xref: /openbmc/linux/drivers/regulator/core.c (revision d7a3d85e)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 	struct device_node *regnode = NULL;
140 	char prop_name[32]; /* 32 is max size of property name */
141 
142 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 
144 	snprintf(prop_name, 32, "%s-supply", supply);
145 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 
147 	if (!regnode) {
148 		dev_dbg(dev, "Looking up %s property in node %s failed",
149 				prop_name, dev->of_node->full_name);
150 		return NULL;
151 	}
152 	return regnode;
153 }
154 
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 	if (!rdev->constraints)
158 		return 0;
159 
160 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 		return 1;
162 	else
163 		return 0;
164 }
165 
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 				   int *min_uV, int *max_uV)
169 {
170 	BUG_ON(*min_uV > *max_uV);
171 
172 	if (!rdev->constraints) {
173 		rdev_err(rdev, "no constraints\n");
174 		return -ENODEV;
175 	}
176 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 		rdev_err(rdev, "operation not allowed\n");
178 		return -EPERM;
179 	}
180 
181 	if (*max_uV > rdev->constraints->max_uV)
182 		*max_uV = rdev->constraints->max_uV;
183 	if (*min_uV < rdev->constraints->min_uV)
184 		*min_uV = rdev->constraints->min_uV;
185 
186 	if (*min_uV > *max_uV) {
187 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 			 *min_uV, *max_uV);
189 		return -EINVAL;
190 	}
191 
192 	return 0;
193 }
194 
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 				     int *min_uV, int *max_uV)
200 {
201 	struct regulator *regulator;
202 
203 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 		/*
205 		 * Assume consumers that didn't say anything are OK
206 		 * with anything in the constraint range.
207 		 */
208 		if (!regulator->min_uV && !regulator->max_uV)
209 			continue;
210 
211 		if (*max_uV > regulator->max_uV)
212 			*max_uV = regulator->max_uV;
213 		if (*min_uV < regulator->min_uV)
214 			*min_uV = regulator->min_uV;
215 	}
216 
217 	if (*min_uV > *max_uV) {
218 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 			*min_uV, *max_uV);
220 		return -EINVAL;
221 	}
222 
223 	return 0;
224 }
225 
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 					int *min_uA, int *max_uA)
229 {
230 	BUG_ON(*min_uA > *max_uA);
231 
232 	if (!rdev->constraints) {
233 		rdev_err(rdev, "no constraints\n");
234 		return -ENODEV;
235 	}
236 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 		rdev_err(rdev, "operation not allowed\n");
238 		return -EPERM;
239 	}
240 
241 	if (*max_uA > rdev->constraints->max_uA)
242 		*max_uA = rdev->constraints->max_uA;
243 	if (*min_uA < rdev->constraints->min_uA)
244 		*min_uA = rdev->constraints->min_uA;
245 
246 	if (*min_uA > *max_uA) {
247 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 			 *min_uA, *max_uA);
249 		return -EINVAL;
250 	}
251 
252 	return 0;
253 }
254 
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 	switch (*mode) {
259 	case REGULATOR_MODE_FAST:
260 	case REGULATOR_MODE_NORMAL:
261 	case REGULATOR_MODE_IDLE:
262 	case REGULATOR_MODE_STANDBY:
263 		break;
264 	default:
265 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 		return -EINVAL;
267 	}
268 
269 	if (!rdev->constraints) {
270 		rdev_err(rdev, "no constraints\n");
271 		return -ENODEV;
272 	}
273 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 		rdev_err(rdev, "operation not allowed\n");
275 		return -EPERM;
276 	}
277 
278 	/* The modes are bitmasks, the most power hungry modes having
279 	 * the lowest values. If the requested mode isn't supported
280 	 * try higher modes. */
281 	while (*mode) {
282 		if (rdev->constraints->valid_modes_mask & *mode)
283 			return 0;
284 		*mode /= 2;
285 	}
286 
287 	return -EINVAL;
288 }
289 
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 	if (!rdev->constraints) {
294 		rdev_err(rdev, "no constraints\n");
295 		return -ENODEV;
296 	}
297 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 		rdev_err(rdev, "operation not allowed\n");
299 		return -EPERM;
300 	}
301 	return 0;
302 }
303 
304 static ssize_t regulator_uV_show(struct device *dev,
305 				struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 	ssize_t ret;
309 
310 	mutex_lock(&rdev->mutex);
311 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 	mutex_unlock(&rdev->mutex);
313 
314 	return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 
318 static ssize_t regulator_uA_show(struct device *dev,
319 				struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 
323 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 			 char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 
332 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335 
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	case REGULATOR_STATUS_BYPASS:
418 		label = "bypass";
419 		break;
420 	case REGULATOR_STATUS_UNDEFINED:
421 		label = "undefined";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 			      char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501 
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 			 char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 
507 	switch (rdev->desc->type) {
508 	case REGULATOR_VOLTAGE:
509 		return sprintf(buf, "voltage\n");
510 	case REGULATOR_CURRENT:
511 		return sprintf(buf, "current\n");
512 	}
513 	return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516 
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 				struct device_attribute *attr, char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 
522 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 		regulator_suspend_mem_uV_show, NULL);
526 
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 				struct device_attribute *attr, char *buf)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 		regulator_suspend_disk_uV_show, NULL);
536 
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 		regulator_suspend_standby_uV_show, NULL);
546 
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 				struct device_attribute *attr, char *buf)
549 {
550 	struct regulator_dev *rdev = dev_get_drvdata(dev);
551 
552 	return regulator_print_opmode(buf,
553 		rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 		regulator_suspend_mem_mode_show, NULL);
557 
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 				struct device_attribute *attr, char *buf)
560 {
561 	struct regulator_dev *rdev = dev_get_drvdata(dev);
562 
563 	return regulator_print_opmode(buf,
564 		rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 		regulator_suspend_disk_mode_show, NULL);
568 
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 		regulator_suspend_standby_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 				   struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_state(buf,
586 			rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 		regulator_suspend_mem_state_show, NULL);
590 
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 				   struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_state(buf,
597 			rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 		regulator_suspend_disk_state_show, NULL);
601 
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 		regulator_suspend_standby_state_show, NULL);
612 
613 static ssize_t regulator_bypass_show(struct device *dev,
614 				     struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 	const char *report;
618 	bool bypass;
619 	int ret;
620 
621 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 
623 	if (ret != 0)
624 		report = "unknown";
625 	else if (bypass)
626 		report = "enabled";
627 	else
628 		report = "disabled";
629 
630 	return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 		   regulator_bypass_show, NULL);
634 
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 	struct regulator *sibling;
640 	int current_uA = 0, output_uV, input_uV, err;
641 	unsigned int mode;
642 
643 	/*
644 	 * first check to see if we can set modes at all, otherwise just
645 	 * tell the consumer everything is OK.
646 	 */
647 	err = regulator_check_drms(rdev);
648 	if (err < 0)
649 		return 0;
650 
651 	if (!rdev->desc->ops->get_optimum_mode &&
652 	    !rdev->desc->ops->set_load)
653 		return 0;
654 
655 	if (!rdev->desc->ops->set_mode &&
656 	    !rdev->desc->ops->set_load)
657 		return -EINVAL;
658 
659 	/* get output voltage */
660 	output_uV = _regulator_get_voltage(rdev);
661 	if (output_uV <= 0) {
662 		rdev_err(rdev, "invalid output voltage found\n");
663 		return -EINVAL;
664 	}
665 
666 	/* get input voltage */
667 	input_uV = 0;
668 	if (rdev->supply)
669 		input_uV = regulator_get_voltage(rdev->supply);
670 	if (input_uV <= 0)
671 		input_uV = rdev->constraints->input_uV;
672 	if (input_uV <= 0) {
673 		rdev_err(rdev, "invalid input voltage found\n");
674 		return -EINVAL;
675 	}
676 
677 	/* calc total requested load */
678 	list_for_each_entry(sibling, &rdev->consumer_list, list)
679 		current_uA += sibling->uA_load;
680 
681 	if (rdev->desc->ops->set_load) {
682 		/* set the optimum mode for our new total regulator load */
683 		err = rdev->desc->ops->set_load(rdev, current_uA);
684 		if (err < 0)
685 			rdev_err(rdev, "failed to set load %d\n", current_uA);
686 	} else {
687 		/* now get the optimum mode for our new total regulator load */
688 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 							 output_uV, current_uA);
690 
691 		/* check the new mode is allowed */
692 		err = regulator_mode_constrain(rdev, &mode);
693 		if (err < 0) {
694 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
695 				 current_uA, input_uV, output_uV);
696 			return err;
697 		}
698 
699 		err = rdev->desc->ops->set_mode(rdev, mode);
700 		if (err < 0)
701 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
702 	}
703 
704 	return err;
705 }
706 
707 static int suspend_set_state(struct regulator_dev *rdev,
708 	struct regulator_state *rstate)
709 {
710 	int ret = 0;
711 
712 	/* If we have no suspend mode configration don't set anything;
713 	 * only warn if the driver implements set_suspend_voltage or
714 	 * set_suspend_mode callback.
715 	 */
716 	if (!rstate->enabled && !rstate->disabled) {
717 		if (rdev->desc->ops->set_suspend_voltage ||
718 		    rdev->desc->ops->set_suspend_mode)
719 			rdev_warn(rdev, "No configuration\n");
720 		return 0;
721 	}
722 
723 	if (rstate->enabled && rstate->disabled) {
724 		rdev_err(rdev, "invalid configuration\n");
725 		return -EINVAL;
726 	}
727 
728 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729 		ret = rdev->desc->ops->set_suspend_enable(rdev);
730 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731 		ret = rdev->desc->ops->set_suspend_disable(rdev);
732 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733 		ret = 0;
734 
735 	if (ret < 0) {
736 		rdev_err(rdev, "failed to enabled/disable\n");
737 		return ret;
738 	}
739 
740 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742 		if (ret < 0) {
743 			rdev_err(rdev, "failed to set voltage\n");
744 			return ret;
745 		}
746 	}
747 
748 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750 		if (ret < 0) {
751 			rdev_err(rdev, "failed to set mode\n");
752 			return ret;
753 		}
754 	}
755 	return ret;
756 }
757 
758 /* locks held by caller */
759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761 	if (!rdev->constraints)
762 		return -EINVAL;
763 
764 	switch (state) {
765 	case PM_SUSPEND_STANDBY:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_standby);
768 	case PM_SUSPEND_MEM:
769 		return suspend_set_state(rdev,
770 			&rdev->constraints->state_mem);
771 	case PM_SUSPEND_MAX:
772 		return suspend_set_state(rdev,
773 			&rdev->constraints->state_disk);
774 	default:
775 		return -EINVAL;
776 	}
777 }
778 
779 static void print_constraints(struct regulator_dev *rdev)
780 {
781 	struct regulation_constraints *constraints = rdev->constraints;
782 	char buf[80] = "";
783 	int count = 0;
784 	int ret;
785 
786 	if (constraints->min_uV && constraints->max_uV) {
787 		if (constraints->min_uV == constraints->max_uV)
788 			count += sprintf(buf + count, "%d mV ",
789 					 constraints->min_uV / 1000);
790 		else
791 			count += sprintf(buf + count, "%d <--> %d mV ",
792 					 constraints->min_uV / 1000,
793 					 constraints->max_uV / 1000);
794 	}
795 
796 	if (!constraints->min_uV ||
797 	    constraints->min_uV != constraints->max_uV) {
798 		ret = _regulator_get_voltage(rdev);
799 		if (ret > 0)
800 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
801 	}
802 
803 	if (constraints->uV_offset)
804 		count += sprintf(buf, "%dmV offset ",
805 				 constraints->uV_offset / 1000);
806 
807 	if (constraints->min_uA && constraints->max_uA) {
808 		if (constraints->min_uA == constraints->max_uA)
809 			count += sprintf(buf + count, "%d mA ",
810 					 constraints->min_uA / 1000);
811 		else
812 			count += sprintf(buf + count, "%d <--> %d mA ",
813 					 constraints->min_uA / 1000,
814 					 constraints->max_uA / 1000);
815 	}
816 
817 	if (!constraints->min_uA ||
818 	    constraints->min_uA != constraints->max_uA) {
819 		ret = _regulator_get_current_limit(rdev);
820 		if (ret > 0)
821 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
822 	}
823 
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
825 		count += sprintf(buf + count, "fast ");
826 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
827 		count += sprintf(buf + count, "normal ");
828 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
829 		count += sprintf(buf + count, "idle ");
830 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
831 		count += sprintf(buf + count, "standby");
832 
833 	if (!count)
834 		sprintf(buf, "no parameters");
835 
836 	rdev_dbg(rdev, "%s\n", buf);
837 
838 	if ((constraints->min_uV != constraints->max_uV) &&
839 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
840 		rdev_warn(rdev,
841 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 }
843 
844 static int machine_constraints_voltage(struct regulator_dev *rdev,
845 	struct regulation_constraints *constraints)
846 {
847 	const struct regulator_ops *ops = rdev->desc->ops;
848 	int ret;
849 
850 	/* do we need to apply the constraint voltage */
851 	if (rdev->constraints->apply_uV &&
852 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
853 		int current_uV = _regulator_get_voltage(rdev);
854 		if (current_uV < 0) {
855 			rdev_err(rdev,
856 				 "failed to get the current voltage(%d)\n",
857 				 current_uV);
858 			return current_uV;
859 		}
860 		if (current_uV < rdev->constraints->min_uV ||
861 		    current_uV > rdev->constraints->max_uV) {
862 			ret = _regulator_do_set_voltage(
863 				rdev, rdev->constraints->min_uV,
864 				rdev->constraints->max_uV);
865 			if (ret < 0) {
866 				rdev_err(rdev,
867 					"failed to apply %duV constraint(%d)\n",
868 					rdev->constraints->min_uV, ret);
869 				return ret;
870 			}
871 		}
872 	}
873 
874 	/* constrain machine-level voltage specs to fit
875 	 * the actual range supported by this regulator.
876 	 */
877 	if (ops->list_voltage && rdev->desc->n_voltages) {
878 		int	count = rdev->desc->n_voltages;
879 		int	i;
880 		int	min_uV = INT_MAX;
881 		int	max_uV = INT_MIN;
882 		int	cmin = constraints->min_uV;
883 		int	cmax = constraints->max_uV;
884 
885 		/* it's safe to autoconfigure fixed-voltage supplies
886 		   and the constraints are used by list_voltage. */
887 		if (count == 1 && !cmin) {
888 			cmin = 1;
889 			cmax = INT_MAX;
890 			constraints->min_uV = cmin;
891 			constraints->max_uV = cmax;
892 		}
893 
894 		/* voltage constraints are optional */
895 		if ((cmin == 0) && (cmax == 0))
896 			return 0;
897 
898 		/* else require explicit machine-level constraints */
899 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900 			rdev_err(rdev, "invalid voltage constraints\n");
901 			return -EINVAL;
902 		}
903 
904 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905 		for (i = 0; i < count; i++) {
906 			int	value;
907 
908 			value = ops->list_voltage(rdev, i);
909 			if (value <= 0)
910 				continue;
911 
912 			/* maybe adjust [min_uV..max_uV] */
913 			if (value >= cmin && value < min_uV)
914 				min_uV = value;
915 			if (value <= cmax && value > max_uV)
916 				max_uV = value;
917 		}
918 
919 		/* final: [min_uV..max_uV] valid iff constraints valid */
920 		if (max_uV < min_uV) {
921 			rdev_err(rdev,
922 				 "unsupportable voltage constraints %u-%uuV\n",
923 				 min_uV, max_uV);
924 			return -EINVAL;
925 		}
926 
927 		/* use regulator's subset of machine constraints */
928 		if (constraints->min_uV < min_uV) {
929 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
930 				 constraints->min_uV, min_uV);
931 			constraints->min_uV = min_uV;
932 		}
933 		if (constraints->max_uV > max_uV) {
934 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
935 				 constraints->max_uV, max_uV);
936 			constraints->max_uV = max_uV;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 static int machine_constraints_current(struct regulator_dev *rdev,
944 	struct regulation_constraints *constraints)
945 {
946 	const struct regulator_ops *ops = rdev->desc->ops;
947 	int ret;
948 
949 	if (!constraints->min_uA && !constraints->max_uA)
950 		return 0;
951 
952 	if (constraints->min_uA > constraints->max_uA) {
953 		rdev_err(rdev, "Invalid current constraints\n");
954 		return -EINVAL;
955 	}
956 
957 	if (!ops->set_current_limit || !ops->get_current_limit) {
958 		rdev_warn(rdev, "Operation of current configuration missing\n");
959 		return 0;
960 	}
961 
962 	/* Set regulator current in constraints range */
963 	ret = ops->set_current_limit(rdev, constraints->min_uA,
964 			constraints->max_uA);
965 	if (ret < 0) {
966 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
967 		return ret;
968 	}
969 
970 	return 0;
971 }
972 
973 static int _regulator_do_enable(struct regulator_dev *rdev);
974 
975 /**
976  * set_machine_constraints - sets regulator constraints
977  * @rdev: regulator source
978  * @constraints: constraints to apply
979  *
980  * Allows platform initialisation code to define and constrain
981  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
982  * Constraints *must* be set by platform code in order for some
983  * regulator operations to proceed i.e. set_voltage, set_current_limit,
984  * set_mode.
985  */
986 static int set_machine_constraints(struct regulator_dev *rdev,
987 	const struct regulation_constraints *constraints)
988 {
989 	int ret = 0;
990 	const struct regulator_ops *ops = rdev->desc->ops;
991 
992 	if (constraints)
993 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
994 					    GFP_KERNEL);
995 	else
996 		rdev->constraints = kzalloc(sizeof(*constraints),
997 					    GFP_KERNEL);
998 	if (!rdev->constraints)
999 		return -ENOMEM;
1000 
1001 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1002 	if (ret != 0)
1003 		goto out;
1004 
1005 	ret = machine_constraints_current(rdev, rdev->constraints);
1006 	if (ret != 0)
1007 		goto out;
1008 
1009 	/* do we need to setup our suspend state */
1010 	if (rdev->constraints->initial_state) {
1011 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012 		if (ret < 0) {
1013 			rdev_err(rdev, "failed to set suspend state\n");
1014 			goto out;
1015 		}
1016 	}
1017 
1018 	if (rdev->constraints->initial_mode) {
1019 		if (!ops->set_mode) {
1020 			rdev_err(rdev, "no set_mode operation\n");
1021 			ret = -EINVAL;
1022 			goto out;
1023 		}
1024 
1025 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026 		if (ret < 0) {
1027 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	/* If the constraints say the regulator should be on at this point
1033 	 * and we have control then make sure it is enabled.
1034 	 */
1035 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1036 		ret = _regulator_do_enable(rdev);
1037 		if (ret < 0 && ret != -EINVAL) {
1038 			rdev_err(rdev, "failed to enable\n");
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1044 		&& ops->set_ramp_delay) {
1045 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1046 		if (ret < 0) {
1047 			rdev_err(rdev, "failed to set ramp_delay\n");
1048 			goto out;
1049 		}
1050 	}
1051 
1052 	print_constraints(rdev);
1053 	return 0;
1054 out:
1055 	kfree(rdev->constraints);
1056 	rdev->constraints = NULL;
1057 	return ret;
1058 }
1059 
1060 /**
1061  * set_supply - set regulator supply regulator
1062  * @rdev: regulator name
1063  * @supply_rdev: supply regulator name
1064  *
1065  * Called by platform initialisation code to set the supply regulator for this
1066  * regulator. This ensures that a regulators supply will also be enabled by the
1067  * core if it's child is enabled.
1068  */
1069 static int set_supply(struct regulator_dev *rdev,
1070 		      struct regulator_dev *supply_rdev)
1071 {
1072 	int err;
1073 
1074 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1075 
1076 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077 	if (rdev->supply == NULL) {
1078 		err = -ENOMEM;
1079 		return err;
1080 	}
1081 	supply_rdev->open_count++;
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088  * @rdev:         regulator source
1089  * @consumer_dev_name: dev_name() string for device supply applies to
1090  * @supply:       symbolic name for supply
1091  *
1092  * Allows platform initialisation code to map physical regulator
1093  * sources to symbolic names for supplies for use by devices.  Devices
1094  * should use these symbolic names to request regulators, avoiding the
1095  * need to provide board-specific regulator names as platform data.
1096  */
1097 static int set_consumer_device_supply(struct regulator_dev *rdev,
1098 				      const char *consumer_dev_name,
1099 				      const char *supply)
1100 {
1101 	struct regulator_map *node;
1102 	int has_dev;
1103 
1104 	if (supply == NULL)
1105 		return -EINVAL;
1106 
1107 	if (consumer_dev_name != NULL)
1108 		has_dev = 1;
1109 	else
1110 		has_dev = 0;
1111 
1112 	list_for_each_entry(node, &regulator_map_list, list) {
1113 		if (node->dev_name && consumer_dev_name) {
1114 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1115 				continue;
1116 		} else if (node->dev_name || consumer_dev_name) {
1117 			continue;
1118 		}
1119 
1120 		if (strcmp(node->supply, supply) != 0)
1121 			continue;
1122 
1123 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1124 			 consumer_dev_name,
1125 			 dev_name(&node->regulator->dev),
1126 			 node->regulator->desc->name,
1127 			 supply,
1128 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1129 		return -EBUSY;
1130 	}
1131 
1132 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133 	if (node == NULL)
1134 		return -ENOMEM;
1135 
1136 	node->regulator = rdev;
1137 	node->supply = supply;
1138 
1139 	if (has_dev) {
1140 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1141 		if (node->dev_name == NULL) {
1142 			kfree(node);
1143 			return -ENOMEM;
1144 		}
1145 	}
1146 
1147 	list_add(&node->list, &regulator_map_list);
1148 	return 0;
1149 }
1150 
1151 static void unset_regulator_supplies(struct regulator_dev *rdev)
1152 {
1153 	struct regulator_map *node, *n;
1154 
1155 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1156 		if (rdev == node->regulator) {
1157 			list_del(&node->list);
1158 			kfree(node->dev_name);
1159 			kfree(node);
1160 		}
1161 	}
1162 }
1163 
1164 #define REG_STR_SIZE	64
1165 
1166 static struct regulator *create_regulator(struct regulator_dev *rdev,
1167 					  struct device *dev,
1168 					  const char *supply_name)
1169 {
1170 	struct regulator *regulator;
1171 	char buf[REG_STR_SIZE];
1172 	int err, size;
1173 
1174 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1175 	if (regulator == NULL)
1176 		return NULL;
1177 
1178 	mutex_lock(&rdev->mutex);
1179 	regulator->rdev = rdev;
1180 	list_add(&regulator->list, &rdev->consumer_list);
1181 
1182 	if (dev) {
1183 		regulator->dev = dev;
1184 
1185 		/* Add a link to the device sysfs entry */
1186 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1187 				 dev->kobj.name, supply_name);
1188 		if (size >= REG_STR_SIZE)
1189 			goto overflow_err;
1190 
1191 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1192 		if (regulator->supply_name == NULL)
1193 			goto overflow_err;
1194 
1195 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1196 					buf);
1197 		if (err) {
1198 			rdev_warn(rdev, "could not add device link %s err %d\n",
1199 				  dev->kobj.name, err);
1200 			/* non-fatal */
1201 		}
1202 	} else {
1203 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1204 		if (regulator->supply_name == NULL)
1205 			goto overflow_err;
1206 	}
1207 
1208 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1209 						rdev->debugfs);
1210 	if (!regulator->debugfs) {
1211 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1212 	} else {
1213 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1214 				   &regulator->uA_load);
1215 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1216 				   &regulator->min_uV);
1217 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1218 				   &regulator->max_uV);
1219 	}
1220 
1221 	/*
1222 	 * Check now if the regulator is an always on regulator - if
1223 	 * it is then we don't need to do nearly so much work for
1224 	 * enable/disable calls.
1225 	 */
1226 	if (!_regulator_can_change_status(rdev) &&
1227 	    _regulator_is_enabled(rdev))
1228 		regulator->always_on = true;
1229 
1230 	mutex_unlock(&rdev->mutex);
1231 	return regulator;
1232 overflow_err:
1233 	list_del(&regulator->list);
1234 	kfree(regulator);
1235 	mutex_unlock(&rdev->mutex);
1236 	return NULL;
1237 }
1238 
1239 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1240 {
1241 	if (rdev->constraints && rdev->constraints->enable_time)
1242 		return rdev->constraints->enable_time;
1243 	if (!rdev->desc->ops->enable_time)
1244 		return rdev->desc->enable_time;
1245 	return rdev->desc->ops->enable_time(rdev);
1246 }
1247 
1248 static struct regulator_supply_alias *regulator_find_supply_alias(
1249 		struct device *dev, const char *supply)
1250 {
1251 	struct regulator_supply_alias *map;
1252 
1253 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1254 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255 			return map;
1256 
1257 	return NULL;
1258 }
1259 
1260 static void regulator_supply_alias(struct device **dev, const char **supply)
1261 {
1262 	struct regulator_supply_alias *map;
1263 
1264 	map = regulator_find_supply_alias(*dev, *supply);
1265 	if (map) {
1266 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1267 				*supply, map->alias_supply,
1268 				dev_name(map->alias_dev));
1269 		*dev = map->alias_dev;
1270 		*supply = map->alias_supply;
1271 	}
1272 }
1273 
1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275 						  const char *supply,
1276 						  int *ret)
1277 {
1278 	struct regulator_dev *r;
1279 	struct device_node *node;
1280 	struct regulator_map *map;
1281 	const char *devname = NULL;
1282 
1283 	regulator_supply_alias(&dev, &supply);
1284 
1285 	/* first do a dt based lookup */
1286 	if (dev && dev->of_node) {
1287 		node = of_get_regulator(dev, supply);
1288 		if (node) {
1289 			list_for_each_entry(r, &regulator_list, list)
1290 				if (r->dev.parent &&
1291 					node == r->dev.of_node)
1292 					return r;
1293 			*ret = -EPROBE_DEFER;
1294 			return NULL;
1295 		} else {
1296 			/*
1297 			 * If we couldn't even get the node then it's
1298 			 * not just that the device didn't register
1299 			 * yet, there's no node and we'll never
1300 			 * succeed.
1301 			 */
1302 			*ret = -ENODEV;
1303 		}
1304 	}
1305 
1306 	/* if not found, try doing it non-dt way */
1307 	if (dev)
1308 		devname = dev_name(dev);
1309 
1310 	list_for_each_entry(r, &regulator_list, list)
1311 		if (strcmp(rdev_get_name(r), supply) == 0)
1312 			return r;
1313 
1314 	list_for_each_entry(map, &regulator_map_list, list) {
1315 		/* If the mapping has a device set up it must match */
1316 		if (map->dev_name &&
1317 		    (!devname || strcmp(map->dev_name, devname)))
1318 			continue;
1319 
1320 		if (strcmp(map->supply, supply) == 0)
1321 			return map->regulator;
1322 	}
1323 
1324 
1325 	return NULL;
1326 }
1327 
1328 static int regulator_resolve_supply(struct regulator_dev *rdev)
1329 {
1330 	struct regulator_dev *r;
1331 	struct device *dev = rdev->dev.parent;
1332 	int ret;
1333 
1334 	/* No supply to resovle? */
1335 	if (!rdev->supply_name)
1336 		return 0;
1337 
1338 	/* Supply already resolved? */
1339 	if (rdev->supply)
1340 		return 0;
1341 
1342 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1343 	if (ret == -ENODEV) {
1344 		/*
1345 		 * No supply was specified for this regulator and
1346 		 * there will never be one.
1347 		 */
1348 		return 0;
1349 	}
1350 
1351 	if (!r) {
1352 		dev_err(dev, "Failed to resolve %s-supply for %s\n",
1353 			rdev->supply_name, rdev->desc->name);
1354 		return -EPROBE_DEFER;
1355 	}
1356 
1357 	/* Recursively resolve the supply of the supply */
1358 	ret = regulator_resolve_supply(r);
1359 	if (ret < 0)
1360 		return ret;
1361 
1362 	ret = set_supply(rdev, r);
1363 	if (ret < 0)
1364 		return ret;
1365 
1366 	/* Cascade always-on state to supply */
1367 	if (_regulator_is_enabled(rdev)) {
1368 		ret = regulator_enable(rdev->supply);
1369 		if (ret < 0)
1370 			return ret;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 /* Internal regulator request function */
1377 static struct regulator *_regulator_get(struct device *dev, const char *id,
1378 					bool exclusive, bool allow_dummy)
1379 {
1380 	struct regulator_dev *rdev;
1381 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1382 	const char *devname = NULL;
1383 	int ret;
1384 
1385 	if (id == NULL) {
1386 		pr_err("get() with no identifier\n");
1387 		return ERR_PTR(-EINVAL);
1388 	}
1389 
1390 	if (dev)
1391 		devname = dev_name(dev);
1392 
1393 	if (have_full_constraints())
1394 		ret = -ENODEV;
1395 	else
1396 		ret = -EPROBE_DEFER;
1397 
1398 	mutex_lock(&regulator_list_mutex);
1399 
1400 	rdev = regulator_dev_lookup(dev, id, &ret);
1401 	if (rdev)
1402 		goto found;
1403 
1404 	regulator = ERR_PTR(ret);
1405 
1406 	/*
1407 	 * If we have return value from dev_lookup fail, we do not expect to
1408 	 * succeed, so, quit with appropriate error value
1409 	 */
1410 	if (ret && ret != -ENODEV)
1411 		goto out;
1412 
1413 	if (!devname)
1414 		devname = "deviceless";
1415 
1416 	/*
1417 	 * Assume that a regulator is physically present and enabled
1418 	 * even if it isn't hooked up and just provide a dummy.
1419 	 */
1420 	if (have_full_constraints() && allow_dummy) {
1421 		pr_warn("%s supply %s not found, using dummy regulator\n",
1422 			devname, id);
1423 
1424 		rdev = dummy_regulator_rdev;
1425 		goto found;
1426 	/* Don't log an error when called from regulator_get_optional() */
1427 	} else if (!have_full_constraints() || exclusive) {
1428 		dev_warn(dev, "dummy supplies not allowed\n");
1429 	}
1430 
1431 	mutex_unlock(&regulator_list_mutex);
1432 	return regulator;
1433 
1434 found:
1435 	if (rdev->exclusive) {
1436 		regulator = ERR_PTR(-EPERM);
1437 		goto out;
1438 	}
1439 
1440 	if (exclusive && rdev->open_count) {
1441 		regulator = ERR_PTR(-EBUSY);
1442 		goto out;
1443 	}
1444 
1445 	ret = regulator_resolve_supply(rdev);
1446 	if (ret < 0) {
1447 		regulator = ERR_PTR(ret);
1448 		goto out;
1449 	}
1450 
1451 	if (!try_module_get(rdev->owner))
1452 		goto out;
1453 
1454 	regulator = create_regulator(rdev, dev, id);
1455 	if (regulator == NULL) {
1456 		regulator = ERR_PTR(-ENOMEM);
1457 		module_put(rdev->owner);
1458 		goto out;
1459 	}
1460 
1461 	rdev->open_count++;
1462 	if (exclusive) {
1463 		rdev->exclusive = 1;
1464 
1465 		ret = _regulator_is_enabled(rdev);
1466 		if (ret > 0)
1467 			rdev->use_count = 1;
1468 		else
1469 			rdev->use_count = 0;
1470 	}
1471 
1472 out:
1473 	mutex_unlock(&regulator_list_mutex);
1474 
1475 	return regulator;
1476 }
1477 
1478 /**
1479  * regulator_get - lookup and obtain a reference to a regulator.
1480  * @dev: device for regulator "consumer"
1481  * @id: Supply name or regulator ID.
1482  *
1483  * Returns a struct regulator corresponding to the regulator producer,
1484  * or IS_ERR() condition containing errno.
1485  *
1486  * Use of supply names configured via regulator_set_device_supply() is
1487  * strongly encouraged.  It is recommended that the supply name used
1488  * should match the name used for the supply and/or the relevant
1489  * device pins in the datasheet.
1490  */
1491 struct regulator *regulator_get(struct device *dev, const char *id)
1492 {
1493 	return _regulator_get(dev, id, false, true);
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_get);
1496 
1497 /**
1498  * regulator_get_exclusive - obtain exclusive access to a regulator.
1499  * @dev: device for regulator "consumer"
1500  * @id: Supply name or regulator ID.
1501  *
1502  * Returns a struct regulator corresponding to the regulator producer,
1503  * or IS_ERR() condition containing errno.  Other consumers will be
1504  * unable to obtain this regulator while this reference is held and the
1505  * use count for the regulator will be initialised to reflect the current
1506  * state of the regulator.
1507  *
1508  * This is intended for use by consumers which cannot tolerate shared
1509  * use of the regulator such as those which need to force the
1510  * regulator off for correct operation of the hardware they are
1511  * controlling.
1512  *
1513  * Use of supply names configured via regulator_set_device_supply() is
1514  * strongly encouraged.  It is recommended that the supply name used
1515  * should match the name used for the supply and/or the relevant
1516  * device pins in the datasheet.
1517  */
1518 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1519 {
1520 	return _regulator_get(dev, id, true, false);
1521 }
1522 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1523 
1524 /**
1525  * regulator_get_optional - obtain optional access to a regulator.
1526  * @dev: device for regulator "consumer"
1527  * @id: Supply name or regulator ID.
1528  *
1529  * Returns a struct regulator corresponding to the regulator producer,
1530  * or IS_ERR() condition containing errno.
1531  *
1532  * This is intended for use by consumers for devices which can have
1533  * some supplies unconnected in normal use, such as some MMC devices.
1534  * It can allow the regulator core to provide stub supplies for other
1535  * supplies requested using normal regulator_get() calls without
1536  * disrupting the operation of drivers that can handle absent
1537  * supplies.
1538  *
1539  * Use of supply names configured via regulator_set_device_supply() is
1540  * strongly encouraged.  It is recommended that the supply name used
1541  * should match the name used for the supply and/or the relevant
1542  * device pins in the datasheet.
1543  */
1544 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1545 {
1546 	return _regulator_get(dev, id, false, false);
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_get_optional);
1549 
1550 /* regulator_list_mutex lock held by regulator_put() */
1551 static void _regulator_put(struct regulator *regulator)
1552 {
1553 	struct regulator_dev *rdev;
1554 
1555 	if (regulator == NULL || IS_ERR(regulator))
1556 		return;
1557 
1558 	rdev = regulator->rdev;
1559 
1560 	debugfs_remove_recursive(regulator->debugfs);
1561 
1562 	/* remove any sysfs entries */
1563 	if (regulator->dev)
1564 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1565 	mutex_lock(&rdev->mutex);
1566 	kfree(regulator->supply_name);
1567 	list_del(&regulator->list);
1568 	kfree(regulator);
1569 
1570 	rdev->open_count--;
1571 	rdev->exclusive = 0;
1572 	mutex_unlock(&rdev->mutex);
1573 
1574 	module_put(rdev->owner);
1575 }
1576 
1577 /**
1578  * regulator_put - "free" the regulator source
1579  * @regulator: regulator source
1580  *
1581  * Note: drivers must ensure that all regulator_enable calls made on this
1582  * regulator source are balanced by regulator_disable calls prior to calling
1583  * this function.
1584  */
1585 void regulator_put(struct regulator *regulator)
1586 {
1587 	mutex_lock(&regulator_list_mutex);
1588 	_regulator_put(regulator);
1589 	mutex_unlock(&regulator_list_mutex);
1590 }
1591 EXPORT_SYMBOL_GPL(regulator_put);
1592 
1593 /**
1594  * regulator_register_supply_alias - Provide device alias for supply lookup
1595  *
1596  * @dev: device that will be given as the regulator "consumer"
1597  * @id: Supply name or regulator ID
1598  * @alias_dev: device that should be used to lookup the supply
1599  * @alias_id: Supply name or regulator ID that should be used to lookup the
1600  * supply
1601  *
1602  * All lookups for id on dev will instead be conducted for alias_id on
1603  * alias_dev.
1604  */
1605 int regulator_register_supply_alias(struct device *dev, const char *id,
1606 				    struct device *alias_dev,
1607 				    const char *alias_id)
1608 {
1609 	struct regulator_supply_alias *map;
1610 
1611 	map = regulator_find_supply_alias(dev, id);
1612 	if (map)
1613 		return -EEXIST;
1614 
1615 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1616 	if (!map)
1617 		return -ENOMEM;
1618 
1619 	map->src_dev = dev;
1620 	map->src_supply = id;
1621 	map->alias_dev = alias_dev;
1622 	map->alias_supply = alias_id;
1623 
1624 	list_add(&map->list, &regulator_supply_alias_list);
1625 
1626 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1627 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1632 
1633 /**
1634  * regulator_unregister_supply_alias - Remove device alias
1635  *
1636  * @dev: device that will be given as the regulator "consumer"
1637  * @id: Supply name or regulator ID
1638  *
1639  * Remove a lookup alias if one exists for id on dev.
1640  */
1641 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1642 {
1643 	struct regulator_supply_alias *map;
1644 
1645 	map = regulator_find_supply_alias(dev, id);
1646 	if (map) {
1647 		list_del(&map->list);
1648 		kfree(map);
1649 	}
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1652 
1653 /**
1654  * regulator_bulk_register_supply_alias - register multiple aliases
1655  *
1656  * @dev: device that will be given as the regulator "consumer"
1657  * @id: List of supply names or regulator IDs
1658  * @alias_dev: device that should be used to lookup the supply
1659  * @alias_id: List of supply names or regulator IDs that should be used to
1660  * lookup the supply
1661  * @num_id: Number of aliases to register
1662  *
1663  * @return 0 on success, an errno on failure.
1664  *
1665  * This helper function allows drivers to register several supply
1666  * aliases in one operation.  If any of the aliases cannot be
1667  * registered any aliases that were registered will be removed
1668  * before returning to the caller.
1669  */
1670 int regulator_bulk_register_supply_alias(struct device *dev,
1671 					 const char *const *id,
1672 					 struct device *alias_dev,
1673 					 const char *const *alias_id,
1674 					 int num_id)
1675 {
1676 	int i;
1677 	int ret;
1678 
1679 	for (i = 0; i < num_id; ++i) {
1680 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1681 						      alias_id[i]);
1682 		if (ret < 0)
1683 			goto err;
1684 	}
1685 
1686 	return 0;
1687 
1688 err:
1689 	dev_err(dev,
1690 		"Failed to create supply alias %s,%s -> %s,%s\n",
1691 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1692 
1693 	while (--i >= 0)
1694 		regulator_unregister_supply_alias(dev, id[i]);
1695 
1696 	return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1699 
1700 /**
1701  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1702  *
1703  * @dev: device that will be given as the regulator "consumer"
1704  * @id: List of supply names or regulator IDs
1705  * @num_id: Number of aliases to unregister
1706  *
1707  * This helper function allows drivers to unregister several supply
1708  * aliases in one operation.
1709  */
1710 void regulator_bulk_unregister_supply_alias(struct device *dev,
1711 					    const char *const *id,
1712 					    int num_id)
1713 {
1714 	int i;
1715 
1716 	for (i = 0; i < num_id; ++i)
1717 		regulator_unregister_supply_alias(dev, id[i]);
1718 }
1719 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1720 
1721 
1722 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1723 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1724 				const struct regulator_config *config)
1725 {
1726 	struct regulator_enable_gpio *pin;
1727 	struct gpio_desc *gpiod;
1728 	int ret;
1729 
1730 	gpiod = gpio_to_desc(config->ena_gpio);
1731 
1732 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1733 		if (pin->gpiod == gpiod) {
1734 			rdev_dbg(rdev, "GPIO %d is already used\n",
1735 				config->ena_gpio);
1736 			goto update_ena_gpio_to_rdev;
1737 		}
1738 	}
1739 
1740 	ret = gpio_request_one(config->ena_gpio,
1741 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1742 				rdev_get_name(rdev));
1743 	if (ret)
1744 		return ret;
1745 
1746 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1747 	if (pin == NULL) {
1748 		gpio_free(config->ena_gpio);
1749 		return -ENOMEM;
1750 	}
1751 
1752 	pin->gpiod = gpiod;
1753 	pin->ena_gpio_invert = config->ena_gpio_invert;
1754 	list_add(&pin->list, &regulator_ena_gpio_list);
1755 
1756 update_ena_gpio_to_rdev:
1757 	pin->request_count++;
1758 	rdev->ena_pin = pin;
1759 	return 0;
1760 }
1761 
1762 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1763 {
1764 	struct regulator_enable_gpio *pin, *n;
1765 
1766 	if (!rdev->ena_pin)
1767 		return;
1768 
1769 	/* Free the GPIO only in case of no use */
1770 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1771 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1772 			if (pin->request_count <= 1) {
1773 				pin->request_count = 0;
1774 				gpiod_put(pin->gpiod);
1775 				list_del(&pin->list);
1776 				kfree(pin);
1777 				rdev->ena_pin = NULL;
1778 				return;
1779 			} else {
1780 				pin->request_count--;
1781 			}
1782 		}
1783 	}
1784 }
1785 
1786 /**
1787  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1788  * @rdev: regulator_dev structure
1789  * @enable: enable GPIO at initial use?
1790  *
1791  * GPIO is enabled in case of initial use. (enable_count is 0)
1792  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1793  */
1794 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1795 {
1796 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1797 
1798 	if (!pin)
1799 		return -EINVAL;
1800 
1801 	if (enable) {
1802 		/* Enable GPIO at initial use */
1803 		if (pin->enable_count == 0)
1804 			gpiod_set_value_cansleep(pin->gpiod,
1805 						 !pin->ena_gpio_invert);
1806 
1807 		pin->enable_count++;
1808 	} else {
1809 		if (pin->enable_count > 1) {
1810 			pin->enable_count--;
1811 			return 0;
1812 		}
1813 
1814 		/* Disable GPIO if not used */
1815 		if (pin->enable_count <= 1) {
1816 			gpiod_set_value_cansleep(pin->gpiod,
1817 						 pin->ena_gpio_invert);
1818 			pin->enable_count = 0;
1819 		}
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  * _regulator_enable_delay - a delay helper function
1827  * @delay: time to delay in microseconds
1828  *
1829  * Delay for the requested amount of time as per the guidelines in:
1830  *
1831  *     Documentation/timers/timers-howto.txt
1832  *
1833  * The assumption here is that regulators will never be enabled in
1834  * atomic context and therefore sleeping functions can be used.
1835  */
1836 static void _regulator_enable_delay(unsigned int delay)
1837 {
1838 	unsigned int ms = delay / 1000;
1839 	unsigned int us = delay % 1000;
1840 
1841 	if (ms > 0) {
1842 		/*
1843 		 * For small enough values, handle super-millisecond
1844 		 * delays in the usleep_range() call below.
1845 		 */
1846 		if (ms < 20)
1847 			us += ms * 1000;
1848 		else
1849 			msleep(ms);
1850 	}
1851 
1852 	/*
1853 	 * Give the scheduler some room to coalesce with any other
1854 	 * wakeup sources. For delays shorter than 10 us, don't even
1855 	 * bother setting up high-resolution timers and just busy-
1856 	 * loop.
1857 	 */
1858 	if (us >= 10)
1859 		usleep_range(us, us + 100);
1860 	else
1861 		udelay(us);
1862 }
1863 
1864 static int _regulator_do_enable(struct regulator_dev *rdev)
1865 {
1866 	int ret, delay;
1867 
1868 	/* Query before enabling in case configuration dependent.  */
1869 	ret = _regulator_get_enable_time(rdev);
1870 	if (ret >= 0) {
1871 		delay = ret;
1872 	} else {
1873 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1874 		delay = 0;
1875 	}
1876 
1877 	trace_regulator_enable(rdev_get_name(rdev));
1878 
1879 	if (rdev->desc->off_on_delay) {
1880 		/* if needed, keep a distance of off_on_delay from last time
1881 		 * this regulator was disabled.
1882 		 */
1883 		unsigned long start_jiffy = jiffies;
1884 		unsigned long intended, max_delay, remaining;
1885 
1886 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1887 		intended = rdev->last_off_jiffy + max_delay;
1888 
1889 		if (time_before(start_jiffy, intended)) {
1890 			/* calc remaining jiffies to deal with one-time
1891 			 * timer wrapping.
1892 			 * in case of multiple timer wrapping, either it can be
1893 			 * detected by out-of-range remaining, or it cannot be
1894 			 * detected and we gets a panelty of
1895 			 * _regulator_enable_delay().
1896 			 */
1897 			remaining = intended - start_jiffy;
1898 			if (remaining <= max_delay)
1899 				_regulator_enable_delay(
1900 						jiffies_to_usecs(remaining));
1901 		}
1902 	}
1903 
1904 	if (rdev->ena_pin) {
1905 		if (!rdev->ena_gpio_state) {
1906 			ret = regulator_ena_gpio_ctrl(rdev, true);
1907 			if (ret < 0)
1908 				return ret;
1909 			rdev->ena_gpio_state = 1;
1910 		}
1911 	} else if (rdev->desc->ops->enable) {
1912 		ret = rdev->desc->ops->enable(rdev);
1913 		if (ret < 0)
1914 			return ret;
1915 	} else {
1916 		return -EINVAL;
1917 	}
1918 
1919 	/* Allow the regulator to ramp; it would be useful to extend
1920 	 * this for bulk operations so that the regulators can ramp
1921 	 * together.  */
1922 	trace_regulator_enable_delay(rdev_get_name(rdev));
1923 
1924 	_regulator_enable_delay(delay);
1925 
1926 	trace_regulator_enable_complete(rdev_get_name(rdev));
1927 
1928 	return 0;
1929 }
1930 
1931 /* locks held by regulator_enable() */
1932 static int _regulator_enable(struct regulator_dev *rdev)
1933 {
1934 	int ret;
1935 
1936 	/* check voltage and requested load before enabling */
1937 	if (rdev->constraints &&
1938 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1939 		drms_uA_update(rdev);
1940 
1941 	if (rdev->use_count == 0) {
1942 		/* The regulator may on if it's not switchable or left on */
1943 		ret = _regulator_is_enabled(rdev);
1944 		if (ret == -EINVAL || ret == 0) {
1945 			if (!_regulator_can_change_status(rdev))
1946 				return -EPERM;
1947 
1948 			ret = _regulator_do_enable(rdev);
1949 			if (ret < 0)
1950 				return ret;
1951 
1952 		} else if (ret < 0) {
1953 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1954 			return ret;
1955 		}
1956 		/* Fallthrough on positive return values - already enabled */
1957 	}
1958 
1959 	rdev->use_count++;
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  * regulator_enable - enable regulator output
1966  * @regulator: regulator source
1967  *
1968  * Request that the regulator be enabled with the regulator output at
1969  * the predefined voltage or current value.  Calls to regulator_enable()
1970  * must be balanced with calls to regulator_disable().
1971  *
1972  * NOTE: the output value can be set by other drivers, boot loader or may be
1973  * hardwired in the regulator.
1974  */
1975 int regulator_enable(struct regulator *regulator)
1976 {
1977 	struct regulator_dev *rdev = regulator->rdev;
1978 	int ret = 0;
1979 
1980 	if (regulator->always_on)
1981 		return 0;
1982 
1983 	if (rdev->supply) {
1984 		ret = regulator_enable(rdev->supply);
1985 		if (ret != 0)
1986 			return ret;
1987 	}
1988 
1989 	mutex_lock(&rdev->mutex);
1990 	ret = _regulator_enable(rdev);
1991 	mutex_unlock(&rdev->mutex);
1992 
1993 	if (ret != 0 && rdev->supply)
1994 		regulator_disable(rdev->supply);
1995 
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_enable);
1999 
2000 static int _regulator_do_disable(struct regulator_dev *rdev)
2001 {
2002 	int ret;
2003 
2004 	trace_regulator_disable(rdev_get_name(rdev));
2005 
2006 	if (rdev->ena_pin) {
2007 		if (rdev->ena_gpio_state) {
2008 			ret = regulator_ena_gpio_ctrl(rdev, false);
2009 			if (ret < 0)
2010 				return ret;
2011 			rdev->ena_gpio_state = 0;
2012 		}
2013 
2014 	} else if (rdev->desc->ops->disable) {
2015 		ret = rdev->desc->ops->disable(rdev);
2016 		if (ret != 0)
2017 			return ret;
2018 	}
2019 
2020 	/* cares about last_off_jiffy only if off_on_delay is required by
2021 	 * device.
2022 	 */
2023 	if (rdev->desc->off_on_delay)
2024 		rdev->last_off_jiffy = jiffies;
2025 
2026 	trace_regulator_disable_complete(rdev_get_name(rdev));
2027 
2028 	return 0;
2029 }
2030 
2031 /* locks held by regulator_disable() */
2032 static int _regulator_disable(struct regulator_dev *rdev)
2033 {
2034 	int ret = 0;
2035 
2036 	if (WARN(rdev->use_count <= 0,
2037 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2038 		return -EIO;
2039 
2040 	/* are we the last user and permitted to disable ? */
2041 	if (rdev->use_count == 1 &&
2042 	    (rdev->constraints && !rdev->constraints->always_on)) {
2043 
2044 		/* we are last user */
2045 		if (_regulator_can_change_status(rdev)) {
2046 			ret = _notifier_call_chain(rdev,
2047 						   REGULATOR_EVENT_PRE_DISABLE,
2048 						   NULL);
2049 			if (ret & NOTIFY_STOP_MASK)
2050 				return -EINVAL;
2051 
2052 			ret = _regulator_do_disable(rdev);
2053 			if (ret < 0) {
2054 				rdev_err(rdev, "failed to disable\n");
2055 				_notifier_call_chain(rdev,
2056 						REGULATOR_EVENT_ABORT_DISABLE,
2057 						NULL);
2058 				return ret;
2059 			}
2060 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2061 					NULL);
2062 		}
2063 
2064 		rdev->use_count = 0;
2065 	} else if (rdev->use_count > 1) {
2066 
2067 		if (rdev->constraints &&
2068 			(rdev->constraints->valid_ops_mask &
2069 			REGULATOR_CHANGE_DRMS))
2070 			drms_uA_update(rdev);
2071 
2072 		rdev->use_count--;
2073 	}
2074 
2075 	return ret;
2076 }
2077 
2078 /**
2079  * regulator_disable - disable regulator output
2080  * @regulator: regulator source
2081  *
2082  * Disable the regulator output voltage or current.  Calls to
2083  * regulator_enable() must be balanced with calls to
2084  * regulator_disable().
2085  *
2086  * NOTE: this will only disable the regulator output if no other consumer
2087  * devices have it enabled, the regulator device supports disabling and
2088  * machine constraints permit this operation.
2089  */
2090 int regulator_disable(struct regulator *regulator)
2091 {
2092 	struct regulator_dev *rdev = regulator->rdev;
2093 	int ret = 0;
2094 
2095 	if (regulator->always_on)
2096 		return 0;
2097 
2098 	mutex_lock(&rdev->mutex);
2099 	ret = _regulator_disable(rdev);
2100 	mutex_unlock(&rdev->mutex);
2101 
2102 	if (ret == 0 && rdev->supply)
2103 		regulator_disable(rdev->supply);
2104 
2105 	return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_disable);
2108 
2109 /* locks held by regulator_force_disable() */
2110 static int _regulator_force_disable(struct regulator_dev *rdev)
2111 {
2112 	int ret = 0;
2113 
2114 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2115 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2116 	if (ret & NOTIFY_STOP_MASK)
2117 		return -EINVAL;
2118 
2119 	ret = _regulator_do_disable(rdev);
2120 	if (ret < 0) {
2121 		rdev_err(rdev, "failed to force disable\n");
2122 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2123 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2124 		return ret;
2125 	}
2126 
2127 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128 			REGULATOR_EVENT_DISABLE, NULL);
2129 
2130 	return 0;
2131 }
2132 
2133 /**
2134  * regulator_force_disable - force disable regulator output
2135  * @regulator: regulator source
2136  *
2137  * Forcibly disable the regulator output voltage or current.
2138  * NOTE: this *will* disable the regulator output even if other consumer
2139  * devices have it enabled. This should be used for situations when device
2140  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2141  */
2142 int regulator_force_disable(struct regulator *regulator)
2143 {
2144 	struct regulator_dev *rdev = regulator->rdev;
2145 	int ret;
2146 
2147 	mutex_lock(&rdev->mutex);
2148 	regulator->uA_load = 0;
2149 	ret = _regulator_force_disable(regulator->rdev);
2150 	mutex_unlock(&rdev->mutex);
2151 
2152 	if (rdev->supply)
2153 		while (rdev->open_count--)
2154 			regulator_disable(rdev->supply);
2155 
2156 	return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_force_disable);
2159 
2160 static void regulator_disable_work(struct work_struct *work)
2161 {
2162 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2163 						  disable_work.work);
2164 	int count, i, ret;
2165 
2166 	mutex_lock(&rdev->mutex);
2167 
2168 	BUG_ON(!rdev->deferred_disables);
2169 
2170 	count = rdev->deferred_disables;
2171 	rdev->deferred_disables = 0;
2172 
2173 	for (i = 0; i < count; i++) {
2174 		ret = _regulator_disable(rdev);
2175 		if (ret != 0)
2176 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2177 	}
2178 
2179 	mutex_unlock(&rdev->mutex);
2180 
2181 	if (rdev->supply) {
2182 		for (i = 0; i < count; i++) {
2183 			ret = regulator_disable(rdev->supply);
2184 			if (ret != 0) {
2185 				rdev_err(rdev,
2186 					 "Supply disable failed: %d\n", ret);
2187 			}
2188 		}
2189 	}
2190 }
2191 
2192 /**
2193  * regulator_disable_deferred - disable regulator output with delay
2194  * @regulator: regulator source
2195  * @ms: miliseconds until the regulator is disabled
2196  *
2197  * Execute regulator_disable() on the regulator after a delay.  This
2198  * is intended for use with devices that require some time to quiesce.
2199  *
2200  * NOTE: this will only disable the regulator output if no other consumer
2201  * devices have it enabled, the regulator device supports disabling and
2202  * machine constraints permit this operation.
2203  */
2204 int regulator_disable_deferred(struct regulator *regulator, int ms)
2205 {
2206 	struct regulator_dev *rdev = regulator->rdev;
2207 	int ret;
2208 
2209 	if (regulator->always_on)
2210 		return 0;
2211 
2212 	if (!ms)
2213 		return regulator_disable(regulator);
2214 
2215 	mutex_lock(&rdev->mutex);
2216 	rdev->deferred_disables++;
2217 	mutex_unlock(&rdev->mutex);
2218 
2219 	ret = queue_delayed_work(system_power_efficient_wq,
2220 				 &rdev->disable_work,
2221 				 msecs_to_jiffies(ms));
2222 	if (ret < 0)
2223 		return ret;
2224 	else
2225 		return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2228 
2229 static int _regulator_is_enabled(struct regulator_dev *rdev)
2230 {
2231 	/* A GPIO control always takes precedence */
2232 	if (rdev->ena_pin)
2233 		return rdev->ena_gpio_state;
2234 
2235 	/* If we don't know then assume that the regulator is always on */
2236 	if (!rdev->desc->ops->is_enabled)
2237 		return 1;
2238 
2239 	return rdev->desc->ops->is_enabled(rdev);
2240 }
2241 
2242 /**
2243  * regulator_is_enabled - is the regulator output enabled
2244  * @regulator: regulator source
2245  *
2246  * Returns positive if the regulator driver backing the source/client
2247  * has requested that the device be enabled, zero if it hasn't, else a
2248  * negative errno code.
2249  *
2250  * Note that the device backing this regulator handle can have multiple
2251  * users, so it might be enabled even if regulator_enable() was never
2252  * called for this particular source.
2253  */
2254 int regulator_is_enabled(struct regulator *regulator)
2255 {
2256 	int ret;
2257 
2258 	if (regulator->always_on)
2259 		return 1;
2260 
2261 	mutex_lock(&regulator->rdev->mutex);
2262 	ret = _regulator_is_enabled(regulator->rdev);
2263 	mutex_unlock(&regulator->rdev->mutex);
2264 
2265 	return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2268 
2269 /**
2270  * regulator_can_change_voltage - check if regulator can change voltage
2271  * @regulator: regulator source
2272  *
2273  * Returns positive if the regulator driver backing the source/client
2274  * can change its voltage, false otherwise. Useful for detecting fixed
2275  * or dummy regulators and disabling voltage change logic in the client
2276  * driver.
2277  */
2278 int regulator_can_change_voltage(struct regulator *regulator)
2279 {
2280 	struct regulator_dev	*rdev = regulator->rdev;
2281 
2282 	if (rdev->constraints &&
2283 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2284 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2285 			return 1;
2286 
2287 		if (rdev->desc->continuous_voltage_range &&
2288 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2289 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2290 			return 1;
2291 	}
2292 
2293 	return 0;
2294 }
2295 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2296 
2297 /**
2298  * regulator_count_voltages - count regulator_list_voltage() selectors
2299  * @regulator: regulator source
2300  *
2301  * Returns number of selectors, or negative errno.  Selectors are
2302  * numbered starting at zero, and typically correspond to bitfields
2303  * in hardware registers.
2304  */
2305 int regulator_count_voltages(struct regulator *regulator)
2306 {
2307 	struct regulator_dev	*rdev = regulator->rdev;
2308 
2309 	if (rdev->desc->n_voltages)
2310 		return rdev->desc->n_voltages;
2311 
2312 	if (!rdev->supply)
2313 		return -EINVAL;
2314 
2315 	return regulator_count_voltages(rdev->supply);
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2318 
2319 /**
2320  * regulator_list_voltage - enumerate supported voltages
2321  * @regulator: regulator source
2322  * @selector: identify voltage to list
2323  * Context: can sleep
2324  *
2325  * Returns a voltage that can be passed to @regulator_set_voltage(),
2326  * zero if this selector code can't be used on this system, or a
2327  * negative errno.
2328  */
2329 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2330 {
2331 	struct regulator_dev *rdev = regulator->rdev;
2332 	const struct regulator_ops *ops = rdev->desc->ops;
2333 	int ret;
2334 
2335 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2336 		return rdev->desc->fixed_uV;
2337 
2338 	if (ops->list_voltage) {
2339 		if (selector >= rdev->desc->n_voltages)
2340 			return -EINVAL;
2341 		mutex_lock(&rdev->mutex);
2342 		ret = ops->list_voltage(rdev, selector);
2343 		mutex_unlock(&rdev->mutex);
2344 	} else if (rdev->supply) {
2345 		ret = regulator_list_voltage(rdev->supply, selector);
2346 	} else {
2347 		return -EINVAL;
2348 	}
2349 
2350 	if (ret > 0) {
2351 		if (ret < rdev->constraints->min_uV)
2352 			ret = 0;
2353 		else if (ret > rdev->constraints->max_uV)
2354 			ret = 0;
2355 	}
2356 
2357 	return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2360 
2361 /**
2362  * regulator_get_regmap - get the regulator's register map
2363  * @regulator: regulator source
2364  *
2365  * Returns the register map for the given regulator, or an ERR_PTR value
2366  * if the regulator doesn't use regmap.
2367  */
2368 struct regmap *regulator_get_regmap(struct regulator *regulator)
2369 {
2370 	struct regmap *map = regulator->rdev->regmap;
2371 
2372 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2373 }
2374 
2375 /**
2376  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2377  * @regulator: regulator source
2378  * @vsel_reg: voltage selector register, output parameter
2379  * @vsel_mask: mask for voltage selector bitfield, output parameter
2380  *
2381  * Returns the hardware register offset and bitmask used for setting the
2382  * regulator voltage. This might be useful when configuring voltage-scaling
2383  * hardware or firmware that can make I2C requests behind the kernel's back,
2384  * for example.
2385  *
2386  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2387  * and 0 is returned, otherwise a negative errno is returned.
2388  */
2389 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2390 					 unsigned *vsel_reg,
2391 					 unsigned *vsel_mask)
2392 {
2393 	struct regulator_dev *rdev = regulator->rdev;
2394 	const struct regulator_ops *ops = rdev->desc->ops;
2395 
2396 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2397 		return -EOPNOTSUPP;
2398 
2399 	 *vsel_reg = rdev->desc->vsel_reg;
2400 	 *vsel_mask = rdev->desc->vsel_mask;
2401 
2402 	 return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2405 
2406 /**
2407  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2408  * @regulator: regulator source
2409  * @selector: identify voltage to list
2410  *
2411  * Converts the selector to a hardware-specific voltage selector that can be
2412  * directly written to the regulator registers. The address of the voltage
2413  * register can be determined by calling @regulator_get_hardware_vsel_register.
2414  *
2415  * On error a negative errno is returned.
2416  */
2417 int regulator_list_hardware_vsel(struct regulator *regulator,
2418 				 unsigned selector)
2419 {
2420 	struct regulator_dev *rdev = regulator->rdev;
2421 	const struct regulator_ops *ops = rdev->desc->ops;
2422 
2423 	if (selector >= rdev->desc->n_voltages)
2424 		return -EINVAL;
2425 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2426 		return -EOPNOTSUPP;
2427 
2428 	return selector;
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2431 
2432 /**
2433  * regulator_get_linear_step - return the voltage step size between VSEL values
2434  * @regulator: regulator source
2435  *
2436  * Returns the voltage step size between VSEL values for linear
2437  * regulators, or return 0 if the regulator isn't a linear regulator.
2438  */
2439 unsigned int regulator_get_linear_step(struct regulator *regulator)
2440 {
2441 	struct regulator_dev *rdev = regulator->rdev;
2442 
2443 	return rdev->desc->uV_step;
2444 }
2445 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2446 
2447 /**
2448  * regulator_is_supported_voltage - check if a voltage range can be supported
2449  *
2450  * @regulator: Regulator to check.
2451  * @min_uV: Minimum required voltage in uV.
2452  * @max_uV: Maximum required voltage in uV.
2453  *
2454  * Returns a boolean or a negative error code.
2455  */
2456 int regulator_is_supported_voltage(struct regulator *regulator,
2457 				   int min_uV, int max_uV)
2458 {
2459 	struct regulator_dev *rdev = regulator->rdev;
2460 	int i, voltages, ret;
2461 
2462 	/* If we can't change voltage check the current voltage */
2463 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2464 		ret = regulator_get_voltage(regulator);
2465 		if (ret >= 0)
2466 			return min_uV <= ret && ret <= max_uV;
2467 		else
2468 			return ret;
2469 	}
2470 
2471 	/* Any voltage within constrains range is fine? */
2472 	if (rdev->desc->continuous_voltage_range)
2473 		return min_uV >= rdev->constraints->min_uV &&
2474 				max_uV <= rdev->constraints->max_uV;
2475 
2476 	ret = regulator_count_voltages(regulator);
2477 	if (ret < 0)
2478 		return ret;
2479 	voltages = ret;
2480 
2481 	for (i = 0; i < voltages; i++) {
2482 		ret = regulator_list_voltage(regulator, i);
2483 
2484 		if (ret >= min_uV && ret <= max_uV)
2485 			return 1;
2486 	}
2487 
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2491 
2492 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2493 				       int min_uV, int max_uV,
2494 				       unsigned *selector)
2495 {
2496 	struct pre_voltage_change_data data;
2497 	int ret;
2498 
2499 	data.old_uV = _regulator_get_voltage(rdev);
2500 	data.min_uV = min_uV;
2501 	data.max_uV = max_uV;
2502 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2503 				   &data);
2504 	if (ret & NOTIFY_STOP_MASK)
2505 		return -EINVAL;
2506 
2507 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2508 	if (ret >= 0)
2509 		return ret;
2510 
2511 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2512 			     (void *)data.old_uV);
2513 
2514 	return ret;
2515 }
2516 
2517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2518 					   int uV, unsigned selector)
2519 {
2520 	struct pre_voltage_change_data data;
2521 	int ret;
2522 
2523 	data.old_uV = _regulator_get_voltage(rdev);
2524 	data.min_uV = uV;
2525 	data.max_uV = uV;
2526 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2527 				   &data);
2528 	if (ret & NOTIFY_STOP_MASK)
2529 		return -EINVAL;
2530 
2531 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2532 	if (ret >= 0)
2533 		return ret;
2534 
2535 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2536 			     (void *)data.old_uV);
2537 
2538 	return ret;
2539 }
2540 
2541 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2542 				     int min_uV, int max_uV)
2543 {
2544 	int ret;
2545 	int delay = 0;
2546 	int best_val = 0;
2547 	unsigned int selector;
2548 	int old_selector = -1;
2549 
2550 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2551 
2552 	min_uV += rdev->constraints->uV_offset;
2553 	max_uV += rdev->constraints->uV_offset;
2554 
2555 	/*
2556 	 * If we can't obtain the old selector there is not enough
2557 	 * info to call set_voltage_time_sel().
2558 	 */
2559 	if (_regulator_is_enabled(rdev) &&
2560 	    rdev->desc->ops->set_voltage_time_sel &&
2561 	    rdev->desc->ops->get_voltage_sel) {
2562 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2563 		if (old_selector < 0)
2564 			return old_selector;
2565 	}
2566 
2567 	if (rdev->desc->ops->set_voltage) {
2568 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2569 						  &selector);
2570 
2571 		if (ret >= 0) {
2572 			if (rdev->desc->ops->list_voltage)
2573 				best_val = rdev->desc->ops->list_voltage(rdev,
2574 									 selector);
2575 			else
2576 				best_val = _regulator_get_voltage(rdev);
2577 		}
2578 
2579 	} else if (rdev->desc->ops->set_voltage_sel) {
2580 		if (rdev->desc->ops->map_voltage) {
2581 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2582 							   max_uV);
2583 		} else {
2584 			if (rdev->desc->ops->list_voltage ==
2585 			    regulator_list_voltage_linear)
2586 				ret = regulator_map_voltage_linear(rdev,
2587 								min_uV, max_uV);
2588 			else if (rdev->desc->ops->list_voltage ==
2589 				 regulator_list_voltage_linear_range)
2590 				ret = regulator_map_voltage_linear_range(rdev,
2591 								min_uV, max_uV);
2592 			else
2593 				ret = regulator_map_voltage_iterate(rdev,
2594 								min_uV, max_uV);
2595 		}
2596 
2597 		if (ret >= 0) {
2598 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2599 			if (min_uV <= best_val && max_uV >= best_val) {
2600 				selector = ret;
2601 				if (old_selector == selector)
2602 					ret = 0;
2603 				else
2604 					ret = _regulator_call_set_voltage_sel(
2605 						rdev, best_val, selector);
2606 			} else {
2607 				ret = -EINVAL;
2608 			}
2609 		}
2610 	} else {
2611 		ret = -EINVAL;
2612 	}
2613 
2614 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2615 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2616 		&& old_selector != selector) {
2617 
2618 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2619 						old_selector, selector);
2620 		if (delay < 0) {
2621 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2622 				  delay);
2623 			delay = 0;
2624 		}
2625 
2626 		/* Insert any necessary delays */
2627 		if (delay >= 1000) {
2628 			mdelay(delay / 1000);
2629 			udelay(delay % 1000);
2630 		} else if (delay) {
2631 			udelay(delay);
2632 		}
2633 	}
2634 
2635 	if (ret == 0 && best_val >= 0) {
2636 		unsigned long data = best_val;
2637 
2638 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2639 				     (void *)data);
2640 	}
2641 
2642 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2643 
2644 	return ret;
2645 }
2646 
2647 /**
2648  * regulator_set_voltage - set regulator output voltage
2649  * @regulator: regulator source
2650  * @min_uV: Minimum required voltage in uV
2651  * @max_uV: Maximum acceptable voltage in uV
2652  *
2653  * Sets a voltage regulator to the desired output voltage. This can be set
2654  * during any regulator state. IOW, regulator can be disabled or enabled.
2655  *
2656  * If the regulator is enabled then the voltage will change to the new value
2657  * immediately otherwise if the regulator is disabled the regulator will
2658  * output at the new voltage when enabled.
2659  *
2660  * NOTE: If the regulator is shared between several devices then the lowest
2661  * request voltage that meets the system constraints will be used.
2662  * Regulator system constraints must be set for this regulator before
2663  * calling this function otherwise this call will fail.
2664  */
2665 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2666 {
2667 	struct regulator_dev *rdev = regulator->rdev;
2668 	int ret = 0;
2669 	int old_min_uV, old_max_uV;
2670 	int current_uV;
2671 
2672 	mutex_lock(&rdev->mutex);
2673 
2674 	/* If we're setting the same range as last time the change
2675 	 * should be a noop (some cpufreq implementations use the same
2676 	 * voltage for multiple frequencies, for example).
2677 	 */
2678 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2679 		goto out;
2680 
2681 	/* If we're trying to set a range that overlaps the current voltage,
2682 	 * return succesfully even though the regulator does not support
2683 	 * changing the voltage.
2684 	 */
2685 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2686 		current_uV = _regulator_get_voltage(rdev);
2687 		if (min_uV <= current_uV && current_uV <= max_uV) {
2688 			regulator->min_uV = min_uV;
2689 			regulator->max_uV = max_uV;
2690 			goto out;
2691 		}
2692 	}
2693 
2694 	/* sanity check */
2695 	if (!rdev->desc->ops->set_voltage &&
2696 	    !rdev->desc->ops->set_voltage_sel) {
2697 		ret = -EINVAL;
2698 		goto out;
2699 	}
2700 
2701 	/* constraints check */
2702 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2703 	if (ret < 0)
2704 		goto out;
2705 
2706 	/* restore original values in case of error */
2707 	old_min_uV = regulator->min_uV;
2708 	old_max_uV = regulator->max_uV;
2709 	regulator->min_uV = min_uV;
2710 	regulator->max_uV = max_uV;
2711 
2712 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2713 	if (ret < 0)
2714 		goto out2;
2715 
2716 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2717 	if (ret < 0)
2718 		goto out2;
2719 
2720 out:
2721 	mutex_unlock(&rdev->mutex);
2722 	return ret;
2723 out2:
2724 	regulator->min_uV = old_min_uV;
2725 	regulator->max_uV = old_max_uV;
2726 	mutex_unlock(&rdev->mutex);
2727 	return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2730 
2731 /**
2732  * regulator_set_voltage_time - get raise/fall time
2733  * @regulator: regulator source
2734  * @old_uV: starting voltage in microvolts
2735  * @new_uV: target voltage in microvolts
2736  *
2737  * Provided with the starting and ending voltage, this function attempts to
2738  * calculate the time in microseconds required to rise or fall to this new
2739  * voltage.
2740  */
2741 int regulator_set_voltage_time(struct regulator *regulator,
2742 			       int old_uV, int new_uV)
2743 {
2744 	struct regulator_dev *rdev = regulator->rdev;
2745 	const struct regulator_ops *ops = rdev->desc->ops;
2746 	int old_sel = -1;
2747 	int new_sel = -1;
2748 	int voltage;
2749 	int i;
2750 
2751 	/* Currently requires operations to do this */
2752 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2753 	    || !rdev->desc->n_voltages)
2754 		return -EINVAL;
2755 
2756 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2757 		/* We only look for exact voltage matches here */
2758 		voltage = regulator_list_voltage(regulator, i);
2759 		if (voltage < 0)
2760 			return -EINVAL;
2761 		if (voltage == 0)
2762 			continue;
2763 		if (voltage == old_uV)
2764 			old_sel = i;
2765 		if (voltage == new_uV)
2766 			new_sel = i;
2767 	}
2768 
2769 	if (old_sel < 0 || new_sel < 0)
2770 		return -EINVAL;
2771 
2772 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2773 }
2774 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2775 
2776 /**
2777  * regulator_set_voltage_time_sel - get raise/fall time
2778  * @rdev: regulator source device
2779  * @old_selector: selector for starting voltage
2780  * @new_selector: selector for target voltage
2781  *
2782  * Provided with the starting and target voltage selectors, this function
2783  * returns time in microseconds required to rise or fall to this new voltage
2784  *
2785  * Drivers providing ramp_delay in regulation_constraints can use this as their
2786  * set_voltage_time_sel() operation.
2787  */
2788 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2789 				   unsigned int old_selector,
2790 				   unsigned int new_selector)
2791 {
2792 	unsigned int ramp_delay = 0;
2793 	int old_volt, new_volt;
2794 
2795 	if (rdev->constraints->ramp_delay)
2796 		ramp_delay = rdev->constraints->ramp_delay;
2797 	else if (rdev->desc->ramp_delay)
2798 		ramp_delay = rdev->desc->ramp_delay;
2799 
2800 	if (ramp_delay == 0) {
2801 		rdev_warn(rdev, "ramp_delay not set\n");
2802 		return 0;
2803 	}
2804 
2805 	/* sanity check */
2806 	if (!rdev->desc->ops->list_voltage)
2807 		return -EINVAL;
2808 
2809 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2810 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2811 
2812 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2815 
2816 /**
2817  * regulator_sync_voltage - re-apply last regulator output voltage
2818  * @regulator: regulator source
2819  *
2820  * Re-apply the last configured voltage.  This is intended to be used
2821  * where some external control source the consumer is cooperating with
2822  * has caused the configured voltage to change.
2823  */
2824 int regulator_sync_voltage(struct regulator *regulator)
2825 {
2826 	struct regulator_dev *rdev = regulator->rdev;
2827 	int ret, min_uV, max_uV;
2828 
2829 	mutex_lock(&rdev->mutex);
2830 
2831 	if (!rdev->desc->ops->set_voltage &&
2832 	    !rdev->desc->ops->set_voltage_sel) {
2833 		ret = -EINVAL;
2834 		goto out;
2835 	}
2836 
2837 	/* This is only going to work if we've had a voltage configured. */
2838 	if (!regulator->min_uV && !regulator->max_uV) {
2839 		ret = -EINVAL;
2840 		goto out;
2841 	}
2842 
2843 	min_uV = regulator->min_uV;
2844 	max_uV = regulator->max_uV;
2845 
2846 	/* This should be a paranoia check... */
2847 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2848 	if (ret < 0)
2849 		goto out;
2850 
2851 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2852 	if (ret < 0)
2853 		goto out;
2854 
2855 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2856 
2857 out:
2858 	mutex_unlock(&rdev->mutex);
2859 	return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2862 
2863 static int _regulator_get_voltage(struct regulator_dev *rdev)
2864 {
2865 	int sel, ret;
2866 
2867 	if (rdev->desc->ops->get_voltage_sel) {
2868 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2869 		if (sel < 0)
2870 			return sel;
2871 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2872 	} else if (rdev->desc->ops->get_voltage) {
2873 		ret = rdev->desc->ops->get_voltage(rdev);
2874 	} else if (rdev->desc->ops->list_voltage) {
2875 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2876 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2877 		ret = rdev->desc->fixed_uV;
2878 	} else if (rdev->supply) {
2879 		ret = regulator_get_voltage(rdev->supply);
2880 	} else {
2881 		return -EINVAL;
2882 	}
2883 
2884 	if (ret < 0)
2885 		return ret;
2886 	return ret - rdev->constraints->uV_offset;
2887 }
2888 
2889 /**
2890  * regulator_get_voltage - get regulator output voltage
2891  * @regulator: regulator source
2892  *
2893  * This returns the current regulator voltage in uV.
2894  *
2895  * NOTE: If the regulator is disabled it will return the voltage value. This
2896  * function should not be used to determine regulator state.
2897  */
2898 int regulator_get_voltage(struct regulator *regulator)
2899 {
2900 	int ret;
2901 
2902 	mutex_lock(&regulator->rdev->mutex);
2903 
2904 	ret = _regulator_get_voltage(regulator->rdev);
2905 
2906 	mutex_unlock(&regulator->rdev->mutex);
2907 
2908 	return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2911 
2912 /**
2913  * regulator_set_current_limit - set regulator output current limit
2914  * @regulator: regulator source
2915  * @min_uA: Minimum supported current in uA
2916  * @max_uA: Maximum supported current in uA
2917  *
2918  * Sets current sink to the desired output current. This can be set during
2919  * any regulator state. IOW, regulator can be disabled or enabled.
2920  *
2921  * If the regulator is enabled then the current will change to the new value
2922  * immediately otherwise if the regulator is disabled the regulator will
2923  * output at the new current when enabled.
2924  *
2925  * NOTE: Regulator system constraints must be set for this regulator before
2926  * calling this function otherwise this call will fail.
2927  */
2928 int regulator_set_current_limit(struct regulator *regulator,
2929 			       int min_uA, int max_uA)
2930 {
2931 	struct regulator_dev *rdev = regulator->rdev;
2932 	int ret;
2933 
2934 	mutex_lock(&rdev->mutex);
2935 
2936 	/* sanity check */
2937 	if (!rdev->desc->ops->set_current_limit) {
2938 		ret = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	/* constraints check */
2943 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2944 	if (ret < 0)
2945 		goto out;
2946 
2947 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2948 out:
2949 	mutex_unlock(&rdev->mutex);
2950 	return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2953 
2954 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2955 {
2956 	int ret;
2957 
2958 	mutex_lock(&rdev->mutex);
2959 
2960 	/* sanity check */
2961 	if (!rdev->desc->ops->get_current_limit) {
2962 		ret = -EINVAL;
2963 		goto out;
2964 	}
2965 
2966 	ret = rdev->desc->ops->get_current_limit(rdev);
2967 out:
2968 	mutex_unlock(&rdev->mutex);
2969 	return ret;
2970 }
2971 
2972 /**
2973  * regulator_get_current_limit - get regulator output current
2974  * @regulator: regulator source
2975  *
2976  * This returns the current supplied by the specified current sink in uA.
2977  *
2978  * NOTE: If the regulator is disabled it will return the current value. This
2979  * function should not be used to determine regulator state.
2980  */
2981 int regulator_get_current_limit(struct regulator *regulator)
2982 {
2983 	return _regulator_get_current_limit(regulator->rdev);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2986 
2987 /**
2988  * regulator_set_mode - set regulator operating mode
2989  * @regulator: regulator source
2990  * @mode: operating mode - one of the REGULATOR_MODE constants
2991  *
2992  * Set regulator operating mode to increase regulator efficiency or improve
2993  * regulation performance.
2994  *
2995  * NOTE: Regulator system constraints must be set for this regulator before
2996  * calling this function otherwise this call will fail.
2997  */
2998 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2999 {
3000 	struct regulator_dev *rdev = regulator->rdev;
3001 	int ret;
3002 	int regulator_curr_mode;
3003 
3004 	mutex_lock(&rdev->mutex);
3005 
3006 	/* sanity check */
3007 	if (!rdev->desc->ops->set_mode) {
3008 		ret = -EINVAL;
3009 		goto out;
3010 	}
3011 
3012 	/* return if the same mode is requested */
3013 	if (rdev->desc->ops->get_mode) {
3014 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3015 		if (regulator_curr_mode == mode) {
3016 			ret = 0;
3017 			goto out;
3018 		}
3019 	}
3020 
3021 	/* constraints check */
3022 	ret = regulator_mode_constrain(rdev, &mode);
3023 	if (ret < 0)
3024 		goto out;
3025 
3026 	ret = rdev->desc->ops->set_mode(rdev, mode);
3027 out:
3028 	mutex_unlock(&rdev->mutex);
3029 	return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(regulator_set_mode);
3032 
3033 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3034 {
3035 	int ret;
3036 
3037 	mutex_lock(&rdev->mutex);
3038 
3039 	/* sanity check */
3040 	if (!rdev->desc->ops->get_mode) {
3041 		ret = -EINVAL;
3042 		goto out;
3043 	}
3044 
3045 	ret = rdev->desc->ops->get_mode(rdev);
3046 out:
3047 	mutex_unlock(&rdev->mutex);
3048 	return ret;
3049 }
3050 
3051 /**
3052  * regulator_get_mode - get regulator operating mode
3053  * @regulator: regulator source
3054  *
3055  * Get the current regulator operating mode.
3056  */
3057 unsigned int regulator_get_mode(struct regulator *regulator)
3058 {
3059 	return _regulator_get_mode(regulator->rdev);
3060 }
3061 EXPORT_SYMBOL_GPL(regulator_get_mode);
3062 
3063 /**
3064  * regulator_set_load - set regulator load
3065  * @regulator: regulator source
3066  * @uA_load: load current
3067  *
3068  * Notifies the regulator core of a new device load. This is then used by
3069  * DRMS (if enabled by constraints) to set the most efficient regulator
3070  * operating mode for the new regulator loading.
3071  *
3072  * Consumer devices notify their supply regulator of the maximum power
3073  * they will require (can be taken from device datasheet in the power
3074  * consumption tables) when they change operational status and hence power
3075  * state. Examples of operational state changes that can affect power
3076  * consumption are :-
3077  *
3078  *    o Device is opened / closed.
3079  *    o Device I/O is about to begin or has just finished.
3080  *    o Device is idling in between work.
3081  *
3082  * This information is also exported via sysfs to userspace.
3083  *
3084  * DRMS will sum the total requested load on the regulator and change
3085  * to the most efficient operating mode if platform constraints allow.
3086  *
3087  * On error a negative errno is returned.
3088  */
3089 int regulator_set_load(struct regulator *regulator, int uA_load)
3090 {
3091 	struct regulator_dev *rdev = regulator->rdev;
3092 	int ret;
3093 
3094 	mutex_lock(&rdev->mutex);
3095 	regulator->uA_load = uA_load;
3096 	ret = drms_uA_update(rdev);
3097 	mutex_unlock(&rdev->mutex);
3098 
3099 	return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_set_load);
3102 
3103 /**
3104  * regulator_allow_bypass - allow the regulator to go into bypass mode
3105  *
3106  * @regulator: Regulator to configure
3107  * @enable: enable or disable bypass mode
3108  *
3109  * Allow the regulator to go into bypass mode if all other consumers
3110  * for the regulator also enable bypass mode and the machine
3111  * constraints allow this.  Bypass mode means that the regulator is
3112  * simply passing the input directly to the output with no regulation.
3113  */
3114 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3115 {
3116 	struct regulator_dev *rdev = regulator->rdev;
3117 	int ret = 0;
3118 
3119 	if (!rdev->desc->ops->set_bypass)
3120 		return 0;
3121 
3122 	if (rdev->constraints &&
3123 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3124 		return 0;
3125 
3126 	mutex_lock(&rdev->mutex);
3127 
3128 	if (enable && !regulator->bypass) {
3129 		rdev->bypass_count++;
3130 
3131 		if (rdev->bypass_count == rdev->open_count) {
3132 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3133 			if (ret != 0)
3134 				rdev->bypass_count--;
3135 		}
3136 
3137 	} else if (!enable && regulator->bypass) {
3138 		rdev->bypass_count--;
3139 
3140 		if (rdev->bypass_count != rdev->open_count) {
3141 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3142 			if (ret != 0)
3143 				rdev->bypass_count++;
3144 		}
3145 	}
3146 
3147 	if (ret == 0)
3148 		regulator->bypass = enable;
3149 
3150 	mutex_unlock(&rdev->mutex);
3151 
3152 	return ret;
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3155 
3156 /**
3157  * regulator_register_notifier - register regulator event notifier
3158  * @regulator: regulator source
3159  * @nb: notifier block
3160  *
3161  * Register notifier block to receive regulator events.
3162  */
3163 int regulator_register_notifier(struct regulator *regulator,
3164 			      struct notifier_block *nb)
3165 {
3166 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3167 						nb);
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3170 
3171 /**
3172  * regulator_unregister_notifier - unregister regulator event notifier
3173  * @regulator: regulator source
3174  * @nb: notifier block
3175  *
3176  * Unregister regulator event notifier block.
3177  */
3178 int regulator_unregister_notifier(struct regulator *regulator,
3179 				struct notifier_block *nb)
3180 {
3181 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3182 						  nb);
3183 }
3184 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3185 
3186 /* notify regulator consumers and downstream regulator consumers.
3187  * Note mutex must be held by caller.
3188  */
3189 static int _notifier_call_chain(struct regulator_dev *rdev,
3190 				  unsigned long event, void *data)
3191 {
3192 	/* call rdev chain first */
3193 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3194 }
3195 
3196 /**
3197  * regulator_bulk_get - get multiple regulator consumers
3198  *
3199  * @dev:           Device to supply
3200  * @num_consumers: Number of consumers to register
3201  * @consumers:     Configuration of consumers; clients are stored here.
3202  *
3203  * @return 0 on success, an errno on failure.
3204  *
3205  * This helper function allows drivers to get several regulator
3206  * consumers in one operation.  If any of the regulators cannot be
3207  * acquired then any regulators that were allocated will be freed
3208  * before returning to the caller.
3209  */
3210 int regulator_bulk_get(struct device *dev, int num_consumers,
3211 		       struct regulator_bulk_data *consumers)
3212 {
3213 	int i;
3214 	int ret;
3215 
3216 	for (i = 0; i < num_consumers; i++)
3217 		consumers[i].consumer = NULL;
3218 
3219 	for (i = 0; i < num_consumers; i++) {
3220 		consumers[i].consumer = regulator_get(dev,
3221 						      consumers[i].supply);
3222 		if (IS_ERR(consumers[i].consumer)) {
3223 			ret = PTR_ERR(consumers[i].consumer);
3224 			dev_err(dev, "Failed to get supply '%s': %d\n",
3225 				consumers[i].supply, ret);
3226 			consumers[i].consumer = NULL;
3227 			goto err;
3228 		}
3229 	}
3230 
3231 	return 0;
3232 
3233 err:
3234 	while (--i >= 0)
3235 		regulator_put(consumers[i].consumer);
3236 
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3240 
3241 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3242 {
3243 	struct regulator_bulk_data *bulk = data;
3244 
3245 	bulk->ret = regulator_enable(bulk->consumer);
3246 }
3247 
3248 /**
3249  * regulator_bulk_enable - enable multiple regulator consumers
3250  *
3251  * @num_consumers: Number of consumers
3252  * @consumers:     Consumer data; clients are stored here.
3253  * @return         0 on success, an errno on failure
3254  *
3255  * This convenience API allows consumers to enable multiple regulator
3256  * clients in a single API call.  If any consumers cannot be enabled
3257  * then any others that were enabled will be disabled again prior to
3258  * return.
3259  */
3260 int regulator_bulk_enable(int num_consumers,
3261 			  struct regulator_bulk_data *consumers)
3262 {
3263 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3264 	int i;
3265 	int ret = 0;
3266 
3267 	for (i = 0; i < num_consumers; i++) {
3268 		if (consumers[i].consumer->always_on)
3269 			consumers[i].ret = 0;
3270 		else
3271 			async_schedule_domain(regulator_bulk_enable_async,
3272 					      &consumers[i], &async_domain);
3273 	}
3274 
3275 	async_synchronize_full_domain(&async_domain);
3276 
3277 	/* If any consumer failed we need to unwind any that succeeded */
3278 	for (i = 0; i < num_consumers; i++) {
3279 		if (consumers[i].ret != 0) {
3280 			ret = consumers[i].ret;
3281 			goto err;
3282 		}
3283 	}
3284 
3285 	return 0;
3286 
3287 err:
3288 	for (i = 0; i < num_consumers; i++) {
3289 		if (consumers[i].ret < 0)
3290 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3291 			       consumers[i].ret);
3292 		else
3293 			regulator_disable(consumers[i].consumer);
3294 	}
3295 
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3299 
3300 /**
3301  * regulator_bulk_disable - disable multiple regulator consumers
3302  *
3303  * @num_consumers: Number of consumers
3304  * @consumers:     Consumer data; clients are stored here.
3305  * @return         0 on success, an errno on failure
3306  *
3307  * This convenience API allows consumers to disable multiple regulator
3308  * clients in a single API call.  If any consumers cannot be disabled
3309  * then any others that were disabled will be enabled again prior to
3310  * return.
3311  */
3312 int regulator_bulk_disable(int num_consumers,
3313 			   struct regulator_bulk_data *consumers)
3314 {
3315 	int i;
3316 	int ret, r;
3317 
3318 	for (i = num_consumers - 1; i >= 0; --i) {
3319 		ret = regulator_disable(consumers[i].consumer);
3320 		if (ret != 0)
3321 			goto err;
3322 	}
3323 
3324 	return 0;
3325 
3326 err:
3327 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3328 	for (++i; i < num_consumers; ++i) {
3329 		r = regulator_enable(consumers[i].consumer);
3330 		if (r != 0)
3331 			pr_err("Failed to reename %s: %d\n",
3332 			       consumers[i].supply, r);
3333 	}
3334 
3335 	return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3338 
3339 /**
3340  * regulator_bulk_force_disable - force disable multiple regulator consumers
3341  *
3342  * @num_consumers: Number of consumers
3343  * @consumers:     Consumer data; clients are stored here.
3344  * @return         0 on success, an errno on failure
3345  *
3346  * This convenience API allows consumers to forcibly disable multiple regulator
3347  * clients in a single API call.
3348  * NOTE: This should be used for situations when device damage will
3349  * likely occur if the regulators are not disabled (e.g. over temp).
3350  * Although regulator_force_disable function call for some consumers can
3351  * return error numbers, the function is called for all consumers.
3352  */
3353 int regulator_bulk_force_disable(int num_consumers,
3354 			   struct regulator_bulk_data *consumers)
3355 {
3356 	int i;
3357 	int ret;
3358 
3359 	for (i = 0; i < num_consumers; i++)
3360 		consumers[i].ret =
3361 			    regulator_force_disable(consumers[i].consumer);
3362 
3363 	for (i = 0; i < num_consumers; i++) {
3364 		if (consumers[i].ret != 0) {
3365 			ret = consumers[i].ret;
3366 			goto out;
3367 		}
3368 	}
3369 
3370 	return 0;
3371 out:
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3375 
3376 /**
3377  * regulator_bulk_free - free multiple regulator consumers
3378  *
3379  * @num_consumers: Number of consumers
3380  * @consumers:     Consumer data; clients are stored here.
3381  *
3382  * This convenience API allows consumers to free multiple regulator
3383  * clients in a single API call.
3384  */
3385 void regulator_bulk_free(int num_consumers,
3386 			 struct regulator_bulk_data *consumers)
3387 {
3388 	int i;
3389 
3390 	for (i = 0; i < num_consumers; i++) {
3391 		regulator_put(consumers[i].consumer);
3392 		consumers[i].consumer = NULL;
3393 	}
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3396 
3397 /**
3398  * regulator_notifier_call_chain - call regulator event notifier
3399  * @rdev: regulator source
3400  * @event: notifier block
3401  * @data: callback-specific data.
3402  *
3403  * Called by regulator drivers to notify clients a regulator event has
3404  * occurred. We also notify regulator clients downstream.
3405  * Note lock must be held by caller.
3406  */
3407 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3408 				  unsigned long event, void *data)
3409 {
3410 	_notifier_call_chain(rdev, event, data);
3411 	return NOTIFY_DONE;
3412 
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3415 
3416 /**
3417  * regulator_mode_to_status - convert a regulator mode into a status
3418  *
3419  * @mode: Mode to convert
3420  *
3421  * Convert a regulator mode into a status.
3422  */
3423 int regulator_mode_to_status(unsigned int mode)
3424 {
3425 	switch (mode) {
3426 	case REGULATOR_MODE_FAST:
3427 		return REGULATOR_STATUS_FAST;
3428 	case REGULATOR_MODE_NORMAL:
3429 		return REGULATOR_STATUS_NORMAL;
3430 	case REGULATOR_MODE_IDLE:
3431 		return REGULATOR_STATUS_IDLE;
3432 	case REGULATOR_MODE_STANDBY:
3433 		return REGULATOR_STATUS_STANDBY;
3434 	default:
3435 		return REGULATOR_STATUS_UNDEFINED;
3436 	}
3437 }
3438 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3439 
3440 static struct attribute *regulator_dev_attrs[] = {
3441 	&dev_attr_name.attr,
3442 	&dev_attr_num_users.attr,
3443 	&dev_attr_type.attr,
3444 	&dev_attr_microvolts.attr,
3445 	&dev_attr_microamps.attr,
3446 	&dev_attr_opmode.attr,
3447 	&dev_attr_state.attr,
3448 	&dev_attr_status.attr,
3449 	&dev_attr_bypass.attr,
3450 	&dev_attr_requested_microamps.attr,
3451 	&dev_attr_min_microvolts.attr,
3452 	&dev_attr_max_microvolts.attr,
3453 	&dev_attr_min_microamps.attr,
3454 	&dev_attr_max_microamps.attr,
3455 	&dev_attr_suspend_standby_state.attr,
3456 	&dev_attr_suspend_mem_state.attr,
3457 	&dev_attr_suspend_disk_state.attr,
3458 	&dev_attr_suspend_standby_microvolts.attr,
3459 	&dev_attr_suspend_mem_microvolts.attr,
3460 	&dev_attr_suspend_disk_microvolts.attr,
3461 	&dev_attr_suspend_standby_mode.attr,
3462 	&dev_attr_suspend_mem_mode.attr,
3463 	&dev_attr_suspend_disk_mode.attr,
3464 	NULL
3465 };
3466 
3467 /*
3468  * To avoid cluttering sysfs (and memory) with useless state, only
3469  * create attributes that can be meaningfully displayed.
3470  */
3471 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3472 					 struct attribute *attr, int idx)
3473 {
3474 	struct device *dev = kobj_to_dev(kobj);
3475 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3476 	const struct regulator_ops *ops = rdev->desc->ops;
3477 	umode_t mode = attr->mode;
3478 
3479 	/* these three are always present */
3480 	if (attr == &dev_attr_name.attr ||
3481 	    attr == &dev_attr_num_users.attr ||
3482 	    attr == &dev_attr_type.attr)
3483 		return mode;
3484 
3485 	/* some attributes need specific methods to be displayed */
3486 	if (attr == &dev_attr_microvolts.attr) {
3487 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3488 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3489 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3490 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3491 			return mode;
3492 		return 0;
3493 	}
3494 
3495 	if (attr == &dev_attr_microamps.attr)
3496 		return ops->get_current_limit ? mode : 0;
3497 
3498 	if (attr == &dev_attr_opmode.attr)
3499 		return ops->get_mode ? mode : 0;
3500 
3501 	if (attr == &dev_attr_state.attr)
3502 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3503 
3504 	if (attr == &dev_attr_status.attr)
3505 		return ops->get_status ? mode : 0;
3506 
3507 	if (attr == &dev_attr_bypass.attr)
3508 		return ops->get_bypass ? mode : 0;
3509 
3510 	/* some attributes are type-specific */
3511 	if (attr == &dev_attr_requested_microamps.attr)
3512 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3513 
3514 	/* constraints need specific supporting methods */
3515 	if (attr == &dev_attr_min_microvolts.attr ||
3516 	    attr == &dev_attr_max_microvolts.attr)
3517 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3518 
3519 	if (attr == &dev_attr_min_microamps.attr ||
3520 	    attr == &dev_attr_max_microamps.attr)
3521 		return ops->set_current_limit ? mode : 0;
3522 
3523 	if (attr == &dev_attr_suspend_standby_state.attr ||
3524 	    attr == &dev_attr_suspend_mem_state.attr ||
3525 	    attr == &dev_attr_suspend_disk_state.attr)
3526 		return mode;
3527 
3528 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3529 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3530 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3531 		return ops->set_suspend_voltage ? mode : 0;
3532 
3533 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3534 	    attr == &dev_attr_suspend_mem_mode.attr ||
3535 	    attr == &dev_attr_suspend_disk_mode.attr)
3536 		return ops->set_suspend_mode ? mode : 0;
3537 
3538 	return mode;
3539 }
3540 
3541 static const struct attribute_group regulator_dev_group = {
3542 	.attrs = regulator_dev_attrs,
3543 	.is_visible = regulator_attr_is_visible,
3544 };
3545 
3546 static const struct attribute_group *regulator_dev_groups[] = {
3547 	&regulator_dev_group,
3548 	NULL
3549 };
3550 
3551 static void regulator_dev_release(struct device *dev)
3552 {
3553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3554 	kfree(rdev);
3555 }
3556 
3557 static struct class regulator_class = {
3558 	.name = "regulator",
3559 	.dev_release = regulator_dev_release,
3560 	.dev_groups = regulator_dev_groups,
3561 };
3562 
3563 static void rdev_init_debugfs(struct regulator_dev *rdev)
3564 {
3565 	struct device *parent = rdev->dev.parent;
3566 	const char *rname = rdev_get_name(rdev);
3567 	char name[NAME_MAX];
3568 
3569 	/* Avoid duplicate debugfs directory names */
3570 	if (parent && rname == rdev->desc->name) {
3571 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3572 			 rname);
3573 		rname = name;
3574 	}
3575 
3576 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3577 	if (!rdev->debugfs) {
3578 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3579 		return;
3580 	}
3581 
3582 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3583 			   &rdev->use_count);
3584 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3585 			   &rdev->open_count);
3586 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3587 			   &rdev->bypass_count);
3588 }
3589 
3590 /**
3591  * regulator_register - register regulator
3592  * @regulator_desc: regulator to register
3593  * @cfg: runtime configuration for regulator
3594  *
3595  * Called by regulator drivers to register a regulator.
3596  * Returns a valid pointer to struct regulator_dev on success
3597  * or an ERR_PTR() on error.
3598  */
3599 struct regulator_dev *
3600 regulator_register(const struct regulator_desc *regulator_desc,
3601 		   const struct regulator_config *cfg)
3602 {
3603 	const struct regulation_constraints *constraints = NULL;
3604 	const struct regulator_init_data *init_data;
3605 	struct regulator_config *config = NULL;
3606 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3607 	struct regulator_dev *rdev;
3608 	struct device *dev;
3609 	int ret, i;
3610 
3611 	if (regulator_desc == NULL || cfg == NULL)
3612 		return ERR_PTR(-EINVAL);
3613 
3614 	dev = cfg->dev;
3615 	WARN_ON(!dev);
3616 
3617 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3618 		return ERR_PTR(-EINVAL);
3619 
3620 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3621 	    regulator_desc->type != REGULATOR_CURRENT)
3622 		return ERR_PTR(-EINVAL);
3623 
3624 	/* Only one of each should be implemented */
3625 	WARN_ON(regulator_desc->ops->get_voltage &&
3626 		regulator_desc->ops->get_voltage_sel);
3627 	WARN_ON(regulator_desc->ops->set_voltage &&
3628 		regulator_desc->ops->set_voltage_sel);
3629 
3630 	/* If we're using selectors we must implement list_voltage. */
3631 	if (regulator_desc->ops->get_voltage_sel &&
3632 	    !regulator_desc->ops->list_voltage) {
3633 		return ERR_PTR(-EINVAL);
3634 	}
3635 	if (regulator_desc->ops->set_voltage_sel &&
3636 	    !regulator_desc->ops->list_voltage) {
3637 		return ERR_PTR(-EINVAL);
3638 	}
3639 
3640 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3641 	if (rdev == NULL)
3642 		return ERR_PTR(-ENOMEM);
3643 
3644 	/*
3645 	 * Duplicate the config so the driver could override it after
3646 	 * parsing init data.
3647 	 */
3648 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3649 	if (config == NULL) {
3650 		kfree(rdev);
3651 		return ERR_PTR(-ENOMEM);
3652 	}
3653 
3654 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3655 					       &rdev->dev.of_node);
3656 	if (!init_data) {
3657 		init_data = config->init_data;
3658 		rdev->dev.of_node = of_node_get(config->of_node);
3659 	}
3660 
3661 	mutex_lock(&regulator_list_mutex);
3662 
3663 	mutex_init(&rdev->mutex);
3664 	rdev->reg_data = config->driver_data;
3665 	rdev->owner = regulator_desc->owner;
3666 	rdev->desc = regulator_desc;
3667 	if (config->regmap)
3668 		rdev->regmap = config->regmap;
3669 	else if (dev_get_regmap(dev, NULL))
3670 		rdev->regmap = dev_get_regmap(dev, NULL);
3671 	else if (dev->parent)
3672 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3673 	INIT_LIST_HEAD(&rdev->consumer_list);
3674 	INIT_LIST_HEAD(&rdev->list);
3675 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3676 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3677 
3678 	/* preform any regulator specific init */
3679 	if (init_data && init_data->regulator_init) {
3680 		ret = init_data->regulator_init(rdev->reg_data);
3681 		if (ret < 0)
3682 			goto clean;
3683 	}
3684 
3685 	/* register with sysfs */
3686 	rdev->dev.class = &regulator_class;
3687 	rdev->dev.parent = dev;
3688 	dev_set_name(&rdev->dev, "regulator.%lu",
3689 		    (unsigned long) atomic_inc_return(&regulator_no));
3690 	ret = device_register(&rdev->dev);
3691 	if (ret != 0) {
3692 		put_device(&rdev->dev);
3693 		goto clean;
3694 	}
3695 
3696 	dev_set_drvdata(&rdev->dev, rdev);
3697 
3698 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3699 	    gpio_is_valid(config->ena_gpio)) {
3700 		ret = regulator_ena_gpio_request(rdev, config);
3701 		if (ret != 0) {
3702 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3703 				 config->ena_gpio, ret);
3704 			goto wash;
3705 		}
3706 	}
3707 
3708 	/* set regulator constraints */
3709 	if (init_data)
3710 		constraints = &init_data->constraints;
3711 
3712 	ret = set_machine_constraints(rdev, constraints);
3713 	if (ret < 0)
3714 		goto scrub;
3715 
3716 	if (init_data && init_data->supply_regulator)
3717 		rdev->supply_name = init_data->supply_regulator;
3718 	else if (regulator_desc->supply_name)
3719 		rdev->supply_name = regulator_desc->supply_name;
3720 
3721 	/* add consumers devices */
3722 	if (init_data) {
3723 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3724 			ret = set_consumer_device_supply(rdev,
3725 				init_data->consumer_supplies[i].dev_name,
3726 				init_data->consumer_supplies[i].supply);
3727 			if (ret < 0) {
3728 				dev_err(dev, "Failed to set supply %s\n",
3729 					init_data->consumer_supplies[i].supply);
3730 				goto unset_supplies;
3731 			}
3732 		}
3733 	}
3734 
3735 	list_add(&rdev->list, &regulator_list);
3736 
3737 	rdev_init_debugfs(rdev);
3738 out:
3739 	mutex_unlock(&regulator_list_mutex);
3740 	kfree(config);
3741 	return rdev;
3742 
3743 unset_supplies:
3744 	unset_regulator_supplies(rdev);
3745 
3746 scrub:
3747 	regulator_ena_gpio_free(rdev);
3748 	kfree(rdev->constraints);
3749 wash:
3750 	device_unregister(&rdev->dev);
3751 	/* device core frees rdev */
3752 	rdev = ERR_PTR(ret);
3753 	goto out;
3754 
3755 clean:
3756 	kfree(rdev);
3757 	rdev = ERR_PTR(ret);
3758 	goto out;
3759 }
3760 EXPORT_SYMBOL_GPL(regulator_register);
3761 
3762 /**
3763  * regulator_unregister - unregister regulator
3764  * @rdev: regulator to unregister
3765  *
3766  * Called by regulator drivers to unregister a regulator.
3767  */
3768 void regulator_unregister(struct regulator_dev *rdev)
3769 {
3770 	if (rdev == NULL)
3771 		return;
3772 
3773 	if (rdev->supply) {
3774 		while (rdev->use_count--)
3775 			regulator_disable(rdev->supply);
3776 		regulator_put(rdev->supply);
3777 	}
3778 	mutex_lock(&regulator_list_mutex);
3779 	debugfs_remove_recursive(rdev->debugfs);
3780 	flush_work(&rdev->disable_work.work);
3781 	WARN_ON(rdev->open_count);
3782 	unset_regulator_supplies(rdev);
3783 	list_del(&rdev->list);
3784 	kfree(rdev->constraints);
3785 	regulator_ena_gpio_free(rdev);
3786 	of_node_put(rdev->dev.of_node);
3787 	device_unregister(&rdev->dev);
3788 	mutex_unlock(&regulator_list_mutex);
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_unregister);
3791 
3792 /**
3793  * regulator_suspend_prepare - prepare regulators for system wide suspend
3794  * @state: system suspend state
3795  *
3796  * Configure each regulator with it's suspend operating parameters for state.
3797  * This will usually be called by machine suspend code prior to supending.
3798  */
3799 int regulator_suspend_prepare(suspend_state_t state)
3800 {
3801 	struct regulator_dev *rdev;
3802 	int ret = 0;
3803 
3804 	/* ON is handled by regulator active state */
3805 	if (state == PM_SUSPEND_ON)
3806 		return -EINVAL;
3807 
3808 	mutex_lock(&regulator_list_mutex);
3809 	list_for_each_entry(rdev, &regulator_list, list) {
3810 
3811 		mutex_lock(&rdev->mutex);
3812 		ret = suspend_prepare(rdev, state);
3813 		mutex_unlock(&rdev->mutex);
3814 
3815 		if (ret < 0) {
3816 			rdev_err(rdev, "failed to prepare\n");
3817 			goto out;
3818 		}
3819 	}
3820 out:
3821 	mutex_unlock(&regulator_list_mutex);
3822 	return ret;
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3825 
3826 /**
3827  * regulator_suspend_finish - resume regulators from system wide suspend
3828  *
3829  * Turn on regulators that might be turned off by regulator_suspend_prepare
3830  * and that should be turned on according to the regulators properties.
3831  */
3832 int regulator_suspend_finish(void)
3833 {
3834 	struct regulator_dev *rdev;
3835 	int ret = 0, error;
3836 
3837 	mutex_lock(&regulator_list_mutex);
3838 	list_for_each_entry(rdev, &regulator_list, list) {
3839 		mutex_lock(&rdev->mutex);
3840 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3841 			if (!_regulator_is_enabled(rdev)) {
3842 				error = _regulator_do_enable(rdev);
3843 				if (error)
3844 					ret = error;
3845 			}
3846 		} else {
3847 			if (!have_full_constraints())
3848 				goto unlock;
3849 			if (!_regulator_is_enabled(rdev))
3850 				goto unlock;
3851 
3852 			error = _regulator_do_disable(rdev);
3853 			if (error)
3854 				ret = error;
3855 		}
3856 unlock:
3857 		mutex_unlock(&rdev->mutex);
3858 	}
3859 	mutex_unlock(&regulator_list_mutex);
3860 	return ret;
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3863 
3864 /**
3865  * regulator_has_full_constraints - the system has fully specified constraints
3866  *
3867  * Calling this function will cause the regulator API to disable all
3868  * regulators which have a zero use count and don't have an always_on
3869  * constraint in a late_initcall.
3870  *
3871  * The intention is that this will become the default behaviour in a
3872  * future kernel release so users are encouraged to use this facility
3873  * now.
3874  */
3875 void regulator_has_full_constraints(void)
3876 {
3877 	has_full_constraints = 1;
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3880 
3881 /**
3882  * rdev_get_drvdata - get rdev regulator driver data
3883  * @rdev: regulator
3884  *
3885  * Get rdev regulator driver private data. This call can be used in the
3886  * regulator driver context.
3887  */
3888 void *rdev_get_drvdata(struct regulator_dev *rdev)
3889 {
3890 	return rdev->reg_data;
3891 }
3892 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3893 
3894 /**
3895  * regulator_get_drvdata - get regulator driver data
3896  * @regulator: regulator
3897  *
3898  * Get regulator driver private data. This call can be used in the consumer
3899  * driver context when non API regulator specific functions need to be called.
3900  */
3901 void *regulator_get_drvdata(struct regulator *regulator)
3902 {
3903 	return regulator->rdev->reg_data;
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3906 
3907 /**
3908  * regulator_set_drvdata - set regulator driver data
3909  * @regulator: regulator
3910  * @data: data
3911  */
3912 void regulator_set_drvdata(struct regulator *regulator, void *data)
3913 {
3914 	regulator->rdev->reg_data = data;
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3917 
3918 /**
3919  * regulator_get_id - get regulator ID
3920  * @rdev: regulator
3921  */
3922 int rdev_get_id(struct regulator_dev *rdev)
3923 {
3924 	return rdev->desc->id;
3925 }
3926 EXPORT_SYMBOL_GPL(rdev_get_id);
3927 
3928 struct device *rdev_get_dev(struct regulator_dev *rdev)
3929 {
3930 	return &rdev->dev;
3931 }
3932 EXPORT_SYMBOL_GPL(rdev_get_dev);
3933 
3934 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3935 {
3936 	return reg_init_data->driver_data;
3937 }
3938 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3939 
3940 #ifdef CONFIG_DEBUG_FS
3941 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3942 				    size_t count, loff_t *ppos)
3943 {
3944 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3945 	ssize_t len, ret = 0;
3946 	struct regulator_map *map;
3947 
3948 	if (!buf)
3949 		return -ENOMEM;
3950 
3951 	list_for_each_entry(map, &regulator_map_list, list) {
3952 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3953 			       "%s -> %s.%s\n",
3954 			       rdev_get_name(map->regulator), map->dev_name,
3955 			       map->supply);
3956 		if (len >= 0)
3957 			ret += len;
3958 		if (ret > PAGE_SIZE) {
3959 			ret = PAGE_SIZE;
3960 			break;
3961 		}
3962 	}
3963 
3964 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3965 
3966 	kfree(buf);
3967 
3968 	return ret;
3969 }
3970 #endif
3971 
3972 static const struct file_operations supply_map_fops = {
3973 #ifdef CONFIG_DEBUG_FS
3974 	.read = supply_map_read_file,
3975 	.llseek = default_llseek,
3976 #endif
3977 };
3978 
3979 #ifdef CONFIG_DEBUG_FS
3980 static void regulator_summary_show_subtree(struct seq_file *s,
3981 					   struct regulator_dev *rdev,
3982 					   int level)
3983 {
3984 	struct list_head *list = s->private;
3985 	struct regulator_dev *child;
3986 	struct regulation_constraints *c;
3987 	struct regulator *consumer;
3988 
3989 	if (!rdev)
3990 		return;
3991 
3992 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
3993 		   level * 3 + 1, "",
3994 		   30 - level * 3, rdev_get_name(rdev),
3995 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
3996 
3997 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
3998 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
3999 
4000 	c = rdev->constraints;
4001 	if (c) {
4002 		switch (rdev->desc->type) {
4003 		case REGULATOR_VOLTAGE:
4004 			seq_printf(s, "%5dmV %5dmV ",
4005 				   c->min_uV / 1000, c->max_uV / 1000);
4006 			break;
4007 		case REGULATOR_CURRENT:
4008 			seq_printf(s, "%5dmA %5dmA ",
4009 				   c->min_uA / 1000, c->max_uA / 1000);
4010 			break;
4011 		}
4012 	}
4013 
4014 	seq_puts(s, "\n");
4015 
4016 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4017 		if (consumer->dev->class == &regulator_class)
4018 			continue;
4019 
4020 		seq_printf(s, "%*s%-*s ",
4021 			   (level + 1) * 3 + 1, "",
4022 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4023 
4024 		switch (rdev->desc->type) {
4025 		case REGULATOR_VOLTAGE:
4026 			seq_printf(s, "%37dmV %5dmV",
4027 				   consumer->min_uV / 1000,
4028 				   consumer->max_uV / 1000);
4029 			break;
4030 		case REGULATOR_CURRENT:
4031 			break;
4032 		}
4033 
4034 		seq_puts(s, "\n");
4035 	}
4036 
4037 	list_for_each_entry(child, list, list) {
4038 		/* handle only non-root regulators supplied by current rdev */
4039 		if (!child->supply || child->supply->rdev != rdev)
4040 			continue;
4041 
4042 		regulator_summary_show_subtree(s, child, level + 1);
4043 	}
4044 }
4045 
4046 static int regulator_summary_show(struct seq_file *s, void *data)
4047 {
4048 	struct list_head *list = s->private;
4049 	struct regulator_dev *rdev;
4050 
4051 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4052 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4053 
4054 	mutex_lock(&regulator_list_mutex);
4055 
4056 	list_for_each_entry(rdev, list, list) {
4057 		if (rdev->supply)
4058 			continue;
4059 
4060 		regulator_summary_show_subtree(s, rdev, 0);
4061 	}
4062 
4063 	mutex_unlock(&regulator_list_mutex);
4064 
4065 	return 0;
4066 }
4067 
4068 static int regulator_summary_open(struct inode *inode, struct file *file)
4069 {
4070 	return single_open(file, regulator_summary_show, inode->i_private);
4071 }
4072 #endif
4073 
4074 static const struct file_operations regulator_summary_fops = {
4075 #ifdef CONFIG_DEBUG_FS
4076 	.open		= regulator_summary_open,
4077 	.read		= seq_read,
4078 	.llseek		= seq_lseek,
4079 	.release	= single_release,
4080 #endif
4081 };
4082 
4083 static int __init regulator_init(void)
4084 {
4085 	int ret;
4086 
4087 	ret = class_register(&regulator_class);
4088 
4089 	debugfs_root = debugfs_create_dir("regulator", NULL);
4090 	if (!debugfs_root)
4091 		pr_warn("regulator: Failed to create debugfs directory\n");
4092 
4093 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4094 			    &supply_map_fops);
4095 
4096 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4097 			    &regulator_list, &regulator_summary_fops);
4098 
4099 	regulator_dummy_init();
4100 
4101 	return ret;
4102 }
4103 
4104 /* init early to allow our consumers to complete system booting */
4105 core_initcall(regulator_init);
4106 
4107 static int __init regulator_init_complete(void)
4108 {
4109 	struct regulator_dev *rdev;
4110 	const struct regulator_ops *ops;
4111 	struct regulation_constraints *c;
4112 	int enabled, ret;
4113 
4114 	/*
4115 	 * Since DT doesn't provide an idiomatic mechanism for
4116 	 * enabling full constraints and since it's much more natural
4117 	 * with DT to provide them just assume that a DT enabled
4118 	 * system has full constraints.
4119 	 */
4120 	if (of_have_populated_dt())
4121 		has_full_constraints = true;
4122 
4123 	mutex_lock(&regulator_list_mutex);
4124 
4125 	/* If we have a full configuration then disable any regulators
4126 	 * we have permission to change the status for and which are
4127 	 * not in use or always_on.  This is effectively the default
4128 	 * for DT and ACPI as they have full constraints.
4129 	 */
4130 	list_for_each_entry(rdev, &regulator_list, list) {
4131 		ops = rdev->desc->ops;
4132 		c = rdev->constraints;
4133 
4134 		if (c && c->always_on)
4135 			continue;
4136 
4137 		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4138 			continue;
4139 
4140 		mutex_lock(&rdev->mutex);
4141 
4142 		if (rdev->use_count)
4143 			goto unlock;
4144 
4145 		/* If we can't read the status assume it's on. */
4146 		if (ops->is_enabled)
4147 			enabled = ops->is_enabled(rdev);
4148 		else
4149 			enabled = 1;
4150 
4151 		if (!enabled)
4152 			goto unlock;
4153 
4154 		if (have_full_constraints()) {
4155 			/* We log since this may kill the system if it
4156 			 * goes wrong. */
4157 			rdev_info(rdev, "disabling\n");
4158 			ret = _regulator_do_disable(rdev);
4159 			if (ret != 0)
4160 				rdev_err(rdev, "couldn't disable: %d\n", ret);
4161 		} else {
4162 			/* The intention is that in future we will
4163 			 * assume that full constraints are provided
4164 			 * so warn even if we aren't going to do
4165 			 * anything here.
4166 			 */
4167 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4168 		}
4169 
4170 unlock:
4171 		mutex_unlock(&rdev->mutex);
4172 	}
4173 
4174 	mutex_unlock(&regulator_list_mutex);
4175 
4176 	return 0;
4177 }
4178 late_initcall_sync(regulator_init_complete);
4179