xref: /openbmc/linux/drivers/regulator/core.c (revision d78c317f)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56 
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79 	struct device *dev;
80 	struct list_head list;
81 	int uA_load;
82 	int min_uV;
83 	int max_uV;
84 	char *supply_name;
85 	struct device_attribute dev_attr;
86 	struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry *debugfs;
89 #endif
90 };
91 
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98 				  unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100 				     int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102 					  struct device *dev,
103 					  const char *supply_name);
104 
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107 	if (rdev->constraints && rdev->constraints->name)
108 		return rdev->constraints->name;
109 	else if (rdev->desc->name)
110 		return rdev->desc->name;
111 	else
112 		return "";
113 }
114 
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118 	struct regulator *regulator = NULL;
119 	struct regulator_dev *rdev;
120 
121 	mutex_lock(&regulator_list_mutex);
122 	list_for_each_entry(rdev, &regulator_list, list) {
123 		mutex_lock(&rdev->mutex);
124 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125 			if (regulator->dev == dev) {
126 				mutex_unlock(&rdev->mutex);
127 				mutex_unlock(&regulator_list_mutex);
128 				return regulator;
129 			}
130 		}
131 		mutex_unlock(&rdev->mutex);
132 	}
133 	mutex_unlock(&regulator_list_mutex);
134 	return NULL;
135 }
136 
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148 	struct device_node *regnode = NULL;
149 	char prop_name[32]; /* 32 is max size of property name */
150 
151 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152 
153 	snprintf(prop_name, 32, "%s-supply", supply);
154 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155 
156 	if (!regnode) {
157 		dev_warn(dev, "%s property in node %s references invalid phandle",
158 				prop_name, dev->of_node->full_name);
159 		return NULL;
160 	}
161 	return regnode;
162 }
163 
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166 				   int *min_uV, int *max_uV)
167 {
168 	BUG_ON(*min_uV > *max_uV);
169 
170 	if (!rdev->constraints) {
171 		rdev_err(rdev, "no constraints\n");
172 		return -ENODEV;
173 	}
174 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175 		rdev_err(rdev, "operation not allowed\n");
176 		return -EPERM;
177 	}
178 
179 	if (*max_uV > rdev->constraints->max_uV)
180 		*max_uV = rdev->constraints->max_uV;
181 	if (*min_uV < rdev->constraints->min_uV)
182 		*min_uV = rdev->constraints->min_uV;
183 
184 	if (*min_uV > *max_uV) {
185 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186 			 *min_uV, *max_uV);
187 		return -EINVAL;
188 	}
189 
190 	return 0;
191 }
192 
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197 				     int *min_uV, int *max_uV)
198 {
199 	struct regulator *regulator;
200 
201 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202 		/*
203 		 * Assume consumers that didn't say anything are OK
204 		 * with anything in the constraint range.
205 		 */
206 		if (!regulator->min_uV && !regulator->max_uV)
207 			continue;
208 
209 		if (*max_uV > regulator->max_uV)
210 			*max_uV = regulator->max_uV;
211 		if (*min_uV < regulator->min_uV)
212 			*min_uV = regulator->min_uV;
213 	}
214 
215 	if (*min_uV > *max_uV)
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223 					int *min_uA, int *max_uA)
224 {
225 	BUG_ON(*min_uA > *max_uA);
226 
227 	if (!rdev->constraints) {
228 		rdev_err(rdev, "no constraints\n");
229 		return -ENODEV;
230 	}
231 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232 		rdev_err(rdev, "operation not allowed\n");
233 		return -EPERM;
234 	}
235 
236 	if (*max_uA > rdev->constraints->max_uA)
237 		*max_uA = rdev->constraints->max_uA;
238 	if (*min_uA < rdev->constraints->min_uA)
239 		*min_uA = rdev->constraints->min_uA;
240 
241 	if (*min_uA > *max_uA) {
242 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243 			 *min_uA, *max_uA);
244 		return -EINVAL;
245 	}
246 
247 	return 0;
248 }
249 
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253 	switch (*mode) {
254 	case REGULATOR_MODE_FAST:
255 	case REGULATOR_MODE_NORMAL:
256 	case REGULATOR_MODE_IDLE:
257 	case REGULATOR_MODE_STANDBY:
258 		break;
259 	default:
260 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261 		return -EINVAL;
262 	}
263 
264 	if (!rdev->constraints) {
265 		rdev_err(rdev, "no constraints\n");
266 		return -ENODEV;
267 	}
268 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269 		rdev_err(rdev, "operation not allowed\n");
270 		return -EPERM;
271 	}
272 
273 	/* The modes are bitmasks, the most power hungry modes having
274 	 * the lowest values. If the requested mode isn't supported
275 	 * try higher modes. */
276 	while (*mode) {
277 		if (rdev->constraints->valid_modes_mask & *mode)
278 			return 0;
279 		*mode /= 2;
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288 	if (!rdev->constraints) {
289 		rdev_err(rdev, "no constraints\n");
290 		return -ENODEV;
291 	}
292 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293 		rdev_err(rdev, "operation not allowed\n");
294 		return -EPERM;
295 	}
296 	return 0;
297 }
298 
299 static ssize_t device_requested_uA_show(struct device *dev,
300 			     struct device_attribute *attr, char *buf)
301 {
302 	struct regulator *regulator;
303 
304 	regulator = get_device_regulator(dev);
305 	if (regulator == NULL)
306 		return 0;
307 
308 	return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310 
311 static ssize_t regulator_uV_show(struct device *dev,
312 				struct device_attribute *attr, char *buf)
313 {
314 	struct regulator_dev *rdev = dev_get_drvdata(dev);
315 	ssize_t ret;
316 
317 	mutex_lock(&rdev->mutex);
318 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319 	mutex_unlock(&rdev->mutex);
320 
321 	return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324 
325 static ssize_t regulator_uA_show(struct device *dev,
326 				struct device_attribute *attr, char *buf)
327 {
328 	struct regulator_dev *rdev = dev_get_drvdata(dev);
329 
330 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333 
334 static ssize_t regulator_name_show(struct device *dev,
335 			     struct device_attribute *attr, char *buf)
336 {
337 	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 
339 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341 
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344 	switch (mode) {
345 	case REGULATOR_MODE_FAST:
346 		return sprintf(buf, "fast\n");
347 	case REGULATOR_MODE_NORMAL:
348 		return sprintf(buf, "normal\n");
349 	case REGULATOR_MODE_IDLE:
350 		return sprintf(buf, "idle\n");
351 	case REGULATOR_MODE_STANDBY:
352 		return sprintf(buf, "standby\n");
353 	}
354 	return sprintf(buf, "unknown\n");
355 }
356 
357 static ssize_t regulator_opmode_show(struct device *dev,
358 				    struct device_attribute *attr, char *buf)
359 {
360 	struct regulator_dev *rdev = dev_get_drvdata(dev);
361 
362 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365 
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368 	if (state > 0)
369 		return sprintf(buf, "enabled\n");
370 	else if (state == 0)
371 		return sprintf(buf, "disabled\n");
372 	else
373 		return sprintf(buf, "unknown\n");
374 }
375 
376 static ssize_t regulator_state_show(struct device *dev,
377 				   struct device_attribute *attr, char *buf)
378 {
379 	struct regulator_dev *rdev = dev_get_drvdata(dev);
380 	ssize_t ret;
381 
382 	mutex_lock(&rdev->mutex);
383 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384 	mutex_unlock(&rdev->mutex);
385 
386 	return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389 
390 static ssize_t regulator_status_show(struct device *dev,
391 				   struct device_attribute *attr, char *buf)
392 {
393 	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 	int status;
395 	char *label;
396 
397 	status = rdev->desc->ops->get_status(rdev);
398 	if (status < 0)
399 		return status;
400 
401 	switch (status) {
402 	case REGULATOR_STATUS_OFF:
403 		label = "off";
404 		break;
405 	case REGULATOR_STATUS_ON:
406 		label = "on";
407 		break;
408 	case REGULATOR_STATUS_ERROR:
409 		label = "error";
410 		break;
411 	case REGULATOR_STATUS_FAST:
412 		label = "fast";
413 		break;
414 	case REGULATOR_STATUS_NORMAL:
415 		label = "normal";
416 		break;
417 	case REGULATOR_STATUS_IDLE:
418 		label = "idle";
419 		break;
420 	case REGULATOR_STATUS_STANDBY:
421 		label = "standby";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t regulator_num_users_show(struct device *dev,
495 				      struct device_attribute *attr, char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 
501 static ssize_t regulator_type_show(struct device *dev,
502 				  struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516 				struct device_attribute *attr, char *buf)
517 {
518 	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 
520 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523 		regulator_suspend_mem_uV_show, NULL);
524 
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526 				struct device_attribute *attr, char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 
530 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533 		regulator_suspend_disk_uV_show, NULL);
534 
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536 				struct device_attribute *attr, char *buf)
537 {
538 	struct regulator_dev *rdev = dev_get_drvdata(dev);
539 
540 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543 		regulator_suspend_standby_uV_show, NULL);
544 
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546 				struct device_attribute *attr, char *buf)
547 {
548 	struct regulator_dev *rdev = dev_get_drvdata(dev);
549 
550 	return regulator_print_opmode(buf,
551 		rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554 		regulator_suspend_mem_mode_show, NULL);
555 
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557 				struct device_attribute *attr, char *buf)
558 {
559 	struct regulator_dev *rdev = dev_get_drvdata(dev);
560 
561 	return regulator_print_opmode(buf,
562 		rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565 		regulator_suspend_disk_mode_show, NULL);
566 
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568 				struct device_attribute *attr, char *buf)
569 {
570 	struct regulator_dev *rdev = dev_get_drvdata(dev);
571 
572 	return regulator_print_opmode(buf,
573 		rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576 		regulator_suspend_standby_mode_show, NULL);
577 
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579 				   struct device_attribute *attr, char *buf)
580 {
581 	struct regulator_dev *rdev = dev_get_drvdata(dev);
582 
583 	return regulator_print_state(buf,
584 			rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587 		regulator_suspend_mem_state_show, NULL);
588 
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590 				   struct device_attribute *attr, char *buf)
591 {
592 	struct regulator_dev *rdev = dev_get_drvdata(dev);
593 
594 	return regulator_print_state(buf,
595 			rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598 		regulator_suspend_disk_state_show, NULL);
599 
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601 				   struct device_attribute *attr, char *buf)
602 {
603 	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 
605 	return regulator_print_state(buf,
606 			rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609 		regulator_suspend_standby_state_show, NULL);
610 
611 
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617 	__ATTR(name, 0444, regulator_name_show, NULL),
618 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619 	__ATTR(type, 0444, regulator_type_show, NULL),
620 	__ATTR_NULL,
621 };
622 
623 static void regulator_dev_release(struct device *dev)
624 {
625 	struct regulator_dev *rdev = dev_get_drvdata(dev);
626 	kfree(rdev);
627 }
628 
629 static struct class regulator_class = {
630 	.name = "regulator",
631 	.dev_release = regulator_dev_release,
632 	.dev_attrs = regulator_dev_attrs,
633 };
634 
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639 	struct regulator *sibling;
640 	int current_uA = 0, output_uV, input_uV, err;
641 	unsigned int mode;
642 
643 	err = regulator_check_drms(rdev);
644 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 	    (!rdev->desc->ops->get_voltage &&
646 	     !rdev->desc->ops->get_voltage_sel) ||
647 	    !rdev->desc->ops->set_mode)
648 		return;
649 
650 	/* get output voltage */
651 	output_uV = _regulator_get_voltage(rdev);
652 	if (output_uV <= 0)
653 		return;
654 
655 	/* get input voltage */
656 	input_uV = 0;
657 	if (rdev->supply)
658 		input_uV = _regulator_get_voltage(rdev);
659 	if (input_uV <= 0)
660 		input_uV = rdev->constraints->input_uV;
661 	if (input_uV <= 0)
662 		return;
663 
664 	/* calc total requested load */
665 	list_for_each_entry(sibling, &rdev->consumer_list, list)
666 		current_uA += sibling->uA_load;
667 
668 	/* now get the optimum mode for our new total regulator load */
669 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670 						  output_uV, current_uA);
671 
672 	/* check the new mode is allowed */
673 	err = regulator_mode_constrain(rdev, &mode);
674 	if (err == 0)
675 		rdev->desc->ops->set_mode(rdev, mode);
676 }
677 
678 static int suspend_set_state(struct regulator_dev *rdev,
679 	struct regulator_state *rstate)
680 {
681 	int ret = 0;
682 	bool can_set_state;
683 
684 	can_set_state = rdev->desc->ops->set_suspend_enable &&
685 		rdev->desc->ops->set_suspend_disable;
686 
687 	/* If we have no suspend mode configration don't set anything;
688 	 * only warn if the driver actually makes the suspend mode
689 	 * configurable.
690 	 */
691 	if (!rstate->enabled && !rstate->disabled) {
692 		if (can_set_state)
693 			rdev_warn(rdev, "No configuration\n");
694 		return 0;
695 	}
696 
697 	if (rstate->enabled && rstate->disabled) {
698 		rdev_err(rdev, "invalid configuration\n");
699 		return -EINVAL;
700 	}
701 
702 	if (!can_set_state) {
703 		rdev_err(rdev, "no way to set suspend state\n");
704 		return -EINVAL;
705 	}
706 
707 	if (rstate->enabled)
708 		ret = rdev->desc->ops->set_suspend_enable(rdev);
709 	else
710 		ret = rdev->desc->ops->set_suspend_disable(rdev);
711 	if (ret < 0) {
712 		rdev_err(rdev, "failed to enabled/disable\n");
713 		return ret;
714 	}
715 
716 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718 		if (ret < 0) {
719 			rdev_err(rdev, "failed to set voltage\n");
720 			return ret;
721 		}
722 	}
723 
724 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726 		if (ret < 0) {
727 			rdev_err(rdev, "failed to set mode\n");
728 			return ret;
729 		}
730 	}
731 	return ret;
732 }
733 
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737 	if (!rdev->constraints)
738 		return -EINVAL;
739 
740 	switch (state) {
741 	case PM_SUSPEND_STANDBY:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_standby);
744 	case PM_SUSPEND_MEM:
745 		return suspend_set_state(rdev,
746 			&rdev->constraints->state_mem);
747 	case PM_SUSPEND_MAX:
748 		return suspend_set_state(rdev,
749 			&rdev->constraints->state_disk);
750 	default:
751 		return -EINVAL;
752 	}
753 }
754 
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757 	struct regulation_constraints *constraints = rdev->constraints;
758 	char buf[80] = "";
759 	int count = 0;
760 	int ret;
761 
762 	if (constraints->min_uV && constraints->max_uV) {
763 		if (constraints->min_uV == constraints->max_uV)
764 			count += sprintf(buf + count, "%d mV ",
765 					 constraints->min_uV / 1000);
766 		else
767 			count += sprintf(buf + count, "%d <--> %d mV ",
768 					 constraints->min_uV / 1000,
769 					 constraints->max_uV / 1000);
770 	}
771 
772 	if (!constraints->min_uV ||
773 	    constraints->min_uV != constraints->max_uV) {
774 		ret = _regulator_get_voltage(rdev);
775 		if (ret > 0)
776 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777 	}
778 
779 	if (constraints->uV_offset)
780 		count += sprintf(buf, "%dmV offset ",
781 				 constraints->uV_offset / 1000);
782 
783 	if (constraints->min_uA && constraints->max_uA) {
784 		if (constraints->min_uA == constraints->max_uA)
785 			count += sprintf(buf + count, "%d mA ",
786 					 constraints->min_uA / 1000);
787 		else
788 			count += sprintf(buf + count, "%d <--> %d mA ",
789 					 constraints->min_uA / 1000,
790 					 constraints->max_uA / 1000);
791 	}
792 
793 	if (!constraints->min_uA ||
794 	    constraints->min_uA != constraints->max_uA) {
795 		ret = _regulator_get_current_limit(rdev);
796 		if (ret > 0)
797 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798 	}
799 
800 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801 		count += sprintf(buf + count, "fast ");
802 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803 		count += sprintf(buf + count, "normal ");
804 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805 		count += sprintf(buf + count, "idle ");
806 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807 		count += sprintf(buf + count, "standby");
808 
809 	rdev_info(rdev, "%s\n", buf);
810 }
811 
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813 	struct regulation_constraints *constraints)
814 {
815 	struct regulator_ops *ops = rdev->desc->ops;
816 	int ret;
817 
818 	/* do we need to apply the constraint voltage */
819 	if (rdev->constraints->apply_uV &&
820 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821 		ret = _regulator_do_set_voltage(rdev,
822 						rdev->constraints->min_uV,
823 						rdev->constraints->max_uV);
824 		if (ret < 0) {
825 			rdev_err(rdev, "failed to apply %duV constraint\n",
826 				 rdev->constraints->min_uV);
827 			return ret;
828 		}
829 	}
830 
831 	/* constrain machine-level voltage specs to fit
832 	 * the actual range supported by this regulator.
833 	 */
834 	if (ops->list_voltage && rdev->desc->n_voltages) {
835 		int	count = rdev->desc->n_voltages;
836 		int	i;
837 		int	min_uV = INT_MAX;
838 		int	max_uV = INT_MIN;
839 		int	cmin = constraints->min_uV;
840 		int	cmax = constraints->max_uV;
841 
842 		/* it's safe to autoconfigure fixed-voltage supplies
843 		   and the constraints are used by list_voltage. */
844 		if (count == 1 && !cmin) {
845 			cmin = 1;
846 			cmax = INT_MAX;
847 			constraints->min_uV = cmin;
848 			constraints->max_uV = cmax;
849 		}
850 
851 		/* voltage constraints are optional */
852 		if ((cmin == 0) && (cmax == 0))
853 			return 0;
854 
855 		/* else require explicit machine-level constraints */
856 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857 			rdev_err(rdev, "invalid voltage constraints\n");
858 			return -EINVAL;
859 		}
860 
861 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862 		for (i = 0; i < count; i++) {
863 			int	value;
864 
865 			value = ops->list_voltage(rdev, i);
866 			if (value <= 0)
867 				continue;
868 
869 			/* maybe adjust [min_uV..max_uV] */
870 			if (value >= cmin && value < min_uV)
871 				min_uV = value;
872 			if (value <= cmax && value > max_uV)
873 				max_uV = value;
874 		}
875 
876 		/* final: [min_uV..max_uV] valid iff constraints valid */
877 		if (max_uV < min_uV) {
878 			rdev_err(rdev, "unsupportable voltage constraints\n");
879 			return -EINVAL;
880 		}
881 
882 		/* use regulator's subset of machine constraints */
883 		if (constraints->min_uV < min_uV) {
884 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885 				 constraints->min_uV, min_uV);
886 			constraints->min_uV = min_uV;
887 		}
888 		if (constraints->max_uV > max_uV) {
889 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890 				 constraints->max_uV, max_uV);
891 			constraints->max_uV = max_uV;
892 		}
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910 	const struct regulation_constraints *constraints)
911 {
912 	int ret = 0;
913 	struct regulator_ops *ops = rdev->desc->ops;
914 
915 	if (constraints)
916 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917 					    GFP_KERNEL);
918 	else
919 		rdev->constraints = kzalloc(sizeof(*constraints),
920 					    GFP_KERNEL);
921 	if (!rdev->constraints)
922 		return -ENOMEM;
923 
924 	ret = machine_constraints_voltage(rdev, rdev->constraints);
925 	if (ret != 0)
926 		goto out;
927 
928 	/* do we need to setup our suspend state */
929 	if (rdev->constraints->initial_state) {
930 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931 		if (ret < 0) {
932 			rdev_err(rdev, "failed to set suspend state\n");
933 			goto out;
934 		}
935 	}
936 
937 	if (rdev->constraints->initial_mode) {
938 		if (!ops->set_mode) {
939 			rdev_err(rdev, "no set_mode operation\n");
940 			ret = -EINVAL;
941 			goto out;
942 		}
943 
944 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945 		if (ret < 0) {
946 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947 			goto out;
948 		}
949 	}
950 
951 	/* If the constraints say the regulator should be on at this point
952 	 * and we have control then make sure it is enabled.
953 	 */
954 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955 	    ops->enable) {
956 		ret = ops->enable(rdev);
957 		if (ret < 0) {
958 			rdev_err(rdev, "failed to enable\n");
959 			goto out;
960 		}
961 	}
962 
963 	print_constraints(rdev);
964 	return 0;
965 out:
966 	kfree(rdev->constraints);
967 	rdev->constraints = NULL;
968 	return ret;
969 }
970 
971 /**
972  * set_supply - set regulator supply regulator
973  * @rdev: regulator name
974  * @supply_rdev: supply regulator name
975  *
976  * Called by platform initialisation code to set the supply regulator for this
977  * regulator. This ensures that a regulators supply will also be enabled by the
978  * core if it's child is enabled.
979  */
980 static int set_supply(struct regulator_dev *rdev,
981 		      struct regulator_dev *supply_rdev)
982 {
983 	int err;
984 
985 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986 
987 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988 	if (rdev->supply == NULL) {
989 		err = -ENOMEM;
990 		return err;
991 	}
992 
993 	return 0;
994 }
995 
996 /**
997  * set_consumer_device_supply - Bind a regulator to a symbolic supply
998  * @rdev:         regulator source
999  * @consumer_dev: device the supply applies to
1000  * @consumer_dev_name: dev_name() string for device supply applies to
1001  * @supply:       symbolic name for supply
1002  *
1003  * Allows platform initialisation code to map physical regulator
1004  * sources to symbolic names for supplies for use by devices.  Devices
1005  * should use these symbolic names to request regulators, avoiding the
1006  * need to provide board-specific regulator names as platform data.
1007  *
1008  * Only one of consumer_dev and consumer_dev_name may be specified.
1009  */
1010 static int set_consumer_device_supply(struct regulator_dev *rdev,
1011 	struct device *consumer_dev, const char *consumer_dev_name,
1012 	const char *supply)
1013 {
1014 	struct regulator_map *node;
1015 	int has_dev;
1016 
1017 	if (consumer_dev && consumer_dev_name)
1018 		return -EINVAL;
1019 
1020 	if (!consumer_dev_name && consumer_dev)
1021 		consumer_dev_name = dev_name(consumer_dev);
1022 
1023 	if (supply == NULL)
1024 		return -EINVAL;
1025 
1026 	if (consumer_dev_name != NULL)
1027 		has_dev = 1;
1028 	else
1029 		has_dev = 0;
1030 
1031 	list_for_each_entry(node, &regulator_map_list, list) {
1032 		if (node->dev_name && consumer_dev_name) {
1033 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034 				continue;
1035 		} else if (node->dev_name || consumer_dev_name) {
1036 			continue;
1037 		}
1038 
1039 		if (strcmp(node->supply, supply) != 0)
1040 			continue;
1041 
1042 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043 			dev_name(&node->regulator->dev),
1044 			node->regulator->desc->name,
1045 			supply,
1046 			dev_name(&rdev->dev), rdev_get_name(rdev));
1047 		return -EBUSY;
1048 	}
1049 
1050 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051 	if (node == NULL)
1052 		return -ENOMEM;
1053 
1054 	node->regulator = rdev;
1055 	node->supply = supply;
1056 
1057 	if (has_dev) {
1058 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059 		if (node->dev_name == NULL) {
1060 			kfree(node);
1061 			return -ENOMEM;
1062 		}
1063 	}
1064 
1065 	list_add(&node->list, &regulator_map_list);
1066 	return 0;
1067 }
1068 
1069 static void unset_regulator_supplies(struct regulator_dev *rdev)
1070 {
1071 	struct regulator_map *node, *n;
1072 
1073 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074 		if (rdev == node->regulator) {
1075 			list_del(&node->list);
1076 			kfree(node->dev_name);
1077 			kfree(node);
1078 		}
1079 	}
1080 }
1081 
1082 #define REG_STR_SIZE	64
1083 
1084 static struct regulator *create_regulator(struct regulator_dev *rdev,
1085 					  struct device *dev,
1086 					  const char *supply_name)
1087 {
1088 	struct regulator *regulator;
1089 	char buf[REG_STR_SIZE];
1090 	int err, size;
1091 
1092 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093 	if (regulator == NULL)
1094 		return NULL;
1095 
1096 	mutex_lock(&rdev->mutex);
1097 	regulator->rdev = rdev;
1098 	list_add(&regulator->list, &rdev->consumer_list);
1099 
1100 	if (dev) {
1101 		/* create a 'requested_microamps_name' sysfs entry */
1102 		size = scnprintf(buf, REG_STR_SIZE,
1103 				 "microamps_requested_%s-%s",
1104 				 dev_name(dev), supply_name);
1105 		if (size >= REG_STR_SIZE)
1106 			goto overflow_err;
1107 
1108 		regulator->dev = dev;
1109 		sysfs_attr_init(&regulator->dev_attr.attr);
1110 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111 		if (regulator->dev_attr.attr.name == NULL)
1112 			goto attr_name_err;
1113 
1114 		regulator->dev_attr.attr.mode = 0444;
1115 		regulator->dev_attr.show = device_requested_uA_show;
1116 		err = device_create_file(dev, &regulator->dev_attr);
1117 		if (err < 0) {
1118 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119 			goto attr_name_err;
1120 		}
1121 
1122 		/* also add a link to the device sysfs entry */
1123 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124 				 dev->kobj.name, supply_name);
1125 		if (size >= REG_STR_SIZE)
1126 			goto attr_err;
1127 
1128 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129 		if (regulator->supply_name == NULL)
1130 			goto attr_err;
1131 
1132 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133 					buf);
1134 		if (err) {
1135 			rdev_warn(rdev, "could not add device link %s err %d\n",
1136 				  dev->kobj.name, err);
1137 			goto link_name_err;
1138 		}
1139 	} else {
1140 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141 		if (regulator->supply_name == NULL)
1142 			goto attr_err;
1143 	}
1144 
1145 #ifdef CONFIG_DEBUG_FS
1146 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147 						rdev->debugfs);
1148 	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1150 		regulator->debugfs = NULL;
1151 	} else {
1152 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153 				   &regulator->uA_load);
1154 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155 				   &regulator->min_uV);
1156 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157 				   &regulator->max_uV);
1158 	}
1159 #endif
1160 
1161 	mutex_unlock(&rdev->mutex);
1162 	return regulator;
1163 link_name_err:
1164 	kfree(regulator->supply_name);
1165 attr_err:
1166 	device_remove_file(regulator->dev, &regulator->dev_attr);
1167 attr_name_err:
1168 	kfree(regulator->dev_attr.attr.name);
1169 overflow_err:
1170 	list_del(&regulator->list);
1171 	kfree(regulator);
1172 	mutex_unlock(&rdev->mutex);
1173 	return NULL;
1174 }
1175 
1176 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177 {
1178 	if (!rdev->desc->ops->enable_time)
1179 		return 0;
1180 	return rdev->desc->ops->enable_time(rdev);
1181 }
1182 
1183 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184 							 const char *supply)
1185 {
1186 	struct regulator_dev *r;
1187 	struct device_node *node;
1188 
1189 	/* first do a dt based lookup */
1190 	if (dev && dev->of_node) {
1191 		node = of_get_regulator(dev, supply);
1192 		if (node)
1193 			list_for_each_entry(r, &regulator_list, list)
1194 				if (r->dev.parent &&
1195 					node == r->dev.of_node)
1196 					return r;
1197 	}
1198 
1199 	/* if not found, try doing it non-dt way */
1200 	list_for_each_entry(r, &regulator_list, list)
1201 		if (strcmp(rdev_get_name(r), supply) == 0)
1202 			return r;
1203 
1204 	return NULL;
1205 }
1206 
1207 /* Internal regulator request function */
1208 static struct regulator *_regulator_get(struct device *dev, const char *id,
1209 					int exclusive)
1210 {
1211 	struct regulator_dev *rdev;
1212 	struct regulator_map *map;
1213 	struct regulator *regulator = ERR_PTR(-ENODEV);
1214 	const char *devname = NULL;
1215 	int ret;
1216 
1217 	if (id == NULL) {
1218 		pr_err("get() with no identifier\n");
1219 		return regulator;
1220 	}
1221 
1222 	if (dev)
1223 		devname = dev_name(dev);
1224 
1225 	mutex_lock(&regulator_list_mutex);
1226 
1227 	rdev = regulator_dev_lookup(dev, id);
1228 	if (rdev)
1229 		goto found;
1230 
1231 	list_for_each_entry(map, &regulator_map_list, list) {
1232 		/* If the mapping has a device set up it must match */
1233 		if (map->dev_name &&
1234 		    (!devname || strcmp(map->dev_name, devname)))
1235 			continue;
1236 
1237 		if (strcmp(map->supply, id) == 0) {
1238 			rdev = map->regulator;
1239 			goto found;
1240 		}
1241 	}
1242 
1243 	if (board_wants_dummy_regulator) {
1244 		rdev = dummy_regulator_rdev;
1245 		goto found;
1246 	}
1247 
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249 	if (!devname)
1250 		devname = "deviceless";
1251 
1252 	/* If the board didn't flag that it was fully constrained then
1253 	 * substitute in a dummy regulator so consumers can continue.
1254 	 */
1255 	if (!has_full_constraints) {
1256 		pr_warn("%s supply %s not found, using dummy regulator\n",
1257 			devname, id);
1258 		rdev = dummy_regulator_rdev;
1259 		goto found;
1260 	}
1261 #endif
1262 
1263 	mutex_unlock(&regulator_list_mutex);
1264 	return regulator;
1265 
1266 found:
1267 	if (rdev->exclusive) {
1268 		regulator = ERR_PTR(-EPERM);
1269 		goto out;
1270 	}
1271 
1272 	if (exclusive && rdev->open_count) {
1273 		regulator = ERR_PTR(-EBUSY);
1274 		goto out;
1275 	}
1276 
1277 	if (!try_module_get(rdev->owner))
1278 		goto out;
1279 
1280 	regulator = create_regulator(rdev, dev, id);
1281 	if (regulator == NULL) {
1282 		regulator = ERR_PTR(-ENOMEM);
1283 		module_put(rdev->owner);
1284 		goto out;
1285 	}
1286 
1287 	rdev->open_count++;
1288 	if (exclusive) {
1289 		rdev->exclusive = 1;
1290 
1291 		ret = _regulator_is_enabled(rdev);
1292 		if (ret > 0)
1293 			rdev->use_count = 1;
1294 		else
1295 			rdev->use_count = 0;
1296 	}
1297 
1298 out:
1299 	mutex_unlock(&regulator_list_mutex);
1300 
1301 	return regulator;
1302 }
1303 
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319 	return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322 
1323 /**
1324  * regulator_get_exclusive - obtain exclusive access to a regulator.
1325  * @dev: device for regulator "consumer"
1326  * @id: Supply name or regulator ID.
1327  *
1328  * Returns a struct regulator corresponding to the regulator producer,
1329  * or IS_ERR() condition containing errno.  Other consumers will be
1330  * unable to obtain this reference is held and the use count for the
1331  * regulator will be initialised to reflect the current state of the
1332  * regulator.
1333  *
1334  * This is intended for use by consumers which cannot tolerate shared
1335  * use of the regulator such as those which need to force the
1336  * regulator off for correct operation of the hardware they are
1337  * controlling.
1338  *
1339  * Use of supply names configured via regulator_set_device_supply() is
1340  * strongly encouraged.  It is recommended that the supply name used
1341  * should match the name used for the supply and/or the relevant
1342  * device pins in the datasheet.
1343  */
1344 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1345 {
1346 	return _regulator_get(dev, id, 1);
1347 }
1348 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1349 
1350 /**
1351  * regulator_put - "free" the regulator source
1352  * @regulator: regulator source
1353  *
1354  * Note: drivers must ensure that all regulator_enable calls made on this
1355  * regulator source are balanced by regulator_disable calls prior to calling
1356  * this function.
1357  */
1358 void regulator_put(struct regulator *regulator)
1359 {
1360 	struct regulator_dev *rdev;
1361 
1362 	if (regulator == NULL || IS_ERR(regulator))
1363 		return;
1364 
1365 	mutex_lock(&regulator_list_mutex);
1366 	rdev = regulator->rdev;
1367 
1368 #ifdef CONFIG_DEBUG_FS
1369 	debugfs_remove_recursive(regulator->debugfs);
1370 #endif
1371 
1372 	/* remove any sysfs entries */
1373 	if (regulator->dev) {
1374 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1375 		device_remove_file(regulator->dev, &regulator->dev_attr);
1376 		kfree(regulator->dev_attr.attr.name);
1377 	}
1378 	kfree(regulator->supply_name);
1379 	list_del(&regulator->list);
1380 	kfree(regulator);
1381 
1382 	rdev->open_count--;
1383 	rdev->exclusive = 0;
1384 
1385 	module_put(rdev->owner);
1386 	mutex_unlock(&regulator_list_mutex);
1387 }
1388 EXPORT_SYMBOL_GPL(regulator_put);
1389 
1390 static int _regulator_can_change_status(struct regulator_dev *rdev)
1391 {
1392 	if (!rdev->constraints)
1393 		return 0;
1394 
1395 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1396 		return 1;
1397 	else
1398 		return 0;
1399 }
1400 
1401 /* locks held by regulator_enable() */
1402 static int _regulator_enable(struct regulator_dev *rdev)
1403 {
1404 	int ret, delay;
1405 
1406 	/* check voltage and requested load before enabling */
1407 	if (rdev->constraints &&
1408 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1409 		drms_uA_update(rdev);
1410 
1411 	if (rdev->use_count == 0) {
1412 		/* The regulator may on if it's not switchable or left on */
1413 		ret = _regulator_is_enabled(rdev);
1414 		if (ret == -EINVAL || ret == 0) {
1415 			if (!_regulator_can_change_status(rdev))
1416 				return -EPERM;
1417 
1418 			if (!rdev->desc->ops->enable)
1419 				return -EINVAL;
1420 
1421 			/* Query before enabling in case configuration
1422 			 * dependent.  */
1423 			ret = _regulator_get_enable_time(rdev);
1424 			if (ret >= 0) {
1425 				delay = ret;
1426 			} else {
1427 				rdev_warn(rdev, "enable_time() failed: %d\n",
1428 					   ret);
1429 				delay = 0;
1430 			}
1431 
1432 			trace_regulator_enable(rdev_get_name(rdev));
1433 
1434 			/* Allow the regulator to ramp; it would be useful
1435 			 * to extend this for bulk operations so that the
1436 			 * regulators can ramp together.  */
1437 			ret = rdev->desc->ops->enable(rdev);
1438 			if (ret < 0)
1439 				return ret;
1440 
1441 			trace_regulator_enable_delay(rdev_get_name(rdev));
1442 
1443 			if (delay >= 1000) {
1444 				mdelay(delay / 1000);
1445 				udelay(delay % 1000);
1446 			} else if (delay) {
1447 				udelay(delay);
1448 			}
1449 
1450 			trace_regulator_enable_complete(rdev_get_name(rdev));
1451 
1452 		} else if (ret < 0) {
1453 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1454 			return ret;
1455 		}
1456 		/* Fallthrough on positive return values - already enabled */
1457 	}
1458 
1459 	rdev->use_count++;
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * regulator_enable - enable regulator output
1466  * @regulator: regulator source
1467  *
1468  * Request that the regulator be enabled with the regulator output at
1469  * the predefined voltage or current value.  Calls to regulator_enable()
1470  * must be balanced with calls to regulator_disable().
1471  *
1472  * NOTE: the output value can be set by other drivers, boot loader or may be
1473  * hardwired in the regulator.
1474  */
1475 int regulator_enable(struct regulator *regulator)
1476 {
1477 	struct regulator_dev *rdev = regulator->rdev;
1478 	int ret = 0;
1479 
1480 	if (rdev->supply) {
1481 		ret = regulator_enable(rdev->supply);
1482 		if (ret != 0)
1483 			return ret;
1484 	}
1485 
1486 	mutex_lock(&rdev->mutex);
1487 	ret = _regulator_enable(rdev);
1488 	mutex_unlock(&rdev->mutex);
1489 
1490 	if (ret != 0 && rdev->supply)
1491 		regulator_disable(rdev->supply);
1492 
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_enable);
1496 
1497 /* locks held by regulator_disable() */
1498 static int _regulator_disable(struct regulator_dev *rdev)
1499 {
1500 	int ret = 0;
1501 
1502 	if (WARN(rdev->use_count <= 0,
1503 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1504 		return -EIO;
1505 
1506 	/* are we the last user and permitted to disable ? */
1507 	if (rdev->use_count == 1 &&
1508 	    (rdev->constraints && !rdev->constraints->always_on)) {
1509 
1510 		/* we are last user */
1511 		if (_regulator_can_change_status(rdev) &&
1512 		    rdev->desc->ops->disable) {
1513 			trace_regulator_disable(rdev_get_name(rdev));
1514 
1515 			ret = rdev->desc->ops->disable(rdev);
1516 			if (ret < 0) {
1517 				rdev_err(rdev, "failed to disable\n");
1518 				return ret;
1519 			}
1520 
1521 			trace_regulator_disable_complete(rdev_get_name(rdev));
1522 
1523 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1524 					     NULL);
1525 		}
1526 
1527 		rdev->use_count = 0;
1528 	} else if (rdev->use_count > 1) {
1529 
1530 		if (rdev->constraints &&
1531 			(rdev->constraints->valid_ops_mask &
1532 			REGULATOR_CHANGE_DRMS))
1533 			drms_uA_update(rdev);
1534 
1535 		rdev->use_count--;
1536 	}
1537 
1538 	return ret;
1539 }
1540 
1541 /**
1542  * regulator_disable - disable regulator output
1543  * @regulator: regulator source
1544  *
1545  * Disable the regulator output voltage or current.  Calls to
1546  * regulator_enable() must be balanced with calls to
1547  * regulator_disable().
1548  *
1549  * NOTE: this will only disable the regulator output if no other consumer
1550  * devices have it enabled, the regulator device supports disabling and
1551  * machine constraints permit this operation.
1552  */
1553 int regulator_disable(struct regulator *regulator)
1554 {
1555 	struct regulator_dev *rdev = regulator->rdev;
1556 	int ret = 0;
1557 
1558 	mutex_lock(&rdev->mutex);
1559 	ret = _regulator_disable(rdev);
1560 	mutex_unlock(&rdev->mutex);
1561 
1562 	if (ret == 0 && rdev->supply)
1563 		regulator_disable(rdev->supply);
1564 
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(regulator_disable);
1568 
1569 /* locks held by regulator_force_disable() */
1570 static int _regulator_force_disable(struct regulator_dev *rdev)
1571 {
1572 	int ret = 0;
1573 
1574 	/* force disable */
1575 	if (rdev->desc->ops->disable) {
1576 		/* ah well, who wants to live forever... */
1577 		ret = rdev->desc->ops->disable(rdev);
1578 		if (ret < 0) {
1579 			rdev_err(rdev, "failed to force disable\n");
1580 			return ret;
1581 		}
1582 		/* notify other consumers that power has been forced off */
1583 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1584 			REGULATOR_EVENT_DISABLE, NULL);
1585 	}
1586 
1587 	return ret;
1588 }
1589 
1590 /**
1591  * regulator_force_disable - force disable regulator output
1592  * @regulator: regulator source
1593  *
1594  * Forcibly disable the regulator output voltage or current.
1595  * NOTE: this *will* disable the regulator output even if other consumer
1596  * devices have it enabled. This should be used for situations when device
1597  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1598  */
1599 int regulator_force_disable(struct regulator *regulator)
1600 {
1601 	struct regulator_dev *rdev = regulator->rdev;
1602 	int ret;
1603 
1604 	mutex_lock(&rdev->mutex);
1605 	regulator->uA_load = 0;
1606 	ret = _regulator_force_disable(regulator->rdev);
1607 	mutex_unlock(&rdev->mutex);
1608 
1609 	if (rdev->supply)
1610 		while (rdev->open_count--)
1611 			regulator_disable(rdev->supply);
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_force_disable);
1616 
1617 static void regulator_disable_work(struct work_struct *work)
1618 {
1619 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1620 						  disable_work.work);
1621 	int count, i, ret;
1622 
1623 	mutex_lock(&rdev->mutex);
1624 
1625 	BUG_ON(!rdev->deferred_disables);
1626 
1627 	count = rdev->deferred_disables;
1628 	rdev->deferred_disables = 0;
1629 
1630 	for (i = 0; i < count; i++) {
1631 		ret = _regulator_disable(rdev);
1632 		if (ret != 0)
1633 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1634 	}
1635 
1636 	mutex_unlock(&rdev->mutex);
1637 
1638 	if (rdev->supply) {
1639 		for (i = 0; i < count; i++) {
1640 			ret = regulator_disable(rdev->supply);
1641 			if (ret != 0) {
1642 				rdev_err(rdev,
1643 					 "Supply disable failed: %d\n", ret);
1644 			}
1645 		}
1646 	}
1647 }
1648 
1649 /**
1650  * regulator_disable_deferred - disable regulator output with delay
1651  * @regulator: regulator source
1652  * @ms: miliseconds until the regulator is disabled
1653  *
1654  * Execute regulator_disable() on the regulator after a delay.  This
1655  * is intended for use with devices that require some time to quiesce.
1656  *
1657  * NOTE: this will only disable the regulator output if no other consumer
1658  * devices have it enabled, the regulator device supports disabling and
1659  * machine constraints permit this operation.
1660  */
1661 int regulator_disable_deferred(struct regulator *regulator, int ms)
1662 {
1663 	struct regulator_dev *rdev = regulator->rdev;
1664 	int ret;
1665 
1666 	mutex_lock(&rdev->mutex);
1667 	rdev->deferred_disables++;
1668 	mutex_unlock(&rdev->mutex);
1669 
1670 	ret = schedule_delayed_work(&rdev->disable_work,
1671 				    msecs_to_jiffies(ms));
1672 	if (ret < 0)
1673 		return ret;
1674 	else
1675 		return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1678 
1679 static int _regulator_is_enabled(struct regulator_dev *rdev)
1680 {
1681 	/* If we don't know then assume that the regulator is always on */
1682 	if (!rdev->desc->ops->is_enabled)
1683 		return 1;
1684 
1685 	return rdev->desc->ops->is_enabled(rdev);
1686 }
1687 
1688 /**
1689  * regulator_is_enabled - is the regulator output enabled
1690  * @regulator: regulator source
1691  *
1692  * Returns positive if the regulator driver backing the source/client
1693  * has requested that the device be enabled, zero if it hasn't, else a
1694  * negative errno code.
1695  *
1696  * Note that the device backing this regulator handle can have multiple
1697  * users, so it might be enabled even if regulator_enable() was never
1698  * called for this particular source.
1699  */
1700 int regulator_is_enabled(struct regulator *regulator)
1701 {
1702 	int ret;
1703 
1704 	mutex_lock(&regulator->rdev->mutex);
1705 	ret = _regulator_is_enabled(regulator->rdev);
1706 	mutex_unlock(&regulator->rdev->mutex);
1707 
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1711 
1712 /**
1713  * regulator_count_voltages - count regulator_list_voltage() selectors
1714  * @regulator: regulator source
1715  *
1716  * Returns number of selectors, or negative errno.  Selectors are
1717  * numbered starting at zero, and typically correspond to bitfields
1718  * in hardware registers.
1719  */
1720 int regulator_count_voltages(struct regulator *regulator)
1721 {
1722 	struct regulator_dev	*rdev = regulator->rdev;
1723 
1724 	return rdev->desc->n_voltages ? : -EINVAL;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1727 
1728 /**
1729  * regulator_list_voltage - enumerate supported voltages
1730  * @regulator: regulator source
1731  * @selector: identify voltage to list
1732  * Context: can sleep
1733  *
1734  * Returns a voltage that can be passed to @regulator_set_voltage(),
1735  * zero if this selector code can't be used on this system, or a
1736  * negative errno.
1737  */
1738 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1739 {
1740 	struct regulator_dev	*rdev = regulator->rdev;
1741 	struct regulator_ops	*ops = rdev->desc->ops;
1742 	int			ret;
1743 
1744 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1745 		return -EINVAL;
1746 
1747 	mutex_lock(&rdev->mutex);
1748 	ret = ops->list_voltage(rdev, selector);
1749 	mutex_unlock(&rdev->mutex);
1750 
1751 	if (ret > 0) {
1752 		if (ret < rdev->constraints->min_uV)
1753 			ret = 0;
1754 		else if (ret > rdev->constraints->max_uV)
1755 			ret = 0;
1756 	}
1757 
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1761 
1762 /**
1763  * regulator_is_supported_voltage - check if a voltage range can be supported
1764  *
1765  * @regulator: Regulator to check.
1766  * @min_uV: Minimum required voltage in uV.
1767  * @max_uV: Maximum required voltage in uV.
1768  *
1769  * Returns a boolean or a negative error code.
1770  */
1771 int regulator_is_supported_voltage(struct regulator *regulator,
1772 				   int min_uV, int max_uV)
1773 {
1774 	int i, voltages, ret;
1775 
1776 	ret = regulator_count_voltages(regulator);
1777 	if (ret < 0)
1778 		return ret;
1779 	voltages = ret;
1780 
1781 	for (i = 0; i < voltages; i++) {
1782 		ret = regulator_list_voltage(regulator, i);
1783 
1784 		if (ret >= min_uV && ret <= max_uV)
1785 			return 1;
1786 	}
1787 
1788 	return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1791 
1792 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1793 				     int min_uV, int max_uV)
1794 {
1795 	int ret;
1796 	int delay = 0;
1797 	unsigned int selector;
1798 
1799 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1800 
1801 	min_uV += rdev->constraints->uV_offset;
1802 	max_uV += rdev->constraints->uV_offset;
1803 
1804 	if (rdev->desc->ops->set_voltage) {
1805 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1806 						   &selector);
1807 
1808 		if (rdev->desc->ops->list_voltage)
1809 			selector = rdev->desc->ops->list_voltage(rdev,
1810 								 selector);
1811 		else
1812 			selector = -1;
1813 	} else if (rdev->desc->ops->set_voltage_sel) {
1814 		int best_val = INT_MAX;
1815 		int i;
1816 
1817 		selector = 0;
1818 
1819 		/* Find the smallest voltage that falls within the specified
1820 		 * range.
1821 		 */
1822 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1823 			ret = rdev->desc->ops->list_voltage(rdev, i);
1824 			if (ret < 0)
1825 				continue;
1826 
1827 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1828 				best_val = ret;
1829 				selector = i;
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * If we can't obtain the old selector there is not enough
1835 		 * info to call set_voltage_time_sel().
1836 		 */
1837 		if (rdev->desc->ops->set_voltage_time_sel &&
1838 		    rdev->desc->ops->get_voltage_sel) {
1839 			unsigned int old_selector = 0;
1840 
1841 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1842 			if (ret < 0)
1843 				return ret;
1844 			old_selector = ret;
1845 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1846 						old_selector, selector);
1847 		}
1848 
1849 		if (best_val != INT_MAX) {
1850 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1851 			selector = best_val;
1852 		} else {
1853 			ret = -EINVAL;
1854 		}
1855 	} else {
1856 		ret = -EINVAL;
1857 	}
1858 
1859 	/* Insert any necessary delays */
1860 	if (delay >= 1000) {
1861 		mdelay(delay / 1000);
1862 		udelay(delay % 1000);
1863 	} else if (delay) {
1864 		udelay(delay);
1865 	}
1866 
1867 	if (ret == 0)
1868 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1869 				     NULL);
1870 
1871 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1872 
1873 	return ret;
1874 }
1875 
1876 /**
1877  * regulator_set_voltage - set regulator output voltage
1878  * @regulator: regulator source
1879  * @min_uV: Minimum required voltage in uV
1880  * @max_uV: Maximum acceptable voltage in uV
1881  *
1882  * Sets a voltage regulator to the desired output voltage. This can be set
1883  * during any regulator state. IOW, regulator can be disabled or enabled.
1884  *
1885  * If the regulator is enabled then the voltage will change to the new value
1886  * immediately otherwise if the regulator is disabled the regulator will
1887  * output at the new voltage when enabled.
1888  *
1889  * NOTE: If the regulator is shared between several devices then the lowest
1890  * request voltage that meets the system constraints will be used.
1891  * Regulator system constraints must be set for this regulator before
1892  * calling this function otherwise this call will fail.
1893  */
1894 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1895 {
1896 	struct regulator_dev *rdev = regulator->rdev;
1897 	int ret = 0;
1898 
1899 	mutex_lock(&rdev->mutex);
1900 
1901 	/* If we're setting the same range as last time the change
1902 	 * should be a noop (some cpufreq implementations use the same
1903 	 * voltage for multiple frequencies, for example).
1904 	 */
1905 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1906 		goto out;
1907 
1908 	/* sanity check */
1909 	if (!rdev->desc->ops->set_voltage &&
1910 	    !rdev->desc->ops->set_voltage_sel) {
1911 		ret = -EINVAL;
1912 		goto out;
1913 	}
1914 
1915 	/* constraints check */
1916 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1917 	if (ret < 0)
1918 		goto out;
1919 	regulator->min_uV = min_uV;
1920 	regulator->max_uV = max_uV;
1921 
1922 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1923 	if (ret < 0)
1924 		goto out;
1925 
1926 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1927 
1928 out:
1929 	mutex_unlock(&rdev->mutex);
1930 	return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1933 
1934 /**
1935  * regulator_set_voltage_time - get raise/fall time
1936  * @regulator: regulator source
1937  * @old_uV: starting voltage in microvolts
1938  * @new_uV: target voltage in microvolts
1939  *
1940  * Provided with the starting and ending voltage, this function attempts to
1941  * calculate the time in microseconds required to rise or fall to this new
1942  * voltage.
1943  */
1944 int regulator_set_voltage_time(struct regulator *regulator,
1945 			       int old_uV, int new_uV)
1946 {
1947 	struct regulator_dev	*rdev = regulator->rdev;
1948 	struct regulator_ops	*ops = rdev->desc->ops;
1949 	int old_sel = -1;
1950 	int new_sel = -1;
1951 	int voltage;
1952 	int i;
1953 
1954 	/* Currently requires operations to do this */
1955 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1956 	    || !rdev->desc->n_voltages)
1957 		return -EINVAL;
1958 
1959 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1960 		/* We only look for exact voltage matches here */
1961 		voltage = regulator_list_voltage(regulator, i);
1962 		if (voltage < 0)
1963 			return -EINVAL;
1964 		if (voltage == 0)
1965 			continue;
1966 		if (voltage == old_uV)
1967 			old_sel = i;
1968 		if (voltage == new_uV)
1969 			new_sel = i;
1970 	}
1971 
1972 	if (old_sel < 0 || new_sel < 0)
1973 		return -EINVAL;
1974 
1975 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1978 
1979 /**
1980  * regulator_sync_voltage - re-apply last regulator output voltage
1981  * @regulator: regulator source
1982  *
1983  * Re-apply the last configured voltage.  This is intended to be used
1984  * where some external control source the consumer is cooperating with
1985  * has caused the configured voltage to change.
1986  */
1987 int regulator_sync_voltage(struct regulator *regulator)
1988 {
1989 	struct regulator_dev *rdev = regulator->rdev;
1990 	int ret, min_uV, max_uV;
1991 
1992 	mutex_lock(&rdev->mutex);
1993 
1994 	if (!rdev->desc->ops->set_voltage &&
1995 	    !rdev->desc->ops->set_voltage_sel) {
1996 		ret = -EINVAL;
1997 		goto out;
1998 	}
1999 
2000 	/* This is only going to work if we've had a voltage configured. */
2001 	if (!regulator->min_uV && !regulator->max_uV) {
2002 		ret = -EINVAL;
2003 		goto out;
2004 	}
2005 
2006 	min_uV = regulator->min_uV;
2007 	max_uV = regulator->max_uV;
2008 
2009 	/* This should be a paranoia check... */
2010 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2011 	if (ret < 0)
2012 		goto out;
2013 
2014 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2015 	if (ret < 0)
2016 		goto out;
2017 
2018 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2019 
2020 out:
2021 	mutex_unlock(&rdev->mutex);
2022 	return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2025 
2026 static int _regulator_get_voltage(struct regulator_dev *rdev)
2027 {
2028 	int sel, ret;
2029 
2030 	if (rdev->desc->ops->get_voltage_sel) {
2031 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2032 		if (sel < 0)
2033 			return sel;
2034 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2035 	} else if (rdev->desc->ops->get_voltage) {
2036 		ret = rdev->desc->ops->get_voltage(rdev);
2037 	} else {
2038 		return -EINVAL;
2039 	}
2040 
2041 	if (ret < 0)
2042 		return ret;
2043 	return ret - rdev->constraints->uV_offset;
2044 }
2045 
2046 /**
2047  * regulator_get_voltage - get regulator output voltage
2048  * @regulator: regulator source
2049  *
2050  * This returns the current regulator voltage in uV.
2051  *
2052  * NOTE: If the regulator is disabled it will return the voltage value. This
2053  * function should not be used to determine regulator state.
2054  */
2055 int regulator_get_voltage(struct regulator *regulator)
2056 {
2057 	int ret;
2058 
2059 	mutex_lock(&regulator->rdev->mutex);
2060 
2061 	ret = _regulator_get_voltage(regulator->rdev);
2062 
2063 	mutex_unlock(&regulator->rdev->mutex);
2064 
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2068 
2069 /**
2070  * regulator_set_current_limit - set regulator output current limit
2071  * @regulator: regulator source
2072  * @min_uA: Minimuum supported current in uA
2073  * @max_uA: Maximum supported current in uA
2074  *
2075  * Sets current sink to the desired output current. This can be set during
2076  * any regulator state. IOW, regulator can be disabled or enabled.
2077  *
2078  * If the regulator is enabled then the current will change to the new value
2079  * immediately otherwise if the regulator is disabled the regulator will
2080  * output at the new current when enabled.
2081  *
2082  * NOTE: Regulator system constraints must be set for this regulator before
2083  * calling this function otherwise this call will fail.
2084  */
2085 int regulator_set_current_limit(struct regulator *regulator,
2086 			       int min_uA, int max_uA)
2087 {
2088 	struct regulator_dev *rdev = regulator->rdev;
2089 	int ret;
2090 
2091 	mutex_lock(&rdev->mutex);
2092 
2093 	/* sanity check */
2094 	if (!rdev->desc->ops->set_current_limit) {
2095 		ret = -EINVAL;
2096 		goto out;
2097 	}
2098 
2099 	/* constraints check */
2100 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2101 	if (ret < 0)
2102 		goto out;
2103 
2104 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2105 out:
2106 	mutex_unlock(&rdev->mutex);
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2110 
2111 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2112 {
2113 	int ret;
2114 
2115 	mutex_lock(&rdev->mutex);
2116 
2117 	/* sanity check */
2118 	if (!rdev->desc->ops->get_current_limit) {
2119 		ret = -EINVAL;
2120 		goto out;
2121 	}
2122 
2123 	ret = rdev->desc->ops->get_current_limit(rdev);
2124 out:
2125 	mutex_unlock(&rdev->mutex);
2126 	return ret;
2127 }
2128 
2129 /**
2130  * regulator_get_current_limit - get regulator output current
2131  * @regulator: regulator source
2132  *
2133  * This returns the current supplied by the specified current sink in uA.
2134  *
2135  * NOTE: If the regulator is disabled it will return the current value. This
2136  * function should not be used to determine regulator state.
2137  */
2138 int regulator_get_current_limit(struct regulator *regulator)
2139 {
2140 	return _regulator_get_current_limit(regulator->rdev);
2141 }
2142 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2143 
2144 /**
2145  * regulator_set_mode - set regulator operating mode
2146  * @regulator: regulator source
2147  * @mode: operating mode - one of the REGULATOR_MODE constants
2148  *
2149  * Set regulator operating mode to increase regulator efficiency or improve
2150  * regulation performance.
2151  *
2152  * NOTE: Regulator system constraints must be set for this regulator before
2153  * calling this function otherwise this call will fail.
2154  */
2155 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2156 {
2157 	struct regulator_dev *rdev = regulator->rdev;
2158 	int ret;
2159 	int regulator_curr_mode;
2160 
2161 	mutex_lock(&rdev->mutex);
2162 
2163 	/* sanity check */
2164 	if (!rdev->desc->ops->set_mode) {
2165 		ret = -EINVAL;
2166 		goto out;
2167 	}
2168 
2169 	/* return if the same mode is requested */
2170 	if (rdev->desc->ops->get_mode) {
2171 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2172 		if (regulator_curr_mode == mode) {
2173 			ret = 0;
2174 			goto out;
2175 		}
2176 	}
2177 
2178 	/* constraints check */
2179 	ret = regulator_mode_constrain(rdev, &mode);
2180 	if (ret < 0)
2181 		goto out;
2182 
2183 	ret = rdev->desc->ops->set_mode(rdev, mode);
2184 out:
2185 	mutex_unlock(&rdev->mutex);
2186 	return ret;
2187 }
2188 EXPORT_SYMBOL_GPL(regulator_set_mode);
2189 
2190 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2191 {
2192 	int ret;
2193 
2194 	mutex_lock(&rdev->mutex);
2195 
2196 	/* sanity check */
2197 	if (!rdev->desc->ops->get_mode) {
2198 		ret = -EINVAL;
2199 		goto out;
2200 	}
2201 
2202 	ret = rdev->desc->ops->get_mode(rdev);
2203 out:
2204 	mutex_unlock(&rdev->mutex);
2205 	return ret;
2206 }
2207 
2208 /**
2209  * regulator_get_mode - get regulator operating mode
2210  * @regulator: regulator source
2211  *
2212  * Get the current regulator operating mode.
2213  */
2214 unsigned int regulator_get_mode(struct regulator *regulator)
2215 {
2216 	return _regulator_get_mode(regulator->rdev);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_mode);
2219 
2220 /**
2221  * regulator_set_optimum_mode - set regulator optimum operating mode
2222  * @regulator: regulator source
2223  * @uA_load: load current
2224  *
2225  * Notifies the regulator core of a new device load. This is then used by
2226  * DRMS (if enabled by constraints) to set the most efficient regulator
2227  * operating mode for the new regulator loading.
2228  *
2229  * Consumer devices notify their supply regulator of the maximum power
2230  * they will require (can be taken from device datasheet in the power
2231  * consumption tables) when they change operational status and hence power
2232  * state. Examples of operational state changes that can affect power
2233  * consumption are :-
2234  *
2235  *    o Device is opened / closed.
2236  *    o Device I/O is about to begin or has just finished.
2237  *    o Device is idling in between work.
2238  *
2239  * This information is also exported via sysfs to userspace.
2240  *
2241  * DRMS will sum the total requested load on the regulator and change
2242  * to the most efficient operating mode if platform constraints allow.
2243  *
2244  * Returns the new regulator mode or error.
2245  */
2246 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2247 {
2248 	struct regulator_dev *rdev = regulator->rdev;
2249 	struct regulator *consumer;
2250 	int ret, output_uV, input_uV, total_uA_load = 0;
2251 	unsigned int mode;
2252 
2253 	mutex_lock(&rdev->mutex);
2254 
2255 	/*
2256 	 * first check to see if we can set modes at all, otherwise just
2257 	 * tell the consumer everything is OK.
2258 	 */
2259 	regulator->uA_load = uA_load;
2260 	ret = regulator_check_drms(rdev);
2261 	if (ret < 0) {
2262 		ret = 0;
2263 		goto out;
2264 	}
2265 
2266 	if (!rdev->desc->ops->get_optimum_mode)
2267 		goto out;
2268 
2269 	/*
2270 	 * we can actually do this so any errors are indicators of
2271 	 * potential real failure.
2272 	 */
2273 	ret = -EINVAL;
2274 
2275 	/* get output voltage */
2276 	output_uV = _regulator_get_voltage(rdev);
2277 	if (output_uV <= 0) {
2278 		rdev_err(rdev, "invalid output voltage found\n");
2279 		goto out;
2280 	}
2281 
2282 	/* get input voltage */
2283 	input_uV = 0;
2284 	if (rdev->supply)
2285 		input_uV = regulator_get_voltage(rdev->supply);
2286 	if (input_uV <= 0)
2287 		input_uV = rdev->constraints->input_uV;
2288 	if (input_uV <= 0) {
2289 		rdev_err(rdev, "invalid input voltage found\n");
2290 		goto out;
2291 	}
2292 
2293 	/* calc total requested load for this regulator */
2294 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2295 		total_uA_load += consumer->uA_load;
2296 
2297 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2298 						 input_uV, output_uV,
2299 						 total_uA_load);
2300 	ret = regulator_mode_constrain(rdev, &mode);
2301 	if (ret < 0) {
2302 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2303 			 total_uA_load, input_uV, output_uV);
2304 		goto out;
2305 	}
2306 
2307 	ret = rdev->desc->ops->set_mode(rdev, mode);
2308 	if (ret < 0) {
2309 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2310 		goto out;
2311 	}
2312 	ret = mode;
2313 out:
2314 	mutex_unlock(&rdev->mutex);
2315 	return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2318 
2319 /**
2320  * regulator_register_notifier - register regulator event notifier
2321  * @regulator: regulator source
2322  * @nb: notifier block
2323  *
2324  * Register notifier block to receive regulator events.
2325  */
2326 int regulator_register_notifier(struct regulator *regulator,
2327 			      struct notifier_block *nb)
2328 {
2329 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2330 						nb);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2333 
2334 /**
2335  * regulator_unregister_notifier - unregister regulator event notifier
2336  * @regulator: regulator source
2337  * @nb: notifier block
2338  *
2339  * Unregister regulator event notifier block.
2340  */
2341 int regulator_unregister_notifier(struct regulator *regulator,
2342 				struct notifier_block *nb)
2343 {
2344 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2345 						  nb);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2348 
2349 /* notify regulator consumers and downstream regulator consumers.
2350  * Note mutex must be held by caller.
2351  */
2352 static void _notifier_call_chain(struct regulator_dev *rdev,
2353 				  unsigned long event, void *data)
2354 {
2355 	/* call rdev chain first */
2356 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2357 }
2358 
2359 /**
2360  * regulator_bulk_get - get multiple regulator consumers
2361  *
2362  * @dev:           Device to supply
2363  * @num_consumers: Number of consumers to register
2364  * @consumers:     Configuration of consumers; clients are stored here.
2365  *
2366  * @return 0 on success, an errno on failure.
2367  *
2368  * This helper function allows drivers to get several regulator
2369  * consumers in one operation.  If any of the regulators cannot be
2370  * acquired then any regulators that were allocated will be freed
2371  * before returning to the caller.
2372  */
2373 int regulator_bulk_get(struct device *dev, int num_consumers,
2374 		       struct regulator_bulk_data *consumers)
2375 {
2376 	int i;
2377 	int ret;
2378 
2379 	for (i = 0; i < num_consumers; i++)
2380 		consumers[i].consumer = NULL;
2381 
2382 	for (i = 0; i < num_consumers; i++) {
2383 		consumers[i].consumer = regulator_get(dev,
2384 						      consumers[i].supply);
2385 		if (IS_ERR(consumers[i].consumer)) {
2386 			ret = PTR_ERR(consumers[i].consumer);
2387 			dev_err(dev, "Failed to get supply '%s': %d\n",
2388 				consumers[i].supply, ret);
2389 			consumers[i].consumer = NULL;
2390 			goto err;
2391 		}
2392 	}
2393 
2394 	return 0;
2395 
2396 err:
2397 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2398 		regulator_put(consumers[i].consumer);
2399 
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2403 
2404 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2405 {
2406 	struct regulator_bulk_data *bulk = data;
2407 
2408 	bulk->ret = regulator_enable(bulk->consumer);
2409 }
2410 
2411 /**
2412  * regulator_bulk_enable - enable multiple regulator consumers
2413  *
2414  * @num_consumers: Number of consumers
2415  * @consumers:     Consumer data; clients are stored here.
2416  * @return         0 on success, an errno on failure
2417  *
2418  * This convenience API allows consumers to enable multiple regulator
2419  * clients in a single API call.  If any consumers cannot be enabled
2420  * then any others that were enabled will be disabled again prior to
2421  * return.
2422  */
2423 int regulator_bulk_enable(int num_consumers,
2424 			  struct regulator_bulk_data *consumers)
2425 {
2426 	LIST_HEAD(async_domain);
2427 	int i;
2428 	int ret = 0;
2429 
2430 	for (i = 0; i < num_consumers; i++)
2431 		async_schedule_domain(regulator_bulk_enable_async,
2432 				      &consumers[i], &async_domain);
2433 
2434 	async_synchronize_full_domain(&async_domain);
2435 
2436 	/* If any consumer failed we need to unwind any that succeeded */
2437 	for (i = 0; i < num_consumers; i++) {
2438 		if (consumers[i].ret != 0) {
2439 			ret = consumers[i].ret;
2440 			goto err;
2441 		}
2442 	}
2443 
2444 	return 0;
2445 
2446 err:
2447 	for (i = 0; i < num_consumers; i++)
2448 		if (consumers[i].ret == 0)
2449 			regulator_disable(consumers[i].consumer);
2450 		else
2451 			pr_err("Failed to enable %s: %d\n",
2452 			       consumers[i].supply, consumers[i].ret);
2453 
2454 	return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2457 
2458 /**
2459  * regulator_bulk_disable - disable multiple regulator consumers
2460  *
2461  * @num_consumers: Number of consumers
2462  * @consumers:     Consumer data; clients are stored here.
2463  * @return         0 on success, an errno on failure
2464  *
2465  * This convenience API allows consumers to disable multiple regulator
2466  * clients in a single API call.  If any consumers cannot be enabled
2467  * then any others that were disabled will be disabled again prior to
2468  * return.
2469  */
2470 int regulator_bulk_disable(int num_consumers,
2471 			   struct regulator_bulk_data *consumers)
2472 {
2473 	int i;
2474 	int ret;
2475 
2476 	for (i = 0; i < num_consumers; i++) {
2477 		ret = regulator_disable(consumers[i].consumer);
2478 		if (ret != 0)
2479 			goto err;
2480 	}
2481 
2482 	return 0;
2483 
2484 err:
2485 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486 	for (--i; i >= 0; --i)
2487 		regulator_enable(consumers[i].consumer);
2488 
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2492 
2493 /**
2494  * regulator_bulk_force_disable - force disable multiple regulator consumers
2495  *
2496  * @num_consumers: Number of consumers
2497  * @consumers:     Consumer data; clients are stored here.
2498  * @return         0 on success, an errno on failure
2499  *
2500  * This convenience API allows consumers to forcibly disable multiple regulator
2501  * clients in a single API call.
2502  * NOTE: This should be used for situations when device damage will
2503  * likely occur if the regulators are not disabled (e.g. over temp).
2504  * Although regulator_force_disable function call for some consumers can
2505  * return error numbers, the function is called for all consumers.
2506  */
2507 int regulator_bulk_force_disable(int num_consumers,
2508 			   struct regulator_bulk_data *consumers)
2509 {
2510 	int i;
2511 	int ret;
2512 
2513 	for (i = 0; i < num_consumers; i++)
2514 		consumers[i].ret =
2515 			    regulator_force_disable(consumers[i].consumer);
2516 
2517 	for (i = 0; i < num_consumers; i++) {
2518 		if (consumers[i].ret != 0) {
2519 			ret = consumers[i].ret;
2520 			goto out;
2521 		}
2522 	}
2523 
2524 	return 0;
2525 out:
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2529 
2530 /**
2531  * regulator_bulk_free - free multiple regulator consumers
2532  *
2533  * @num_consumers: Number of consumers
2534  * @consumers:     Consumer data; clients are stored here.
2535  *
2536  * This convenience API allows consumers to free multiple regulator
2537  * clients in a single API call.
2538  */
2539 void regulator_bulk_free(int num_consumers,
2540 			 struct regulator_bulk_data *consumers)
2541 {
2542 	int i;
2543 
2544 	for (i = 0; i < num_consumers; i++) {
2545 		regulator_put(consumers[i].consumer);
2546 		consumers[i].consumer = NULL;
2547 	}
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2550 
2551 /**
2552  * regulator_notifier_call_chain - call regulator event notifier
2553  * @rdev: regulator source
2554  * @event: notifier block
2555  * @data: callback-specific data.
2556  *
2557  * Called by regulator drivers to notify clients a regulator event has
2558  * occurred. We also notify regulator clients downstream.
2559  * Note lock must be held by caller.
2560  */
2561 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2562 				  unsigned long event, void *data)
2563 {
2564 	_notifier_call_chain(rdev, event, data);
2565 	return NOTIFY_DONE;
2566 
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2569 
2570 /**
2571  * regulator_mode_to_status - convert a regulator mode into a status
2572  *
2573  * @mode: Mode to convert
2574  *
2575  * Convert a regulator mode into a status.
2576  */
2577 int regulator_mode_to_status(unsigned int mode)
2578 {
2579 	switch (mode) {
2580 	case REGULATOR_MODE_FAST:
2581 		return REGULATOR_STATUS_FAST;
2582 	case REGULATOR_MODE_NORMAL:
2583 		return REGULATOR_STATUS_NORMAL;
2584 	case REGULATOR_MODE_IDLE:
2585 		return REGULATOR_STATUS_IDLE;
2586 	case REGULATOR_STATUS_STANDBY:
2587 		return REGULATOR_STATUS_STANDBY;
2588 	default:
2589 		return 0;
2590 	}
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2593 
2594 /*
2595  * To avoid cluttering sysfs (and memory) with useless state, only
2596  * create attributes that can be meaningfully displayed.
2597  */
2598 static int add_regulator_attributes(struct regulator_dev *rdev)
2599 {
2600 	struct device		*dev = &rdev->dev;
2601 	struct regulator_ops	*ops = rdev->desc->ops;
2602 	int			status = 0;
2603 
2604 	/* some attributes need specific methods to be displayed */
2605 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2606 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607 		status = device_create_file(dev, &dev_attr_microvolts);
2608 		if (status < 0)
2609 			return status;
2610 	}
2611 	if (ops->get_current_limit) {
2612 		status = device_create_file(dev, &dev_attr_microamps);
2613 		if (status < 0)
2614 			return status;
2615 	}
2616 	if (ops->get_mode) {
2617 		status = device_create_file(dev, &dev_attr_opmode);
2618 		if (status < 0)
2619 			return status;
2620 	}
2621 	if (ops->is_enabled) {
2622 		status = device_create_file(dev, &dev_attr_state);
2623 		if (status < 0)
2624 			return status;
2625 	}
2626 	if (ops->get_status) {
2627 		status = device_create_file(dev, &dev_attr_status);
2628 		if (status < 0)
2629 			return status;
2630 	}
2631 
2632 	/* some attributes are type-specific */
2633 	if (rdev->desc->type == REGULATOR_CURRENT) {
2634 		status = device_create_file(dev, &dev_attr_requested_microamps);
2635 		if (status < 0)
2636 			return status;
2637 	}
2638 
2639 	/* all the other attributes exist to support constraints;
2640 	 * don't show them if there are no constraints, or if the
2641 	 * relevant supporting methods are missing.
2642 	 */
2643 	if (!rdev->constraints)
2644 		return status;
2645 
2646 	/* constraints need specific supporting methods */
2647 	if (ops->set_voltage || ops->set_voltage_sel) {
2648 		status = device_create_file(dev, &dev_attr_min_microvolts);
2649 		if (status < 0)
2650 			return status;
2651 		status = device_create_file(dev, &dev_attr_max_microvolts);
2652 		if (status < 0)
2653 			return status;
2654 	}
2655 	if (ops->set_current_limit) {
2656 		status = device_create_file(dev, &dev_attr_min_microamps);
2657 		if (status < 0)
2658 			return status;
2659 		status = device_create_file(dev, &dev_attr_max_microamps);
2660 		if (status < 0)
2661 			return status;
2662 	}
2663 
2664 	/* suspend mode constraints need multiple supporting methods */
2665 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2666 		return status;
2667 
2668 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2669 	if (status < 0)
2670 		return status;
2671 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2672 	if (status < 0)
2673 		return status;
2674 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2675 	if (status < 0)
2676 		return status;
2677 
2678 	if (ops->set_suspend_voltage) {
2679 		status = device_create_file(dev,
2680 				&dev_attr_suspend_standby_microvolts);
2681 		if (status < 0)
2682 			return status;
2683 		status = device_create_file(dev,
2684 				&dev_attr_suspend_mem_microvolts);
2685 		if (status < 0)
2686 			return status;
2687 		status = device_create_file(dev,
2688 				&dev_attr_suspend_disk_microvolts);
2689 		if (status < 0)
2690 			return status;
2691 	}
2692 
2693 	if (ops->set_suspend_mode) {
2694 		status = device_create_file(dev,
2695 				&dev_attr_suspend_standby_mode);
2696 		if (status < 0)
2697 			return status;
2698 		status = device_create_file(dev,
2699 				&dev_attr_suspend_mem_mode);
2700 		if (status < 0)
2701 			return status;
2702 		status = device_create_file(dev,
2703 				&dev_attr_suspend_disk_mode);
2704 		if (status < 0)
2705 			return status;
2706 	}
2707 
2708 	return status;
2709 }
2710 
2711 static void rdev_init_debugfs(struct regulator_dev *rdev)
2712 {
2713 #ifdef CONFIG_DEBUG_FS
2714 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2716 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2717 		rdev->debugfs = NULL;
2718 		return;
2719 	}
2720 
2721 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2722 			   &rdev->use_count);
2723 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2724 			   &rdev->open_count);
2725 #endif
2726 }
2727 
2728 /**
2729  * regulator_register - register regulator
2730  * @regulator_desc: regulator to register
2731  * @dev: struct device for the regulator
2732  * @init_data: platform provided init data, passed through by driver
2733  * @driver_data: private regulator data
2734  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2735  *           NULL).
2736  *
2737  * Called by regulator drivers to register a regulator.
2738  * Returns 0 on success.
2739  */
2740 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2741 	struct device *dev, const struct regulator_init_data *init_data,
2742 	void *driver_data, struct device_node *of_node)
2743 {
2744 	const struct regulation_constraints *constraints = NULL;
2745 	static atomic_t regulator_no = ATOMIC_INIT(0);
2746 	struct regulator_dev *rdev;
2747 	int ret, i;
2748 	const char *supply = NULL;
2749 
2750 	if (regulator_desc == NULL)
2751 		return ERR_PTR(-EINVAL);
2752 
2753 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2754 		return ERR_PTR(-EINVAL);
2755 
2756 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2757 	    regulator_desc->type != REGULATOR_CURRENT)
2758 		return ERR_PTR(-EINVAL);
2759 
2760 	/* Only one of each should be implemented */
2761 	WARN_ON(regulator_desc->ops->get_voltage &&
2762 		regulator_desc->ops->get_voltage_sel);
2763 	WARN_ON(regulator_desc->ops->set_voltage &&
2764 		regulator_desc->ops->set_voltage_sel);
2765 
2766 	/* If we're using selectors we must implement list_voltage. */
2767 	if (regulator_desc->ops->get_voltage_sel &&
2768 	    !regulator_desc->ops->list_voltage) {
2769 		return ERR_PTR(-EINVAL);
2770 	}
2771 	if (regulator_desc->ops->set_voltage_sel &&
2772 	    !regulator_desc->ops->list_voltage) {
2773 		return ERR_PTR(-EINVAL);
2774 	}
2775 
2776 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2777 	if (rdev == NULL)
2778 		return ERR_PTR(-ENOMEM);
2779 
2780 	mutex_lock(&regulator_list_mutex);
2781 
2782 	mutex_init(&rdev->mutex);
2783 	rdev->reg_data = driver_data;
2784 	rdev->owner = regulator_desc->owner;
2785 	rdev->desc = regulator_desc;
2786 	INIT_LIST_HEAD(&rdev->consumer_list);
2787 	INIT_LIST_HEAD(&rdev->list);
2788 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2789 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2790 
2791 	/* preform any regulator specific init */
2792 	if (init_data && init_data->regulator_init) {
2793 		ret = init_data->regulator_init(rdev->reg_data);
2794 		if (ret < 0)
2795 			goto clean;
2796 	}
2797 
2798 	/* register with sysfs */
2799 	rdev->dev.class = &regulator_class;
2800 	rdev->dev.of_node = of_node;
2801 	rdev->dev.parent = dev;
2802 	dev_set_name(&rdev->dev, "regulator.%d",
2803 		     atomic_inc_return(&regulator_no) - 1);
2804 	ret = device_register(&rdev->dev);
2805 	if (ret != 0) {
2806 		put_device(&rdev->dev);
2807 		goto clean;
2808 	}
2809 
2810 	dev_set_drvdata(&rdev->dev, rdev);
2811 
2812 	/* set regulator constraints */
2813 	if (init_data)
2814 		constraints = &init_data->constraints;
2815 
2816 	ret = set_machine_constraints(rdev, constraints);
2817 	if (ret < 0)
2818 		goto scrub;
2819 
2820 	/* add attributes supported by this regulator */
2821 	ret = add_regulator_attributes(rdev);
2822 	if (ret < 0)
2823 		goto scrub;
2824 
2825 	if (init_data && init_data->supply_regulator)
2826 		supply = init_data->supply_regulator;
2827 	else if (regulator_desc->supply_name)
2828 		supply = regulator_desc->supply_name;
2829 
2830 	if (supply) {
2831 		struct regulator_dev *r;
2832 
2833 		r = regulator_dev_lookup(dev, supply);
2834 
2835 		if (!r) {
2836 			dev_err(dev, "Failed to find supply %s\n", supply);
2837 			ret = -ENODEV;
2838 			goto scrub;
2839 		}
2840 
2841 		ret = set_supply(rdev, r);
2842 		if (ret < 0)
2843 			goto scrub;
2844 
2845 		/* Enable supply if rail is enabled */
2846 		if (rdev->desc->ops->is_enabled &&
2847 				rdev->desc->ops->is_enabled(rdev)) {
2848 			ret = regulator_enable(rdev->supply);
2849 			if (ret < 0)
2850 				goto scrub;
2851 		}
2852 	}
2853 
2854 	/* add consumers devices */
2855 	if (init_data) {
2856 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2857 			ret = set_consumer_device_supply(rdev,
2858 				init_data->consumer_supplies[i].dev,
2859 				init_data->consumer_supplies[i].dev_name,
2860 				init_data->consumer_supplies[i].supply);
2861 			if (ret < 0) {
2862 				dev_err(dev, "Failed to set supply %s\n",
2863 					init_data->consumer_supplies[i].supply);
2864 				goto unset_supplies;
2865 			}
2866 		}
2867 	}
2868 
2869 	list_add(&rdev->list, &regulator_list);
2870 
2871 	rdev_init_debugfs(rdev);
2872 out:
2873 	mutex_unlock(&regulator_list_mutex);
2874 	return rdev;
2875 
2876 unset_supplies:
2877 	unset_regulator_supplies(rdev);
2878 
2879 scrub:
2880 	kfree(rdev->constraints);
2881 	device_unregister(&rdev->dev);
2882 	/* device core frees rdev */
2883 	rdev = ERR_PTR(ret);
2884 	goto out;
2885 
2886 clean:
2887 	kfree(rdev);
2888 	rdev = ERR_PTR(ret);
2889 	goto out;
2890 }
2891 EXPORT_SYMBOL_GPL(regulator_register);
2892 
2893 /**
2894  * regulator_unregister - unregister regulator
2895  * @rdev: regulator to unregister
2896  *
2897  * Called by regulator drivers to unregister a regulator.
2898  */
2899 void regulator_unregister(struct regulator_dev *rdev)
2900 {
2901 	if (rdev == NULL)
2902 		return;
2903 
2904 	mutex_lock(&regulator_list_mutex);
2905 #ifdef CONFIG_DEBUG_FS
2906 	debugfs_remove_recursive(rdev->debugfs);
2907 #endif
2908 	flush_work_sync(&rdev->disable_work.work);
2909 	WARN_ON(rdev->open_count);
2910 	unset_regulator_supplies(rdev);
2911 	list_del(&rdev->list);
2912 	if (rdev->supply)
2913 		regulator_put(rdev->supply);
2914 	kfree(rdev->constraints);
2915 	device_unregister(&rdev->dev);
2916 	mutex_unlock(&regulator_list_mutex);
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_unregister);
2919 
2920 /**
2921  * regulator_suspend_prepare - prepare regulators for system wide suspend
2922  * @state: system suspend state
2923  *
2924  * Configure each regulator with it's suspend operating parameters for state.
2925  * This will usually be called by machine suspend code prior to supending.
2926  */
2927 int regulator_suspend_prepare(suspend_state_t state)
2928 {
2929 	struct regulator_dev *rdev;
2930 	int ret = 0;
2931 
2932 	/* ON is handled by regulator active state */
2933 	if (state == PM_SUSPEND_ON)
2934 		return -EINVAL;
2935 
2936 	mutex_lock(&regulator_list_mutex);
2937 	list_for_each_entry(rdev, &regulator_list, list) {
2938 
2939 		mutex_lock(&rdev->mutex);
2940 		ret = suspend_prepare(rdev, state);
2941 		mutex_unlock(&rdev->mutex);
2942 
2943 		if (ret < 0) {
2944 			rdev_err(rdev, "failed to prepare\n");
2945 			goto out;
2946 		}
2947 	}
2948 out:
2949 	mutex_unlock(&regulator_list_mutex);
2950 	return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2953 
2954 /**
2955  * regulator_suspend_finish - resume regulators from system wide suspend
2956  *
2957  * Turn on regulators that might be turned off by regulator_suspend_prepare
2958  * and that should be turned on according to the regulators properties.
2959  */
2960 int regulator_suspend_finish(void)
2961 {
2962 	struct regulator_dev *rdev;
2963 	int ret = 0, error;
2964 
2965 	mutex_lock(&regulator_list_mutex);
2966 	list_for_each_entry(rdev, &regulator_list, list) {
2967 		struct regulator_ops *ops = rdev->desc->ops;
2968 
2969 		mutex_lock(&rdev->mutex);
2970 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2971 				ops->enable) {
2972 			error = ops->enable(rdev);
2973 			if (error)
2974 				ret = error;
2975 		} else {
2976 			if (!has_full_constraints)
2977 				goto unlock;
2978 			if (!ops->disable)
2979 				goto unlock;
2980 			if (ops->is_enabled && !ops->is_enabled(rdev))
2981 				goto unlock;
2982 
2983 			error = ops->disable(rdev);
2984 			if (error)
2985 				ret = error;
2986 		}
2987 unlock:
2988 		mutex_unlock(&rdev->mutex);
2989 	}
2990 	mutex_unlock(&regulator_list_mutex);
2991 	return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2994 
2995 /**
2996  * regulator_has_full_constraints - the system has fully specified constraints
2997  *
2998  * Calling this function will cause the regulator API to disable all
2999  * regulators which have a zero use count and don't have an always_on
3000  * constraint in a late_initcall.
3001  *
3002  * The intention is that this will become the default behaviour in a
3003  * future kernel release so users are encouraged to use this facility
3004  * now.
3005  */
3006 void regulator_has_full_constraints(void)
3007 {
3008 	has_full_constraints = 1;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3011 
3012 /**
3013  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3014  *
3015  * Calling this function will cause the regulator API to provide a
3016  * dummy regulator to consumers if no physical regulator is found,
3017  * allowing most consumers to proceed as though a regulator were
3018  * configured.  This allows systems such as those with software
3019  * controllable regulators for the CPU core only to be brought up more
3020  * readily.
3021  */
3022 void regulator_use_dummy_regulator(void)
3023 {
3024 	board_wants_dummy_regulator = true;
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3027 
3028 /**
3029  * rdev_get_drvdata - get rdev regulator driver data
3030  * @rdev: regulator
3031  *
3032  * Get rdev regulator driver private data. This call can be used in the
3033  * regulator driver context.
3034  */
3035 void *rdev_get_drvdata(struct regulator_dev *rdev)
3036 {
3037 	return rdev->reg_data;
3038 }
3039 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3040 
3041 /**
3042  * regulator_get_drvdata - get regulator driver data
3043  * @regulator: regulator
3044  *
3045  * Get regulator driver private data. This call can be used in the consumer
3046  * driver context when non API regulator specific functions need to be called.
3047  */
3048 void *regulator_get_drvdata(struct regulator *regulator)
3049 {
3050 	return regulator->rdev->reg_data;
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3053 
3054 /**
3055  * regulator_set_drvdata - set regulator driver data
3056  * @regulator: regulator
3057  * @data: data
3058  */
3059 void regulator_set_drvdata(struct regulator *regulator, void *data)
3060 {
3061 	regulator->rdev->reg_data = data;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3064 
3065 /**
3066  * regulator_get_id - get regulator ID
3067  * @rdev: regulator
3068  */
3069 int rdev_get_id(struct regulator_dev *rdev)
3070 {
3071 	return rdev->desc->id;
3072 }
3073 EXPORT_SYMBOL_GPL(rdev_get_id);
3074 
3075 struct device *rdev_get_dev(struct regulator_dev *rdev)
3076 {
3077 	return &rdev->dev;
3078 }
3079 EXPORT_SYMBOL_GPL(rdev_get_dev);
3080 
3081 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3082 {
3083 	return reg_init_data->driver_data;
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3086 
3087 #ifdef CONFIG_DEBUG_FS
3088 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3089 				    size_t count, loff_t *ppos)
3090 {
3091 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3092 	ssize_t len, ret = 0;
3093 	struct regulator_map *map;
3094 
3095 	if (!buf)
3096 		return -ENOMEM;
3097 
3098 	list_for_each_entry(map, &regulator_map_list, list) {
3099 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3100 			       "%s -> %s.%s\n",
3101 			       rdev_get_name(map->regulator), map->dev_name,
3102 			       map->supply);
3103 		if (len >= 0)
3104 			ret += len;
3105 		if (ret > PAGE_SIZE) {
3106 			ret = PAGE_SIZE;
3107 			break;
3108 		}
3109 	}
3110 
3111 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3112 
3113 	kfree(buf);
3114 
3115 	return ret;
3116 }
3117 
3118 static const struct file_operations supply_map_fops = {
3119 	.read = supply_map_read_file,
3120 	.llseek = default_llseek,
3121 };
3122 #endif
3123 
3124 static int __init regulator_init(void)
3125 {
3126 	int ret;
3127 
3128 	ret = class_register(&regulator_class);
3129 
3130 #ifdef CONFIG_DEBUG_FS
3131 	debugfs_root = debugfs_create_dir("regulator", NULL);
3132 	if (IS_ERR(debugfs_root) || !debugfs_root) {
3133 		pr_warn("regulator: Failed to create debugfs directory\n");
3134 		debugfs_root = NULL;
3135 	}
3136 
3137 	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3138 				       NULL, &supply_map_fops)))
3139 		pr_warn("regulator: Failed to create supplies debugfs\n");
3140 #endif
3141 
3142 	regulator_dummy_init();
3143 
3144 	return ret;
3145 }
3146 
3147 /* init early to allow our consumers to complete system booting */
3148 core_initcall(regulator_init);
3149 
3150 static int __init regulator_init_complete(void)
3151 {
3152 	struct regulator_dev *rdev;
3153 	struct regulator_ops *ops;
3154 	struct regulation_constraints *c;
3155 	int enabled, ret;
3156 
3157 	mutex_lock(&regulator_list_mutex);
3158 
3159 	/* If we have a full configuration then disable any regulators
3160 	 * which are not in use or always_on.  This will become the
3161 	 * default behaviour in the future.
3162 	 */
3163 	list_for_each_entry(rdev, &regulator_list, list) {
3164 		ops = rdev->desc->ops;
3165 		c = rdev->constraints;
3166 
3167 		if (!ops->disable || (c && c->always_on))
3168 			continue;
3169 
3170 		mutex_lock(&rdev->mutex);
3171 
3172 		if (rdev->use_count)
3173 			goto unlock;
3174 
3175 		/* If we can't read the status assume it's on. */
3176 		if (ops->is_enabled)
3177 			enabled = ops->is_enabled(rdev);
3178 		else
3179 			enabled = 1;
3180 
3181 		if (!enabled)
3182 			goto unlock;
3183 
3184 		if (has_full_constraints) {
3185 			/* We log since this may kill the system if it
3186 			 * goes wrong. */
3187 			rdev_info(rdev, "disabling\n");
3188 			ret = ops->disable(rdev);
3189 			if (ret != 0) {
3190 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3191 			}
3192 		} else {
3193 			/* The intention is that in future we will
3194 			 * assume that full constraints are provided
3195 			 * so warn even if we aren't going to do
3196 			 * anything here.
3197 			 */
3198 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3199 		}
3200 
3201 unlock:
3202 		mutex_unlock(&rdev->mutex);
3203 	}
3204 
3205 	mutex_unlock(&regulator_list_mutex);
3206 
3207 	return 0;
3208 }
3209 late_initcall(regulator_init_complete);
3210