1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_WW_CLASS(regulator_ww_class); 53 static DEFINE_MUTEX(regulator_nesting_mutex); 54 static DEFINE_MUTEX(regulator_list_mutex); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator *regulator); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static int regulator_balance_voltage(struct regulator_dev *rdev, 109 suspend_state_t state); 110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, 111 int min_uV, int max_uV, 112 suspend_state_t state); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 static void _regulator_put(struct regulator *regulator); 117 118 static const char *rdev_get_name(struct regulator_dev *rdev) 119 { 120 if (rdev->constraints && rdev->constraints->name) 121 return rdev->constraints->name; 122 else if (rdev->desc->name) 123 return rdev->desc->name; 124 else 125 return ""; 126 } 127 128 static bool have_full_constraints(void) 129 { 130 return has_full_constraints || of_have_populated_dt(); 131 } 132 133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 134 { 135 if (!rdev->constraints) { 136 rdev_err(rdev, "no constraints\n"); 137 return false; 138 } 139 140 if (rdev->constraints->valid_ops_mask & ops) 141 return true; 142 143 return false; 144 } 145 146 /** 147 * regulator_lock_nested - lock a single regulator 148 * @rdev: regulator source 149 * @ww_ctx: w/w mutex acquire context 150 * 151 * This function can be called many times by one task on 152 * a single regulator and its mutex will be locked only 153 * once. If a task, which is calling this function is other 154 * than the one, which initially locked the mutex, it will 155 * wait on mutex. 156 */ 157 static inline int regulator_lock_nested(struct regulator_dev *rdev, 158 struct ww_acquire_ctx *ww_ctx) 159 { 160 bool lock = false; 161 int ret = 0; 162 163 mutex_lock(®ulator_nesting_mutex); 164 165 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 166 if (rdev->mutex_owner == current) 167 rdev->ref_cnt++; 168 else 169 lock = true; 170 171 if (lock) { 172 mutex_unlock(®ulator_nesting_mutex); 173 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 174 mutex_lock(®ulator_nesting_mutex); 175 } 176 } else { 177 lock = true; 178 } 179 180 if (lock && ret != -EDEADLK) { 181 rdev->ref_cnt++; 182 rdev->mutex_owner = current; 183 } 184 185 mutex_unlock(®ulator_nesting_mutex); 186 187 return ret; 188 } 189 190 /** 191 * regulator_lock - lock a single regulator 192 * @rdev: regulator source 193 * 194 * This function can be called many times by one task on 195 * a single regulator and its mutex will be locked only 196 * once. If a task, which is calling this function is other 197 * than the one, which initially locked the mutex, it will 198 * wait on mutex. 199 */ 200 void regulator_lock(struct regulator_dev *rdev) 201 { 202 regulator_lock_nested(rdev, NULL); 203 } 204 EXPORT_SYMBOL_GPL(regulator_lock); 205 206 /** 207 * regulator_unlock - unlock a single regulator 208 * @rdev: regulator_source 209 * 210 * This function unlocks the mutex when the 211 * reference counter reaches 0. 212 */ 213 void regulator_unlock(struct regulator_dev *rdev) 214 { 215 mutex_lock(®ulator_nesting_mutex); 216 217 if (--rdev->ref_cnt == 0) { 218 rdev->mutex_owner = NULL; 219 ww_mutex_unlock(&rdev->mutex); 220 } 221 222 WARN_ON_ONCE(rdev->ref_cnt < 0); 223 224 mutex_unlock(®ulator_nesting_mutex); 225 } 226 EXPORT_SYMBOL_GPL(regulator_unlock); 227 228 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 229 { 230 struct regulator_dev *c_rdev; 231 int i; 232 233 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 234 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 235 236 if (rdev->supply->rdev == c_rdev) 237 return true; 238 } 239 240 return false; 241 } 242 243 static void regulator_unlock_recursive(struct regulator_dev *rdev, 244 unsigned int n_coupled) 245 { 246 struct regulator_dev *c_rdev; 247 int i; 248 249 for (i = n_coupled; i > 0; i--) { 250 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 251 252 if (!c_rdev) 253 continue; 254 255 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 256 regulator_unlock_recursive( 257 c_rdev->supply->rdev, 258 c_rdev->coupling_desc.n_coupled); 259 260 regulator_unlock(c_rdev); 261 } 262 } 263 264 static int regulator_lock_recursive(struct regulator_dev *rdev, 265 struct regulator_dev **new_contended_rdev, 266 struct regulator_dev **old_contended_rdev, 267 struct ww_acquire_ctx *ww_ctx) 268 { 269 struct regulator_dev *c_rdev; 270 int i, err; 271 272 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 273 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 274 275 if (!c_rdev) 276 continue; 277 278 if (c_rdev != *old_contended_rdev) { 279 err = regulator_lock_nested(c_rdev, ww_ctx); 280 if (err) { 281 if (err == -EDEADLK) { 282 *new_contended_rdev = c_rdev; 283 goto err_unlock; 284 } 285 286 /* shouldn't happen */ 287 WARN_ON_ONCE(err != -EALREADY); 288 } 289 } else { 290 *old_contended_rdev = NULL; 291 } 292 293 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 294 err = regulator_lock_recursive(c_rdev->supply->rdev, 295 new_contended_rdev, 296 old_contended_rdev, 297 ww_ctx); 298 if (err) { 299 regulator_unlock(c_rdev); 300 goto err_unlock; 301 } 302 } 303 } 304 305 return 0; 306 307 err_unlock: 308 regulator_unlock_recursive(rdev, i); 309 310 return err; 311 } 312 313 /** 314 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 315 * regulators 316 * @rdev: regulator source 317 * @ww_ctx: w/w mutex acquire context 318 * 319 * Unlock all regulators related with rdev by coupling or supplying. 320 */ 321 static void regulator_unlock_dependent(struct regulator_dev *rdev, 322 struct ww_acquire_ctx *ww_ctx) 323 { 324 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 325 ww_acquire_fini(ww_ctx); 326 } 327 328 /** 329 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 330 * @rdev: regulator source 331 * @ww_ctx: w/w mutex acquire context 332 * 333 * This function as a wrapper on regulator_lock_recursive(), which locks 334 * all regulators related with rdev by coupling or supplying. 335 */ 336 static void regulator_lock_dependent(struct regulator_dev *rdev, 337 struct ww_acquire_ctx *ww_ctx) 338 { 339 struct regulator_dev *new_contended_rdev = NULL; 340 struct regulator_dev *old_contended_rdev = NULL; 341 int err; 342 343 mutex_lock(®ulator_list_mutex); 344 345 ww_acquire_init(ww_ctx, ®ulator_ww_class); 346 347 do { 348 if (new_contended_rdev) { 349 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 350 old_contended_rdev = new_contended_rdev; 351 old_contended_rdev->ref_cnt++; 352 } 353 354 err = regulator_lock_recursive(rdev, 355 &new_contended_rdev, 356 &old_contended_rdev, 357 ww_ctx); 358 359 if (old_contended_rdev) 360 regulator_unlock(old_contended_rdev); 361 362 } while (err == -EDEADLK); 363 364 ww_acquire_done(ww_ctx); 365 366 mutex_unlock(®ulator_list_mutex); 367 } 368 369 /** 370 * of_get_child_regulator - get a child regulator device node 371 * based on supply name 372 * @parent: Parent device node 373 * @prop_name: Combination regulator supply name and "-supply" 374 * 375 * Traverse all child nodes. 376 * Extract the child regulator device node corresponding to the supply name. 377 * returns the device node corresponding to the regulator if found, else 378 * returns NULL. 379 */ 380 static struct device_node *of_get_child_regulator(struct device_node *parent, 381 const char *prop_name) 382 { 383 struct device_node *regnode = NULL; 384 struct device_node *child = NULL; 385 386 for_each_child_of_node(parent, child) { 387 regnode = of_parse_phandle(child, prop_name, 0); 388 389 if (!regnode) { 390 regnode = of_get_child_regulator(child, prop_name); 391 if (regnode) 392 return regnode; 393 } else { 394 return regnode; 395 } 396 } 397 return NULL; 398 } 399 400 /** 401 * of_get_regulator - get a regulator device node based on supply name 402 * @dev: Device pointer for the consumer (of regulator) device 403 * @supply: regulator supply name 404 * 405 * Extract the regulator device node corresponding to the supply name. 406 * returns the device node corresponding to the regulator if found, else 407 * returns NULL. 408 */ 409 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 410 { 411 struct device_node *regnode = NULL; 412 char prop_name[32]; /* 32 is max size of property name */ 413 414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 415 416 snprintf(prop_name, 32, "%s-supply", supply); 417 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 418 419 if (!regnode) { 420 regnode = of_get_child_regulator(dev->of_node, prop_name); 421 if (regnode) 422 return regnode; 423 424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 425 prop_name, dev->of_node); 426 return NULL; 427 } 428 return regnode; 429 } 430 431 /* Platform voltage constraint check */ 432 static int regulator_check_voltage(struct regulator_dev *rdev, 433 int *min_uV, int *max_uV) 434 { 435 BUG_ON(*min_uV > *max_uV); 436 437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 438 rdev_err(rdev, "voltage operation not allowed\n"); 439 return -EPERM; 440 } 441 442 if (*max_uV > rdev->constraints->max_uV) 443 *max_uV = rdev->constraints->max_uV; 444 if (*min_uV < rdev->constraints->min_uV) 445 *min_uV = rdev->constraints->min_uV; 446 447 if (*min_uV > *max_uV) { 448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 449 *min_uV, *max_uV); 450 return -EINVAL; 451 } 452 453 return 0; 454 } 455 456 /* return 0 if the state is valid */ 457 static int regulator_check_states(suspend_state_t state) 458 { 459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 460 } 461 462 /* Make sure we select a voltage that suits the needs of all 463 * regulator consumers 464 */ 465 static int regulator_check_consumers(struct regulator_dev *rdev, 466 int *min_uV, int *max_uV, 467 suspend_state_t state) 468 { 469 struct regulator *regulator; 470 struct regulator_voltage *voltage; 471 472 list_for_each_entry(regulator, &rdev->consumer_list, list) { 473 voltage = ®ulator->voltage[state]; 474 /* 475 * Assume consumers that didn't say anything are OK 476 * with anything in the constraint range. 477 */ 478 if (!voltage->min_uV && !voltage->max_uV) 479 continue; 480 481 if (*max_uV > voltage->max_uV) 482 *max_uV = voltage->max_uV; 483 if (*min_uV < voltage->min_uV) 484 *min_uV = voltage->min_uV; 485 } 486 487 if (*min_uV > *max_uV) { 488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 489 *min_uV, *max_uV); 490 return -EINVAL; 491 } 492 493 return 0; 494 } 495 496 /* current constraint check */ 497 static int regulator_check_current_limit(struct regulator_dev *rdev, 498 int *min_uA, int *max_uA) 499 { 500 BUG_ON(*min_uA > *max_uA); 501 502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 503 rdev_err(rdev, "current operation not allowed\n"); 504 return -EPERM; 505 } 506 507 if (*max_uA > rdev->constraints->max_uA) 508 *max_uA = rdev->constraints->max_uA; 509 if (*min_uA < rdev->constraints->min_uA) 510 *min_uA = rdev->constraints->min_uA; 511 512 if (*min_uA > *max_uA) { 513 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 514 *min_uA, *max_uA); 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 /* operating mode constraint check */ 522 static int regulator_mode_constrain(struct regulator_dev *rdev, 523 unsigned int *mode) 524 { 525 switch (*mode) { 526 case REGULATOR_MODE_FAST: 527 case REGULATOR_MODE_NORMAL: 528 case REGULATOR_MODE_IDLE: 529 case REGULATOR_MODE_STANDBY: 530 break; 531 default: 532 rdev_err(rdev, "invalid mode %x specified\n", *mode); 533 return -EINVAL; 534 } 535 536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 537 rdev_err(rdev, "mode operation not allowed\n"); 538 return -EPERM; 539 } 540 541 /* The modes are bitmasks, the most power hungry modes having 542 * the lowest values. If the requested mode isn't supported 543 * try higher modes. */ 544 while (*mode) { 545 if (rdev->constraints->valid_modes_mask & *mode) 546 return 0; 547 *mode /= 2; 548 } 549 550 return -EINVAL; 551 } 552 553 static inline struct regulator_state * 554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 555 { 556 if (rdev->constraints == NULL) 557 return NULL; 558 559 switch (state) { 560 case PM_SUSPEND_STANDBY: 561 return &rdev->constraints->state_standby; 562 case PM_SUSPEND_MEM: 563 return &rdev->constraints->state_mem; 564 case PM_SUSPEND_MAX: 565 return &rdev->constraints->state_disk; 566 default: 567 return NULL; 568 } 569 } 570 571 static ssize_t regulator_uV_show(struct device *dev, 572 struct device_attribute *attr, char *buf) 573 { 574 struct regulator_dev *rdev = dev_get_drvdata(dev); 575 ssize_t ret; 576 577 regulator_lock(rdev); 578 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 579 regulator_unlock(rdev); 580 581 return ret; 582 } 583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 584 585 static ssize_t regulator_uA_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct regulator_dev *rdev = dev_get_drvdata(dev); 589 590 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 591 } 592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 593 594 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 595 char *buf) 596 { 597 struct regulator_dev *rdev = dev_get_drvdata(dev); 598 599 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 600 } 601 static DEVICE_ATTR_RO(name); 602 603 static const char *regulator_opmode_to_str(int mode) 604 { 605 switch (mode) { 606 case REGULATOR_MODE_FAST: 607 return "fast"; 608 case REGULATOR_MODE_NORMAL: 609 return "normal"; 610 case REGULATOR_MODE_IDLE: 611 return "idle"; 612 case REGULATOR_MODE_STANDBY: 613 return "standby"; 614 } 615 return "unknown"; 616 } 617 618 static ssize_t regulator_print_opmode(char *buf, int mode) 619 { 620 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 621 } 622 623 static ssize_t regulator_opmode_show(struct device *dev, 624 struct device_attribute *attr, char *buf) 625 { 626 struct regulator_dev *rdev = dev_get_drvdata(dev); 627 628 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 629 } 630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 631 632 static ssize_t regulator_print_state(char *buf, int state) 633 { 634 if (state > 0) 635 return sprintf(buf, "enabled\n"); 636 else if (state == 0) 637 return sprintf(buf, "disabled\n"); 638 else 639 return sprintf(buf, "unknown\n"); 640 } 641 642 static ssize_t regulator_state_show(struct device *dev, 643 struct device_attribute *attr, char *buf) 644 { 645 struct regulator_dev *rdev = dev_get_drvdata(dev); 646 ssize_t ret; 647 648 regulator_lock(rdev); 649 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 650 regulator_unlock(rdev); 651 652 return ret; 653 } 654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 655 656 static ssize_t regulator_status_show(struct device *dev, 657 struct device_attribute *attr, char *buf) 658 { 659 struct regulator_dev *rdev = dev_get_drvdata(dev); 660 int status; 661 char *label; 662 663 status = rdev->desc->ops->get_status(rdev); 664 if (status < 0) 665 return status; 666 667 switch (status) { 668 case REGULATOR_STATUS_OFF: 669 label = "off"; 670 break; 671 case REGULATOR_STATUS_ON: 672 label = "on"; 673 break; 674 case REGULATOR_STATUS_ERROR: 675 label = "error"; 676 break; 677 case REGULATOR_STATUS_FAST: 678 label = "fast"; 679 break; 680 case REGULATOR_STATUS_NORMAL: 681 label = "normal"; 682 break; 683 case REGULATOR_STATUS_IDLE: 684 label = "idle"; 685 break; 686 case REGULATOR_STATUS_STANDBY: 687 label = "standby"; 688 break; 689 case REGULATOR_STATUS_BYPASS: 690 label = "bypass"; 691 break; 692 case REGULATOR_STATUS_UNDEFINED: 693 label = "undefined"; 694 break; 695 default: 696 return -ERANGE; 697 } 698 699 return sprintf(buf, "%s\n", label); 700 } 701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 702 703 static ssize_t regulator_min_uA_show(struct device *dev, 704 struct device_attribute *attr, char *buf) 705 { 706 struct regulator_dev *rdev = dev_get_drvdata(dev); 707 708 if (!rdev->constraints) 709 return sprintf(buf, "constraint not defined\n"); 710 711 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 712 } 713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 714 715 static ssize_t regulator_max_uA_show(struct device *dev, 716 struct device_attribute *attr, char *buf) 717 { 718 struct regulator_dev *rdev = dev_get_drvdata(dev); 719 720 if (!rdev->constraints) 721 return sprintf(buf, "constraint not defined\n"); 722 723 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 724 } 725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 726 727 static ssize_t regulator_min_uV_show(struct device *dev, 728 struct device_attribute *attr, char *buf) 729 { 730 struct regulator_dev *rdev = dev_get_drvdata(dev); 731 732 if (!rdev->constraints) 733 return sprintf(buf, "constraint not defined\n"); 734 735 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 736 } 737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 738 739 static ssize_t regulator_max_uV_show(struct device *dev, 740 struct device_attribute *attr, char *buf) 741 { 742 struct regulator_dev *rdev = dev_get_drvdata(dev); 743 744 if (!rdev->constraints) 745 return sprintf(buf, "constraint not defined\n"); 746 747 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 748 } 749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 750 751 static ssize_t regulator_total_uA_show(struct device *dev, 752 struct device_attribute *attr, char *buf) 753 { 754 struct regulator_dev *rdev = dev_get_drvdata(dev); 755 struct regulator *regulator; 756 int uA = 0; 757 758 regulator_lock(rdev); 759 list_for_each_entry(regulator, &rdev->consumer_list, list) { 760 if (regulator->enable_count) 761 uA += regulator->uA_load; 762 } 763 regulator_unlock(rdev); 764 return sprintf(buf, "%d\n", uA); 765 } 766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 767 768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 769 char *buf) 770 { 771 struct regulator_dev *rdev = dev_get_drvdata(dev); 772 return sprintf(buf, "%d\n", rdev->use_count); 773 } 774 static DEVICE_ATTR_RO(num_users); 775 776 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 777 char *buf) 778 { 779 struct regulator_dev *rdev = dev_get_drvdata(dev); 780 781 switch (rdev->desc->type) { 782 case REGULATOR_VOLTAGE: 783 return sprintf(buf, "voltage\n"); 784 case REGULATOR_CURRENT: 785 return sprintf(buf, "current\n"); 786 } 787 return sprintf(buf, "unknown\n"); 788 } 789 static DEVICE_ATTR_RO(type); 790 791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 792 struct device_attribute *attr, char *buf) 793 { 794 struct regulator_dev *rdev = dev_get_drvdata(dev); 795 796 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 797 } 798 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 799 regulator_suspend_mem_uV_show, NULL); 800 801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 802 struct device_attribute *attr, char *buf) 803 { 804 struct regulator_dev *rdev = dev_get_drvdata(dev); 805 806 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 807 } 808 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 809 regulator_suspend_disk_uV_show, NULL); 810 811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 817 } 818 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 819 regulator_suspend_standby_uV_show, NULL); 820 821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 return regulator_print_opmode(buf, 827 rdev->constraints->state_mem.mode); 828 } 829 static DEVICE_ATTR(suspend_mem_mode, 0444, 830 regulator_suspend_mem_mode_show, NULL); 831 832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 833 struct device_attribute *attr, char *buf) 834 { 835 struct regulator_dev *rdev = dev_get_drvdata(dev); 836 837 return regulator_print_opmode(buf, 838 rdev->constraints->state_disk.mode); 839 } 840 static DEVICE_ATTR(suspend_disk_mode, 0444, 841 regulator_suspend_disk_mode_show, NULL); 842 843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 844 struct device_attribute *attr, char *buf) 845 { 846 struct regulator_dev *rdev = dev_get_drvdata(dev); 847 848 return regulator_print_opmode(buf, 849 rdev->constraints->state_standby.mode); 850 } 851 static DEVICE_ATTR(suspend_standby_mode, 0444, 852 regulator_suspend_standby_mode_show, NULL); 853 854 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 855 struct device_attribute *attr, char *buf) 856 { 857 struct regulator_dev *rdev = dev_get_drvdata(dev); 858 859 return regulator_print_state(buf, 860 rdev->constraints->state_mem.enabled); 861 } 862 static DEVICE_ATTR(suspend_mem_state, 0444, 863 regulator_suspend_mem_state_show, NULL); 864 865 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 866 struct device_attribute *attr, char *buf) 867 { 868 struct regulator_dev *rdev = dev_get_drvdata(dev); 869 870 return regulator_print_state(buf, 871 rdev->constraints->state_disk.enabled); 872 } 873 static DEVICE_ATTR(suspend_disk_state, 0444, 874 regulator_suspend_disk_state_show, NULL); 875 876 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 877 struct device_attribute *attr, char *buf) 878 { 879 struct regulator_dev *rdev = dev_get_drvdata(dev); 880 881 return regulator_print_state(buf, 882 rdev->constraints->state_standby.enabled); 883 } 884 static DEVICE_ATTR(suspend_standby_state, 0444, 885 regulator_suspend_standby_state_show, NULL); 886 887 static ssize_t regulator_bypass_show(struct device *dev, 888 struct device_attribute *attr, char *buf) 889 { 890 struct regulator_dev *rdev = dev_get_drvdata(dev); 891 const char *report; 892 bool bypass; 893 int ret; 894 895 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 896 897 if (ret != 0) 898 report = "unknown"; 899 else if (bypass) 900 report = "enabled"; 901 else 902 report = "disabled"; 903 904 return sprintf(buf, "%s\n", report); 905 } 906 static DEVICE_ATTR(bypass, 0444, 907 regulator_bypass_show, NULL); 908 909 /* Calculate the new optimum regulator operating mode based on the new total 910 * consumer load. All locks held by caller */ 911 static int drms_uA_update(struct regulator_dev *rdev) 912 { 913 struct regulator *sibling; 914 int current_uA = 0, output_uV, input_uV, err; 915 unsigned int mode; 916 917 /* 918 * first check to see if we can set modes at all, otherwise just 919 * tell the consumer everything is OK. 920 */ 921 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 922 rdev_dbg(rdev, "DRMS operation not allowed\n"); 923 return 0; 924 } 925 926 if (!rdev->desc->ops->get_optimum_mode && 927 !rdev->desc->ops->set_load) 928 return 0; 929 930 if (!rdev->desc->ops->set_mode && 931 !rdev->desc->ops->set_load) 932 return -EINVAL; 933 934 /* calc total requested load */ 935 list_for_each_entry(sibling, &rdev->consumer_list, list) { 936 if (sibling->enable_count) 937 current_uA += sibling->uA_load; 938 } 939 940 current_uA += rdev->constraints->system_load; 941 942 if (rdev->desc->ops->set_load) { 943 /* set the optimum mode for our new total regulator load */ 944 err = rdev->desc->ops->set_load(rdev, current_uA); 945 if (err < 0) 946 rdev_err(rdev, "failed to set load %d\n", current_uA); 947 } else { 948 /* get output voltage */ 949 output_uV = _regulator_get_voltage(rdev); 950 if (output_uV <= 0) { 951 rdev_err(rdev, "invalid output voltage found\n"); 952 return -EINVAL; 953 } 954 955 /* get input voltage */ 956 input_uV = 0; 957 if (rdev->supply) 958 input_uV = regulator_get_voltage(rdev->supply); 959 if (input_uV <= 0) 960 input_uV = rdev->constraints->input_uV; 961 if (input_uV <= 0) { 962 rdev_err(rdev, "invalid input voltage found\n"); 963 return -EINVAL; 964 } 965 966 /* now get the optimum mode for our new total regulator load */ 967 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 968 output_uV, current_uA); 969 970 /* check the new mode is allowed */ 971 err = regulator_mode_constrain(rdev, &mode); 972 if (err < 0) { 973 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 974 current_uA, input_uV, output_uV); 975 return err; 976 } 977 978 err = rdev->desc->ops->set_mode(rdev, mode); 979 if (err < 0) 980 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 981 } 982 983 return err; 984 } 985 986 static int suspend_set_state(struct regulator_dev *rdev, 987 suspend_state_t state) 988 { 989 int ret = 0; 990 struct regulator_state *rstate; 991 992 rstate = regulator_get_suspend_state(rdev, state); 993 if (rstate == NULL) 994 return 0; 995 996 /* If we have no suspend mode configuration don't set anything; 997 * only warn if the driver implements set_suspend_voltage or 998 * set_suspend_mode callback. 999 */ 1000 if (rstate->enabled != ENABLE_IN_SUSPEND && 1001 rstate->enabled != DISABLE_IN_SUSPEND) { 1002 if (rdev->desc->ops->set_suspend_voltage || 1003 rdev->desc->ops->set_suspend_mode) 1004 rdev_warn(rdev, "No configuration\n"); 1005 return 0; 1006 } 1007 1008 if (rstate->enabled == ENABLE_IN_SUSPEND && 1009 rdev->desc->ops->set_suspend_enable) 1010 ret = rdev->desc->ops->set_suspend_enable(rdev); 1011 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1012 rdev->desc->ops->set_suspend_disable) 1013 ret = rdev->desc->ops->set_suspend_disable(rdev); 1014 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1015 ret = 0; 1016 1017 if (ret < 0) { 1018 rdev_err(rdev, "failed to enabled/disable\n"); 1019 return ret; 1020 } 1021 1022 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1023 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1024 if (ret < 0) { 1025 rdev_err(rdev, "failed to set voltage\n"); 1026 return ret; 1027 } 1028 } 1029 1030 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1031 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1032 if (ret < 0) { 1033 rdev_err(rdev, "failed to set mode\n"); 1034 return ret; 1035 } 1036 } 1037 1038 return ret; 1039 } 1040 1041 static void print_constraints(struct regulator_dev *rdev) 1042 { 1043 struct regulation_constraints *constraints = rdev->constraints; 1044 char buf[160] = ""; 1045 size_t len = sizeof(buf) - 1; 1046 int count = 0; 1047 int ret; 1048 1049 if (constraints->min_uV && constraints->max_uV) { 1050 if (constraints->min_uV == constraints->max_uV) 1051 count += scnprintf(buf + count, len - count, "%d mV ", 1052 constraints->min_uV / 1000); 1053 else 1054 count += scnprintf(buf + count, len - count, 1055 "%d <--> %d mV ", 1056 constraints->min_uV / 1000, 1057 constraints->max_uV / 1000); 1058 } 1059 1060 if (!constraints->min_uV || 1061 constraints->min_uV != constraints->max_uV) { 1062 ret = _regulator_get_voltage(rdev); 1063 if (ret > 0) 1064 count += scnprintf(buf + count, len - count, 1065 "at %d mV ", ret / 1000); 1066 } 1067 1068 if (constraints->uV_offset) 1069 count += scnprintf(buf + count, len - count, "%dmV offset ", 1070 constraints->uV_offset / 1000); 1071 1072 if (constraints->min_uA && constraints->max_uA) { 1073 if (constraints->min_uA == constraints->max_uA) 1074 count += scnprintf(buf + count, len - count, "%d mA ", 1075 constraints->min_uA / 1000); 1076 else 1077 count += scnprintf(buf + count, len - count, 1078 "%d <--> %d mA ", 1079 constraints->min_uA / 1000, 1080 constraints->max_uA / 1000); 1081 } 1082 1083 if (!constraints->min_uA || 1084 constraints->min_uA != constraints->max_uA) { 1085 ret = _regulator_get_current_limit(rdev); 1086 if (ret > 0) 1087 count += scnprintf(buf + count, len - count, 1088 "at %d mA ", ret / 1000); 1089 } 1090 1091 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1092 count += scnprintf(buf + count, len - count, "fast "); 1093 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1094 count += scnprintf(buf + count, len - count, "normal "); 1095 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1096 count += scnprintf(buf + count, len - count, "idle "); 1097 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1098 count += scnprintf(buf + count, len - count, "standby"); 1099 1100 if (!count) 1101 scnprintf(buf, len, "no parameters"); 1102 1103 rdev_dbg(rdev, "%s\n", buf); 1104 1105 if ((constraints->min_uV != constraints->max_uV) && 1106 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1107 rdev_warn(rdev, 1108 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1109 } 1110 1111 static int machine_constraints_voltage(struct regulator_dev *rdev, 1112 struct regulation_constraints *constraints) 1113 { 1114 const struct regulator_ops *ops = rdev->desc->ops; 1115 int ret; 1116 1117 /* do we need to apply the constraint voltage */ 1118 if (rdev->constraints->apply_uV && 1119 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1120 int target_min, target_max; 1121 int current_uV = _regulator_get_voltage(rdev); 1122 1123 if (current_uV == -ENOTRECOVERABLE) { 1124 /* This regulator can't be read and must be initialized */ 1125 rdev_info(rdev, "Setting %d-%duV\n", 1126 rdev->constraints->min_uV, 1127 rdev->constraints->max_uV); 1128 _regulator_do_set_voltage(rdev, 1129 rdev->constraints->min_uV, 1130 rdev->constraints->max_uV); 1131 current_uV = _regulator_get_voltage(rdev); 1132 } 1133 1134 if (current_uV < 0) { 1135 rdev_err(rdev, 1136 "failed to get the current voltage(%d)\n", 1137 current_uV); 1138 return current_uV; 1139 } 1140 1141 /* 1142 * If we're below the minimum voltage move up to the 1143 * minimum voltage, if we're above the maximum voltage 1144 * then move down to the maximum. 1145 */ 1146 target_min = current_uV; 1147 target_max = current_uV; 1148 1149 if (current_uV < rdev->constraints->min_uV) { 1150 target_min = rdev->constraints->min_uV; 1151 target_max = rdev->constraints->min_uV; 1152 } 1153 1154 if (current_uV > rdev->constraints->max_uV) { 1155 target_min = rdev->constraints->max_uV; 1156 target_max = rdev->constraints->max_uV; 1157 } 1158 1159 if (target_min != current_uV || target_max != current_uV) { 1160 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1161 current_uV, target_min, target_max); 1162 ret = _regulator_do_set_voltage( 1163 rdev, target_min, target_max); 1164 if (ret < 0) { 1165 rdev_err(rdev, 1166 "failed to apply %d-%duV constraint(%d)\n", 1167 target_min, target_max, ret); 1168 return ret; 1169 } 1170 } 1171 } 1172 1173 /* constrain machine-level voltage specs to fit 1174 * the actual range supported by this regulator. 1175 */ 1176 if (ops->list_voltage && rdev->desc->n_voltages) { 1177 int count = rdev->desc->n_voltages; 1178 int i; 1179 int min_uV = INT_MAX; 1180 int max_uV = INT_MIN; 1181 int cmin = constraints->min_uV; 1182 int cmax = constraints->max_uV; 1183 1184 /* it's safe to autoconfigure fixed-voltage supplies 1185 and the constraints are used by list_voltage. */ 1186 if (count == 1 && !cmin) { 1187 cmin = 1; 1188 cmax = INT_MAX; 1189 constraints->min_uV = cmin; 1190 constraints->max_uV = cmax; 1191 } 1192 1193 /* voltage constraints are optional */ 1194 if ((cmin == 0) && (cmax == 0)) 1195 return 0; 1196 1197 /* else require explicit machine-level constraints */ 1198 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1199 rdev_err(rdev, "invalid voltage constraints\n"); 1200 return -EINVAL; 1201 } 1202 1203 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1204 for (i = 0; i < count; i++) { 1205 int value; 1206 1207 value = ops->list_voltage(rdev, i); 1208 if (value <= 0) 1209 continue; 1210 1211 /* maybe adjust [min_uV..max_uV] */ 1212 if (value >= cmin && value < min_uV) 1213 min_uV = value; 1214 if (value <= cmax && value > max_uV) 1215 max_uV = value; 1216 } 1217 1218 /* final: [min_uV..max_uV] valid iff constraints valid */ 1219 if (max_uV < min_uV) { 1220 rdev_err(rdev, 1221 "unsupportable voltage constraints %u-%uuV\n", 1222 min_uV, max_uV); 1223 return -EINVAL; 1224 } 1225 1226 /* use regulator's subset of machine constraints */ 1227 if (constraints->min_uV < min_uV) { 1228 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1229 constraints->min_uV, min_uV); 1230 constraints->min_uV = min_uV; 1231 } 1232 if (constraints->max_uV > max_uV) { 1233 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1234 constraints->max_uV, max_uV); 1235 constraints->max_uV = max_uV; 1236 } 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int machine_constraints_current(struct regulator_dev *rdev, 1243 struct regulation_constraints *constraints) 1244 { 1245 const struct regulator_ops *ops = rdev->desc->ops; 1246 int ret; 1247 1248 if (!constraints->min_uA && !constraints->max_uA) 1249 return 0; 1250 1251 if (constraints->min_uA > constraints->max_uA) { 1252 rdev_err(rdev, "Invalid current constraints\n"); 1253 return -EINVAL; 1254 } 1255 1256 if (!ops->set_current_limit || !ops->get_current_limit) { 1257 rdev_warn(rdev, "Operation of current configuration missing\n"); 1258 return 0; 1259 } 1260 1261 /* Set regulator current in constraints range */ 1262 ret = ops->set_current_limit(rdev, constraints->min_uA, 1263 constraints->max_uA); 1264 if (ret < 0) { 1265 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1266 return ret; 1267 } 1268 1269 return 0; 1270 } 1271 1272 static int _regulator_do_enable(struct regulator_dev *rdev); 1273 1274 /** 1275 * set_machine_constraints - sets regulator constraints 1276 * @rdev: regulator source 1277 * @constraints: constraints to apply 1278 * 1279 * Allows platform initialisation code to define and constrain 1280 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1281 * Constraints *must* be set by platform code in order for some 1282 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1283 * set_mode. 1284 */ 1285 static int set_machine_constraints(struct regulator_dev *rdev, 1286 const struct regulation_constraints *constraints) 1287 { 1288 int ret = 0; 1289 const struct regulator_ops *ops = rdev->desc->ops; 1290 1291 if (constraints) 1292 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1293 GFP_KERNEL); 1294 else 1295 rdev->constraints = kzalloc(sizeof(*constraints), 1296 GFP_KERNEL); 1297 if (!rdev->constraints) 1298 return -ENOMEM; 1299 1300 ret = machine_constraints_voltage(rdev, rdev->constraints); 1301 if (ret != 0) 1302 return ret; 1303 1304 ret = machine_constraints_current(rdev, rdev->constraints); 1305 if (ret != 0) 1306 return ret; 1307 1308 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1309 ret = ops->set_input_current_limit(rdev, 1310 rdev->constraints->ilim_uA); 1311 if (ret < 0) { 1312 rdev_err(rdev, "failed to set input limit\n"); 1313 return ret; 1314 } 1315 } 1316 1317 /* do we need to setup our suspend state */ 1318 if (rdev->constraints->initial_state) { 1319 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1320 if (ret < 0) { 1321 rdev_err(rdev, "failed to set suspend state\n"); 1322 return ret; 1323 } 1324 } 1325 1326 if (rdev->constraints->initial_mode) { 1327 if (!ops->set_mode) { 1328 rdev_err(rdev, "no set_mode operation\n"); 1329 return -EINVAL; 1330 } 1331 1332 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1333 if (ret < 0) { 1334 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1335 return ret; 1336 } 1337 } else if (rdev->constraints->system_load) { 1338 /* 1339 * We'll only apply the initial system load if an 1340 * initial mode wasn't specified. 1341 */ 1342 regulator_lock(rdev); 1343 drms_uA_update(rdev); 1344 regulator_unlock(rdev); 1345 } 1346 1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1348 && ops->set_ramp_delay) { 1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1350 if (ret < 0) { 1351 rdev_err(rdev, "failed to set ramp_delay\n"); 1352 return ret; 1353 } 1354 } 1355 1356 if (rdev->constraints->pull_down && ops->set_pull_down) { 1357 ret = ops->set_pull_down(rdev); 1358 if (ret < 0) { 1359 rdev_err(rdev, "failed to set pull down\n"); 1360 return ret; 1361 } 1362 } 1363 1364 if (rdev->constraints->soft_start && ops->set_soft_start) { 1365 ret = ops->set_soft_start(rdev); 1366 if (ret < 0) { 1367 rdev_err(rdev, "failed to set soft start\n"); 1368 return ret; 1369 } 1370 } 1371 1372 if (rdev->constraints->over_current_protection 1373 && ops->set_over_current_protection) { 1374 ret = ops->set_over_current_protection(rdev); 1375 if (ret < 0) { 1376 rdev_err(rdev, "failed to set over current protection\n"); 1377 return ret; 1378 } 1379 } 1380 1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1382 bool ad_state = (rdev->constraints->active_discharge == 1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1384 1385 ret = ops->set_active_discharge(rdev, ad_state); 1386 if (ret < 0) { 1387 rdev_err(rdev, "failed to set active discharge\n"); 1388 return ret; 1389 } 1390 } 1391 1392 /* If the constraints say the regulator should be on at this point 1393 * and we have control then make sure it is enabled. 1394 */ 1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1396 if (rdev->supply) { 1397 ret = regulator_enable(rdev->supply); 1398 if (ret < 0) { 1399 _regulator_put(rdev->supply); 1400 rdev->supply = NULL; 1401 return ret; 1402 } 1403 } 1404 1405 ret = _regulator_do_enable(rdev); 1406 if (ret < 0 && ret != -EINVAL) { 1407 rdev_err(rdev, "failed to enable\n"); 1408 return ret; 1409 } 1410 rdev->use_count++; 1411 } 1412 1413 print_constraints(rdev); 1414 return 0; 1415 } 1416 1417 /** 1418 * set_supply - set regulator supply regulator 1419 * @rdev: regulator name 1420 * @supply_rdev: supply regulator name 1421 * 1422 * Called by platform initialisation code to set the supply regulator for this 1423 * regulator. This ensures that a regulators supply will also be enabled by the 1424 * core if it's child is enabled. 1425 */ 1426 static int set_supply(struct regulator_dev *rdev, 1427 struct regulator_dev *supply_rdev) 1428 { 1429 int err; 1430 1431 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1432 1433 if (!try_module_get(supply_rdev->owner)) 1434 return -ENODEV; 1435 1436 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1437 if (rdev->supply == NULL) { 1438 err = -ENOMEM; 1439 return err; 1440 } 1441 supply_rdev->open_count++; 1442 1443 return 0; 1444 } 1445 1446 /** 1447 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1448 * @rdev: regulator source 1449 * @consumer_dev_name: dev_name() string for device supply applies to 1450 * @supply: symbolic name for supply 1451 * 1452 * Allows platform initialisation code to map physical regulator 1453 * sources to symbolic names for supplies for use by devices. Devices 1454 * should use these symbolic names to request regulators, avoiding the 1455 * need to provide board-specific regulator names as platform data. 1456 */ 1457 static int set_consumer_device_supply(struct regulator_dev *rdev, 1458 const char *consumer_dev_name, 1459 const char *supply) 1460 { 1461 struct regulator_map *node; 1462 int has_dev; 1463 1464 if (supply == NULL) 1465 return -EINVAL; 1466 1467 if (consumer_dev_name != NULL) 1468 has_dev = 1; 1469 else 1470 has_dev = 0; 1471 1472 list_for_each_entry(node, ®ulator_map_list, list) { 1473 if (node->dev_name && consumer_dev_name) { 1474 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1475 continue; 1476 } else if (node->dev_name || consumer_dev_name) { 1477 continue; 1478 } 1479 1480 if (strcmp(node->supply, supply) != 0) 1481 continue; 1482 1483 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1484 consumer_dev_name, 1485 dev_name(&node->regulator->dev), 1486 node->regulator->desc->name, 1487 supply, 1488 dev_name(&rdev->dev), rdev_get_name(rdev)); 1489 return -EBUSY; 1490 } 1491 1492 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1493 if (node == NULL) 1494 return -ENOMEM; 1495 1496 node->regulator = rdev; 1497 node->supply = supply; 1498 1499 if (has_dev) { 1500 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1501 if (node->dev_name == NULL) { 1502 kfree(node); 1503 return -ENOMEM; 1504 } 1505 } 1506 1507 list_add(&node->list, ®ulator_map_list); 1508 return 0; 1509 } 1510 1511 static void unset_regulator_supplies(struct regulator_dev *rdev) 1512 { 1513 struct regulator_map *node, *n; 1514 1515 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1516 if (rdev == node->regulator) { 1517 list_del(&node->list); 1518 kfree(node->dev_name); 1519 kfree(node); 1520 } 1521 } 1522 } 1523 1524 #ifdef CONFIG_DEBUG_FS 1525 static ssize_t constraint_flags_read_file(struct file *file, 1526 char __user *user_buf, 1527 size_t count, loff_t *ppos) 1528 { 1529 const struct regulator *regulator = file->private_data; 1530 const struct regulation_constraints *c = regulator->rdev->constraints; 1531 char *buf; 1532 ssize_t ret; 1533 1534 if (!c) 1535 return 0; 1536 1537 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1538 if (!buf) 1539 return -ENOMEM; 1540 1541 ret = snprintf(buf, PAGE_SIZE, 1542 "always_on: %u\n" 1543 "boot_on: %u\n" 1544 "apply_uV: %u\n" 1545 "ramp_disable: %u\n" 1546 "soft_start: %u\n" 1547 "pull_down: %u\n" 1548 "over_current_protection: %u\n", 1549 c->always_on, 1550 c->boot_on, 1551 c->apply_uV, 1552 c->ramp_disable, 1553 c->soft_start, 1554 c->pull_down, 1555 c->over_current_protection); 1556 1557 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1558 kfree(buf); 1559 1560 return ret; 1561 } 1562 1563 #endif 1564 1565 static const struct file_operations constraint_flags_fops = { 1566 #ifdef CONFIG_DEBUG_FS 1567 .open = simple_open, 1568 .read = constraint_flags_read_file, 1569 .llseek = default_llseek, 1570 #endif 1571 }; 1572 1573 #define REG_STR_SIZE 64 1574 1575 static struct regulator *create_regulator(struct regulator_dev *rdev, 1576 struct device *dev, 1577 const char *supply_name) 1578 { 1579 struct regulator *regulator; 1580 char buf[REG_STR_SIZE]; 1581 int err, size; 1582 1583 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1584 if (regulator == NULL) 1585 return NULL; 1586 1587 regulator_lock(rdev); 1588 regulator->rdev = rdev; 1589 list_add(®ulator->list, &rdev->consumer_list); 1590 1591 if (dev) { 1592 regulator->dev = dev; 1593 1594 /* Add a link to the device sysfs entry */ 1595 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1596 dev->kobj.name, supply_name); 1597 if (size >= REG_STR_SIZE) 1598 goto overflow_err; 1599 1600 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1601 if (regulator->supply_name == NULL) 1602 goto overflow_err; 1603 1604 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1605 buf); 1606 if (err) { 1607 rdev_dbg(rdev, "could not add device link %s err %d\n", 1608 dev->kobj.name, err); 1609 /* non-fatal */ 1610 } 1611 } else { 1612 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1613 if (regulator->supply_name == NULL) 1614 goto overflow_err; 1615 } 1616 1617 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1618 rdev->debugfs); 1619 if (!regulator->debugfs) { 1620 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1621 } else { 1622 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1623 ®ulator->uA_load); 1624 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1625 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1626 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1627 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1628 debugfs_create_file("constraint_flags", 0444, 1629 regulator->debugfs, regulator, 1630 &constraint_flags_fops); 1631 } 1632 1633 /* 1634 * Check now if the regulator is an always on regulator - if 1635 * it is then we don't need to do nearly so much work for 1636 * enable/disable calls. 1637 */ 1638 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1639 _regulator_is_enabled(rdev)) 1640 regulator->always_on = true; 1641 1642 regulator_unlock(rdev); 1643 return regulator; 1644 overflow_err: 1645 list_del(®ulator->list); 1646 kfree(regulator); 1647 regulator_unlock(rdev); 1648 return NULL; 1649 } 1650 1651 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1652 { 1653 if (rdev->constraints && rdev->constraints->enable_time) 1654 return rdev->constraints->enable_time; 1655 if (!rdev->desc->ops->enable_time) 1656 return rdev->desc->enable_time; 1657 return rdev->desc->ops->enable_time(rdev); 1658 } 1659 1660 static struct regulator_supply_alias *regulator_find_supply_alias( 1661 struct device *dev, const char *supply) 1662 { 1663 struct regulator_supply_alias *map; 1664 1665 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1666 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1667 return map; 1668 1669 return NULL; 1670 } 1671 1672 static void regulator_supply_alias(struct device **dev, const char **supply) 1673 { 1674 struct regulator_supply_alias *map; 1675 1676 map = regulator_find_supply_alias(*dev, *supply); 1677 if (map) { 1678 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1679 *supply, map->alias_supply, 1680 dev_name(map->alias_dev)); 1681 *dev = map->alias_dev; 1682 *supply = map->alias_supply; 1683 } 1684 } 1685 1686 static int regulator_match(struct device *dev, const void *data) 1687 { 1688 struct regulator_dev *r = dev_to_rdev(dev); 1689 1690 return strcmp(rdev_get_name(r), data) == 0; 1691 } 1692 1693 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1694 { 1695 struct device *dev; 1696 1697 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1698 1699 return dev ? dev_to_rdev(dev) : NULL; 1700 } 1701 1702 /** 1703 * regulator_dev_lookup - lookup a regulator device. 1704 * @dev: device for regulator "consumer". 1705 * @supply: Supply name or regulator ID. 1706 * 1707 * If successful, returns a struct regulator_dev that corresponds to the name 1708 * @supply and with the embedded struct device refcount incremented by one. 1709 * The refcount must be dropped by calling put_device(). 1710 * On failure one of the following ERR-PTR-encoded values is returned: 1711 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1712 * in the future. 1713 */ 1714 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1715 const char *supply) 1716 { 1717 struct regulator_dev *r = NULL; 1718 struct device_node *node; 1719 struct regulator_map *map; 1720 const char *devname = NULL; 1721 1722 regulator_supply_alias(&dev, &supply); 1723 1724 /* first do a dt based lookup */ 1725 if (dev && dev->of_node) { 1726 node = of_get_regulator(dev, supply); 1727 if (node) { 1728 r = of_find_regulator_by_node(node); 1729 if (r) 1730 return r; 1731 1732 /* 1733 * We have a node, but there is no device. 1734 * assume it has not registered yet. 1735 */ 1736 return ERR_PTR(-EPROBE_DEFER); 1737 } 1738 } 1739 1740 /* if not found, try doing it non-dt way */ 1741 if (dev) 1742 devname = dev_name(dev); 1743 1744 mutex_lock(®ulator_list_mutex); 1745 list_for_each_entry(map, ®ulator_map_list, list) { 1746 /* If the mapping has a device set up it must match */ 1747 if (map->dev_name && 1748 (!devname || strcmp(map->dev_name, devname))) 1749 continue; 1750 1751 if (strcmp(map->supply, supply) == 0 && 1752 get_device(&map->regulator->dev)) { 1753 r = map->regulator; 1754 break; 1755 } 1756 } 1757 mutex_unlock(®ulator_list_mutex); 1758 1759 if (r) 1760 return r; 1761 1762 r = regulator_lookup_by_name(supply); 1763 if (r) 1764 return r; 1765 1766 return ERR_PTR(-ENODEV); 1767 } 1768 1769 static int regulator_resolve_supply(struct regulator_dev *rdev) 1770 { 1771 struct regulator_dev *r; 1772 struct device *dev = rdev->dev.parent; 1773 int ret; 1774 1775 /* No supply to resolve? */ 1776 if (!rdev->supply_name) 1777 return 0; 1778 1779 /* Supply already resolved? */ 1780 if (rdev->supply) 1781 return 0; 1782 1783 r = regulator_dev_lookup(dev, rdev->supply_name); 1784 if (IS_ERR(r)) { 1785 ret = PTR_ERR(r); 1786 1787 /* Did the lookup explicitly defer for us? */ 1788 if (ret == -EPROBE_DEFER) 1789 return ret; 1790 1791 if (have_full_constraints()) { 1792 r = dummy_regulator_rdev; 1793 get_device(&r->dev); 1794 } else { 1795 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1796 rdev->supply_name, rdev->desc->name); 1797 return -EPROBE_DEFER; 1798 } 1799 } 1800 1801 /* 1802 * If the supply's parent device is not the same as the 1803 * regulator's parent device, then ensure the parent device 1804 * is bound before we resolve the supply, in case the parent 1805 * device get probe deferred and unregisters the supply. 1806 */ 1807 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1808 if (!device_is_bound(r->dev.parent)) { 1809 put_device(&r->dev); 1810 return -EPROBE_DEFER; 1811 } 1812 } 1813 1814 /* Recursively resolve the supply of the supply */ 1815 ret = regulator_resolve_supply(r); 1816 if (ret < 0) { 1817 put_device(&r->dev); 1818 return ret; 1819 } 1820 1821 ret = set_supply(rdev, r); 1822 if (ret < 0) { 1823 put_device(&r->dev); 1824 return ret; 1825 } 1826 1827 /* 1828 * In set_machine_constraints() we may have turned this regulator on 1829 * but we couldn't propagate to the supply if it hadn't been resolved 1830 * yet. Do it now. 1831 */ 1832 if (rdev->use_count) { 1833 ret = regulator_enable(rdev->supply); 1834 if (ret < 0) { 1835 _regulator_put(rdev->supply); 1836 rdev->supply = NULL; 1837 return ret; 1838 } 1839 } 1840 1841 return 0; 1842 } 1843 1844 /* Internal regulator request function */ 1845 struct regulator *_regulator_get(struct device *dev, const char *id, 1846 enum regulator_get_type get_type) 1847 { 1848 struct regulator_dev *rdev; 1849 struct regulator *regulator; 1850 const char *devname = dev ? dev_name(dev) : "deviceless"; 1851 int ret; 1852 1853 if (get_type >= MAX_GET_TYPE) { 1854 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1855 return ERR_PTR(-EINVAL); 1856 } 1857 1858 if (id == NULL) { 1859 pr_err("get() with no identifier\n"); 1860 return ERR_PTR(-EINVAL); 1861 } 1862 1863 rdev = regulator_dev_lookup(dev, id); 1864 if (IS_ERR(rdev)) { 1865 ret = PTR_ERR(rdev); 1866 1867 /* 1868 * If regulator_dev_lookup() fails with error other 1869 * than -ENODEV our job here is done, we simply return it. 1870 */ 1871 if (ret != -ENODEV) 1872 return ERR_PTR(ret); 1873 1874 if (!have_full_constraints()) { 1875 dev_warn(dev, 1876 "incomplete constraints, dummy supplies not allowed\n"); 1877 return ERR_PTR(-ENODEV); 1878 } 1879 1880 switch (get_type) { 1881 case NORMAL_GET: 1882 /* 1883 * Assume that a regulator is physically present and 1884 * enabled, even if it isn't hooked up, and just 1885 * provide a dummy. 1886 */ 1887 dev_warn(dev, 1888 "%s supply %s not found, using dummy regulator\n", 1889 devname, id); 1890 rdev = dummy_regulator_rdev; 1891 get_device(&rdev->dev); 1892 break; 1893 1894 case EXCLUSIVE_GET: 1895 dev_warn(dev, 1896 "dummy supplies not allowed for exclusive requests\n"); 1897 /* fall through */ 1898 1899 default: 1900 return ERR_PTR(-ENODEV); 1901 } 1902 } 1903 1904 if (rdev->exclusive) { 1905 regulator = ERR_PTR(-EPERM); 1906 put_device(&rdev->dev); 1907 return regulator; 1908 } 1909 1910 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1911 regulator = ERR_PTR(-EBUSY); 1912 put_device(&rdev->dev); 1913 return regulator; 1914 } 1915 1916 mutex_lock(®ulator_list_mutex); 1917 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1918 mutex_unlock(®ulator_list_mutex); 1919 1920 if (ret != 0) { 1921 regulator = ERR_PTR(-EPROBE_DEFER); 1922 put_device(&rdev->dev); 1923 return regulator; 1924 } 1925 1926 ret = regulator_resolve_supply(rdev); 1927 if (ret < 0) { 1928 regulator = ERR_PTR(ret); 1929 put_device(&rdev->dev); 1930 return regulator; 1931 } 1932 1933 if (!try_module_get(rdev->owner)) { 1934 regulator = ERR_PTR(-EPROBE_DEFER); 1935 put_device(&rdev->dev); 1936 return regulator; 1937 } 1938 1939 regulator = create_regulator(rdev, dev, id); 1940 if (regulator == NULL) { 1941 regulator = ERR_PTR(-ENOMEM); 1942 put_device(&rdev->dev); 1943 module_put(rdev->owner); 1944 return regulator; 1945 } 1946 1947 rdev->open_count++; 1948 if (get_type == EXCLUSIVE_GET) { 1949 rdev->exclusive = 1; 1950 1951 ret = _regulator_is_enabled(rdev); 1952 if (ret > 0) 1953 rdev->use_count = 1; 1954 else 1955 rdev->use_count = 0; 1956 } 1957 1958 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1959 1960 return regulator; 1961 } 1962 1963 /** 1964 * regulator_get - lookup and obtain a reference to a regulator. 1965 * @dev: device for regulator "consumer" 1966 * @id: Supply name or regulator ID. 1967 * 1968 * Returns a struct regulator corresponding to the regulator producer, 1969 * or IS_ERR() condition containing errno. 1970 * 1971 * Use of supply names configured via regulator_set_device_supply() is 1972 * strongly encouraged. It is recommended that the supply name used 1973 * should match the name used for the supply and/or the relevant 1974 * device pins in the datasheet. 1975 */ 1976 struct regulator *regulator_get(struct device *dev, const char *id) 1977 { 1978 return _regulator_get(dev, id, NORMAL_GET); 1979 } 1980 EXPORT_SYMBOL_GPL(regulator_get); 1981 1982 /** 1983 * regulator_get_exclusive - obtain exclusive access to a regulator. 1984 * @dev: device for regulator "consumer" 1985 * @id: Supply name or regulator ID. 1986 * 1987 * Returns a struct regulator corresponding to the regulator producer, 1988 * or IS_ERR() condition containing errno. Other consumers will be 1989 * unable to obtain this regulator while this reference is held and the 1990 * use count for the regulator will be initialised to reflect the current 1991 * state of the regulator. 1992 * 1993 * This is intended for use by consumers which cannot tolerate shared 1994 * use of the regulator such as those which need to force the 1995 * regulator off for correct operation of the hardware they are 1996 * controlling. 1997 * 1998 * Use of supply names configured via regulator_set_device_supply() is 1999 * strongly encouraged. It is recommended that the supply name used 2000 * should match the name used for the supply and/or the relevant 2001 * device pins in the datasheet. 2002 */ 2003 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2004 { 2005 return _regulator_get(dev, id, EXCLUSIVE_GET); 2006 } 2007 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2008 2009 /** 2010 * regulator_get_optional - obtain optional access to a regulator. 2011 * @dev: device for regulator "consumer" 2012 * @id: Supply name or regulator ID. 2013 * 2014 * Returns a struct regulator corresponding to the regulator producer, 2015 * or IS_ERR() condition containing errno. 2016 * 2017 * This is intended for use by consumers for devices which can have 2018 * some supplies unconnected in normal use, such as some MMC devices. 2019 * It can allow the regulator core to provide stub supplies for other 2020 * supplies requested using normal regulator_get() calls without 2021 * disrupting the operation of drivers that can handle absent 2022 * supplies. 2023 * 2024 * Use of supply names configured via regulator_set_device_supply() is 2025 * strongly encouraged. It is recommended that the supply name used 2026 * should match the name used for the supply and/or the relevant 2027 * device pins in the datasheet. 2028 */ 2029 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2030 { 2031 return _regulator_get(dev, id, OPTIONAL_GET); 2032 } 2033 EXPORT_SYMBOL_GPL(regulator_get_optional); 2034 2035 /* regulator_list_mutex lock held by regulator_put() */ 2036 static void _regulator_put(struct regulator *regulator) 2037 { 2038 struct regulator_dev *rdev; 2039 2040 if (IS_ERR_OR_NULL(regulator)) 2041 return; 2042 2043 lockdep_assert_held_once(®ulator_list_mutex); 2044 2045 /* Docs say you must disable before calling regulator_put() */ 2046 WARN_ON(regulator->enable_count); 2047 2048 rdev = regulator->rdev; 2049 2050 debugfs_remove_recursive(regulator->debugfs); 2051 2052 if (regulator->dev) { 2053 device_link_remove(regulator->dev, &rdev->dev); 2054 2055 /* remove any sysfs entries */ 2056 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2057 } 2058 2059 regulator_lock(rdev); 2060 list_del(®ulator->list); 2061 2062 rdev->open_count--; 2063 rdev->exclusive = 0; 2064 put_device(&rdev->dev); 2065 regulator_unlock(rdev); 2066 2067 kfree_const(regulator->supply_name); 2068 kfree(regulator); 2069 2070 module_put(rdev->owner); 2071 } 2072 2073 /** 2074 * regulator_put - "free" the regulator source 2075 * @regulator: regulator source 2076 * 2077 * Note: drivers must ensure that all regulator_enable calls made on this 2078 * regulator source are balanced by regulator_disable calls prior to calling 2079 * this function. 2080 */ 2081 void regulator_put(struct regulator *regulator) 2082 { 2083 mutex_lock(®ulator_list_mutex); 2084 _regulator_put(regulator); 2085 mutex_unlock(®ulator_list_mutex); 2086 } 2087 EXPORT_SYMBOL_GPL(regulator_put); 2088 2089 /** 2090 * regulator_register_supply_alias - Provide device alias for supply lookup 2091 * 2092 * @dev: device that will be given as the regulator "consumer" 2093 * @id: Supply name or regulator ID 2094 * @alias_dev: device that should be used to lookup the supply 2095 * @alias_id: Supply name or regulator ID that should be used to lookup the 2096 * supply 2097 * 2098 * All lookups for id on dev will instead be conducted for alias_id on 2099 * alias_dev. 2100 */ 2101 int regulator_register_supply_alias(struct device *dev, const char *id, 2102 struct device *alias_dev, 2103 const char *alias_id) 2104 { 2105 struct regulator_supply_alias *map; 2106 2107 map = regulator_find_supply_alias(dev, id); 2108 if (map) 2109 return -EEXIST; 2110 2111 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2112 if (!map) 2113 return -ENOMEM; 2114 2115 map->src_dev = dev; 2116 map->src_supply = id; 2117 map->alias_dev = alias_dev; 2118 map->alias_supply = alias_id; 2119 2120 list_add(&map->list, ®ulator_supply_alias_list); 2121 2122 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2123 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2124 2125 return 0; 2126 } 2127 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2128 2129 /** 2130 * regulator_unregister_supply_alias - Remove device alias 2131 * 2132 * @dev: device that will be given as the regulator "consumer" 2133 * @id: Supply name or regulator ID 2134 * 2135 * Remove a lookup alias if one exists for id on dev. 2136 */ 2137 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2138 { 2139 struct regulator_supply_alias *map; 2140 2141 map = regulator_find_supply_alias(dev, id); 2142 if (map) { 2143 list_del(&map->list); 2144 kfree(map); 2145 } 2146 } 2147 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2148 2149 /** 2150 * regulator_bulk_register_supply_alias - register multiple aliases 2151 * 2152 * @dev: device that will be given as the regulator "consumer" 2153 * @id: List of supply names or regulator IDs 2154 * @alias_dev: device that should be used to lookup the supply 2155 * @alias_id: List of supply names or regulator IDs that should be used to 2156 * lookup the supply 2157 * @num_id: Number of aliases to register 2158 * 2159 * @return 0 on success, an errno on failure. 2160 * 2161 * This helper function allows drivers to register several supply 2162 * aliases in one operation. If any of the aliases cannot be 2163 * registered any aliases that were registered will be removed 2164 * before returning to the caller. 2165 */ 2166 int regulator_bulk_register_supply_alias(struct device *dev, 2167 const char *const *id, 2168 struct device *alias_dev, 2169 const char *const *alias_id, 2170 int num_id) 2171 { 2172 int i; 2173 int ret; 2174 2175 for (i = 0; i < num_id; ++i) { 2176 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2177 alias_id[i]); 2178 if (ret < 0) 2179 goto err; 2180 } 2181 2182 return 0; 2183 2184 err: 2185 dev_err(dev, 2186 "Failed to create supply alias %s,%s -> %s,%s\n", 2187 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2188 2189 while (--i >= 0) 2190 regulator_unregister_supply_alias(dev, id[i]); 2191 2192 return ret; 2193 } 2194 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2195 2196 /** 2197 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2198 * 2199 * @dev: device that will be given as the regulator "consumer" 2200 * @id: List of supply names or regulator IDs 2201 * @num_id: Number of aliases to unregister 2202 * 2203 * This helper function allows drivers to unregister several supply 2204 * aliases in one operation. 2205 */ 2206 void regulator_bulk_unregister_supply_alias(struct device *dev, 2207 const char *const *id, 2208 int num_id) 2209 { 2210 int i; 2211 2212 for (i = 0; i < num_id; ++i) 2213 regulator_unregister_supply_alias(dev, id[i]); 2214 } 2215 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2216 2217 2218 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2219 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2220 const struct regulator_config *config) 2221 { 2222 struct regulator_enable_gpio *pin; 2223 struct gpio_desc *gpiod; 2224 2225 gpiod = config->ena_gpiod; 2226 2227 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2228 if (pin->gpiod == gpiod) { 2229 rdev_dbg(rdev, "GPIO is already used\n"); 2230 goto update_ena_gpio_to_rdev; 2231 } 2232 } 2233 2234 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2235 if (pin == NULL) 2236 return -ENOMEM; 2237 2238 pin->gpiod = gpiod; 2239 list_add(&pin->list, ®ulator_ena_gpio_list); 2240 2241 update_ena_gpio_to_rdev: 2242 pin->request_count++; 2243 rdev->ena_pin = pin; 2244 return 0; 2245 } 2246 2247 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2248 { 2249 struct regulator_enable_gpio *pin, *n; 2250 2251 if (!rdev->ena_pin) 2252 return; 2253 2254 /* Free the GPIO only in case of no use */ 2255 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2256 if (pin->gpiod == rdev->ena_pin->gpiod) { 2257 if (pin->request_count <= 1) { 2258 pin->request_count = 0; 2259 list_del(&pin->list); 2260 kfree(pin); 2261 rdev->ena_pin = NULL; 2262 return; 2263 } else { 2264 pin->request_count--; 2265 } 2266 } 2267 } 2268 } 2269 2270 /** 2271 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2272 * @rdev: regulator_dev structure 2273 * @enable: enable GPIO at initial use? 2274 * 2275 * GPIO is enabled in case of initial use. (enable_count is 0) 2276 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2277 */ 2278 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2279 { 2280 struct regulator_enable_gpio *pin = rdev->ena_pin; 2281 2282 if (!pin) 2283 return -EINVAL; 2284 2285 if (enable) { 2286 /* Enable GPIO at initial use */ 2287 if (pin->enable_count == 0) 2288 gpiod_set_value_cansleep(pin->gpiod, 1); 2289 2290 pin->enable_count++; 2291 } else { 2292 if (pin->enable_count > 1) { 2293 pin->enable_count--; 2294 return 0; 2295 } 2296 2297 /* Disable GPIO if not used */ 2298 if (pin->enable_count <= 1) { 2299 gpiod_set_value_cansleep(pin->gpiod, 0); 2300 pin->enable_count = 0; 2301 } 2302 } 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * _regulator_enable_delay - a delay helper function 2309 * @delay: time to delay in microseconds 2310 * 2311 * Delay for the requested amount of time as per the guidelines in: 2312 * 2313 * Documentation/timers/timers-howto.txt 2314 * 2315 * The assumption here is that regulators will never be enabled in 2316 * atomic context and therefore sleeping functions can be used. 2317 */ 2318 static void _regulator_enable_delay(unsigned int delay) 2319 { 2320 unsigned int ms = delay / 1000; 2321 unsigned int us = delay % 1000; 2322 2323 if (ms > 0) { 2324 /* 2325 * For small enough values, handle super-millisecond 2326 * delays in the usleep_range() call below. 2327 */ 2328 if (ms < 20) 2329 us += ms * 1000; 2330 else 2331 msleep(ms); 2332 } 2333 2334 /* 2335 * Give the scheduler some room to coalesce with any other 2336 * wakeup sources. For delays shorter than 10 us, don't even 2337 * bother setting up high-resolution timers and just busy- 2338 * loop. 2339 */ 2340 if (us >= 10) 2341 usleep_range(us, us + 100); 2342 else 2343 udelay(us); 2344 } 2345 2346 static int _regulator_do_enable(struct regulator_dev *rdev) 2347 { 2348 int ret, delay; 2349 2350 /* Query before enabling in case configuration dependent. */ 2351 ret = _regulator_get_enable_time(rdev); 2352 if (ret >= 0) { 2353 delay = ret; 2354 } else { 2355 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2356 delay = 0; 2357 } 2358 2359 trace_regulator_enable(rdev_get_name(rdev)); 2360 2361 if (rdev->desc->off_on_delay) { 2362 /* if needed, keep a distance of off_on_delay from last time 2363 * this regulator was disabled. 2364 */ 2365 unsigned long start_jiffy = jiffies; 2366 unsigned long intended, max_delay, remaining; 2367 2368 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2369 intended = rdev->last_off_jiffy + max_delay; 2370 2371 if (time_before(start_jiffy, intended)) { 2372 /* calc remaining jiffies to deal with one-time 2373 * timer wrapping. 2374 * in case of multiple timer wrapping, either it can be 2375 * detected by out-of-range remaining, or it cannot be 2376 * detected and we get a penalty of 2377 * _regulator_enable_delay(). 2378 */ 2379 remaining = intended - start_jiffy; 2380 if (remaining <= max_delay) 2381 _regulator_enable_delay( 2382 jiffies_to_usecs(remaining)); 2383 } 2384 } 2385 2386 if (rdev->ena_pin) { 2387 if (!rdev->ena_gpio_state) { 2388 ret = regulator_ena_gpio_ctrl(rdev, true); 2389 if (ret < 0) 2390 return ret; 2391 rdev->ena_gpio_state = 1; 2392 } 2393 } else if (rdev->desc->ops->enable) { 2394 ret = rdev->desc->ops->enable(rdev); 2395 if (ret < 0) 2396 return ret; 2397 } else { 2398 return -EINVAL; 2399 } 2400 2401 /* Allow the regulator to ramp; it would be useful to extend 2402 * this for bulk operations so that the regulators can ramp 2403 * together. */ 2404 trace_regulator_enable_delay(rdev_get_name(rdev)); 2405 2406 _regulator_enable_delay(delay); 2407 2408 trace_regulator_enable_complete(rdev_get_name(rdev)); 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * _regulator_handle_consumer_enable - handle that a consumer enabled 2415 * @regulator: regulator source 2416 * 2417 * Some things on a regulator consumer (like the contribution towards total 2418 * load on the regulator) only have an effect when the consumer wants the 2419 * regulator enabled. Explained in example with two consumers of the same 2420 * regulator: 2421 * consumer A: set_load(100); => total load = 0 2422 * consumer A: regulator_enable(); => total load = 100 2423 * consumer B: set_load(1000); => total load = 100 2424 * consumer B: regulator_enable(); => total load = 1100 2425 * consumer A: regulator_disable(); => total_load = 1000 2426 * 2427 * This function (together with _regulator_handle_consumer_disable) is 2428 * responsible for keeping track of the refcount for a given regulator consumer 2429 * and applying / unapplying these things. 2430 * 2431 * Returns 0 upon no error; -error upon error. 2432 */ 2433 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2434 { 2435 struct regulator_dev *rdev = regulator->rdev; 2436 2437 lockdep_assert_held_once(&rdev->mutex.base); 2438 2439 regulator->enable_count++; 2440 if (regulator->uA_load && regulator->enable_count == 1) 2441 return drms_uA_update(rdev); 2442 2443 return 0; 2444 } 2445 2446 /** 2447 * _regulator_handle_consumer_disable - handle that a consumer disabled 2448 * @regulator: regulator source 2449 * 2450 * The opposite of _regulator_handle_consumer_enable(). 2451 * 2452 * Returns 0 upon no error; -error upon error. 2453 */ 2454 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2455 { 2456 struct regulator_dev *rdev = regulator->rdev; 2457 2458 lockdep_assert_held_once(&rdev->mutex.base); 2459 2460 if (!regulator->enable_count) { 2461 rdev_err(rdev, "Underflow of regulator enable count\n"); 2462 return -EINVAL; 2463 } 2464 2465 regulator->enable_count--; 2466 if (regulator->uA_load && regulator->enable_count == 0) 2467 return drms_uA_update(rdev); 2468 2469 return 0; 2470 } 2471 2472 /* locks held by regulator_enable() */ 2473 static int _regulator_enable(struct regulator *regulator) 2474 { 2475 struct regulator_dev *rdev = regulator->rdev; 2476 int ret; 2477 2478 lockdep_assert_held_once(&rdev->mutex.base); 2479 2480 if (rdev->use_count == 0 && rdev->supply) { 2481 ret = _regulator_enable(rdev->supply); 2482 if (ret < 0) 2483 return ret; 2484 } 2485 2486 /* balance only if there are regulators coupled */ 2487 if (rdev->coupling_desc.n_coupled > 1) { 2488 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2489 if (ret < 0) 2490 goto err_disable_supply; 2491 } 2492 2493 ret = _regulator_handle_consumer_enable(regulator); 2494 if (ret < 0) 2495 goto err_disable_supply; 2496 2497 if (rdev->use_count == 0) { 2498 /* The regulator may on if it's not switchable or left on */ 2499 ret = _regulator_is_enabled(rdev); 2500 if (ret == -EINVAL || ret == 0) { 2501 if (!regulator_ops_is_valid(rdev, 2502 REGULATOR_CHANGE_STATUS)) { 2503 ret = -EPERM; 2504 goto err_consumer_disable; 2505 } 2506 2507 ret = _regulator_do_enable(rdev); 2508 if (ret < 0) 2509 goto err_consumer_disable; 2510 2511 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2512 NULL); 2513 } else if (ret < 0) { 2514 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2515 goto err_consumer_disable; 2516 } 2517 /* Fallthrough on positive return values - already enabled */ 2518 } 2519 2520 rdev->use_count++; 2521 2522 return 0; 2523 2524 err_consumer_disable: 2525 _regulator_handle_consumer_disable(regulator); 2526 2527 err_disable_supply: 2528 if (rdev->use_count == 0 && rdev->supply) 2529 _regulator_disable(rdev->supply); 2530 2531 return ret; 2532 } 2533 2534 /** 2535 * regulator_enable - enable regulator output 2536 * @regulator: regulator source 2537 * 2538 * Request that the regulator be enabled with the regulator output at 2539 * the predefined voltage or current value. Calls to regulator_enable() 2540 * must be balanced with calls to regulator_disable(). 2541 * 2542 * NOTE: the output value can be set by other drivers, boot loader or may be 2543 * hardwired in the regulator. 2544 */ 2545 int regulator_enable(struct regulator *regulator) 2546 { 2547 struct regulator_dev *rdev = regulator->rdev; 2548 struct ww_acquire_ctx ww_ctx; 2549 int ret; 2550 2551 regulator_lock_dependent(rdev, &ww_ctx); 2552 ret = _regulator_enable(regulator); 2553 regulator_unlock_dependent(rdev, &ww_ctx); 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL_GPL(regulator_enable); 2558 2559 static int _regulator_do_disable(struct regulator_dev *rdev) 2560 { 2561 int ret; 2562 2563 trace_regulator_disable(rdev_get_name(rdev)); 2564 2565 if (rdev->ena_pin) { 2566 if (rdev->ena_gpio_state) { 2567 ret = regulator_ena_gpio_ctrl(rdev, false); 2568 if (ret < 0) 2569 return ret; 2570 rdev->ena_gpio_state = 0; 2571 } 2572 2573 } else if (rdev->desc->ops->disable) { 2574 ret = rdev->desc->ops->disable(rdev); 2575 if (ret != 0) 2576 return ret; 2577 } 2578 2579 /* cares about last_off_jiffy only if off_on_delay is required by 2580 * device. 2581 */ 2582 if (rdev->desc->off_on_delay) 2583 rdev->last_off_jiffy = jiffies; 2584 2585 trace_regulator_disable_complete(rdev_get_name(rdev)); 2586 2587 return 0; 2588 } 2589 2590 /* locks held by regulator_disable() */ 2591 static int _regulator_disable(struct regulator *regulator) 2592 { 2593 struct regulator_dev *rdev = regulator->rdev; 2594 int ret = 0; 2595 2596 lockdep_assert_held_once(&rdev->mutex.base); 2597 2598 if (WARN(rdev->use_count <= 0, 2599 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2600 return -EIO; 2601 2602 /* are we the last user and permitted to disable ? */ 2603 if (rdev->use_count == 1 && 2604 (rdev->constraints && !rdev->constraints->always_on)) { 2605 2606 /* we are last user */ 2607 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2608 ret = _notifier_call_chain(rdev, 2609 REGULATOR_EVENT_PRE_DISABLE, 2610 NULL); 2611 if (ret & NOTIFY_STOP_MASK) 2612 return -EINVAL; 2613 2614 ret = _regulator_do_disable(rdev); 2615 if (ret < 0) { 2616 rdev_err(rdev, "failed to disable\n"); 2617 _notifier_call_chain(rdev, 2618 REGULATOR_EVENT_ABORT_DISABLE, 2619 NULL); 2620 return ret; 2621 } 2622 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2623 NULL); 2624 } 2625 2626 rdev->use_count = 0; 2627 } else if (rdev->use_count > 1) { 2628 rdev->use_count--; 2629 } 2630 2631 if (ret == 0) 2632 ret = _regulator_handle_consumer_disable(regulator); 2633 2634 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2635 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2636 2637 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2638 ret = _regulator_disable(rdev->supply); 2639 2640 return ret; 2641 } 2642 2643 /** 2644 * regulator_disable - disable regulator output 2645 * @regulator: regulator source 2646 * 2647 * Disable the regulator output voltage or current. Calls to 2648 * regulator_enable() must be balanced with calls to 2649 * regulator_disable(). 2650 * 2651 * NOTE: this will only disable the regulator output if no other consumer 2652 * devices have it enabled, the regulator device supports disabling and 2653 * machine constraints permit this operation. 2654 */ 2655 int regulator_disable(struct regulator *regulator) 2656 { 2657 struct regulator_dev *rdev = regulator->rdev; 2658 struct ww_acquire_ctx ww_ctx; 2659 int ret; 2660 2661 regulator_lock_dependent(rdev, &ww_ctx); 2662 ret = _regulator_disable(regulator); 2663 regulator_unlock_dependent(rdev, &ww_ctx); 2664 2665 return ret; 2666 } 2667 EXPORT_SYMBOL_GPL(regulator_disable); 2668 2669 /* locks held by regulator_force_disable() */ 2670 static int _regulator_force_disable(struct regulator_dev *rdev) 2671 { 2672 int ret = 0; 2673 2674 lockdep_assert_held_once(&rdev->mutex.base); 2675 2676 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2677 REGULATOR_EVENT_PRE_DISABLE, NULL); 2678 if (ret & NOTIFY_STOP_MASK) 2679 return -EINVAL; 2680 2681 ret = _regulator_do_disable(rdev); 2682 if (ret < 0) { 2683 rdev_err(rdev, "failed to force disable\n"); 2684 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2685 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2686 return ret; 2687 } 2688 2689 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2690 REGULATOR_EVENT_DISABLE, NULL); 2691 2692 return 0; 2693 } 2694 2695 /** 2696 * regulator_force_disable - force disable regulator output 2697 * @regulator: regulator source 2698 * 2699 * Forcibly disable the regulator output voltage or current. 2700 * NOTE: this *will* disable the regulator output even if other consumer 2701 * devices have it enabled. This should be used for situations when device 2702 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2703 */ 2704 int regulator_force_disable(struct regulator *regulator) 2705 { 2706 struct regulator_dev *rdev = regulator->rdev; 2707 struct ww_acquire_ctx ww_ctx; 2708 int ret; 2709 2710 regulator_lock_dependent(rdev, &ww_ctx); 2711 2712 ret = _regulator_force_disable(regulator->rdev); 2713 2714 if (rdev->coupling_desc.n_coupled > 1) 2715 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2716 2717 if (regulator->uA_load) { 2718 regulator->uA_load = 0; 2719 ret = drms_uA_update(rdev); 2720 } 2721 2722 if (rdev->use_count != 0 && rdev->supply) 2723 _regulator_disable(rdev->supply); 2724 2725 regulator_unlock_dependent(rdev, &ww_ctx); 2726 2727 return ret; 2728 } 2729 EXPORT_SYMBOL_GPL(regulator_force_disable); 2730 2731 static void regulator_disable_work(struct work_struct *work) 2732 { 2733 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2734 disable_work.work); 2735 struct ww_acquire_ctx ww_ctx; 2736 int count, i, ret; 2737 struct regulator *regulator; 2738 int total_count = 0; 2739 2740 regulator_lock_dependent(rdev, &ww_ctx); 2741 2742 /* 2743 * Workqueue functions queue the new work instance while the previous 2744 * work instance is being processed. Cancel the queued work instance 2745 * as the work instance under processing does the job of the queued 2746 * work instance. 2747 */ 2748 cancel_delayed_work(&rdev->disable_work); 2749 2750 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2751 count = regulator->deferred_disables; 2752 2753 if (!count) 2754 continue; 2755 2756 total_count += count; 2757 regulator->deferred_disables = 0; 2758 2759 for (i = 0; i < count; i++) { 2760 ret = _regulator_disable(regulator); 2761 if (ret != 0) 2762 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2763 } 2764 } 2765 WARN_ON(!total_count); 2766 2767 if (rdev->coupling_desc.n_coupled > 1) 2768 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2769 2770 regulator_unlock_dependent(rdev, &ww_ctx); 2771 } 2772 2773 /** 2774 * regulator_disable_deferred - disable regulator output with delay 2775 * @regulator: regulator source 2776 * @ms: milliseconds until the regulator is disabled 2777 * 2778 * Execute regulator_disable() on the regulator after a delay. This 2779 * is intended for use with devices that require some time to quiesce. 2780 * 2781 * NOTE: this will only disable the regulator output if no other consumer 2782 * devices have it enabled, the regulator device supports disabling and 2783 * machine constraints permit this operation. 2784 */ 2785 int regulator_disable_deferred(struct regulator *regulator, int ms) 2786 { 2787 struct regulator_dev *rdev = regulator->rdev; 2788 2789 if (!ms) 2790 return regulator_disable(regulator); 2791 2792 regulator_lock(rdev); 2793 regulator->deferred_disables++; 2794 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2795 msecs_to_jiffies(ms)); 2796 regulator_unlock(rdev); 2797 2798 return 0; 2799 } 2800 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2801 2802 static int _regulator_is_enabled(struct regulator_dev *rdev) 2803 { 2804 /* A GPIO control always takes precedence */ 2805 if (rdev->ena_pin) 2806 return rdev->ena_gpio_state; 2807 2808 /* If we don't know then assume that the regulator is always on */ 2809 if (!rdev->desc->ops->is_enabled) 2810 return 1; 2811 2812 return rdev->desc->ops->is_enabled(rdev); 2813 } 2814 2815 static int _regulator_list_voltage(struct regulator_dev *rdev, 2816 unsigned selector, int lock) 2817 { 2818 const struct regulator_ops *ops = rdev->desc->ops; 2819 int ret; 2820 2821 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2822 return rdev->desc->fixed_uV; 2823 2824 if (ops->list_voltage) { 2825 if (selector >= rdev->desc->n_voltages) 2826 return -EINVAL; 2827 if (lock) 2828 regulator_lock(rdev); 2829 ret = ops->list_voltage(rdev, selector); 2830 if (lock) 2831 regulator_unlock(rdev); 2832 } else if (rdev->is_switch && rdev->supply) { 2833 ret = _regulator_list_voltage(rdev->supply->rdev, 2834 selector, lock); 2835 } else { 2836 return -EINVAL; 2837 } 2838 2839 if (ret > 0) { 2840 if (ret < rdev->constraints->min_uV) 2841 ret = 0; 2842 else if (ret > rdev->constraints->max_uV) 2843 ret = 0; 2844 } 2845 2846 return ret; 2847 } 2848 2849 /** 2850 * regulator_is_enabled - is the regulator output enabled 2851 * @regulator: regulator source 2852 * 2853 * Returns positive if the regulator driver backing the source/client 2854 * has requested that the device be enabled, zero if it hasn't, else a 2855 * negative errno code. 2856 * 2857 * Note that the device backing this regulator handle can have multiple 2858 * users, so it might be enabled even if regulator_enable() was never 2859 * called for this particular source. 2860 */ 2861 int regulator_is_enabled(struct regulator *regulator) 2862 { 2863 int ret; 2864 2865 if (regulator->always_on) 2866 return 1; 2867 2868 regulator_lock(regulator->rdev); 2869 ret = _regulator_is_enabled(regulator->rdev); 2870 regulator_unlock(regulator->rdev); 2871 2872 return ret; 2873 } 2874 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2875 2876 /** 2877 * regulator_count_voltages - count regulator_list_voltage() selectors 2878 * @regulator: regulator source 2879 * 2880 * Returns number of selectors, or negative errno. Selectors are 2881 * numbered starting at zero, and typically correspond to bitfields 2882 * in hardware registers. 2883 */ 2884 int regulator_count_voltages(struct regulator *regulator) 2885 { 2886 struct regulator_dev *rdev = regulator->rdev; 2887 2888 if (rdev->desc->n_voltages) 2889 return rdev->desc->n_voltages; 2890 2891 if (!rdev->is_switch || !rdev->supply) 2892 return -EINVAL; 2893 2894 return regulator_count_voltages(rdev->supply); 2895 } 2896 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2897 2898 /** 2899 * regulator_list_voltage - enumerate supported voltages 2900 * @regulator: regulator source 2901 * @selector: identify voltage to list 2902 * Context: can sleep 2903 * 2904 * Returns a voltage that can be passed to @regulator_set_voltage(), 2905 * zero if this selector code can't be used on this system, or a 2906 * negative errno. 2907 */ 2908 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2909 { 2910 return _regulator_list_voltage(regulator->rdev, selector, 1); 2911 } 2912 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2913 2914 /** 2915 * regulator_get_regmap - get the regulator's register map 2916 * @regulator: regulator source 2917 * 2918 * Returns the register map for the given regulator, or an ERR_PTR value 2919 * if the regulator doesn't use regmap. 2920 */ 2921 struct regmap *regulator_get_regmap(struct regulator *regulator) 2922 { 2923 struct regmap *map = regulator->rdev->regmap; 2924 2925 return map ? map : ERR_PTR(-EOPNOTSUPP); 2926 } 2927 2928 /** 2929 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2930 * @regulator: regulator source 2931 * @vsel_reg: voltage selector register, output parameter 2932 * @vsel_mask: mask for voltage selector bitfield, output parameter 2933 * 2934 * Returns the hardware register offset and bitmask used for setting the 2935 * regulator voltage. This might be useful when configuring voltage-scaling 2936 * hardware or firmware that can make I2C requests behind the kernel's back, 2937 * for example. 2938 * 2939 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2940 * and 0 is returned, otherwise a negative errno is returned. 2941 */ 2942 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2943 unsigned *vsel_reg, 2944 unsigned *vsel_mask) 2945 { 2946 struct regulator_dev *rdev = regulator->rdev; 2947 const struct regulator_ops *ops = rdev->desc->ops; 2948 2949 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2950 return -EOPNOTSUPP; 2951 2952 *vsel_reg = rdev->desc->vsel_reg; 2953 *vsel_mask = rdev->desc->vsel_mask; 2954 2955 return 0; 2956 } 2957 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2958 2959 /** 2960 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2961 * @regulator: regulator source 2962 * @selector: identify voltage to list 2963 * 2964 * Converts the selector to a hardware-specific voltage selector that can be 2965 * directly written to the regulator registers. The address of the voltage 2966 * register can be determined by calling @regulator_get_hardware_vsel_register. 2967 * 2968 * On error a negative errno is returned. 2969 */ 2970 int regulator_list_hardware_vsel(struct regulator *regulator, 2971 unsigned selector) 2972 { 2973 struct regulator_dev *rdev = regulator->rdev; 2974 const struct regulator_ops *ops = rdev->desc->ops; 2975 2976 if (selector >= rdev->desc->n_voltages) 2977 return -EINVAL; 2978 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2979 return -EOPNOTSUPP; 2980 2981 return selector; 2982 } 2983 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2984 2985 /** 2986 * regulator_get_linear_step - return the voltage step size between VSEL values 2987 * @regulator: regulator source 2988 * 2989 * Returns the voltage step size between VSEL values for linear 2990 * regulators, or return 0 if the regulator isn't a linear regulator. 2991 */ 2992 unsigned int regulator_get_linear_step(struct regulator *regulator) 2993 { 2994 struct regulator_dev *rdev = regulator->rdev; 2995 2996 return rdev->desc->uV_step; 2997 } 2998 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2999 3000 /** 3001 * regulator_is_supported_voltage - check if a voltage range can be supported 3002 * 3003 * @regulator: Regulator to check. 3004 * @min_uV: Minimum required voltage in uV. 3005 * @max_uV: Maximum required voltage in uV. 3006 * 3007 * Returns a boolean or a negative error code. 3008 */ 3009 int regulator_is_supported_voltage(struct regulator *regulator, 3010 int min_uV, int max_uV) 3011 { 3012 struct regulator_dev *rdev = regulator->rdev; 3013 int i, voltages, ret; 3014 3015 /* If we can't change voltage check the current voltage */ 3016 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3017 ret = regulator_get_voltage(regulator); 3018 if (ret >= 0) 3019 return min_uV <= ret && ret <= max_uV; 3020 else 3021 return ret; 3022 } 3023 3024 /* Any voltage within constrains range is fine? */ 3025 if (rdev->desc->continuous_voltage_range) 3026 return min_uV >= rdev->constraints->min_uV && 3027 max_uV <= rdev->constraints->max_uV; 3028 3029 ret = regulator_count_voltages(regulator); 3030 if (ret < 0) 3031 return ret; 3032 voltages = ret; 3033 3034 for (i = 0; i < voltages; i++) { 3035 ret = regulator_list_voltage(regulator, i); 3036 3037 if (ret >= min_uV && ret <= max_uV) 3038 return 1; 3039 } 3040 3041 return 0; 3042 } 3043 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3044 3045 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3046 int max_uV) 3047 { 3048 const struct regulator_desc *desc = rdev->desc; 3049 3050 if (desc->ops->map_voltage) 3051 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3052 3053 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3054 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3055 3056 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3057 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3058 3059 if (desc->ops->list_voltage == 3060 regulator_list_voltage_pickable_linear_range) 3061 return regulator_map_voltage_pickable_linear_range(rdev, 3062 min_uV, max_uV); 3063 3064 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3065 } 3066 3067 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3068 int min_uV, int max_uV, 3069 unsigned *selector) 3070 { 3071 struct pre_voltage_change_data data; 3072 int ret; 3073 3074 data.old_uV = _regulator_get_voltage(rdev); 3075 data.min_uV = min_uV; 3076 data.max_uV = max_uV; 3077 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3078 &data); 3079 if (ret & NOTIFY_STOP_MASK) 3080 return -EINVAL; 3081 3082 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3083 if (ret >= 0) 3084 return ret; 3085 3086 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3087 (void *)data.old_uV); 3088 3089 return ret; 3090 } 3091 3092 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3093 int uV, unsigned selector) 3094 { 3095 struct pre_voltage_change_data data; 3096 int ret; 3097 3098 data.old_uV = _regulator_get_voltage(rdev); 3099 data.min_uV = uV; 3100 data.max_uV = uV; 3101 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3102 &data); 3103 if (ret & NOTIFY_STOP_MASK) 3104 return -EINVAL; 3105 3106 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3107 if (ret >= 0) 3108 return ret; 3109 3110 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3111 (void *)data.old_uV); 3112 3113 return ret; 3114 } 3115 3116 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3117 int old_uV, int new_uV) 3118 { 3119 unsigned int ramp_delay = 0; 3120 3121 if (rdev->constraints->ramp_delay) 3122 ramp_delay = rdev->constraints->ramp_delay; 3123 else if (rdev->desc->ramp_delay) 3124 ramp_delay = rdev->desc->ramp_delay; 3125 else if (rdev->constraints->settling_time) 3126 return rdev->constraints->settling_time; 3127 else if (rdev->constraints->settling_time_up && 3128 (new_uV > old_uV)) 3129 return rdev->constraints->settling_time_up; 3130 else if (rdev->constraints->settling_time_down && 3131 (new_uV < old_uV)) 3132 return rdev->constraints->settling_time_down; 3133 3134 if (ramp_delay == 0) { 3135 rdev_dbg(rdev, "ramp_delay not set\n"); 3136 return 0; 3137 } 3138 3139 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3140 } 3141 3142 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3143 int min_uV, int max_uV) 3144 { 3145 int ret; 3146 int delay = 0; 3147 int best_val = 0; 3148 unsigned int selector; 3149 int old_selector = -1; 3150 const struct regulator_ops *ops = rdev->desc->ops; 3151 int old_uV = _regulator_get_voltage(rdev); 3152 3153 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3154 3155 min_uV += rdev->constraints->uV_offset; 3156 max_uV += rdev->constraints->uV_offset; 3157 3158 /* 3159 * If we can't obtain the old selector there is not enough 3160 * info to call set_voltage_time_sel(). 3161 */ 3162 if (_regulator_is_enabled(rdev) && 3163 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3164 old_selector = ops->get_voltage_sel(rdev); 3165 if (old_selector < 0) 3166 return old_selector; 3167 } 3168 3169 if (ops->set_voltage) { 3170 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3171 &selector); 3172 3173 if (ret >= 0) { 3174 if (ops->list_voltage) 3175 best_val = ops->list_voltage(rdev, 3176 selector); 3177 else 3178 best_val = _regulator_get_voltage(rdev); 3179 } 3180 3181 } else if (ops->set_voltage_sel) { 3182 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3183 if (ret >= 0) { 3184 best_val = ops->list_voltage(rdev, ret); 3185 if (min_uV <= best_val && max_uV >= best_val) { 3186 selector = ret; 3187 if (old_selector == selector) 3188 ret = 0; 3189 else 3190 ret = _regulator_call_set_voltage_sel( 3191 rdev, best_val, selector); 3192 } else { 3193 ret = -EINVAL; 3194 } 3195 } 3196 } else { 3197 ret = -EINVAL; 3198 } 3199 3200 if (ret) 3201 goto out; 3202 3203 if (ops->set_voltage_time_sel) { 3204 /* 3205 * Call set_voltage_time_sel if successfully obtained 3206 * old_selector 3207 */ 3208 if (old_selector >= 0 && old_selector != selector) 3209 delay = ops->set_voltage_time_sel(rdev, old_selector, 3210 selector); 3211 } else { 3212 if (old_uV != best_val) { 3213 if (ops->set_voltage_time) 3214 delay = ops->set_voltage_time(rdev, old_uV, 3215 best_val); 3216 else 3217 delay = _regulator_set_voltage_time(rdev, 3218 old_uV, 3219 best_val); 3220 } 3221 } 3222 3223 if (delay < 0) { 3224 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3225 delay = 0; 3226 } 3227 3228 /* Insert any necessary delays */ 3229 if (delay >= 1000) { 3230 mdelay(delay / 1000); 3231 udelay(delay % 1000); 3232 } else if (delay) { 3233 udelay(delay); 3234 } 3235 3236 if (best_val >= 0) { 3237 unsigned long data = best_val; 3238 3239 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3240 (void *)data); 3241 } 3242 3243 out: 3244 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3245 3246 return ret; 3247 } 3248 3249 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3250 int min_uV, int max_uV, suspend_state_t state) 3251 { 3252 struct regulator_state *rstate; 3253 int uV, sel; 3254 3255 rstate = regulator_get_suspend_state(rdev, state); 3256 if (rstate == NULL) 3257 return -EINVAL; 3258 3259 if (min_uV < rstate->min_uV) 3260 min_uV = rstate->min_uV; 3261 if (max_uV > rstate->max_uV) 3262 max_uV = rstate->max_uV; 3263 3264 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3265 if (sel < 0) 3266 return sel; 3267 3268 uV = rdev->desc->ops->list_voltage(rdev, sel); 3269 if (uV >= min_uV && uV <= max_uV) 3270 rstate->uV = uV; 3271 3272 return 0; 3273 } 3274 3275 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3276 int min_uV, int max_uV, 3277 suspend_state_t state) 3278 { 3279 struct regulator_dev *rdev = regulator->rdev; 3280 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3281 int ret = 0; 3282 int old_min_uV, old_max_uV; 3283 int current_uV; 3284 3285 /* If we're setting the same range as last time the change 3286 * should be a noop (some cpufreq implementations use the same 3287 * voltage for multiple frequencies, for example). 3288 */ 3289 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3290 goto out; 3291 3292 /* If we're trying to set a range that overlaps the current voltage, 3293 * return successfully even though the regulator does not support 3294 * changing the voltage. 3295 */ 3296 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3297 current_uV = _regulator_get_voltage(rdev); 3298 if (min_uV <= current_uV && current_uV <= max_uV) { 3299 voltage->min_uV = min_uV; 3300 voltage->max_uV = max_uV; 3301 goto out; 3302 } 3303 } 3304 3305 /* sanity check */ 3306 if (!rdev->desc->ops->set_voltage && 3307 !rdev->desc->ops->set_voltage_sel) { 3308 ret = -EINVAL; 3309 goto out; 3310 } 3311 3312 /* constraints check */ 3313 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3314 if (ret < 0) 3315 goto out; 3316 3317 /* restore original values in case of error */ 3318 old_min_uV = voltage->min_uV; 3319 old_max_uV = voltage->max_uV; 3320 voltage->min_uV = min_uV; 3321 voltage->max_uV = max_uV; 3322 3323 /* for not coupled regulators this will just set the voltage */ 3324 ret = regulator_balance_voltage(rdev, state); 3325 if (ret < 0) 3326 goto out2; 3327 3328 out: 3329 return 0; 3330 out2: 3331 voltage->min_uV = old_min_uV; 3332 voltage->max_uV = old_max_uV; 3333 3334 return ret; 3335 } 3336 3337 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3338 int max_uV, suspend_state_t state) 3339 { 3340 int best_supply_uV = 0; 3341 int supply_change_uV = 0; 3342 int ret; 3343 3344 if (rdev->supply && 3345 regulator_ops_is_valid(rdev->supply->rdev, 3346 REGULATOR_CHANGE_VOLTAGE) && 3347 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3348 rdev->desc->ops->get_voltage_sel))) { 3349 int current_supply_uV; 3350 int selector; 3351 3352 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3353 if (selector < 0) { 3354 ret = selector; 3355 goto out; 3356 } 3357 3358 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3359 if (best_supply_uV < 0) { 3360 ret = best_supply_uV; 3361 goto out; 3362 } 3363 3364 best_supply_uV += rdev->desc->min_dropout_uV; 3365 3366 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 3367 if (current_supply_uV < 0) { 3368 ret = current_supply_uV; 3369 goto out; 3370 } 3371 3372 supply_change_uV = best_supply_uV - current_supply_uV; 3373 } 3374 3375 if (supply_change_uV > 0) { 3376 ret = regulator_set_voltage_unlocked(rdev->supply, 3377 best_supply_uV, INT_MAX, state); 3378 if (ret) { 3379 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3380 ret); 3381 goto out; 3382 } 3383 } 3384 3385 if (state == PM_SUSPEND_ON) 3386 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3387 else 3388 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3389 max_uV, state); 3390 if (ret < 0) 3391 goto out; 3392 3393 if (supply_change_uV < 0) { 3394 ret = regulator_set_voltage_unlocked(rdev->supply, 3395 best_supply_uV, INT_MAX, state); 3396 if (ret) 3397 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3398 ret); 3399 /* No need to fail here */ 3400 ret = 0; 3401 } 3402 3403 out: 3404 return ret; 3405 } 3406 3407 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3408 int *current_uV, int *min_uV) 3409 { 3410 struct regulation_constraints *constraints = rdev->constraints; 3411 3412 /* Limit voltage change only if necessary */ 3413 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3414 return 1; 3415 3416 if (*current_uV < 0) { 3417 *current_uV = _regulator_get_voltage(rdev); 3418 3419 if (*current_uV < 0) 3420 return *current_uV; 3421 } 3422 3423 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3424 return 1; 3425 3426 /* Clamp target voltage within the given step */ 3427 if (*current_uV < *min_uV) 3428 *min_uV = min(*current_uV + constraints->max_uV_step, 3429 *min_uV); 3430 else 3431 *min_uV = max(*current_uV - constraints->max_uV_step, 3432 *min_uV); 3433 3434 return 0; 3435 } 3436 3437 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3438 int *current_uV, 3439 int *min_uV, int *max_uV, 3440 suspend_state_t state, 3441 int n_coupled) 3442 { 3443 struct coupling_desc *c_desc = &rdev->coupling_desc; 3444 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3445 struct regulation_constraints *constraints = rdev->constraints; 3446 int max_spread = constraints->max_spread; 3447 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3448 int max_current_uV = 0, min_current_uV = INT_MAX; 3449 int highest_min_uV = 0, target_uV, possible_uV; 3450 int i, ret; 3451 bool done; 3452 3453 *current_uV = -1; 3454 3455 /* 3456 * If there are no coupled regulators, simply set the voltage 3457 * demanded by consumers. 3458 */ 3459 if (n_coupled == 1) { 3460 /* 3461 * If consumers don't provide any demands, set voltage 3462 * to min_uV 3463 */ 3464 desired_min_uV = constraints->min_uV; 3465 desired_max_uV = constraints->max_uV; 3466 3467 ret = regulator_check_consumers(rdev, 3468 &desired_min_uV, 3469 &desired_max_uV, state); 3470 if (ret < 0) 3471 return ret; 3472 3473 possible_uV = desired_min_uV; 3474 done = true; 3475 3476 goto finish; 3477 } 3478 3479 /* Find highest min desired voltage */ 3480 for (i = 0; i < n_coupled; i++) { 3481 int tmp_min = 0; 3482 int tmp_max = INT_MAX; 3483 3484 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3485 3486 ret = regulator_check_consumers(c_rdevs[i], 3487 &tmp_min, 3488 &tmp_max, state); 3489 if (ret < 0) 3490 return ret; 3491 3492 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3493 if (ret < 0) 3494 return ret; 3495 3496 highest_min_uV = max(highest_min_uV, tmp_min); 3497 3498 if (i == 0) { 3499 desired_min_uV = tmp_min; 3500 desired_max_uV = tmp_max; 3501 } 3502 } 3503 3504 /* 3505 * Let target_uV be equal to the desired one if possible. 3506 * If not, set it to minimum voltage, allowed by other coupled 3507 * regulators. 3508 */ 3509 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3510 3511 /* 3512 * Find min and max voltages, which currently aren't violating 3513 * max_spread. 3514 */ 3515 for (i = 1; i < n_coupled; i++) { 3516 int tmp_act; 3517 3518 if (!_regulator_is_enabled(c_rdevs[i])) 3519 continue; 3520 3521 tmp_act = _regulator_get_voltage(c_rdevs[i]); 3522 if (tmp_act < 0) 3523 return tmp_act; 3524 3525 min_current_uV = min(tmp_act, min_current_uV); 3526 max_current_uV = max(tmp_act, max_current_uV); 3527 } 3528 3529 /* There aren't any other regulators enabled */ 3530 if (max_current_uV == 0) { 3531 possible_uV = target_uV; 3532 } else { 3533 /* 3534 * Correct target voltage, so as it currently isn't 3535 * violating max_spread 3536 */ 3537 possible_uV = max(target_uV, max_current_uV - max_spread); 3538 possible_uV = min(possible_uV, min_current_uV + max_spread); 3539 } 3540 3541 if (possible_uV > desired_max_uV) 3542 return -EINVAL; 3543 3544 done = (possible_uV == target_uV); 3545 desired_min_uV = possible_uV; 3546 3547 finish: 3548 /* Apply max_uV_step constraint if necessary */ 3549 if (state == PM_SUSPEND_ON) { 3550 ret = regulator_limit_voltage_step(rdev, current_uV, 3551 &desired_min_uV); 3552 if (ret < 0) 3553 return ret; 3554 3555 if (ret == 0) 3556 done = false; 3557 } 3558 3559 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3560 if (n_coupled > 1 && *current_uV == -1) { 3561 3562 if (_regulator_is_enabled(rdev)) { 3563 ret = _regulator_get_voltage(rdev); 3564 if (ret < 0) 3565 return ret; 3566 3567 *current_uV = ret; 3568 } else { 3569 *current_uV = desired_min_uV; 3570 } 3571 } 3572 3573 *min_uV = desired_min_uV; 3574 *max_uV = desired_max_uV; 3575 3576 return done; 3577 } 3578 3579 static int regulator_balance_voltage(struct regulator_dev *rdev, 3580 suspend_state_t state) 3581 { 3582 struct regulator_dev **c_rdevs; 3583 struct regulator_dev *best_rdev; 3584 struct coupling_desc *c_desc = &rdev->coupling_desc; 3585 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3586 bool best_c_rdev_done, c_rdev_done[MAX_COUPLED]; 3587 unsigned int delta, best_delta; 3588 3589 c_rdevs = c_desc->coupled_rdevs; 3590 n_coupled = c_desc->n_coupled; 3591 3592 /* 3593 * If system is in a state other than PM_SUSPEND_ON, don't check 3594 * other coupled regulators. 3595 */ 3596 if (state != PM_SUSPEND_ON) 3597 n_coupled = 1; 3598 3599 if (c_desc->n_resolved < n_coupled) { 3600 rdev_err(rdev, "Not all coupled regulators registered\n"); 3601 return -EPERM; 3602 } 3603 3604 for (i = 0; i < n_coupled; i++) 3605 c_rdev_done[i] = false; 3606 3607 /* 3608 * Find the best possible voltage change on each loop. Leave the loop 3609 * if there isn't any possible change. 3610 */ 3611 do { 3612 best_c_rdev_done = false; 3613 best_delta = 0; 3614 best_min_uV = 0; 3615 best_max_uV = 0; 3616 best_c_rdev = 0; 3617 best_rdev = NULL; 3618 3619 /* 3620 * Find highest difference between optimal voltage 3621 * and current voltage. 3622 */ 3623 for (i = 0; i < n_coupled; i++) { 3624 /* 3625 * optimal_uV is the best voltage that can be set for 3626 * i-th regulator at the moment without violating 3627 * max_spread constraint in order to balance 3628 * the coupled voltages. 3629 */ 3630 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3631 3632 if (c_rdev_done[i]) 3633 continue; 3634 3635 ret = regulator_get_optimal_voltage(c_rdevs[i], 3636 ¤t_uV, 3637 &optimal_uV, 3638 &optimal_max_uV, 3639 state, n_coupled); 3640 if (ret < 0) 3641 goto out; 3642 3643 delta = abs(optimal_uV - current_uV); 3644 3645 if (delta && best_delta <= delta) { 3646 best_c_rdev_done = ret; 3647 best_delta = delta; 3648 best_rdev = c_rdevs[i]; 3649 best_min_uV = optimal_uV; 3650 best_max_uV = optimal_max_uV; 3651 best_c_rdev = i; 3652 } 3653 } 3654 3655 /* Nothing to change, return successfully */ 3656 if (!best_rdev) { 3657 ret = 0; 3658 goto out; 3659 } 3660 3661 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3662 best_max_uV, state); 3663 3664 if (ret < 0) 3665 goto out; 3666 3667 c_rdev_done[best_c_rdev] = best_c_rdev_done; 3668 3669 } while (n_coupled > 1); 3670 3671 out: 3672 return ret; 3673 } 3674 3675 /** 3676 * regulator_set_voltage - set regulator output voltage 3677 * @regulator: regulator source 3678 * @min_uV: Minimum required voltage in uV 3679 * @max_uV: Maximum acceptable voltage in uV 3680 * 3681 * Sets a voltage regulator to the desired output voltage. This can be set 3682 * during any regulator state. IOW, regulator can be disabled or enabled. 3683 * 3684 * If the regulator is enabled then the voltage will change to the new value 3685 * immediately otherwise if the regulator is disabled the regulator will 3686 * output at the new voltage when enabled. 3687 * 3688 * NOTE: If the regulator is shared between several devices then the lowest 3689 * request voltage that meets the system constraints will be used. 3690 * Regulator system constraints must be set for this regulator before 3691 * calling this function otherwise this call will fail. 3692 */ 3693 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3694 { 3695 struct ww_acquire_ctx ww_ctx; 3696 int ret; 3697 3698 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3699 3700 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3701 PM_SUSPEND_ON); 3702 3703 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3704 3705 return ret; 3706 } 3707 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3708 3709 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3710 suspend_state_t state, bool en) 3711 { 3712 struct regulator_state *rstate; 3713 3714 rstate = regulator_get_suspend_state(rdev, state); 3715 if (rstate == NULL) 3716 return -EINVAL; 3717 3718 if (!rstate->changeable) 3719 return -EPERM; 3720 3721 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3722 3723 return 0; 3724 } 3725 3726 int regulator_suspend_enable(struct regulator_dev *rdev, 3727 suspend_state_t state) 3728 { 3729 return regulator_suspend_toggle(rdev, state, true); 3730 } 3731 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3732 3733 int regulator_suspend_disable(struct regulator_dev *rdev, 3734 suspend_state_t state) 3735 { 3736 struct regulator *regulator; 3737 struct regulator_voltage *voltage; 3738 3739 /* 3740 * if any consumer wants this regulator device keeping on in 3741 * suspend states, don't set it as disabled. 3742 */ 3743 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3744 voltage = ®ulator->voltage[state]; 3745 if (voltage->min_uV || voltage->max_uV) 3746 return 0; 3747 } 3748 3749 return regulator_suspend_toggle(rdev, state, false); 3750 } 3751 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3752 3753 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3754 int min_uV, int max_uV, 3755 suspend_state_t state) 3756 { 3757 struct regulator_dev *rdev = regulator->rdev; 3758 struct regulator_state *rstate; 3759 3760 rstate = regulator_get_suspend_state(rdev, state); 3761 if (rstate == NULL) 3762 return -EINVAL; 3763 3764 if (rstate->min_uV == rstate->max_uV) { 3765 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3766 return -EPERM; 3767 } 3768 3769 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3770 } 3771 3772 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3773 int max_uV, suspend_state_t state) 3774 { 3775 struct ww_acquire_ctx ww_ctx; 3776 int ret; 3777 3778 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3779 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3780 return -EINVAL; 3781 3782 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3783 3784 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3785 max_uV, state); 3786 3787 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3788 3789 return ret; 3790 } 3791 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3792 3793 /** 3794 * regulator_set_voltage_time - get raise/fall time 3795 * @regulator: regulator source 3796 * @old_uV: starting voltage in microvolts 3797 * @new_uV: target voltage in microvolts 3798 * 3799 * Provided with the starting and ending voltage, this function attempts to 3800 * calculate the time in microseconds required to rise or fall to this new 3801 * voltage. 3802 */ 3803 int regulator_set_voltage_time(struct regulator *regulator, 3804 int old_uV, int new_uV) 3805 { 3806 struct regulator_dev *rdev = regulator->rdev; 3807 const struct regulator_ops *ops = rdev->desc->ops; 3808 int old_sel = -1; 3809 int new_sel = -1; 3810 int voltage; 3811 int i; 3812 3813 if (ops->set_voltage_time) 3814 return ops->set_voltage_time(rdev, old_uV, new_uV); 3815 else if (!ops->set_voltage_time_sel) 3816 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3817 3818 /* Currently requires operations to do this */ 3819 if (!ops->list_voltage || !rdev->desc->n_voltages) 3820 return -EINVAL; 3821 3822 for (i = 0; i < rdev->desc->n_voltages; i++) { 3823 /* We only look for exact voltage matches here */ 3824 voltage = regulator_list_voltage(regulator, i); 3825 if (voltage < 0) 3826 return -EINVAL; 3827 if (voltage == 0) 3828 continue; 3829 if (voltage == old_uV) 3830 old_sel = i; 3831 if (voltage == new_uV) 3832 new_sel = i; 3833 } 3834 3835 if (old_sel < 0 || new_sel < 0) 3836 return -EINVAL; 3837 3838 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3839 } 3840 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3841 3842 /** 3843 * regulator_set_voltage_time_sel - get raise/fall time 3844 * @rdev: regulator source device 3845 * @old_selector: selector for starting voltage 3846 * @new_selector: selector for target voltage 3847 * 3848 * Provided with the starting and target voltage selectors, this function 3849 * returns time in microseconds required to rise or fall to this new voltage 3850 * 3851 * Drivers providing ramp_delay in regulation_constraints can use this as their 3852 * set_voltage_time_sel() operation. 3853 */ 3854 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3855 unsigned int old_selector, 3856 unsigned int new_selector) 3857 { 3858 int old_volt, new_volt; 3859 3860 /* sanity check */ 3861 if (!rdev->desc->ops->list_voltage) 3862 return -EINVAL; 3863 3864 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3865 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3866 3867 if (rdev->desc->ops->set_voltage_time) 3868 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3869 new_volt); 3870 else 3871 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3872 } 3873 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3874 3875 /** 3876 * regulator_sync_voltage - re-apply last regulator output voltage 3877 * @regulator: regulator source 3878 * 3879 * Re-apply the last configured voltage. This is intended to be used 3880 * where some external control source the consumer is cooperating with 3881 * has caused the configured voltage to change. 3882 */ 3883 int regulator_sync_voltage(struct regulator *regulator) 3884 { 3885 struct regulator_dev *rdev = regulator->rdev; 3886 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3887 int ret, min_uV, max_uV; 3888 3889 regulator_lock(rdev); 3890 3891 if (!rdev->desc->ops->set_voltage && 3892 !rdev->desc->ops->set_voltage_sel) { 3893 ret = -EINVAL; 3894 goto out; 3895 } 3896 3897 /* This is only going to work if we've had a voltage configured. */ 3898 if (!voltage->min_uV && !voltage->max_uV) { 3899 ret = -EINVAL; 3900 goto out; 3901 } 3902 3903 min_uV = voltage->min_uV; 3904 max_uV = voltage->max_uV; 3905 3906 /* This should be a paranoia check... */ 3907 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3908 if (ret < 0) 3909 goto out; 3910 3911 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3912 if (ret < 0) 3913 goto out; 3914 3915 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3916 3917 out: 3918 regulator_unlock(rdev); 3919 return ret; 3920 } 3921 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3922 3923 static int _regulator_get_voltage(struct regulator_dev *rdev) 3924 { 3925 int sel, ret; 3926 bool bypassed; 3927 3928 if (rdev->desc->ops->get_bypass) { 3929 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3930 if (ret < 0) 3931 return ret; 3932 if (bypassed) { 3933 /* if bypassed the regulator must have a supply */ 3934 if (!rdev->supply) { 3935 rdev_err(rdev, 3936 "bypassed regulator has no supply!\n"); 3937 return -EPROBE_DEFER; 3938 } 3939 3940 return _regulator_get_voltage(rdev->supply->rdev); 3941 } 3942 } 3943 3944 if (rdev->desc->ops->get_voltage_sel) { 3945 sel = rdev->desc->ops->get_voltage_sel(rdev); 3946 if (sel < 0) 3947 return sel; 3948 ret = rdev->desc->ops->list_voltage(rdev, sel); 3949 } else if (rdev->desc->ops->get_voltage) { 3950 ret = rdev->desc->ops->get_voltage(rdev); 3951 } else if (rdev->desc->ops->list_voltage) { 3952 ret = rdev->desc->ops->list_voltage(rdev, 0); 3953 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3954 ret = rdev->desc->fixed_uV; 3955 } else if (rdev->supply) { 3956 ret = _regulator_get_voltage(rdev->supply->rdev); 3957 } else { 3958 return -EINVAL; 3959 } 3960 3961 if (ret < 0) 3962 return ret; 3963 return ret - rdev->constraints->uV_offset; 3964 } 3965 3966 /** 3967 * regulator_get_voltage - get regulator output voltage 3968 * @regulator: regulator source 3969 * 3970 * This returns the current regulator voltage in uV. 3971 * 3972 * NOTE: If the regulator is disabled it will return the voltage value. This 3973 * function should not be used to determine regulator state. 3974 */ 3975 int regulator_get_voltage(struct regulator *regulator) 3976 { 3977 struct ww_acquire_ctx ww_ctx; 3978 int ret; 3979 3980 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3981 ret = _regulator_get_voltage(regulator->rdev); 3982 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3983 3984 return ret; 3985 } 3986 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3987 3988 /** 3989 * regulator_set_current_limit - set regulator output current limit 3990 * @regulator: regulator source 3991 * @min_uA: Minimum supported current in uA 3992 * @max_uA: Maximum supported current in uA 3993 * 3994 * Sets current sink to the desired output current. This can be set during 3995 * any regulator state. IOW, regulator can be disabled or enabled. 3996 * 3997 * If the regulator is enabled then the current will change to the new value 3998 * immediately otherwise if the regulator is disabled the regulator will 3999 * output at the new current when enabled. 4000 * 4001 * NOTE: Regulator system constraints must be set for this regulator before 4002 * calling this function otherwise this call will fail. 4003 */ 4004 int regulator_set_current_limit(struct regulator *regulator, 4005 int min_uA, int max_uA) 4006 { 4007 struct regulator_dev *rdev = regulator->rdev; 4008 int ret; 4009 4010 regulator_lock(rdev); 4011 4012 /* sanity check */ 4013 if (!rdev->desc->ops->set_current_limit) { 4014 ret = -EINVAL; 4015 goto out; 4016 } 4017 4018 /* constraints check */ 4019 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4020 if (ret < 0) 4021 goto out; 4022 4023 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4024 out: 4025 regulator_unlock(rdev); 4026 return ret; 4027 } 4028 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4029 4030 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4031 { 4032 /* sanity check */ 4033 if (!rdev->desc->ops->get_current_limit) 4034 return -EINVAL; 4035 4036 return rdev->desc->ops->get_current_limit(rdev); 4037 } 4038 4039 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4040 { 4041 int ret; 4042 4043 regulator_lock(rdev); 4044 ret = _regulator_get_current_limit_unlocked(rdev); 4045 regulator_unlock(rdev); 4046 4047 return ret; 4048 } 4049 4050 /** 4051 * regulator_get_current_limit - get regulator output current 4052 * @regulator: regulator source 4053 * 4054 * This returns the current supplied by the specified current sink in uA. 4055 * 4056 * NOTE: If the regulator is disabled it will return the current value. This 4057 * function should not be used to determine regulator state. 4058 */ 4059 int regulator_get_current_limit(struct regulator *regulator) 4060 { 4061 return _regulator_get_current_limit(regulator->rdev); 4062 } 4063 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4064 4065 /** 4066 * regulator_set_mode - set regulator operating mode 4067 * @regulator: regulator source 4068 * @mode: operating mode - one of the REGULATOR_MODE constants 4069 * 4070 * Set regulator operating mode to increase regulator efficiency or improve 4071 * regulation performance. 4072 * 4073 * NOTE: Regulator system constraints must be set for this regulator before 4074 * calling this function otherwise this call will fail. 4075 */ 4076 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4077 { 4078 struct regulator_dev *rdev = regulator->rdev; 4079 int ret; 4080 int regulator_curr_mode; 4081 4082 regulator_lock(rdev); 4083 4084 /* sanity check */ 4085 if (!rdev->desc->ops->set_mode) { 4086 ret = -EINVAL; 4087 goto out; 4088 } 4089 4090 /* return if the same mode is requested */ 4091 if (rdev->desc->ops->get_mode) { 4092 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4093 if (regulator_curr_mode == mode) { 4094 ret = 0; 4095 goto out; 4096 } 4097 } 4098 4099 /* constraints check */ 4100 ret = regulator_mode_constrain(rdev, &mode); 4101 if (ret < 0) 4102 goto out; 4103 4104 ret = rdev->desc->ops->set_mode(rdev, mode); 4105 out: 4106 regulator_unlock(rdev); 4107 return ret; 4108 } 4109 EXPORT_SYMBOL_GPL(regulator_set_mode); 4110 4111 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4112 { 4113 /* sanity check */ 4114 if (!rdev->desc->ops->get_mode) 4115 return -EINVAL; 4116 4117 return rdev->desc->ops->get_mode(rdev); 4118 } 4119 4120 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4121 { 4122 int ret; 4123 4124 regulator_lock(rdev); 4125 ret = _regulator_get_mode_unlocked(rdev); 4126 regulator_unlock(rdev); 4127 4128 return ret; 4129 } 4130 4131 /** 4132 * regulator_get_mode - get regulator operating mode 4133 * @regulator: regulator source 4134 * 4135 * Get the current regulator operating mode. 4136 */ 4137 unsigned int regulator_get_mode(struct regulator *regulator) 4138 { 4139 return _regulator_get_mode(regulator->rdev); 4140 } 4141 EXPORT_SYMBOL_GPL(regulator_get_mode); 4142 4143 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4144 unsigned int *flags) 4145 { 4146 int ret; 4147 4148 regulator_lock(rdev); 4149 4150 /* sanity check */ 4151 if (!rdev->desc->ops->get_error_flags) { 4152 ret = -EINVAL; 4153 goto out; 4154 } 4155 4156 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4157 out: 4158 regulator_unlock(rdev); 4159 return ret; 4160 } 4161 4162 /** 4163 * regulator_get_error_flags - get regulator error information 4164 * @regulator: regulator source 4165 * @flags: pointer to store error flags 4166 * 4167 * Get the current regulator error information. 4168 */ 4169 int regulator_get_error_flags(struct regulator *regulator, 4170 unsigned int *flags) 4171 { 4172 return _regulator_get_error_flags(regulator->rdev, flags); 4173 } 4174 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4175 4176 /** 4177 * regulator_set_load - set regulator load 4178 * @regulator: regulator source 4179 * @uA_load: load current 4180 * 4181 * Notifies the regulator core of a new device load. This is then used by 4182 * DRMS (if enabled by constraints) to set the most efficient regulator 4183 * operating mode for the new regulator loading. 4184 * 4185 * Consumer devices notify their supply regulator of the maximum power 4186 * they will require (can be taken from device datasheet in the power 4187 * consumption tables) when they change operational status and hence power 4188 * state. Examples of operational state changes that can affect power 4189 * consumption are :- 4190 * 4191 * o Device is opened / closed. 4192 * o Device I/O is about to begin or has just finished. 4193 * o Device is idling in between work. 4194 * 4195 * This information is also exported via sysfs to userspace. 4196 * 4197 * DRMS will sum the total requested load on the regulator and change 4198 * to the most efficient operating mode if platform constraints allow. 4199 * 4200 * NOTE: when a regulator consumer requests to have a regulator 4201 * disabled then any load that consumer requested no longer counts 4202 * toward the total requested load. If the regulator is re-enabled 4203 * then the previously requested load will start counting again. 4204 * 4205 * If a regulator is an always-on regulator then an individual consumer's 4206 * load will still be removed if that consumer is fully disabled. 4207 * 4208 * On error a negative errno is returned. 4209 */ 4210 int regulator_set_load(struct regulator *regulator, int uA_load) 4211 { 4212 struct regulator_dev *rdev = regulator->rdev; 4213 int old_uA_load; 4214 int ret = 0; 4215 4216 regulator_lock(rdev); 4217 old_uA_load = regulator->uA_load; 4218 regulator->uA_load = uA_load; 4219 if (regulator->enable_count && old_uA_load != uA_load) { 4220 ret = drms_uA_update(rdev); 4221 if (ret < 0) 4222 regulator->uA_load = old_uA_load; 4223 } 4224 regulator_unlock(rdev); 4225 4226 return ret; 4227 } 4228 EXPORT_SYMBOL_GPL(regulator_set_load); 4229 4230 /** 4231 * regulator_allow_bypass - allow the regulator to go into bypass mode 4232 * 4233 * @regulator: Regulator to configure 4234 * @enable: enable or disable bypass mode 4235 * 4236 * Allow the regulator to go into bypass mode if all other consumers 4237 * for the regulator also enable bypass mode and the machine 4238 * constraints allow this. Bypass mode means that the regulator is 4239 * simply passing the input directly to the output with no regulation. 4240 */ 4241 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4242 { 4243 struct regulator_dev *rdev = regulator->rdev; 4244 int ret = 0; 4245 4246 if (!rdev->desc->ops->set_bypass) 4247 return 0; 4248 4249 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4250 return 0; 4251 4252 regulator_lock(rdev); 4253 4254 if (enable && !regulator->bypass) { 4255 rdev->bypass_count++; 4256 4257 if (rdev->bypass_count == rdev->open_count) { 4258 ret = rdev->desc->ops->set_bypass(rdev, enable); 4259 if (ret != 0) 4260 rdev->bypass_count--; 4261 } 4262 4263 } else if (!enable && regulator->bypass) { 4264 rdev->bypass_count--; 4265 4266 if (rdev->bypass_count != rdev->open_count) { 4267 ret = rdev->desc->ops->set_bypass(rdev, enable); 4268 if (ret != 0) 4269 rdev->bypass_count++; 4270 } 4271 } 4272 4273 if (ret == 0) 4274 regulator->bypass = enable; 4275 4276 regulator_unlock(rdev); 4277 4278 return ret; 4279 } 4280 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4281 4282 /** 4283 * regulator_register_notifier - register regulator event notifier 4284 * @regulator: regulator source 4285 * @nb: notifier block 4286 * 4287 * Register notifier block to receive regulator events. 4288 */ 4289 int regulator_register_notifier(struct regulator *regulator, 4290 struct notifier_block *nb) 4291 { 4292 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4293 nb); 4294 } 4295 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4296 4297 /** 4298 * regulator_unregister_notifier - unregister regulator event notifier 4299 * @regulator: regulator source 4300 * @nb: notifier block 4301 * 4302 * Unregister regulator event notifier block. 4303 */ 4304 int regulator_unregister_notifier(struct regulator *regulator, 4305 struct notifier_block *nb) 4306 { 4307 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4308 nb); 4309 } 4310 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4311 4312 /* notify regulator consumers and downstream regulator consumers. 4313 * Note mutex must be held by caller. 4314 */ 4315 static int _notifier_call_chain(struct regulator_dev *rdev, 4316 unsigned long event, void *data) 4317 { 4318 /* call rdev chain first */ 4319 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4320 } 4321 4322 /** 4323 * regulator_bulk_get - get multiple regulator consumers 4324 * 4325 * @dev: Device to supply 4326 * @num_consumers: Number of consumers to register 4327 * @consumers: Configuration of consumers; clients are stored here. 4328 * 4329 * @return 0 on success, an errno on failure. 4330 * 4331 * This helper function allows drivers to get several regulator 4332 * consumers in one operation. If any of the regulators cannot be 4333 * acquired then any regulators that were allocated will be freed 4334 * before returning to the caller. 4335 */ 4336 int regulator_bulk_get(struct device *dev, int num_consumers, 4337 struct regulator_bulk_data *consumers) 4338 { 4339 int i; 4340 int ret; 4341 4342 for (i = 0; i < num_consumers; i++) 4343 consumers[i].consumer = NULL; 4344 4345 for (i = 0; i < num_consumers; i++) { 4346 consumers[i].consumer = regulator_get(dev, 4347 consumers[i].supply); 4348 if (IS_ERR(consumers[i].consumer)) { 4349 ret = PTR_ERR(consumers[i].consumer); 4350 dev_err(dev, "Failed to get supply '%s': %d\n", 4351 consumers[i].supply, ret); 4352 consumers[i].consumer = NULL; 4353 goto err; 4354 } 4355 } 4356 4357 return 0; 4358 4359 err: 4360 while (--i >= 0) 4361 regulator_put(consumers[i].consumer); 4362 4363 return ret; 4364 } 4365 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4366 4367 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4368 { 4369 struct regulator_bulk_data *bulk = data; 4370 4371 bulk->ret = regulator_enable(bulk->consumer); 4372 } 4373 4374 /** 4375 * regulator_bulk_enable - enable multiple regulator consumers 4376 * 4377 * @num_consumers: Number of consumers 4378 * @consumers: Consumer data; clients are stored here. 4379 * @return 0 on success, an errno on failure 4380 * 4381 * This convenience API allows consumers to enable multiple regulator 4382 * clients in a single API call. If any consumers cannot be enabled 4383 * then any others that were enabled will be disabled again prior to 4384 * return. 4385 */ 4386 int regulator_bulk_enable(int num_consumers, 4387 struct regulator_bulk_data *consumers) 4388 { 4389 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4390 int i; 4391 int ret = 0; 4392 4393 for (i = 0; i < num_consumers; i++) { 4394 async_schedule_domain(regulator_bulk_enable_async, 4395 &consumers[i], &async_domain); 4396 } 4397 4398 async_synchronize_full_domain(&async_domain); 4399 4400 /* If any consumer failed we need to unwind any that succeeded */ 4401 for (i = 0; i < num_consumers; i++) { 4402 if (consumers[i].ret != 0) { 4403 ret = consumers[i].ret; 4404 goto err; 4405 } 4406 } 4407 4408 return 0; 4409 4410 err: 4411 for (i = 0; i < num_consumers; i++) { 4412 if (consumers[i].ret < 0) 4413 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4414 consumers[i].ret); 4415 else 4416 regulator_disable(consumers[i].consumer); 4417 } 4418 4419 return ret; 4420 } 4421 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4422 4423 /** 4424 * regulator_bulk_disable - disable multiple regulator consumers 4425 * 4426 * @num_consumers: Number of consumers 4427 * @consumers: Consumer data; clients are stored here. 4428 * @return 0 on success, an errno on failure 4429 * 4430 * This convenience API allows consumers to disable multiple regulator 4431 * clients in a single API call. If any consumers cannot be disabled 4432 * then any others that were disabled will be enabled again prior to 4433 * return. 4434 */ 4435 int regulator_bulk_disable(int num_consumers, 4436 struct regulator_bulk_data *consumers) 4437 { 4438 int i; 4439 int ret, r; 4440 4441 for (i = num_consumers - 1; i >= 0; --i) { 4442 ret = regulator_disable(consumers[i].consumer); 4443 if (ret != 0) 4444 goto err; 4445 } 4446 4447 return 0; 4448 4449 err: 4450 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4451 for (++i; i < num_consumers; ++i) { 4452 r = regulator_enable(consumers[i].consumer); 4453 if (r != 0) 4454 pr_err("Failed to re-enable %s: %d\n", 4455 consumers[i].supply, r); 4456 } 4457 4458 return ret; 4459 } 4460 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4461 4462 /** 4463 * regulator_bulk_force_disable - force disable multiple regulator consumers 4464 * 4465 * @num_consumers: Number of consumers 4466 * @consumers: Consumer data; clients are stored here. 4467 * @return 0 on success, an errno on failure 4468 * 4469 * This convenience API allows consumers to forcibly disable multiple regulator 4470 * clients in a single API call. 4471 * NOTE: This should be used for situations when device damage will 4472 * likely occur if the regulators are not disabled (e.g. over temp). 4473 * Although regulator_force_disable function call for some consumers can 4474 * return error numbers, the function is called for all consumers. 4475 */ 4476 int regulator_bulk_force_disable(int num_consumers, 4477 struct regulator_bulk_data *consumers) 4478 { 4479 int i; 4480 int ret = 0; 4481 4482 for (i = 0; i < num_consumers; i++) { 4483 consumers[i].ret = 4484 regulator_force_disable(consumers[i].consumer); 4485 4486 /* Store first error for reporting */ 4487 if (consumers[i].ret && !ret) 4488 ret = consumers[i].ret; 4489 } 4490 4491 return ret; 4492 } 4493 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4494 4495 /** 4496 * regulator_bulk_free - free multiple regulator consumers 4497 * 4498 * @num_consumers: Number of consumers 4499 * @consumers: Consumer data; clients are stored here. 4500 * 4501 * This convenience API allows consumers to free multiple regulator 4502 * clients in a single API call. 4503 */ 4504 void regulator_bulk_free(int num_consumers, 4505 struct regulator_bulk_data *consumers) 4506 { 4507 int i; 4508 4509 for (i = 0; i < num_consumers; i++) { 4510 regulator_put(consumers[i].consumer); 4511 consumers[i].consumer = NULL; 4512 } 4513 } 4514 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4515 4516 /** 4517 * regulator_notifier_call_chain - call regulator event notifier 4518 * @rdev: regulator source 4519 * @event: notifier block 4520 * @data: callback-specific data. 4521 * 4522 * Called by regulator drivers to notify clients a regulator event has 4523 * occurred. We also notify regulator clients downstream. 4524 * Note lock must be held by caller. 4525 */ 4526 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4527 unsigned long event, void *data) 4528 { 4529 lockdep_assert_held_once(&rdev->mutex.base); 4530 4531 _notifier_call_chain(rdev, event, data); 4532 return NOTIFY_DONE; 4533 4534 } 4535 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4536 4537 /** 4538 * regulator_mode_to_status - convert a regulator mode into a status 4539 * 4540 * @mode: Mode to convert 4541 * 4542 * Convert a regulator mode into a status. 4543 */ 4544 int regulator_mode_to_status(unsigned int mode) 4545 { 4546 switch (mode) { 4547 case REGULATOR_MODE_FAST: 4548 return REGULATOR_STATUS_FAST; 4549 case REGULATOR_MODE_NORMAL: 4550 return REGULATOR_STATUS_NORMAL; 4551 case REGULATOR_MODE_IDLE: 4552 return REGULATOR_STATUS_IDLE; 4553 case REGULATOR_MODE_STANDBY: 4554 return REGULATOR_STATUS_STANDBY; 4555 default: 4556 return REGULATOR_STATUS_UNDEFINED; 4557 } 4558 } 4559 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4560 4561 static struct attribute *regulator_dev_attrs[] = { 4562 &dev_attr_name.attr, 4563 &dev_attr_num_users.attr, 4564 &dev_attr_type.attr, 4565 &dev_attr_microvolts.attr, 4566 &dev_attr_microamps.attr, 4567 &dev_attr_opmode.attr, 4568 &dev_attr_state.attr, 4569 &dev_attr_status.attr, 4570 &dev_attr_bypass.attr, 4571 &dev_attr_requested_microamps.attr, 4572 &dev_attr_min_microvolts.attr, 4573 &dev_attr_max_microvolts.attr, 4574 &dev_attr_min_microamps.attr, 4575 &dev_attr_max_microamps.attr, 4576 &dev_attr_suspend_standby_state.attr, 4577 &dev_attr_suspend_mem_state.attr, 4578 &dev_attr_suspend_disk_state.attr, 4579 &dev_attr_suspend_standby_microvolts.attr, 4580 &dev_attr_suspend_mem_microvolts.attr, 4581 &dev_attr_suspend_disk_microvolts.attr, 4582 &dev_attr_suspend_standby_mode.attr, 4583 &dev_attr_suspend_mem_mode.attr, 4584 &dev_attr_suspend_disk_mode.attr, 4585 NULL 4586 }; 4587 4588 /* 4589 * To avoid cluttering sysfs (and memory) with useless state, only 4590 * create attributes that can be meaningfully displayed. 4591 */ 4592 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4593 struct attribute *attr, int idx) 4594 { 4595 struct device *dev = kobj_to_dev(kobj); 4596 struct regulator_dev *rdev = dev_to_rdev(dev); 4597 const struct regulator_ops *ops = rdev->desc->ops; 4598 umode_t mode = attr->mode; 4599 4600 /* these three are always present */ 4601 if (attr == &dev_attr_name.attr || 4602 attr == &dev_attr_num_users.attr || 4603 attr == &dev_attr_type.attr) 4604 return mode; 4605 4606 /* some attributes need specific methods to be displayed */ 4607 if (attr == &dev_attr_microvolts.attr) { 4608 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4609 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4610 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4611 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4612 return mode; 4613 return 0; 4614 } 4615 4616 if (attr == &dev_attr_microamps.attr) 4617 return ops->get_current_limit ? mode : 0; 4618 4619 if (attr == &dev_attr_opmode.attr) 4620 return ops->get_mode ? mode : 0; 4621 4622 if (attr == &dev_attr_state.attr) 4623 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4624 4625 if (attr == &dev_attr_status.attr) 4626 return ops->get_status ? mode : 0; 4627 4628 if (attr == &dev_attr_bypass.attr) 4629 return ops->get_bypass ? mode : 0; 4630 4631 /* constraints need specific supporting methods */ 4632 if (attr == &dev_attr_min_microvolts.attr || 4633 attr == &dev_attr_max_microvolts.attr) 4634 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4635 4636 if (attr == &dev_attr_min_microamps.attr || 4637 attr == &dev_attr_max_microamps.attr) 4638 return ops->set_current_limit ? mode : 0; 4639 4640 if (attr == &dev_attr_suspend_standby_state.attr || 4641 attr == &dev_attr_suspend_mem_state.attr || 4642 attr == &dev_attr_suspend_disk_state.attr) 4643 return mode; 4644 4645 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4646 attr == &dev_attr_suspend_mem_microvolts.attr || 4647 attr == &dev_attr_suspend_disk_microvolts.attr) 4648 return ops->set_suspend_voltage ? mode : 0; 4649 4650 if (attr == &dev_attr_suspend_standby_mode.attr || 4651 attr == &dev_attr_suspend_mem_mode.attr || 4652 attr == &dev_attr_suspend_disk_mode.attr) 4653 return ops->set_suspend_mode ? mode : 0; 4654 4655 return mode; 4656 } 4657 4658 static const struct attribute_group regulator_dev_group = { 4659 .attrs = regulator_dev_attrs, 4660 .is_visible = regulator_attr_is_visible, 4661 }; 4662 4663 static const struct attribute_group *regulator_dev_groups[] = { 4664 ®ulator_dev_group, 4665 NULL 4666 }; 4667 4668 static void regulator_dev_release(struct device *dev) 4669 { 4670 struct regulator_dev *rdev = dev_get_drvdata(dev); 4671 4672 kfree(rdev->constraints); 4673 of_node_put(rdev->dev.of_node); 4674 kfree(rdev); 4675 } 4676 4677 static void rdev_init_debugfs(struct regulator_dev *rdev) 4678 { 4679 struct device *parent = rdev->dev.parent; 4680 const char *rname = rdev_get_name(rdev); 4681 char name[NAME_MAX]; 4682 4683 /* Avoid duplicate debugfs directory names */ 4684 if (parent && rname == rdev->desc->name) { 4685 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4686 rname); 4687 rname = name; 4688 } 4689 4690 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4691 if (!rdev->debugfs) { 4692 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4693 return; 4694 } 4695 4696 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4697 &rdev->use_count); 4698 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4699 &rdev->open_count); 4700 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4701 &rdev->bypass_count); 4702 } 4703 4704 static int regulator_register_resolve_supply(struct device *dev, void *data) 4705 { 4706 struct regulator_dev *rdev = dev_to_rdev(dev); 4707 4708 if (regulator_resolve_supply(rdev)) 4709 rdev_dbg(rdev, "unable to resolve supply\n"); 4710 4711 return 0; 4712 } 4713 4714 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4715 { 4716 struct coupling_desc *c_desc = &rdev->coupling_desc; 4717 int n_coupled = c_desc->n_coupled; 4718 struct regulator_dev *c_rdev; 4719 int i; 4720 4721 for (i = 1; i < n_coupled; i++) { 4722 /* already resolved */ 4723 if (c_desc->coupled_rdevs[i]) 4724 continue; 4725 4726 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4727 4728 if (!c_rdev) 4729 continue; 4730 4731 regulator_lock(c_rdev); 4732 4733 c_desc->coupled_rdevs[i] = c_rdev; 4734 c_desc->n_resolved++; 4735 4736 regulator_unlock(c_rdev); 4737 4738 regulator_resolve_coupling(c_rdev); 4739 } 4740 } 4741 4742 static void regulator_remove_coupling(struct regulator_dev *rdev) 4743 { 4744 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4745 struct regulator_dev *__c_rdev, *c_rdev; 4746 unsigned int __n_coupled, n_coupled; 4747 int i, k; 4748 4749 n_coupled = c_desc->n_coupled; 4750 4751 for (i = 1; i < n_coupled; i++) { 4752 c_rdev = c_desc->coupled_rdevs[i]; 4753 4754 if (!c_rdev) 4755 continue; 4756 4757 regulator_lock(c_rdev); 4758 4759 __c_desc = &c_rdev->coupling_desc; 4760 __n_coupled = __c_desc->n_coupled; 4761 4762 for (k = 1; k < __n_coupled; k++) { 4763 __c_rdev = __c_desc->coupled_rdevs[k]; 4764 4765 if (__c_rdev == rdev) { 4766 __c_desc->coupled_rdevs[k] = NULL; 4767 __c_desc->n_resolved--; 4768 break; 4769 } 4770 } 4771 4772 regulator_unlock(c_rdev); 4773 4774 c_desc->coupled_rdevs[i] = NULL; 4775 c_desc->n_resolved--; 4776 } 4777 } 4778 4779 static int regulator_init_coupling(struct regulator_dev *rdev) 4780 { 4781 int n_phandles; 4782 4783 if (!IS_ENABLED(CONFIG_OF)) 4784 n_phandles = 0; 4785 else 4786 n_phandles = of_get_n_coupled(rdev); 4787 4788 if (n_phandles + 1 > MAX_COUPLED) { 4789 rdev_err(rdev, "too many regulators coupled\n"); 4790 return -EPERM; 4791 } 4792 4793 /* 4794 * Every regulator should always have coupling descriptor filled with 4795 * at least pointer to itself. 4796 */ 4797 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4798 rdev->coupling_desc.n_coupled = n_phandles + 1; 4799 rdev->coupling_desc.n_resolved++; 4800 4801 /* regulator isn't coupled */ 4802 if (n_phandles == 0) 4803 return 0; 4804 4805 /* regulator, which can't change its voltage, can't be coupled */ 4806 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 4807 rdev_err(rdev, "voltage operation not allowed\n"); 4808 return -EPERM; 4809 } 4810 4811 if (rdev->constraints->max_spread <= 0) { 4812 rdev_err(rdev, "wrong max_spread value\n"); 4813 return -EPERM; 4814 } 4815 4816 if (!of_check_coupling_data(rdev)) 4817 return -EPERM; 4818 4819 return 0; 4820 } 4821 4822 /** 4823 * regulator_register - register regulator 4824 * @regulator_desc: regulator to register 4825 * @cfg: runtime configuration for regulator 4826 * 4827 * Called by regulator drivers to register a regulator. 4828 * Returns a valid pointer to struct regulator_dev on success 4829 * or an ERR_PTR() on error. 4830 */ 4831 struct regulator_dev * 4832 regulator_register(const struct regulator_desc *regulator_desc, 4833 const struct regulator_config *cfg) 4834 { 4835 const struct regulation_constraints *constraints = NULL; 4836 const struct regulator_init_data *init_data; 4837 struct regulator_config *config = NULL; 4838 static atomic_t regulator_no = ATOMIC_INIT(-1); 4839 struct regulator_dev *rdev; 4840 bool dangling_cfg_gpiod = false; 4841 bool dangling_of_gpiod = false; 4842 struct device *dev; 4843 int ret, i; 4844 4845 if (cfg == NULL) 4846 return ERR_PTR(-EINVAL); 4847 if (cfg->ena_gpiod) 4848 dangling_cfg_gpiod = true; 4849 if (regulator_desc == NULL) { 4850 ret = -EINVAL; 4851 goto rinse; 4852 } 4853 4854 dev = cfg->dev; 4855 WARN_ON(!dev); 4856 4857 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 4858 ret = -EINVAL; 4859 goto rinse; 4860 } 4861 4862 if (regulator_desc->type != REGULATOR_VOLTAGE && 4863 regulator_desc->type != REGULATOR_CURRENT) { 4864 ret = -EINVAL; 4865 goto rinse; 4866 } 4867 4868 /* Only one of each should be implemented */ 4869 WARN_ON(regulator_desc->ops->get_voltage && 4870 regulator_desc->ops->get_voltage_sel); 4871 WARN_ON(regulator_desc->ops->set_voltage && 4872 regulator_desc->ops->set_voltage_sel); 4873 4874 /* If we're using selectors we must implement list_voltage. */ 4875 if (regulator_desc->ops->get_voltage_sel && 4876 !regulator_desc->ops->list_voltage) { 4877 ret = -EINVAL; 4878 goto rinse; 4879 } 4880 if (regulator_desc->ops->set_voltage_sel && 4881 !regulator_desc->ops->list_voltage) { 4882 ret = -EINVAL; 4883 goto rinse; 4884 } 4885 4886 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4887 if (rdev == NULL) { 4888 ret = -ENOMEM; 4889 goto rinse; 4890 } 4891 4892 /* 4893 * Duplicate the config so the driver could override it after 4894 * parsing init data. 4895 */ 4896 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4897 if (config == NULL) { 4898 kfree(rdev); 4899 ret = -ENOMEM; 4900 goto rinse; 4901 } 4902 4903 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4904 &rdev->dev.of_node); 4905 /* 4906 * We need to keep track of any GPIO descriptor coming from the 4907 * device tree until we have handled it over to the core. If the 4908 * config that was passed in to this function DOES NOT contain 4909 * a descriptor, and the config after this call DOES contain 4910 * a descriptor, we definitely got one from parsing the device 4911 * tree. 4912 */ 4913 if (!cfg->ena_gpiod && config->ena_gpiod) 4914 dangling_of_gpiod = true; 4915 if (!init_data) { 4916 init_data = config->init_data; 4917 rdev->dev.of_node = of_node_get(config->of_node); 4918 } 4919 4920 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 4921 rdev->reg_data = config->driver_data; 4922 rdev->owner = regulator_desc->owner; 4923 rdev->desc = regulator_desc; 4924 if (config->regmap) 4925 rdev->regmap = config->regmap; 4926 else if (dev_get_regmap(dev, NULL)) 4927 rdev->regmap = dev_get_regmap(dev, NULL); 4928 else if (dev->parent) 4929 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4930 INIT_LIST_HEAD(&rdev->consumer_list); 4931 INIT_LIST_HEAD(&rdev->list); 4932 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4933 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4934 4935 /* preform any regulator specific init */ 4936 if (init_data && init_data->regulator_init) { 4937 ret = init_data->regulator_init(rdev->reg_data); 4938 if (ret < 0) 4939 goto clean; 4940 } 4941 4942 if (config->ena_gpiod) { 4943 mutex_lock(®ulator_list_mutex); 4944 ret = regulator_ena_gpio_request(rdev, config); 4945 mutex_unlock(®ulator_list_mutex); 4946 if (ret != 0) { 4947 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 4948 ret); 4949 goto clean; 4950 } 4951 /* The regulator core took over the GPIO descriptor */ 4952 dangling_cfg_gpiod = false; 4953 dangling_of_gpiod = false; 4954 } 4955 4956 /* register with sysfs */ 4957 rdev->dev.class = ®ulator_class; 4958 rdev->dev.parent = dev; 4959 dev_set_name(&rdev->dev, "regulator.%lu", 4960 (unsigned long) atomic_inc_return(®ulator_no)); 4961 4962 /* set regulator constraints */ 4963 if (init_data) 4964 constraints = &init_data->constraints; 4965 4966 if (init_data && init_data->supply_regulator) 4967 rdev->supply_name = init_data->supply_regulator; 4968 else if (regulator_desc->supply_name) 4969 rdev->supply_name = regulator_desc->supply_name; 4970 4971 /* 4972 * Attempt to resolve the regulator supply, if specified, 4973 * but don't return an error if we fail because we will try 4974 * to resolve it again later as more regulators are added. 4975 */ 4976 if (regulator_resolve_supply(rdev)) 4977 rdev_dbg(rdev, "unable to resolve supply\n"); 4978 4979 ret = set_machine_constraints(rdev, constraints); 4980 if (ret < 0) 4981 goto wash; 4982 4983 ret = regulator_init_coupling(rdev); 4984 if (ret < 0) 4985 goto wash; 4986 4987 /* add consumers devices */ 4988 if (init_data) { 4989 mutex_lock(®ulator_list_mutex); 4990 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4991 ret = set_consumer_device_supply(rdev, 4992 init_data->consumer_supplies[i].dev_name, 4993 init_data->consumer_supplies[i].supply); 4994 if (ret < 0) { 4995 mutex_unlock(®ulator_list_mutex); 4996 dev_err(dev, "Failed to set supply %s\n", 4997 init_data->consumer_supplies[i].supply); 4998 goto unset_supplies; 4999 } 5000 } 5001 mutex_unlock(®ulator_list_mutex); 5002 } 5003 5004 if (!rdev->desc->ops->get_voltage && 5005 !rdev->desc->ops->list_voltage && 5006 !rdev->desc->fixed_uV) 5007 rdev->is_switch = true; 5008 5009 dev_set_drvdata(&rdev->dev, rdev); 5010 ret = device_register(&rdev->dev); 5011 if (ret != 0) { 5012 put_device(&rdev->dev); 5013 goto unset_supplies; 5014 } 5015 5016 rdev_init_debugfs(rdev); 5017 5018 /* try to resolve regulators coupling since a new one was registered */ 5019 mutex_lock(®ulator_list_mutex); 5020 regulator_resolve_coupling(rdev); 5021 mutex_unlock(®ulator_list_mutex); 5022 5023 /* try to resolve regulators supply since a new one was registered */ 5024 class_for_each_device(®ulator_class, NULL, NULL, 5025 regulator_register_resolve_supply); 5026 kfree(config); 5027 return rdev; 5028 5029 unset_supplies: 5030 mutex_lock(®ulator_list_mutex); 5031 unset_regulator_supplies(rdev); 5032 mutex_unlock(®ulator_list_mutex); 5033 wash: 5034 kfree(rdev->constraints); 5035 mutex_lock(®ulator_list_mutex); 5036 regulator_ena_gpio_free(rdev); 5037 mutex_unlock(®ulator_list_mutex); 5038 clean: 5039 if (dangling_of_gpiod) 5040 gpiod_put(config->ena_gpiod); 5041 kfree(rdev); 5042 kfree(config); 5043 rinse: 5044 if (dangling_cfg_gpiod) 5045 gpiod_put(cfg->ena_gpiod); 5046 return ERR_PTR(ret); 5047 } 5048 EXPORT_SYMBOL_GPL(regulator_register); 5049 5050 /** 5051 * regulator_unregister - unregister regulator 5052 * @rdev: regulator to unregister 5053 * 5054 * Called by regulator drivers to unregister a regulator. 5055 */ 5056 void regulator_unregister(struct regulator_dev *rdev) 5057 { 5058 if (rdev == NULL) 5059 return; 5060 5061 if (rdev->supply) { 5062 while (rdev->use_count--) 5063 regulator_disable(rdev->supply); 5064 regulator_put(rdev->supply); 5065 } 5066 5067 mutex_lock(®ulator_list_mutex); 5068 5069 debugfs_remove_recursive(rdev->debugfs); 5070 flush_work(&rdev->disable_work.work); 5071 WARN_ON(rdev->open_count); 5072 regulator_remove_coupling(rdev); 5073 unset_regulator_supplies(rdev); 5074 list_del(&rdev->list); 5075 regulator_ena_gpio_free(rdev); 5076 device_unregister(&rdev->dev); 5077 5078 mutex_unlock(®ulator_list_mutex); 5079 } 5080 EXPORT_SYMBOL_GPL(regulator_unregister); 5081 5082 #ifdef CONFIG_SUSPEND 5083 /** 5084 * regulator_suspend - prepare regulators for system wide suspend 5085 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5086 * 5087 * Configure each regulator with it's suspend operating parameters for state. 5088 */ 5089 static int regulator_suspend(struct device *dev) 5090 { 5091 struct regulator_dev *rdev = dev_to_rdev(dev); 5092 suspend_state_t state = pm_suspend_target_state; 5093 int ret; 5094 5095 regulator_lock(rdev); 5096 ret = suspend_set_state(rdev, state); 5097 regulator_unlock(rdev); 5098 5099 return ret; 5100 } 5101 5102 static int regulator_resume(struct device *dev) 5103 { 5104 suspend_state_t state = pm_suspend_target_state; 5105 struct regulator_dev *rdev = dev_to_rdev(dev); 5106 struct regulator_state *rstate; 5107 int ret = 0; 5108 5109 rstate = regulator_get_suspend_state(rdev, state); 5110 if (rstate == NULL) 5111 return 0; 5112 5113 regulator_lock(rdev); 5114 5115 if (rdev->desc->ops->resume && 5116 (rstate->enabled == ENABLE_IN_SUSPEND || 5117 rstate->enabled == DISABLE_IN_SUSPEND)) 5118 ret = rdev->desc->ops->resume(rdev); 5119 5120 regulator_unlock(rdev); 5121 5122 return ret; 5123 } 5124 #else /* !CONFIG_SUSPEND */ 5125 5126 #define regulator_suspend NULL 5127 #define regulator_resume NULL 5128 5129 #endif /* !CONFIG_SUSPEND */ 5130 5131 #ifdef CONFIG_PM 5132 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5133 .suspend = regulator_suspend, 5134 .resume = regulator_resume, 5135 }; 5136 #endif 5137 5138 struct class regulator_class = { 5139 .name = "regulator", 5140 .dev_release = regulator_dev_release, 5141 .dev_groups = regulator_dev_groups, 5142 #ifdef CONFIG_PM 5143 .pm = ®ulator_pm_ops, 5144 #endif 5145 }; 5146 /** 5147 * regulator_has_full_constraints - the system has fully specified constraints 5148 * 5149 * Calling this function will cause the regulator API to disable all 5150 * regulators which have a zero use count and don't have an always_on 5151 * constraint in a late_initcall. 5152 * 5153 * The intention is that this will become the default behaviour in a 5154 * future kernel release so users are encouraged to use this facility 5155 * now. 5156 */ 5157 void regulator_has_full_constraints(void) 5158 { 5159 has_full_constraints = 1; 5160 } 5161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5162 5163 /** 5164 * rdev_get_drvdata - get rdev regulator driver data 5165 * @rdev: regulator 5166 * 5167 * Get rdev regulator driver private data. This call can be used in the 5168 * regulator driver context. 5169 */ 5170 void *rdev_get_drvdata(struct regulator_dev *rdev) 5171 { 5172 return rdev->reg_data; 5173 } 5174 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5175 5176 /** 5177 * regulator_get_drvdata - get regulator driver data 5178 * @regulator: regulator 5179 * 5180 * Get regulator driver private data. This call can be used in the consumer 5181 * driver context when non API regulator specific functions need to be called. 5182 */ 5183 void *regulator_get_drvdata(struct regulator *regulator) 5184 { 5185 return regulator->rdev->reg_data; 5186 } 5187 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5188 5189 /** 5190 * regulator_set_drvdata - set regulator driver data 5191 * @regulator: regulator 5192 * @data: data 5193 */ 5194 void regulator_set_drvdata(struct regulator *regulator, void *data) 5195 { 5196 regulator->rdev->reg_data = data; 5197 } 5198 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5199 5200 /** 5201 * regulator_get_id - get regulator ID 5202 * @rdev: regulator 5203 */ 5204 int rdev_get_id(struct regulator_dev *rdev) 5205 { 5206 return rdev->desc->id; 5207 } 5208 EXPORT_SYMBOL_GPL(rdev_get_id); 5209 5210 struct device *rdev_get_dev(struct regulator_dev *rdev) 5211 { 5212 return &rdev->dev; 5213 } 5214 EXPORT_SYMBOL_GPL(rdev_get_dev); 5215 5216 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5217 { 5218 return rdev->regmap; 5219 } 5220 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5221 5222 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5223 { 5224 return reg_init_data->driver_data; 5225 } 5226 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5227 5228 #ifdef CONFIG_DEBUG_FS 5229 static int supply_map_show(struct seq_file *sf, void *data) 5230 { 5231 struct regulator_map *map; 5232 5233 list_for_each_entry(map, ®ulator_map_list, list) { 5234 seq_printf(sf, "%s -> %s.%s\n", 5235 rdev_get_name(map->regulator), map->dev_name, 5236 map->supply); 5237 } 5238 5239 return 0; 5240 } 5241 DEFINE_SHOW_ATTRIBUTE(supply_map); 5242 5243 struct summary_data { 5244 struct seq_file *s; 5245 struct regulator_dev *parent; 5246 int level; 5247 }; 5248 5249 static void regulator_summary_show_subtree(struct seq_file *s, 5250 struct regulator_dev *rdev, 5251 int level); 5252 5253 static int regulator_summary_show_children(struct device *dev, void *data) 5254 { 5255 struct regulator_dev *rdev = dev_to_rdev(dev); 5256 struct summary_data *summary_data = data; 5257 5258 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5259 regulator_summary_show_subtree(summary_data->s, rdev, 5260 summary_data->level + 1); 5261 5262 return 0; 5263 } 5264 5265 static void regulator_summary_show_subtree(struct seq_file *s, 5266 struct regulator_dev *rdev, 5267 int level) 5268 { 5269 struct regulation_constraints *c; 5270 struct regulator *consumer; 5271 struct summary_data summary_data; 5272 unsigned int opmode; 5273 5274 if (!rdev) 5275 return; 5276 5277 opmode = _regulator_get_mode_unlocked(rdev); 5278 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5279 level * 3 + 1, "", 5280 30 - level * 3, rdev_get_name(rdev), 5281 rdev->use_count, rdev->open_count, rdev->bypass_count, 5282 regulator_opmode_to_str(opmode)); 5283 5284 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 5285 seq_printf(s, "%5dmA ", 5286 _regulator_get_current_limit_unlocked(rdev) / 1000); 5287 5288 c = rdev->constraints; 5289 if (c) { 5290 switch (rdev->desc->type) { 5291 case REGULATOR_VOLTAGE: 5292 seq_printf(s, "%5dmV %5dmV ", 5293 c->min_uV / 1000, c->max_uV / 1000); 5294 break; 5295 case REGULATOR_CURRENT: 5296 seq_printf(s, "%5dmA %5dmA ", 5297 c->min_uA / 1000, c->max_uA / 1000); 5298 break; 5299 } 5300 } 5301 5302 seq_puts(s, "\n"); 5303 5304 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5305 if (consumer->dev && consumer->dev->class == ®ulator_class) 5306 continue; 5307 5308 seq_printf(s, "%*s%-*s ", 5309 (level + 1) * 3 + 1, "", 5310 30 - (level + 1) * 3, 5311 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5312 5313 switch (rdev->desc->type) { 5314 case REGULATOR_VOLTAGE: 5315 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5316 consumer->enable_count, 5317 consumer->uA_load / 1000, 5318 consumer->uA_load && !consumer->enable_count ? 5319 '*' : ' ', 5320 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5321 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5322 break; 5323 case REGULATOR_CURRENT: 5324 break; 5325 } 5326 5327 seq_puts(s, "\n"); 5328 } 5329 5330 summary_data.s = s; 5331 summary_data.level = level; 5332 summary_data.parent = rdev; 5333 5334 class_for_each_device(®ulator_class, NULL, &summary_data, 5335 regulator_summary_show_children); 5336 } 5337 5338 struct summary_lock_data { 5339 struct ww_acquire_ctx *ww_ctx; 5340 struct regulator_dev **new_contended_rdev; 5341 struct regulator_dev **old_contended_rdev; 5342 }; 5343 5344 static int regulator_summary_lock_one(struct device *dev, void *data) 5345 { 5346 struct regulator_dev *rdev = dev_to_rdev(dev); 5347 struct summary_lock_data *lock_data = data; 5348 int ret = 0; 5349 5350 if (rdev != *lock_data->old_contended_rdev) { 5351 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5352 5353 if (ret == -EDEADLK) 5354 *lock_data->new_contended_rdev = rdev; 5355 else 5356 WARN_ON_ONCE(ret); 5357 } else { 5358 *lock_data->old_contended_rdev = NULL; 5359 } 5360 5361 return ret; 5362 } 5363 5364 static int regulator_summary_unlock_one(struct device *dev, void *data) 5365 { 5366 struct regulator_dev *rdev = dev_to_rdev(dev); 5367 struct summary_lock_data *lock_data = data; 5368 5369 if (lock_data) { 5370 if (rdev == *lock_data->new_contended_rdev) 5371 return -EDEADLK; 5372 } 5373 5374 regulator_unlock(rdev); 5375 5376 return 0; 5377 } 5378 5379 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5380 struct regulator_dev **new_contended_rdev, 5381 struct regulator_dev **old_contended_rdev) 5382 { 5383 struct summary_lock_data lock_data; 5384 int ret; 5385 5386 lock_data.ww_ctx = ww_ctx; 5387 lock_data.new_contended_rdev = new_contended_rdev; 5388 lock_data.old_contended_rdev = old_contended_rdev; 5389 5390 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5391 regulator_summary_lock_one); 5392 if (ret) 5393 class_for_each_device(®ulator_class, NULL, &lock_data, 5394 regulator_summary_unlock_one); 5395 5396 return ret; 5397 } 5398 5399 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5400 { 5401 struct regulator_dev *new_contended_rdev = NULL; 5402 struct regulator_dev *old_contended_rdev = NULL; 5403 int err; 5404 5405 mutex_lock(®ulator_list_mutex); 5406 5407 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5408 5409 do { 5410 if (new_contended_rdev) { 5411 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5412 old_contended_rdev = new_contended_rdev; 5413 old_contended_rdev->ref_cnt++; 5414 } 5415 5416 err = regulator_summary_lock_all(ww_ctx, 5417 &new_contended_rdev, 5418 &old_contended_rdev); 5419 5420 if (old_contended_rdev) 5421 regulator_unlock(old_contended_rdev); 5422 5423 } while (err == -EDEADLK); 5424 5425 ww_acquire_done(ww_ctx); 5426 } 5427 5428 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5429 { 5430 class_for_each_device(®ulator_class, NULL, NULL, 5431 regulator_summary_unlock_one); 5432 ww_acquire_fini(ww_ctx); 5433 5434 mutex_unlock(®ulator_list_mutex); 5435 } 5436 5437 static int regulator_summary_show_roots(struct device *dev, void *data) 5438 { 5439 struct regulator_dev *rdev = dev_to_rdev(dev); 5440 struct seq_file *s = data; 5441 5442 if (!rdev->supply) 5443 regulator_summary_show_subtree(s, rdev, 0); 5444 5445 return 0; 5446 } 5447 5448 static int regulator_summary_show(struct seq_file *s, void *data) 5449 { 5450 struct ww_acquire_ctx ww_ctx; 5451 5452 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5453 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5454 5455 regulator_summary_lock(&ww_ctx); 5456 5457 class_for_each_device(®ulator_class, NULL, s, 5458 regulator_summary_show_roots); 5459 5460 regulator_summary_unlock(&ww_ctx); 5461 5462 return 0; 5463 } 5464 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5465 #endif /* CONFIG_DEBUG_FS */ 5466 5467 static int __init regulator_init(void) 5468 { 5469 int ret; 5470 5471 ret = class_register(®ulator_class); 5472 5473 debugfs_root = debugfs_create_dir("regulator", NULL); 5474 if (!debugfs_root) 5475 pr_warn("regulator: Failed to create debugfs directory\n"); 5476 5477 #ifdef CONFIG_DEBUG_FS 5478 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5479 &supply_map_fops); 5480 5481 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5482 NULL, ®ulator_summary_fops); 5483 #endif 5484 regulator_dummy_init(); 5485 5486 return ret; 5487 } 5488 5489 /* init early to allow our consumers to complete system booting */ 5490 core_initcall(regulator_init); 5491 5492 static int __init regulator_late_cleanup(struct device *dev, void *data) 5493 { 5494 struct regulator_dev *rdev = dev_to_rdev(dev); 5495 const struct regulator_ops *ops = rdev->desc->ops; 5496 struct regulation_constraints *c = rdev->constraints; 5497 int enabled, ret; 5498 5499 if (c && c->always_on) 5500 return 0; 5501 5502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5503 return 0; 5504 5505 regulator_lock(rdev); 5506 5507 if (rdev->use_count) 5508 goto unlock; 5509 5510 /* If we can't read the status assume it's on. */ 5511 if (ops->is_enabled) 5512 enabled = ops->is_enabled(rdev); 5513 else 5514 enabled = 1; 5515 5516 if (!enabled) 5517 goto unlock; 5518 5519 if (have_full_constraints()) { 5520 /* We log since this may kill the system if it goes 5521 * wrong. */ 5522 rdev_info(rdev, "disabling\n"); 5523 ret = _regulator_do_disable(rdev); 5524 if (ret != 0) 5525 rdev_err(rdev, "couldn't disable: %d\n", ret); 5526 } else { 5527 /* The intention is that in future we will 5528 * assume that full constraints are provided 5529 * so warn even if we aren't going to do 5530 * anything here. 5531 */ 5532 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5533 } 5534 5535 unlock: 5536 regulator_unlock(rdev); 5537 5538 return 0; 5539 } 5540 5541 static int __init regulator_init_complete(void) 5542 { 5543 /* 5544 * Since DT doesn't provide an idiomatic mechanism for 5545 * enabling full constraints and since it's much more natural 5546 * with DT to provide them just assume that a DT enabled 5547 * system has full constraints. 5548 */ 5549 if (of_have_populated_dt()) 5550 has_full_constraints = true; 5551 5552 /* 5553 * Regulators may had failed to resolve their input supplies 5554 * when were registered, either because the input supply was 5555 * not registered yet or because its parent device was not 5556 * bound yet. So attempt to resolve the input supplies for 5557 * pending regulators before trying to disable unused ones. 5558 */ 5559 class_for_each_device(®ulator_class, NULL, NULL, 5560 regulator_register_resolve_supply); 5561 5562 /* If we have a full configuration then disable any regulators 5563 * we have permission to change the status for and which are 5564 * not in use or always_on. This is effectively the default 5565 * for DT and ACPI as they have full constraints. 5566 */ 5567 class_for_each_device(®ulator_class, NULL, NULL, 5568 regulator_late_cleanup); 5569 5570 return 0; 5571 } 5572 late_initcall_sync(regulator_init_complete); 5573