xref: /openbmc/linux/drivers/regulator/core.c (revision dce54888)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 				     suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100 
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111 
112 static bool have_full_constraints(void)
113 {
114 	return has_full_constraints || of_have_populated_dt();
115 }
116 
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 	if (!rdev->constraints) {
120 		rdev_err(rdev, "no constraints\n");
121 		return false;
122 	}
123 
124 	if (rdev->constraints->valid_ops_mask & ops)
125 		return true;
126 
127 	return false;
128 }
129 
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:		regulator source
133  * @ww_ctx:		w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 					struct ww_acquire_ctx *ww_ctx)
143 {
144 	bool lock = false;
145 	int ret = 0;
146 
147 	mutex_lock(&regulator_nesting_mutex);
148 
149 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 		if (rdev->mutex_owner == current)
151 			rdev->ref_cnt++;
152 		else
153 			lock = true;
154 
155 		if (lock) {
156 			mutex_unlock(&regulator_nesting_mutex);
157 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 			mutex_lock(&regulator_nesting_mutex);
159 		}
160 	} else {
161 		lock = true;
162 	}
163 
164 	if (lock && ret != -EDEADLK) {
165 		rdev->ref_cnt++;
166 		rdev->mutex_owner = current;
167 	}
168 
169 	mutex_unlock(&regulator_nesting_mutex);
170 
171 	return ret;
172 }
173 
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:		regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 	regulator_lock_nested(rdev, NULL);
187 }
188 
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:		regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 	mutex_lock(&regulator_nesting_mutex);
199 
200 	if (--rdev->ref_cnt == 0) {
201 		rdev->mutex_owner = NULL;
202 		ww_mutex_unlock(&rdev->mutex);
203 	}
204 
205 	WARN_ON_ONCE(rdev->ref_cnt < 0);
206 
207 	mutex_unlock(&regulator_nesting_mutex);
208 }
209 
210 /**
211  * regulator_lock_two - lock two regulators
212  * @rdev1:		first regulator
213  * @rdev2:		second regulator
214  * @ww_ctx:		w/w mutex acquire context
215  *
216  * Locks both rdevs using the regulator_ww_class.
217  */
218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 			       struct regulator_dev *rdev2,
220 			       struct ww_acquire_ctx *ww_ctx)
221 {
222 	struct regulator_dev *held, *contended;
223 	int ret;
224 
225 	ww_acquire_init(ww_ctx, &regulator_ww_class);
226 
227 	/* Try to just grab both of them */
228 	ret = regulator_lock_nested(rdev1, ww_ctx);
229 	WARN_ON(ret);
230 	ret = regulator_lock_nested(rdev2, ww_ctx);
231 	if (ret != -EDEADLOCK) {
232 		WARN_ON(ret);
233 		goto exit;
234 	}
235 
236 	held = rdev1;
237 	contended = rdev2;
238 	while (true) {
239 		regulator_unlock(held);
240 
241 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 		contended->ref_cnt++;
243 		contended->mutex_owner = current;
244 		swap(held, contended);
245 		ret = regulator_lock_nested(contended, ww_ctx);
246 
247 		if (ret != -EDEADLOCK) {
248 			WARN_ON(ret);
249 			break;
250 		}
251 	}
252 
253 exit:
254 	ww_acquire_done(ww_ctx);
255 }
256 
257 /**
258  * regulator_unlock_two - unlock two regulators
259  * @rdev1:		first regulator
260  * @rdev2:		second regulator
261  * @ww_ctx:		w/w mutex acquire context
262  *
263  * The inverse of regulator_lock_two().
264  */
265 
266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 				 struct regulator_dev *rdev2,
268 				 struct ww_acquire_ctx *ww_ctx)
269 {
270 	regulator_unlock(rdev2);
271 	regulator_unlock(rdev1);
272 	ww_acquire_fini(ww_ctx);
273 }
274 
275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 	struct regulator_dev *c_rdev;
278 	int i;
279 
280 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282 
283 		if (rdev->supply->rdev == c_rdev)
284 			return true;
285 	}
286 
287 	return false;
288 }
289 
290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 				       unsigned int n_coupled)
292 {
293 	struct regulator_dev *c_rdev, *supply_rdev;
294 	int i, supply_n_coupled;
295 
296 	for (i = n_coupled; i > 0; i--) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298 
299 		if (!c_rdev)
300 			continue;
301 
302 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 			supply_rdev = c_rdev->supply->rdev;
304 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305 
306 			regulator_unlock_recursive(supply_rdev,
307 						   supply_n_coupled);
308 		}
309 
310 		regulator_unlock(c_rdev);
311 	}
312 }
313 
314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 				    struct regulator_dev **new_contended_rdev,
316 				    struct regulator_dev **old_contended_rdev,
317 				    struct ww_acquire_ctx *ww_ctx)
318 {
319 	struct regulator_dev *c_rdev;
320 	int i, err;
321 
322 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324 
325 		if (!c_rdev)
326 			continue;
327 
328 		if (c_rdev != *old_contended_rdev) {
329 			err = regulator_lock_nested(c_rdev, ww_ctx);
330 			if (err) {
331 				if (err == -EDEADLK) {
332 					*new_contended_rdev = c_rdev;
333 					goto err_unlock;
334 				}
335 
336 				/* shouldn't happen */
337 				WARN_ON_ONCE(err != -EALREADY);
338 			}
339 		} else {
340 			*old_contended_rdev = NULL;
341 		}
342 
343 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 			err = regulator_lock_recursive(c_rdev->supply->rdev,
345 						       new_contended_rdev,
346 						       old_contended_rdev,
347 						       ww_ctx);
348 			if (err) {
349 				regulator_unlock(c_rdev);
350 				goto err_unlock;
351 			}
352 		}
353 	}
354 
355 	return 0;
356 
357 err_unlock:
358 	regulator_unlock_recursive(rdev, i);
359 
360 	return err;
361 }
362 
363 /**
364  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365  *				regulators
366  * @rdev:			regulator source
367  * @ww_ctx:			w/w mutex acquire context
368  *
369  * Unlock all regulators related with rdev by coupling or supplying.
370  */
371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 				       struct ww_acquire_ctx *ww_ctx)
373 {
374 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 	ww_acquire_fini(ww_ctx);
376 }
377 
378 /**
379  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380  * @rdev:			regulator source
381  * @ww_ctx:			w/w mutex acquire context
382  *
383  * This function as a wrapper on regulator_lock_recursive(), which locks
384  * all regulators related with rdev by coupling or supplying.
385  */
386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 				     struct ww_acquire_ctx *ww_ctx)
388 {
389 	struct regulator_dev *new_contended_rdev = NULL;
390 	struct regulator_dev *old_contended_rdev = NULL;
391 	int err;
392 
393 	mutex_lock(&regulator_list_mutex);
394 
395 	ww_acquire_init(ww_ctx, &regulator_ww_class);
396 
397 	do {
398 		if (new_contended_rdev) {
399 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 			old_contended_rdev = new_contended_rdev;
401 			old_contended_rdev->ref_cnt++;
402 			old_contended_rdev->mutex_owner = current;
403 		}
404 
405 		err = regulator_lock_recursive(rdev,
406 					       &new_contended_rdev,
407 					       &old_contended_rdev,
408 					       ww_ctx);
409 
410 		if (old_contended_rdev)
411 			regulator_unlock(old_contended_rdev);
412 
413 	} while (err == -EDEADLK);
414 
415 	ww_acquire_done(ww_ctx);
416 
417 	mutex_unlock(&regulator_list_mutex);
418 }
419 
420 /**
421  * of_get_child_regulator - get a child regulator device node
422  * based on supply name
423  * @parent: Parent device node
424  * @prop_name: Combination regulator supply name and "-supply"
425  *
426  * Traverse all child nodes.
427  * Extract the child regulator device node corresponding to the supply name.
428  * returns the device node corresponding to the regulator if found, else
429  * returns NULL.
430  */
431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 						  const char *prop_name)
433 {
434 	struct device_node *regnode = NULL;
435 	struct device_node *child = NULL;
436 
437 	for_each_child_of_node(parent, child) {
438 		regnode = of_parse_phandle(child, prop_name, 0);
439 
440 		if (!regnode) {
441 			regnode = of_get_child_regulator(child, prop_name);
442 			if (regnode)
443 				goto err_node_put;
444 		} else {
445 			goto err_node_put;
446 		}
447 	}
448 	return NULL;
449 
450 err_node_put:
451 	of_node_put(child);
452 	return regnode;
453 }
454 
455 /**
456  * of_get_regulator - get a regulator device node based on supply name
457  * @dev: Device pointer for the consumer (of regulator) device
458  * @supply: regulator supply name
459  *
460  * Extract the regulator device node corresponding to the supply name.
461  * returns the device node corresponding to the regulator if found, else
462  * returns NULL.
463  */
464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 	struct device_node *regnode = NULL;
467 	char prop_name[64]; /* 64 is max size of property name */
468 
469 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470 
471 	snprintf(prop_name, 64, "%s-supply", supply);
472 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473 
474 	if (!regnode) {
475 		regnode = of_get_child_regulator(dev->of_node, prop_name);
476 		if (regnode)
477 			return regnode;
478 
479 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 				prop_name, dev->of_node);
481 		return NULL;
482 	}
483 	return regnode;
484 }
485 
486 /* Platform voltage constraint check */
487 int regulator_check_voltage(struct regulator_dev *rdev,
488 			    int *min_uV, int *max_uV)
489 {
490 	BUG_ON(*min_uV > *max_uV);
491 
492 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 		rdev_err(rdev, "voltage operation not allowed\n");
494 		return -EPERM;
495 	}
496 
497 	if (*max_uV > rdev->constraints->max_uV)
498 		*max_uV = rdev->constraints->max_uV;
499 	if (*min_uV < rdev->constraints->min_uV)
500 		*min_uV = rdev->constraints->min_uV;
501 
502 	if (*min_uV > *max_uV) {
503 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 			 *min_uV, *max_uV);
505 		return -EINVAL;
506 	}
507 
508 	return 0;
509 }
510 
511 /* return 0 if the state is valid */
512 static int regulator_check_states(suspend_state_t state)
513 {
514 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516 
517 /* Make sure we select a voltage that suits the needs of all
518  * regulator consumers
519  */
520 int regulator_check_consumers(struct regulator_dev *rdev,
521 			      int *min_uV, int *max_uV,
522 			      suspend_state_t state)
523 {
524 	struct regulator *regulator;
525 	struct regulator_voltage *voltage;
526 
527 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 		voltage = &regulator->voltage[state];
529 		/*
530 		 * Assume consumers that didn't say anything are OK
531 		 * with anything in the constraint range.
532 		 */
533 		if (!voltage->min_uV && !voltage->max_uV)
534 			continue;
535 
536 		if (*max_uV > voltage->max_uV)
537 			*max_uV = voltage->max_uV;
538 		if (*min_uV < voltage->min_uV)
539 			*min_uV = voltage->min_uV;
540 	}
541 
542 	if (*min_uV > *max_uV) {
543 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 			*min_uV, *max_uV);
545 		return -EINVAL;
546 	}
547 
548 	return 0;
549 }
550 
551 /* current constraint check */
552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 					int *min_uA, int *max_uA)
554 {
555 	BUG_ON(*min_uA > *max_uA);
556 
557 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 		rdev_err(rdev, "current operation not allowed\n");
559 		return -EPERM;
560 	}
561 
562 	if (*max_uA > rdev->constraints->max_uA)
563 		*max_uA = rdev->constraints->max_uA;
564 	if (*min_uA < rdev->constraints->min_uA)
565 		*min_uA = rdev->constraints->min_uA;
566 
567 	if (*min_uA > *max_uA) {
568 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 			 *min_uA, *max_uA);
570 		return -EINVAL;
571 	}
572 
573 	return 0;
574 }
575 
576 /* operating mode constraint check */
577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 				    unsigned int *mode)
579 {
580 	switch (*mode) {
581 	case REGULATOR_MODE_FAST:
582 	case REGULATOR_MODE_NORMAL:
583 	case REGULATOR_MODE_IDLE:
584 	case REGULATOR_MODE_STANDBY:
585 		break;
586 	default:
587 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 		return -EINVAL;
589 	}
590 
591 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 		rdev_err(rdev, "mode operation not allowed\n");
593 		return -EPERM;
594 	}
595 
596 	/* The modes are bitmasks, the most power hungry modes having
597 	 * the lowest values. If the requested mode isn't supported
598 	 * try higher modes.
599 	 */
600 	while (*mode) {
601 		if (rdev->constraints->valid_modes_mask & *mode)
602 			return 0;
603 		*mode /= 2;
604 	}
605 
606 	return -EINVAL;
607 }
608 
609 static inline struct regulator_state *
610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 	if (rdev->constraints == NULL)
613 		return NULL;
614 
615 	switch (state) {
616 	case PM_SUSPEND_STANDBY:
617 		return &rdev->constraints->state_standby;
618 	case PM_SUSPEND_MEM:
619 		return &rdev->constraints->state_mem;
620 	case PM_SUSPEND_MAX:
621 		return &rdev->constraints->state_disk;
622 	default:
623 		return NULL;
624 	}
625 }
626 
627 static const struct regulator_state *
628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 	const struct regulator_state *rstate;
631 
632 	rstate = regulator_get_suspend_state(rdev, state);
633 	if (rstate == NULL)
634 		return NULL;
635 
636 	/* If we have no suspend mode configuration don't set anything;
637 	 * only warn if the driver implements set_suspend_voltage or
638 	 * set_suspend_mode callback.
639 	 */
640 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 	    rstate->enabled != DISABLE_IN_SUSPEND) {
642 		if (rdev->desc->ops->set_suspend_voltage ||
643 		    rdev->desc->ops->set_suspend_mode)
644 			rdev_warn(rdev, "No configuration\n");
645 		return NULL;
646 	}
647 
648 	return rstate;
649 }
650 
651 static ssize_t microvolts_show(struct device *dev,
652 			       struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 	int uV;
656 
657 	regulator_lock(rdev);
658 	uV = regulator_get_voltage_rdev(rdev);
659 	regulator_unlock(rdev);
660 
661 	if (uV < 0)
662 		return uV;
663 	return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666 
667 static ssize_t microamps_show(struct device *dev,
668 			      struct device_attribute *attr, char *buf)
669 {
670 	struct regulator_dev *rdev = dev_get_drvdata(dev);
671 
672 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675 
676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 			 char *buf)
678 {
679 	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 
681 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684 
685 static const char *regulator_opmode_to_str(int mode)
686 {
687 	switch (mode) {
688 	case REGULATOR_MODE_FAST:
689 		return "fast";
690 	case REGULATOR_MODE_NORMAL:
691 		return "normal";
692 	case REGULATOR_MODE_IDLE:
693 		return "idle";
694 	case REGULATOR_MODE_STANDBY:
695 		return "standby";
696 	}
697 	return "unknown";
698 }
699 
700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704 
705 static ssize_t opmode_show(struct device *dev,
706 			   struct device_attribute *attr, char *buf)
707 {
708 	struct regulator_dev *rdev = dev_get_drvdata(dev);
709 
710 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713 
714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 	if (state > 0)
717 		return sprintf(buf, "enabled\n");
718 	else if (state == 0)
719 		return sprintf(buf, "disabled\n");
720 	else
721 		return sprintf(buf, "unknown\n");
722 }
723 
724 static ssize_t state_show(struct device *dev,
725 			  struct device_attribute *attr, char *buf)
726 {
727 	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 	ssize_t ret;
729 
730 	regulator_lock(rdev);
731 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 	regulator_unlock(rdev);
733 
734 	return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737 
738 static ssize_t status_show(struct device *dev,
739 			   struct device_attribute *attr, char *buf)
740 {
741 	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 	int status;
743 	char *label;
744 
745 	status = rdev->desc->ops->get_status(rdev);
746 	if (status < 0)
747 		return status;
748 
749 	switch (status) {
750 	case REGULATOR_STATUS_OFF:
751 		label = "off";
752 		break;
753 	case REGULATOR_STATUS_ON:
754 		label = "on";
755 		break;
756 	case REGULATOR_STATUS_ERROR:
757 		label = "error";
758 		break;
759 	case REGULATOR_STATUS_FAST:
760 		label = "fast";
761 		break;
762 	case REGULATOR_STATUS_NORMAL:
763 		label = "normal";
764 		break;
765 	case REGULATOR_STATUS_IDLE:
766 		label = "idle";
767 		break;
768 	case REGULATOR_STATUS_STANDBY:
769 		label = "standby";
770 		break;
771 	case REGULATOR_STATUS_BYPASS:
772 		label = "bypass";
773 		break;
774 	case REGULATOR_STATUS_UNDEFINED:
775 		label = "undefined";
776 		break;
777 	default:
778 		return -ERANGE;
779 	}
780 
781 	return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784 
785 static ssize_t min_microamps_show(struct device *dev,
786 				  struct device_attribute *attr, char *buf)
787 {
788 	struct regulator_dev *rdev = dev_get_drvdata(dev);
789 
790 	if (!rdev->constraints)
791 		return sprintf(buf, "constraint not defined\n");
792 
793 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796 
797 static ssize_t max_microamps_show(struct device *dev,
798 				  struct device_attribute *attr, char *buf)
799 {
800 	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 
802 	if (!rdev->constraints)
803 		return sprintf(buf, "constraint not defined\n");
804 
805 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808 
809 static ssize_t min_microvolts_show(struct device *dev,
810 				   struct device_attribute *attr, char *buf)
811 {
812 	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 
814 	if (!rdev->constraints)
815 		return sprintf(buf, "constraint not defined\n");
816 
817 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820 
821 static ssize_t max_microvolts_show(struct device *dev,
822 				   struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	if (!rdev->constraints)
827 		return sprintf(buf, "constraint not defined\n");
828 
829 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832 
833 static ssize_t requested_microamps_show(struct device *dev,
834 					struct device_attribute *attr, char *buf)
835 {
836 	struct regulator_dev *rdev = dev_get_drvdata(dev);
837 	struct regulator *regulator;
838 	int uA = 0;
839 
840 	regulator_lock(rdev);
841 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 		if (regulator->enable_count)
843 			uA += regulator->uA_load;
844 	}
845 	regulator_unlock(rdev);
846 	return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849 
850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 			      char *buf)
852 {
853 	struct regulator_dev *rdev = dev_get_drvdata(dev);
854 	return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857 
858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 			 char *buf)
860 {
861 	struct regulator_dev *rdev = dev_get_drvdata(dev);
862 
863 	switch (rdev->desc->type) {
864 	case REGULATOR_VOLTAGE:
865 		return sprintf(buf, "voltage\n");
866 	case REGULATOR_CURRENT:
867 		return sprintf(buf, "current\n");
868 	}
869 	return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872 
873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 					   struct device_attribute *attr, char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881 
882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 					    struct device_attribute *attr, char *buf)
884 {
885 	struct regulator_dev *rdev = dev_get_drvdata(dev);
886 
887 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890 
891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 					       struct device_attribute *attr, char *buf)
893 {
894 	struct regulator_dev *rdev = dev_get_drvdata(dev);
895 
896 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899 
900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 				     struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_opmode(buf,
906 		rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909 
910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 				      struct device_attribute *attr, char *buf)
912 {
913 	struct regulator_dev *rdev = dev_get_drvdata(dev);
914 
915 	return regulator_print_opmode(buf,
916 		rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919 
920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 					 struct device_attribute *attr, char *buf)
922 {
923 	struct regulator_dev *rdev = dev_get_drvdata(dev);
924 
925 	return regulator_print_opmode(buf,
926 		rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929 
930 static ssize_t suspend_mem_state_show(struct device *dev,
931 				      struct device_attribute *attr, char *buf)
932 {
933 	struct regulator_dev *rdev = dev_get_drvdata(dev);
934 
935 	return regulator_print_state(buf,
936 			rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939 
940 static ssize_t suspend_disk_state_show(struct device *dev,
941 				       struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_state(buf,
946 			rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949 
950 static ssize_t suspend_standby_state_show(struct device *dev,
951 					  struct device_attribute *attr, char *buf)
952 {
953 	struct regulator_dev *rdev = dev_get_drvdata(dev);
954 
955 	return regulator_print_state(buf,
956 			rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959 
960 static ssize_t bypass_show(struct device *dev,
961 			   struct device_attribute *attr, char *buf)
962 {
963 	struct regulator_dev *rdev = dev_get_drvdata(dev);
964 	const char *report;
965 	bool bypass;
966 	int ret;
967 
968 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969 
970 	if (ret != 0)
971 		report = "unknown";
972 	else if (bypass)
973 		report = "enabled";
974 	else
975 		report = "disabled";
976 
977 	return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980 
981 #define REGULATOR_ERROR_ATTR(name, bit)							\
982 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
983 				   char *buf)						\
984 	{										\
985 		int ret;								\
986 		unsigned int flags;							\
987 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
988 		ret = _regulator_get_error_flags(rdev, &flags);				\
989 		if (ret)								\
990 			return ret;							\
991 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
992 	}										\
993 	static DEVICE_ATTR_RO(name)
994 
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004 
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006  * consumer load. All locks held by caller
1007  */
1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/*
1047 		 * Unfortunately in some cases the constraints->valid_ops has
1048 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 		 * That's not really legit but we won't consider it a fatal
1050 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 		 * wasn't set.
1052 		 */
1053 		if (!rdev->constraints->valid_modes_mask) {
1054 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 			return 0;
1056 		}
1057 
1058 		/* get output voltage */
1059 		output_uV = regulator_get_voltage_rdev(rdev);
1060 
1061 		/*
1062 		 * Don't return an error; if regulator driver cares about
1063 		 * output_uV then it's up to the driver to validate.
1064 		 */
1065 		if (output_uV <= 0)
1066 			rdev_dbg(rdev, "invalid output voltage found\n");
1067 
1068 		/* get input voltage */
1069 		input_uV = 0;
1070 		if (rdev->supply)
1071 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 		if (input_uV <= 0)
1073 			input_uV = rdev->constraints->input_uV;
1074 
1075 		/*
1076 		 * Don't return an error; if regulator driver cares about
1077 		 * input_uV then it's up to the driver to validate.
1078 		 */
1079 		if (input_uV <= 0)
1080 			rdev_dbg(rdev, "invalid input voltage found\n");
1081 
1082 		/* now get the optimum mode for our new total regulator load */
1083 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 							 output_uV, current_uA);
1085 
1086 		/* check the new mode is allowed */
1087 		err = regulator_mode_constrain(rdev, &mode);
1088 		if (err < 0) {
1089 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 			return err;
1092 		}
1093 
1094 		err = rdev->desc->ops->set_mode(rdev, mode);
1095 		if (err < 0)
1096 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 				 mode, ERR_PTR(err));
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 			       const struct regulator_state *rstate)
1105 {
1106 	int ret = 0;
1107 
1108 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 		rdev->desc->ops->set_suspend_enable)
1110 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 		rdev->desc->ops->set_suspend_disable)
1113 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 		ret = 0;
1116 
1117 	if (ret < 0) {
1118 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 		return ret;
1120 	}
1121 
1122 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 		if (ret < 0) {
1125 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 		if (ret < 0) {
1133 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 			return ret;
1135 		}
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 	const struct regulator_state *rstate;
1144 
1145 	rstate = regulator_get_suspend_state_check(rdev,
1146 			rdev->constraints->initial_state);
1147 	if (!rstate)
1148 		return 0;
1149 
1150 	return __suspend_set_state(rdev, rstate);
1151 }
1152 
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 	struct regulation_constraints *constraints = rdev->constraints;
1157 	char buf[160] = "";
1158 	size_t len = sizeof(buf) - 1;
1159 	int count = 0;
1160 	int ret;
1161 
1162 	if (constraints->min_uV && constraints->max_uV) {
1163 		if (constraints->min_uV == constraints->max_uV)
1164 			count += scnprintf(buf + count, len - count, "%d mV ",
1165 					   constraints->min_uV / 1000);
1166 		else
1167 			count += scnprintf(buf + count, len - count,
1168 					   "%d <--> %d mV ",
1169 					   constraints->min_uV / 1000,
1170 					   constraints->max_uV / 1000);
1171 	}
1172 
1173 	if (!constraints->min_uV ||
1174 	    constraints->min_uV != constraints->max_uV) {
1175 		ret = regulator_get_voltage_rdev(rdev);
1176 		if (ret > 0)
1177 			count += scnprintf(buf + count, len - count,
1178 					   "at %d mV ", ret / 1000);
1179 	}
1180 
1181 	if (constraints->uV_offset)
1182 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 				   constraints->uV_offset / 1000);
1184 
1185 	if (constraints->min_uA && constraints->max_uA) {
1186 		if (constraints->min_uA == constraints->max_uA)
1187 			count += scnprintf(buf + count, len - count, "%d mA ",
1188 					   constraints->min_uA / 1000);
1189 		else
1190 			count += scnprintf(buf + count, len - count,
1191 					   "%d <--> %d mA ",
1192 					   constraints->min_uA / 1000,
1193 					   constraints->max_uA / 1000);
1194 	}
1195 
1196 	if (!constraints->min_uA ||
1197 	    constraints->min_uA != constraints->max_uA) {
1198 		ret = _regulator_get_current_limit(rdev);
1199 		if (ret > 0)
1200 			count += scnprintf(buf + count, len - count,
1201 					   "at %d mA ", ret / 1000);
1202 	}
1203 
1204 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 		count += scnprintf(buf + count, len - count, "fast ");
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 		count += scnprintf(buf + count, len - count, "normal ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 		count += scnprintf(buf + count, len - count, "idle ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 		count += scnprintf(buf + count, len - count, "standby ");
1212 
1213 	if (!count)
1214 		count = scnprintf(buf, len, "no parameters");
1215 	else
1216 		--count;
1217 
1218 	count += scnprintf(buf + count, len - count, ", %s",
1219 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220 
1221 	rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 
1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 	struct regulation_constraints *constraints = rdev->constraints;
1230 
1231 	print_constraints_debug(rdev);
1232 
1233 	if ((constraints->min_uV != constraints->max_uV) &&
1234 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 		rdev_warn(rdev,
1236 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238 
1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 	struct regulation_constraints *constraints)
1241 {
1242 	const struct regulator_ops *ops = rdev->desc->ops;
1243 	int ret;
1244 
1245 	/* do we need to apply the constraint voltage */
1246 	if (rdev->constraints->apply_uV &&
1247 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 		int target_min, target_max;
1249 		int current_uV = regulator_get_voltage_rdev(rdev);
1250 
1251 		if (current_uV == -ENOTRECOVERABLE) {
1252 			/* This regulator can't be read and must be initialized */
1253 			rdev_info(rdev, "Setting %d-%duV\n",
1254 				  rdev->constraints->min_uV,
1255 				  rdev->constraints->max_uV);
1256 			_regulator_do_set_voltage(rdev,
1257 						  rdev->constraints->min_uV,
1258 						  rdev->constraints->max_uV);
1259 			current_uV = regulator_get_voltage_rdev(rdev);
1260 		}
1261 
1262 		if (current_uV < 0) {
1263 			if (current_uV != -EPROBE_DEFER)
1264 				rdev_err(rdev,
1265 					 "failed to get the current voltage: %pe\n",
1266 					 ERR_PTR(current_uV));
1267 			return current_uV;
1268 		}
1269 
1270 		/*
1271 		 * If we're below the minimum voltage move up to the
1272 		 * minimum voltage, if we're above the maximum voltage
1273 		 * then move down to the maximum.
1274 		 */
1275 		target_min = current_uV;
1276 		target_max = current_uV;
1277 
1278 		if (current_uV < rdev->constraints->min_uV) {
1279 			target_min = rdev->constraints->min_uV;
1280 			target_max = rdev->constraints->min_uV;
1281 		}
1282 
1283 		if (current_uV > rdev->constraints->max_uV) {
1284 			target_min = rdev->constraints->max_uV;
1285 			target_max = rdev->constraints->max_uV;
1286 		}
1287 
1288 		if (target_min != current_uV || target_max != current_uV) {
1289 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 				  current_uV, target_min, target_max);
1291 			ret = _regulator_do_set_voltage(
1292 				rdev, target_min, target_max);
1293 			if (ret < 0) {
1294 				rdev_err(rdev,
1295 					"failed to apply %d-%duV constraint: %pe\n",
1296 					target_min, target_max, ERR_PTR(ret));
1297 				return ret;
1298 			}
1299 		}
1300 	}
1301 
1302 	/* constrain machine-level voltage specs to fit
1303 	 * the actual range supported by this regulator.
1304 	 */
1305 	if (ops->list_voltage && rdev->desc->n_voltages) {
1306 		int	count = rdev->desc->n_voltages;
1307 		int	i;
1308 		int	min_uV = INT_MAX;
1309 		int	max_uV = INT_MIN;
1310 		int	cmin = constraints->min_uV;
1311 		int	cmax = constraints->max_uV;
1312 
1313 		/* it's safe to autoconfigure fixed-voltage supplies
1314 		 * and the constraints are used by list_voltage.
1315 		 */
1316 		if (count == 1 && !cmin) {
1317 			cmin = 1;
1318 			cmax = INT_MAX;
1319 			constraints->min_uV = cmin;
1320 			constraints->max_uV = cmax;
1321 		}
1322 
1323 		/* voltage constraints are optional */
1324 		if ((cmin == 0) && (cmax == 0))
1325 			return 0;
1326 
1327 		/* else require explicit machine-level constraints */
1328 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 			rdev_err(rdev, "invalid voltage constraints\n");
1330 			return -EINVAL;
1331 		}
1332 
1333 		/* no need to loop voltages if range is continuous */
1334 		if (rdev->desc->continuous_voltage_range)
1335 			return 0;
1336 
1337 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 		for (i = 0; i < count; i++) {
1339 			int	value;
1340 
1341 			value = ops->list_voltage(rdev, i);
1342 			if (value <= 0)
1343 				continue;
1344 
1345 			/* maybe adjust [min_uV..max_uV] */
1346 			if (value >= cmin && value < min_uV)
1347 				min_uV = value;
1348 			if (value <= cmax && value > max_uV)
1349 				max_uV = value;
1350 		}
1351 
1352 		/* final: [min_uV..max_uV] valid iff constraints valid */
1353 		if (max_uV < min_uV) {
1354 			rdev_err(rdev,
1355 				 "unsupportable voltage constraints %u-%uuV\n",
1356 				 min_uV, max_uV);
1357 			return -EINVAL;
1358 		}
1359 
1360 		/* use regulator's subset of machine constraints */
1361 		if (constraints->min_uV < min_uV) {
1362 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 				 constraints->min_uV, min_uV);
1364 			constraints->min_uV = min_uV;
1365 		}
1366 		if (constraints->max_uV > max_uV) {
1367 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 				 constraints->max_uV, max_uV);
1369 			constraints->max_uV = max_uV;
1370 		}
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 	struct regulation_constraints *constraints)
1378 {
1379 	const struct regulator_ops *ops = rdev->desc->ops;
1380 	int ret;
1381 
1382 	if (!constraints->min_uA && !constraints->max_uA)
1383 		return 0;
1384 
1385 	if (constraints->min_uA > constraints->max_uA) {
1386 		rdev_err(rdev, "Invalid current constraints\n");
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (!ops->set_current_limit || !ops->get_current_limit) {
1391 		rdev_warn(rdev, "Operation of current configuration missing\n");
1392 		return 0;
1393 	}
1394 
1395 	/* Set regulator current in constraints range */
1396 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 			constraints->max_uA);
1398 	if (ret < 0) {
1399 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 		return ret;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407 
1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 			   int (*set)(struct regulator_dev *, int, int, bool),
1410 			   int limit, int severity)
1411 {
1412 	bool enable;
1413 
1414 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 		enable = false;
1416 		limit = 0;
1417 	} else {
1418 		enable = true;
1419 	}
1420 
1421 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 		limit = 0;
1423 
1424 	return set(rdev, limit, severity, enable);
1425 }
1426 
1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 			int (*set)(struct regulator_dev *, int, int, bool),
1429 			struct notification_limit *limits)
1430 {
1431 	int ret = 0;
1432 
1433 	if (!set)
1434 		return -EOPNOTSUPP;
1435 
1436 	if (limits->prot)
1437 		ret = notif_set_limit(rdev, set, limits->prot,
1438 				      REGULATOR_SEVERITY_PROT);
1439 	if (ret)
1440 		return ret;
1441 
1442 	if (limits->err)
1443 		ret = notif_set_limit(rdev, set, limits->err,
1444 				      REGULATOR_SEVERITY_ERR);
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (limits->warn)
1449 		ret = notif_set_limit(rdev, set, limits->warn,
1450 				      REGULATOR_SEVERITY_WARN);
1451 
1452 	return ret;
1453 }
1454 /**
1455  * set_machine_constraints - sets regulator constraints
1456  * @rdev: regulator source
1457  *
1458  * Allows platform initialisation code to define and constrain
1459  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1460  * Constraints *must* be set by platform code in order for some
1461  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462  * set_mode.
1463  */
1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 	int ret = 0;
1467 	const struct regulator_ops *ops = rdev->desc->ops;
1468 
1469 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 	if (ret != 0)
1471 		return ret;
1472 
1473 	ret = machine_constraints_current(rdev, rdev->constraints);
1474 	if (ret != 0)
1475 		return ret;
1476 
1477 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 		ret = ops->set_input_current_limit(rdev,
1479 						   rdev->constraints->ilim_uA);
1480 		if (ret < 0) {
1481 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 			return ret;
1483 		}
1484 	}
1485 
1486 	/* do we need to setup our suspend state */
1487 	if (rdev->constraints->initial_state) {
1488 		ret = suspend_set_initial_state(rdev);
1489 		if (ret < 0) {
1490 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 			return ret;
1492 		}
1493 	}
1494 
1495 	if (rdev->constraints->initial_mode) {
1496 		if (!ops->set_mode) {
1497 			rdev_err(rdev, "no set_mode operation\n");
1498 			return -EINVAL;
1499 		}
1500 
1501 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 		if (ret < 0) {
1503 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 			return ret;
1505 		}
1506 	} else if (rdev->constraints->system_load) {
1507 		/*
1508 		 * We'll only apply the initial system load if an
1509 		 * initial mode wasn't specified.
1510 		 */
1511 		drms_uA_update(rdev);
1512 	}
1513 
1514 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 		&& ops->set_ramp_delay) {
1516 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 		if (ret < 0) {
1518 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 			return ret;
1520 		}
1521 	}
1522 
1523 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 		ret = ops->set_pull_down(rdev);
1525 		if (ret < 0) {
1526 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 			return ret;
1528 		}
1529 	}
1530 
1531 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 		ret = ops->set_soft_start(rdev);
1533 		if (ret < 0) {
1534 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 			return ret;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Existing logic does not warn if over_current_protection is given as
1541 	 * a constraint but driver does not support that. I think we should
1542 	 * warn about this type of issues as it is possible someone changes
1543 	 * PMIC on board to another type - and the another PMIC's driver does
1544 	 * not support setting protection. Board composer may happily believe
1545 	 * the DT limits are respected - especially if the new PMIC HW also
1546 	 * supports protection but the driver does not. I won't change the logic
1547 	 * without hearing more experienced opinion on this though.
1548 	 *
1549 	 * If warning is seen as a good idea then we can merge handling the
1550 	 * over-curret protection and detection and get rid of this special
1551 	 * handling.
1552 	 */
1553 	if (rdev->constraints->over_current_protection
1554 		&& ops->set_over_current_protection) {
1555 		int lim = rdev->constraints->over_curr_limits.prot;
1556 
1557 		ret = ops->set_over_current_protection(rdev, lim,
1558 						       REGULATOR_SEVERITY_PROT,
1559 						       true);
1560 		if (ret < 0) {
1561 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 				 ERR_PTR(ret));
1563 			return ret;
1564 		}
1565 	}
1566 
1567 	if (rdev->constraints->over_current_detection)
1568 		ret = handle_notify_limits(rdev,
1569 					   ops->set_over_current_protection,
1570 					   &rdev->constraints->over_curr_limits);
1571 	if (ret) {
1572 		if (ret != -EOPNOTSUPP) {
1573 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 				 ERR_PTR(ret));
1575 			return ret;
1576 		}
1577 		rdev_warn(rdev,
1578 			  "IC does not support requested over-current limits\n");
1579 	}
1580 
1581 	if (rdev->constraints->over_voltage_detection)
1582 		ret = handle_notify_limits(rdev,
1583 					   ops->set_over_voltage_protection,
1584 					   &rdev->constraints->over_voltage_limits);
1585 	if (ret) {
1586 		if (ret != -EOPNOTSUPP) {
1587 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 				 ERR_PTR(ret));
1589 			return ret;
1590 		}
1591 		rdev_warn(rdev,
1592 			  "IC does not support requested over voltage limits\n");
1593 	}
1594 
1595 	if (rdev->constraints->under_voltage_detection)
1596 		ret = handle_notify_limits(rdev,
1597 					   ops->set_under_voltage_protection,
1598 					   &rdev->constraints->under_voltage_limits);
1599 	if (ret) {
1600 		if (ret != -EOPNOTSUPP) {
1601 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 				 ERR_PTR(ret));
1603 			return ret;
1604 		}
1605 		rdev_warn(rdev,
1606 			  "IC does not support requested under voltage limits\n");
1607 	}
1608 
1609 	if (rdev->constraints->over_temp_detection)
1610 		ret = handle_notify_limits(rdev,
1611 					   ops->set_thermal_protection,
1612 					   &rdev->constraints->temp_limits);
1613 	if (ret) {
1614 		if (ret != -EOPNOTSUPP) {
1615 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 				 ERR_PTR(ret));
1617 			return ret;
1618 		}
1619 		rdev_warn(rdev,
1620 			  "IC does not support requested temperature limits\n");
1621 	}
1622 
1623 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 		bool ad_state = (rdev->constraints->active_discharge ==
1625 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626 
1627 		ret = ops->set_active_discharge(rdev, ad_state);
1628 		if (ret < 0) {
1629 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 			return ret;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * If there is no mechanism for controlling the regulator then
1636 	 * flag it as always_on so we don't end up duplicating checks
1637 	 * for this so much.  Note that we could control the state of
1638 	 * a supply to control the output on a regulator that has no
1639 	 * direct control.
1640 	 */
1641 	if (!rdev->ena_pin && !ops->enable) {
1642 		if (rdev->supply_name && !rdev->supply)
1643 			return -EPROBE_DEFER;
1644 
1645 		if (rdev->supply)
1646 			rdev->constraints->always_on =
1647 				rdev->supply->rdev->constraints->always_on;
1648 		else
1649 			rdev->constraints->always_on = true;
1650 	}
1651 
1652 	/* If the constraints say the regulator should be on at this point
1653 	 * and we have control then make sure it is enabled.
1654 	 */
1655 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 		/* If we want to enable this regulator, make sure that we know
1657 		 * the supplying regulator.
1658 		 */
1659 		if (rdev->supply_name && !rdev->supply)
1660 			return -EPROBE_DEFER;
1661 
1662 		/* If supplying regulator has already been enabled,
1663 		 * it's not intended to have use_count increment
1664 		 * when rdev is only boot-on.
1665 		 */
1666 		if (rdev->supply &&
1667 		    (rdev->constraints->always_on ||
1668 		     !regulator_is_enabled(rdev->supply))) {
1669 			ret = regulator_enable(rdev->supply);
1670 			if (ret < 0) {
1671 				_regulator_put(rdev->supply);
1672 				rdev->supply = NULL;
1673 				return ret;
1674 			}
1675 		}
1676 
1677 		ret = _regulator_do_enable(rdev);
1678 		if (ret < 0 && ret != -EINVAL) {
1679 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 			return ret;
1681 		}
1682 
1683 		if (rdev->constraints->always_on)
1684 			rdev->use_count++;
1685 	} else if (rdev->desc->off_on_delay) {
1686 		rdev->last_off = ktime_get();
1687 	}
1688 
1689 	print_constraints(rdev);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * set_supply - set regulator supply regulator
1695  * @rdev: regulator (locked)
1696  * @supply_rdev: supply regulator (locked))
1697  *
1698  * Called by platform initialisation code to set the supply regulator for this
1699  * regulator. This ensures that a regulators supply will also be enabled by the
1700  * core if it's child is enabled.
1701  */
1702 static int set_supply(struct regulator_dev *rdev,
1703 		      struct regulator_dev *supply_rdev)
1704 {
1705 	int err;
1706 
1707 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708 
1709 	if (!try_module_get(supply_rdev->owner))
1710 		return -ENODEV;
1711 
1712 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 	if (rdev->supply == NULL) {
1714 		module_put(supply_rdev->owner);
1715 		err = -ENOMEM;
1716 		return err;
1717 	}
1718 	supply_rdev->open_count++;
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725  * @rdev:         regulator source
1726  * @consumer_dev_name: dev_name() string for device supply applies to
1727  * @supply:       symbolic name for supply
1728  *
1729  * Allows platform initialisation code to map physical regulator
1730  * sources to symbolic names for supplies for use by devices.  Devices
1731  * should use these symbolic names to request regulators, avoiding the
1732  * need to provide board-specific regulator names as platform data.
1733  */
1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 				      const char *consumer_dev_name,
1736 				      const char *supply)
1737 {
1738 	struct regulator_map *node, *new_node;
1739 	int has_dev;
1740 
1741 	if (supply == NULL)
1742 		return -EINVAL;
1743 
1744 	if (consumer_dev_name != NULL)
1745 		has_dev = 1;
1746 	else
1747 		has_dev = 0;
1748 
1749 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 	if (new_node == NULL)
1751 		return -ENOMEM;
1752 
1753 	new_node->regulator = rdev;
1754 	new_node->supply = supply;
1755 
1756 	if (has_dev) {
1757 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 		if (new_node->dev_name == NULL) {
1759 			kfree(new_node);
1760 			return -ENOMEM;
1761 		}
1762 	}
1763 
1764 	mutex_lock(&regulator_list_mutex);
1765 	list_for_each_entry(node, &regulator_map_list, list) {
1766 		if (node->dev_name && consumer_dev_name) {
1767 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 				continue;
1769 		} else if (node->dev_name || consumer_dev_name) {
1770 			continue;
1771 		}
1772 
1773 		if (strcmp(node->supply, supply) != 0)
1774 			continue;
1775 
1776 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 			 consumer_dev_name,
1778 			 dev_name(&node->regulator->dev),
1779 			 node->regulator->desc->name,
1780 			 supply,
1781 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 		goto fail;
1783 	}
1784 
1785 	list_add(&new_node->list, &regulator_map_list);
1786 	mutex_unlock(&regulator_list_mutex);
1787 
1788 	return 0;
1789 
1790 fail:
1791 	mutex_unlock(&regulator_list_mutex);
1792 	kfree(new_node->dev_name);
1793 	kfree(new_node);
1794 	return -EBUSY;
1795 }
1796 
1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 	struct regulator_map *node, *n;
1800 
1801 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1802 		if (rdev == node->regulator) {
1803 			list_del(&node->list);
1804 			kfree(node->dev_name);
1805 			kfree(node);
1806 		}
1807 	}
1808 }
1809 
1810 #ifdef CONFIG_DEBUG_FS
1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 					  char __user *user_buf,
1813 					  size_t count, loff_t *ppos)
1814 {
1815 	const struct regulator *regulator = file->private_data;
1816 	const struct regulation_constraints *c = regulator->rdev->constraints;
1817 	char *buf;
1818 	ssize_t ret;
1819 
1820 	if (!c)
1821 		return 0;
1822 
1823 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 	if (!buf)
1825 		return -ENOMEM;
1826 
1827 	ret = snprintf(buf, PAGE_SIZE,
1828 			"always_on: %u\n"
1829 			"boot_on: %u\n"
1830 			"apply_uV: %u\n"
1831 			"ramp_disable: %u\n"
1832 			"soft_start: %u\n"
1833 			"pull_down: %u\n"
1834 			"over_current_protection: %u\n",
1835 			c->always_on,
1836 			c->boot_on,
1837 			c->apply_uV,
1838 			c->ramp_disable,
1839 			c->soft_start,
1840 			c->pull_down,
1841 			c->over_current_protection);
1842 
1843 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 	kfree(buf);
1845 
1846 	return ret;
1847 }
1848 
1849 #endif
1850 
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 	.open = simple_open,
1854 	.read = constraint_flags_read_file,
1855 	.llseek = default_llseek,
1856 #endif
1857 };
1858 
1859 #define REG_STR_SIZE	64
1860 
1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 					  struct device *dev,
1863 					  const char *supply_name)
1864 {
1865 	struct regulator *regulator;
1866 	int err = 0;
1867 
1868 	lockdep_assert_held_once(&rdev->mutex.base);
1869 
1870 	if (dev) {
1871 		char buf[REG_STR_SIZE];
1872 		int size;
1873 
1874 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 				dev->kobj.name, supply_name);
1876 		if (size >= REG_STR_SIZE)
1877 			return NULL;
1878 
1879 		supply_name = kstrdup(buf, GFP_KERNEL);
1880 		if (supply_name == NULL)
1881 			return NULL;
1882 	} else {
1883 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 		if (supply_name == NULL)
1885 			return NULL;
1886 	}
1887 
1888 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 	if (regulator == NULL) {
1890 		kfree_const(supply_name);
1891 		return NULL;
1892 	}
1893 
1894 	regulator->rdev = rdev;
1895 	regulator->supply_name = supply_name;
1896 
1897 	list_add(&regulator->list, &rdev->consumer_list);
1898 
1899 	if (dev) {
1900 		regulator->dev = dev;
1901 
1902 		/* Add a link to the device sysfs entry */
1903 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 					       supply_name);
1905 		if (err) {
1906 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 				  dev->kobj.name, ERR_PTR(err));
1908 			/* non-fatal */
1909 		}
1910 	}
1911 
1912 	if (err != -EEXIST)
1913 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 	if (!regulator->debugfs) {
1915 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 	} else {
1917 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1918 				   &regulator->uA_load);
1919 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1920 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1921 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1922 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1923 		debugfs_create_file("constraint_flags", 0444,
1924 				    regulator->debugfs, regulator,
1925 				    &constraint_flags_fops);
1926 	}
1927 
1928 	/*
1929 	 * Check now if the regulator is an always on regulator - if
1930 	 * it is then we don't need to do nearly so much work for
1931 	 * enable/disable calls.
1932 	 */
1933 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 	    _regulator_is_enabled(rdev))
1935 		regulator->always_on = true;
1936 
1937 	return regulator;
1938 }
1939 
1940 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941 {
1942 	if (rdev->constraints && rdev->constraints->enable_time)
1943 		return rdev->constraints->enable_time;
1944 	if (rdev->desc->ops->enable_time)
1945 		return rdev->desc->ops->enable_time(rdev);
1946 	return rdev->desc->enable_time;
1947 }
1948 
1949 static struct regulator_supply_alias *regulator_find_supply_alias(
1950 		struct device *dev, const char *supply)
1951 {
1952 	struct regulator_supply_alias *map;
1953 
1954 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 			return map;
1957 
1958 	return NULL;
1959 }
1960 
1961 static void regulator_supply_alias(struct device **dev, const char **supply)
1962 {
1963 	struct regulator_supply_alias *map;
1964 
1965 	map = regulator_find_supply_alias(*dev, *supply);
1966 	if (map) {
1967 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 				*supply, map->alias_supply,
1969 				dev_name(map->alias_dev));
1970 		*dev = map->alias_dev;
1971 		*supply = map->alias_supply;
1972 	}
1973 }
1974 
1975 static int regulator_match(struct device *dev, const void *data)
1976 {
1977 	struct regulator_dev *r = dev_to_rdev(dev);
1978 
1979 	return strcmp(rdev_get_name(r), data) == 0;
1980 }
1981 
1982 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983 {
1984 	struct device *dev;
1985 
1986 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987 
1988 	return dev ? dev_to_rdev(dev) : NULL;
1989 }
1990 
1991 /**
1992  * regulator_dev_lookup - lookup a regulator device.
1993  * @dev: device for regulator "consumer".
1994  * @supply: Supply name or regulator ID.
1995  *
1996  * If successful, returns a struct regulator_dev that corresponds to the name
1997  * @supply and with the embedded struct device refcount incremented by one.
1998  * The refcount must be dropped by calling put_device().
1999  * On failure one of the following ERR-PTR-encoded values is returned:
2000  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001  * in the future.
2002  */
2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 						  const char *supply)
2005 {
2006 	struct regulator_dev *r = NULL;
2007 	struct device_node *node;
2008 	struct regulator_map *map;
2009 	const char *devname = NULL;
2010 
2011 	regulator_supply_alias(&dev, &supply);
2012 
2013 	/* first do a dt based lookup */
2014 	if (dev && dev->of_node) {
2015 		node = of_get_regulator(dev, supply);
2016 		if (node) {
2017 			r = of_find_regulator_by_node(node);
2018 			of_node_put(node);
2019 			if (r)
2020 				return r;
2021 
2022 			/*
2023 			 * We have a node, but there is no device.
2024 			 * assume it has not registered yet.
2025 			 */
2026 			return ERR_PTR(-EPROBE_DEFER);
2027 		}
2028 	}
2029 
2030 	/* if not found, try doing it non-dt way */
2031 	if (dev)
2032 		devname = dev_name(dev);
2033 
2034 	mutex_lock(&regulator_list_mutex);
2035 	list_for_each_entry(map, &regulator_map_list, list) {
2036 		/* If the mapping has a device set up it must match */
2037 		if (map->dev_name &&
2038 		    (!devname || strcmp(map->dev_name, devname)))
2039 			continue;
2040 
2041 		if (strcmp(map->supply, supply) == 0 &&
2042 		    get_device(&map->regulator->dev)) {
2043 			r = map->regulator;
2044 			break;
2045 		}
2046 	}
2047 	mutex_unlock(&regulator_list_mutex);
2048 
2049 	if (r)
2050 		return r;
2051 
2052 	r = regulator_lookup_by_name(supply);
2053 	if (r)
2054 		return r;
2055 
2056 	return ERR_PTR(-ENODEV);
2057 }
2058 
2059 static int regulator_resolve_supply(struct regulator_dev *rdev)
2060 {
2061 	struct regulator_dev *r;
2062 	struct device *dev = rdev->dev.parent;
2063 	struct ww_acquire_ctx ww_ctx;
2064 	int ret = 0;
2065 
2066 	/* No supply to resolve? */
2067 	if (!rdev->supply_name)
2068 		return 0;
2069 
2070 	/* Supply already resolved? (fast-path without locking contention) */
2071 	if (rdev->supply)
2072 		return 0;
2073 
2074 	r = regulator_dev_lookup(dev, rdev->supply_name);
2075 	if (IS_ERR(r)) {
2076 		ret = PTR_ERR(r);
2077 
2078 		/* Did the lookup explicitly defer for us? */
2079 		if (ret == -EPROBE_DEFER)
2080 			goto out;
2081 
2082 		if (have_full_constraints()) {
2083 			r = dummy_regulator_rdev;
2084 			get_device(&r->dev);
2085 		} else {
2086 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 				rdev->supply_name, rdev->desc->name);
2088 			ret = -EPROBE_DEFER;
2089 			goto out;
2090 		}
2091 	}
2092 
2093 	if (r == rdev) {
2094 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 			rdev->desc->name, rdev->supply_name);
2096 		if (!have_full_constraints()) {
2097 			ret = -EINVAL;
2098 			goto out;
2099 		}
2100 		r = dummy_regulator_rdev;
2101 		get_device(&r->dev);
2102 	}
2103 
2104 	/*
2105 	 * If the supply's parent device is not the same as the
2106 	 * regulator's parent device, then ensure the parent device
2107 	 * is bound before we resolve the supply, in case the parent
2108 	 * device get probe deferred and unregisters the supply.
2109 	 */
2110 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 		if (!device_is_bound(r->dev.parent)) {
2112 			put_device(&r->dev);
2113 			ret = -EPROBE_DEFER;
2114 			goto out;
2115 		}
2116 	}
2117 
2118 	/* Recursively resolve the supply of the supply */
2119 	ret = regulator_resolve_supply(r);
2120 	if (ret < 0) {
2121 		put_device(&r->dev);
2122 		goto out;
2123 	}
2124 
2125 	/*
2126 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 	 * between rdev->supply null check and setting rdev->supply in
2128 	 * set_supply() from concurrent tasks.
2129 	 */
2130 	regulator_lock_two(rdev, r, &ww_ctx);
2131 
2132 	/* Supply just resolved by a concurrent task? */
2133 	if (rdev->supply) {
2134 		regulator_unlock_two(rdev, r, &ww_ctx);
2135 		put_device(&r->dev);
2136 		goto out;
2137 	}
2138 
2139 	ret = set_supply(rdev, r);
2140 	if (ret < 0) {
2141 		regulator_unlock_two(rdev, r, &ww_ctx);
2142 		put_device(&r->dev);
2143 		goto out;
2144 	}
2145 
2146 	regulator_unlock_two(rdev, r, &ww_ctx);
2147 
2148 	/*
2149 	 * In set_machine_constraints() we may have turned this regulator on
2150 	 * but we couldn't propagate to the supply if it hadn't been resolved
2151 	 * yet.  Do it now.
2152 	 */
2153 	if (rdev->use_count) {
2154 		ret = regulator_enable(rdev->supply);
2155 		if (ret < 0) {
2156 			_regulator_put(rdev->supply);
2157 			rdev->supply = NULL;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 out:
2163 	return ret;
2164 }
2165 
2166 /* Internal regulator request function */
2167 struct regulator *_regulator_get(struct device *dev, const char *id,
2168 				 enum regulator_get_type get_type)
2169 {
2170 	struct regulator_dev *rdev;
2171 	struct regulator *regulator;
2172 	struct device_link *link;
2173 	int ret;
2174 
2175 	if (get_type >= MAX_GET_TYPE) {
2176 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 		return ERR_PTR(-EINVAL);
2178 	}
2179 
2180 	if (id == NULL) {
2181 		pr_err("get() with no identifier\n");
2182 		return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	rdev = regulator_dev_lookup(dev, id);
2186 	if (IS_ERR(rdev)) {
2187 		ret = PTR_ERR(rdev);
2188 
2189 		/*
2190 		 * If regulator_dev_lookup() fails with error other
2191 		 * than -ENODEV our job here is done, we simply return it.
2192 		 */
2193 		if (ret != -ENODEV)
2194 			return ERR_PTR(ret);
2195 
2196 		if (!have_full_constraints()) {
2197 			dev_warn(dev,
2198 				 "incomplete constraints, dummy supplies not allowed\n");
2199 			return ERR_PTR(-ENODEV);
2200 		}
2201 
2202 		switch (get_type) {
2203 		case NORMAL_GET:
2204 			/*
2205 			 * Assume that a regulator is physically present and
2206 			 * enabled, even if it isn't hooked up, and just
2207 			 * provide a dummy.
2208 			 */
2209 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 			rdev = dummy_regulator_rdev;
2211 			get_device(&rdev->dev);
2212 			break;
2213 
2214 		case EXCLUSIVE_GET:
2215 			dev_warn(dev,
2216 				 "dummy supplies not allowed for exclusive requests\n");
2217 			fallthrough;
2218 
2219 		default:
2220 			return ERR_PTR(-ENODEV);
2221 		}
2222 	}
2223 
2224 	if (rdev->exclusive) {
2225 		regulator = ERR_PTR(-EPERM);
2226 		put_device(&rdev->dev);
2227 		return regulator;
2228 	}
2229 
2230 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 		regulator = ERR_PTR(-EBUSY);
2232 		put_device(&rdev->dev);
2233 		return regulator;
2234 	}
2235 
2236 	mutex_lock(&regulator_list_mutex);
2237 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 	mutex_unlock(&regulator_list_mutex);
2239 
2240 	if (ret != 0) {
2241 		regulator = ERR_PTR(-EPROBE_DEFER);
2242 		put_device(&rdev->dev);
2243 		return regulator;
2244 	}
2245 
2246 	ret = regulator_resolve_supply(rdev);
2247 	if (ret < 0) {
2248 		regulator = ERR_PTR(ret);
2249 		put_device(&rdev->dev);
2250 		return regulator;
2251 	}
2252 
2253 	if (!try_module_get(rdev->owner)) {
2254 		regulator = ERR_PTR(-EPROBE_DEFER);
2255 		put_device(&rdev->dev);
2256 		return regulator;
2257 	}
2258 
2259 	regulator_lock(rdev);
2260 	regulator = create_regulator(rdev, dev, id);
2261 	regulator_unlock(rdev);
2262 	if (regulator == NULL) {
2263 		regulator = ERR_PTR(-ENOMEM);
2264 		module_put(rdev->owner);
2265 		put_device(&rdev->dev);
2266 		return regulator;
2267 	}
2268 
2269 	rdev->open_count++;
2270 	if (get_type == EXCLUSIVE_GET) {
2271 		rdev->exclusive = 1;
2272 
2273 		ret = _regulator_is_enabled(rdev);
2274 		if (ret > 0) {
2275 			rdev->use_count = 1;
2276 			regulator->enable_count = 1;
2277 		} else {
2278 			rdev->use_count = 0;
2279 			regulator->enable_count = 0;
2280 		}
2281 	}
2282 
2283 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 	if (!IS_ERR_OR_NULL(link))
2285 		regulator->device_link = true;
2286 
2287 	return regulator;
2288 }
2289 
2290 /**
2291  * regulator_get - lookup and obtain a reference to a regulator.
2292  * @dev: device for regulator "consumer"
2293  * @id: Supply name or regulator ID.
2294  *
2295  * Returns a struct regulator corresponding to the regulator producer,
2296  * or IS_ERR() condition containing errno.
2297  *
2298  * Use of supply names configured via set_consumer_device_supply() is
2299  * strongly encouraged.  It is recommended that the supply name used
2300  * should match the name used for the supply and/or the relevant
2301  * device pins in the datasheet.
2302  */
2303 struct regulator *regulator_get(struct device *dev, const char *id)
2304 {
2305 	return _regulator_get(dev, id, NORMAL_GET);
2306 }
2307 EXPORT_SYMBOL_GPL(regulator_get);
2308 
2309 /**
2310  * regulator_get_exclusive - obtain exclusive access to a regulator.
2311  * @dev: device for regulator "consumer"
2312  * @id: Supply name or regulator ID.
2313  *
2314  * Returns a struct regulator corresponding to the regulator producer,
2315  * or IS_ERR() condition containing errno.  Other consumers will be
2316  * unable to obtain this regulator while this reference is held and the
2317  * use count for the regulator will be initialised to reflect the current
2318  * state of the regulator.
2319  *
2320  * This is intended for use by consumers which cannot tolerate shared
2321  * use of the regulator such as those which need to force the
2322  * regulator off for correct operation of the hardware they are
2323  * controlling.
2324  *
2325  * Use of supply names configured via set_consumer_device_supply() is
2326  * strongly encouraged.  It is recommended that the supply name used
2327  * should match the name used for the supply and/or the relevant
2328  * device pins in the datasheet.
2329  */
2330 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331 {
2332 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333 }
2334 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335 
2336 /**
2337  * regulator_get_optional - obtain optional access to a regulator.
2338  * @dev: device for regulator "consumer"
2339  * @id: Supply name or regulator ID.
2340  *
2341  * Returns a struct regulator corresponding to the regulator producer,
2342  * or IS_ERR() condition containing errno.
2343  *
2344  * This is intended for use by consumers for devices which can have
2345  * some supplies unconnected in normal use, such as some MMC devices.
2346  * It can allow the regulator core to provide stub supplies for other
2347  * supplies requested using normal regulator_get() calls without
2348  * disrupting the operation of drivers that can handle absent
2349  * supplies.
2350  *
2351  * Use of supply names configured via set_consumer_device_supply() is
2352  * strongly encouraged.  It is recommended that the supply name used
2353  * should match the name used for the supply and/or the relevant
2354  * device pins in the datasheet.
2355  */
2356 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357 {
2358 	return _regulator_get(dev, id, OPTIONAL_GET);
2359 }
2360 EXPORT_SYMBOL_GPL(regulator_get_optional);
2361 
2362 static void destroy_regulator(struct regulator *regulator)
2363 {
2364 	struct regulator_dev *rdev = regulator->rdev;
2365 
2366 	debugfs_remove_recursive(regulator->debugfs);
2367 
2368 	if (regulator->dev) {
2369 		if (regulator->device_link)
2370 			device_link_remove(regulator->dev, &rdev->dev);
2371 
2372 		/* remove any sysfs entries */
2373 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 	}
2375 
2376 	regulator_lock(rdev);
2377 	list_del(&regulator->list);
2378 
2379 	rdev->open_count--;
2380 	rdev->exclusive = 0;
2381 	regulator_unlock(rdev);
2382 
2383 	kfree_const(regulator->supply_name);
2384 	kfree(regulator);
2385 }
2386 
2387 /* regulator_list_mutex lock held by regulator_put() */
2388 static void _regulator_put(struct regulator *regulator)
2389 {
2390 	struct regulator_dev *rdev;
2391 
2392 	if (IS_ERR_OR_NULL(regulator))
2393 		return;
2394 
2395 	lockdep_assert_held_once(&regulator_list_mutex);
2396 
2397 	/* Docs say you must disable before calling regulator_put() */
2398 	WARN_ON(regulator->enable_count);
2399 
2400 	rdev = regulator->rdev;
2401 
2402 	destroy_regulator(regulator);
2403 
2404 	module_put(rdev->owner);
2405 	put_device(&rdev->dev);
2406 }
2407 
2408 /**
2409  * regulator_put - "free" the regulator source
2410  * @regulator: regulator source
2411  *
2412  * Note: drivers must ensure that all regulator_enable calls made on this
2413  * regulator source are balanced by regulator_disable calls prior to calling
2414  * this function.
2415  */
2416 void regulator_put(struct regulator *regulator)
2417 {
2418 	mutex_lock(&regulator_list_mutex);
2419 	_regulator_put(regulator);
2420 	mutex_unlock(&regulator_list_mutex);
2421 }
2422 EXPORT_SYMBOL_GPL(regulator_put);
2423 
2424 /**
2425  * regulator_register_supply_alias - Provide device alias for supply lookup
2426  *
2427  * @dev: device that will be given as the regulator "consumer"
2428  * @id: Supply name or regulator ID
2429  * @alias_dev: device that should be used to lookup the supply
2430  * @alias_id: Supply name or regulator ID that should be used to lookup the
2431  * supply
2432  *
2433  * All lookups for id on dev will instead be conducted for alias_id on
2434  * alias_dev.
2435  */
2436 int regulator_register_supply_alias(struct device *dev, const char *id,
2437 				    struct device *alias_dev,
2438 				    const char *alias_id)
2439 {
2440 	struct regulator_supply_alias *map;
2441 
2442 	map = regulator_find_supply_alias(dev, id);
2443 	if (map)
2444 		return -EEXIST;
2445 
2446 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 	if (!map)
2448 		return -ENOMEM;
2449 
2450 	map->src_dev = dev;
2451 	map->src_supply = id;
2452 	map->alias_dev = alias_dev;
2453 	map->alias_supply = alias_id;
2454 
2455 	list_add(&map->list, &regulator_supply_alias_list);
2456 
2457 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459 
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463 
2464 /**
2465  * regulator_unregister_supply_alias - Remove device alias
2466  *
2467  * @dev: device that will be given as the regulator "consumer"
2468  * @id: Supply name or regulator ID
2469  *
2470  * Remove a lookup alias if one exists for id on dev.
2471  */
2472 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473 {
2474 	struct regulator_supply_alias *map;
2475 
2476 	map = regulator_find_supply_alias(dev, id);
2477 	if (map) {
2478 		list_del(&map->list);
2479 		kfree(map);
2480 	}
2481 }
2482 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483 
2484 /**
2485  * regulator_bulk_register_supply_alias - register multiple aliases
2486  *
2487  * @dev: device that will be given as the regulator "consumer"
2488  * @id: List of supply names or regulator IDs
2489  * @alias_dev: device that should be used to lookup the supply
2490  * @alias_id: List of supply names or regulator IDs that should be used to
2491  * lookup the supply
2492  * @num_id: Number of aliases to register
2493  *
2494  * @return 0 on success, an errno on failure.
2495  *
2496  * This helper function allows drivers to register several supply
2497  * aliases in one operation.  If any of the aliases cannot be
2498  * registered any aliases that were registered will be removed
2499  * before returning to the caller.
2500  */
2501 int regulator_bulk_register_supply_alias(struct device *dev,
2502 					 const char *const *id,
2503 					 struct device *alias_dev,
2504 					 const char *const *alias_id,
2505 					 int num_id)
2506 {
2507 	int i;
2508 	int ret;
2509 
2510 	for (i = 0; i < num_id; ++i) {
2511 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 						      alias_id[i]);
2513 		if (ret < 0)
2514 			goto err;
2515 	}
2516 
2517 	return 0;
2518 
2519 err:
2520 	dev_err(dev,
2521 		"Failed to create supply alias %s,%s -> %s,%s\n",
2522 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523 
2524 	while (--i >= 0)
2525 		regulator_unregister_supply_alias(dev, id[i]);
2526 
2527 	return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530 
2531 /**
2532  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533  *
2534  * @dev: device that will be given as the regulator "consumer"
2535  * @id: List of supply names or regulator IDs
2536  * @num_id: Number of aliases to unregister
2537  *
2538  * This helper function allows drivers to unregister several supply
2539  * aliases in one operation.
2540  */
2541 void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 					    const char *const *id,
2543 					    int num_id)
2544 {
2545 	int i;
2546 
2547 	for (i = 0; i < num_id; ++i)
2548 		regulator_unregister_supply_alias(dev, id[i]);
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551 
2552 
2553 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 				const struct regulator_config *config)
2556 {
2557 	struct regulator_enable_gpio *pin, *new_pin;
2558 	struct gpio_desc *gpiod;
2559 
2560 	gpiod = config->ena_gpiod;
2561 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562 
2563 	mutex_lock(&regulator_list_mutex);
2564 
2565 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566 		if (pin->gpiod == gpiod) {
2567 			rdev_dbg(rdev, "GPIO is already used\n");
2568 			goto update_ena_gpio_to_rdev;
2569 		}
2570 	}
2571 
2572 	if (new_pin == NULL) {
2573 		mutex_unlock(&regulator_list_mutex);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	pin = new_pin;
2578 	new_pin = NULL;
2579 
2580 	pin->gpiod = gpiod;
2581 	list_add(&pin->list, &regulator_ena_gpio_list);
2582 
2583 update_ena_gpio_to_rdev:
2584 	pin->request_count++;
2585 	rdev->ena_pin = pin;
2586 
2587 	mutex_unlock(&regulator_list_mutex);
2588 	kfree(new_pin);
2589 
2590 	return 0;
2591 }
2592 
2593 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594 {
2595 	struct regulator_enable_gpio *pin, *n;
2596 
2597 	if (!rdev->ena_pin)
2598 		return;
2599 
2600 	/* Free the GPIO only in case of no use */
2601 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602 		if (pin != rdev->ena_pin)
2603 			continue;
2604 
2605 		if (--pin->request_count)
2606 			break;
2607 
2608 		gpiod_put(pin->gpiod);
2609 		list_del(&pin->list);
2610 		kfree(pin);
2611 		break;
2612 	}
2613 
2614 	rdev->ena_pin = NULL;
2615 }
2616 
2617 /**
2618  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619  * @rdev: regulator_dev structure
2620  * @enable: enable GPIO at initial use?
2621  *
2622  * GPIO is enabled in case of initial use. (enable_count is 0)
2623  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624  */
2625 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626 {
2627 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628 
2629 	if (!pin)
2630 		return -EINVAL;
2631 
2632 	if (enable) {
2633 		/* Enable GPIO at initial use */
2634 		if (pin->enable_count == 0)
2635 			gpiod_set_value_cansleep(pin->gpiod, 1);
2636 
2637 		pin->enable_count++;
2638 	} else {
2639 		if (pin->enable_count > 1) {
2640 			pin->enable_count--;
2641 			return 0;
2642 		}
2643 
2644 		/* Disable GPIO if not used */
2645 		if (pin->enable_count <= 1) {
2646 			gpiod_set_value_cansleep(pin->gpiod, 0);
2647 			pin->enable_count = 0;
2648 		}
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * _regulator_delay_helper - a delay helper function
2656  * @delay: time to delay in microseconds
2657  *
2658  * Delay for the requested amount of time as per the guidelines in:
2659  *
2660  *     Documentation/timers/timers-howto.rst
2661  *
2662  * The assumption here is that these regulator operations will never used in
2663  * atomic context and therefore sleeping functions can be used.
2664  */
2665 static void _regulator_delay_helper(unsigned int delay)
2666 {
2667 	unsigned int ms = delay / 1000;
2668 	unsigned int us = delay % 1000;
2669 
2670 	if (ms > 0) {
2671 		/*
2672 		 * For small enough values, handle super-millisecond
2673 		 * delays in the usleep_range() call below.
2674 		 */
2675 		if (ms < 20)
2676 			us += ms * 1000;
2677 		else
2678 			msleep(ms);
2679 	}
2680 
2681 	/*
2682 	 * Give the scheduler some room to coalesce with any other
2683 	 * wakeup sources. For delays shorter than 10 us, don't even
2684 	 * bother setting up high-resolution timers and just busy-
2685 	 * loop.
2686 	 */
2687 	if (us >= 10)
2688 		usleep_range(us, us + 100);
2689 	else
2690 		udelay(us);
2691 }
2692 
2693 /**
2694  * _regulator_check_status_enabled
2695  *
2696  * A helper function to check if the regulator status can be interpreted
2697  * as 'regulator is enabled'.
2698  * @rdev: the regulator device to check
2699  *
2700  * Return:
2701  * * 1			- if status shows regulator is in enabled state
2702  * * 0			- if not enabled state
2703  * * Error Value	- as received from ops->get_status()
2704  */
2705 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706 {
2707 	int ret = rdev->desc->ops->get_status(rdev);
2708 
2709 	if (ret < 0) {
2710 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 		return ret;
2712 	}
2713 
2714 	switch (ret) {
2715 	case REGULATOR_STATUS_OFF:
2716 	case REGULATOR_STATUS_ERROR:
2717 	case REGULATOR_STATUS_UNDEFINED:
2718 		return 0;
2719 	default:
2720 		return 1;
2721 	}
2722 }
2723 
2724 static int _regulator_do_enable(struct regulator_dev *rdev)
2725 {
2726 	int ret, delay;
2727 
2728 	/* Query before enabling in case configuration dependent.  */
2729 	ret = _regulator_get_enable_time(rdev);
2730 	if (ret >= 0) {
2731 		delay = ret;
2732 	} else {
2733 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 		delay = 0;
2735 	}
2736 
2737 	trace_regulator_enable(rdev_get_name(rdev));
2738 
2739 	if (rdev->desc->off_on_delay) {
2740 		/* if needed, keep a distance of off_on_delay from last time
2741 		 * this regulator was disabled.
2742 		 */
2743 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745 
2746 		if (remaining > 0)
2747 			_regulator_delay_helper(remaining);
2748 	}
2749 
2750 	if (rdev->ena_pin) {
2751 		if (!rdev->ena_gpio_state) {
2752 			ret = regulator_ena_gpio_ctrl(rdev, true);
2753 			if (ret < 0)
2754 				return ret;
2755 			rdev->ena_gpio_state = 1;
2756 		}
2757 	} else if (rdev->desc->ops->enable) {
2758 		ret = rdev->desc->ops->enable(rdev);
2759 		if (ret < 0)
2760 			return ret;
2761 	} else {
2762 		return -EINVAL;
2763 	}
2764 
2765 	/* Allow the regulator to ramp; it would be useful to extend
2766 	 * this for bulk operations so that the regulators can ramp
2767 	 * together.
2768 	 */
2769 	trace_regulator_enable_delay(rdev_get_name(rdev));
2770 
2771 	/* If poll_enabled_time is set, poll upto the delay calculated
2772 	 * above, delaying poll_enabled_time uS to check if the regulator
2773 	 * actually got enabled.
2774 	 * If the regulator isn't enabled after our delay helper has expired,
2775 	 * return -ETIMEDOUT.
2776 	 */
2777 	if (rdev->desc->poll_enabled_time) {
2778 		int time_remaining = delay;
2779 
2780 		while (time_remaining > 0) {
2781 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782 
2783 			if (rdev->desc->ops->get_status) {
2784 				ret = _regulator_check_status_enabled(rdev);
2785 				if (ret < 0)
2786 					return ret;
2787 				else if (ret)
2788 					break;
2789 			} else if (rdev->desc->ops->is_enabled(rdev))
2790 				break;
2791 
2792 			time_remaining -= rdev->desc->poll_enabled_time;
2793 		}
2794 
2795 		if (time_remaining <= 0) {
2796 			rdev_err(rdev, "Enabled check timed out\n");
2797 			return -ETIMEDOUT;
2798 		}
2799 	} else {
2800 		_regulator_delay_helper(delay);
2801 	}
2802 
2803 	trace_regulator_enable_complete(rdev_get_name(rdev));
2804 
2805 	return 0;
2806 }
2807 
2808 /**
2809  * _regulator_handle_consumer_enable - handle that a consumer enabled
2810  * @regulator: regulator source
2811  *
2812  * Some things on a regulator consumer (like the contribution towards total
2813  * load on the regulator) only have an effect when the consumer wants the
2814  * regulator enabled.  Explained in example with two consumers of the same
2815  * regulator:
2816  *   consumer A: set_load(100);       => total load = 0
2817  *   consumer A: regulator_enable();  => total load = 100
2818  *   consumer B: set_load(1000);      => total load = 100
2819  *   consumer B: regulator_enable();  => total load = 1100
2820  *   consumer A: regulator_disable(); => total_load = 1000
2821  *
2822  * This function (together with _regulator_handle_consumer_disable) is
2823  * responsible for keeping track of the refcount for a given regulator consumer
2824  * and applying / unapplying these things.
2825  *
2826  * Returns 0 upon no error; -error upon error.
2827  */
2828 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829 {
2830 	int ret;
2831 	struct regulator_dev *rdev = regulator->rdev;
2832 
2833 	lockdep_assert_held_once(&rdev->mutex.base);
2834 
2835 	regulator->enable_count++;
2836 	if (regulator->uA_load && regulator->enable_count == 1) {
2837 		ret = drms_uA_update(rdev);
2838 		if (ret)
2839 			regulator->enable_count--;
2840 		return ret;
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 /**
2847  * _regulator_handle_consumer_disable - handle that a consumer disabled
2848  * @regulator: regulator source
2849  *
2850  * The opposite of _regulator_handle_consumer_enable().
2851  *
2852  * Returns 0 upon no error; -error upon error.
2853  */
2854 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855 {
2856 	struct regulator_dev *rdev = regulator->rdev;
2857 
2858 	lockdep_assert_held_once(&rdev->mutex.base);
2859 
2860 	if (!regulator->enable_count) {
2861 		rdev_err(rdev, "Underflow of regulator enable count\n");
2862 		return -EINVAL;
2863 	}
2864 
2865 	regulator->enable_count--;
2866 	if (regulator->uA_load && regulator->enable_count == 0)
2867 		return drms_uA_update(rdev);
2868 
2869 	return 0;
2870 }
2871 
2872 /* locks held by regulator_enable() */
2873 static int _regulator_enable(struct regulator *regulator)
2874 {
2875 	struct regulator_dev *rdev = regulator->rdev;
2876 	int ret;
2877 
2878 	lockdep_assert_held_once(&rdev->mutex.base);
2879 
2880 	if (rdev->use_count == 0 && rdev->supply) {
2881 		ret = _regulator_enable(rdev->supply);
2882 		if (ret < 0)
2883 			return ret;
2884 	}
2885 
2886 	/* balance only if there are regulators coupled */
2887 	if (rdev->coupling_desc.n_coupled > 1) {
2888 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 		if (ret < 0)
2890 			goto err_disable_supply;
2891 	}
2892 
2893 	ret = _regulator_handle_consumer_enable(regulator);
2894 	if (ret < 0)
2895 		goto err_disable_supply;
2896 
2897 	if (rdev->use_count == 0) {
2898 		/*
2899 		 * The regulator may already be enabled if it's not switchable
2900 		 * or was left on
2901 		 */
2902 		ret = _regulator_is_enabled(rdev);
2903 		if (ret == -EINVAL || ret == 0) {
2904 			if (!regulator_ops_is_valid(rdev,
2905 					REGULATOR_CHANGE_STATUS)) {
2906 				ret = -EPERM;
2907 				goto err_consumer_disable;
2908 			}
2909 
2910 			ret = _regulator_do_enable(rdev);
2911 			if (ret < 0)
2912 				goto err_consumer_disable;
2913 
2914 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 					     NULL);
2916 		} else if (ret < 0) {
2917 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 			goto err_consumer_disable;
2919 		}
2920 		/* Fallthrough on positive return values - already enabled */
2921 	}
2922 
2923 	rdev->use_count++;
2924 
2925 	return 0;
2926 
2927 err_consumer_disable:
2928 	_regulator_handle_consumer_disable(regulator);
2929 
2930 err_disable_supply:
2931 	if (rdev->use_count == 0 && rdev->supply)
2932 		_regulator_disable(rdev->supply);
2933 
2934 	return ret;
2935 }
2936 
2937 /**
2938  * regulator_enable - enable regulator output
2939  * @regulator: regulator source
2940  *
2941  * Request that the regulator be enabled with the regulator output at
2942  * the predefined voltage or current value.  Calls to regulator_enable()
2943  * must be balanced with calls to regulator_disable().
2944  *
2945  * NOTE: the output value can be set by other drivers, boot loader or may be
2946  * hardwired in the regulator.
2947  */
2948 int regulator_enable(struct regulator *regulator)
2949 {
2950 	struct regulator_dev *rdev = regulator->rdev;
2951 	struct ww_acquire_ctx ww_ctx;
2952 	int ret;
2953 
2954 	regulator_lock_dependent(rdev, &ww_ctx);
2955 	ret = _regulator_enable(regulator);
2956 	regulator_unlock_dependent(rdev, &ww_ctx);
2957 
2958 	return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(regulator_enable);
2961 
2962 static int _regulator_do_disable(struct regulator_dev *rdev)
2963 {
2964 	int ret;
2965 
2966 	trace_regulator_disable(rdev_get_name(rdev));
2967 
2968 	if (rdev->ena_pin) {
2969 		if (rdev->ena_gpio_state) {
2970 			ret = regulator_ena_gpio_ctrl(rdev, false);
2971 			if (ret < 0)
2972 				return ret;
2973 			rdev->ena_gpio_state = 0;
2974 		}
2975 
2976 	} else if (rdev->desc->ops->disable) {
2977 		ret = rdev->desc->ops->disable(rdev);
2978 		if (ret != 0)
2979 			return ret;
2980 	}
2981 
2982 	if (rdev->desc->off_on_delay)
2983 		rdev->last_off = ktime_get_boottime();
2984 
2985 	trace_regulator_disable_complete(rdev_get_name(rdev));
2986 
2987 	return 0;
2988 }
2989 
2990 /* locks held by regulator_disable() */
2991 static int _regulator_disable(struct regulator *regulator)
2992 {
2993 	struct regulator_dev *rdev = regulator->rdev;
2994 	int ret = 0;
2995 
2996 	lockdep_assert_held_once(&rdev->mutex.base);
2997 
2998 	if (WARN(rdev->use_count <= 0,
2999 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3000 		return -EIO;
3001 
3002 	/* are we the last user and permitted to disable ? */
3003 	if (rdev->use_count == 1 &&
3004 	    (rdev->constraints && !rdev->constraints->always_on)) {
3005 
3006 		/* we are last user */
3007 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3008 			ret = _notifier_call_chain(rdev,
3009 						   REGULATOR_EVENT_PRE_DISABLE,
3010 						   NULL);
3011 			if (ret & NOTIFY_STOP_MASK)
3012 				return -EINVAL;
3013 
3014 			ret = _regulator_do_disable(rdev);
3015 			if (ret < 0) {
3016 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3017 				_notifier_call_chain(rdev,
3018 						REGULATOR_EVENT_ABORT_DISABLE,
3019 						NULL);
3020 				return ret;
3021 			}
3022 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3023 					NULL);
3024 		}
3025 
3026 		rdev->use_count = 0;
3027 	} else if (rdev->use_count > 1) {
3028 		rdev->use_count--;
3029 	}
3030 
3031 	if (ret == 0)
3032 		ret = _regulator_handle_consumer_disable(regulator);
3033 
3034 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3035 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3036 
3037 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3038 		ret = _regulator_disable(rdev->supply);
3039 
3040 	return ret;
3041 }
3042 
3043 /**
3044  * regulator_disable - disable regulator output
3045  * @regulator: regulator source
3046  *
3047  * Disable the regulator output voltage or current.  Calls to
3048  * regulator_enable() must be balanced with calls to
3049  * regulator_disable().
3050  *
3051  * NOTE: this will only disable the regulator output if no other consumer
3052  * devices have it enabled, the regulator device supports disabling and
3053  * machine constraints permit this operation.
3054  */
3055 int regulator_disable(struct regulator *regulator)
3056 {
3057 	struct regulator_dev *rdev = regulator->rdev;
3058 	struct ww_acquire_ctx ww_ctx;
3059 	int ret;
3060 
3061 	regulator_lock_dependent(rdev, &ww_ctx);
3062 	ret = _regulator_disable(regulator);
3063 	regulator_unlock_dependent(rdev, &ww_ctx);
3064 
3065 	return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_disable);
3068 
3069 /* locks held by regulator_force_disable() */
3070 static int _regulator_force_disable(struct regulator_dev *rdev)
3071 {
3072 	int ret = 0;
3073 
3074 	lockdep_assert_held_once(&rdev->mutex.base);
3075 
3076 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3077 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3078 	if (ret & NOTIFY_STOP_MASK)
3079 		return -EINVAL;
3080 
3081 	ret = _regulator_do_disable(rdev);
3082 	if (ret < 0) {
3083 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3084 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3085 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3086 		return ret;
3087 	}
3088 
3089 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3090 			REGULATOR_EVENT_DISABLE, NULL);
3091 
3092 	return 0;
3093 }
3094 
3095 /**
3096  * regulator_force_disable - force disable regulator output
3097  * @regulator: regulator source
3098  *
3099  * Forcibly disable the regulator output voltage or current.
3100  * NOTE: this *will* disable the regulator output even if other consumer
3101  * devices have it enabled. This should be used for situations when device
3102  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3103  */
3104 int regulator_force_disable(struct regulator *regulator)
3105 {
3106 	struct regulator_dev *rdev = regulator->rdev;
3107 	struct ww_acquire_ctx ww_ctx;
3108 	int ret;
3109 
3110 	regulator_lock_dependent(rdev, &ww_ctx);
3111 
3112 	ret = _regulator_force_disable(regulator->rdev);
3113 
3114 	if (rdev->coupling_desc.n_coupled > 1)
3115 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3116 
3117 	if (regulator->uA_load) {
3118 		regulator->uA_load = 0;
3119 		ret = drms_uA_update(rdev);
3120 	}
3121 
3122 	if (rdev->use_count != 0 && rdev->supply)
3123 		_regulator_disable(rdev->supply);
3124 
3125 	regulator_unlock_dependent(rdev, &ww_ctx);
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(regulator_force_disable);
3130 
3131 static void regulator_disable_work(struct work_struct *work)
3132 {
3133 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3134 						  disable_work.work);
3135 	struct ww_acquire_ctx ww_ctx;
3136 	int count, i, ret;
3137 	struct regulator *regulator;
3138 	int total_count = 0;
3139 
3140 	regulator_lock_dependent(rdev, &ww_ctx);
3141 
3142 	/*
3143 	 * Workqueue functions queue the new work instance while the previous
3144 	 * work instance is being processed. Cancel the queued work instance
3145 	 * as the work instance under processing does the job of the queued
3146 	 * work instance.
3147 	 */
3148 	cancel_delayed_work(&rdev->disable_work);
3149 
3150 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3151 		count = regulator->deferred_disables;
3152 
3153 		if (!count)
3154 			continue;
3155 
3156 		total_count += count;
3157 		regulator->deferred_disables = 0;
3158 
3159 		for (i = 0; i < count; i++) {
3160 			ret = _regulator_disable(regulator);
3161 			if (ret != 0)
3162 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3163 					 ERR_PTR(ret));
3164 		}
3165 	}
3166 	WARN_ON(!total_count);
3167 
3168 	if (rdev->coupling_desc.n_coupled > 1)
3169 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3170 
3171 	regulator_unlock_dependent(rdev, &ww_ctx);
3172 }
3173 
3174 /**
3175  * regulator_disable_deferred - disable regulator output with delay
3176  * @regulator: regulator source
3177  * @ms: milliseconds until the regulator is disabled
3178  *
3179  * Execute regulator_disable() on the regulator after a delay.  This
3180  * is intended for use with devices that require some time to quiesce.
3181  *
3182  * NOTE: this will only disable the regulator output if no other consumer
3183  * devices have it enabled, the regulator device supports disabling and
3184  * machine constraints permit this operation.
3185  */
3186 int regulator_disable_deferred(struct regulator *regulator, int ms)
3187 {
3188 	struct regulator_dev *rdev = regulator->rdev;
3189 
3190 	if (!ms)
3191 		return regulator_disable(regulator);
3192 
3193 	regulator_lock(rdev);
3194 	regulator->deferred_disables++;
3195 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3196 			 msecs_to_jiffies(ms));
3197 	regulator_unlock(rdev);
3198 
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3202 
3203 static int _regulator_is_enabled(struct regulator_dev *rdev)
3204 {
3205 	/* A GPIO control always takes precedence */
3206 	if (rdev->ena_pin)
3207 		return rdev->ena_gpio_state;
3208 
3209 	/* If we don't know then assume that the regulator is always on */
3210 	if (!rdev->desc->ops->is_enabled)
3211 		return 1;
3212 
3213 	return rdev->desc->ops->is_enabled(rdev);
3214 }
3215 
3216 static int _regulator_list_voltage(struct regulator_dev *rdev,
3217 				   unsigned selector, int lock)
3218 {
3219 	const struct regulator_ops *ops = rdev->desc->ops;
3220 	int ret;
3221 
3222 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3223 		return rdev->desc->fixed_uV;
3224 
3225 	if (ops->list_voltage) {
3226 		if (selector >= rdev->desc->n_voltages)
3227 			return -EINVAL;
3228 		if (selector < rdev->desc->linear_min_sel)
3229 			return 0;
3230 		if (lock)
3231 			regulator_lock(rdev);
3232 		ret = ops->list_voltage(rdev, selector);
3233 		if (lock)
3234 			regulator_unlock(rdev);
3235 	} else if (rdev->is_switch && rdev->supply) {
3236 		ret = _regulator_list_voltage(rdev->supply->rdev,
3237 					      selector, lock);
3238 	} else {
3239 		return -EINVAL;
3240 	}
3241 
3242 	if (ret > 0) {
3243 		if (ret < rdev->constraints->min_uV)
3244 			ret = 0;
3245 		else if (ret > rdev->constraints->max_uV)
3246 			ret = 0;
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 /**
3253  * regulator_is_enabled - is the regulator output enabled
3254  * @regulator: regulator source
3255  *
3256  * Returns positive if the regulator driver backing the source/client
3257  * has requested that the device be enabled, zero if it hasn't, else a
3258  * negative errno code.
3259  *
3260  * Note that the device backing this regulator handle can have multiple
3261  * users, so it might be enabled even if regulator_enable() was never
3262  * called for this particular source.
3263  */
3264 int regulator_is_enabled(struct regulator *regulator)
3265 {
3266 	int ret;
3267 
3268 	if (regulator->always_on)
3269 		return 1;
3270 
3271 	regulator_lock(regulator->rdev);
3272 	ret = _regulator_is_enabled(regulator->rdev);
3273 	regulator_unlock(regulator->rdev);
3274 
3275 	return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3278 
3279 /**
3280  * regulator_count_voltages - count regulator_list_voltage() selectors
3281  * @regulator: regulator source
3282  *
3283  * Returns number of selectors, or negative errno.  Selectors are
3284  * numbered starting at zero, and typically correspond to bitfields
3285  * in hardware registers.
3286  */
3287 int regulator_count_voltages(struct regulator *regulator)
3288 {
3289 	struct regulator_dev	*rdev = regulator->rdev;
3290 
3291 	if (rdev->desc->n_voltages)
3292 		return rdev->desc->n_voltages;
3293 
3294 	if (!rdev->is_switch || !rdev->supply)
3295 		return -EINVAL;
3296 
3297 	return regulator_count_voltages(rdev->supply);
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3300 
3301 /**
3302  * regulator_list_voltage - enumerate supported voltages
3303  * @regulator: regulator source
3304  * @selector: identify voltage to list
3305  * Context: can sleep
3306  *
3307  * Returns a voltage that can be passed to @regulator_set_voltage(),
3308  * zero if this selector code can't be used on this system, or a
3309  * negative errno.
3310  */
3311 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3312 {
3313 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3314 }
3315 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3316 
3317 /**
3318  * regulator_get_regmap - get the regulator's register map
3319  * @regulator: regulator source
3320  *
3321  * Returns the register map for the given regulator, or an ERR_PTR value
3322  * if the regulator doesn't use regmap.
3323  */
3324 struct regmap *regulator_get_regmap(struct regulator *regulator)
3325 {
3326 	struct regmap *map = regulator->rdev->regmap;
3327 
3328 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3329 }
3330 
3331 /**
3332  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3333  * @regulator: regulator source
3334  * @vsel_reg: voltage selector register, output parameter
3335  * @vsel_mask: mask for voltage selector bitfield, output parameter
3336  *
3337  * Returns the hardware register offset and bitmask used for setting the
3338  * regulator voltage. This might be useful when configuring voltage-scaling
3339  * hardware or firmware that can make I2C requests behind the kernel's back,
3340  * for example.
3341  *
3342  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3343  * and 0 is returned, otherwise a negative errno is returned.
3344  */
3345 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3346 					 unsigned *vsel_reg,
3347 					 unsigned *vsel_mask)
3348 {
3349 	struct regulator_dev *rdev = regulator->rdev;
3350 	const struct regulator_ops *ops = rdev->desc->ops;
3351 
3352 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3353 		return -EOPNOTSUPP;
3354 
3355 	*vsel_reg = rdev->desc->vsel_reg;
3356 	*vsel_mask = rdev->desc->vsel_mask;
3357 
3358 	return 0;
3359 }
3360 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3361 
3362 /**
3363  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3364  * @regulator: regulator source
3365  * @selector: identify voltage to list
3366  *
3367  * Converts the selector to a hardware-specific voltage selector that can be
3368  * directly written to the regulator registers. The address of the voltage
3369  * register can be determined by calling @regulator_get_hardware_vsel_register.
3370  *
3371  * On error a negative errno is returned.
3372  */
3373 int regulator_list_hardware_vsel(struct regulator *regulator,
3374 				 unsigned selector)
3375 {
3376 	struct regulator_dev *rdev = regulator->rdev;
3377 	const struct regulator_ops *ops = rdev->desc->ops;
3378 
3379 	if (selector >= rdev->desc->n_voltages)
3380 		return -EINVAL;
3381 	if (selector < rdev->desc->linear_min_sel)
3382 		return 0;
3383 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3384 		return -EOPNOTSUPP;
3385 
3386 	return selector;
3387 }
3388 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3389 
3390 /**
3391  * regulator_get_linear_step - return the voltage step size between VSEL values
3392  * @regulator: regulator source
3393  *
3394  * Returns the voltage step size between VSEL values for linear
3395  * regulators, or return 0 if the regulator isn't a linear regulator.
3396  */
3397 unsigned int regulator_get_linear_step(struct regulator *regulator)
3398 {
3399 	struct regulator_dev *rdev = regulator->rdev;
3400 
3401 	return rdev->desc->uV_step;
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3404 
3405 /**
3406  * regulator_is_supported_voltage - check if a voltage range can be supported
3407  *
3408  * @regulator: Regulator to check.
3409  * @min_uV: Minimum required voltage in uV.
3410  * @max_uV: Maximum required voltage in uV.
3411  *
3412  * Returns a boolean.
3413  */
3414 int regulator_is_supported_voltage(struct regulator *regulator,
3415 				   int min_uV, int max_uV)
3416 {
3417 	struct regulator_dev *rdev = regulator->rdev;
3418 	int i, voltages, ret;
3419 
3420 	/* If we can't change voltage check the current voltage */
3421 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 		ret = regulator_get_voltage(regulator);
3423 		if (ret >= 0)
3424 			return min_uV <= ret && ret <= max_uV;
3425 		else
3426 			return ret;
3427 	}
3428 
3429 	/* Any voltage within constrains range is fine? */
3430 	if (rdev->desc->continuous_voltage_range)
3431 		return min_uV >= rdev->constraints->min_uV &&
3432 				max_uV <= rdev->constraints->max_uV;
3433 
3434 	ret = regulator_count_voltages(regulator);
3435 	if (ret < 0)
3436 		return 0;
3437 	voltages = ret;
3438 
3439 	for (i = 0; i < voltages; i++) {
3440 		ret = regulator_list_voltage(regulator, i);
3441 
3442 		if (ret >= min_uV && ret <= max_uV)
3443 			return 1;
3444 	}
3445 
3446 	return 0;
3447 }
3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449 
3450 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 				 int max_uV)
3452 {
3453 	const struct regulator_desc *desc = rdev->desc;
3454 
3455 	if (desc->ops->map_voltage)
3456 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457 
3458 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460 
3461 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463 
3464 	if (desc->ops->list_voltage ==
3465 		regulator_list_voltage_pickable_linear_range)
3466 		return regulator_map_voltage_pickable_linear_range(rdev,
3467 							min_uV, max_uV);
3468 
3469 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470 }
3471 
3472 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 				       int min_uV, int max_uV,
3474 				       unsigned *selector)
3475 {
3476 	struct pre_voltage_change_data data;
3477 	int ret;
3478 
3479 	data.old_uV = regulator_get_voltage_rdev(rdev);
3480 	data.min_uV = min_uV;
3481 	data.max_uV = max_uV;
3482 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 				   &data);
3484 	if (ret & NOTIFY_STOP_MASK)
3485 		return -EINVAL;
3486 
3487 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 	if (ret >= 0)
3489 		return ret;
3490 
3491 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 			     (void *)data.old_uV);
3493 
3494 	return ret;
3495 }
3496 
3497 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 					   int uV, unsigned selector)
3499 {
3500 	struct pre_voltage_change_data data;
3501 	int ret;
3502 
3503 	data.old_uV = regulator_get_voltage_rdev(rdev);
3504 	data.min_uV = uV;
3505 	data.max_uV = uV;
3506 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 				   &data);
3508 	if (ret & NOTIFY_STOP_MASK)
3509 		return -EINVAL;
3510 
3511 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 	if (ret >= 0)
3513 		return ret;
3514 
3515 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 			     (void *)data.old_uV);
3517 
3518 	return ret;
3519 }
3520 
3521 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 					   int uV, int new_selector)
3523 {
3524 	const struct regulator_ops *ops = rdev->desc->ops;
3525 	int diff, old_sel, curr_sel, ret;
3526 
3527 	/* Stepping is only needed if the regulator is enabled. */
3528 	if (!_regulator_is_enabled(rdev))
3529 		goto final_set;
3530 
3531 	if (!ops->get_voltage_sel)
3532 		return -EINVAL;
3533 
3534 	old_sel = ops->get_voltage_sel(rdev);
3535 	if (old_sel < 0)
3536 		return old_sel;
3537 
3538 	diff = new_selector - old_sel;
3539 	if (diff == 0)
3540 		return 0; /* No change needed. */
3541 
3542 	if (diff > 0) {
3543 		/* Stepping up. */
3544 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 		     curr_sel < new_selector;
3546 		     curr_sel += rdev->desc->vsel_step) {
3547 			/*
3548 			 * Call the callback directly instead of using
3549 			 * _regulator_call_set_voltage_sel() as we don't
3550 			 * want to notify anyone yet. Same in the branch
3551 			 * below.
3552 			 */
3553 			ret = ops->set_voltage_sel(rdev, curr_sel);
3554 			if (ret)
3555 				goto try_revert;
3556 		}
3557 	} else {
3558 		/* Stepping down. */
3559 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 		     curr_sel > new_selector;
3561 		     curr_sel -= rdev->desc->vsel_step) {
3562 			ret = ops->set_voltage_sel(rdev, curr_sel);
3563 			if (ret)
3564 				goto try_revert;
3565 		}
3566 	}
3567 
3568 final_set:
3569 	/* The final selector will trigger the notifiers. */
3570 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571 
3572 try_revert:
3573 	/*
3574 	 * At least try to return to the previous voltage if setting a new
3575 	 * one failed.
3576 	 */
3577 	(void)ops->set_voltage_sel(rdev, old_sel);
3578 	return ret;
3579 }
3580 
3581 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 				       int old_uV, int new_uV)
3583 {
3584 	unsigned int ramp_delay = 0;
3585 
3586 	if (rdev->constraints->ramp_delay)
3587 		ramp_delay = rdev->constraints->ramp_delay;
3588 	else if (rdev->desc->ramp_delay)
3589 		ramp_delay = rdev->desc->ramp_delay;
3590 	else if (rdev->constraints->settling_time)
3591 		return rdev->constraints->settling_time;
3592 	else if (rdev->constraints->settling_time_up &&
3593 		 (new_uV > old_uV))
3594 		return rdev->constraints->settling_time_up;
3595 	else if (rdev->constraints->settling_time_down &&
3596 		 (new_uV < old_uV))
3597 		return rdev->constraints->settling_time_down;
3598 
3599 	if (ramp_delay == 0)
3600 		return 0;
3601 
3602 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603 }
3604 
3605 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 				     int min_uV, int max_uV)
3607 {
3608 	int ret;
3609 	int delay = 0;
3610 	int best_val = 0;
3611 	unsigned int selector;
3612 	int old_selector = -1;
3613 	const struct regulator_ops *ops = rdev->desc->ops;
3614 	int old_uV = regulator_get_voltage_rdev(rdev);
3615 
3616 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617 
3618 	min_uV += rdev->constraints->uV_offset;
3619 	max_uV += rdev->constraints->uV_offset;
3620 
3621 	/*
3622 	 * If we can't obtain the old selector there is not enough
3623 	 * info to call set_voltage_time_sel().
3624 	 */
3625 	if (_regulator_is_enabled(rdev) &&
3626 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 		old_selector = ops->get_voltage_sel(rdev);
3628 		if (old_selector < 0)
3629 			return old_selector;
3630 	}
3631 
3632 	if (ops->set_voltage) {
3633 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 						  &selector);
3635 
3636 		if (ret >= 0) {
3637 			if (ops->list_voltage)
3638 				best_val = ops->list_voltage(rdev,
3639 							     selector);
3640 			else
3641 				best_val = regulator_get_voltage_rdev(rdev);
3642 		}
3643 
3644 	} else if (ops->set_voltage_sel) {
3645 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 		if (ret >= 0) {
3647 			best_val = ops->list_voltage(rdev, ret);
3648 			if (min_uV <= best_val && max_uV >= best_val) {
3649 				selector = ret;
3650 				if (old_selector == selector)
3651 					ret = 0;
3652 				else if (rdev->desc->vsel_step)
3653 					ret = _regulator_set_voltage_sel_step(
3654 						rdev, best_val, selector);
3655 				else
3656 					ret = _regulator_call_set_voltage_sel(
3657 						rdev, best_val, selector);
3658 			} else {
3659 				ret = -EINVAL;
3660 			}
3661 		}
3662 	} else {
3663 		ret = -EINVAL;
3664 	}
3665 
3666 	if (ret)
3667 		goto out;
3668 
3669 	if (ops->set_voltage_time_sel) {
3670 		/*
3671 		 * Call set_voltage_time_sel if successfully obtained
3672 		 * old_selector
3673 		 */
3674 		if (old_selector >= 0 && old_selector != selector)
3675 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 							  selector);
3677 	} else {
3678 		if (old_uV != best_val) {
3679 			if (ops->set_voltage_time)
3680 				delay = ops->set_voltage_time(rdev, old_uV,
3681 							      best_val);
3682 			else
3683 				delay = _regulator_set_voltage_time(rdev,
3684 								    old_uV,
3685 								    best_val);
3686 		}
3687 	}
3688 
3689 	if (delay < 0) {
3690 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 		delay = 0;
3692 	}
3693 
3694 	/* Insert any necessary delays */
3695 	_regulator_delay_helper(delay);
3696 
3697 	if (best_val >= 0) {
3698 		unsigned long data = best_val;
3699 
3700 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 				     (void *)data);
3702 	}
3703 
3704 out:
3705 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706 
3707 	return ret;
3708 }
3709 
3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 				  int min_uV, int max_uV, suspend_state_t state)
3712 {
3713 	struct regulator_state *rstate;
3714 	int uV, sel;
3715 
3716 	rstate = regulator_get_suspend_state(rdev, state);
3717 	if (rstate == NULL)
3718 		return -EINVAL;
3719 
3720 	if (min_uV < rstate->min_uV)
3721 		min_uV = rstate->min_uV;
3722 	if (max_uV > rstate->max_uV)
3723 		max_uV = rstate->max_uV;
3724 
3725 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 	if (sel < 0)
3727 		return sel;
3728 
3729 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 	if (uV >= min_uV && uV <= max_uV)
3731 		rstate->uV = uV;
3732 
3733 	return 0;
3734 }
3735 
3736 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 					  int min_uV, int max_uV,
3738 					  suspend_state_t state)
3739 {
3740 	struct regulator_dev *rdev = regulator->rdev;
3741 	struct regulator_voltage *voltage = &regulator->voltage[state];
3742 	int ret = 0;
3743 	int old_min_uV, old_max_uV;
3744 	int current_uV;
3745 
3746 	/* If we're setting the same range as last time the change
3747 	 * should be a noop (some cpufreq implementations use the same
3748 	 * voltage for multiple frequencies, for example).
3749 	 */
3750 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 		goto out;
3752 
3753 	/* If we're trying to set a range that overlaps the current voltage,
3754 	 * return successfully even though the regulator does not support
3755 	 * changing the voltage.
3756 	 */
3757 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 		current_uV = regulator_get_voltage_rdev(rdev);
3759 		if (min_uV <= current_uV && current_uV <= max_uV) {
3760 			voltage->min_uV = min_uV;
3761 			voltage->max_uV = max_uV;
3762 			goto out;
3763 		}
3764 	}
3765 
3766 	/* sanity check */
3767 	if (!rdev->desc->ops->set_voltage &&
3768 	    !rdev->desc->ops->set_voltage_sel) {
3769 		ret = -EINVAL;
3770 		goto out;
3771 	}
3772 
3773 	/* constraints check */
3774 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 	if (ret < 0)
3776 		goto out;
3777 
3778 	/* restore original values in case of error */
3779 	old_min_uV = voltage->min_uV;
3780 	old_max_uV = voltage->max_uV;
3781 	voltage->min_uV = min_uV;
3782 	voltage->max_uV = max_uV;
3783 
3784 	/* for not coupled regulators this will just set the voltage */
3785 	ret = regulator_balance_voltage(rdev, state);
3786 	if (ret < 0) {
3787 		voltage->min_uV = old_min_uV;
3788 		voltage->max_uV = old_max_uV;
3789 	}
3790 
3791 out:
3792 	return ret;
3793 }
3794 
3795 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 			       int max_uV, suspend_state_t state)
3797 {
3798 	int best_supply_uV = 0;
3799 	int supply_change_uV = 0;
3800 	int ret;
3801 
3802 	if (rdev->supply &&
3803 	    regulator_ops_is_valid(rdev->supply->rdev,
3804 				   REGULATOR_CHANGE_VOLTAGE) &&
3805 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 					   rdev->desc->ops->get_voltage_sel))) {
3807 		int current_supply_uV;
3808 		int selector;
3809 
3810 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 		if (selector < 0) {
3812 			ret = selector;
3813 			goto out;
3814 		}
3815 
3816 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 		if (best_supply_uV < 0) {
3818 			ret = best_supply_uV;
3819 			goto out;
3820 		}
3821 
3822 		best_supply_uV += rdev->desc->min_dropout_uV;
3823 
3824 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 		if (current_supply_uV < 0) {
3826 			ret = current_supply_uV;
3827 			goto out;
3828 		}
3829 
3830 		supply_change_uV = best_supply_uV - current_supply_uV;
3831 	}
3832 
3833 	if (supply_change_uV > 0) {
3834 		ret = regulator_set_voltage_unlocked(rdev->supply,
3835 				best_supply_uV, INT_MAX, state);
3836 		if (ret) {
3837 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 				ERR_PTR(ret));
3839 			goto out;
3840 		}
3841 	}
3842 
3843 	if (state == PM_SUSPEND_ON)
3844 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 	else
3846 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 							max_uV, state);
3848 	if (ret < 0)
3849 		goto out;
3850 
3851 	if (supply_change_uV < 0) {
3852 		ret = regulator_set_voltage_unlocked(rdev->supply,
3853 				best_supply_uV, INT_MAX, state);
3854 		if (ret)
3855 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 				 ERR_PTR(ret));
3857 		/* No need to fail here */
3858 		ret = 0;
3859 	}
3860 
3861 out:
3862 	return ret;
3863 }
3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865 
3866 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 					int *current_uV, int *min_uV)
3868 {
3869 	struct regulation_constraints *constraints = rdev->constraints;
3870 
3871 	/* Limit voltage change only if necessary */
3872 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 		return 1;
3874 
3875 	if (*current_uV < 0) {
3876 		*current_uV = regulator_get_voltage_rdev(rdev);
3877 
3878 		if (*current_uV < 0)
3879 			return *current_uV;
3880 	}
3881 
3882 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 		return 1;
3884 
3885 	/* Clamp target voltage within the given step */
3886 	if (*current_uV < *min_uV)
3887 		*min_uV = min(*current_uV + constraints->max_uV_step,
3888 			      *min_uV);
3889 	else
3890 		*min_uV = max(*current_uV - constraints->max_uV_step,
3891 			      *min_uV);
3892 
3893 	return 0;
3894 }
3895 
3896 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 					 int *current_uV,
3898 					 int *min_uV, int *max_uV,
3899 					 suspend_state_t state,
3900 					 int n_coupled)
3901 {
3902 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 	struct regulation_constraints *constraints = rdev->constraints;
3905 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 	int max_current_uV = 0, min_current_uV = INT_MAX;
3907 	int highest_min_uV = 0, target_uV, possible_uV;
3908 	int i, ret, max_spread;
3909 	bool done;
3910 
3911 	*current_uV = -1;
3912 
3913 	/*
3914 	 * If there are no coupled regulators, simply set the voltage
3915 	 * demanded by consumers.
3916 	 */
3917 	if (n_coupled == 1) {
3918 		/*
3919 		 * If consumers don't provide any demands, set voltage
3920 		 * to min_uV
3921 		 */
3922 		desired_min_uV = constraints->min_uV;
3923 		desired_max_uV = constraints->max_uV;
3924 
3925 		ret = regulator_check_consumers(rdev,
3926 						&desired_min_uV,
3927 						&desired_max_uV, state);
3928 		if (ret < 0)
3929 			return ret;
3930 
3931 		possible_uV = desired_min_uV;
3932 		done = true;
3933 
3934 		goto finish;
3935 	}
3936 
3937 	/* Find highest min desired voltage */
3938 	for (i = 0; i < n_coupled; i++) {
3939 		int tmp_min = 0;
3940 		int tmp_max = INT_MAX;
3941 
3942 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3943 
3944 		ret = regulator_check_consumers(c_rdevs[i],
3945 						&tmp_min,
3946 						&tmp_max, state);
3947 		if (ret < 0)
3948 			return ret;
3949 
3950 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3951 		if (ret < 0)
3952 			return ret;
3953 
3954 		highest_min_uV = max(highest_min_uV, tmp_min);
3955 
3956 		if (i == 0) {
3957 			desired_min_uV = tmp_min;
3958 			desired_max_uV = tmp_max;
3959 		}
3960 	}
3961 
3962 	max_spread = constraints->max_spread[0];
3963 
3964 	/*
3965 	 * Let target_uV be equal to the desired one if possible.
3966 	 * If not, set it to minimum voltage, allowed by other coupled
3967 	 * regulators.
3968 	 */
3969 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3970 
3971 	/*
3972 	 * Find min and max voltages, which currently aren't violating
3973 	 * max_spread.
3974 	 */
3975 	for (i = 1; i < n_coupled; i++) {
3976 		int tmp_act;
3977 
3978 		if (!_regulator_is_enabled(c_rdevs[i]))
3979 			continue;
3980 
3981 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3982 		if (tmp_act < 0)
3983 			return tmp_act;
3984 
3985 		min_current_uV = min(tmp_act, min_current_uV);
3986 		max_current_uV = max(tmp_act, max_current_uV);
3987 	}
3988 
3989 	/* There aren't any other regulators enabled */
3990 	if (max_current_uV == 0) {
3991 		possible_uV = target_uV;
3992 	} else {
3993 		/*
3994 		 * Correct target voltage, so as it currently isn't
3995 		 * violating max_spread
3996 		 */
3997 		possible_uV = max(target_uV, max_current_uV - max_spread);
3998 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3999 	}
4000 
4001 	if (possible_uV > desired_max_uV)
4002 		return -EINVAL;
4003 
4004 	done = (possible_uV == target_uV);
4005 	desired_min_uV = possible_uV;
4006 
4007 finish:
4008 	/* Apply max_uV_step constraint if necessary */
4009 	if (state == PM_SUSPEND_ON) {
4010 		ret = regulator_limit_voltage_step(rdev, current_uV,
4011 						   &desired_min_uV);
4012 		if (ret < 0)
4013 			return ret;
4014 
4015 		if (ret == 0)
4016 			done = false;
4017 	}
4018 
4019 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4020 	if (n_coupled > 1 && *current_uV == -1) {
4021 
4022 		if (_regulator_is_enabled(rdev)) {
4023 			ret = regulator_get_voltage_rdev(rdev);
4024 			if (ret < 0)
4025 				return ret;
4026 
4027 			*current_uV = ret;
4028 		} else {
4029 			*current_uV = desired_min_uV;
4030 		}
4031 	}
4032 
4033 	*min_uV = desired_min_uV;
4034 	*max_uV = desired_max_uV;
4035 
4036 	return done;
4037 }
4038 
4039 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4040 				 suspend_state_t state, bool skip_coupled)
4041 {
4042 	struct regulator_dev **c_rdevs;
4043 	struct regulator_dev *best_rdev;
4044 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4045 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4046 	unsigned int delta, best_delta;
4047 	unsigned long c_rdev_done = 0;
4048 	bool best_c_rdev_done;
4049 
4050 	c_rdevs = c_desc->coupled_rdevs;
4051 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4052 
4053 	/*
4054 	 * Find the best possible voltage change on each loop. Leave the loop
4055 	 * if there isn't any possible change.
4056 	 */
4057 	do {
4058 		best_c_rdev_done = false;
4059 		best_delta = 0;
4060 		best_min_uV = 0;
4061 		best_max_uV = 0;
4062 		best_c_rdev = 0;
4063 		best_rdev = NULL;
4064 
4065 		/*
4066 		 * Find highest difference between optimal voltage
4067 		 * and current voltage.
4068 		 */
4069 		for (i = 0; i < n_coupled; i++) {
4070 			/*
4071 			 * optimal_uV is the best voltage that can be set for
4072 			 * i-th regulator at the moment without violating
4073 			 * max_spread constraint in order to balance
4074 			 * the coupled voltages.
4075 			 */
4076 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4077 
4078 			if (test_bit(i, &c_rdev_done))
4079 				continue;
4080 
4081 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4082 							    &current_uV,
4083 							    &optimal_uV,
4084 							    &optimal_max_uV,
4085 							    state, n_coupled);
4086 			if (ret < 0)
4087 				goto out;
4088 
4089 			delta = abs(optimal_uV - current_uV);
4090 
4091 			if (delta && best_delta <= delta) {
4092 				best_c_rdev_done = ret;
4093 				best_delta = delta;
4094 				best_rdev = c_rdevs[i];
4095 				best_min_uV = optimal_uV;
4096 				best_max_uV = optimal_max_uV;
4097 				best_c_rdev = i;
4098 			}
4099 		}
4100 
4101 		/* Nothing to change, return successfully */
4102 		if (!best_rdev) {
4103 			ret = 0;
4104 			goto out;
4105 		}
4106 
4107 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4108 						 best_max_uV, state);
4109 
4110 		if (ret < 0)
4111 			goto out;
4112 
4113 		if (best_c_rdev_done)
4114 			set_bit(best_c_rdev, &c_rdev_done);
4115 
4116 	} while (n_coupled > 1);
4117 
4118 out:
4119 	return ret;
4120 }
4121 
4122 static int regulator_balance_voltage(struct regulator_dev *rdev,
4123 				     suspend_state_t state)
4124 {
4125 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4126 	struct regulator_coupler *coupler = c_desc->coupler;
4127 	bool skip_coupled = false;
4128 
4129 	/*
4130 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4131 	 * other coupled regulators.
4132 	 */
4133 	if (state != PM_SUSPEND_ON)
4134 		skip_coupled = true;
4135 
4136 	if (c_desc->n_resolved < c_desc->n_coupled) {
4137 		rdev_err(rdev, "Not all coupled regulators registered\n");
4138 		return -EPERM;
4139 	}
4140 
4141 	/* Invoke custom balancer for customized couplers */
4142 	if (coupler && coupler->balance_voltage)
4143 		return coupler->balance_voltage(coupler, rdev, state);
4144 
4145 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4146 }
4147 
4148 /**
4149  * regulator_set_voltage - set regulator output voltage
4150  * @regulator: regulator source
4151  * @min_uV: Minimum required voltage in uV
4152  * @max_uV: Maximum acceptable voltage in uV
4153  *
4154  * Sets a voltage regulator to the desired output voltage. This can be set
4155  * during any regulator state. IOW, regulator can be disabled or enabled.
4156  *
4157  * If the regulator is enabled then the voltage will change to the new value
4158  * immediately otherwise if the regulator is disabled the regulator will
4159  * output at the new voltage when enabled.
4160  *
4161  * NOTE: If the regulator is shared between several devices then the lowest
4162  * request voltage that meets the system constraints will be used.
4163  * Regulator system constraints must be set for this regulator before
4164  * calling this function otherwise this call will fail.
4165  */
4166 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4167 {
4168 	struct ww_acquire_ctx ww_ctx;
4169 	int ret;
4170 
4171 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4172 
4173 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4174 					     PM_SUSPEND_ON);
4175 
4176 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4177 
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4181 
4182 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4183 					   suspend_state_t state, bool en)
4184 {
4185 	struct regulator_state *rstate;
4186 
4187 	rstate = regulator_get_suspend_state(rdev, state);
4188 	if (rstate == NULL)
4189 		return -EINVAL;
4190 
4191 	if (!rstate->changeable)
4192 		return -EPERM;
4193 
4194 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4195 
4196 	return 0;
4197 }
4198 
4199 int regulator_suspend_enable(struct regulator_dev *rdev,
4200 				    suspend_state_t state)
4201 {
4202 	return regulator_suspend_toggle(rdev, state, true);
4203 }
4204 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4205 
4206 int regulator_suspend_disable(struct regulator_dev *rdev,
4207 				     suspend_state_t state)
4208 {
4209 	struct regulator *regulator;
4210 	struct regulator_voltage *voltage;
4211 
4212 	/*
4213 	 * if any consumer wants this regulator device keeping on in
4214 	 * suspend states, don't set it as disabled.
4215 	 */
4216 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4217 		voltage = &regulator->voltage[state];
4218 		if (voltage->min_uV || voltage->max_uV)
4219 			return 0;
4220 	}
4221 
4222 	return regulator_suspend_toggle(rdev, state, false);
4223 }
4224 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4225 
4226 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4227 					  int min_uV, int max_uV,
4228 					  suspend_state_t state)
4229 {
4230 	struct regulator_dev *rdev = regulator->rdev;
4231 	struct regulator_state *rstate;
4232 
4233 	rstate = regulator_get_suspend_state(rdev, state);
4234 	if (rstate == NULL)
4235 		return -EINVAL;
4236 
4237 	if (rstate->min_uV == rstate->max_uV) {
4238 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4239 		return -EPERM;
4240 	}
4241 
4242 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4243 }
4244 
4245 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4246 				  int max_uV, suspend_state_t state)
4247 {
4248 	struct ww_acquire_ctx ww_ctx;
4249 	int ret;
4250 
4251 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4252 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4253 		return -EINVAL;
4254 
4255 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4256 
4257 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4258 					     max_uV, state);
4259 
4260 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4265 
4266 /**
4267  * regulator_set_voltage_time - get raise/fall time
4268  * @regulator: regulator source
4269  * @old_uV: starting voltage in microvolts
4270  * @new_uV: target voltage in microvolts
4271  *
4272  * Provided with the starting and ending voltage, this function attempts to
4273  * calculate the time in microseconds required to rise or fall to this new
4274  * voltage.
4275  */
4276 int regulator_set_voltage_time(struct regulator *regulator,
4277 			       int old_uV, int new_uV)
4278 {
4279 	struct regulator_dev *rdev = regulator->rdev;
4280 	const struct regulator_ops *ops = rdev->desc->ops;
4281 	int old_sel = -1;
4282 	int new_sel = -1;
4283 	int voltage;
4284 	int i;
4285 
4286 	if (ops->set_voltage_time)
4287 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4288 	else if (!ops->set_voltage_time_sel)
4289 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4290 
4291 	/* Currently requires operations to do this */
4292 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4293 		return -EINVAL;
4294 
4295 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4296 		/* We only look for exact voltage matches here */
4297 		if (i < rdev->desc->linear_min_sel)
4298 			continue;
4299 
4300 		if (old_sel >= 0 && new_sel >= 0)
4301 			break;
4302 
4303 		voltage = regulator_list_voltage(regulator, i);
4304 		if (voltage < 0)
4305 			return -EINVAL;
4306 		if (voltage == 0)
4307 			continue;
4308 		if (voltage == old_uV)
4309 			old_sel = i;
4310 		if (voltage == new_uV)
4311 			new_sel = i;
4312 	}
4313 
4314 	if (old_sel < 0 || new_sel < 0)
4315 		return -EINVAL;
4316 
4317 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4318 }
4319 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4320 
4321 /**
4322  * regulator_set_voltage_time_sel - get raise/fall time
4323  * @rdev: regulator source device
4324  * @old_selector: selector for starting voltage
4325  * @new_selector: selector for target voltage
4326  *
4327  * Provided with the starting and target voltage selectors, this function
4328  * returns time in microseconds required to rise or fall to this new voltage
4329  *
4330  * Drivers providing ramp_delay in regulation_constraints can use this as their
4331  * set_voltage_time_sel() operation.
4332  */
4333 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4334 				   unsigned int old_selector,
4335 				   unsigned int new_selector)
4336 {
4337 	int old_volt, new_volt;
4338 
4339 	/* sanity check */
4340 	if (!rdev->desc->ops->list_voltage)
4341 		return -EINVAL;
4342 
4343 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4344 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4345 
4346 	if (rdev->desc->ops->set_voltage_time)
4347 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4348 							 new_volt);
4349 	else
4350 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4351 }
4352 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4353 
4354 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4355 {
4356 	int ret;
4357 
4358 	regulator_lock(rdev);
4359 
4360 	if (!rdev->desc->ops->set_voltage &&
4361 	    !rdev->desc->ops->set_voltage_sel) {
4362 		ret = -EINVAL;
4363 		goto out;
4364 	}
4365 
4366 	/* balance only, if regulator is coupled */
4367 	if (rdev->coupling_desc.n_coupled > 1)
4368 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4369 	else
4370 		ret = -EOPNOTSUPP;
4371 
4372 out:
4373 	regulator_unlock(rdev);
4374 	return ret;
4375 }
4376 
4377 /**
4378  * regulator_sync_voltage - re-apply last regulator output voltage
4379  * @regulator: regulator source
4380  *
4381  * Re-apply the last configured voltage.  This is intended to be used
4382  * where some external control source the consumer is cooperating with
4383  * has caused the configured voltage to change.
4384  */
4385 int regulator_sync_voltage(struct regulator *regulator)
4386 {
4387 	struct regulator_dev *rdev = regulator->rdev;
4388 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4389 	int ret, min_uV, max_uV;
4390 
4391 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4392 		return 0;
4393 
4394 	regulator_lock(rdev);
4395 
4396 	if (!rdev->desc->ops->set_voltage &&
4397 	    !rdev->desc->ops->set_voltage_sel) {
4398 		ret = -EINVAL;
4399 		goto out;
4400 	}
4401 
4402 	/* This is only going to work if we've had a voltage configured. */
4403 	if (!voltage->min_uV && !voltage->max_uV) {
4404 		ret = -EINVAL;
4405 		goto out;
4406 	}
4407 
4408 	min_uV = voltage->min_uV;
4409 	max_uV = voltage->max_uV;
4410 
4411 	/* This should be a paranoia check... */
4412 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4413 	if (ret < 0)
4414 		goto out;
4415 
4416 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4417 	if (ret < 0)
4418 		goto out;
4419 
4420 	/* balance only, if regulator is coupled */
4421 	if (rdev->coupling_desc.n_coupled > 1)
4422 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4423 	else
4424 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4425 
4426 out:
4427 	regulator_unlock(rdev);
4428 	return ret;
4429 }
4430 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4431 
4432 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4433 {
4434 	int sel, ret;
4435 	bool bypassed;
4436 
4437 	if (rdev->desc->ops->get_bypass) {
4438 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4439 		if (ret < 0)
4440 			return ret;
4441 		if (bypassed) {
4442 			/* if bypassed the regulator must have a supply */
4443 			if (!rdev->supply) {
4444 				rdev_err(rdev,
4445 					 "bypassed regulator has no supply!\n");
4446 				return -EPROBE_DEFER;
4447 			}
4448 
4449 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4450 		}
4451 	}
4452 
4453 	if (rdev->desc->ops->get_voltage_sel) {
4454 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4455 		if (sel < 0)
4456 			return sel;
4457 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4458 	} else if (rdev->desc->ops->get_voltage) {
4459 		ret = rdev->desc->ops->get_voltage(rdev);
4460 	} else if (rdev->desc->ops->list_voltage) {
4461 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4462 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4463 		ret = rdev->desc->fixed_uV;
4464 	} else if (rdev->supply) {
4465 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4466 	} else if (rdev->supply_name) {
4467 		return -EPROBE_DEFER;
4468 	} else {
4469 		return -EINVAL;
4470 	}
4471 
4472 	if (ret < 0)
4473 		return ret;
4474 	return ret - rdev->constraints->uV_offset;
4475 }
4476 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4477 
4478 /**
4479  * regulator_get_voltage - get regulator output voltage
4480  * @regulator: regulator source
4481  *
4482  * This returns the current regulator voltage in uV.
4483  *
4484  * NOTE: If the regulator is disabled it will return the voltage value. This
4485  * function should not be used to determine regulator state.
4486  */
4487 int regulator_get_voltage(struct regulator *regulator)
4488 {
4489 	struct ww_acquire_ctx ww_ctx;
4490 	int ret;
4491 
4492 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4493 	ret = regulator_get_voltage_rdev(regulator->rdev);
4494 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4495 
4496 	return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4499 
4500 /**
4501  * regulator_set_current_limit - set regulator output current limit
4502  * @regulator: regulator source
4503  * @min_uA: Minimum supported current in uA
4504  * @max_uA: Maximum supported current in uA
4505  *
4506  * Sets current sink to the desired output current. This can be set during
4507  * any regulator state. IOW, regulator can be disabled or enabled.
4508  *
4509  * If the regulator is enabled then the current will change to the new value
4510  * immediately otherwise if the regulator is disabled the regulator will
4511  * output at the new current when enabled.
4512  *
4513  * NOTE: Regulator system constraints must be set for this regulator before
4514  * calling this function otherwise this call will fail.
4515  */
4516 int regulator_set_current_limit(struct regulator *regulator,
4517 			       int min_uA, int max_uA)
4518 {
4519 	struct regulator_dev *rdev = regulator->rdev;
4520 	int ret;
4521 
4522 	regulator_lock(rdev);
4523 
4524 	/* sanity check */
4525 	if (!rdev->desc->ops->set_current_limit) {
4526 		ret = -EINVAL;
4527 		goto out;
4528 	}
4529 
4530 	/* constraints check */
4531 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4532 	if (ret < 0)
4533 		goto out;
4534 
4535 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4536 out:
4537 	regulator_unlock(rdev);
4538 	return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4541 
4542 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4543 {
4544 	/* sanity check */
4545 	if (!rdev->desc->ops->get_current_limit)
4546 		return -EINVAL;
4547 
4548 	return rdev->desc->ops->get_current_limit(rdev);
4549 }
4550 
4551 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4552 {
4553 	int ret;
4554 
4555 	regulator_lock(rdev);
4556 	ret = _regulator_get_current_limit_unlocked(rdev);
4557 	regulator_unlock(rdev);
4558 
4559 	return ret;
4560 }
4561 
4562 /**
4563  * regulator_get_current_limit - get regulator output current
4564  * @regulator: regulator source
4565  *
4566  * This returns the current supplied by the specified current sink in uA.
4567  *
4568  * NOTE: If the regulator is disabled it will return the current value. This
4569  * function should not be used to determine regulator state.
4570  */
4571 int regulator_get_current_limit(struct regulator *regulator)
4572 {
4573 	return _regulator_get_current_limit(regulator->rdev);
4574 }
4575 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4576 
4577 /**
4578  * regulator_set_mode - set regulator operating mode
4579  * @regulator: regulator source
4580  * @mode: operating mode - one of the REGULATOR_MODE constants
4581  *
4582  * Set regulator operating mode to increase regulator efficiency or improve
4583  * regulation performance.
4584  *
4585  * NOTE: Regulator system constraints must be set for this regulator before
4586  * calling this function otherwise this call will fail.
4587  */
4588 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4589 {
4590 	struct regulator_dev *rdev = regulator->rdev;
4591 	int ret;
4592 	int regulator_curr_mode;
4593 
4594 	regulator_lock(rdev);
4595 
4596 	/* sanity check */
4597 	if (!rdev->desc->ops->set_mode) {
4598 		ret = -EINVAL;
4599 		goto out;
4600 	}
4601 
4602 	/* return if the same mode is requested */
4603 	if (rdev->desc->ops->get_mode) {
4604 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4605 		if (regulator_curr_mode == mode) {
4606 			ret = 0;
4607 			goto out;
4608 		}
4609 	}
4610 
4611 	/* constraints check */
4612 	ret = regulator_mode_constrain(rdev, &mode);
4613 	if (ret < 0)
4614 		goto out;
4615 
4616 	ret = rdev->desc->ops->set_mode(rdev, mode);
4617 out:
4618 	regulator_unlock(rdev);
4619 	return ret;
4620 }
4621 EXPORT_SYMBOL_GPL(regulator_set_mode);
4622 
4623 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4624 {
4625 	/* sanity check */
4626 	if (!rdev->desc->ops->get_mode)
4627 		return -EINVAL;
4628 
4629 	return rdev->desc->ops->get_mode(rdev);
4630 }
4631 
4632 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4633 {
4634 	int ret;
4635 
4636 	regulator_lock(rdev);
4637 	ret = _regulator_get_mode_unlocked(rdev);
4638 	regulator_unlock(rdev);
4639 
4640 	return ret;
4641 }
4642 
4643 /**
4644  * regulator_get_mode - get regulator operating mode
4645  * @regulator: regulator source
4646  *
4647  * Get the current regulator operating mode.
4648  */
4649 unsigned int regulator_get_mode(struct regulator *regulator)
4650 {
4651 	return _regulator_get_mode(regulator->rdev);
4652 }
4653 EXPORT_SYMBOL_GPL(regulator_get_mode);
4654 
4655 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4656 {
4657 	int ret = 0;
4658 
4659 	if (rdev->use_cached_err) {
4660 		spin_lock(&rdev->err_lock);
4661 		ret = rdev->cached_err;
4662 		spin_unlock(&rdev->err_lock);
4663 	}
4664 	return ret;
4665 }
4666 
4667 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4668 					unsigned int *flags)
4669 {
4670 	int cached_flags, ret = 0;
4671 
4672 	regulator_lock(rdev);
4673 
4674 	cached_flags = rdev_get_cached_err_flags(rdev);
4675 
4676 	if (rdev->desc->ops->get_error_flags)
4677 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4678 	else if (!rdev->use_cached_err)
4679 		ret = -EINVAL;
4680 
4681 	*flags |= cached_flags;
4682 
4683 	regulator_unlock(rdev);
4684 
4685 	return ret;
4686 }
4687 
4688 /**
4689  * regulator_get_error_flags - get regulator error information
4690  * @regulator: regulator source
4691  * @flags: pointer to store error flags
4692  *
4693  * Get the current regulator error information.
4694  */
4695 int regulator_get_error_flags(struct regulator *regulator,
4696 				unsigned int *flags)
4697 {
4698 	return _regulator_get_error_flags(regulator->rdev, flags);
4699 }
4700 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4701 
4702 /**
4703  * regulator_set_load - set regulator load
4704  * @regulator: regulator source
4705  * @uA_load: load current
4706  *
4707  * Notifies the regulator core of a new device load. This is then used by
4708  * DRMS (if enabled by constraints) to set the most efficient regulator
4709  * operating mode for the new regulator loading.
4710  *
4711  * Consumer devices notify their supply regulator of the maximum power
4712  * they will require (can be taken from device datasheet in the power
4713  * consumption tables) when they change operational status and hence power
4714  * state. Examples of operational state changes that can affect power
4715  * consumption are :-
4716  *
4717  *    o Device is opened / closed.
4718  *    o Device I/O is about to begin or has just finished.
4719  *    o Device is idling in between work.
4720  *
4721  * This information is also exported via sysfs to userspace.
4722  *
4723  * DRMS will sum the total requested load on the regulator and change
4724  * to the most efficient operating mode if platform constraints allow.
4725  *
4726  * NOTE: when a regulator consumer requests to have a regulator
4727  * disabled then any load that consumer requested no longer counts
4728  * toward the total requested load.  If the regulator is re-enabled
4729  * then the previously requested load will start counting again.
4730  *
4731  * If a regulator is an always-on regulator then an individual consumer's
4732  * load will still be removed if that consumer is fully disabled.
4733  *
4734  * On error a negative errno is returned.
4735  */
4736 int regulator_set_load(struct regulator *regulator, int uA_load)
4737 {
4738 	struct regulator_dev *rdev = regulator->rdev;
4739 	int old_uA_load;
4740 	int ret = 0;
4741 
4742 	regulator_lock(rdev);
4743 	old_uA_load = regulator->uA_load;
4744 	regulator->uA_load = uA_load;
4745 	if (regulator->enable_count && old_uA_load != uA_load) {
4746 		ret = drms_uA_update(rdev);
4747 		if (ret < 0)
4748 			regulator->uA_load = old_uA_load;
4749 	}
4750 	regulator_unlock(rdev);
4751 
4752 	return ret;
4753 }
4754 EXPORT_SYMBOL_GPL(regulator_set_load);
4755 
4756 /**
4757  * regulator_allow_bypass - allow the regulator to go into bypass mode
4758  *
4759  * @regulator: Regulator to configure
4760  * @enable: enable or disable bypass mode
4761  *
4762  * Allow the regulator to go into bypass mode if all other consumers
4763  * for the regulator also enable bypass mode and the machine
4764  * constraints allow this.  Bypass mode means that the regulator is
4765  * simply passing the input directly to the output with no regulation.
4766  */
4767 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4768 {
4769 	struct regulator_dev *rdev = regulator->rdev;
4770 	const char *name = rdev_get_name(rdev);
4771 	int ret = 0;
4772 
4773 	if (!rdev->desc->ops->set_bypass)
4774 		return 0;
4775 
4776 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4777 		return 0;
4778 
4779 	regulator_lock(rdev);
4780 
4781 	if (enable && !regulator->bypass) {
4782 		rdev->bypass_count++;
4783 
4784 		if (rdev->bypass_count == rdev->open_count) {
4785 			trace_regulator_bypass_enable(name);
4786 
4787 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4788 			if (ret != 0)
4789 				rdev->bypass_count--;
4790 			else
4791 				trace_regulator_bypass_enable_complete(name);
4792 		}
4793 
4794 	} else if (!enable && regulator->bypass) {
4795 		rdev->bypass_count--;
4796 
4797 		if (rdev->bypass_count != rdev->open_count) {
4798 			trace_regulator_bypass_disable(name);
4799 
4800 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4801 			if (ret != 0)
4802 				rdev->bypass_count++;
4803 			else
4804 				trace_regulator_bypass_disable_complete(name);
4805 		}
4806 	}
4807 
4808 	if (ret == 0)
4809 		regulator->bypass = enable;
4810 
4811 	regulator_unlock(rdev);
4812 
4813 	return ret;
4814 }
4815 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4816 
4817 /**
4818  * regulator_register_notifier - register regulator event notifier
4819  * @regulator: regulator source
4820  * @nb: notifier block
4821  *
4822  * Register notifier block to receive regulator events.
4823  */
4824 int regulator_register_notifier(struct regulator *regulator,
4825 			      struct notifier_block *nb)
4826 {
4827 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4828 						nb);
4829 }
4830 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4831 
4832 /**
4833  * regulator_unregister_notifier - unregister regulator event notifier
4834  * @regulator: regulator source
4835  * @nb: notifier block
4836  *
4837  * Unregister regulator event notifier block.
4838  */
4839 int regulator_unregister_notifier(struct regulator *regulator,
4840 				struct notifier_block *nb)
4841 {
4842 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4843 						  nb);
4844 }
4845 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4846 
4847 /* notify regulator consumers and downstream regulator consumers.
4848  * Note mutex must be held by caller.
4849  */
4850 static int _notifier_call_chain(struct regulator_dev *rdev,
4851 				  unsigned long event, void *data)
4852 {
4853 	/* call rdev chain first */
4854 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4855 }
4856 
4857 int _regulator_bulk_get(struct device *dev, int num_consumers,
4858 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4859 {
4860 	int i;
4861 	int ret;
4862 
4863 	for (i = 0; i < num_consumers; i++)
4864 		consumers[i].consumer = NULL;
4865 
4866 	for (i = 0; i < num_consumers; i++) {
4867 		consumers[i].consumer = _regulator_get(dev,
4868 						       consumers[i].supply, get_type);
4869 		if (IS_ERR(consumers[i].consumer)) {
4870 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4871 					    "Failed to get supply '%s'",
4872 					    consumers[i].supply);
4873 			consumers[i].consumer = NULL;
4874 			goto err;
4875 		}
4876 
4877 		if (consumers[i].init_load_uA > 0) {
4878 			ret = regulator_set_load(consumers[i].consumer,
4879 						 consumers[i].init_load_uA);
4880 			if (ret) {
4881 				i++;
4882 				goto err;
4883 			}
4884 		}
4885 	}
4886 
4887 	return 0;
4888 
4889 err:
4890 	while (--i >= 0)
4891 		regulator_put(consumers[i].consumer);
4892 
4893 	return ret;
4894 }
4895 
4896 /**
4897  * regulator_bulk_get - get multiple regulator consumers
4898  *
4899  * @dev:           Device to supply
4900  * @num_consumers: Number of consumers to register
4901  * @consumers:     Configuration of consumers; clients are stored here.
4902  *
4903  * @return 0 on success, an errno on failure.
4904  *
4905  * This helper function allows drivers to get several regulator
4906  * consumers in one operation.  If any of the regulators cannot be
4907  * acquired then any regulators that were allocated will be freed
4908  * before returning to the caller.
4909  */
4910 int regulator_bulk_get(struct device *dev, int num_consumers,
4911 		       struct regulator_bulk_data *consumers)
4912 {
4913 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4914 }
4915 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4916 
4917 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4918 {
4919 	struct regulator_bulk_data *bulk = data;
4920 
4921 	bulk->ret = regulator_enable(bulk->consumer);
4922 }
4923 
4924 /**
4925  * regulator_bulk_enable - enable multiple regulator consumers
4926  *
4927  * @num_consumers: Number of consumers
4928  * @consumers:     Consumer data; clients are stored here.
4929  * @return         0 on success, an errno on failure
4930  *
4931  * This convenience API allows consumers to enable multiple regulator
4932  * clients in a single API call.  If any consumers cannot be enabled
4933  * then any others that were enabled will be disabled again prior to
4934  * return.
4935  */
4936 int regulator_bulk_enable(int num_consumers,
4937 			  struct regulator_bulk_data *consumers)
4938 {
4939 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4940 	int i;
4941 	int ret = 0;
4942 
4943 	for (i = 0; i < num_consumers; i++) {
4944 		async_schedule_domain(regulator_bulk_enable_async,
4945 				      &consumers[i], &async_domain);
4946 	}
4947 
4948 	async_synchronize_full_domain(&async_domain);
4949 
4950 	/* If any consumer failed we need to unwind any that succeeded */
4951 	for (i = 0; i < num_consumers; i++) {
4952 		if (consumers[i].ret != 0) {
4953 			ret = consumers[i].ret;
4954 			goto err;
4955 		}
4956 	}
4957 
4958 	return 0;
4959 
4960 err:
4961 	for (i = 0; i < num_consumers; i++) {
4962 		if (consumers[i].ret < 0)
4963 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4964 			       ERR_PTR(consumers[i].ret));
4965 		else
4966 			regulator_disable(consumers[i].consumer);
4967 	}
4968 
4969 	return ret;
4970 }
4971 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4972 
4973 /**
4974  * regulator_bulk_disable - disable multiple regulator consumers
4975  *
4976  * @num_consumers: Number of consumers
4977  * @consumers:     Consumer data; clients are stored here.
4978  * @return         0 on success, an errno on failure
4979  *
4980  * This convenience API allows consumers to disable multiple regulator
4981  * clients in a single API call.  If any consumers cannot be disabled
4982  * then any others that were disabled will be enabled again prior to
4983  * return.
4984  */
4985 int regulator_bulk_disable(int num_consumers,
4986 			   struct regulator_bulk_data *consumers)
4987 {
4988 	int i;
4989 	int ret, r;
4990 
4991 	for (i = num_consumers - 1; i >= 0; --i) {
4992 		ret = regulator_disable(consumers[i].consumer);
4993 		if (ret != 0)
4994 			goto err;
4995 	}
4996 
4997 	return 0;
4998 
4999 err:
5000 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5001 	for (++i; i < num_consumers; ++i) {
5002 		r = regulator_enable(consumers[i].consumer);
5003 		if (r != 0)
5004 			pr_err("Failed to re-enable %s: %pe\n",
5005 			       consumers[i].supply, ERR_PTR(r));
5006 	}
5007 
5008 	return ret;
5009 }
5010 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5011 
5012 /**
5013  * regulator_bulk_force_disable - force disable multiple regulator consumers
5014  *
5015  * @num_consumers: Number of consumers
5016  * @consumers:     Consumer data; clients are stored here.
5017  * @return         0 on success, an errno on failure
5018  *
5019  * This convenience API allows consumers to forcibly disable multiple regulator
5020  * clients in a single API call.
5021  * NOTE: This should be used for situations when device damage will
5022  * likely occur if the regulators are not disabled (e.g. over temp).
5023  * Although regulator_force_disable function call for some consumers can
5024  * return error numbers, the function is called for all consumers.
5025  */
5026 int regulator_bulk_force_disable(int num_consumers,
5027 			   struct regulator_bulk_data *consumers)
5028 {
5029 	int i;
5030 	int ret = 0;
5031 
5032 	for (i = 0; i < num_consumers; i++) {
5033 		consumers[i].ret =
5034 			    regulator_force_disable(consumers[i].consumer);
5035 
5036 		/* Store first error for reporting */
5037 		if (consumers[i].ret && !ret)
5038 			ret = consumers[i].ret;
5039 	}
5040 
5041 	return ret;
5042 }
5043 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5044 
5045 /**
5046  * regulator_bulk_free - free multiple regulator consumers
5047  *
5048  * @num_consumers: Number of consumers
5049  * @consumers:     Consumer data; clients are stored here.
5050  *
5051  * This convenience API allows consumers to free multiple regulator
5052  * clients in a single API call.
5053  */
5054 void regulator_bulk_free(int num_consumers,
5055 			 struct regulator_bulk_data *consumers)
5056 {
5057 	int i;
5058 
5059 	for (i = 0; i < num_consumers; i++) {
5060 		regulator_put(consumers[i].consumer);
5061 		consumers[i].consumer = NULL;
5062 	}
5063 }
5064 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5065 
5066 /**
5067  * regulator_notifier_call_chain - call regulator event notifier
5068  * @rdev: regulator source
5069  * @event: notifier block
5070  * @data: callback-specific data.
5071  *
5072  * Called by regulator drivers to notify clients a regulator event has
5073  * occurred.
5074  */
5075 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5076 				  unsigned long event, void *data)
5077 {
5078 	_notifier_call_chain(rdev, event, data);
5079 	return NOTIFY_DONE;
5080 
5081 }
5082 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5083 
5084 /**
5085  * regulator_mode_to_status - convert a regulator mode into a status
5086  *
5087  * @mode: Mode to convert
5088  *
5089  * Convert a regulator mode into a status.
5090  */
5091 int regulator_mode_to_status(unsigned int mode)
5092 {
5093 	switch (mode) {
5094 	case REGULATOR_MODE_FAST:
5095 		return REGULATOR_STATUS_FAST;
5096 	case REGULATOR_MODE_NORMAL:
5097 		return REGULATOR_STATUS_NORMAL;
5098 	case REGULATOR_MODE_IDLE:
5099 		return REGULATOR_STATUS_IDLE;
5100 	case REGULATOR_MODE_STANDBY:
5101 		return REGULATOR_STATUS_STANDBY;
5102 	default:
5103 		return REGULATOR_STATUS_UNDEFINED;
5104 	}
5105 }
5106 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5107 
5108 static struct attribute *regulator_dev_attrs[] = {
5109 	&dev_attr_name.attr,
5110 	&dev_attr_num_users.attr,
5111 	&dev_attr_type.attr,
5112 	&dev_attr_microvolts.attr,
5113 	&dev_attr_microamps.attr,
5114 	&dev_attr_opmode.attr,
5115 	&dev_attr_state.attr,
5116 	&dev_attr_status.attr,
5117 	&dev_attr_bypass.attr,
5118 	&dev_attr_requested_microamps.attr,
5119 	&dev_attr_min_microvolts.attr,
5120 	&dev_attr_max_microvolts.attr,
5121 	&dev_attr_min_microamps.attr,
5122 	&dev_attr_max_microamps.attr,
5123 	&dev_attr_under_voltage.attr,
5124 	&dev_attr_over_current.attr,
5125 	&dev_attr_regulation_out.attr,
5126 	&dev_attr_fail.attr,
5127 	&dev_attr_over_temp.attr,
5128 	&dev_attr_under_voltage_warn.attr,
5129 	&dev_attr_over_current_warn.attr,
5130 	&dev_attr_over_voltage_warn.attr,
5131 	&dev_attr_over_temp_warn.attr,
5132 	&dev_attr_suspend_standby_state.attr,
5133 	&dev_attr_suspend_mem_state.attr,
5134 	&dev_attr_suspend_disk_state.attr,
5135 	&dev_attr_suspend_standby_microvolts.attr,
5136 	&dev_attr_suspend_mem_microvolts.attr,
5137 	&dev_attr_suspend_disk_microvolts.attr,
5138 	&dev_attr_suspend_standby_mode.attr,
5139 	&dev_attr_suspend_mem_mode.attr,
5140 	&dev_attr_suspend_disk_mode.attr,
5141 	NULL
5142 };
5143 
5144 /*
5145  * To avoid cluttering sysfs (and memory) with useless state, only
5146  * create attributes that can be meaningfully displayed.
5147  */
5148 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5149 					 struct attribute *attr, int idx)
5150 {
5151 	struct device *dev = kobj_to_dev(kobj);
5152 	struct regulator_dev *rdev = dev_to_rdev(dev);
5153 	const struct regulator_ops *ops = rdev->desc->ops;
5154 	umode_t mode = attr->mode;
5155 
5156 	/* these three are always present */
5157 	if (attr == &dev_attr_name.attr ||
5158 	    attr == &dev_attr_num_users.attr ||
5159 	    attr == &dev_attr_type.attr)
5160 		return mode;
5161 
5162 	/* some attributes need specific methods to be displayed */
5163 	if (attr == &dev_attr_microvolts.attr) {
5164 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5165 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5166 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5167 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5168 			return mode;
5169 		return 0;
5170 	}
5171 
5172 	if (attr == &dev_attr_microamps.attr)
5173 		return ops->get_current_limit ? mode : 0;
5174 
5175 	if (attr == &dev_attr_opmode.attr)
5176 		return ops->get_mode ? mode : 0;
5177 
5178 	if (attr == &dev_attr_state.attr)
5179 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5180 
5181 	if (attr == &dev_attr_status.attr)
5182 		return ops->get_status ? mode : 0;
5183 
5184 	if (attr == &dev_attr_bypass.attr)
5185 		return ops->get_bypass ? mode : 0;
5186 
5187 	if (attr == &dev_attr_under_voltage.attr ||
5188 	    attr == &dev_attr_over_current.attr ||
5189 	    attr == &dev_attr_regulation_out.attr ||
5190 	    attr == &dev_attr_fail.attr ||
5191 	    attr == &dev_attr_over_temp.attr ||
5192 	    attr == &dev_attr_under_voltage_warn.attr ||
5193 	    attr == &dev_attr_over_current_warn.attr ||
5194 	    attr == &dev_attr_over_voltage_warn.attr ||
5195 	    attr == &dev_attr_over_temp_warn.attr)
5196 		return ops->get_error_flags ? mode : 0;
5197 
5198 	/* constraints need specific supporting methods */
5199 	if (attr == &dev_attr_min_microvolts.attr ||
5200 	    attr == &dev_attr_max_microvolts.attr)
5201 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5202 
5203 	if (attr == &dev_attr_min_microamps.attr ||
5204 	    attr == &dev_attr_max_microamps.attr)
5205 		return ops->set_current_limit ? mode : 0;
5206 
5207 	if (attr == &dev_attr_suspend_standby_state.attr ||
5208 	    attr == &dev_attr_suspend_mem_state.attr ||
5209 	    attr == &dev_attr_suspend_disk_state.attr)
5210 		return mode;
5211 
5212 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5213 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5214 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5215 		return ops->set_suspend_voltage ? mode : 0;
5216 
5217 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5218 	    attr == &dev_attr_suspend_mem_mode.attr ||
5219 	    attr == &dev_attr_suspend_disk_mode.attr)
5220 		return ops->set_suspend_mode ? mode : 0;
5221 
5222 	return mode;
5223 }
5224 
5225 static const struct attribute_group regulator_dev_group = {
5226 	.attrs = regulator_dev_attrs,
5227 	.is_visible = regulator_attr_is_visible,
5228 };
5229 
5230 static const struct attribute_group *regulator_dev_groups[] = {
5231 	&regulator_dev_group,
5232 	NULL
5233 };
5234 
5235 static void regulator_dev_release(struct device *dev)
5236 {
5237 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5238 
5239 	debugfs_remove_recursive(rdev->debugfs);
5240 	kfree(rdev->constraints);
5241 	of_node_put(rdev->dev.of_node);
5242 	kfree(rdev);
5243 }
5244 
5245 static void rdev_init_debugfs(struct regulator_dev *rdev)
5246 {
5247 	struct device *parent = rdev->dev.parent;
5248 	const char *rname = rdev_get_name(rdev);
5249 	char name[NAME_MAX];
5250 
5251 	/* Avoid duplicate debugfs directory names */
5252 	if (parent && rname == rdev->desc->name) {
5253 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5254 			 rname);
5255 		rname = name;
5256 	}
5257 
5258 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5259 	if (IS_ERR(rdev->debugfs)) {
5260 		rdev_warn(rdev, "Failed to create debugfs directory\n");
5261 		return;
5262 	}
5263 
5264 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5265 			   &rdev->use_count);
5266 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5267 			   &rdev->open_count);
5268 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5269 			   &rdev->bypass_count);
5270 }
5271 
5272 static int regulator_register_resolve_supply(struct device *dev, void *data)
5273 {
5274 	struct regulator_dev *rdev = dev_to_rdev(dev);
5275 
5276 	if (regulator_resolve_supply(rdev))
5277 		rdev_dbg(rdev, "unable to resolve supply\n");
5278 
5279 	return 0;
5280 }
5281 
5282 int regulator_coupler_register(struct regulator_coupler *coupler)
5283 {
5284 	mutex_lock(&regulator_list_mutex);
5285 	list_add_tail(&coupler->list, &regulator_coupler_list);
5286 	mutex_unlock(&regulator_list_mutex);
5287 
5288 	return 0;
5289 }
5290 
5291 static struct regulator_coupler *
5292 regulator_find_coupler(struct regulator_dev *rdev)
5293 {
5294 	struct regulator_coupler *coupler;
5295 	int err;
5296 
5297 	/*
5298 	 * Note that regulators are appended to the list and the generic
5299 	 * coupler is registered first, hence it will be attached at last
5300 	 * if nobody cared.
5301 	 */
5302 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5303 		err = coupler->attach_regulator(coupler, rdev);
5304 		if (!err) {
5305 			if (!coupler->balance_voltage &&
5306 			    rdev->coupling_desc.n_coupled > 2)
5307 				goto err_unsupported;
5308 
5309 			return coupler;
5310 		}
5311 
5312 		if (err < 0)
5313 			return ERR_PTR(err);
5314 
5315 		if (err == 1)
5316 			continue;
5317 
5318 		break;
5319 	}
5320 
5321 	return ERR_PTR(-EINVAL);
5322 
5323 err_unsupported:
5324 	if (coupler->detach_regulator)
5325 		coupler->detach_regulator(coupler, rdev);
5326 
5327 	rdev_err(rdev,
5328 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5329 
5330 	return ERR_PTR(-EPERM);
5331 }
5332 
5333 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5334 {
5335 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5336 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5337 	int n_coupled = c_desc->n_coupled;
5338 	struct regulator_dev *c_rdev;
5339 	int i;
5340 
5341 	for (i = 1; i < n_coupled; i++) {
5342 		/* already resolved */
5343 		if (c_desc->coupled_rdevs[i])
5344 			continue;
5345 
5346 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5347 
5348 		if (!c_rdev)
5349 			continue;
5350 
5351 		if (c_rdev->coupling_desc.coupler != coupler) {
5352 			rdev_err(rdev, "coupler mismatch with %s\n",
5353 				 rdev_get_name(c_rdev));
5354 			return;
5355 		}
5356 
5357 		c_desc->coupled_rdevs[i] = c_rdev;
5358 		c_desc->n_resolved++;
5359 
5360 		regulator_resolve_coupling(c_rdev);
5361 	}
5362 }
5363 
5364 static void regulator_remove_coupling(struct regulator_dev *rdev)
5365 {
5366 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5367 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5368 	struct regulator_dev *__c_rdev, *c_rdev;
5369 	unsigned int __n_coupled, n_coupled;
5370 	int i, k;
5371 	int err;
5372 
5373 	n_coupled = c_desc->n_coupled;
5374 
5375 	for (i = 1; i < n_coupled; i++) {
5376 		c_rdev = c_desc->coupled_rdevs[i];
5377 
5378 		if (!c_rdev)
5379 			continue;
5380 
5381 		regulator_lock(c_rdev);
5382 
5383 		__c_desc = &c_rdev->coupling_desc;
5384 		__n_coupled = __c_desc->n_coupled;
5385 
5386 		for (k = 1; k < __n_coupled; k++) {
5387 			__c_rdev = __c_desc->coupled_rdevs[k];
5388 
5389 			if (__c_rdev == rdev) {
5390 				__c_desc->coupled_rdevs[k] = NULL;
5391 				__c_desc->n_resolved--;
5392 				break;
5393 			}
5394 		}
5395 
5396 		regulator_unlock(c_rdev);
5397 
5398 		c_desc->coupled_rdevs[i] = NULL;
5399 		c_desc->n_resolved--;
5400 	}
5401 
5402 	if (coupler && coupler->detach_regulator) {
5403 		err = coupler->detach_regulator(coupler, rdev);
5404 		if (err)
5405 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5406 				 ERR_PTR(err));
5407 	}
5408 
5409 	kfree(rdev->coupling_desc.coupled_rdevs);
5410 	rdev->coupling_desc.coupled_rdevs = NULL;
5411 }
5412 
5413 static int regulator_init_coupling(struct regulator_dev *rdev)
5414 {
5415 	struct regulator_dev **coupled;
5416 	int err, n_phandles;
5417 
5418 	if (!IS_ENABLED(CONFIG_OF))
5419 		n_phandles = 0;
5420 	else
5421 		n_phandles = of_get_n_coupled(rdev);
5422 
5423 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5424 	if (!coupled)
5425 		return -ENOMEM;
5426 
5427 	rdev->coupling_desc.coupled_rdevs = coupled;
5428 
5429 	/*
5430 	 * Every regulator should always have coupling descriptor filled with
5431 	 * at least pointer to itself.
5432 	 */
5433 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5434 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5435 	rdev->coupling_desc.n_resolved++;
5436 
5437 	/* regulator isn't coupled */
5438 	if (n_phandles == 0)
5439 		return 0;
5440 
5441 	if (!of_check_coupling_data(rdev))
5442 		return -EPERM;
5443 
5444 	mutex_lock(&regulator_list_mutex);
5445 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5446 	mutex_unlock(&regulator_list_mutex);
5447 
5448 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5449 		err = PTR_ERR(rdev->coupling_desc.coupler);
5450 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5451 		return err;
5452 	}
5453 
5454 	return 0;
5455 }
5456 
5457 static int generic_coupler_attach(struct regulator_coupler *coupler,
5458 				  struct regulator_dev *rdev)
5459 {
5460 	if (rdev->coupling_desc.n_coupled > 2) {
5461 		rdev_err(rdev,
5462 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5463 		return -EPERM;
5464 	}
5465 
5466 	if (!rdev->constraints->always_on) {
5467 		rdev_err(rdev,
5468 			 "Coupling of a non always-on regulator is unimplemented\n");
5469 		return -ENOTSUPP;
5470 	}
5471 
5472 	return 0;
5473 }
5474 
5475 static struct regulator_coupler generic_regulator_coupler = {
5476 	.attach_regulator = generic_coupler_attach,
5477 };
5478 
5479 /**
5480  * regulator_register - register regulator
5481  * @dev: the device that drive the regulator
5482  * @regulator_desc: regulator to register
5483  * @cfg: runtime configuration for regulator
5484  *
5485  * Called by regulator drivers to register a regulator.
5486  * Returns a valid pointer to struct regulator_dev on success
5487  * or an ERR_PTR() on error.
5488  */
5489 struct regulator_dev *
5490 regulator_register(struct device *dev,
5491 		   const struct regulator_desc *regulator_desc,
5492 		   const struct regulator_config *cfg)
5493 {
5494 	const struct regulator_init_data *init_data;
5495 	struct regulator_config *config = NULL;
5496 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5497 	struct regulator_dev *rdev;
5498 	bool dangling_cfg_gpiod = false;
5499 	bool dangling_of_gpiod = false;
5500 	int ret, i;
5501 	bool resolved_early = false;
5502 
5503 	if (cfg == NULL)
5504 		return ERR_PTR(-EINVAL);
5505 	if (cfg->ena_gpiod)
5506 		dangling_cfg_gpiod = true;
5507 	if (regulator_desc == NULL) {
5508 		ret = -EINVAL;
5509 		goto rinse;
5510 	}
5511 
5512 	WARN_ON(!dev || !cfg->dev);
5513 
5514 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5515 		ret = -EINVAL;
5516 		goto rinse;
5517 	}
5518 
5519 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5520 	    regulator_desc->type != REGULATOR_CURRENT) {
5521 		ret = -EINVAL;
5522 		goto rinse;
5523 	}
5524 
5525 	/* Only one of each should be implemented */
5526 	WARN_ON(regulator_desc->ops->get_voltage &&
5527 		regulator_desc->ops->get_voltage_sel);
5528 	WARN_ON(regulator_desc->ops->set_voltage &&
5529 		regulator_desc->ops->set_voltage_sel);
5530 
5531 	/* If we're using selectors we must implement list_voltage. */
5532 	if (regulator_desc->ops->get_voltage_sel &&
5533 	    !regulator_desc->ops->list_voltage) {
5534 		ret = -EINVAL;
5535 		goto rinse;
5536 	}
5537 	if (regulator_desc->ops->set_voltage_sel &&
5538 	    !regulator_desc->ops->list_voltage) {
5539 		ret = -EINVAL;
5540 		goto rinse;
5541 	}
5542 
5543 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5544 	if (rdev == NULL) {
5545 		ret = -ENOMEM;
5546 		goto rinse;
5547 	}
5548 	device_initialize(&rdev->dev);
5549 	spin_lock_init(&rdev->err_lock);
5550 
5551 	/*
5552 	 * Duplicate the config so the driver could override it after
5553 	 * parsing init data.
5554 	 */
5555 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5556 	if (config == NULL) {
5557 		ret = -ENOMEM;
5558 		goto clean;
5559 	}
5560 
5561 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5562 					       &rdev->dev.of_node);
5563 
5564 	/*
5565 	 * Sometimes not all resources are probed already so we need to take
5566 	 * that into account. This happens most the time if the ena_gpiod comes
5567 	 * from a gpio extender or something else.
5568 	 */
5569 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5570 		ret = -EPROBE_DEFER;
5571 		goto clean;
5572 	}
5573 
5574 	/*
5575 	 * We need to keep track of any GPIO descriptor coming from the
5576 	 * device tree until we have handled it over to the core. If the
5577 	 * config that was passed in to this function DOES NOT contain
5578 	 * a descriptor, and the config after this call DOES contain
5579 	 * a descriptor, we definitely got one from parsing the device
5580 	 * tree.
5581 	 */
5582 	if (!cfg->ena_gpiod && config->ena_gpiod)
5583 		dangling_of_gpiod = true;
5584 	if (!init_data) {
5585 		init_data = config->init_data;
5586 		rdev->dev.of_node = of_node_get(config->of_node);
5587 	}
5588 
5589 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5590 	rdev->reg_data = config->driver_data;
5591 	rdev->owner = regulator_desc->owner;
5592 	rdev->desc = regulator_desc;
5593 	if (config->regmap)
5594 		rdev->regmap = config->regmap;
5595 	else if (dev_get_regmap(dev, NULL))
5596 		rdev->regmap = dev_get_regmap(dev, NULL);
5597 	else if (dev->parent)
5598 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5599 	INIT_LIST_HEAD(&rdev->consumer_list);
5600 	INIT_LIST_HEAD(&rdev->list);
5601 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5602 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5603 
5604 	if (init_data && init_data->supply_regulator)
5605 		rdev->supply_name = init_data->supply_regulator;
5606 	else if (regulator_desc->supply_name)
5607 		rdev->supply_name = regulator_desc->supply_name;
5608 
5609 	/* register with sysfs */
5610 	rdev->dev.class = &regulator_class;
5611 	rdev->dev.parent = config->dev;
5612 	dev_set_name(&rdev->dev, "regulator.%lu",
5613 		    (unsigned long) atomic_inc_return(&regulator_no));
5614 	dev_set_drvdata(&rdev->dev, rdev);
5615 
5616 	/* set regulator constraints */
5617 	if (init_data)
5618 		rdev->constraints = kmemdup(&init_data->constraints,
5619 					    sizeof(*rdev->constraints),
5620 					    GFP_KERNEL);
5621 	else
5622 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5623 					    GFP_KERNEL);
5624 	if (!rdev->constraints) {
5625 		ret = -ENOMEM;
5626 		goto wash;
5627 	}
5628 
5629 	if ((rdev->supply_name && !rdev->supply) &&
5630 		(rdev->constraints->always_on ||
5631 		 rdev->constraints->boot_on)) {
5632 		ret = regulator_resolve_supply(rdev);
5633 		if (ret)
5634 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5635 					 ERR_PTR(ret));
5636 
5637 		resolved_early = true;
5638 	}
5639 
5640 	/* perform any regulator specific init */
5641 	if (init_data && init_data->regulator_init) {
5642 		ret = init_data->regulator_init(rdev->reg_data);
5643 		if (ret < 0)
5644 			goto wash;
5645 	}
5646 
5647 	if (config->ena_gpiod) {
5648 		ret = regulator_ena_gpio_request(rdev, config);
5649 		if (ret != 0) {
5650 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5651 				 ERR_PTR(ret));
5652 			goto wash;
5653 		}
5654 		/* The regulator core took over the GPIO descriptor */
5655 		dangling_cfg_gpiod = false;
5656 		dangling_of_gpiod = false;
5657 	}
5658 
5659 	ret = set_machine_constraints(rdev);
5660 	if (ret == -EPROBE_DEFER && !resolved_early) {
5661 		/* Regulator might be in bypass mode and so needs its supply
5662 		 * to set the constraints
5663 		 */
5664 		/* FIXME: this currently triggers a chicken-and-egg problem
5665 		 * when creating -SUPPLY symlink in sysfs to a regulator
5666 		 * that is just being created
5667 		 */
5668 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5669 			 rdev->supply_name);
5670 		ret = regulator_resolve_supply(rdev);
5671 		if (!ret)
5672 			ret = set_machine_constraints(rdev);
5673 		else
5674 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5675 				 ERR_PTR(ret));
5676 	}
5677 	if (ret < 0)
5678 		goto wash;
5679 
5680 	ret = regulator_init_coupling(rdev);
5681 	if (ret < 0)
5682 		goto wash;
5683 
5684 	/* add consumers devices */
5685 	if (init_data) {
5686 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5687 			ret = set_consumer_device_supply(rdev,
5688 				init_data->consumer_supplies[i].dev_name,
5689 				init_data->consumer_supplies[i].supply);
5690 			if (ret < 0) {
5691 				dev_err(dev, "Failed to set supply %s\n",
5692 					init_data->consumer_supplies[i].supply);
5693 				goto unset_supplies;
5694 			}
5695 		}
5696 	}
5697 
5698 	if (!rdev->desc->ops->get_voltage &&
5699 	    !rdev->desc->ops->list_voltage &&
5700 	    !rdev->desc->fixed_uV)
5701 		rdev->is_switch = true;
5702 
5703 	ret = device_add(&rdev->dev);
5704 	if (ret != 0)
5705 		goto unset_supplies;
5706 
5707 	rdev_init_debugfs(rdev);
5708 
5709 	/* try to resolve regulators coupling since a new one was registered */
5710 	mutex_lock(&regulator_list_mutex);
5711 	regulator_resolve_coupling(rdev);
5712 	mutex_unlock(&regulator_list_mutex);
5713 
5714 	/* try to resolve regulators supply since a new one was registered */
5715 	class_for_each_device(&regulator_class, NULL, NULL,
5716 			      regulator_register_resolve_supply);
5717 	kfree(config);
5718 	return rdev;
5719 
5720 unset_supplies:
5721 	mutex_lock(&regulator_list_mutex);
5722 	unset_regulator_supplies(rdev);
5723 	regulator_remove_coupling(rdev);
5724 	mutex_unlock(&regulator_list_mutex);
5725 wash:
5726 	regulator_put(rdev->supply);
5727 	kfree(rdev->coupling_desc.coupled_rdevs);
5728 	mutex_lock(&regulator_list_mutex);
5729 	regulator_ena_gpio_free(rdev);
5730 	mutex_unlock(&regulator_list_mutex);
5731 	put_device(&rdev->dev);
5732 	rdev = NULL;
5733 clean:
5734 	if (dangling_of_gpiod)
5735 		gpiod_put(config->ena_gpiod);
5736 	if (rdev && rdev->dev.of_node)
5737 		of_node_put(rdev->dev.of_node);
5738 	kfree(rdev);
5739 	kfree(config);
5740 rinse:
5741 	if (dangling_cfg_gpiod)
5742 		gpiod_put(cfg->ena_gpiod);
5743 	return ERR_PTR(ret);
5744 }
5745 EXPORT_SYMBOL_GPL(regulator_register);
5746 
5747 /**
5748  * regulator_unregister - unregister regulator
5749  * @rdev: regulator to unregister
5750  *
5751  * Called by regulator drivers to unregister a regulator.
5752  */
5753 void regulator_unregister(struct regulator_dev *rdev)
5754 {
5755 	if (rdev == NULL)
5756 		return;
5757 
5758 	if (rdev->supply) {
5759 		while (rdev->use_count--)
5760 			regulator_disable(rdev->supply);
5761 		regulator_put(rdev->supply);
5762 	}
5763 
5764 	flush_work(&rdev->disable_work.work);
5765 
5766 	mutex_lock(&regulator_list_mutex);
5767 
5768 	WARN_ON(rdev->open_count);
5769 	regulator_remove_coupling(rdev);
5770 	unset_regulator_supplies(rdev);
5771 	list_del(&rdev->list);
5772 	regulator_ena_gpio_free(rdev);
5773 	device_unregister(&rdev->dev);
5774 
5775 	mutex_unlock(&regulator_list_mutex);
5776 }
5777 EXPORT_SYMBOL_GPL(regulator_unregister);
5778 
5779 #ifdef CONFIG_SUSPEND
5780 /**
5781  * regulator_suspend - prepare regulators for system wide suspend
5782  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5783  *
5784  * Configure each regulator with it's suspend operating parameters for state.
5785  */
5786 static int regulator_suspend(struct device *dev)
5787 {
5788 	struct regulator_dev *rdev = dev_to_rdev(dev);
5789 	suspend_state_t state = pm_suspend_target_state;
5790 	int ret;
5791 	const struct regulator_state *rstate;
5792 
5793 	rstate = regulator_get_suspend_state_check(rdev, state);
5794 	if (!rstate)
5795 		return 0;
5796 
5797 	regulator_lock(rdev);
5798 	ret = __suspend_set_state(rdev, rstate);
5799 	regulator_unlock(rdev);
5800 
5801 	return ret;
5802 }
5803 
5804 static int regulator_resume(struct device *dev)
5805 {
5806 	suspend_state_t state = pm_suspend_target_state;
5807 	struct regulator_dev *rdev = dev_to_rdev(dev);
5808 	struct regulator_state *rstate;
5809 	int ret = 0;
5810 
5811 	rstate = regulator_get_suspend_state(rdev, state);
5812 	if (rstate == NULL)
5813 		return 0;
5814 
5815 	/* Avoid grabbing the lock if we don't need to */
5816 	if (!rdev->desc->ops->resume)
5817 		return 0;
5818 
5819 	regulator_lock(rdev);
5820 
5821 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5822 	    rstate->enabled == DISABLE_IN_SUSPEND)
5823 		ret = rdev->desc->ops->resume(rdev);
5824 
5825 	regulator_unlock(rdev);
5826 
5827 	return ret;
5828 }
5829 #else /* !CONFIG_SUSPEND */
5830 
5831 #define regulator_suspend	NULL
5832 #define regulator_resume	NULL
5833 
5834 #endif /* !CONFIG_SUSPEND */
5835 
5836 #ifdef CONFIG_PM
5837 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5838 	.suspend	= regulator_suspend,
5839 	.resume		= regulator_resume,
5840 };
5841 #endif
5842 
5843 struct class regulator_class = {
5844 	.name = "regulator",
5845 	.dev_release = regulator_dev_release,
5846 	.dev_groups = regulator_dev_groups,
5847 #ifdef CONFIG_PM
5848 	.pm = &regulator_pm_ops,
5849 #endif
5850 };
5851 /**
5852  * regulator_has_full_constraints - the system has fully specified constraints
5853  *
5854  * Calling this function will cause the regulator API to disable all
5855  * regulators which have a zero use count and don't have an always_on
5856  * constraint in a late_initcall.
5857  *
5858  * The intention is that this will become the default behaviour in a
5859  * future kernel release so users are encouraged to use this facility
5860  * now.
5861  */
5862 void regulator_has_full_constraints(void)
5863 {
5864 	has_full_constraints = 1;
5865 }
5866 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5867 
5868 /**
5869  * rdev_get_drvdata - get rdev regulator driver data
5870  * @rdev: regulator
5871  *
5872  * Get rdev regulator driver private data. This call can be used in the
5873  * regulator driver context.
5874  */
5875 void *rdev_get_drvdata(struct regulator_dev *rdev)
5876 {
5877 	return rdev->reg_data;
5878 }
5879 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5880 
5881 /**
5882  * regulator_get_drvdata - get regulator driver data
5883  * @regulator: regulator
5884  *
5885  * Get regulator driver private data. This call can be used in the consumer
5886  * driver context when non API regulator specific functions need to be called.
5887  */
5888 void *regulator_get_drvdata(struct regulator *regulator)
5889 {
5890 	return regulator->rdev->reg_data;
5891 }
5892 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5893 
5894 /**
5895  * regulator_set_drvdata - set regulator driver data
5896  * @regulator: regulator
5897  * @data: data
5898  */
5899 void regulator_set_drvdata(struct regulator *regulator, void *data)
5900 {
5901 	regulator->rdev->reg_data = data;
5902 }
5903 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5904 
5905 /**
5906  * rdev_get_id - get regulator ID
5907  * @rdev: regulator
5908  */
5909 int rdev_get_id(struct regulator_dev *rdev)
5910 {
5911 	return rdev->desc->id;
5912 }
5913 EXPORT_SYMBOL_GPL(rdev_get_id);
5914 
5915 struct device *rdev_get_dev(struct regulator_dev *rdev)
5916 {
5917 	return &rdev->dev;
5918 }
5919 EXPORT_SYMBOL_GPL(rdev_get_dev);
5920 
5921 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5922 {
5923 	return rdev->regmap;
5924 }
5925 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5926 
5927 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5928 {
5929 	return reg_init_data->driver_data;
5930 }
5931 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5932 
5933 #ifdef CONFIG_DEBUG_FS
5934 static int supply_map_show(struct seq_file *sf, void *data)
5935 {
5936 	struct regulator_map *map;
5937 
5938 	list_for_each_entry(map, &regulator_map_list, list) {
5939 		seq_printf(sf, "%s -> %s.%s\n",
5940 				rdev_get_name(map->regulator), map->dev_name,
5941 				map->supply);
5942 	}
5943 
5944 	return 0;
5945 }
5946 DEFINE_SHOW_ATTRIBUTE(supply_map);
5947 
5948 struct summary_data {
5949 	struct seq_file *s;
5950 	struct regulator_dev *parent;
5951 	int level;
5952 };
5953 
5954 static void regulator_summary_show_subtree(struct seq_file *s,
5955 					   struct regulator_dev *rdev,
5956 					   int level);
5957 
5958 static int regulator_summary_show_children(struct device *dev, void *data)
5959 {
5960 	struct regulator_dev *rdev = dev_to_rdev(dev);
5961 	struct summary_data *summary_data = data;
5962 
5963 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5964 		regulator_summary_show_subtree(summary_data->s, rdev,
5965 					       summary_data->level + 1);
5966 
5967 	return 0;
5968 }
5969 
5970 static void regulator_summary_show_subtree(struct seq_file *s,
5971 					   struct regulator_dev *rdev,
5972 					   int level)
5973 {
5974 	struct regulation_constraints *c;
5975 	struct regulator *consumer;
5976 	struct summary_data summary_data;
5977 	unsigned int opmode;
5978 
5979 	if (!rdev)
5980 		return;
5981 
5982 	opmode = _regulator_get_mode_unlocked(rdev);
5983 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5984 		   level * 3 + 1, "",
5985 		   30 - level * 3, rdev_get_name(rdev),
5986 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5987 		   regulator_opmode_to_str(opmode));
5988 
5989 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5990 	seq_printf(s, "%5dmA ",
5991 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5992 
5993 	c = rdev->constraints;
5994 	if (c) {
5995 		switch (rdev->desc->type) {
5996 		case REGULATOR_VOLTAGE:
5997 			seq_printf(s, "%5dmV %5dmV ",
5998 				   c->min_uV / 1000, c->max_uV / 1000);
5999 			break;
6000 		case REGULATOR_CURRENT:
6001 			seq_printf(s, "%5dmA %5dmA ",
6002 				   c->min_uA / 1000, c->max_uA / 1000);
6003 			break;
6004 		}
6005 	}
6006 
6007 	seq_puts(s, "\n");
6008 
6009 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6010 		if (consumer->dev && consumer->dev->class == &regulator_class)
6011 			continue;
6012 
6013 		seq_printf(s, "%*s%-*s ",
6014 			   (level + 1) * 3 + 1, "",
6015 			   30 - (level + 1) * 3,
6016 			   consumer->supply_name ? consumer->supply_name :
6017 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6018 
6019 		switch (rdev->desc->type) {
6020 		case REGULATOR_VOLTAGE:
6021 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6022 				   consumer->enable_count,
6023 				   consumer->uA_load / 1000,
6024 				   consumer->uA_load && !consumer->enable_count ?
6025 				   '*' : ' ',
6026 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6027 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6028 			break;
6029 		case REGULATOR_CURRENT:
6030 			break;
6031 		}
6032 
6033 		seq_puts(s, "\n");
6034 	}
6035 
6036 	summary_data.s = s;
6037 	summary_data.level = level;
6038 	summary_data.parent = rdev;
6039 
6040 	class_for_each_device(&regulator_class, NULL, &summary_data,
6041 			      regulator_summary_show_children);
6042 }
6043 
6044 struct summary_lock_data {
6045 	struct ww_acquire_ctx *ww_ctx;
6046 	struct regulator_dev **new_contended_rdev;
6047 	struct regulator_dev **old_contended_rdev;
6048 };
6049 
6050 static int regulator_summary_lock_one(struct device *dev, void *data)
6051 {
6052 	struct regulator_dev *rdev = dev_to_rdev(dev);
6053 	struct summary_lock_data *lock_data = data;
6054 	int ret = 0;
6055 
6056 	if (rdev != *lock_data->old_contended_rdev) {
6057 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6058 
6059 		if (ret == -EDEADLK)
6060 			*lock_data->new_contended_rdev = rdev;
6061 		else
6062 			WARN_ON_ONCE(ret);
6063 	} else {
6064 		*lock_data->old_contended_rdev = NULL;
6065 	}
6066 
6067 	return ret;
6068 }
6069 
6070 static int regulator_summary_unlock_one(struct device *dev, void *data)
6071 {
6072 	struct regulator_dev *rdev = dev_to_rdev(dev);
6073 	struct summary_lock_data *lock_data = data;
6074 
6075 	if (lock_data) {
6076 		if (rdev == *lock_data->new_contended_rdev)
6077 			return -EDEADLK;
6078 	}
6079 
6080 	regulator_unlock(rdev);
6081 
6082 	return 0;
6083 }
6084 
6085 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6086 				      struct regulator_dev **new_contended_rdev,
6087 				      struct regulator_dev **old_contended_rdev)
6088 {
6089 	struct summary_lock_data lock_data;
6090 	int ret;
6091 
6092 	lock_data.ww_ctx = ww_ctx;
6093 	lock_data.new_contended_rdev = new_contended_rdev;
6094 	lock_data.old_contended_rdev = old_contended_rdev;
6095 
6096 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6097 				    regulator_summary_lock_one);
6098 	if (ret)
6099 		class_for_each_device(&regulator_class, NULL, &lock_data,
6100 				      regulator_summary_unlock_one);
6101 
6102 	return ret;
6103 }
6104 
6105 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6106 {
6107 	struct regulator_dev *new_contended_rdev = NULL;
6108 	struct regulator_dev *old_contended_rdev = NULL;
6109 	int err;
6110 
6111 	mutex_lock(&regulator_list_mutex);
6112 
6113 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6114 
6115 	do {
6116 		if (new_contended_rdev) {
6117 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6118 			old_contended_rdev = new_contended_rdev;
6119 			old_contended_rdev->ref_cnt++;
6120 			old_contended_rdev->mutex_owner = current;
6121 		}
6122 
6123 		err = regulator_summary_lock_all(ww_ctx,
6124 						 &new_contended_rdev,
6125 						 &old_contended_rdev);
6126 
6127 		if (old_contended_rdev)
6128 			regulator_unlock(old_contended_rdev);
6129 
6130 	} while (err == -EDEADLK);
6131 
6132 	ww_acquire_done(ww_ctx);
6133 }
6134 
6135 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6136 {
6137 	class_for_each_device(&regulator_class, NULL, NULL,
6138 			      regulator_summary_unlock_one);
6139 	ww_acquire_fini(ww_ctx);
6140 
6141 	mutex_unlock(&regulator_list_mutex);
6142 }
6143 
6144 static int regulator_summary_show_roots(struct device *dev, void *data)
6145 {
6146 	struct regulator_dev *rdev = dev_to_rdev(dev);
6147 	struct seq_file *s = data;
6148 
6149 	if (!rdev->supply)
6150 		regulator_summary_show_subtree(s, rdev, 0);
6151 
6152 	return 0;
6153 }
6154 
6155 static int regulator_summary_show(struct seq_file *s, void *data)
6156 {
6157 	struct ww_acquire_ctx ww_ctx;
6158 
6159 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6160 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6161 
6162 	regulator_summary_lock(&ww_ctx);
6163 
6164 	class_for_each_device(&regulator_class, NULL, s,
6165 			      regulator_summary_show_roots);
6166 
6167 	regulator_summary_unlock(&ww_ctx);
6168 
6169 	return 0;
6170 }
6171 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6172 #endif /* CONFIG_DEBUG_FS */
6173 
6174 static int __init regulator_init(void)
6175 {
6176 	int ret;
6177 
6178 	ret = class_register(&regulator_class);
6179 
6180 	debugfs_root = debugfs_create_dir("regulator", NULL);
6181 	if (IS_ERR(debugfs_root))
6182 		pr_warn("regulator: Failed to create debugfs directory\n");
6183 
6184 #ifdef CONFIG_DEBUG_FS
6185 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6186 			    &supply_map_fops);
6187 
6188 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6189 			    NULL, &regulator_summary_fops);
6190 #endif
6191 	regulator_dummy_init();
6192 
6193 	regulator_coupler_register(&generic_regulator_coupler);
6194 
6195 	return ret;
6196 }
6197 
6198 /* init early to allow our consumers to complete system booting */
6199 core_initcall(regulator_init);
6200 
6201 static int regulator_late_cleanup(struct device *dev, void *data)
6202 {
6203 	struct regulator_dev *rdev = dev_to_rdev(dev);
6204 	struct regulation_constraints *c = rdev->constraints;
6205 	int ret;
6206 
6207 	if (c && c->always_on)
6208 		return 0;
6209 
6210 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6211 		return 0;
6212 
6213 	regulator_lock(rdev);
6214 
6215 	if (rdev->use_count)
6216 		goto unlock;
6217 
6218 	/* If reading the status failed, assume that it's off. */
6219 	if (_regulator_is_enabled(rdev) <= 0)
6220 		goto unlock;
6221 
6222 	if (have_full_constraints()) {
6223 		/* We log since this may kill the system if it goes
6224 		 * wrong.
6225 		 */
6226 		rdev_info(rdev, "disabling\n");
6227 		ret = _regulator_do_disable(rdev);
6228 		if (ret != 0)
6229 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6230 	} else {
6231 		/* The intention is that in future we will
6232 		 * assume that full constraints are provided
6233 		 * so warn even if we aren't going to do
6234 		 * anything here.
6235 		 */
6236 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6237 	}
6238 
6239 unlock:
6240 	regulator_unlock(rdev);
6241 
6242 	return 0;
6243 }
6244 
6245 static void regulator_init_complete_work_function(struct work_struct *work)
6246 {
6247 	/*
6248 	 * Regulators may had failed to resolve their input supplies
6249 	 * when were registered, either because the input supply was
6250 	 * not registered yet or because its parent device was not
6251 	 * bound yet. So attempt to resolve the input supplies for
6252 	 * pending regulators before trying to disable unused ones.
6253 	 */
6254 	class_for_each_device(&regulator_class, NULL, NULL,
6255 			      regulator_register_resolve_supply);
6256 
6257 	/* If we have a full configuration then disable any regulators
6258 	 * we have permission to change the status for and which are
6259 	 * not in use or always_on.  This is effectively the default
6260 	 * for DT and ACPI as they have full constraints.
6261 	 */
6262 	class_for_each_device(&regulator_class, NULL, NULL,
6263 			      regulator_late_cleanup);
6264 }
6265 
6266 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6267 			    regulator_init_complete_work_function);
6268 
6269 static int __init regulator_init_complete(void)
6270 {
6271 	/*
6272 	 * Since DT doesn't provide an idiomatic mechanism for
6273 	 * enabling full constraints and since it's much more natural
6274 	 * with DT to provide them just assume that a DT enabled
6275 	 * system has full constraints.
6276 	 */
6277 	if (of_have_populated_dt())
6278 		has_full_constraints = true;
6279 
6280 	/*
6281 	 * We punt completion for an arbitrary amount of time since
6282 	 * systems like distros will load many drivers from userspace
6283 	 * so consumers might not always be ready yet, this is
6284 	 * particularly an issue with laptops where this might bounce
6285 	 * the display off then on.  Ideally we'd get a notification
6286 	 * from userspace when this happens but we don't so just wait
6287 	 * a bit and hope we waited long enough.  It'd be better if
6288 	 * we'd only do this on systems that need it, and a kernel
6289 	 * command line option might be useful.
6290 	 */
6291 	schedule_delayed_work(&regulator_init_complete_work,
6292 			      msecs_to_jiffies(30000));
6293 
6294 	return 0;
6295 }
6296 late_initcall_sync(regulator_init_complete);
6297