1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static LIST_HEAD(regulator_coupler_list); 54 static bool has_full_constraints; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator_enable_gpio 72 * 73 * Management for shared enable GPIO pin 74 */ 75 struct regulator_enable_gpio { 76 struct list_head list; 77 struct gpio_desc *gpiod; 78 u32 enable_count; /* a number of enabled shared GPIO */ 79 u32 request_count; /* a number of requested shared GPIO */ 80 }; 81 82 /* 83 * struct regulator_supply_alias 84 * 85 * Used to map lookups for a supply onto an alternative device. 86 */ 87 struct regulator_supply_alias { 88 struct list_head list; 89 struct device *src_dev; 90 const char *src_supply; 91 struct device *alias_dev; 92 const char *alias_supply; 93 }; 94 95 static int _regulator_is_enabled(struct regulator_dev *rdev); 96 static int _regulator_disable(struct regulator *regulator); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static struct regulator *create_regulator(struct regulator_dev *rdev, 106 struct device *dev, 107 const char *supply_name); 108 static void _regulator_put(struct regulator *regulator); 109 110 const char *rdev_get_name(struct regulator_dev *rdev) 111 { 112 if (rdev->constraints && rdev->constraints->name) 113 return rdev->constraints->name; 114 else if (rdev->desc->name) 115 return rdev->desc->name; 116 else 117 return ""; 118 } 119 120 static bool have_full_constraints(void) 121 { 122 return has_full_constraints || of_have_populated_dt(); 123 } 124 125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 126 { 127 if (!rdev->constraints) { 128 rdev_err(rdev, "no constraints\n"); 129 return false; 130 } 131 132 if (rdev->constraints->valid_ops_mask & ops) 133 return true; 134 135 return false; 136 } 137 138 /** 139 * regulator_lock_nested - lock a single regulator 140 * @rdev: regulator source 141 * @ww_ctx: w/w mutex acquire context 142 * 143 * This function can be called many times by one task on 144 * a single regulator and its mutex will be locked only 145 * once. If a task, which is calling this function is other 146 * than the one, which initially locked the mutex, it will 147 * wait on mutex. 148 */ 149 static inline int regulator_lock_nested(struct regulator_dev *rdev, 150 struct ww_acquire_ctx *ww_ctx) 151 { 152 bool lock = false; 153 int ret = 0; 154 155 mutex_lock(®ulator_nesting_mutex); 156 157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 158 if (rdev->mutex_owner == current) 159 rdev->ref_cnt++; 160 else 161 lock = true; 162 163 if (lock) { 164 mutex_unlock(®ulator_nesting_mutex); 165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 166 mutex_lock(®ulator_nesting_mutex); 167 } 168 } else { 169 lock = true; 170 } 171 172 if (lock && ret != -EDEADLK) { 173 rdev->ref_cnt++; 174 rdev->mutex_owner = current; 175 } 176 177 mutex_unlock(®ulator_nesting_mutex); 178 179 return ret; 180 } 181 182 /** 183 * regulator_lock - lock a single regulator 184 * @rdev: regulator source 185 * 186 * This function can be called many times by one task on 187 * a single regulator and its mutex will be locked only 188 * once. If a task, which is calling this function is other 189 * than the one, which initially locked the mutex, it will 190 * wait on mutex. 191 */ 192 void regulator_lock(struct regulator_dev *rdev) 193 { 194 regulator_lock_nested(rdev, NULL); 195 } 196 EXPORT_SYMBOL_GPL(regulator_lock); 197 198 /** 199 * regulator_unlock - unlock a single regulator 200 * @rdev: regulator_source 201 * 202 * This function unlocks the mutex when the 203 * reference counter reaches 0. 204 */ 205 void regulator_unlock(struct regulator_dev *rdev) 206 { 207 mutex_lock(®ulator_nesting_mutex); 208 209 if (--rdev->ref_cnt == 0) { 210 rdev->mutex_owner = NULL; 211 ww_mutex_unlock(&rdev->mutex); 212 } 213 214 WARN_ON_ONCE(rdev->ref_cnt < 0); 215 216 mutex_unlock(®ulator_nesting_mutex); 217 } 218 EXPORT_SYMBOL_GPL(regulator_unlock); 219 220 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 221 { 222 struct regulator_dev *c_rdev; 223 int i; 224 225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 226 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 227 228 if (rdev->supply->rdev == c_rdev) 229 return true; 230 } 231 232 return false; 233 } 234 235 static void regulator_unlock_recursive(struct regulator_dev *rdev, 236 unsigned int n_coupled) 237 { 238 struct regulator_dev *c_rdev; 239 int i; 240 241 for (i = n_coupled; i > 0; i--) { 242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 243 244 if (!c_rdev) 245 continue; 246 247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 248 regulator_unlock_recursive( 249 c_rdev->supply->rdev, 250 c_rdev->coupling_desc.n_coupled); 251 252 regulator_unlock(c_rdev); 253 } 254 } 255 256 static int regulator_lock_recursive(struct regulator_dev *rdev, 257 struct regulator_dev **new_contended_rdev, 258 struct regulator_dev **old_contended_rdev, 259 struct ww_acquire_ctx *ww_ctx) 260 { 261 struct regulator_dev *c_rdev; 262 int i, err; 263 264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 265 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 266 267 if (!c_rdev) 268 continue; 269 270 if (c_rdev != *old_contended_rdev) { 271 err = regulator_lock_nested(c_rdev, ww_ctx); 272 if (err) { 273 if (err == -EDEADLK) { 274 *new_contended_rdev = c_rdev; 275 goto err_unlock; 276 } 277 278 /* shouldn't happen */ 279 WARN_ON_ONCE(err != -EALREADY); 280 } 281 } else { 282 *old_contended_rdev = NULL; 283 } 284 285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 286 err = regulator_lock_recursive(c_rdev->supply->rdev, 287 new_contended_rdev, 288 old_contended_rdev, 289 ww_ctx); 290 if (err) { 291 regulator_unlock(c_rdev); 292 goto err_unlock; 293 } 294 } 295 } 296 297 return 0; 298 299 err_unlock: 300 regulator_unlock_recursive(rdev, i); 301 302 return err; 303 } 304 305 /** 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 307 * regulators 308 * @rdev: regulator source 309 * @ww_ctx: w/w mutex acquire context 310 * 311 * Unlock all regulators related with rdev by coupling or supplying. 312 */ 313 static void regulator_unlock_dependent(struct regulator_dev *rdev, 314 struct ww_acquire_ctx *ww_ctx) 315 { 316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 317 ww_acquire_fini(ww_ctx); 318 } 319 320 /** 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 322 * @rdev: regulator source 323 * @ww_ctx: w/w mutex acquire context 324 * 325 * This function as a wrapper on regulator_lock_recursive(), which locks 326 * all regulators related with rdev by coupling or supplying. 327 */ 328 static void regulator_lock_dependent(struct regulator_dev *rdev, 329 struct ww_acquire_ctx *ww_ctx) 330 { 331 struct regulator_dev *new_contended_rdev = NULL; 332 struct regulator_dev *old_contended_rdev = NULL; 333 int err; 334 335 mutex_lock(®ulator_list_mutex); 336 337 ww_acquire_init(ww_ctx, ®ulator_ww_class); 338 339 do { 340 if (new_contended_rdev) { 341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 342 old_contended_rdev = new_contended_rdev; 343 old_contended_rdev->ref_cnt++; 344 } 345 346 err = regulator_lock_recursive(rdev, 347 &new_contended_rdev, 348 &old_contended_rdev, 349 ww_ctx); 350 351 if (old_contended_rdev) 352 regulator_unlock(old_contended_rdev); 353 354 } while (err == -EDEADLK); 355 356 ww_acquire_done(ww_ctx); 357 358 mutex_unlock(®ulator_list_mutex); 359 } 360 361 /** 362 * of_get_child_regulator - get a child regulator device node 363 * based on supply name 364 * @parent: Parent device node 365 * @prop_name: Combination regulator supply name and "-supply" 366 * 367 * Traverse all child nodes. 368 * Extract the child regulator device node corresponding to the supply name. 369 * returns the device node corresponding to the regulator if found, else 370 * returns NULL. 371 */ 372 static struct device_node *of_get_child_regulator(struct device_node *parent, 373 const char *prop_name) 374 { 375 struct device_node *regnode = NULL; 376 struct device_node *child = NULL; 377 378 for_each_child_of_node(parent, child) { 379 regnode = of_parse_phandle(child, prop_name, 0); 380 381 if (!regnode) { 382 regnode = of_get_child_regulator(child, prop_name); 383 if (regnode) 384 goto err_node_put; 385 } else { 386 goto err_node_put; 387 } 388 } 389 return NULL; 390 391 err_node_put: 392 of_node_put(child); 393 return regnode; 394 } 395 396 /** 397 * of_get_regulator - get a regulator device node based on supply name 398 * @dev: Device pointer for the consumer (of regulator) device 399 * @supply: regulator supply name 400 * 401 * Extract the regulator device node corresponding to the supply name. 402 * returns the device node corresponding to the regulator if found, else 403 * returns NULL. 404 */ 405 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 406 { 407 struct device_node *regnode = NULL; 408 char prop_name[32]; /* 32 is max size of property name */ 409 410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 411 412 snprintf(prop_name, 32, "%s-supply", supply); 413 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 414 415 if (!regnode) { 416 regnode = of_get_child_regulator(dev->of_node, prop_name); 417 if (regnode) 418 return regnode; 419 420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 421 prop_name, dev->of_node); 422 return NULL; 423 } 424 return regnode; 425 } 426 427 /* Platform voltage constraint check */ 428 int regulator_check_voltage(struct regulator_dev *rdev, 429 int *min_uV, int *max_uV) 430 { 431 BUG_ON(*min_uV > *max_uV); 432 433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 434 rdev_err(rdev, "voltage operation not allowed\n"); 435 return -EPERM; 436 } 437 438 if (*max_uV > rdev->constraints->max_uV) 439 *max_uV = rdev->constraints->max_uV; 440 if (*min_uV < rdev->constraints->min_uV) 441 *min_uV = rdev->constraints->min_uV; 442 443 if (*min_uV > *max_uV) { 444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 445 *min_uV, *max_uV); 446 return -EINVAL; 447 } 448 449 return 0; 450 } 451 452 /* return 0 if the state is valid */ 453 static int regulator_check_states(suspend_state_t state) 454 { 455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 456 } 457 458 /* Make sure we select a voltage that suits the needs of all 459 * regulator consumers 460 */ 461 int regulator_check_consumers(struct regulator_dev *rdev, 462 int *min_uV, int *max_uV, 463 suspend_state_t state) 464 { 465 struct regulator *regulator; 466 struct regulator_voltage *voltage; 467 468 list_for_each_entry(regulator, &rdev->consumer_list, list) { 469 voltage = ®ulator->voltage[state]; 470 /* 471 * Assume consumers that didn't say anything are OK 472 * with anything in the constraint range. 473 */ 474 if (!voltage->min_uV && !voltage->max_uV) 475 continue; 476 477 if (*max_uV > voltage->max_uV) 478 *max_uV = voltage->max_uV; 479 if (*min_uV < voltage->min_uV) 480 *min_uV = voltage->min_uV; 481 } 482 483 if (*min_uV > *max_uV) { 484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 485 *min_uV, *max_uV); 486 return -EINVAL; 487 } 488 489 return 0; 490 } 491 492 /* current constraint check */ 493 static int regulator_check_current_limit(struct regulator_dev *rdev, 494 int *min_uA, int *max_uA) 495 { 496 BUG_ON(*min_uA > *max_uA); 497 498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 499 rdev_err(rdev, "current operation not allowed\n"); 500 return -EPERM; 501 } 502 503 if (*max_uA > rdev->constraints->max_uA) 504 *max_uA = rdev->constraints->max_uA; 505 if (*min_uA < rdev->constraints->min_uA) 506 *min_uA = rdev->constraints->min_uA; 507 508 if (*min_uA > *max_uA) { 509 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 510 *min_uA, *max_uA); 511 return -EINVAL; 512 } 513 514 return 0; 515 } 516 517 /* operating mode constraint check */ 518 static int regulator_mode_constrain(struct regulator_dev *rdev, 519 unsigned int *mode) 520 { 521 switch (*mode) { 522 case REGULATOR_MODE_FAST: 523 case REGULATOR_MODE_NORMAL: 524 case REGULATOR_MODE_IDLE: 525 case REGULATOR_MODE_STANDBY: 526 break; 527 default: 528 rdev_err(rdev, "invalid mode %x specified\n", *mode); 529 return -EINVAL; 530 } 531 532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 533 rdev_err(rdev, "mode operation not allowed\n"); 534 return -EPERM; 535 } 536 537 /* The modes are bitmasks, the most power hungry modes having 538 * the lowest values. If the requested mode isn't supported 539 * try higher modes. */ 540 while (*mode) { 541 if (rdev->constraints->valid_modes_mask & *mode) 542 return 0; 543 *mode /= 2; 544 } 545 546 return -EINVAL; 547 } 548 549 static inline struct regulator_state * 550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 551 { 552 if (rdev->constraints == NULL) 553 return NULL; 554 555 switch (state) { 556 case PM_SUSPEND_STANDBY: 557 return &rdev->constraints->state_standby; 558 case PM_SUSPEND_MEM: 559 return &rdev->constraints->state_mem; 560 case PM_SUSPEND_MAX: 561 return &rdev->constraints->state_disk; 562 default: 563 return NULL; 564 } 565 } 566 567 static ssize_t regulator_uV_show(struct device *dev, 568 struct device_attribute *attr, char *buf) 569 { 570 struct regulator_dev *rdev = dev_get_drvdata(dev); 571 int uV; 572 573 regulator_lock(rdev); 574 uV = regulator_get_voltage_rdev(rdev); 575 regulator_unlock(rdev); 576 577 if (uV < 0) 578 return uV; 579 return sprintf(buf, "%d\n", uV); 580 } 581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 582 583 static ssize_t regulator_uA_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct regulator_dev *rdev = dev_get_drvdata(dev); 587 588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 589 } 590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 591 592 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 593 char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 598 } 599 static DEVICE_ATTR_RO(name); 600 601 static const char *regulator_opmode_to_str(int mode) 602 { 603 switch (mode) { 604 case REGULATOR_MODE_FAST: 605 return "fast"; 606 case REGULATOR_MODE_NORMAL: 607 return "normal"; 608 case REGULATOR_MODE_IDLE: 609 return "idle"; 610 case REGULATOR_MODE_STANDBY: 611 return "standby"; 612 } 613 return "unknown"; 614 } 615 616 static ssize_t regulator_print_opmode(char *buf, int mode) 617 { 618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 619 } 620 621 static ssize_t regulator_opmode_show(struct device *dev, 622 struct device_attribute *attr, char *buf) 623 { 624 struct regulator_dev *rdev = dev_get_drvdata(dev); 625 626 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 627 } 628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 629 630 static ssize_t regulator_print_state(char *buf, int state) 631 { 632 if (state > 0) 633 return sprintf(buf, "enabled\n"); 634 else if (state == 0) 635 return sprintf(buf, "disabled\n"); 636 else 637 return sprintf(buf, "unknown\n"); 638 } 639 640 static ssize_t regulator_state_show(struct device *dev, 641 struct device_attribute *attr, char *buf) 642 { 643 struct regulator_dev *rdev = dev_get_drvdata(dev); 644 ssize_t ret; 645 646 regulator_lock(rdev); 647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 648 regulator_unlock(rdev); 649 650 return ret; 651 } 652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 653 654 static ssize_t regulator_status_show(struct device *dev, 655 struct device_attribute *attr, char *buf) 656 { 657 struct regulator_dev *rdev = dev_get_drvdata(dev); 658 int status; 659 char *label; 660 661 status = rdev->desc->ops->get_status(rdev); 662 if (status < 0) 663 return status; 664 665 switch (status) { 666 case REGULATOR_STATUS_OFF: 667 label = "off"; 668 break; 669 case REGULATOR_STATUS_ON: 670 label = "on"; 671 break; 672 case REGULATOR_STATUS_ERROR: 673 label = "error"; 674 break; 675 case REGULATOR_STATUS_FAST: 676 label = "fast"; 677 break; 678 case REGULATOR_STATUS_NORMAL: 679 label = "normal"; 680 break; 681 case REGULATOR_STATUS_IDLE: 682 label = "idle"; 683 break; 684 case REGULATOR_STATUS_STANDBY: 685 label = "standby"; 686 break; 687 case REGULATOR_STATUS_BYPASS: 688 label = "bypass"; 689 break; 690 case REGULATOR_STATUS_UNDEFINED: 691 label = "undefined"; 692 break; 693 default: 694 return -ERANGE; 695 } 696 697 return sprintf(buf, "%s\n", label); 698 } 699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 700 701 static ssize_t regulator_min_uA_show(struct device *dev, 702 struct device_attribute *attr, char *buf) 703 { 704 struct regulator_dev *rdev = dev_get_drvdata(dev); 705 706 if (!rdev->constraints) 707 return sprintf(buf, "constraint not defined\n"); 708 709 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 710 } 711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 712 713 static ssize_t regulator_max_uA_show(struct device *dev, 714 struct device_attribute *attr, char *buf) 715 { 716 struct regulator_dev *rdev = dev_get_drvdata(dev); 717 718 if (!rdev->constraints) 719 return sprintf(buf, "constraint not defined\n"); 720 721 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 722 } 723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 724 725 static ssize_t regulator_min_uV_show(struct device *dev, 726 struct device_attribute *attr, char *buf) 727 { 728 struct regulator_dev *rdev = dev_get_drvdata(dev); 729 730 if (!rdev->constraints) 731 return sprintf(buf, "constraint not defined\n"); 732 733 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 734 } 735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 736 737 static ssize_t regulator_max_uV_show(struct device *dev, 738 struct device_attribute *attr, char *buf) 739 { 740 struct regulator_dev *rdev = dev_get_drvdata(dev); 741 742 if (!rdev->constraints) 743 return sprintf(buf, "constraint not defined\n"); 744 745 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 746 } 747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 748 749 static ssize_t regulator_total_uA_show(struct device *dev, 750 struct device_attribute *attr, char *buf) 751 { 752 struct regulator_dev *rdev = dev_get_drvdata(dev); 753 struct regulator *regulator; 754 int uA = 0; 755 756 regulator_lock(rdev); 757 list_for_each_entry(regulator, &rdev->consumer_list, list) { 758 if (regulator->enable_count) 759 uA += regulator->uA_load; 760 } 761 regulator_unlock(rdev); 762 return sprintf(buf, "%d\n", uA); 763 } 764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 765 766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 767 char *buf) 768 { 769 struct regulator_dev *rdev = dev_get_drvdata(dev); 770 return sprintf(buf, "%d\n", rdev->use_count); 771 } 772 static DEVICE_ATTR_RO(num_users); 773 774 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 775 char *buf) 776 { 777 struct regulator_dev *rdev = dev_get_drvdata(dev); 778 779 switch (rdev->desc->type) { 780 case REGULATOR_VOLTAGE: 781 return sprintf(buf, "voltage\n"); 782 case REGULATOR_CURRENT: 783 return sprintf(buf, "current\n"); 784 } 785 return sprintf(buf, "unknown\n"); 786 } 787 static DEVICE_ATTR_RO(type); 788 789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 790 struct device_attribute *attr, char *buf) 791 { 792 struct regulator_dev *rdev = dev_get_drvdata(dev); 793 794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 795 } 796 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 797 regulator_suspend_mem_uV_show, NULL); 798 799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 805 } 806 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 807 regulator_suspend_disk_uV_show, NULL); 808 809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 815 } 816 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 817 regulator_suspend_standby_uV_show, NULL); 818 819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 820 struct device_attribute *attr, char *buf) 821 { 822 struct regulator_dev *rdev = dev_get_drvdata(dev); 823 824 return regulator_print_opmode(buf, 825 rdev->constraints->state_mem.mode); 826 } 827 static DEVICE_ATTR(suspend_mem_mode, 0444, 828 regulator_suspend_mem_mode_show, NULL); 829 830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 831 struct device_attribute *attr, char *buf) 832 { 833 struct regulator_dev *rdev = dev_get_drvdata(dev); 834 835 return regulator_print_opmode(buf, 836 rdev->constraints->state_disk.mode); 837 } 838 static DEVICE_ATTR(suspend_disk_mode, 0444, 839 regulator_suspend_disk_mode_show, NULL); 840 841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 842 struct device_attribute *attr, char *buf) 843 { 844 struct regulator_dev *rdev = dev_get_drvdata(dev); 845 846 return regulator_print_opmode(buf, 847 rdev->constraints->state_standby.mode); 848 } 849 static DEVICE_ATTR(suspend_standby_mode, 0444, 850 regulator_suspend_standby_mode_show, NULL); 851 852 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 857 return regulator_print_state(buf, 858 rdev->constraints->state_mem.enabled); 859 } 860 static DEVICE_ATTR(suspend_mem_state, 0444, 861 regulator_suspend_mem_state_show, NULL); 862 863 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 864 struct device_attribute *attr, char *buf) 865 { 866 struct regulator_dev *rdev = dev_get_drvdata(dev); 867 868 return regulator_print_state(buf, 869 rdev->constraints->state_disk.enabled); 870 } 871 static DEVICE_ATTR(suspend_disk_state, 0444, 872 regulator_suspend_disk_state_show, NULL); 873 874 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct regulator_dev *rdev = dev_get_drvdata(dev); 878 879 return regulator_print_state(buf, 880 rdev->constraints->state_standby.enabled); 881 } 882 static DEVICE_ATTR(suspend_standby_state, 0444, 883 regulator_suspend_standby_state_show, NULL); 884 885 static ssize_t regulator_bypass_show(struct device *dev, 886 struct device_attribute *attr, char *buf) 887 { 888 struct regulator_dev *rdev = dev_get_drvdata(dev); 889 const char *report; 890 bool bypass; 891 int ret; 892 893 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 894 895 if (ret != 0) 896 report = "unknown"; 897 else if (bypass) 898 report = "enabled"; 899 else 900 report = "disabled"; 901 902 return sprintf(buf, "%s\n", report); 903 } 904 static DEVICE_ATTR(bypass, 0444, 905 regulator_bypass_show, NULL); 906 907 /* Calculate the new optimum regulator operating mode based on the new total 908 * consumer load. All locks held by caller */ 909 static int drms_uA_update(struct regulator_dev *rdev) 910 { 911 struct regulator *sibling; 912 int current_uA = 0, output_uV, input_uV, err; 913 unsigned int mode; 914 915 /* 916 * first check to see if we can set modes at all, otherwise just 917 * tell the consumer everything is OK. 918 */ 919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 920 rdev_dbg(rdev, "DRMS operation not allowed\n"); 921 return 0; 922 } 923 924 if (!rdev->desc->ops->get_optimum_mode && 925 !rdev->desc->ops->set_load) 926 return 0; 927 928 if (!rdev->desc->ops->set_mode && 929 !rdev->desc->ops->set_load) 930 return -EINVAL; 931 932 /* calc total requested load */ 933 list_for_each_entry(sibling, &rdev->consumer_list, list) { 934 if (sibling->enable_count) 935 current_uA += sibling->uA_load; 936 } 937 938 current_uA += rdev->constraints->system_load; 939 940 if (rdev->desc->ops->set_load) { 941 /* set the optimum mode for our new total regulator load */ 942 err = rdev->desc->ops->set_load(rdev, current_uA); 943 if (err < 0) 944 rdev_err(rdev, "failed to set load %d\n", current_uA); 945 } else { 946 /* get output voltage */ 947 output_uV = regulator_get_voltage_rdev(rdev); 948 if (output_uV <= 0) { 949 rdev_err(rdev, "invalid output voltage found\n"); 950 return -EINVAL; 951 } 952 953 /* get input voltage */ 954 input_uV = 0; 955 if (rdev->supply) 956 input_uV = regulator_get_voltage(rdev->supply); 957 if (input_uV <= 0) 958 input_uV = rdev->constraints->input_uV; 959 if (input_uV <= 0) { 960 rdev_err(rdev, "invalid input voltage found\n"); 961 return -EINVAL; 962 } 963 964 /* now get the optimum mode for our new total regulator load */ 965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 966 output_uV, current_uA); 967 968 /* check the new mode is allowed */ 969 err = regulator_mode_constrain(rdev, &mode); 970 if (err < 0) { 971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 972 current_uA, input_uV, output_uV); 973 return err; 974 } 975 976 err = rdev->desc->ops->set_mode(rdev, mode); 977 if (err < 0) 978 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 979 } 980 981 return err; 982 } 983 984 static int suspend_set_state(struct regulator_dev *rdev, 985 suspend_state_t state) 986 { 987 int ret = 0; 988 struct regulator_state *rstate; 989 990 rstate = regulator_get_suspend_state(rdev, state); 991 if (rstate == NULL) 992 return 0; 993 994 /* If we have no suspend mode configuration don't set anything; 995 * only warn if the driver implements set_suspend_voltage or 996 * set_suspend_mode callback. 997 */ 998 if (rstate->enabled != ENABLE_IN_SUSPEND && 999 rstate->enabled != DISABLE_IN_SUSPEND) { 1000 if (rdev->desc->ops->set_suspend_voltage || 1001 rdev->desc->ops->set_suspend_mode) 1002 rdev_warn(rdev, "No configuration\n"); 1003 return 0; 1004 } 1005 1006 if (rstate->enabled == ENABLE_IN_SUSPEND && 1007 rdev->desc->ops->set_suspend_enable) 1008 ret = rdev->desc->ops->set_suspend_enable(rdev); 1009 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1010 rdev->desc->ops->set_suspend_disable) 1011 ret = rdev->desc->ops->set_suspend_disable(rdev); 1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1013 ret = 0; 1014 1015 if (ret < 0) { 1016 rdev_err(rdev, "failed to enabled/disable\n"); 1017 return ret; 1018 } 1019 1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1022 if (ret < 0) { 1023 rdev_err(rdev, "failed to set voltage\n"); 1024 return ret; 1025 } 1026 } 1027 1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1030 if (ret < 0) { 1031 rdev_err(rdev, "failed to set mode\n"); 1032 return ret; 1033 } 1034 } 1035 1036 return ret; 1037 } 1038 1039 static void print_constraints(struct regulator_dev *rdev) 1040 { 1041 struct regulation_constraints *constraints = rdev->constraints; 1042 char buf[160] = ""; 1043 size_t len = sizeof(buf) - 1; 1044 int count = 0; 1045 int ret; 1046 1047 if (constraints->min_uV && constraints->max_uV) { 1048 if (constraints->min_uV == constraints->max_uV) 1049 count += scnprintf(buf + count, len - count, "%d mV ", 1050 constraints->min_uV / 1000); 1051 else 1052 count += scnprintf(buf + count, len - count, 1053 "%d <--> %d mV ", 1054 constraints->min_uV / 1000, 1055 constraints->max_uV / 1000); 1056 } 1057 1058 if (!constraints->min_uV || 1059 constraints->min_uV != constraints->max_uV) { 1060 ret = regulator_get_voltage_rdev(rdev); 1061 if (ret > 0) 1062 count += scnprintf(buf + count, len - count, 1063 "at %d mV ", ret / 1000); 1064 } 1065 1066 if (constraints->uV_offset) 1067 count += scnprintf(buf + count, len - count, "%dmV offset ", 1068 constraints->uV_offset / 1000); 1069 1070 if (constraints->min_uA && constraints->max_uA) { 1071 if (constraints->min_uA == constraints->max_uA) 1072 count += scnprintf(buf + count, len - count, "%d mA ", 1073 constraints->min_uA / 1000); 1074 else 1075 count += scnprintf(buf + count, len - count, 1076 "%d <--> %d mA ", 1077 constraints->min_uA / 1000, 1078 constraints->max_uA / 1000); 1079 } 1080 1081 if (!constraints->min_uA || 1082 constraints->min_uA != constraints->max_uA) { 1083 ret = _regulator_get_current_limit(rdev); 1084 if (ret > 0) 1085 count += scnprintf(buf + count, len - count, 1086 "at %d mA ", ret / 1000); 1087 } 1088 1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1090 count += scnprintf(buf + count, len - count, "fast "); 1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1092 count += scnprintf(buf + count, len - count, "normal "); 1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1094 count += scnprintf(buf + count, len - count, "idle "); 1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1096 count += scnprintf(buf + count, len - count, "standby"); 1097 1098 if (!count) 1099 scnprintf(buf, len, "no parameters"); 1100 1101 rdev_dbg(rdev, "%s\n", buf); 1102 1103 if ((constraints->min_uV != constraints->max_uV) && 1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1105 rdev_warn(rdev, 1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1107 } 1108 1109 static int machine_constraints_voltage(struct regulator_dev *rdev, 1110 struct regulation_constraints *constraints) 1111 { 1112 const struct regulator_ops *ops = rdev->desc->ops; 1113 int ret; 1114 1115 /* do we need to apply the constraint voltage */ 1116 if (rdev->constraints->apply_uV && 1117 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1118 int target_min, target_max; 1119 int current_uV = regulator_get_voltage_rdev(rdev); 1120 1121 if (current_uV == -ENOTRECOVERABLE) { 1122 /* This regulator can't be read and must be initialized */ 1123 rdev_info(rdev, "Setting %d-%duV\n", 1124 rdev->constraints->min_uV, 1125 rdev->constraints->max_uV); 1126 _regulator_do_set_voltage(rdev, 1127 rdev->constraints->min_uV, 1128 rdev->constraints->max_uV); 1129 current_uV = regulator_get_voltage_rdev(rdev); 1130 } 1131 1132 if (current_uV < 0) { 1133 rdev_err(rdev, 1134 "failed to get the current voltage(%d)\n", 1135 current_uV); 1136 return current_uV; 1137 } 1138 1139 /* 1140 * If we're below the minimum voltage move up to the 1141 * minimum voltage, if we're above the maximum voltage 1142 * then move down to the maximum. 1143 */ 1144 target_min = current_uV; 1145 target_max = current_uV; 1146 1147 if (current_uV < rdev->constraints->min_uV) { 1148 target_min = rdev->constraints->min_uV; 1149 target_max = rdev->constraints->min_uV; 1150 } 1151 1152 if (current_uV > rdev->constraints->max_uV) { 1153 target_min = rdev->constraints->max_uV; 1154 target_max = rdev->constraints->max_uV; 1155 } 1156 1157 if (target_min != current_uV || target_max != current_uV) { 1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1159 current_uV, target_min, target_max); 1160 ret = _regulator_do_set_voltage( 1161 rdev, target_min, target_max); 1162 if (ret < 0) { 1163 rdev_err(rdev, 1164 "failed to apply %d-%duV constraint(%d)\n", 1165 target_min, target_max, ret); 1166 return ret; 1167 } 1168 } 1169 } 1170 1171 /* constrain machine-level voltage specs to fit 1172 * the actual range supported by this regulator. 1173 */ 1174 if (ops->list_voltage && rdev->desc->n_voltages) { 1175 int count = rdev->desc->n_voltages; 1176 int i; 1177 int min_uV = INT_MAX; 1178 int max_uV = INT_MIN; 1179 int cmin = constraints->min_uV; 1180 int cmax = constraints->max_uV; 1181 1182 /* it's safe to autoconfigure fixed-voltage supplies 1183 and the constraints are used by list_voltage. */ 1184 if (count == 1 && !cmin) { 1185 cmin = 1; 1186 cmax = INT_MAX; 1187 constraints->min_uV = cmin; 1188 constraints->max_uV = cmax; 1189 } 1190 1191 /* voltage constraints are optional */ 1192 if ((cmin == 0) && (cmax == 0)) 1193 return 0; 1194 1195 /* else require explicit machine-level constraints */ 1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1197 rdev_err(rdev, "invalid voltage constraints\n"); 1198 return -EINVAL; 1199 } 1200 1201 /* no need to loop voltages if range is continuous */ 1202 if (rdev->desc->continuous_voltage_range) 1203 return 0; 1204 1205 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1206 for (i = 0; i < count; i++) { 1207 int value; 1208 1209 value = ops->list_voltage(rdev, i); 1210 if (value <= 0) 1211 continue; 1212 1213 /* maybe adjust [min_uV..max_uV] */ 1214 if (value >= cmin && value < min_uV) 1215 min_uV = value; 1216 if (value <= cmax && value > max_uV) 1217 max_uV = value; 1218 } 1219 1220 /* final: [min_uV..max_uV] valid iff constraints valid */ 1221 if (max_uV < min_uV) { 1222 rdev_err(rdev, 1223 "unsupportable voltage constraints %u-%uuV\n", 1224 min_uV, max_uV); 1225 return -EINVAL; 1226 } 1227 1228 /* use regulator's subset of machine constraints */ 1229 if (constraints->min_uV < min_uV) { 1230 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1231 constraints->min_uV, min_uV); 1232 constraints->min_uV = min_uV; 1233 } 1234 if (constraints->max_uV > max_uV) { 1235 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1236 constraints->max_uV, max_uV); 1237 constraints->max_uV = max_uV; 1238 } 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int machine_constraints_current(struct regulator_dev *rdev, 1245 struct regulation_constraints *constraints) 1246 { 1247 const struct regulator_ops *ops = rdev->desc->ops; 1248 int ret; 1249 1250 if (!constraints->min_uA && !constraints->max_uA) 1251 return 0; 1252 1253 if (constraints->min_uA > constraints->max_uA) { 1254 rdev_err(rdev, "Invalid current constraints\n"); 1255 return -EINVAL; 1256 } 1257 1258 if (!ops->set_current_limit || !ops->get_current_limit) { 1259 rdev_warn(rdev, "Operation of current configuration missing\n"); 1260 return 0; 1261 } 1262 1263 /* Set regulator current in constraints range */ 1264 ret = ops->set_current_limit(rdev, constraints->min_uA, 1265 constraints->max_uA); 1266 if (ret < 0) { 1267 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1268 return ret; 1269 } 1270 1271 return 0; 1272 } 1273 1274 static int _regulator_do_enable(struct regulator_dev *rdev); 1275 1276 /** 1277 * set_machine_constraints - sets regulator constraints 1278 * @rdev: regulator source 1279 * @constraints: constraints to apply 1280 * 1281 * Allows platform initialisation code to define and constrain 1282 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1283 * Constraints *must* be set by platform code in order for some 1284 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1285 * set_mode. 1286 */ 1287 static int set_machine_constraints(struct regulator_dev *rdev, 1288 const struct regulation_constraints *constraints) 1289 { 1290 int ret = 0; 1291 const struct regulator_ops *ops = rdev->desc->ops; 1292 1293 if (constraints) 1294 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1295 GFP_KERNEL); 1296 else 1297 rdev->constraints = kzalloc(sizeof(*constraints), 1298 GFP_KERNEL); 1299 if (!rdev->constraints) 1300 return -ENOMEM; 1301 1302 ret = machine_constraints_voltage(rdev, rdev->constraints); 1303 if (ret != 0) 1304 return ret; 1305 1306 ret = machine_constraints_current(rdev, rdev->constraints); 1307 if (ret != 0) 1308 return ret; 1309 1310 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1311 ret = ops->set_input_current_limit(rdev, 1312 rdev->constraints->ilim_uA); 1313 if (ret < 0) { 1314 rdev_err(rdev, "failed to set input limit\n"); 1315 return ret; 1316 } 1317 } 1318 1319 /* do we need to setup our suspend state */ 1320 if (rdev->constraints->initial_state) { 1321 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1322 if (ret < 0) { 1323 rdev_err(rdev, "failed to set suspend state\n"); 1324 return ret; 1325 } 1326 } 1327 1328 if (rdev->constraints->initial_mode) { 1329 if (!ops->set_mode) { 1330 rdev_err(rdev, "no set_mode operation\n"); 1331 return -EINVAL; 1332 } 1333 1334 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1335 if (ret < 0) { 1336 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1337 return ret; 1338 } 1339 } else if (rdev->constraints->system_load) { 1340 /* 1341 * We'll only apply the initial system load if an 1342 * initial mode wasn't specified. 1343 */ 1344 drms_uA_update(rdev); 1345 } 1346 1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1348 && ops->set_ramp_delay) { 1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1350 if (ret < 0) { 1351 rdev_err(rdev, "failed to set ramp_delay\n"); 1352 return ret; 1353 } 1354 } 1355 1356 if (rdev->constraints->pull_down && ops->set_pull_down) { 1357 ret = ops->set_pull_down(rdev); 1358 if (ret < 0) { 1359 rdev_err(rdev, "failed to set pull down\n"); 1360 return ret; 1361 } 1362 } 1363 1364 if (rdev->constraints->soft_start && ops->set_soft_start) { 1365 ret = ops->set_soft_start(rdev); 1366 if (ret < 0) { 1367 rdev_err(rdev, "failed to set soft start\n"); 1368 return ret; 1369 } 1370 } 1371 1372 if (rdev->constraints->over_current_protection 1373 && ops->set_over_current_protection) { 1374 ret = ops->set_over_current_protection(rdev); 1375 if (ret < 0) { 1376 rdev_err(rdev, "failed to set over current protection\n"); 1377 return ret; 1378 } 1379 } 1380 1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1382 bool ad_state = (rdev->constraints->active_discharge == 1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1384 1385 ret = ops->set_active_discharge(rdev, ad_state); 1386 if (ret < 0) { 1387 rdev_err(rdev, "failed to set active discharge\n"); 1388 return ret; 1389 } 1390 } 1391 1392 /* If the constraints say the regulator should be on at this point 1393 * and we have control then make sure it is enabled. 1394 */ 1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1396 if (rdev->supply) { 1397 ret = regulator_enable(rdev->supply); 1398 if (ret < 0) { 1399 _regulator_put(rdev->supply); 1400 rdev->supply = NULL; 1401 return ret; 1402 } 1403 } 1404 1405 ret = _regulator_do_enable(rdev); 1406 if (ret < 0 && ret != -EINVAL) { 1407 rdev_err(rdev, "failed to enable\n"); 1408 return ret; 1409 } 1410 1411 if (rdev->constraints->always_on) 1412 rdev->use_count++; 1413 } 1414 1415 print_constraints(rdev); 1416 return 0; 1417 } 1418 1419 /** 1420 * set_supply - set regulator supply regulator 1421 * @rdev: regulator name 1422 * @supply_rdev: supply regulator name 1423 * 1424 * Called by platform initialisation code to set the supply regulator for this 1425 * regulator. This ensures that a regulators supply will also be enabled by the 1426 * core if it's child is enabled. 1427 */ 1428 static int set_supply(struct regulator_dev *rdev, 1429 struct regulator_dev *supply_rdev) 1430 { 1431 int err; 1432 1433 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1434 1435 if (!try_module_get(supply_rdev->owner)) 1436 return -ENODEV; 1437 1438 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1439 if (rdev->supply == NULL) { 1440 err = -ENOMEM; 1441 return err; 1442 } 1443 supply_rdev->open_count++; 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1450 * @rdev: regulator source 1451 * @consumer_dev_name: dev_name() string for device supply applies to 1452 * @supply: symbolic name for supply 1453 * 1454 * Allows platform initialisation code to map physical regulator 1455 * sources to symbolic names for supplies for use by devices. Devices 1456 * should use these symbolic names to request regulators, avoiding the 1457 * need to provide board-specific regulator names as platform data. 1458 */ 1459 static int set_consumer_device_supply(struct regulator_dev *rdev, 1460 const char *consumer_dev_name, 1461 const char *supply) 1462 { 1463 struct regulator_map *node; 1464 int has_dev; 1465 1466 if (supply == NULL) 1467 return -EINVAL; 1468 1469 if (consumer_dev_name != NULL) 1470 has_dev = 1; 1471 else 1472 has_dev = 0; 1473 1474 list_for_each_entry(node, ®ulator_map_list, list) { 1475 if (node->dev_name && consumer_dev_name) { 1476 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1477 continue; 1478 } else if (node->dev_name || consumer_dev_name) { 1479 continue; 1480 } 1481 1482 if (strcmp(node->supply, supply) != 0) 1483 continue; 1484 1485 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1486 consumer_dev_name, 1487 dev_name(&node->regulator->dev), 1488 node->regulator->desc->name, 1489 supply, 1490 dev_name(&rdev->dev), rdev_get_name(rdev)); 1491 return -EBUSY; 1492 } 1493 1494 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1495 if (node == NULL) 1496 return -ENOMEM; 1497 1498 node->regulator = rdev; 1499 node->supply = supply; 1500 1501 if (has_dev) { 1502 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1503 if (node->dev_name == NULL) { 1504 kfree(node); 1505 return -ENOMEM; 1506 } 1507 } 1508 1509 list_add(&node->list, ®ulator_map_list); 1510 return 0; 1511 } 1512 1513 static void unset_regulator_supplies(struct regulator_dev *rdev) 1514 { 1515 struct regulator_map *node, *n; 1516 1517 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1518 if (rdev == node->regulator) { 1519 list_del(&node->list); 1520 kfree(node->dev_name); 1521 kfree(node); 1522 } 1523 } 1524 } 1525 1526 #ifdef CONFIG_DEBUG_FS 1527 static ssize_t constraint_flags_read_file(struct file *file, 1528 char __user *user_buf, 1529 size_t count, loff_t *ppos) 1530 { 1531 const struct regulator *regulator = file->private_data; 1532 const struct regulation_constraints *c = regulator->rdev->constraints; 1533 char *buf; 1534 ssize_t ret; 1535 1536 if (!c) 1537 return 0; 1538 1539 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1540 if (!buf) 1541 return -ENOMEM; 1542 1543 ret = snprintf(buf, PAGE_SIZE, 1544 "always_on: %u\n" 1545 "boot_on: %u\n" 1546 "apply_uV: %u\n" 1547 "ramp_disable: %u\n" 1548 "soft_start: %u\n" 1549 "pull_down: %u\n" 1550 "over_current_protection: %u\n", 1551 c->always_on, 1552 c->boot_on, 1553 c->apply_uV, 1554 c->ramp_disable, 1555 c->soft_start, 1556 c->pull_down, 1557 c->over_current_protection); 1558 1559 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1560 kfree(buf); 1561 1562 return ret; 1563 } 1564 1565 #endif 1566 1567 static const struct file_operations constraint_flags_fops = { 1568 #ifdef CONFIG_DEBUG_FS 1569 .open = simple_open, 1570 .read = constraint_flags_read_file, 1571 .llseek = default_llseek, 1572 #endif 1573 }; 1574 1575 #define REG_STR_SIZE 64 1576 1577 static struct regulator *create_regulator(struct regulator_dev *rdev, 1578 struct device *dev, 1579 const char *supply_name) 1580 { 1581 struct regulator *regulator; 1582 char buf[REG_STR_SIZE]; 1583 int err, size; 1584 1585 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1586 if (regulator == NULL) 1587 return NULL; 1588 1589 regulator_lock(rdev); 1590 regulator->rdev = rdev; 1591 list_add(®ulator->list, &rdev->consumer_list); 1592 1593 if (dev) { 1594 regulator->dev = dev; 1595 1596 /* Add a link to the device sysfs entry */ 1597 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1598 dev->kobj.name, supply_name); 1599 if (size >= REG_STR_SIZE) 1600 goto overflow_err; 1601 1602 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1603 if (regulator->supply_name == NULL) 1604 goto overflow_err; 1605 1606 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1607 buf); 1608 if (err) { 1609 rdev_dbg(rdev, "could not add device link %s err %d\n", 1610 dev->kobj.name, err); 1611 /* non-fatal */ 1612 } 1613 } else { 1614 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1615 if (regulator->supply_name == NULL) 1616 goto overflow_err; 1617 } 1618 1619 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1620 rdev->debugfs); 1621 if (!regulator->debugfs) { 1622 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1623 } else { 1624 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1625 ®ulator->uA_load); 1626 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1627 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1628 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1629 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1630 debugfs_create_file("constraint_flags", 0444, 1631 regulator->debugfs, regulator, 1632 &constraint_flags_fops); 1633 } 1634 1635 /* 1636 * Check now if the regulator is an always on regulator - if 1637 * it is then we don't need to do nearly so much work for 1638 * enable/disable calls. 1639 */ 1640 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1641 _regulator_is_enabled(rdev)) 1642 regulator->always_on = true; 1643 1644 regulator_unlock(rdev); 1645 return regulator; 1646 overflow_err: 1647 list_del(®ulator->list); 1648 kfree(regulator); 1649 regulator_unlock(rdev); 1650 return NULL; 1651 } 1652 1653 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1654 { 1655 if (rdev->constraints && rdev->constraints->enable_time) 1656 return rdev->constraints->enable_time; 1657 if (rdev->desc->ops->enable_time) 1658 return rdev->desc->ops->enable_time(rdev); 1659 return rdev->desc->enable_time; 1660 } 1661 1662 static struct regulator_supply_alias *regulator_find_supply_alias( 1663 struct device *dev, const char *supply) 1664 { 1665 struct regulator_supply_alias *map; 1666 1667 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1668 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1669 return map; 1670 1671 return NULL; 1672 } 1673 1674 static void regulator_supply_alias(struct device **dev, const char **supply) 1675 { 1676 struct regulator_supply_alias *map; 1677 1678 map = regulator_find_supply_alias(*dev, *supply); 1679 if (map) { 1680 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1681 *supply, map->alias_supply, 1682 dev_name(map->alias_dev)); 1683 *dev = map->alias_dev; 1684 *supply = map->alias_supply; 1685 } 1686 } 1687 1688 static int regulator_match(struct device *dev, const void *data) 1689 { 1690 struct regulator_dev *r = dev_to_rdev(dev); 1691 1692 return strcmp(rdev_get_name(r), data) == 0; 1693 } 1694 1695 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1696 { 1697 struct device *dev; 1698 1699 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1700 1701 return dev ? dev_to_rdev(dev) : NULL; 1702 } 1703 1704 /** 1705 * regulator_dev_lookup - lookup a regulator device. 1706 * @dev: device for regulator "consumer". 1707 * @supply: Supply name or regulator ID. 1708 * 1709 * If successful, returns a struct regulator_dev that corresponds to the name 1710 * @supply and with the embedded struct device refcount incremented by one. 1711 * The refcount must be dropped by calling put_device(). 1712 * On failure one of the following ERR-PTR-encoded values is returned: 1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1714 * in the future. 1715 */ 1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1717 const char *supply) 1718 { 1719 struct regulator_dev *r = NULL; 1720 struct device_node *node; 1721 struct regulator_map *map; 1722 const char *devname = NULL; 1723 1724 regulator_supply_alias(&dev, &supply); 1725 1726 /* first do a dt based lookup */ 1727 if (dev && dev->of_node) { 1728 node = of_get_regulator(dev, supply); 1729 if (node) { 1730 r = of_find_regulator_by_node(node); 1731 if (r) 1732 return r; 1733 1734 /* 1735 * We have a node, but there is no device. 1736 * assume it has not registered yet. 1737 */ 1738 return ERR_PTR(-EPROBE_DEFER); 1739 } 1740 } 1741 1742 /* if not found, try doing it non-dt way */ 1743 if (dev) 1744 devname = dev_name(dev); 1745 1746 mutex_lock(®ulator_list_mutex); 1747 list_for_each_entry(map, ®ulator_map_list, list) { 1748 /* If the mapping has a device set up it must match */ 1749 if (map->dev_name && 1750 (!devname || strcmp(map->dev_name, devname))) 1751 continue; 1752 1753 if (strcmp(map->supply, supply) == 0 && 1754 get_device(&map->regulator->dev)) { 1755 r = map->regulator; 1756 break; 1757 } 1758 } 1759 mutex_unlock(®ulator_list_mutex); 1760 1761 if (r) 1762 return r; 1763 1764 r = regulator_lookup_by_name(supply); 1765 if (r) 1766 return r; 1767 1768 return ERR_PTR(-ENODEV); 1769 } 1770 1771 static int regulator_resolve_supply(struct regulator_dev *rdev) 1772 { 1773 struct regulator_dev *r; 1774 struct device *dev = rdev->dev.parent; 1775 int ret; 1776 1777 /* No supply to resolve? */ 1778 if (!rdev->supply_name) 1779 return 0; 1780 1781 /* Supply already resolved? */ 1782 if (rdev->supply) 1783 return 0; 1784 1785 r = regulator_dev_lookup(dev, rdev->supply_name); 1786 if (IS_ERR(r)) { 1787 ret = PTR_ERR(r); 1788 1789 /* Did the lookup explicitly defer for us? */ 1790 if (ret == -EPROBE_DEFER) 1791 return ret; 1792 1793 if (have_full_constraints()) { 1794 r = dummy_regulator_rdev; 1795 get_device(&r->dev); 1796 } else { 1797 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1798 rdev->supply_name, rdev->desc->name); 1799 return -EPROBE_DEFER; 1800 } 1801 } 1802 1803 /* 1804 * If the supply's parent device is not the same as the 1805 * regulator's parent device, then ensure the parent device 1806 * is bound before we resolve the supply, in case the parent 1807 * device get probe deferred and unregisters the supply. 1808 */ 1809 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1810 if (!device_is_bound(r->dev.parent)) { 1811 put_device(&r->dev); 1812 return -EPROBE_DEFER; 1813 } 1814 } 1815 1816 /* Recursively resolve the supply of the supply */ 1817 ret = regulator_resolve_supply(r); 1818 if (ret < 0) { 1819 put_device(&r->dev); 1820 return ret; 1821 } 1822 1823 ret = set_supply(rdev, r); 1824 if (ret < 0) { 1825 put_device(&r->dev); 1826 return ret; 1827 } 1828 1829 /* 1830 * In set_machine_constraints() we may have turned this regulator on 1831 * but we couldn't propagate to the supply if it hadn't been resolved 1832 * yet. Do it now. 1833 */ 1834 if (rdev->use_count) { 1835 ret = regulator_enable(rdev->supply); 1836 if (ret < 0) { 1837 _regulator_put(rdev->supply); 1838 rdev->supply = NULL; 1839 return ret; 1840 } 1841 } 1842 1843 return 0; 1844 } 1845 1846 /* Internal regulator request function */ 1847 struct regulator *_regulator_get(struct device *dev, const char *id, 1848 enum regulator_get_type get_type) 1849 { 1850 struct regulator_dev *rdev; 1851 struct regulator *regulator; 1852 const char *devname = dev ? dev_name(dev) : "deviceless"; 1853 struct device_link *link; 1854 int ret; 1855 1856 if (get_type >= MAX_GET_TYPE) { 1857 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1858 return ERR_PTR(-EINVAL); 1859 } 1860 1861 if (id == NULL) { 1862 pr_err("get() with no identifier\n"); 1863 return ERR_PTR(-EINVAL); 1864 } 1865 1866 rdev = regulator_dev_lookup(dev, id); 1867 if (IS_ERR(rdev)) { 1868 ret = PTR_ERR(rdev); 1869 1870 /* 1871 * If regulator_dev_lookup() fails with error other 1872 * than -ENODEV our job here is done, we simply return it. 1873 */ 1874 if (ret != -ENODEV) 1875 return ERR_PTR(ret); 1876 1877 if (!have_full_constraints()) { 1878 dev_warn(dev, 1879 "incomplete constraints, dummy supplies not allowed\n"); 1880 return ERR_PTR(-ENODEV); 1881 } 1882 1883 switch (get_type) { 1884 case NORMAL_GET: 1885 /* 1886 * Assume that a regulator is physically present and 1887 * enabled, even if it isn't hooked up, and just 1888 * provide a dummy. 1889 */ 1890 dev_warn(dev, 1891 "%s supply %s not found, using dummy regulator\n", 1892 devname, id); 1893 rdev = dummy_regulator_rdev; 1894 get_device(&rdev->dev); 1895 break; 1896 1897 case EXCLUSIVE_GET: 1898 dev_warn(dev, 1899 "dummy supplies not allowed for exclusive requests\n"); 1900 /* fall through */ 1901 1902 default: 1903 return ERR_PTR(-ENODEV); 1904 } 1905 } 1906 1907 if (rdev->exclusive) { 1908 regulator = ERR_PTR(-EPERM); 1909 put_device(&rdev->dev); 1910 return regulator; 1911 } 1912 1913 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1914 regulator = ERR_PTR(-EBUSY); 1915 put_device(&rdev->dev); 1916 return regulator; 1917 } 1918 1919 mutex_lock(®ulator_list_mutex); 1920 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1921 mutex_unlock(®ulator_list_mutex); 1922 1923 if (ret != 0) { 1924 regulator = ERR_PTR(-EPROBE_DEFER); 1925 put_device(&rdev->dev); 1926 return regulator; 1927 } 1928 1929 ret = regulator_resolve_supply(rdev); 1930 if (ret < 0) { 1931 regulator = ERR_PTR(ret); 1932 put_device(&rdev->dev); 1933 return regulator; 1934 } 1935 1936 if (!try_module_get(rdev->owner)) { 1937 regulator = ERR_PTR(-EPROBE_DEFER); 1938 put_device(&rdev->dev); 1939 return regulator; 1940 } 1941 1942 regulator = create_regulator(rdev, dev, id); 1943 if (regulator == NULL) { 1944 regulator = ERR_PTR(-ENOMEM); 1945 module_put(rdev->owner); 1946 put_device(&rdev->dev); 1947 return regulator; 1948 } 1949 1950 rdev->open_count++; 1951 if (get_type == EXCLUSIVE_GET) { 1952 rdev->exclusive = 1; 1953 1954 ret = _regulator_is_enabled(rdev); 1955 if (ret > 0) 1956 rdev->use_count = 1; 1957 else 1958 rdev->use_count = 0; 1959 } 1960 1961 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1962 if (!IS_ERR_OR_NULL(link)) 1963 regulator->device_link = true; 1964 1965 return regulator; 1966 } 1967 1968 /** 1969 * regulator_get - lookup and obtain a reference to a regulator. 1970 * @dev: device for regulator "consumer" 1971 * @id: Supply name or regulator ID. 1972 * 1973 * Returns a struct regulator corresponding to the regulator producer, 1974 * or IS_ERR() condition containing errno. 1975 * 1976 * Use of supply names configured via regulator_set_device_supply() is 1977 * strongly encouraged. It is recommended that the supply name used 1978 * should match the name used for the supply and/or the relevant 1979 * device pins in the datasheet. 1980 */ 1981 struct regulator *regulator_get(struct device *dev, const char *id) 1982 { 1983 return _regulator_get(dev, id, NORMAL_GET); 1984 } 1985 EXPORT_SYMBOL_GPL(regulator_get); 1986 1987 /** 1988 * regulator_get_exclusive - obtain exclusive access to a regulator. 1989 * @dev: device for regulator "consumer" 1990 * @id: Supply name or regulator ID. 1991 * 1992 * Returns a struct regulator corresponding to the regulator producer, 1993 * or IS_ERR() condition containing errno. Other consumers will be 1994 * unable to obtain this regulator while this reference is held and the 1995 * use count for the regulator will be initialised to reflect the current 1996 * state of the regulator. 1997 * 1998 * This is intended for use by consumers which cannot tolerate shared 1999 * use of the regulator such as those which need to force the 2000 * regulator off for correct operation of the hardware they are 2001 * controlling. 2002 * 2003 * Use of supply names configured via regulator_set_device_supply() is 2004 * strongly encouraged. It is recommended that the supply name used 2005 * should match the name used for the supply and/or the relevant 2006 * device pins in the datasheet. 2007 */ 2008 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2009 { 2010 return _regulator_get(dev, id, EXCLUSIVE_GET); 2011 } 2012 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2013 2014 /** 2015 * regulator_get_optional - obtain optional access to a regulator. 2016 * @dev: device for regulator "consumer" 2017 * @id: Supply name or regulator ID. 2018 * 2019 * Returns a struct regulator corresponding to the regulator producer, 2020 * or IS_ERR() condition containing errno. 2021 * 2022 * This is intended for use by consumers for devices which can have 2023 * some supplies unconnected in normal use, such as some MMC devices. 2024 * It can allow the regulator core to provide stub supplies for other 2025 * supplies requested using normal regulator_get() calls without 2026 * disrupting the operation of drivers that can handle absent 2027 * supplies. 2028 * 2029 * Use of supply names configured via regulator_set_device_supply() is 2030 * strongly encouraged. It is recommended that the supply name used 2031 * should match the name used for the supply and/or the relevant 2032 * device pins in the datasheet. 2033 */ 2034 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2035 { 2036 return _regulator_get(dev, id, OPTIONAL_GET); 2037 } 2038 EXPORT_SYMBOL_GPL(regulator_get_optional); 2039 2040 /* regulator_list_mutex lock held by regulator_put() */ 2041 static void _regulator_put(struct regulator *regulator) 2042 { 2043 struct regulator_dev *rdev; 2044 2045 if (IS_ERR_OR_NULL(regulator)) 2046 return; 2047 2048 lockdep_assert_held_once(®ulator_list_mutex); 2049 2050 /* Docs say you must disable before calling regulator_put() */ 2051 WARN_ON(regulator->enable_count); 2052 2053 rdev = regulator->rdev; 2054 2055 debugfs_remove_recursive(regulator->debugfs); 2056 2057 if (regulator->dev) { 2058 if (regulator->device_link) 2059 device_link_remove(regulator->dev, &rdev->dev); 2060 2061 /* remove any sysfs entries */ 2062 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2063 } 2064 2065 regulator_lock(rdev); 2066 list_del(®ulator->list); 2067 2068 rdev->open_count--; 2069 rdev->exclusive = 0; 2070 regulator_unlock(rdev); 2071 2072 kfree_const(regulator->supply_name); 2073 kfree(regulator); 2074 2075 module_put(rdev->owner); 2076 put_device(&rdev->dev); 2077 } 2078 2079 /** 2080 * regulator_put - "free" the regulator source 2081 * @regulator: regulator source 2082 * 2083 * Note: drivers must ensure that all regulator_enable calls made on this 2084 * regulator source are balanced by regulator_disable calls prior to calling 2085 * this function. 2086 */ 2087 void regulator_put(struct regulator *regulator) 2088 { 2089 mutex_lock(®ulator_list_mutex); 2090 _regulator_put(regulator); 2091 mutex_unlock(®ulator_list_mutex); 2092 } 2093 EXPORT_SYMBOL_GPL(regulator_put); 2094 2095 /** 2096 * regulator_register_supply_alias - Provide device alias for supply lookup 2097 * 2098 * @dev: device that will be given as the regulator "consumer" 2099 * @id: Supply name or regulator ID 2100 * @alias_dev: device that should be used to lookup the supply 2101 * @alias_id: Supply name or regulator ID that should be used to lookup the 2102 * supply 2103 * 2104 * All lookups for id on dev will instead be conducted for alias_id on 2105 * alias_dev. 2106 */ 2107 int regulator_register_supply_alias(struct device *dev, const char *id, 2108 struct device *alias_dev, 2109 const char *alias_id) 2110 { 2111 struct regulator_supply_alias *map; 2112 2113 map = regulator_find_supply_alias(dev, id); 2114 if (map) 2115 return -EEXIST; 2116 2117 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2118 if (!map) 2119 return -ENOMEM; 2120 2121 map->src_dev = dev; 2122 map->src_supply = id; 2123 map->alias_dev = alias_dev; 2124 map->alias_supply = alias_id; 2125 2126 list_add(&map->list, ®ulator_supply_alias_list); 2127 2128 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2129 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2130 2131 return 0; 2132 } 2133 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2134 2135 /** 2136 * regulator_unregister_supply_alias - Remove device alias 2137 * 2138 * @dev: device that will be given as the regulator "consumer" 2139 * @id: Supply name or regulator ID 2140 * 2141 * Remove a lookup alias if one exists for id on dev. 2142 */ 2143 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2144 { 2145 struct regulator_supply_alias *map; 2146 2147 map = regulator_find_supply_alias(dev, id); 2148 if (map) { 2149 list_del(&map->list); 2150 kfree(map); 2151 } 2152 } 2153 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2154 2155 /** 2156 * regulator_bulk_register_supply_alias - register multiple aliases 2157 * 2158 * @dev: device that will be given as the regulator "consumer" 2159 * @id: List of supply names or regulator IDs 2160 * @alias_dev: device that should be used to lookup the supply 2161 * @alias_id: List of supply names or regulator IDs that should be used to 2162 * lookup the supply 2163 * @num_id: Number of aliases to register 2164 * 2165 * @return 0 on success, an errno on failure. 2166 * 2167 * This helper function allows drivers to register several supply 2168 * aliases in one operation. If any of the aliases cannot be 2169 * registered any aliases that were registered will be removed 2170 * before returning to the caller. 2171 */ 2172 int regulator_bulk_register_supply_alias(struct device *dev, 2173 const char *const *id, 2174 struct device *alias_dev, 2175 const char *const *alias_id, 2176 int num_id) 2177 { 2178 int i; 2179 int ret; 2180 2181 for (i = 0; i < num_id; ++i) { 2182 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2183 alias_id[i]); 2184 if (ret < 0) 2185 goto err; 2186 } 2187 2188 return 0; 2189 2190 err: 2191 dev_err(dev, 2192 "Failed to create supply alias %s,%s -> %s,%s\n", 2193 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2194 2195 while (--i >= 0) 2196 regulator_unregister_supply_alias(dev, id[i]); 2197 2198 return ret; 2199 } 2200 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2201 2202 /** 2203 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2204 * 2205 * @dev: device that will be given as the regulator "consumer" 2206 * @id: List of supply names or regulator IDs 2207 * @num_id: Number of aliases to unregister 2208 * 2209 * This helper function allows drivers to unregister several supply 2210 * aliases in one operation. 2211 */ 2212 void regulator_bulk_unregister_supply_alias(struct device *dev, 2213 const char *const *id, 2214 int num_id) 2215 { 2216 int i; 2217 2218 for (i = 0; i < num_id; ++i) 2219 regulator_unregister_supply_alias(dev, id[i]); 2220 } 2221 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2222 2223 2224 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2225 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2226 const struct regulator_config *config) 2227 { 2228 struct regulator_enable_gpio *pin; 2229 struct gpio_desc *gpiod; 2230 2231 gpiod = config->ena_gpiod; 2232 2233 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2234 if (pin->gpiod == gpiod) { 2235 rdev_dbg(rdev, "GPIO is already used\n"); 2236 goto update_ena_gpio_to_rdev; 2237 } 2238 } 2239 2240 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2241 if (pin == NULL) 2242 return -ENOMEM; 2243 2244 pin->gpiod = gpiod; 2245 list_add(&pin->list, ®ulator_ena_gpio_list); 2246 2247 update_ena_gpio_to_rdev: 2248 pin->request_count++; 2249 rdev->ena_pin = pin; 2250 return 0; 2251 } 2252 2253 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2254 { 2255 struct regulator_enable_gpio *pin, *n; 2256 2257 if (!rdev->ena_pin) 2258 return; 2259 2260 /* Free the GPIO only in case of no use */ 2261 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2262 if (pin->gpiod == rdev->ena_pin->gpiod) { 2263 if (pin->request_count <= 1) { 2264 pin->request_count = 0; 2265 gpiod_put(pin->gpiod); 2266 list_del(&pin->list); 2267 kfree(pin); 2268 rdev->ena_pin = NULL; 2269 return; 2270 } else { 2271 pin->request_count--; 2272 } 2273 } 2274 } 2275 } 2276 2277 /** 2278 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2279 * @rdev: regulator_dev structure 2280 * @enable: enable GPIO at initial use? 2281 * 2282 * GPIO is enabled in case of initial use. (enable_count is 0) 2283 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2284 */ 2285 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2286 { 2287 struct regulator_enable_gpio *pin = rdev->ena_pin; 2288 2289 if (!pin) 2290 return -EINVAL; 2291 2292 if (enable) { 2293 /* Enable GPIO at initial use */ 2294 if (pin->enable_count == 0) 2295 gpiod_set_value_cansleep(pin->gpiod, 1); 2296 2297 pin->enable_count++; 2298 } else { 2299 if (pin->enable_count > 1) { 2300 pin->enable_count--; 2301 return 0; 2302 } 2303 2304 /* Disable GPIO if not used */ 2305 if (pin->enable_count <= 1) { 2306 gpiod_set_value_cansleep(pin->gpiod, 0); 2307 pin->enable_count = 0; 2308 } 2309 } 2310 2311 return 0; 2312 } 2313 2314 /** 2315 * _regulator_enable_delay - a delay helper function 2316 * @delay: time to delay in microseconds 2317 * 2318 * Delay for the requested amount of time as per the guidelines in: 2319 * 2320 * Documentation/timers/timers-howto.rst 2321 * 2322 * The assumption here is that regulators will never be enabled in 2323 * atomic context and therefore sleeping functions can be used. 2324 */ 2325 static void _regulator_enable_delay(unsigned int delay) 2326 { 2327 unsigned int ms = delay / 1000; 2328 unsigned int us = delay % 1000; 2329 2330 if (ms > 0) { 2331 /* 2332 * For small enough values, handle super-millisecond 2333 * delays in the usleep_range() call below. 2334 */ 2335 if (ms < 20) 2336 us += ms * 1000; 2337 else 2338 msleep(ms); 2339 } 2340 2341 /* 2342 * Give the scheduler some room to coalesce with any other 2343 * wakeup sources. For delays shorter than 10 us, don't even 2344 * bother setting up high-resolution timers and just busy- 2345 * loop. 2346 */ 2347 if (us >= 10) 2348 usleep_range(us, us + 100); 2349 else 2350 udelay(us); 2351 } 2352 2353 static int _regulator_do_enable(struct regulator_dev *rdev) 2354 { 2355 int ret, delay; 2356 2357 /* Query before enabling in case configuration dependent. */ 2358 ret = _regulator_get_enable_time(rdev); 2359 if (ret >= 0) { 2360 delay = ret; 2361 } else { 2362 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2363 delay = 0; 2364 } 2365 2366 trace_regulator_enable(rdev_get_name(rdev)); 2367 2368 if (rdev->desc->off_on_delay) { 2369 /* if needed, keep a distance of off_on_delay from last time 2370 * this regulator was disabled. 2371 */ 2372 unsigned long start_jiffy = jiffies; 2373 unsigned long intended, max_delay, remaining; 2374 2375 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2376 intended = rdev->last_off_jiffy + max_delay; 2377 2378 if (time_before(start_jiffy, intended)) { 2379 /* calc remaining jiffies to deal with one-time 2380 * timer wrapping. 2381 * in case of multiple timer wrapping, either it can be 2382 * detected by out-of-range remaining, or it cannot be 2383 * detected and we get a penalty of 2384 * _regulator_enable_delay(). 2385 */ 2386 remaining = intended - start_jiffy; 2387 if (remaining <= max_delay) 2388 _regulator_enable_delay( 2389 jiffies_to_usecs(remaining)); 2390 } 2391 } 2392 2393 if (rdev->ena_pin) { 2394 if (!rdev->ena_gpio_state) { 2395 ret = regulator_ena_gpio_ctrl(rdev, true); 2396 if (ret < 0) 2397 return ret; 2398 rdev->ena_gpio_state = 1; 2399 } 2400 } else if (rdev->desc->ops->enable) { 2401 ret = rdev->desc->ops->enable(rdev); 2402 if (ret < 0) 2403 return ret; 2404 } else { 2405 return -EINVAL; 2406 } 2407 2408 /* Allow the regulator to ramp; it would be useful to extend 2409 * this for bulk operations so that the regulators can ramp 2410 * together. */ 2411 trace_regulator_enable_delay(rdev_get_name(rdev)); 2412 2413 _regulator_enable_delay(delay); 2414 2415 trace_regulator_enable_complete(rdev_get_name(rdev)); 2416 2417 return 0; 2418 } 2419 2420 /** 2421 * _regulator_handle_consumer_enable - handle that a consumer enabled 2422 * @regulator: regulator source 2423 * 2424 * Some things on a regulator consumer (like the contribution towards total 2425 * load on the regulator) only have an effect when the consumer wants the 2426 * regulator enabled. Explained in example with two consumers of the same 2427 * regulator: 2428 * consumer A: set_load(100); => total load = 0 2429 * consumer A: regulator_enable(); => total load = 100 2430 * consumer B: set_load(1000); => total load = 100 2431 * consumer B: regulator_enable(); => total load = 1100 2432 * consumer A: regulator_disable(); => total_load = 1000 2433 * 2434 * This function (together with _regulator_handle_consumer_disable) is 2435 * responsible for keeping track of the refcount for a given regulator consumer 2436 * and applying / unapplying these things. 2437 * 2438 * Returns 0 upon no error; -error upon error. 2439 */ 2440 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2441 { 2442 struct regulator_dev *rdev = regulator->rdev; 2443 2444 lockdep_assert_held_once(&rdev->mutex.base); 2445 2446 regulator->enable_count++; 2447 if (regulator->uA_load && regulator->enable_count == 1) 2448 return drms_uA_update(rdev); 2449 2450 return 0; 2451 } 2452 2453 /** 2454 * _regulator_handle_consumer_disable - handle that a consumer disabled 2455 * @regulator: regulator source 2456 * 2457 * The opposite of _regulator_handle_consumer_enable(). 2458 * 2459 * Returns 0 upon no error; -error upon error. 2460 */ 2461 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2462 { 2463 struct regulator_dev *rdev = regulator->rdev; 2464 2465 lockdep_assert_held_once(&rdev->mutex.base); 2466 2467 if (!regulator->enable_count) { 2468 rdev_err(rdev, "Underflow of regulator enable count\n"); 2469 return -EINVAL; 2470 } 2471 2472 regulator->enable_count--; 2473 if (regulator->uA_load && regulator->enable_count == 0) 2474 return drms_uA_update(rdev); 2475 2476 return 0; 2477 } 2478 2479 /* locks held by regulator_enable() */ 2480 static int _regulator_enable(struct regulator *regulator) 2481 { 2482 struct regulator_dev *rdev = regulator->rdev; 2483 int ret; 2484 2485 lockdep_assert_held_once(&rdev->mutex.base); 2486 2487 if (rdev->use_count == 0 && rdev->supply) { 2488 ret = _regulator_enable(rdev->supply); 2489 if (ret < 0) 2490 return ret; 2491 } 2492 2493 /* balance only if there are regulators coupled */ 2494 if (rdev->coupling_desc.n_coupled > 1) { 2495 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2496 if (ret < 0) 2497 goto err_disable_supply; 2498 } 2499 2500 ret = _regulator_handle_consumer_enable(regulator); 2501 if (ret < 0) 2502 goto err_disable_supply; 2503 2504 if (rdev->use_count == 0) { 2505 /* The regulator may on if it's not switchable or left on */ 2506 ret = _regulator_is_enabled(rdev); 2507 if (ret == -EINVAL || ret == 0) { 2508 if (!regulator_ops_is_valid(rdev, 2509 REGULATOR_CHANGE_STATUS)) { 2510 ret = -EPERM; 2511 goto err_consumer_disable; 2512 } 2513 2514 ret = _regulator_do_enable(rdev); 2515 if (ret < 0) 2516 goto err_consumer_disable; 2517 2518 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2519 NULL); 2520 } else if (ret < 0) { 2521 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2522 goto err_consumer_disable; 2523 } 2524 /* Fallthrough on positive return values - already enabled */ 2525 } 2526 2527 rdev->use_count++; 2528 2529 return 0; 2530 2531 err_consumer_disable: 2532 _regulator_handle_consumer_disable(regulator); 2533 2534 err_disable_supply: 2535 if (rdev->use_count == 0 && rdev->supply) 2536 _regulator_disable(rdev->supply); 2537 2538 return ret; 2539 } 2540 2541 /** 2542 * regulator_enable - enable regulator output 2543 * @regulator: regulator source 2544 * 2545 * Request that the regulator be enabled with the regulator output at 2546 * the predefined voltage or current value. Calls to regulator_enable() 2547 * must be balanced with calls to regulator_disable(). 2548 * 2549 * NOTE: the output value can be set by other drivers, boot loader or may be 2550 * hardwired in the regulator. 2551 */ 2552 int regulator_enable(struct regulator *regulator) 2553 { 2554 struct regulator_dev *rdev = regulator->rdev; 2555 struct ww_acquire_ctx ww_ctx; 2556 int ret; 2557 2558 regulator_lock_dependent(rdev, &ww_ctx); 2559 ret = _regulator_enable(regulator); 2560 regulator_unlock_dependent(rdev, &ww_ctx); 2561 2562 return ret; 2563 } 2564 EXPORT_SYMBOL_GPL(regulator_enable); 2565 2566 static int _regulator_do_disable(struct regulator_dev *rdev) 2567 { 2568 int ret; 2569 2570 trace_regulator_disable(rdev_get_name(rdev)); 2571 2572 if (rdev->ena_pin) { 2573 if (rdev->ena_gpio_state) { 2574 ret = regulator_ena_gpio_ctrl(rdev, false); 2575 if (ret < 0) 2576 return ret; 2577 rdev->ena_gpio_state = 0; 2578 } 2579 2580 } else if (rdev->desc->ops->disable) { 2581 ret = rdev->desc->ops->disable(rdev); 2582 if (ret != 0) 2583 return ret; 2584 } 2585 2586 /* cares about last_off_jiffy only if off_on_delay is required by 2587 * device. 2588 */ 2589 if (rdev->desc->off_on_delay) 2590 rdev->last_off_jiffy = jiffies; 2591 2592 trace_regulator_disable_complete(rdev_get_name(rdev)); 2593 2594 return 0; 2595 } 2596 2597 /* locks held by regulator_disable() */ 2598 static int _regulator_disable(struct regulator *regulator) 2599 { 2600 struct regulator_dev *rdev = regulator->rdev; 2601 int ret = 0; 2602 2603 lockdep_assert_held_once(&rdev->mutex.base); 2604 2605 if (WARN(rdev->use_count <= 0, 2606 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2607 return -EIO; 2608 2609 /* are we the last user and permitted to disable ? */ 2610 if (rdev->use_count == 1 && 2611 (rdev->constraints && !rdev->constraints->always_on)) { 2612 2613 /* we are last user */ 2614 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2615 ret = _notifier_call_chain(rdev, 2616 REGULATOR_EVENT_PRE_DISABLE, 2617 NULL); 2618 if (ret & NOTIFY_STOP_MASK) 2619 return -EINVAL; 2620 2621 ret = _regulator_do_disable(rdev); 2622 if (ret < 0) { 2623 rdev_err(rdev, "failed to disable\n"); 2624 _notifier_call_chain(rdev, 2625 REGULATOR_EVENT_ABORT_DISABLE, 2626 NULL); 2627 return ret; 2628 } 2629 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2630 NULL); 2631 } 2632 2633 rdev->use_count = 0; 2634 } else if (rdev->use_count > 1) { 2635 rdev->use_count--; 2636 } 2637 2638 if (ret == 0) 2639 ret = _regulator_handle_consumer_disable(regulator); 2640 2641 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2642 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2643 2644 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2645 ret = _regulator_disable(rdev->supply); 2646 2647 return ret; 2648 } 2649 2650 /** 2651 * regulator_disable - disable regulator output 2652 * @regulator: regulator source 2653 * 2654 * Disable the regulator output voltage or current. Calls to 2655 * regulator_enable() must be balanced with calls to 2656 * regulator_disable(). 2657 * 2658 * NOTE: this will only disable the regulator output if no other consumer 2659 * devices have it enabled, the regulator device supports disabling and 2660 * machine constraints permit this operation. 2661 */ 2662 int regulator_disable(struct regulator *regulator) 2663 { 2664 struct regulator_dev *rdev = regulator->rdev; 2665 struct ww_acquire_ctx ww_ctx; 2666 int ret; 2667 2668 regulator_lock_dependent(rdev, &ww_ctx); 2669 ret = _regulator_disable(regulator); 2670 regulator_unlock_dependent(rdev, &ww_ctx); 2671 2672 return ret; 2673 } 2674 EXPORT_SYMBOL_GPL(regulator_disable); 2675 2676 /* locks held by regulator_force_disable() */ 2677 static int _regulator_force_disable(struct regulator_dev *rdev) 2678 { 2679 int ret = 0; 2680 2681 lockdep_assert_held_once(&rdev->mutex.base); 2682 2683 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2684 REGULATOR_EVENT_PRE_DISABLE, NULL); 2685 if (ret & NOTIFY_STOP_MASK) 2686 return -EINVAL; 2687 2688 ret = _regulator_do_disable(rdev); 2689 if (ret < 0) { 2690 rdev_err(rdev, "failed to force disable\n"); 2691 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2692 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2693 return ret; 2694 } 2695 2696 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2697 REGULATOR_EVENT_DISABLE, NULL); 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * regulator_force_disable - force disable regulator output 2704 * @regulator: regulator source 2705 * 2706 * Forcibly disable the regulator output voltage or current. 2707 * NOTE: this *will* disable the regulator output even if other consumer 2708 * devices have it enabled. This should be used for situations when device 2709 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2710 */ 2711 int regulator_force_disable(struct regulator *regulator) 2712 { 2713 struct regulator_dev *rdev = regulator->rdev; 2714 struct ww_acquire_ctx ww_ctx; 2715 int ret; 2716 2717 regulator_lock_dependent(rdev, &ww_ctx); 2718 2719 ret = _regulator_force_disable(regulator->rdev); 2720 2721 if (rdev->coupling_desc.n_coupled > 1) 2722 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2723 2724 if (regulator->uA_load) { 2725 regulator->uA_load = 0; 2726 ret = drms_uA_update(rdev); 2727 } 2728 2729 if (rdev->use_count != 0 && rdev->supply) 2730 _regulator_disable(rdev->supply); 2731 2732 regulator_unlock_dependent(rdev, &ww_ctx); 2733 2734 return ret; 2735 } 2736 EXPORT_SYMBOL_GPL(regulator_force_disable); 2737 2738 static void regulator_disable_work(struct work_struct *work) 2739 { 2740 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2741 disable_work.work); 2742 struct ww_acquire_ctx ww_ctx; 2743 int count, i, ret; 2744 struct regulator *regulator; 2745 int total_count = 0; 2746 2747 regulator_lock_dependent(rdev, &ww_ctx); 2748 2749 /* 2750 * Workqueue functions queue the new work instance while the previous 2751 * work instance is being processed. Cancel the queued work instance 2752 * as the work instance under processing does the job of the queued 2753 * work instance. 2754 */ 2755 cancel_delayed_work(&rdev->disable_work); 2756 2757 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2758 count = regulator->deferred_disables; 2759 2760 if (!count) 2761 continue; 2762 2763 total_count += count; 2764 regulator->deferred_disables = 0; 2765 2766 for (i = 0; i < count; i++) { 2767 ret = _regulator_disable(regulator); 2768 if (ret != 0) 2769 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2770 } 2771 } 2772 WARN_ON(!total_count); 2773 2774 if (rdev->coupling_desc.n_coupled > 1) 2775 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2776 2777 regulator_unlock_dependent(rdev, &ww_ctx); 2778 } 2779 2780 /** 2781 * regulator_disable_deferred - disable regulator output with delay 2782 * @regulator: regulator source 2783 * @ms: milliseconds until the regulator is disabled 2784 * 2785 * Execute regulator_disable() on the regulator after a delay. This 2786 * is intended for use with devices that require some time to quiesce. 2787 * 2788 * NOTE: this will only disable the regulator output if no other consumer 2789 * devices have it enabled, the regulator device supports disabling and 2790 * machine constraints permit this operation. 2791 */ 2792 int regulator_disable_deferred(struct regulator *regulator, int ms) 2793 { 2794 struct regulator_dev *rdev = regulator->rdev; 2795 2796 if (!ms) 2797 return regulator_disable(regulator); 2798 2799 regulator_lock(rdev); 2800 regulator->deferred_disables++; 2801 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2802 msecs_to_jiffies(ms)); 2803 regulator_unlock(rdev); 2804 2805 return 0; 2806 } 2807 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2808 2809 static int _regulator_is_enabled(struct regulator_dev *rdev) 2810 { 2811 /* A GPIO control always takes precedence */ 2812 if (rdev->ena_pin) 2813 return rdev->ena_gpio_state; 2814 2815 /* If we don't know then assume that the regulator is always on */ 2816 if (!rdev->desc->ops->is_enabled) 2817 return 1; 2818 2819 return rdev->desc->ops->is_enabled(rdev); 2820 } 2821 2822 static int _regulator_list_voltage(struct regulator_dev *rdev, 2823 unsigned selector, int lock) 2824 { 2825 const struct regulator_ops *ops = rdev->desc->ops; 2826 int ret; 2827 2828 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2829 return rdev->desc->fixed_uV; 2830 2831 if (ops->list_voltage) { 2832 if (selector >= rdev->desc->n_voltages) 2833 return -EINVAL; 2834 if (lock) 2835 regulator_lock(rdev); 2836 ret = ops->list_voltage(rdev, selector); 2837 if (lock) 2838 regulator_unlock(rdev); 2839 } else if (rdev->is_switch && rdev->supply) { 2840 ret = _regulator_list_voltage(rdev->supply->rdev, 2841 selector, lock); 2842 } else { 2843 return -EINVAL; 2844 } 2845 2846 if (ret > 0) { 2847 if (ret < rdev->constraints->min_uV) 2848 ret = 0; 2849 else if (ret > rdev->constraints->max_uV) 2850 ret = 0; 2851 } 2852 2853 return ret; 2854 } 2855 2856 /** 2857 * regulator_is_enabled - is the regulator output enabled 2858 * @regulator: regulator source 2859 * 2860 * Returns positive if the regulator driver backing the source/client 2861 * has requested that the device be enabled, zero if it hasn't, else a 2862 * negative errno code. 2863 * 2864 * Note that the device backing this regulator handle can have multiple 2865 * users, so it might be enabled even if regulator_enable() was never 2866 * called for this particular source. 2867 */ 2868 int regulator_is_enabled(struct regulator *regulator) 2869 { 2870 int ret; 2871 2872 if (regulator->always_on) 2873 return 1; 2874 2875 regulator_lock(regulator->rdev); 2876 ret = _regulator_is_enabled(regulator->rdev); 2877 regulator_unlock(regulator->rdev); 2878 2879 return ret; 2880 } 2881 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2882 2883 /** 2884 * regulator_count_voltages - count regulator_list_voltage() selectors 2885 * @regulator: regulator source 2886 * 2887 * Returns number of selectors, or negative errno. Selectors are 2888 * numbered starting at zero, and typically correspond to bitfields 2889 * in hardware registers. 2890 */ 2891 int regulator_count_voltages(struct regulator *regulator) 2892 { 2893 struct regulator_dev *rdev = regulator->rdev; 2894 2895 if (rdev->desc->n_voltages) 2896 return rdev->desc->n_voltages; 2897 2898 if (!rdev->is_switch || !rdev->supply) 2899 return -EINVAL; 2900 2901 return regulator_count_voltages(rdev->supply); 2902 } 2903 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2904 2905 /** 2906 * regulator_list_voltage - enumerate supported voltages 2907 * @regulator: regulator source 2908 * @selector: identify voltage to list 2909 * Context: can sleep 2910 * 2911 * Returns a voltage that can be passed to @regulator_set_voltage(), 2912 * zero if this selector code can't be used on this system, or a 2913 * negative errno. 2914 */ 2915 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2916 { 2917 return _regulator_list_voltage(regulator->rdev, selector, 1); 2918 } 2919 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2920 2921 /** 2922 * regulator_get_regmap - get the regulator's register map 2923 * @regulator: regulator source 2924 * 2925 * Returns the register map for the given regulator, or an ERR_PTR value 2926 * if the regulator doesn't use regmap. 2927 */ 2928 struct regmap *regulator_get_regmap(struct regulator *regulator) 2929 { 2930 struct regmap *map = regulator->rdev->regmap; 2931 2932 return map ? map : ERR_PTR(-EOPNOTSUPP); 2933 } 2934 2935 /** 2936 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2937 * @regulator: regulator source 2938 * @vsel_reg: voltage selector register, output parameter 2939 * @vsel_mask: mask for voltage selector bitfield, output parameter 2940 * 2941 * Returns the hardware register offset and bitmask used for setting the 2942 * regulator voltage. This might be useful when configuring voltage-scaling 2943 * hardware or firmware that can make I2C requests behind the kernel's back, 2944 * for example. 2945 * 2946 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2947 * and 0 is returned, otherwise a negative errno is returned. 2948 */ 2949 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2950 unsigned *vsel_reg, 2951 unsigned *vsel_mask) 2952 { 2953 struct regulator_dev *rdev = regulator->rdev; 2954 const struct regulator_ops *ops = rdev->desc->ops; 2955 2956 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2957 return -EOPNOTSUPP; 2958 2959 *vsel_reg = rdev->desc->vsel_reg; 2960 *vsel_mask = rdev->desc->vsel_mask; 2961 2962 return 0; 2963 } 2964 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2965 2966 /** 2967 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2968 * @regulator: regulator source 2969 * @selector: identify voltage to list 2970 * 2971 * Converts the selector to a hardware-specific voltage selector that can be 2972 * directly written to the regulator registers. The address of the voltage 2973 * register can be determined by calling @regulator_get_hardware_vsel_register. 2974 * 2975 * On error a negative errno is returned. 2976 */ 2977 int regulator_list_hardware_vsel(struct regulator *regulator, 2978 unsigned selector) 2979 { 2980 struct regulator_dev *rdev = regulator->rdev; 2981 const struct regulator_ops *ops = rdev->desc->ops; 2982 2983 if (selector >= rdev->desc->n_voltages) 2984 return -EINVAL; 2985 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2986 return -EOPNOTSUPP; 2987 2988 return selector; 2989 } 2990 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2991 2992 /** 2993 * regulator_get_linear_step - return the voltage step size between VSEL values 2994 * @regulator: regulator source 2995 * 2996 * Returns the voltage step size between VSEL values for linear 2997 * regulators, or return 0 if the regulator isn't a linear regulator. 2998 */ 2999 unsigned int regulator_get_linear_step(struct regulator *regulator) 3000 { 3001 struct regulator_dev *rdev = regulator->rdev; 3002 3003 return rdev->desc->uV_step; 3004 } 3005 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3006 3007 /** 3008 * regulator_is_supported_voltage - check if a voltage range can be supported 3009 * 3010 * @regulator: Regulator to check. 3011 * @min_uV: Minimum required voltage in uV. 3012 * @max_uV: Maximum required voltage in uV. 3013 * 3014 * Returns a boolean. 3015 */ 3016 int regulator_is_supported_voltage(struct regulator *regulator, 3017 int min_uV, int max_uV) 3018 { 3019 struct regulator_dev *rdev = regulator->rdev; 3020 int i, voltages, ret; 3021 3022 /* If we can't change voltage check the current voltage */ 3023 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3024 ret = regulator_get_voltage(regulator); 3025 if (ret >= 0) 3026 return min_uV <= ret && ret <= max_uV; 3027 else 3028 return ret; 3029 } 3030 3031 /* Any voltage within constrains range is fine? */ 3032 if (rdev->desc->continuous_voltage_range) 3033 return min_uV >= rdev->constraints->min_uV && 3034 max_uV <= rdev->constraints->max_uV; 3035 3036 ret = regulator_count_voltages(regulator); 3037 if (ret < 0) 3038 return 0; 3039 voltages = ret; 3040 3041 for (i = 0; i < voltages; i++) { 3042 ret = regulator_list_voltage(regulator, i); 3043 3044 if (ret >= min_uV && ret <= max_uV) 3045 return 1; 3046 } 3047 3048 return 0; 3049 } 3050 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3051 3052 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3053 int max_uV) 3054 { 3055 const struct regulator_desc *desc = rdev->desc; 3056 3057 if (desc->ops->map_voltage) 3058 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3059 3060 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3061 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3062 3063 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3064 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3065 3066 if (desc->ops->list_voltage == 3067 regulator_list_voltage_pickable_linear_range) 3068 return regulator_map_voltage_pickable_linear_range(rdev, 3069 min_uV, max_uV); 3070 3071 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3072 } 3073 3074 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3075 int min_uV, int max_uV, 3076 unsigned *selector) 3077 { 3078 struct pre_voltage_change_data data; 3079 int ret; 3080 3081 data.old_uV = regulator_get_voltage_rdev(rdev); 3082 data.min_uV = min_uV; 3083 data.max_uV = max_uV; 3084 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3085 &data); 3086 if (ret & NOTIFY_STOP_MASK) 3087 return -EINVAL; 3088 3089 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3090 if (ret >= 0) 3091 return ret; 3092 3093 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3094 (void *)data.old_uV); 3095 3096 return ret; 3097 } 3098 3099 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3100 int uV, unsigned selector) 3101 { 3102 struct pre_voltage_change_data data; 3103 int ret; 3104 3105 data.old_uV = regulator_get_voltage_rdev(rdev); 3106 data.min_uV = uV; 3107 data.max_uV = uV; 3108 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3109 &data); 3110 if (ret & NOTIFY_STOP_MASK) 3111 return -EINVAL; 3112 3113 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3114 if (ret >= 0) 3115 return ret; 3116 3117 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3118 (void *)data.old_uV); 3119 3120 return ret; 3121 } 3122 3123 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3124 int uV, int new_selector) 3125 { 3126 const struct regulator_ops *ops = rdev->desc->ops; 3127 int diff, old_sel, curr_sel, ret; 3128 3129 /* Stepping is only needed if the regulator is enabled. */ 3130 if (!_regulator_is_enabled(rdev)) 3131 goto final_set; 3132 3133 if (!ops->get_voltage_sel) 3134 return -EINVAL; 3135 3136 old_sel = ops->get_voltage_sel(rdev); 3137 if (old_sel < 0) 3138 return old_sel; 3139 3140 diff = new_selector - old_sel; 3141 if (diff == 0) 3142 return 0; /* No change needed. */ 3143 3144 if (diff > 0) { 3145 /* Stepping up. */ 3146 for (curr_sel = old_sel + rdev->desc->vsel_step; 3147 curr_sel < new_selector; 3148 curr_sel += rdev->desc->vsel_step) { 3149 /* 3150 * Call the callback directly instead of using 3151 * _regulator_call_set_voltage_sel() as we don't 3152 * want to notify anyone yet. Same in the branch 3153 * below. 3154 */ 3155 ret = ops->set_voltage_sel(rdev, curr_sel); 3156 if (ret) 3157 goto try_revert; 3158 } 3159 } else { 3160 /* Stepping down. */ 3161 for (curr_sel = old_sel - rdev->desc->vsel_step; 3162 curr_sel > new_selector; 3163 curr_sel -= rdev->desc->vsel_step) { 3164 ret = ops->set_voltage_sel(rdev, curr_sel); 3165 if (ret) 3166 goto try_revert; 3167 } 3168 } 3169 3170 final_set: 3171 /* The final selector will trigger the notifiers. */ 3172 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3173 3174 try_revert: 3175 /* 3176 * At least try to return to the previous voltage if setting a new 3177 * one failed. 3178 */ 3179 (void)ops->set_voltage_sel(rdev, old_sel); 3180 return ret; 3181 } 3182 3183 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3184 int old_uV, int new_uV) 3185 { 3186 unsigned int ramp_delay = 0; 3187 3188 if (rdev->constraints->ramp_delay) 3189 ramp_delay = rdev->constraints->ramp_delay; 3190 else if (rdev->desc->ramp_delay) 3191 ramp_delay = rdev->desc->ramp_delay; 3192 else if (rdev->constraints->settling_time) 3193 return rdev->constraints->settling_time; 3194 else if (rdev->constraints->settling_time_up && 3195 (new_uV > old_uV)) 3196 return rdev->constraints->settling_time_up; 3197 else if (rdev->constraints->settling_time_down && 3198 (new_uV < old_uV)) 3199 return rdev->constraints->settling_time_down; 3200 3201 if (ramp_delay == 0) { 3202 rdev_dbg(rdev, "ramp_delay not set\n"); 3203 return 0; 3204 } 3205 3206 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3207 } 3208 3209 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3210 int min_uV, int max_uV) 3211 { 3212 int ret; 3213 int delay = 0; 3214 int best_val = 0; 3215 unsigned int selector; 3216 int old_selector = -1; 3217 const struct regulator_ops *ops = rdev->desc->ops; 3218 int old_uV = regulator_get_voltage_rdev(rdev); 3219 3220 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3221 3222 min_uV += rdev->constraints->uV_offset; 3223 max_uV += rdev->constraints->uV_offset; 3224 3225 /* 3226 * If we can't obtain the old selector there is not enough 3227 * info to call set_voltage_time_sel(). 3228 */ 3229 if (_regulator_is_enabled(rdev) && 3230 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3231 old_selector = ops->get_voltage_sel(rdev); 3232 if (old_selector < 0) 3233 return old_selector; 3234 } 3235 3236 if (ops->set_voltage) { 3237 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3238 &selector); 3239 3240 if (ret >= 0) { 3241 if (ops->list_voltage) 3242 best_val = ops->list_voltage(rdev, 3243 selector); 3244 else 3245 best_val = regulator_get_voltage_rdev(rdev); 3246 } 3247 3248 } else if (ops->set_voltage_sel) { 3249 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3250 if (ret >= 0) { 3251 best_val = ops->list_voltage(rdev, ret); 3252 if (min_uV <= best_val && max_uV >= best_val) { 3253 selector = ret; 3254 if (old_selector == selector) 3255 ret = 0; 3256 else if (rdev->desc->vsel_step) 3257 ret = _regulator_set_voltage_sel_step( 3258 rdev, best_val, selector); 3259 else 3260 ret = _regulator_call_set_voltage_sel( 3261 rdev, best_val, selector); 3262 } else { 3263 ret = -EINVAL; 3264 } 3265 } 3266 } else { 3267 ret = -EINVAL; 3268 } 3269 3270 if (ret) 3271 goto out; 3272 3273 if (ops->set_voltage_time_sel) { 3274 /* 3275 * Call set_voltage_time_sel if successfully obtained 3276 * old_selector 3277 */ 3278 if (old_selector >= 0 && old_selector != selector) 3279 delay = ops->set_voltage_time_sel(rdev, old_selector, 3280 selector); 3281 } else { 3282 if (old_uV != best_val) { 3283 if (ops->set_voltage_time) 3284 delay = ops->set_voltage_time(rdev, old_uV, 3285 best_val); 3286 else 3287 delay = _regulator_set_voltage_time(rdev, 3288 old_uV, 3289 best_val); 3290 } 3291 } 3292 3293 if (delay < 0) { 3294 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3295 delay = 0; 3296 } 3297 3298 /* Insert any necessary delays */ 3299 if (delay >= 1000) { 3300 mdelay(delay / 1000); 3301 udelay(delay % 1000); 3302 } else if (delay) { 3303 udelay(delay); 3304 } 3305 3306 if (best_val >= 0) { 3307 unsigned long data = best_val; 3308 3309 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3310 (void *)data); 3311 } 3312 3313 out: 3314 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3315 3316 return ret; 3317 } 3318 3319 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3320 int min_uV, int max_uV, suspend_state_t state) 3321 { 3322 struct regulator_state *rstate; 3323 int uV, sel; 3324 3325 rstate = regulator_get_suspend_state(rdev, state); 3326 if (rstate == NULL) 3327 return -EINVAL; 3328 3329 if (min_uV < rstate->min_uV) 3330 min_uV = rstate->min_uV; 3331 if (max_uV > rstate->max_uV) 3332 max_uV = rstate->max_uV; 3333 3334 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3335 if (sel < 0) 3336 return sel; 3337 3338 uV = rdev->desc->ops->list_voltage(rdev, sel); 3339 if (uV >= min_uV && uV <= max_uV) 3340 rstate->uV = uV; 3341 3342 return 0; 3343 } 3344 3345 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3346 int min_uV, int max_uV, 3347 suspend_state_t state) 3348 { 3349 struct regulator_dev *rdev = regulator->rdev; 3350 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3351 int ret = 0; 3352 int old_min_uV, old_max_uV; 3353 int current_uV; 3354 3355 /* If we're setting the same range as last time the change 3356 * should be a noop (some cpufreq implementations use the same 3357 * voltage for multiple frequencies, for example). 3358 */ 3359 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3360 goto out; 3361 3362 /* If we're trying to set a range that overlaps the current voltage, 3363 * return successfully even though the regulator does not support 3364 * changing the voltage. 3365 */ 3366 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3367 current_uV = regulator_get_voltage_rdev(rdev); 3368 if (min_uV <= current_uV && current_uV <= max_uV) { 3369 voltage->min_uV = min_uV; 3370 voltage->max_uV = max_uV; 3371 goto out; 3372 } 3373 } 3374 3375 /* sanity check */ 3376 if (!rdev->desc->ops->set_voltage && 3377 !rdev->desc->ops->set_voltage_sel) { 3378 ret = -EINVAL; 3379 goto out; 3380 } 3381 3382 /* constraints check */ 3383 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3384 if (ret < 0) 3385 goto out; 3386 3387 /* restore original values in case of error */ 3388 old_min_uV = voltage->min_uV; 3389 old_max_uV = voltage->max_uV; 3390 voltage->min_uV = min_uV; 3391 voltage->max_uV = max_uV; 3392 3393 /* for not coupled regulators this will just set the voltage */ 3394 ret = regulator_balance_voltage(rdev, state); 3395 if (ret < 0) { 3396 voltage->min_uV = old_min_uV; 3397 voltage->max_uV = old_max_uV; 3398 } 3399 3400 out: 3401 return ret; 3402 } 3403 3404 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3405 int max_uV, suspend_state_t state) 3406 { 3407 int best_supply_uV = 0; 3408 int supply_change_uV = 0; 3409 int ret; 3410 3411 if (rdev->supply && 3412 regulator_ops_is_valid(rdev->supply->rdev, 3413 REGULATOR_CHANGE_VOLTAGE) && 3414 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3415 rdev->desc->ops->get_voltage_sel))) { 3416 int current_supply_uV; 3417 int selector; 3418 3419 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3420 if (selector < 0) { 3421 ret = selector; 3422 goto out; 3423 } 3424 3425 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3426 if (best_supply_uV < 0) { 3427 ret = best_supply_uV; 3428 goto out; 3429 } 3430 3431 best_supply_uV += rdev->desc->min_dropout_uV; 3432 3433 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3434 if (current_supply_uV < 0) { 3435 ret = current_supply_uV; 3436 goto out; 3437 } 3438 3439 supply_change_uV = best_supply_uV - current_supply_uV; 3440 } 3441 3442 if (supply_change_uV > 0) { 3443 ret = regulator_set_voltage_unlocked(rdev->supply, 3444 best_supply_uV, INT_MAX, state); 3445 if (ret) { 3446 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3447 ret); 3448 goto out; 3449 } 3450 } 3451 3452 if (state == PM_SUSPEND_ON) 3453 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3454 else 3455 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3456 max_uV, state); 3457 if (ret < 0) 3458 goto out; 3459 3460 if (supply_change_uV < 0) { 3461 ret = regulator_set_voltage_unlocked(rdev->supply, 3462 best_supply_uV, INT_MAX, state); 3463 if (ret) 3464 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3465 ret); 3466 /* No need to fail here */ 3467 ret = 0; 3468 } 3469 3470 out: 3471 return ret; 3472 } 3473 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3474 3475 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3476 int *current_uV, int *min_uV) 3477 { 3478 struct regulation_constraints *constraints = rdev->constraints; 3479 3480 /* Limit voltage change only if necessary */ 3481 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3482 return 1; 3483 3484 if (*current_uV < 0) { 3485 *current_uV = regulator_get_voltage_rdev(rdev); 3486 3487 if (*current_uV < 0) 3488 return *current_uV; 3489 } 3490 3491 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3492 return 1; 3493 3494 /* Clamp target voltage within the given step */ 3495 if (*current_uV < *min_uV) 3496 *min_uV = min(*current_uV + constraints->max_uV_step, 3497 *min_uV); 3498 else 3499 *min_uV = max(*current_uV - constraints->max_uV_step, 3500 *min_uV); 3501 3502 return 0; 3503 } 3504 3505 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3506 int *current_uV, 3507 int *min_uV, int *max_uV, 3508 suspend_state_t state, 3509 int n_coupled) 3510 { 3511 struct coupling_desc *c_desc = &rdev->coupling_desc; 3512 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3513 struct regulation_constraints *constraints = rdev->constraints; 3514 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3515 int max_current_uV = 0, min_current_uV = INT_MAX; 3516 int highest_min_uV = 0, target_uV, possible_uV; 3517 int i, ret, max_spread; 3518 bool done; 3519 3520 *current_uV = -1; 3521 3522 /* 3523 * If there are no coupled regulators, simply set the voltage 3524 * demanded by consumers. 3525 */ 3526 if (n_coupled == 1) { 3527 /* 3528 * If consumers don't provide any demands, set voltage 3529 * to min_uV 3530 */ 3531 desired_min_uV = constraints->min_uV; 3532 desired_max_uV = constraints->max_uV; 3533 3534 ret = regulator_check_consumers(rdev, 3535 &desired_min_uV, 3536 &desired_max_uV, state); 3537 if (ret < 0) 3538 return ret; 3539 3540 possible_uV = desired_min_uV; 3541 done = true; 3542 3543 goto finish; 3544 } 3545 3546 /* Find highest min desired voltage */ 3547 for (i = 0; i < n_coupled; i++) { 3548 int tmp_min = 0; 3549 int tmp_max = INT_MAX; 3550 3551 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3552 3553 ret = regulator_check_consumers(c_rdevs[i], 3554 &tmp_min, 3555 &tmp_max, state); 3556 if (ret < 0) 3557 return ret; 3558 3559 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3560 if (ret < 0) 3561 return ret; 3562 3563 highest_min_uV = max(highest_min_uV, tmp_min); 3564 3565 if (i == 0) { 3566 desired_min_uV = tmp_min; 3567 desired_max_uV = tmp_max; 3568 } 3569 } 3570 3571 max_spread = constraints->max_spread[0]; 3572 3573 /* 3574 * Let target_uV be equal to the desired one if possible. 3575 * If not, set it to minimum voltage, allowed by other coupled 3576 * regulators. 3577 */ 3578 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3579 3580 /* 3581 * Find min and max voltages, which currently aren't violating 3582 * max_spread. 3583 */ 3584 for (i = 1; i < n_coupled; i++) { 3585 int tmp_act; 3586 3587 if (!_regulator_is_enabled(c_rdevs[i])) 3588 continue; 3589 3590 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3591 if (tmp_act < 0) 3592 return tmp_act; 3593 3594 min_current_uV = min(tmp_act, min_current_uV); 3595 max_current_uV = max(tmp_act, max_current_uV); 3596 } 3597 3598 /* There aren't any other regulators enabled */ 3599 if (max_current_uV == 0) { 3600 possible_uV = target_uV; 3601 } else { 3602 /* 3603 * Correct target voltage, so as it currently isn't 3604 * violating max_spread 3605 */ 3606 possible_uV = max(target_uV, max_current_uV - max_spread); 3607 possible_uV = min(possible_uV, min_current_uV + max_spread); 3608 } 3609 3610 if (possible_uV > desired_max_uV) 3611 return -EINVAL; 3612 3613 done = (possible_uV == target_uV); 3614 desired_min_uV = possible_uV; 3615 3616 finish: 3617 /* Apply max_uV_step constraint if necessary */ 3618 if (state == PM_SUSPEND_ON) { 3619 ret = regulator_limit_voltage_step(rdev, current_uV, 3620 &desired_min_uV); 3621 if (ret < 0) 3622 return ret; 3623 3624 if (ret == 0) 3625 done = false; 3626 } 3627 3628 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3629 if (n_coupled > 1 && *current_uV == -1) { 3630 3631 if (_regulator_is_enabled(rdev)) { 3632 ret = regulator_get_voltage_rdev(rdev); 3633 if (ret < 0) 3634 return ret; 3635 3636 *current_uV = ret; 3637 } else { 3638 *current_uV = desired_min_uV; 3639 } 3640 } 3641 3642 *min_uV = desired_min_uV; 3643 *max_uV = desired_max_uV; 3644 3645 return done; 3646 } 3647 3648 static int regulator_balance_voltage(struct regulator_dev *rdev, 3649 suspend_state_t state) 3650 { 3651 struct regulator_dev **c_rdevs; 3652 struct regulator_dev *best_rdev; 3653 struct coupling_desc *c_desc = &rdev->coupling_desc; 3654 struct regulator_coupler *coupler = c_desc->coupler; 3655 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3656 unsigned int delta, best_delta; 3657 unsigned long c_rdev_done = 0; 3658 bool best_c_rdev_done; 3659 3660 c_rdevs = c_desc->coupled_rdevs; 3661 n_coupled = c_desc->n_coupled; 3662 3663 /* 3664 * If system is in a state other than PM_SUSPEND_ON, don't check 3665 * other coupled regulators. 3666 */ 3667 if (state != PM_SUSPEND_ON) 3668 n_coupled = 1; 3669 3670 if (c_desc->n_resolved < n_coupled) { 3671 rdev_err(rdev, "Not all coupled regulators registered\n"); 3672 return -EPERM; 3673 } 3674 3675 /* Invoke custom balancer for customized couplers */ 3676 if (coupler && coupler->balance_voltage) 3677 return coupler->balance_voltage(coupler, rdev, state); 3678 3679 /* 3680 * Find the best possible voltage change on each loop. Leave the loop 3681 * if there isn't any possible change. 3682 */ 3683 do { 3684 best_c_rdev_done = false; 3685 best_delta = 0; 3686 best_min_uV = 0; 3687 best_max_uV = 0; 3688 best_c_rdev = 0; 3689 best_rdev = NULL; 3690 3691 /* 3692 * Find highest difference between optimal voltage 3693 * and current voltage. 3694 */ 3695 for (i = 0; i < n_coupled; i++) { 3696 /* 3697 * optimal_uV is the best voltage that can be set for 3698 * i-th regulator at the moment without violating 3699 * max_spread constraint in order to balance 3700 * the coupled voltages. 3701 */ 3702 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3703 3704 if (test_bit(i, &c_rdev_done)) 3705 continue; 3706 3707 ret = regulator_get_optimal_voltage(c_rdevs[i], 3708 ¤t_uV, 3709 &optimal_uV, 3710 &optimal_max_uV, 3711 state, n_coupled); 3712 if (ret < 0) 3713 goto out; 3714 3715 delta = abs(optimal_uV - current_uV); 3716 3717 if (delta && best_delta <= delta) { 3718 best_c_rdev_done = ret; 3719 best_delta = delta; 3720 best_rdev = c_rdevs[i]; 3721 best_min_uV = optimal_uV; 3722 best_max_uV = optimal_max_uV; 3723 best_c_rdev = i; 3724 } 3725 } 3726 3727 /* Nothing to change, return successfully */ 3728 if (!best_rdev) { 3729 ret = 0; 3730 goto out; 3731 } 3732 3733 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3734 best_max_uV, state); 3735 3736 if (ret < 0) 3737 goto out; 3738 3739 if (best_c_rdev_done) 3740 set_bit(best_c_rdev, &c_rdev_done); 3741 3742 } while (n_coupled > 1); 3743 3744 out: 3745 return ret; 3746 } 3747 3748 /** 3749 * regulator_set_voltage - set regulator output voltage 3750 * @regulator: regulator source 3751 * @min_uV: Minimum required voltage in uV 3752 * @max_uV: Maximum acceptable voltage in uV 3753 * 3754 * Sets a voltage regulator to the desired output voltage. This can be set 3755 * during any regulator state. IOW, regulator can be disabled or enabled. 3756 * 3757 * If the regulator is enabled then the voltage will change to the new value 3758 * immediately otherwise if the regulator is disabled the regulator will 3759 * output at the new voltage when enabled. 3760 * 3761 * NOTE: If the regulator is shared between several devices then the lowest 3762 * request voltage that meets the system constraints will be used. 3763 * Regulator system constraints must be set for this regulator before 3764 * calling this function otherwise this call will fail. 3765 */ 3766 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3767 { 3768 struct ww_acquire_ctx ww_ctx; 3769 int ret; 3770 3771 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3772 3773 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3774 PM_SUSPEND_ON); 3775 3776 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3777 3778 return ret; 3779 } 3780 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3781 3782 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3783 suspend_state_t state, bool en) 3784 { 3785 struct regulator_state *rstate; 3786 3787 rstate = regulator_get_suspend_state(rdev, state); 3788 if (rstate == NULL) 3789 return -EINVAL; 3790 3791 if (!rstate->changeable) 3792 return -EPERM; 3793 3794 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3795 3796 return 0; 3797 } 3798 3799 int regulator_suspend_enable(struct regulator_dev *rdev, 3800 suspend_state_t state) 3801 { 3802 return regulator_suspend_toggle(rdev, state, true); 3803 } 3804 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3805 3806 int regulator_suspend_disable(struct regulator_dev *rdev, 3807 suspend_state_t state) 3808 { 3809 struct regulator *regulator; 3810 struct regulator_voltage *voltage; 3811 3812 /* 3813 * if any consumer wants this regulator device keeping on in 3814 * suspend states, don't set it as disabled. 3815 */ 3816 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3817 voltage = ®ulator->voltage[state]; 3818 if (voltage->min_uV || voltage->max_uV) 3819 return 0; 3820 } 3821 3822 return regulator_suspend_toggle(rdev, state, false); 3823 } 3824 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3825 3826 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3827 int min_uV, int max_uV, 3828 suspend_state_t state) 3829 { 3830 struct regulator_dev *rdev = regulator->rdev; 3831 struct regulator_state *rstate; 3832 3833 rstate = regulator_get_suspend_state(rdev, state); 3834 if (rstate == NULL) 3835 return -EINVAL; 3836 3837 if (rstate->min_uV == rstate->max_uV) { 3838 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3839 return -EPERM; 3840 } 3841 3842 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3843 } 3844 3845 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3846 int max_uV, suspend_state_t state) 3847 { 3848 struct ww_acquire_ctx ww_ctx; 3849 int ret; 3850 3851 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3852 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3853 return -EINVAL; 3854 3855 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3856 3857 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3858 max_uV, state); 3859 3860 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3861 3862 return ret; 3863 } 3864 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3865 3866 /** 3867 * regulator_set_voltage_time - get raise/fall time 3868 * @regulator: regulator source 3869 * @old_uV: starting voltage in microvolts 3870 * @new_uV: target voltage in microvolts 3871 * 3872 * Provided with the starting and ending voltage, this function attempts to 3873 * calculate the time in microseconds required to rise or fall to this new 3874 * voltage. 3875 */ 3876 int regulator_set_voltage_time(struct regulator *regulator, 3877 int old_uV, int new_uV) 3878 { 3879 struct regulator_dev *rdev = regulator->rdev; 3880 const struct regulator_ops *ops = rdev->desc->ops; 3881 int old_sel = -1; 3882 int new_sel = -1; 3883 int voltage; 3884 int i; 3885 3886 if (ops->set_voltage_time) 3887 return ops->set_voltage_time(rdev, old_uV, new_uV); 3888 else if (!ops->set_voltage_time_sel) 3889 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3890 3891 /* Currently requires operations to do this */ 3892 if (!ops->list_voltage || !rdev->desc->n_voltages) 3893 return -EINVAL; 3894 3895 for (i = 0; i < rdev->desc->n_voltages; i++) { 3896 /* We only look for exact voltage matches here */ 3897 voltage = regulator_list_voltage(regulator, i); 3898 if (voltage < 0) 3899 return -EINVAL; 3900 if (voltage == 0) 3901 continue; 3902 if (voltage == old_uV) 3903 old_sel = i; 3904 if (voltage == new_uV) 3905 new_sel = i; 3906 } 3907 3908 if (old_sel < 0 || new_sel < 0) 3909 return -EINVAL; 3910 3911 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3912 } 3913 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3914 3915 /** 3916 * regulator_set_voltage_time_sel - get raise/fall time 3917 * @rdev: regulator source device 3918 * @old_selector: selector for starting voltage 3919 * @new_selector: selector for target voltage 3920 * 3921 * Provided with the starting and target voltage selectors, this function 3922 * returns time in microseconds required to rise or fall to this new voltage 3923 * 3924 * Drivers providing ramp_delay in regulation_constraints can use this as their 3925 * set_voltage_time_sel() operation. 3926 */ 3927 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3928 unsigned int old_selector, 3929 unsigned int new_selector) 3930 { 3931 int old_volt, new_volt; 3932 3933 /* sanity check */ 3934 if (!rdev->desc->ops->list_voltage) 3935 return -EINVAL; 3936 3937 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3938 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3939 3940 if (rdev->desc->ops->set_voltage_time) 3941 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3942 new_volt); 3943 else 3944 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3945 } 3946 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3947 3948 /** 3949 * regulator_sync_voltage - re-apply last regulator output voltage 3950 * @regulator: regulator source 3951 * 3952 * Re-apply the last configured voltage. This is intended to be used 3953 * where some external control source the consumer is cooperating with 3954 * has caused the configured voltage to change. 3955 */ 3956 int regulator_sync_voltage(struct regulator *regulator) 3957 { 3958 struct regulator_dev *rdev = regulator->rdev; 3959 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3960 int ret, min_uV, max_uV; 3961 3962 regulator_lock(rdev); 3963 3964 if (!rdev->desc->ops->set_voltage && 3965 !rdev->desc->ops->set_voltage_sel) { 3966 ret = -EINVAL; 3967 goto out; 3968 } 3969 3970 /* This is only going to work if we've had a voltage configured. */ 3971 if (!voltage->min_uV && !voltage->max_uV) { 3972 ret = -EINVAL; 3973 goto out; 3974 } 3975 3976 min_uV = voltage->min_uV; 3977 max_uV = voltage->max_uV; 3978 3979 /* This should be a paranoia check... */ 3980 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3981 if (ret < 0) 3982 goto out; 3983 3984 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3985 if (ret < 0) 3986 goto out; 3987 3988 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3989 3990 out: 3991 regulator_unlock(rdev); 3992 return ret; 3993 } 3994 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3995 3996 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 3997 { 3998 int sel, ret; 3999 bool bypassed; 4000 4001 if (rdev->desc->ops->get_bypass) { 4002 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4003 if (ret < 0) 4004 return ret; 4005 if (bypassed) { 4006 /* if bypassed the regulator must have a supply */ 4007 if (!rdev->supply) { 4008 rdev_err(rdev, 4009 "bypassed regulator has no supply!\n"); 4010 return -EPROBE_DEFER; 4011 } 4012 4013 return regulator_get_voltage_rdev(rdev->supply->rdev); 4014 } 4015 } 4016 4017 if (rdev->desc->ops->get_voltage_sel) { 4018 sel = rdev->desc->ops->get_voltage_sel(rdev); 4019 if (sel < 0) 4020 return sel; 4021 ret = rdev->desc->ops->list_voltage(rdev, sel); 4022 } else if (rdev->desc->ops->get_voltage) { 4023 ret = rdev->desc->ops->get_voltage(rdev); 4024 } else if (rdev->desc->ops->list_voltage) { 4025 ret = rdev->desc->ops->list_voltage(rdev, 0); 4026 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4027 ret = rdev->desc->fixed_uV; 4028 } else if (rdev->supply) { 4029 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4030 } else { 4031 return -EINVAL; 4032 } 4033 4034 if (ret < 0) 4035 return ret; 4036 return ret - rdev->constraints->uV_offset; 4037 } 4038 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4039 4040 /** 4041 * regulator_get_voltage - get regulator output voltage 4042 * @regulator: regulator source 4043 * 4044 * This returns the current regulator voltage in uV. 4045 * 4046 * NOTE: If the regulator is disabled it will return the voltage value. This 4047 * function should not be used to determine regulator state. 4048 */ 4049 int regulator_get_voltage(struct regulator *regulator) 4050 { 4051 struct ww_acquire_ctx ww_ctx; 4052 int ret; 4053 4054 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4055 ret = regulator_get_voltage_rdev(regulator->rdev); 4056 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4057 4058 return ret; 4059 } 4060 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4061 4062 /** 4063 * regulator_set_current_limit - set regulator output current limit 4064 * @regulator: regulator source 4065 * @min_uA: Minimum supported current in uA 4066 * @max_uA: Maximum supported current in uA 4067 * 4068 * Sets current sink to the desired output current. This can be set during 4069 * any regulator state. IOW, regulator can be disabled or enabled. 4070 * 4071 * If the regulator is enabled then the current will change to the new value 4072 * immediately otherwise if the regulator is disabled the regulator will 4073 * output at the new current when enabled. 4074 * 4075 * NOTE: Regulator system constraints must be set for this regulator before 4076 * calling this function otherwise this call will fail. 4077 */ 4078 int regulator_set_current_limit(struct regulator *regulator, 4079 int min_uA, int max_uA) 4080 { 4081 struct regulator_dev *rdev = regulator->rdev; 4082 int ret; 4083 4084 regulator_lock(rdev); 4085 4086 /* sanity check */ 4087 if (!rdev->desc->ops->set_current_limit) { 4088 ret = -EINVAL; 4089 goto out; 4090 } 4091 4092 /* constraints check */ 4093 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4094 if (ret < 0) 4095 goto out; 4096 4097 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4098 out: 4099 regulator_unlock(rdev); 4100 return ret; 4101 } 4102 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4103 4104 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4105 { 4106 /* sanity check */ 4107 if (!rdev->desc->ops->get_current_limit) 4108 return -EINVAL; 4109 4110 return rdev->desc->ops->get_current_limit(rdev); 4111 } 4112 4113 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4114 { 4115 int ret; 4116 4117 regulator_lock(rdev); 4118 ret = _regulator_get_current_limit_unlocked(rdev); 4119 regulator_unlock(rdev); 4120 4121 return ret; 4122 } 4123 4124 /** 4125 * regulator_get_current_limit - get regulator output current 4126 * @regulator: regulator source 4127 * 4128 * This returns the current supplied by the specified current sink in uA. 4129 * 4130 * NOTE: If the regulator is disabled it will return the current value. This 4131 * function should not be used to determine regulator state. 4132 */ 4133 int regulator_get_current_limit(struct regulator *regulator) 4134 { 4135 return _regulator_get_current_limit(regulator->rdev); 4136 } 4137 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4138 4139 /** 4140 * regulator_set_mode - set regulator operating mode 4141 * @regulator: regulator source 4142 * @mode: operating mode - one of the REGULATOR_MODE constants 4143 * 4144 * Set regulator operating mode to increase regulator efficiency or improve 4145 * regulation performance. 4146 * 4147 * NOTE: Regulator system constraints must be set for this regulator before 4148 * calling this function otherwise this call will fail. 4149 */ 4150 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4151 { 4152 struct regulator_dev *rdev = regulator->rdev; 4153 int ret; 4154 int regulator_curr_mode; 4155 4156 regulator_lock(rdev); 4157 4158 /* sanity check */ 4159 if (!rdev->desc->ops->set_mode) { 4160 ret = -EINVAL; 4161 goto out; 4162 } 4163 4164 /* return if the same mode is requested */ 4165 if (rdev->desc->ops->get_mode) { 4166 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4167 if (regulator_curr_mode == mode) { 4168 ret = 0; 4169 goto out; 4170 } 4171 } 4172 4173 /* constraints check */ 4174 ret = regulator_mode_constrain(rdev, &mode); 4175 if (ret < 0) 4176 goto out; 4177 4178 ret = rdev->desc->ops->set_mode(rdev, mode); 4179 out: 4180 regulator_unlock(rdev); 4181 return ret; 4182 } 4183 EXPORT_SYMBOL_GPL(regulator_set_mode); 4184 4185 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4186 { 4187 /* sanity check */ 4188 if (!rdev->desc->ops->get_mode) 4189 return -EINVAL; 4190 4191 return rdev->desc->ops->get_mode(rdev); 4192 } 4193 4194 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4195 { 4196 int ret; 4197 4198 regulator_lock(rdev); 4199 ret = _regulator_get_mode_unlocked(rdev); 4200 regulator_unlock(rdev); 4201 4202 return ret; 4203 } 4204 4205 /** 4206 * regulator_get_mode - get regulator operating mode 4207 * @regulator: regulator source 4208 * 4209 * Get the current regulator operating mode. 4210 */ 4211 unsigned int regulator_get_mode(struct regulator *regulator) 4212 { 4213 return _regulator_get_mode(regulator->rdev); 4214 } 4215 EXPORT_SYMBOL_GPL(regulator_get_mode); 4216 4217 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4218 unsigned int *flags) 4219 { 4220 int ret; 4221 4222 regulator_lock(rdev); 4223 4224 /* sanity check */ 4225 if (!rdev->desc->ops->get_error_flags) { 4226 ret = -EINVAL; 4227 goto out; 4228 } 4229 4230 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4231 out: 4232 regulator_unlock(rdev); 4233 return ret; 4234 } 4235 4236 /** 4237 * regulator_get_error_flags - get regulator error information 4238 * @regulator: regulator source 4239 * @flags: pointer to store error flags 4240 * 4241 * Get the current regulator error information. 4242 */ 4243 int regulator_get_error_flags(struct regulator *regulator, 4244 unsigned int *flags) 4245 { 4246 return _regulator_get_error_flags(regulator->rdev, flags); 4247 } 4248 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4249 4250 /** 4251 * regulator_set_load - set regulator load 4252 * @regulator: regulator source 4253 * @uA_load: load current 4254 * 4255 * Notifies the regulator core of a new device load. This is then used by 4256 * DRMS (if enabled by constraints) to set the most efficient regulator 4257 * operating mode for the new regulator loading. 4258 * 4259 * Consumer devices notify their supply regulator of the maximum power 4260 * they will require (can be taken from device datasheet in the power 4261 * consumption tables) when they change operational status and hence power 4262 * state. Examples of operational state changes that can affect power 4263 * consumption are :- 4264 * 4265 * o Device is opened / closed. 4266 * o Device I/O is about to begin or has just finished. 4267 * o Device is idling in between work. 4268 * 4269 * This information is also exported via sysfs to userspace. 4270 * 4271 * DRMS will sum the total requested load on the regulator and change 4272 * to the most efficient operating mode if platform constraints allow. 4273 * 4274 * NOTE: when a regulator consumer requests to have a regulator 4275 * disabled then any load that consumer requested no longer counts 4276 * toward the total requested load. If the regulator is re-enabled 4277 * then the previously requested load will start counting again. 4278 * 4279 * If a regulator is an always-on regulator then an individual consumer's 4280 * load will still be removed if that consumer is fully disabled. 4281 * 4282 * On error a negative errno is returned. 4283 */ 4284 int regulator_set_load(struct regulator *regulator, int uA_load) 4285 { 4286 struct regulator_dev *rdev = regulator->rdev; 4287 int old_uA_load; 4288 int ret = 0; 4289 4290 regulator_lock(rdev); 4291 old_uA_load = regulator->uA_load; 4292 regulator->uA_load = uA_load; 4293 if (regulator->enable_count && old_uA_load != uA_load) { 4294 ret = drms_uA_update(rdev); 4295 if (ret < 0) 4296 regulator->uA_load = old_uA_load; 4297 } 4298 regulator_unlock(rdev); 4299 4300 return ret; 4301 } 4302 EXPORT_SYMBOL_GPL(regulator_set_load); 4303 4304 /** 4305 * regulator_allow_bypass - allow the regulator to go into bypass mode 4306 * 4307 * @regulator: Regulator to configure 4308 * @enable: enable or disable bypass mode 4309 * 4310 * Allow the regulator to go into bypass mode if all other consumers 4311 * for the regulator also enable bypass mode and the machine 4312 * constraints allow this. Bypass mode means that the regulator is 4313 * simply passing the input directly to the output with no regulation. 4314 */ 4315 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4316 { 4317 struct regulator_dev *rdev = regulator->rdev; 4318 int ret = 0; 4319 4320 if (!rdev->desc->ops->set_bypass) 4321 return 0; 4322 4323 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4324 return 0; 4325 4326 regulator_lock(rdev); 4327 4328 if (enable && !regulator->bypass) { 4329 rdev->bypass_count++; 4330 4331 if (rdev->bypass_count == rdev->open_count) { 4332 ret = rdev->desc->ops->set_bypass(rdev, enable); 4333 if (ret != 0) 4334 rdev->bypass_count--; 4335 } 4336 4337 } else if (!enable && regulator->bypass) { 4338 rdev->bypass_count--; 4339 4340 if (rdev->bypass_count != rdev->open_count) { 4341 ret = rdev->desc->ops->set_bypass(rdev, enable); 4342 if (ret != 0) 4343 rdev->bypass_count++; 4344 } 4345 } 4346 4347 if (ret == 0) 4348 regulator->bypass = enable; 4349 4350 regulator_unlock(rdev); 4351 4352 return ret; 4353 } 4354 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4355 4356 /** 4357 * regulator_register_notifier - register regulator event notifier 4358 * @regulator: regulator source 4359 * @nb: notifier block 4360 * 4361 * Register notifier block to receive regulator events. 4362 */ 4363 int regulator_register_notifier(struct regulator *regulator, 4364 struct notifier_block *nb) 4365 { 4366 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4367 nb); 4368 } 4369 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4370 4371 /** 4372 * regulator_unregister_notifier - unregister regulator event notifier 4373 * @regulator: regulator source 4374 * @nb: notifier block 4375 * 4376 * Unregister regulator event notifier block. 4377 */ 4378 int regulator_unregister_notifier(struct regulator *regulator, 4379 struct notifier_block *nb) 4380 { 4381 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4382 nb); 4383 } 4384 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4385 4386 /* notify regulator consumers and downstream regulator consumers. 4387 * Note mutex must be held by caller. 4388 */ 4389 static int _notifier_call_chain(struct regulator_dev *rdev, 4390 unsigned long event, void *data) 4391 { 4392 /* call rdev chain first */ 4393 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4394 } 4395 4396 /** 4397 * regulator_bulk_get - get multiple regulator consumers 4398 * 4399 * @dev: Device to supply 4400 * @num_consumers: Number of consumers to register 4401 * @consumers: Configuration of consumers; clients are stored here. 4402 * 4403 * @return 0 on success, an errno on failure. 4404 * 4405 * This helper function allows drivers to get several regulator 4406 * consumers in one operation. If any of the regulators cannot be 4407 * acquired then any regulators that were allocated will be freed 4408 * before returning to the caller. 4409 */ 4410 int regulator_bulk_get(struct device *dev, int num_consumers, 4411 struct regulator_bulk_data *consumers) 4412 { 4413 int i; 4414 int ret; 4415 4416 for (i = 0; i < num_consumers; i++) 4417 consumers[i].consumer = NULL; 4418 4419 for (i = 0; i < num_consumers; i++) { 4420 consumers[i].consumer = regulator_get(dev, 4421 consumers[i].supply); 4422 if (IS_ERR(consumers[i].consumer)) { 4423 ret = PTR_ERR(consumers[i].consumer); 4424 consumers[i].consumer = NULL; 4425 goto err; 4426 } 4427 } 4428 4429 return 0; 4430 4431 err: 4432 if (ret != -EPROBE_DEFER) 4433 dev_err(dev, "Failed to get supply '%s': %d\n", 4434 consumers[i].supply, ret); 4435 else 4436 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4437 consumers[i].supply); 4438 4439 while (--i >= 0) 4440 regulator_put(consumers[i].consumer); 4441 4442 return ret; 4443 } 4444 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4445 4446 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4447 { 4448 struct regulator_bulk_data *bulk = data; 4449 4450 bulk->ret = regulator_enable(bulk->consumer); 4451 } 4452 4453 /** 4454 * regulator_bulk_enable - enable multiple regulator consumers 4455 * 4456 * @num_consumers: Number of consumers 4457 * @consumers: Consumer data; clients are stored here. 4458 * @return 0 on success, an errno on failure 4459 * 4460 * This convenience API allows consumers to enable multiple regulator 4461 * clients in a single API call. If any consumers cannot be enabled 4462 * then any others that were enabled will be disabled again prior to 4463 * return. 4464 */ 4465 int regulator_bulk_enable(int num_consumers, 4466 struct regulator_bulk_data *consumers) 4467 { 4468 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4469 int i; 4470 int ret = 0; 4471 4472 for (i = 0; i < num_consumers; i++) { 4473 async_schedule_domain(regulator_bulk_enable_async, 4474 &consumers[i], &async_domain); 4475 } 4476 4477 async_synchronize_full_domain(&async_domain); 4478 4479 /* If any consumer failed we need to unwind any that succeeded */ 4480 for (i = 0; i < num_consumers; i++) { 4481 if (consumers[i].ret != 0) { 4482 ret = consumers[i].ret; 4483 goto err; 4484 } 4485 } 4486 4487 return 0; 4488 4489 err: 4490 for (i = 0; i < num_consumers; i++) { 4491 if (consumers[i].ret < 0) 4492 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4493 consumers[i].ret); 4494 else 4495 regulator_disable(consumers[i].consumer); 4496 } 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4501 4502 /** 4503 * regulator_bulk_disable - disable multiple regulator consumers 4504 * 4505 * @num_consumers: Number of consumers 4506 * @consumers: Consumer data; clients are stored here. 4507 * @return 0 on success, an errno on failure 4508 * 4509 * This convenience API allows consumers to disable multiple regulator 4510 * clients in a single API call. If any consumers cannot be disabled 4511 * then any others that were disabled will be enabled again prior to 4512 * return. 4513 */ 4514 int regulator_bulk_disable(int num_consumers, 4515 struct regulator_bulk_data *consumers) 4516 { 4517 int i; 4518 int ret, r; 4519 4520 for (i = num_consumers - 1; i >= 0; --i) { 4521 ret = regulator_disable(consumers[i].consumer); 4522 if (ret != 0) 4523 goto err; 4524 } 4525 4526 return 0; 4527 4528 err: 4529 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4530 for (++i; i < num_consumers; ++i) { 4531 r = regulator_enable(consumers[i].consumer); 4532 if (r != 0) 4533 pr_err("Failed to re-enable %s: %d\n", 4534 consumers[i].supply, r); 4535 } 4536 4537 return ret; 4538 } 4539 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4540 4541 /** 4542 * regulator_bulk_force_disable - force disable multiple regulator consumers 4543 * 4544 * @num_consumers: Number of consumers 4545 * @consumers: Consumer data; clients are stored here. 4546 * @return 0 on success, an errno on failure 4547 * 4548 * This convenience API allows consumers to forcibly disable multiple regulator 4549 * clients in a single API call. 4550 * NOTE: This should be used for situations when device damage will 4551 * likely occur if the regulators are not disabled (e.g. over temp). 4552 * Although regulator_force_disable function call for some consumers can 4553 * return error numbers, the function is called for all consumers. 4554 */ 4555 int regulator_bulk_force_disable(int num_consumers, 4556 struct regulator_bulk_data *consumers) 4557 { 4558 int i; 4559 int ret = 0; 4560 4561 for (i = 0; i < num_consumers; i++) { 4562 consumers[i].ret = 4563 regulator_force_disable(consumers[i].consumer); 4564 4565 /* Store first error for reporting */ 4566 if (consumers[i].ret && !ret) 4567 ret = consumers[i].ret; 4568 } 4569 4570 return ret; 4571 } 4572 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4573 4574 /** 4575 * regulator_bulk_free - free multiple regulator consumers 4576 * 4577 * @num_consumers: Number of consumers 4578 * @consumers: Consumer data; clients are stored here. 4579 * 4580 * This convenience API allows consumers to free multiple regulator 4581 * clients in a single API call. 4582 */ 4583 void regulator_bulk_free(int num_consumers, 4584 struct regulator_bulk_data *consumers) 4585 { 4586 int i; 4587 4588 for (i = 0; i < num_consumers; i++) { 4589 regulator_put(consumers[i].consumer); 4590 consumers[i].consumer = NULL; 4591 } 4592 } 4593 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4594 4595 /** 4596 * regulator_notifier_call_chain - call regulator event notifier 4597 * @rdev: regulator source 4598 * @event: notifier block 4599 * @data: callback-specific data. 4600 * 4601 * Called by regulator drivers to notify clients a regulator event has 4602 * occurred. We also notify regulator clients downstream. 4603 * Note lock must be held by caller. 4604 */ 4605 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4606 unsigned long event, void *data) 4607 { 4608 lockdep_assert_held_once(&rdev->mutex.base); 4609 4610 _notifier_call_chain(rdev, event, data); 4611 return NOTIFY_DONE; 4612 4613 } 4614 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4615 4616 /** 4617 * regulator_mode_to_status - convert a regulator mode into a status 4618 * 4619 * @mode: Mode to convert 4620 * 4621 * Convert a regulator mode into a status. 4622 */ 4623 int regulator_mode_to_status(unsigned int mode) 4624 { 4625 switch (mode) { 4626 case REGULATOR_MODE_FAST: 4627 return REGULATOR_STATUS_FAST; 4628 case REGULATOR_MODE_NORMAL: 4629 return REGULATOR_STATUS_NORMAL; 4630 case REGULATOR_MODE_IDLE: 4631 return REGULATOR_STATUS_IDLE; 4632 case REGULATOR_MODE_STANDBY: 4633 return REGULATOR_STATUS_STANDBY; 4634 default: 4635 return REGULATOR_STATUS_UNDEFINED; 4636 } 4637 } 4638 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4639 4640 static struct attribute *regulator_dev_attrs[] = { 4641 &dev_attr_name.attr, 4642 &dev_attr_num_users.attr, 4643 &dev_attr_type.attr, 4644 &dev_attr_microvolts.attr, 4645 &dev_attr_microamps.attr, 4646 &dev_attr_opmode.attr, 4647 &dev_attr_state.attr, 4648 &dev_attr_status.attr, 4649 &dev_attr_bypass.attr, 4650 &dev_attr_requested_microamps.attr, 4651 &dev_attr_min_microvolts.attr, 4652 &dev_attr_max_microvolts.attr, 4653 &dev_attr_min_microamps.attr, 4654 &dev_attr_max_microamps.attr, 4655 &dev_attr_suspend_standby_state.attr, 4656 &dev_attr_suspend_mem_state.attr, 4657 &dev_attr_suspend_disk_state.attr, 4658 &dev_attr_suspend_standby_microvolts.attr, 4659 &dev_attr_suspend_mem_microvolts.attr, 4660 &dev_attr_suspend_disk_microvolts.attr, 4661 &dev_attr_suspend_standby_mode.attr, 4662 &dev_attr_suspend_mem_mode.attr, 4663 &dev_attr_suspend_disk_mode.attr, 4664 NULL 4665 }; 4666 4667 /* 4668 * To avoid cluttering sysfs (and memory) with useless state, only 4669 * create attributes that can be meaningfully displayed. 4670 */ 4671 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4672 struct attribute *attr, int idx) 4673 { 4674 struct device *dev = kobj_to_dev(kobj); 4675 struct regulator_dev *rdev = dev_to_rdev(dev); 4676 const struct regulator_ops *ops = rdev->desc->ops; 4677 umode_t mode = attr->mode; 4678 4679 /* these three are always present */ 4680 if (attr == &dev_attr_name.attr || 4681 attr == &dev_attr_num_users.attr || 4682 attr == &dev_attr_type.attr) 4683 return mode; 4684 4685 /* some attributes need specific methods to be displayed */ 4686 if (attr == &dev_attr_microvolts.attr) { 4687 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4688 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4689 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4690 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4691 return mode; 4692 return 0; 4693 } 4694 4695 if (attr == &dev_attr_microamps.attr) 4696 return ops->get_current_limit ? mode : 0; 4697 4698 if (attr == &dev_attr_opmode.attr) 4699 return ops->get_mode ? mode : 0; 4700 4701 if (attr == &dev_attr_state.attr) 4702 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4703 4704 if (attr == &dev_attr_status.attr) 4705 return ops->get_status ? mode : 0; 4706 4707 if (attr == &dev_attr_bypass.attr) 4708 return ops->get_bypass ? mode : 0; 4709 4710 /* constraints need specific supporting methods */ 4711 if (attr == &dev_attr_min_microvolts.attr || 4712 attr == &dev_attr_max_microvolts.attr) 4713 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4714 4715 if (attr == &dev_attr_min_microamps.attr || 4716 attr == &dev_attr_max_microamps.attr) 4717 return ops->set_current_limit ? mode : 0; 4718 4719 if (attr == &dev_attr_suspend_standby_state.attr || 4720 attr == &dev_attr_suspend_mem_state.attr || 4721 attr == &dev_attr_suspend_disk_state.attr) 4722 return mode; 4723 4724 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4725 attr == &dev_attr_suspend_mem_microvolts.attr || 4726 attr == &dev_attr_suspend_disk_microvolts.attr) 4727 return ops->set_suspend_voltage ? mode : 0; 4728 4729 if (attr == &dev_attr_suspend_standby_mode.attr || 4730 attr == &dev_attr_suspend_mem_mode.attr || 4731 attr == &dev_attr_suspend_disk_mode.attr) 4732 return ops->set_suspend_mode ? mode : 0; 4733 4734 return mode; 4735 } 4736 4737 static const struct attribute_group regulator_dev_group = { 4738 .attrs = regulator_dev_attrs, 4739 .is_visible = regulator_attr_is_visible, 4740 }; 4741 4742 static const struct attribute_group *regulator_dev_groups[] = { 4743 ®ulator_dev_group, 4744 NULL 4745 }; 4746 4747 static void regulator_dev_release(struct device *dev) 4748 { 4749 struct regulator_dev *rdev = dev_get_drvdata(dev); 4750 4751 kfree(rdev->constraints); 4752 of_node_put(rdev->dev.of_node); 4753 kfree(rdev); 4754 } 4755 4756 static void rdev_init_debugfs(struct regulator_dev *rdev) 4757 { 4758 struct device *parent = rdev->dev.parent; 4759 const char *rname = rdev_get_name(rdev); 4760 char name[NAME_MAX]; 4761 4762 /* Avoid duplicate debugfs directory names */ 4763 if (parent && rname == rdev->desc->name) { 4764 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4765 rname); 4766 rname = name; 4767 } 4768 4769 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4770 if (!rdev->debugfs) { 4771 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4772 return; 4773 } 4774 4775 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4776 &rdev->use_count); 4777 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4778 &rdev->open_count); 4779 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4780 &rdev->bypass_count); 4781 } 4782 4783 static int regulator_register_resolve_supply(struct device *dev, void *data) 4784 { 4785 struct regulator_dev *rdev = dev_to_rdev(dev); 4786 4787 if (regulator_resolve_supply(rdev)) 4788 rdev_dbg(rdev, "unable to resolve supply\n"); 4789 4790 return 0; 4791 } 4792 4793 int regulator_coupler_register(struct regulator_coupler *coupler) 4794 { 4795 mutex_lock(®ulator_list_mutex); 4796 list_add_tail(&coupler->list, ®ulator_coupler_list); 4797 mutex_unlock(®ulator_list_mutex); 4798 4799 return 0; 4800 } 4801 4802 static struct regulator_coupler * 4803 regulator_find_coupler(struct regulator_dev *rdev) 4804 { 4805 struct regulator_coupler *coupler; 4806 int err; 4807 4808 /* 4809 * Note that regulators are appended to the list and the generic 4810 * coupler is registered first, hence it will be attached at last 4811 * if nobody cared. 4812 */ 4813 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 4814 err = coupler->attach_regulator(coupler, rdev); 4815 if (!err) { 4816 if (!coupler->balance_voltage && 4817 rdev->coupling_desc.n_coupled > 2) 4818 goto err_unsupported; 4819 4820 return coupler; 4821 } 4822 4823 if (err < 0) 4824 return ERR_PTR(err); 4825 4826 if (err == 1) 4827 continue; 4828 4829 break; 4830 } 4831 4832 return ERR_PTR(-EINVAL); 4833 4834 err_unsupported: 4835 if (coupler->detach_regulator) 4836 coupler->detach_regulator(coupler, rdev); 4837 4838 rdev_err(rdev, 4839 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4840 4841 return ERR_PTR(-EPERM); 4842 } 4843 4844 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4845 { 4846 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4847 struct coupling_desc *c_desc = &rdev->coupling_desc; 4848 int n_coupled = c_desc->n_coupled; 4849 struct regulator_dev *c_rdev; 4850 int i; 4851 4852 for (i = 1; i < n_coupled; i++) { 4853 /* already resolved */ 4854 if (c_desc->coupled_rdevs[i]) 4855 continue; 4856 4857 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4858 4859 if (!c_rdev) 4860 continue; 4861 4862 if (c_rdev->coupling_desc.coupler != coupler) { 4863 rdev_err(rdev, "coupler mismatch with %s\n", 4864 rdev_get_name(c_rdev)); 4865 return; 4866 } 4867 4868 regulator_lock(c_rdev); 4869 4870 c_desc->coupled_rdevs[i] = c_rdev; 4871 c_desc->n_resolved++; 4872 4873 regulator_unlock(c_rdev); 4874 4875 regulator_resolve_coupling(c_rdev); 4876 } 4877 } 4878 4879 static void regulator_remove_coupling(struct regulator_dev *rdev) 4880 { 4881 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 4882 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4883 struct regulator_dev *__c_rdev, *c_rdev; 4884 unsigned int __n_coupled, n_coupled; 4885 int i, k; 4886 int err; 4887 4888 n_coupled = c_desc->n_coupled; 4889 4890 for (i = 1; i < n_coupled; i++) { 4891 c_rdev = c_desc->coupled_rdevs[i]; 4892 4893 if (!c_rdev) 4894 continue; 4895 4896 regulator_lock(c_rdev); 4897 4898 __c_desc = &c_rdev->coupling_desc; 4899 __n_coupled = __c_desc->n_coupled; 4900 4901 for (k = 1; k < __n_coupled; k++) { 4902 __c_rdev = __c_desc->coupled_rdevs[k]; 4903 4904 if (__c_rdev == rdev) { 4905 __c_desc->coupled_rdevs[k] = NULL; 4906 __c_desc->n_resolved--; 4907 break; 4908 } 4909 } 4910 4911 regulator_unlock(c_rdev); 4912 4913 c_desc->coupled_rdevs[i] = NULL; 4914 c_desc->n_resolved--; 4915 } 4916 4917 if (coupler && coupler->detach_regulator) { 4918 err = coupler->detach_regulator(coupler, rdev); 4919 if (err) 4920 rdev_err(rdev, "failed to detach from coupler: %d\n", 4921 err); 4922 } 4923 4924 kfree(rdev->coupling_desc.coupled_rdevs); 4925 rdev->coupling_desc.coupled_rdevs = NULL; 4926 } 4927 4928 static int regulator_init_coupling(struct regulator_dev *rdev) 4929 { 4930 int err, n_phandles; 4931 size_t alloc_size; 4932 4933 if (!IS_ENABLED(CONFIG_OF)) 4934 n_phandles = 0; 4935 else 4936 n_phandles = of_get_n_coupled(rdev); 4937 4938 alloc_size = sizeof(*rdev) * (n_phandles + 1); 4939 4940 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL); 4941 if (!rdev->coupling_desc.coupled_rdevs) 4942 return -ENOMEM; 4943 4944 /* 4945 * Every regulator should always have coupling descriptor filled with 4946 * at least pointer to itself. 4947 */ 4948 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4949 rdev->coupling_desc.n_coupled = n_phandles + 1; 4950 rdev->coupling_desc.n_resolved++; 4951 4952 /* regulator isn't coupled */ 4953 if (n_phandles == 0) 4954 return 0; 4955 4956 if (!of_check_coupling_data(rdev)) 4957 return -EPERM; 4958 4959 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 4960 if (IS_ERR(rdev->coupling_desc.coupler)) { 4961 err = PTR_ERR(rdev->coupling_desc.coupler); 4962 rdev_err(rdev, "failed to get coupler: %d\n", err); 4963 return err; 4964 } 4965 4966 return 0; 4967 } 4968 4969 static int generic_coupler_attach(struct regulator_coupler *coupler, 4970 struct regulator_dev *rdev) 4971 { 4972 if (rdev->coupling_desc.n_coupled > 2) { 4973 rdev_err(rdev, 4974 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4975 return -EPERM; 4976 } 4977 4978 if (!rdev->constraints->always_on) { 4979 rdev_err(rdev, 4980 "Coupling of a non always-on regulator is unimplemented\n"); 4981 return -ENOTSUPP; 4982 } 4983 4984 return 0; 4985 } 4986 4987 static struct regulator_coupler generic_regulator_coupler = { 4988 .attach_regulator = generic_coupler_attach, 4989 }; 4990 4991 /** 4992 * regulator_register - register regulator 4993 * @regulator_desc: regulator to register 4994 * @cfg: runtime configuration for regulator 4995 * 4996 * Called by regulator drivers to register a regulator. 4997 * Returns a valid pointer to struct regulator_dev on success 4998 * or an ERR_PTR() on error. 4999 */ 5000 struct regulator_dev * 5001 regulator_register(const struct regulator_desc *regulator_desc, 5002 const struct regulator_config *cfg) 5003 { 5004 const struct regulation_constraints *constraints = NULL; 5005 const struct regulator_init_data *init_data; 5006 struct regulator_config *config = NULL; 5007 static atomic_t regulator_no = ATOMIC_INIT(-1); 5008 struct regulator_dev *rdev; 5009 bool dangling_cfg_gpiod = false; 5010 bool dangling_of_gpiod = false; 5011 bool reg_device_fail = false; 5012 struct device *dev; 5013 int ret, i; 5014 5015 if (cfg == NULL) 5016 return ERR_PTR(-EINVAL); 5017 if (cfg->ena_gpiod) 5018 dangling_cfg_gpiod = true; 5019 if (regulator_desc == NULL) { 5020 ret = -EINVAL; 5021 goto rinse; 5022 } 5023 5024 dev = cfg->dev; 5025 WARN_ON(!dev); 5026 5027 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5028 ret = -EINVAL; 5029 goto rinse; 5030 } 5031 5032 if (regulator_desc->type != REGULATOR_VOLTAGE && 5033 regulator_desc->type != REGULATOR_CURRENT) { 5034 ret = -EINVAL; 5035 goto rinse; 5036 } 5037 5038 /* Only one of each should be implemented */ 5039 WARN_ON(regulator_desc->ops->get_voltage && 5040 regulator_desc->ops->get_voltage_sel); 5041 WARN_ON(regulator_desc->ops->set_voltage && 5042 regulator_desc->ops->set_voltage_sel); 5043 5044 /* If we're using selectors we must implement list_voltage. */ 5045 if (regulator_desc->ops->get_voltage_sel && 5046 !regulator_desc->ops->list_voltage) { 5047 ret = -EINVAL; 5048 goto rinse; 5049 } 5050 if (regulator_desc->ops->set_voltage_sel && 5051 !regulator_desc->ops->list_voltage) { 5052 ret = -EINVAL; 5053 goto rinse; 5054 } 5055 5056 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5057 if (rdev == NULL) { 5058 ret = -ENOMEM; 5059 goto rinse; 5060 } 5061 5062 /* 5063 * Duplicate the config so the driver could override it after 5064 * parsing init data. 5065 */ 5066 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5067 if (config == NULL) { 5068 kfree(rdev); 5069 ret = -ENOMEM; 5070 goto rinse; 5071 } 5072 5073 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5074 &rdev->dev.of_node); 5075 5076 /* 5077 * Sometimes not all resources are probed already so we need to take 5078 * that into account. This happens most the time if the ena_gpiod comes 5079 * from a gpio extender or something else. 5080 */ 5081 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5082 kfree(config); 5083 kfree(rdev); 5084 ret = -EPROBE_DEFER; 5085 goto rinse; 5086 } 5087 5088 /* 5089 * We need to keep track of any GPIO descriptor coming from the 5090 * device tree until we have handled it over to the core. If the 5091 * config that was passed in to this function DOES NOT contain 5092 * a descriptor, and the config after this call DOES contain 5093 * a descriptor, we definitely got one from parsing the device 5094 * tree. 5095 */ 5096 if (!cfg->ena_gpiod && config->ena_gpiod) 5097 dangling_of_gpiod = true; 5098 if (!init_data) { 5099 init_data = config->init_data; 5100 rdev->dev.of_node = of_node_get(config->of_node); 5101 } 5102 5103 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5104 rdev->reg_data = config->driver_data; 5105 rdev->owner = regulator_desc->owner; 5106 rdev->desc = regulator_desc; 5107 if (config->regmap) 5108 rdev->regmap = config->regmap; 5109 else if (dev_get_regmap(dev, NULL)) 5110 rdev->regmap = dev_get_regmap(dev, NULL); 5111 else if (dev->parent) 5112 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5113 INIT_LIST_HEAD(&rdev->consumer_list); 5114 INIT_LIST_HEAD(&rdev->list); 5115 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5116 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5117 5118 /* preform any regulator specific init */ 5119 if (init_data && init_data->regulator_init) { 5120 ret = init_data->regulator_init(rdev->reg_data); 5121 if (ret < 0) 5122 goto clean; 5123 } 5124 5125 if (config->ena_gpiod) { 5126 mutex_lock(®ulator_list_mutex); 5127 ret = regulator_ena_gpio_request(rdev, config); 5128 mutex_unlock(®ulator_list_mutex); 5129 if (ret != 0) { 5130 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 5131 ret); 5132 goto clean; 5133 } 5134 /* The regulator core took over the GPIO descriptor */ 5135 dangling_cfg_gpiod = false; 5136 dangling_of_gpiod = false; 5137 } 5138 5139 /* register with sysfs */ 5140 rdev->dev.class = ®ulator_class; 5141 rdev->dev.parent = dev; 5142 dev_set_name(&rdev->dev, "regulator.%lu", 5143 (unsigned long) atomic_inc_return(®ulator_no)); 5144 5145 /* set regulator constraints */ 5146 if (init_data) 5147 constraints = &init_data->constraints; 5148 5149 if (init_data && init_data->supply_regulator) 5150 rdev->supply_name = init_data->supply_regulator; 5151 else if (regulator_desc->supply_name) 5152 rdev->supply_name = regulator_desc->supply_name; 5153 5154 /* 5155 * Attempt to resolve the regulator supply, if specified, 5156 * but don't return an error if we fail because we will try 5157 * to resolve it again later as more regulators are added. 5158 */ 5159 if (regulator_resolve_supply(rdev)) 5160 rdev_dbg(rdev, "unable to resolve supply\n"); 5161 5162 ret = set_machine_constraints(rdev, constraints); 5163 if (ret < 0) 5164 goto wash; 5165 5166 mutex_lock(®ulator_list_mutex); 5167 ret = regulator_init_coupling(rdev); 5168 mutex_unlock(®ulator_list_mutex); 5169 if (ret < 0) 5170 goto wash; 5171 5172 /* add consumers devices */ 5173 if (init_data) { 5174 mutex_lock(®ulator_list_mutex); 5175 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5176 ret = set_consumer_device_supply(rdev, 5177 init_data->consumer_supplies[i].dev_name, 5178 init_data->consumer_supplies[i].supply); 5179 if (ret < 0) { 5180 mutex_unlock(®ulator_list_mutex); 5181 dev_err(dev, "Failed to set supply %s\n", 5182 init_data->consumer_supplies[i].supply); 5183 goto unset_supplies; 5184 } 5185 } 5186 mutex_unlock(®ulator_list_mutex); 5187 } 5188 5189 if (!rdev->desc->ops->get_voltage && 5190 !rdev->desc->ops->list_voltage && 5191 !rdev->desc->fixed_uV) 5192 rdev->is_switch = true; 5193 5194 dev_set_drvdata(&rdev->dev, rdev); 5195 ret = device_register(&rdev->dev); 5196 if (ret != 0) { 5197 reg_device_fail = true; 5198 goto unset_supplies; 5199 } 5200 5201 rdev_init_debugfs(rdev); 5202 5203 /* try to resolve regulators coupling since a new one was registered */ 5204 mutex_lock(®ulator_list_mutex); 5205 regulator_resolve_coupling(rdev); 5206 mutex_unlock(®ulator_list_mutex); 5207 5208 /* try to resolve regulators supply since a new one was registered */ 5209 class_for_each_device(®ulator_class, NULL, NULL, 5210 regulator_register_resolve_supply); 5211 kfree(config); 5212 return rdev; 5213 5214 unset_supplies: 5215 mutex_lock(®ulator_list_mutex); 5216 unset_regulator_supplies(rdev); 5217 regulator_remove_coupling(rdev); 5218 mutex_unlock(®ulator_list_mutex); 5219 wash: 5220 kfree(rdev->coupling_desc.coupled_rdevs); 5221 kfree(rdev->constraints); 5222 mutex_lock(®ulator_list_mutex); 5223 regulator_ena_gpio_free(rdev); 5224 mutex_unlock(®ulator_list_mutex); 5225 clean: 5226 if (dangling_of_gpiod) 5227 gpiod_put(config->ena_gpiod); 5228 if (reg_device_fail) 5229 put_device(&rdev->dev); 5230 else 5231 kfree(rdev); 5232 kfree(config); 5233 rinse: 5234 if (dangling_cfg_gpiod) 5235 gpiod_put(cfg->ena_gpiod); 5236 return ERR_PTR(ret); 5237 } 5238 EXPORT_SYMBOL_GPL(regulator_register); 5239 5240 /** 5241 * regulator_unregister - unregister regulator 5242 * @rdev: regulator to unregister 5243 * 5244 * Called by regulator drivers to unregister a regulator. 5245 */ 5246 void regulator_unregister(struct regulator_dev *rdev) 5247 { 5248 if (rdev == NULL) 5249 return; 5250 5251 if (rdev->supply) { 5252 while (rdev->use_count--) 5253 regulator_disable(rdev->supply); 5254 regulator_put(rdev->supply); 5255 } 5256 5257 flush_work(&rdev->disable_work.work); 5258 5259 mutex_lock(®ulator_list_mutex); 5260 5261 debugfs_remove_recursive(rdev->debugfs); 5262 WARN_ON(rdev->open_count); 5263 regulator_remove_coupling(rdev); 5264 unset_regulator_supplies(rdev); 5265 list_del(&rdev->list); 5266 regulator_ena_gpio_free(rdev); 5267 device_unregister(&rdev->dev); 5268 5269 mutex_unlock(®ulator_list_mutex); 5270 } 5271 EXPORT_SYMBOL_GPL(regulator_unregister); 5272 5273 #ifdef CONFIG_SUSPEND 5274 /** 5275 * regulator_suspend - prepare regulators for system wide suspend 5276 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5277 * 5278 * Configure each regulator with it's suspend operating parameters for state. 5279 */ 5280 static int regulator_suspend(struct device *dev) 5281 { 5282 struct regulator_dev *rdev = dev_to_rdev(dev); 5283 suspend_state_t state = pm_suspend_target_state; 5284 int ret; 5285 5286 regulator_lock(rdev); 5287 ret = suspend_set_state(rdev, state); 5288 regulator_unlock(rdev); 5289 5290 return ret; 5291 } 5292 5293 static int regulator_resume(struct device *dev) 5294 { 5295 suspend_state_t state = pm_suspend_target_state; 5296 struct regulator_dev *rdev = dev_to_rdev(dev); 5297 struct regulator_state *rstate; 5298 int ret = 0; 5299 5300 rstate = regulator_get_suspend_state(rdev, state); 5301 if (rstate == NULL) 5302 return 0; 5303 5304 regulator_lock(rdev); 5305 5306 if (rdev->desc->ops->resume && 5307 (rstate->enabled == ENABLE_IN_SUSPEND || 5308 rstate->enabled == DISABLE_IN_SUSPEND)) 5309 ret = rdev->desc->ops->resume(rdev); 5310 5311 regulator_unlock(rdev); 5312 5313 return ret; 5314 } 5315 #else /* !CONFIG_SUSPEND */ 5316 5317 #define regulator_suspend NULL 5318 #define regulator_resume NULL 5319 5320 #endif /* !CONFIG_SUSPEND */ 5321 5322 #ifdef CONFIG_PM 5323 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5324 .suspend = regulator_suspend, 5325 .resume = regulator_resume, 5326 }; 5327 #endif 5328 5329 struct class regulator_class = { 5330 .name = "regulator", 5331 .dev_release = regulator_dev_release, 5332 .dev_groups = regulator_dev_groups, 5333 #ifdef CONFIG_PM 5334 .pm = ®ulator_pm_ops, 5335 #endif 5336 }; 5337 /** 5338 * regulator_has_full_constraints - the system has fully specified constraints 5339 * 5340 * Calling this function will cause the regulator API to disable all 5341 * regulators which have a zero use count and don't have an always_on 5342 * constraint in a late_initcall. 5343 * 5344 * The intention is that this will become the default behaviour in a 5345 * future kernel release so users are encouraged to use this facility 5346 * now. 5347 */ 5348 void regulator_has_full_constraints(void) 5349 { 5350 has_full_constraints = 1; 5351 } 5352 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5353 5354 /** 5355 * rdev_get_drvdata - get rdev regulator driver data 5356 * @rdev: regulator 5357 * 5358 * Get rdev regulator driver private data. This call can be used in the 5359 * regulator driver context. 5360 */ 5361 void *rdev_get_drvdata(struct regulator_dev *rdev) 5362 { 5363 return rdev->reg_data; 5364 } 5365 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5366 5367 /** 5368 * regulator_get_drvdata - get regulator driver data 5369 * @regulator: regulator 5370 * 5371 * Get regulator driver private data. This call can be used in the consumer 5372 * driver context when non API regulator specific functions need to be called. 5373 */ 5374 void *regulator_get_drvdata(struct regulator *regulator) 5375 { 5376 return regulator->rdev->reg_data; 5377 } 5378 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5379 5380 /** 5381 * regulator_set_drvdata - set regulator driver data 5382 * @regulator: regulator 5383 * @data: data 5384 */ 5385 void regulator_set_drvdata(struct regulator *regulator, void *data) 5386 { 5387 regulator->rdev->reg_data = data; 5388 } 5389 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5390 5391 /** 5392 * regulator_get_id - get regulator ID 5393 * @rdev: regulator 5394 */ 5395 int rdev_get_id(struct regulator_dev *rdev) 5396 { 5397 return rdev->desc->id; 5398 } 5399 EXPORT_SYMBOL_GPL(rdev_get_id); 5400 5401 struct device *rdev_get_dev(struct regulator_dev *rdev) 5402 { 5403 return &rdev->dev; 5404 } 5405 EXPORT_SYMBOL_GPL(rdev_get_dev); 5406 5407 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5408 { 5409 return rdev->regmap; 5410 } 5411 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5412 5413 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5414 { 5415 return reg_init_data->driver_data; 5416 } 5417 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5418 5419 #ifdef CONFIG_DEBUG_FS 5420 static int supply_map_show(struct seq_file *sf, void *data) 5421 { 5422 struct regulator_map *map; 5423 5424 list_for_each_entry(map, ®ulator_map_list, list) { 5425 seq_printf(sf, "%s -> %s.%s\n", 5426 rdev_get_name(map->regulator), map->dev_name, 5427 map->supply); 5428 } 5429 5430 return 0; 5431 } 5432 DEFINE_SHOW_ATTRIBUTE(supply_map); 5433 5434 struct summary_data { 5435 struct seq_file *s; 5436 struct regulator_dev *parent; 5437 int level; 5438 }; 5439 5440 static void regulator_summary_show_subtree(struct seq_file *s, 5441 struct regulator_dev *rdev, 5442 int level); 5443 5444 static int regulator_summary_show_children(struct device *dev, void *data) 5445 { 5446 struct regulator_dev *rdev = dev_to_rdev(dev); 5447 struct summary_data *summary_data = data; 5448 5449 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5450 regulator_summary_show_subtree(summary_data->s, rdev, 5451 summary_data->level + 1); 5452 5453 return 0; 5454 } 5455 5456 static void regulator_summary_show_subtree(struct seq_file *s, 5457 struct regulator_dev *rdev, 5458 int level) 5459 { 5460 struct regulation_constraints *c; 5461 struct regulator *consumer; 5462 struct summary_data summary_data; 5463 unsigned int opmode; 5464 5465 if (!rdev) 5466 return; 5467 5468 opmode = _regulator_get_mode_unlocked(rdev); 5469 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5470 level * 3 + 1, "", 5471 30 - level * 3, rdev_get_name(rdev), 5472 rdev->use_count, rdev->open_count, rdev->bypass_count, 5473 regulator_opmode_to_str(opmode)); 5474 5475 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5476 seq_printf(s, "%5dmA ", 5477 _regulator_get_current_limit_unlocked(rdev) / 1000); 5478 5479 c = rdev->constraints; 5480 if (c) { 5481 switch (rdev->desc->type) { 5482 case REGULATOR_VOLTAGE: 5483 seq_printf(s, "%5dmV %5dmV ", 5484 c->min_uV / 1000, c->max_uV / 1000); 5485 break; 5486 case REGULATOR_CURRENT: 5487 seq_printf(s, "%5dmA %5dmA ", 5488 c->min_uA / 1000, c->max_uA / 1000); 5489 break; 5490 } 5491 } 5492 5493 seq_puts(s, "\n"); 5494 5495 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5496 if (consumer->dev && consumer->dev->class == ®ulator_class) 5497 continue; 5498 5499 seq_printf(s, "%*s%-*s ", 5500 (level + 1) * 3 + 1, "", 5501 30 - (level + 1) * 3, 5502 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5503 5504 switch (rdev->desc->type) { 5505 case REGULATOR_VOLTAGE: 5506 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5507 consumer->enable_count, 5508 consumer->uA_load / 1000, 5509 consumer->uA_load && !consumer->enable_count ? 5510 '*' : ' ', 5511 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5512 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5513 break; 5514 case REGULATOR_CURRENT: 5515 break; 5516 } 5517 5518 seq_puts(s, "\n"); 5519 } 5520 5521 summary_data.s = s; 5522 summary_data.level = level; 5523 summary_data.parent = rdev; 5524 5525 class_for_each_device(®ulator_class, NULL, &summary_data, 5526 regulator_summary_show_children); 5527 } 5528 5529 struct summary_lock_data { 5530 struct ww_acquire_ctx *ww_ctx; 5531 struct regulator_dev **new_contended_rdev; 5532 struct regulator_dev **old_contended_rdev; 5533 }; 5534 5535 static int regulator_summary_lock_one(struct device *dev, void *data) 5536 { 5537 struct regulator_dev *rdev = dev_to_rdev(dev); 5538 struct summary_lock_data *lock_data = data; 5539 int ret = 0; 5540 5541 if (rdev != *lock_data->old_contended_rdev) { 5542 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5543 5544 if (ret == -EDEADLK) 5545 *lock_data->new_contended_rdev = rdev; 5546 else 5547 WARN_ON_ONCE(ret); 5548 } else { 5549 *lock_data->old_contended_rdev = NULL; 5550 } 5551 5552 return ret; 5553 } 5554 5555 static int regulator_summary_unlock_one(struct device *dev, void *data) 5556 { 5557 struct regulator_dev *rdev = dev_to_rdev(dev); 5558 struct summary_lock_data *lock_data = data; 5559 5560 if (lock_data) { 5561 if (rdev == *lock_data->new_contended_rdev) 5562 return -EDEADLK; 5563 } 5564 5565 regulator_unlock(rdev); 5566 5567 return 0; 5568 } 5569 5570 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5571 struct regulator_dev **new_contended_rdev, 5572 struct regulator_dev **old_contended_rdev) 5573 { 5574 struct summary_lock_data lock_data; 5575 int ret; 5576 5577 lock_data.ww_ctx = ww_ctx; 5578 lock_data.new_contended_rdev = new_contended_rdev; 5579 lock_data.old_contended_rdev = old_contended_rdev; 5580 5581 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5582 regulator_summary_lock_one); 5583 if (ret) 5584 class_for_each_device(®ulator_class, NULL, &lock_data, 5585 regulator_summary_unlock_one); 5586 5587 return ret; 5588 } 5589 5590 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5591 { 5592 struct regulator_dev *new_contended_rdev = NULL; 5593 struct regulator_dev *old_contended_rdev = NULL; 5594 int err; 5595 5596 mutex_lock(®ulator_list_mutex); 5597 5598 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5599 5600 do { 5601 if (new_contended_rdev) { 5602 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5603 old_contended_rdev = new_contended_rdev; 5604 old_contended_rdev->ref_cnt++; 5605 } 5606 5607 err = regulator_summary_lock_all(ww_ctx, 5608 &new_contended_rdev, 5609 &old_contended_rdev); 5610 5611 if (old_contended_rdev) 5612 regulator_unlock(old_contended_rdev); 5613 5614 } while (err == -EDEADLK); 5615 5616 ww_acquire_done(ww_ctx); 5617 } 5618 5619 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5620 { 5621 class_for_each_device(®ulator_class, NULL, NULL, 5622 regulator_summary_unlock_one); 5623 ww_acquire_fini(ww_ctx); 5624 5625 mutex_unlock(®ulator_list_mutex); 5626 } 5627 5628 static int regulator_summary_show_roots(struct device *dev, void *data) 5629 { 5630 struct regulator_dev *rdev = dev_to_rdev(dev); 5631 struct seq_file *s = data; 5632 5633 if (!rdev->supply) 5634 regulator_summary_show_subtree(s, rdev, 0); 5635 5636 return 0; 5637 } 5638 5639 static int regulator_summary_show(struct seq_file *s, void *data) 5640 { 5641 struct ww_acquire_ctx ww_ctx; 5642 5643 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5644 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5645 5646 regulator_summary_lock(&ww_ctx); 5647 5648 class_for_each_device(®ulator_class, NULL, s, 5649 regulator_summary_show_roots); 5650 5651 regulator_summary_unlock(&ww_ctx); 5652 5653 return 0; 5654 } 5655 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5656 #endif /* CONFIG_DEBUG_FS */ 5657 5658 static int __init regulator_init(void) 5659 { 5660 int ret; 5661 5662 ret = class_register(®ulator_class); 5663 5664 debugfs_root = debugfs_create_dir("regulator", NULL); 5665 if (!debugfs_root) 5666 pr_warn("regulator: Failed to create debugfs directory\n"); 5667 5668 #ifdef CONFIG_DEBUG_FS 5669 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5670 &supply_map_fops); 5671 5672 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5673 NULL, ®ulator_summary_fops); 5674 #endif 5675 regulator_dummy_init(); 5676 5677 regulator_coupler_register(&generic_regulator_coupler); 5678 5679 return ret; 5680 } 5681 5682 /* init early to allow our consumers to complete system booting */ 5683 core_initcall(regulator_init); 5684 5685 static int regulator_late_cleanup(struct device *dev, void *data) 5686 { 5687 struct regulator_dev *rdev = dev_to_rdev(dev); 5688 const struct regulator_ops *ops = rdev->desc->ops; 5689 struct regulation_constraints *c = rdev->constraints; 5690 int enabled, ret; 5691 5692 if (c && c->always_on) 5693 return 0; 5694 5695 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5696 return 0; 5697 5698 regulator_lock(rdev); 5699 5700 if (rdev->use_count) 5701 goto unlock; 5702 5703 /* If we can't read the status assume it's on. */ 5704 if (ops->is_enabled) 5705 enabled = ops->is_enabled(rdev); 5706 else 5707 enabled = 1; 5708 5709 if (!enabled) 5710 goto unlock; 5711 5712 if (have_full_constraints()) { 5713 /* We log since this may kill the system if it goes 5714 * wrong. */ 5715 rdev_info(rdev, "disabling\n"); 5716 ret = _regulator_do_disable(rdev); 5717 if (ret != 0) 5718 rdev_err(rdev, "couldn't disable: %d\n", ret); 5719 } else { 5720 /* The intention is that in future we will 5721 * assume that full constraints are provided 5722 * so warn even if we aren't going to do 5723 * anything here. 5724 */ 5725 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5726 } 5727 5728 unlock: 5729 regulator_unlock(rdev); 5730 5731 return 0; 5732 } 5733 5734 static void regulator_init_complete_work_function(struct work_struct *work) 5735 { 5736 /* 5737 * Regulators may had failed to resolve their input supplies 5738 * when were registered, either because the input supply was 5739 * not registered yet or because its parent device was not 5740 * bound yet. So attempt to resolve the input supplies for 5741 * pending regulators before trying to disable unused ones. 5742 */ 5743 class_for_each_device(®ulator_class, NULL, NULL, 5744 regulator_register_resolve_supply); 5745 5746 /* If we have a full configuration then disable any regulators 5747 * we have permission to change the status for and which are 5748 * not in use or always_on. This is effectively the default 5749 * for DT and ACPI as they have full constraints. 5750 */ 5751 class_for_each_device(®ulator_class, NULL, NULL, 5752 regulator_late_cleanup); 5753 } 5754 5755 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 5756 regulator_init_complete_work_function); 5757 5758 static int __init regulator_init_complete(void) 5759 { 5760 /* 5761 * Since DT doesn't provide an idiomatic mechanism for 5762 * enabling full constraints and since it's much more natural 5763 * with DT to provide them just assume that a DT enabled 5764 * system has full constraints. 5765 */ 5766 if (of_have_populated_dt()) 5767 has_full_constraints = true; 5768 5769 /* 5770 * We punt completion for an arbitrary amount of time since 5771 * systems like distros will load many drivers from userspace 5772 * so consumers might not always be ready yet, this is 5773 * particularly an issue with laptops where this might bounce 5774 * the display off then on. Ideally we'd get a notification 5775 * from userspace when this happens but we don't so just wait 5776 * a bit and hope we waited long enough. It'd be better if 5777 * we'd only do this on systems that need it, and a kernel 5778 * command line option might be useful. 5779 */ 5780 schedule_delayed_work(®ulator_init_complete_work, 5781 msecs_to_jiffies(30000)); 5782 5783 return 0; 5784 } 5785 late_initcall_sync(regulator_init_complete); 5786