && c->always_on) 5657 return 0; 5658 5659 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5660 return 0; 5661 5662 regulator_lock(rdev); 5663 5664 if (rdev->use_count) 5665 goto unlock; 5666 5667 /* If we can't read the status assume it's on. */ 5668 if (ops->is_enabled) 5669 enabled = ops->is_enabled(rdev); 5670 else 5671 enabled = 1; 5672 5673 if (!enabled) 5674 goto unlock; 5675 5676 if (have_full_constraints()) { 5677 /* We log since this may kill the system if it goes 5678 * wrong. */ 5679 rdev_info(rdev, "disabling\n"); 5680 ret = _regulator_do_disable(rdev); 5681 if (ret != 0) 5682 rdev_err(rdev, "couldn't disable: %d\n", ret); 5683 } else { 5684 /* The intention is that in future we will 5685 * assume that full constraints are provided 5686 * so warn even if we aren't going to do 5687 * anything here. 5688 */ 5689 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5690 } 5691 5692 unlock: 5693 regulator_unlock(rdev); 5694 5695 return 0; 5696 } 5697 5698 static void regulator_init_complete_work_function(struct work_struct *work) 5699 { 5700 /* 5701 * Regulators may had failed to resolve their input supplies 5702 * when were registered, either because the input supply was 5703 * not registered yet or because its parent device was not 5704 * bound yet. So attempt to resolve the input supplies for 5705 * pending regulators before trying to disable unused ones. 5706 */ 5707 class_for_each_device(®ulator_class, NULL, NULL, 5708 regulator_register_resolve_supply); 5709 5710 /* If we have a full configuration then disable any regulators 5711 * we have permission to change the status for and which are 5712 * not in use or always_on. This is effectively the default 5713 * for DT and ACPI as they have full constraints. 5714 */ 5715 class_for_each_device(®ulator_class, NULL, NULL, 5716 regulator_late_cleanup); 5717 } 5718 5719 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 5720 regulator_init_complete_work_function); 5721 5722 static int __init regulator_init_complete(void) 5723 { 5724 /* 5725 * Since DT doesn't provide an idiomatic mechanism for 5726 * enabling full constraints and since it's much more natural 5727 * with DT to provide them just assume that a DT enabled 5728 * system has full constraints. 5729 */ 5730 if (of_have_populated_dt()) 5731 has_full_constraints = true; 5732 5733 /* 5734 * We punt completion for an arbitrary amount of time since 5735 * systems like distros will load many drivers from userspace 5736 * so consumers might not always be ready yet, this is 5737 * particularly an issue with laptops where this might bounce 5738 * the display off then on. Ideally we'd get a notification 5739 * from userspace when this happens but we don't so just wait 5740 * a bit and hope we waited long enough. It'd be better if 5741 * we'd only do this on systems that need it, and a kernel 5742 * command line option might be useful. 5743 */ 5744 schedule_delayed_work(®ulator_init_complete_work, 5745 msecs_to_jiffies(30000)); 5746 5747 return 0; 5748 } 5749 late_initcall_sync(regulator_init_complete); 5750