xref: /openbmc/linux/drivers/regulator/core.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 				     suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100 
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111 
112 static bool have_full_constraints(void)
113 {
114 	return has_full_constraints || of_have_populated_dt();
115 }
116 
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 	if (!rdev->constraints) {
120 		rdev_err(rdev, "no constraints\n");
121 		return false;
122 	}
123 
124 	if (rdev->constraints->valid_ops_mask & ops)
125 		return true;
126 
127 	return false;
128 }
129 
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:		regulator source
133  * @ww_ctx:		w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 					struct ww_acquire_ctx *ww_ctx)
143 {
144 	bool lock = false;
145 	int ret = 0;
146 
147 	mutex_lock(&regulator_nesting_mutex);
148 
149 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 		if (rdev->mutex_owner == current)
151 			rdev->ref_cnt++;
152 		else
153 			lock = true;
154 
155 		if (lock) {
156 			mutex_unlock(&regulator_nesting_mutex);
157 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 			mutex_lock(&regulator_nesting_mutex);
159 		}
160 	} else {
161 		lock = true;
162 	}
163 
164 	if (lock && ret != -EDEADLK) {
165 		rdev->ref_cnt++;
166 		rdev->mutex_owner = current;
167 	}
168 
169 	mutex_unlock(&regulator_nesting_mutex);
170 
171 	return ret;
172 }
173 
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:		regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 	regulator_lock_nested(rdev, NULL);
187 }
188 
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:		regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 	mutex_lock(&regulator_nesting_mutex);
199 
200 	if (--rdev->ref_cnt == 0) {
201 		rdev->mutex_owner = NULL;
202 		ww_mutex_unlock(&rdev->mutex);
203 	}
204 
205 	WARN_ON_ONCE(rdev->ref_cnt < 0);
206 
207 	mutex_unlock(&regulator_nesting_mutex);
208 }
209 
210 /**
211  * regulator_lock_two - lock two regulators
212  * @rdev1:		first regulator
213  * @rdev2:		second regulator
214  * @ww_ctx:		w/w mutex acquire context
215  *
216  * Locks both rdevs using the regulator_ww_class.
217  */
218 static void regulator_lock_two(struct regulator_dev *rdev1,
219 			       struct regulator_dev *rdev2,
220 			       struct ww_acquire_ctx *ww_ctx)
221 {
222 	struct regulator_dev *held, *contended;
223 	int ret;
224 
225 	ww_acquire_init(ww_ctx, &regulator_ww_class);
226 
227 	/* Try to just grab both of them */
228 	ret = regulator_lock_nested(rdev1, ww_ctx);
229 	WARN_ON(ret);
230 	ret = regulator_lock_nested(rdev2, ww_ctx);
231 	if (ret != -EDEADLOCK) {
232 		WARN_ON(ret);
233 		goto exit;
234 	}
235 
236 	held = rdev1;
237 	contended = rdev2;
238 	while (true) {
239 		regulator_unlock(held);
240 
241 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 		contended->ref_cnt++;
243 		contended->mutex_owner = current;
244 		swap(held, contended);
245 		ret = regulator_lock_nested(contended, ww_ctx);
246 
247 		if (ret != -EDEADLOCK) {
248 			WARN_ON(ret);
249 			break;
250 		}
251 	}
252 
253 exit:
254 	ww_acquire_done(ww_ctx);
255 }
256 
257 /**
258  * regulator_unlock_two - unlock two regulators
259  * @rdev1:		first regulator
260  * @rdev2:		second regulator
261  * @ww_ctx:		w/w mutex acquire context
262  *
263  * The inverse of regulator_lock_two().
264  */
265 
266 static void regulator_unlock_two(struct regulator_dev *rdev1,
267 				 struct regulator_dev *rdev2,
268 				 struct ww_acquire_ctx *ww_ctx)
269 {
270 	regulator_unlock(rdev2);
271 	regulator_unlock(rdev1);
272 	ww_acquire_fini(ww_ctx);
273 }
274 
275 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276 {
277 	struct regulator_dev *c_rdev;
278 	int i;
279 
280 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282 
283 		if (rdev->supply->rdev == c_rdev)
284 			return true;
285 	}
286 
287 	return false;
288 }
289 
290 static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 				       unsigned int n_coupled)
292 {
293 	struct regulator_dev *c_rdev, *supply_rdev;
294 	int i, supply_n_coupled;
295 
296 	for (i = n_coupled; i > 0; i--) {
297 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298 
299 		if (!c_rdev)
300 			continue;
301 
302 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 			supply_rdev = c_rdev->supply->rdev;
304 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305 
306 			regulator_unlock_recursive(supply_rdev,
307 						   supply_n_coupled);
308 		}
309 
310 		regulator_unlock(c_rdev);
311 	}
312 }
313 
314 static int regulator_lock_recursive(struct regulator_dev *rdev,
315 				    struct regulator_dev **new_contended_rdev,
316 				    struct regulator_dev **old_contended_rdev,
317 				    struct ww_acquire_ctx *ww_ctx)
318 {
319 	struct regulator_dev *c_rdev;
320 	int i, err;
321 
322 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324 
325 		if (!c_rdev)
326 			continue;
327 
328 		if (c_rdev != *old_contended_rdev) {
329 			err = regulator_lock_nested(c_rdev, ww_ctx);
330 			if (err) {
331 				if (err == -EDEADLK) {
332 					*new_contended_rdev = c_rdev;
333 					goto err_unlock;
334 				}
335 
336 				/* shouldn't happen */
337 				WARN_ON_ONCE(err != -EALREADY);
338 			}
339 		} else {
340 			*old_contended_rdev = NULL;
341 		}
342 
343 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 			err = regulator_lock_recursive(c_rdev->supply->rdev,
345 						       new_contended_rdev,
346 						       old_contended_rdev,
347 						       ww_ctx);
348 			if (err) {
349 				regulator_unlock(c_rdev);
350 				goto err_unlock;
351 			}
352 		}
353 	}
354 
355 	return 0;
356 
357 err_unlock:
358 	regulator_unlock_recursive(rdev, i);
359 
360 	return err;
361 }
362 
363 /**
364  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365  *				regulators
366  * @rdev:			regulator source
367  * @ww_ctx:			w/w mutex acquire context
368  *
369  * Unlock all regulators related with rdev by coupling or supplying.
370  */
371 static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 				       struct ww_acquire_ctx *ww_ctx)
373 {
374 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 	ww_acquire_fini(ww_ctx);
376 }
377 
378 /**
379  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380  * @rdev:			regulator source
381  * @ww_ctx:			w/w mutex acquire context
382  *
383  * This function as a wrapper on regulator_lock_recursive(), which locks
384  * all regulators related with rdev by coupling or supplying.
385  */
386 static void regulator_lock_dependent(struct regulator_dev *rdev,
387 				     struct ww_acquire_ctx *ww_ctx)
388 {
389 	struct regulator_dev *new_contended_rdev = NULL;
390 	struct regulator_dev *old_contended_rdev = NULL;
391 	int err;
392 
393 	mutex_lock(&regulator_list_mutex);
394 
395 	ww_acquire_init(ww_ctx, &regulator_ww_class);
396 
397 	do {
398 		if (new_contended_rdev) {
399 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 			old_contended_rdev = new_contended_rdev;
401 			old_contended_rdev->ref_cnt++;
402 			old_contended_rdev->mutex_owner = current;
403 		}
404 
405 		err = regulator_lock_recursive(rdev,
406 					       &new_contended_rdev,
407 					       &old_contended_rdev,
408 					       ww_ctx);
409 
410 		if (old_contended_rdev)
411 			regulator_unlock(old_contended_rdev);
412 
413 	} while (err == -EDEADLK);
414 
415 	ww_acquire_done(ww_ctx);
416 
417 	mutex_unlock(&regulator_list_mutex);
418 }
419 
420 /**
421  * of_get_child_regulator - get a child regulator device node
422  * based on supply name
423  * @parent: Parent device node
424  * @prop_name: Combination regulator supply name and "-supply"
425  *
426  * Traverse all child nodes.
427  * Extract the child regulator device node corresponding to the supply name.
428  * returns the device node corresponding to the regulator if found, else
429  * returns NULL.
430  */
431 static struct device_node *of_get_child_regulator(struct device_node *parent,
432 						  const char *prop_name)
433 {
434 	struct device_node *regnode = NULL;
435 	struct device_node *child = NULL;
436 
437 	for_each_child_of_node(parent, child) {
438 		regnode = of_parse_phandle(child, prop_name, 0);
439 
440 		if (!regnode) {
441 			regnode = of_get_child_regulator(child, prop_name);
442 			if (regnode)
443 				goto err_node_put;
444 		} else {
445 			goto err_node_put;
446 		}
447 	}
448 	return NULL;
449 
450 err_node_put:
451 	of_node_put(child);
452 	return regnode;
453 }
454 
455 /**
456  * of_get_regulator - get a regulator device node based on supply name
457  * @dev: Device pointer for the consumer (of regulator) device
458  * @supply: regulator supply name
459  *
460  * Extract the regulator device node corresponding to the supply name.
461  * returns the device node corresponding to the regulator if found, else
462  * returns NULL.
463  */
464 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465 {
466 	struct device_node *regnode = NULL;
467 	char prop_name[64]; /* 64 is max size of property name */
468 
469 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470 
471 	snprintf(prop_name, 64, "%s-supply", supply);
472 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473 
474 	if (!regnode) {
475 		regnode = of_get_child_regulator(dev->of_node, prop_name);
476 		if (regnode)
477 			return regnode;
478 
479 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 				prop_name, dev->of_node);
481 		return NULL;
482 	}
483 	return regnode;
484 }
485 
486 /* Platform voltage constraint check */
487 int regulator_check_voltage(struct regulator_dev *rdev,
488 			    int *min_uV, int *max_uV)
489 {
490 	BUG_ON(*min_uV > *max_uV);
491 
492 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 		rdev_err(rdev, "voltage operation not allowed\n");
494 		return -EPERM;
495 	}
496 
497 	if (*max_uV > rdev->constraints->max_uV)
498 		*max_uV = rdev->constraints->max_uV;
499 	if (*min_uV < rdev->constraints->min_uV)
500 		*min_uV = rdev->constraints->min_uV;
501 
502 	if (*min_uV > *max_uV) {
503 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 			 *min_uV, *max_uV);
505 		return -EINVAL;
506 	}
507 
508 	return 0;
509 }
510 
511 /* return 0 if the state is valid */
512 static int regulator_check_states(suspend_state_t state)
513 {
514 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515 }
516 
517 /* Make sure we select a voltage that suits the needs of all
518  * regulator consumers
519  */
520 int regulator_check_consumers(struct regulator_dev *rdev,
521 			      int *min_uV, int *max_uV,
522 			      suspend_state_t state)
523 {
524 	struct regulator *regulator;
525 	struct regulator_voltage *voltage;
526 
527 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 		voltage = &regulator->voltage[state];
529 		/*
530 		 * Assume consumers that didn't say anything are OK
531 		 * with anything in the constraint range.
532 		 */
533 		if (!voltage->min_uV && !voltage->max_uV)
534 			continue;
535 
536 		if (*max_uV > voltage->max_uV)
537 			*max_uV = voltage->max_uV;
538 		if (*min_uV < voltage->min_uV)
539 			*min_uV = voltage->min_uV;
540 	}
541 
542 	if (*min_uV > *max_uV) {
543 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 			*min_uV, *max_uV);
545 		return -EINVAL;
546 	}
547 
548 	return 0;
549 }
550 
551 /* current constraint check */
552 static int regulator_check_current_limit(struct regulator_dev *rdev,
553 					int *min_uA, int *max_uA)
554 {
555 	BUG_ON(*min_uA > *max_uA);
556 
557 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 		rdev_err(rdev, "current operation not allowed\n");
559 		return -EPERM;
560 	}
561 
562 	if (*max_uA > rdev->constraints->max_uA)
563 		*max_uA = rdev->constraints->max_uA;
564 	if (*min_uA < rdev->constraints->min_uA)
565 		*min_uA = rdev->constraints->min_uA;
566 
567 	if (*min_uA > *max_uA) {
568 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 			 *min_uA, *max_uA);
570 		return -EINVAL;
571 	}
572 
573 	return 0;
574 }
575 
576 /* operating mode constraint check */
577 static int regulator_mode_constrain(struct regulator_dev *rdev,
578 				    unsigned int *mode)
579 {
580 	switch (*mode) {
581 	case REGULATOR_MODE_FAST:
582 	case REGULATOR_MODE_NORMAL:
583 	case REGULATOR_MODE_IDLE:
584 	case REGULATOR_MODE_STANDBY:
585 		break;
586 	default:
587 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 		return -EINVAL;
589 	}
590 
591 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 		rdev_err(rdev, "mode operation not allowed\n");
593 		return -EPERM;
594 	}
595 
596 	/* The modes are bitmasks, the most power hungry modes having
597 	 * the lowest values. If the requested mode isn't supported
598 	 * try higher modes.
599 	 */
600 	while (*mode) {
601 		if (rdev->constraints->valid_modes_mask & *mode)
602 			return 0;
603 		*mode /= 2;
604 	}
605 
606 	return -EINVAL;
607 }
608 
609 static inline struct regulator_state *
610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611 {
612 	if (rdev->constraints == NULL)
613 		return NULL;
614 
615 	switch (state) {
616 	case PM_SUSPEND_STANDBY:
617 		return &rdev->constraints->state_standby;
618 	case PM_SUSPEND_MEM:
619 		return &rdev->constraints->state_mem;
620 	case PM_SUSPEND_MAX:
621 		return &rdev->constraints->state_disk;
622 	default:
623 		return NULL;
624 	}
625 }
626 
627 static const struct regulator_state *
628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629 {
630 	const struct regulator_state *rstate;
631 
632 	rstate = regulator_get_suspend_state(rdev, state);
633 	if (rstate == NULL)
634 		return NULL;
635 
636 	/* If we have no suspend mode configuration don't set anything;
637 	 * only warn if the driver implements set_suspend_voltage or
638 	 * set_suspend_mode callback.
639 	 */
640 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 	    rstate->enabled != DISABLE_IN_SUSPEND) {
642 		if (rdev->desc->ops->set_suspend_voltage ||
643 		    rdev->desc->ops->set_suspend_mode)
644 			rdev_warn(rdev, "No configuration\n");
645 		return NULL;
646 	}
647 
648 	return rstate;
649 }
650 
651 static ssize_t microvolts_show(struct device *dev,
652 			       struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 	int uV;
656 
657 	regulator_lock(rdev);
658 	uV = regulator_get_voltage_rdev(rdev);
659 	regulator_unlock(rdev);
660 
661 	if (uV < 0)
662 		return uV;
663 	return sprintf(buf, "%d\n", uV);
664 }
665 static DEVICE_ATTR_RO(microvolts);
666 
667 static ssize_t microamps_show(struct device *dev,
668 			      struct device_attribute *attr, char *buf)
669 {
670 	struct regulator_dev *rdev = dev_get_drvdata(dev);
671 
672 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673 }
674 static DEVICE_ATTR_RO(microamps);
675 
676 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 			 char *buf)
678 {
679 	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 
681 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
682 }
683 static DEVICE_ATTR_RO(name);
684 
685 static const char *regulator_opmode_to_str(int mode)
686 {
687 	switch (mode) {
688 	case REGULATOR_MODE_FAST:
689 		return "fast";
690 	case REGULATOR_MODE_NORMAL:
691 		return "normal";
692 	case REGULATOR_MODE_IDLE:
693 		return "idle";
694 	case REGULATOR_MODE_STANDBY:
695 		return "standby";
696 	}
697 	return "unknown";
698 }
699 
700 static ssize_t regulator_print_opmode(char *buf, int mode)
701 {
702 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703 }
704 
705 static ssize_t opmode_show(struct device *dev,
706 			   struct device_attribute *attr, char *buf)
707 {
708 	struct regulator_dev *rdev = dev_get_drvdata(dev);
709 
710 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711 }
712 static DEVICE_ATTR_RO(opmode);
713 
714 static ssize_t regulator_print_state(char *buf, int state)
715 {
716 	if (state > 0)
717 		return sprintf(buf, "enabled\n");
718 	else if (state == 0)
719 		return sprintf(buf, "disabled\n");
720 	else
721 		return sprintf(buf, "unknown\n");
722 }
723 
724 static ssize_t state_show(struct device *dev,
725 			  struct device_attribute *attr, char *buf)
726 {
727 	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 	ssize_t ret;
729 
730 	regulator_lock(rdev);
731 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 	regulator_unlock(rdev);
733 
734 	return ret;
735 }
736 static DEVICE_ATTR_RO(state);
737 
738 static ssize_t status_show(struct device *dev,
739 			   struct device_attribute *attr, char *buf)
740 {
741 	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 	int status;
743 	char *label;
744 
745 	status = rdev->desc->ops->get_status(rdev);
746 	if (status < 0)
747 		return status;
748 
749 	switch (status) {
750 	case REGULATOR_STATUS_OFF:
751 		label = "off";
752 		break;
753 	case REGULATOR_STATUS_ON:
754 		label = "on";
755 		break;
756 	case REGULATOR_STATUS_ERROR:
757 		label = "error";
758 		break;
759 	case REGULATOR_STATUS_FAST:
760 		label = "fast";
761 		break;
762 	case REGULATOR_STATUS_NORMAL:
763 		label = "normal";
764 		break;
765 	case REGULATOR_STATUS_IDLE:
766 		label = "idle";
767 		break;
768 	case REGULATOR_STATUS_STANDBY:
769 		label = "standby";
770 		break;
771 	case REGULATOR_STATUS_BYPASS:
772 		label = "bypass";
773 		break;
774 	case REGULATOR_STATUS_UNDEFINED:
775 		label = "undefined";
776 		break;
777 	default:
778 		return -ERANGE;
779 	}
780 
781 	return sprintf(buf, "%s\n", label);
782 }
783 static DEVICE_ATTR_RO(status);
784 
785 static ssize_t min_microamps_show(struct device *dev,
786 				  struct device_attribute *attr, char *buf)
787 {
788 	struct regulator_dev *rdev = dev_get_drvdata(dev);
789 
790 	if (!rdev->constraints)
791 		return sprintf(buf, "constraint not defined\n");
792 
793 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794 }
795 static DEVICE_ATTR_RO(min_microamps);
796 
797 static ssize_t max_microamps_show(struct device *dev,
798 				  struct device_attribute *attr, char *buf)
799 {
800 	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 
802 	if (!rdev->constraints)
803 		return sprintf(buf, "constraint not defined\n");
804 
805 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806 }
807 static DEVICE_ATTR_RO(max_microamps);
808 
809 static ssize_t min_microvolts_show(struct device *dev,
810 				   struct device_attribute *attr, char *buf)
811 {
812 	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 
814 	if (!rdev->constraints)
815 		return sprintf(buf, "constraint not defined\n");
816 
817 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818 }
819 static DEVICE_ATTR_RO(min_microvolts);
820 
821 static ssize_t max_microvolts_show(struct device *dev,
822 				   struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	if (!rdev->constraints)
827 		return sprintf(buf, "constraint not defined\n");
828 
829 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830 }
831 static DEVICE_ATTR_RO(max_microvolts);
832 
833 static ssize_t requested_microamps_show(struct device *dev,
834 					struct device_attribute *attr, char *buf)
835 {
836 	struct regulator_dev *rdev = dev_get_drvdata(dev);
837 	struct regulator *regulator;
838 	int uA = 0;
839 
840 	regulator_lock(rdev);
841 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 		if (regulator->enable_count)
843 			uA += regulator->uA_load;
844 	}
845 	regulator_unlock(rdev);
846 	return sprintf(buf, "%d\n", uA);
847 }
848 static DEVICE_ATTR_RO(requested_microamps);
849 
850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 			      char *buf)
852 {
853 	struct regulator_dev *rdev = dev_get_drvdata(dev);
854 	return sprintf(buf, "%d\n", rdev->use_count);
855 }
856 static DEVICE_ATTR_RO(num_users);
857 
858 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 			 char *buf)
860 {
861 	struct regulator_dev *rdev = dev_get_drvdata(dev);
862 
863 	switch (rdev->desc->type) {
864 	case REGULATOR_VOLTAGE:
865 		return sprintf(buf, "voltage\n");
866 	case REGULATOR_CURRENT:
867 		return sprintf(buf, "current\n");
868 	}
869 	return sprintf(buf, "unknown\n");
870 }
871 static DEVICE_ATTR_RO(type);
872 
873 static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 					   struct device_attribute *attr, char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879 }
880 static DEVICE_ATTR_RO(suspend_mem_microvolts);
881 
882 static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 					    struct device_attribute *attr, char *buf)
884 {
885 	struct regulator_dev *rdev = dev_get_drvdata(dev);
886 
887 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888 }
889 static DEVICE_ATTR_RO(suspend_disk_microvolts);
890 
891 static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 					       struct device_attribute *attr, char *buf)
893 {
894 	struct regulator_dev *rdev = dev_get_drvdata(dev);
895 
896 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897 }
898 static DEVICE_ATTR_RO(suspend_standby_microvolts);
899 
900 static ssize_t suspend_mem_mode_show(struct device *dev,
901 				     struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_opmode(buf,
906 		rdev->constraints->state_mem.mode);
907 }
908 static DEVICE_ATTR_RO(suspend_mem_mode);
909 
910 static ssize_t suspend_disk_mode_show(struct device *dev,
911 				      struct device_attribute *attr, char *buf)
912 {
913 	struct regulator_dev *rdev = dev_get_drvdata(dev);
914 
915 	return regulator_print_opmode(buf,
916 		rdev->constraints->state_disk.mode);
917 }
918 static DEVICE_ATTR_RO(suspend_disk_mode);
919 
920 static ssize_t suspend_standby_mode_show(struct device *dev,
921 					 struct device_attribute *attr, char *buf)
922 {
923 	struct regulator_dev *rdev = dev_get_drvdata(dev);
924 
925 	return regulator_print_opmode(buf,
926 		rdev->constraints->state_standby.mode);
927 }
928 static DEVICE_ATTR_RO(suspend_standby_mode);
929 
930 static ssize_t suspend_mem_state_show(struct device *dev,
931 				      struct device_attribute *attr, char *buf)
932 {
933 	struct regulator_dev *rdev = dev_get_drvdata(dev);
934 
935 	return regulator_print_state(buf,
936 			rdev->constraints->state_mem.enabled);
937 }
938 static DEVICE_ATTR_RO(suspend_mem_state);
939 
940 static ssize_t suspend_disk_state_show(struct device *dev,
941 				       struct device_attribute *attr, char *buf)
942 {
943 	struct regulator_dev *rdev = dev_get_drvdata(dev);
944 
945 	return regulator_print_state(buf,
946 			rdev->constraints->state_disk.enabled);
947 }
948 static DEVICE_ATTR_RO(suspend_disk_state);
949 
950 static ssize_t suspend_standby_state_show(struct device *dev,
951 					  struct device_attribute *attr, char *buf)
952 {
953 	struct regulator_dev *rdev = dev_get_drvdata(dev);
954 
955 	return regulator_print_state(buf,
956 			rdev->constraints->state_standby.enabled);
957 }
958 static DEVICE_ATTR_RO(suspend_standby_state);
959 
960 static ssize_t bypass_show(struct device *dev,
961 			   struct device_attribute *attr, char *buf)
962 {
963 	struct regulator_dev *rdev = dev_get_drvdata(dev);
964 	const char *report;
965 	bool bypass;
966 	int ret;
967 
968 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969 
970 	if (ret != 0)
971 		report = "unknown";
972 	else if (bypass)
973 		report = "enabled";
974 	else
975 		report = "disabled";
976 
977 	return sprintf(buf, "%s\n", report);
978 }
979 static DEVICE_ATTR_RO(bypass);
980 
981 #define REGULATOR_ERROR_ATTR(name, bit)							\
982 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
983 				   char *buf)						\
984 	{										\
985 		int ret;								\
986 		unsigned int flags;							\
987 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
988 		ret = _regulator_get_error_flags(rdev, &flags);				\
989 		if (ret)								\
990 			return ret;							\
991 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
992 	}										\
993 	static DEVICE_ATTR_RO(name)
994 
995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004 
1005 /* Calculate the new optimum regulator operating mode based on the new total
1006  * consumer load. All locks held by caller
1007  */
1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 	struct regulator *sibling;
1011 	int current_uA = 0, output_uV, input_uV, err;
1012 	unsigned int mode;
1013 
1014 	/*
1015 	 * first check to see if we can set modes at all, otherwise just
1016 	 * tell the consumer everything is OK.
1017 	 */
1018 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 		return 0;
1021 	}
1022 
1023 	if (!rdev->desc->ops->get_optimum_mode &&
1024 	    !rdev->desc->ops->set_load)
1025 		return 0;
1026 
1027 	if (!rdev->desc->ops->set_mode &&
1028 	    !rdev->desc->ops->set_load)
1029 		return -EINVAL;
1030 
1031 	/* calc total requested load */
1032 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 		if (sibling->enable_count)
1034 			current_uA += sibling->uA_load;
1035 	}
1036 
1037 	current_uA += rdev->constraints->system_load;
1038 
1039 	if (rdev->desc->ops->set_load) {
1040 		/* set the optimum mode for our new total regulator load */
1041 		err = rdev->desc->ops->set_load(rdev, current_uA);
1042 		if (err < 0)
1043 			rdev_err(rdev, "failed to set load %d: %pe\n",
1044 				 current_uA, ERR_PTR(err));
1045 	} else {
1046 		/*
1047 		 * Unfortunately in some cases the constraints->valid_ops has
1048 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 		 * That's not really legit but we won't consider it a fatal
1050 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 		 * wasn't set.
1052 		 */
1053 		if (!rdev->constraints->valid_modes_mask) {
1054 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 			return 0;
1056 		}
1057 
1058 		/* get output voltage */
1059 		output_uV = regulator_get_voltage_rdev(rdev);
1060 
1061 		/*
1062 		 * Don't return an error; if regulator driver cares about
1063 		 * output_uV then it's up to the driver to validate.
1064 		 */
1065 		if (output_uV <= 0)
1066 			rdev_dbg(rdev, "invalid output voltage found\n");
1067 
1068 		/* get input voltage */
1069 		input_uV = 0;
1070 		if (rdev->supply)
1071 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 		if (input_uV <= 0)
1073 			input_uV = rdev->constraints->input_uV;
1074 
1075 		/*
1076 		 * Don't return an error; if regulator driver cares about
1077 		 * input_uV then it's up to the driver to validate.
1078 		 */
1079 		if (input_uV <= 0)
1080 			rdev_dbg(rdev, "invalid input voltage found\n");
1081 
1082 		/* now get the optimum mode for our new total regulator load */
1083 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 							 output_uV, current_uA);
1085 
1086 		/* check the new mode is allowed */
1087 		err = regulator_mode_constrain(rdev, &mode);
1088 		if (err < 0) {
1089 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 			return err;
1092 		}
1093 
1094 		err = rdev->desc->ops->set_mode(rdev, mode);
1095 		if (err < 0)
1096 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 				 mode, ERR_PTR(err));
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 static int __suspend_set_state(struct regulator_dev *rdev,
1104 			       const struct regulator_state *rstate)
1105 {
1106 	int ret = 0;
1107 
1108 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 		rdev->desc->ops->set_suspend_enable)
1110 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 		rdev->desc->ops->set_suspend_disable)
1113 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 		ret = 0;
1116 
1117 	if (ret < 0) {
1118 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 		return ret;
1120 	}
1121 
1122 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 		if (ret < 0) {
1125 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 		if (ret < 0) {
1133 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 			return ret;
1135 		}
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 static int suspend_set_initial_state(struct regulator_dev *rdev)
1142 {
1143 	const struct regulator_state *rstate;
1144 
1145 	rstate = regulator_get_suspend_state_check(rdev,
1146 			rdev->constraints->initial_state);
1147 	if (!rstate)
1148 		return 0;
1149 
1150 	return __suspend_set_state(rdev, rstate);
1151 }
1152 
1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154 static void print_constraints_debug(struct regulator_dev *rdev)
1155 {
1156 	struct regulation_constraints *constraints = rdev->constraints;
1157 	char buf[160] = "";
1158 	size_t len = sizeof(buf) - 1;
1159 	int count = 0;
1160 	int ret;
1161 
1162 	if (constraints->min_uV && constraints->max_uV) {
1163 		if (constraints->min_uV == constraints->max_uV)
1164 			count += scnprintf(buf + count, len - count, "%d mV ",
1165 					   constraints->min_uV / 1000);
1166 		else
1167 			count += scnprintf(buf + count, len - count,
1168 					   "%d <--> %d mV ",
1169 					   constraints->min_uV / 1000,
1170 					   constraints->max_uV / 1000);
1171 	}
1172 
1173 	if (!constraints->min_uV ||
1174 	    constraints->min_uV != constraints->max_uV) {
1175 		ret = regulator_get_voltage_rdev(rdev);
1176 		if (ret > 0)
1177 			count += scnprintf(buf + count, len - count,
1178 					   "at %d mV ", ret / 1000);
1179 	}
1180 
1181 	if (constraints->uV_offset)
1182 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 				   constraints->uV_offset / 1000);
1184 
1185 	if (constraints->min_uA && constraints->max_uA) {
1186 		if (constraints->min_uA == constraints->max_uA)
1187 			count += scnprintf(buf + count, len - count, "%d mA ",
1188 					   constraints->min_uA / 1000);
1189 		else
1190 			count += scnprintf(buf + count, len - count,
1191 					   "%d <--> %d mA ",
1192 					   constraints->min_uA / 1000,
1193 					   constraints->max_uA / 1000);
1194 	}
1195 
1196 	if (!constraints->min_uA ||
1197 	    constraints->min_uA != constraints->max_uA) {
1198 		ret = _regulator_get_current_limit(rdev);
1199 		if (ret > 0)
1200 			count += scnprintf(buf + count, len - count,
1201 					   "at %d mA ", ret / 1000);
1202 	}
1203 
1204 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 		count += scnprintf(buf + count, len - count, "fast ");
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 		count += scnprintf(buf + count, len - count, "normal ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 		count += scnprintf(buf + count, len - count, "idle ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 		count += scnprintf(buf + count, len - count, "standby ");
1212 
1213 	if (!count)
1214 		count = scnprintf(buf, len, "no parameters");
1215 	else
1216 		--count;
1217 
1218 	count += scnprintf(buf + count, len - count, ", %s",
1219 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220 
1221 	rdev_dbg(rdev, "%s\n", buf);
1222 }
1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 
1227 static void print_constraints(struct regulator_dev *rdev)
1228 {
1229 	struct regulation_constraints *constraints = rdev->constraints;
1230 
1231 	print_constraints_debug(rdev);
1232 
1233 	if ((constraints->min_uV != constraints->max_uV) &&
1234 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 		rdev_warn(rdev,
1236 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237 }
1238 
1239 static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 	struct regulation_constraints *constraints)
1241 {
1242 	const struct regulator_ops *ops = rdev->desc->ops;
1243 	int ret;
1244 
1245 	/* do we need to apply the constraint voltage */
1246 	if (rdev->constraints->apply_uV &&
1247 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 		int target_min, target_max;
1249 		int current_uV = regulator_get_voltage_rdev(rdev);
1250 
1251 		if (current_uV == -ENOTRECOVERABLE) {
1252 			/* This regulator can't be read and must be initialized */
1253 			rdev_info(rdev, "Setting %d-%duV\n",
1254 				  rdev->constraints->min_uV,
1255 				  rdev->constraints->max_uV);
1256 			_regulator_do_set_voltage(rdev,
1257 						  rdev->constraints->min_uV,
1258 						  rdev->constraints->max_uV);
1259 			current_uV = regulator_get_voltage_rdev(rdev);
1260 		}
1261 
1262 		if (current_uV < 0) {
1263 			if (current_uV != -EPROBE_DEFER)
1264 				rdev_err(rdev,
1265 					 "failed to get the current voltage: %pe\n",
1266 					 ERR_PTR(current_uV));
1267 			return current_uV;
1268 		}
1269 
1270 		/*
1271 		 * If we're below the minimum voltage move up to the
1272 		 * minimum voltage, if we're above the maximum voltage
1273 		 * then move down to the maximum.
1274 		 */
1275 		target_min = current_uV;
1276 		target_max = current_uV;
1277 
1278 		if (current_uV < rdev->constraints->min_uV) {
1279 			target_min = rdev->constraints->min_uV;
1280 			target_max = rdev->constraints->min_uV;
1281 		}
1282 
1283 		if (current_uV > rdev->constraints->max_uV) {
1284 			target_min = rdev->constraints->max_uV;
1285 			target_max = rdev->constraints->max_uV;
1286 		}
1287 
1288 		if (target_min != current_uV || target_max != current_uV) {
1289 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 				  current_uV, target_min, target_max);
1291 			ret = _regulator_do_set_voltage(
1292 				rdev, target_min, target_max);
1293 			if (ret < 0) {
1294 				rdev_err(rdev,
1295 					"failed to apply %d-%duV constraint: %pe\n",
1296 					target_min, target_max, ERR_PTR(ret));
1297 				return ret;
1298 			}
1299 		}
1300 	}
1301 
1302 	/* constrain machine-level voltage specs to fit
1303 	 * the actual range supported by this regulator.
1304 	 */
1305 	if (ops->list_voltage && rdev->desc->n_voltages) {
1306 		int	count = rdev->desc->n_voltages;
1307 		int	i;
1308 		int	min_uV = INT_MAX;
1309 		int	max_uV = INT_MIN;
1310 		int	cmin = constraints->min_uV;
1311 		int	cmax = constraints->max_uV;
1312 
1313 		/* it's safe to autoconfigure fixed-voltage supplies
1314 		 * and the constraints are used by list_voltage.
1315 		 */
1316 		if (count == 1 && !cmin) {
1317 			cmin = 1;
1318 			cmax = INT_MAX;
1319 			constraints->min_uV = cmin;
1320 			constraints->max_uV = cmax;
1321 		}
1322 
1323 		/* voltage constraints are optional */
1324 		if ((cmin == 0) && (cmax == 0))
1325 			return 0;
1326 
1327 		/* else require explicit machine-level constraints */
1328 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 			rdev_err(rdev, "invalid voltage constraints\n");
1330 			return -EINVAL;
1331 		}
1332 
1333 		/* no need to loop voltages if range is continuous */
1334 		if (rdev->desc->continuous_voltage_range)
1335 			return 0;
1336 
1337 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 		for (i = 0; i < count; i++) {
1339 			int	value;
1340 
1341 			value = ops->list_voltage(rdev, i);
1342 			if (value <= 0)
1343 				continue;
1344 
1345 			/* maybe adjust [min_uV..max_uV] */
1346 			if (value >= cmin && value < min_uV)
1347 				min_uV = value;
1348 			if (value <= cmax && value > max_uV)
1349 				max_uV = value;
1350 		}
1351 
1352 		/* final: [min_uV..max_uV] valid iff constraints valid */
1353 		if (max_uV < min_uV) {
1354 			rdev_err(rdev,
1355 				 "unsupportable voltage constraints %u-%uuV\n",
1356 				 min_uV, max_uV);
1357 			return -EINVAL;
1358 		}
1359 
1360 		/* use regulator's subset of machine constraints */
1361 		if (constraints->min_uV < min_uV) {
1362 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 				 constraints->min_uV, min_uV);
1364 			constraints->min_uV = min_uV;
1365 		}
1366 		if (constraints->max_uV > max_uV) {
1367 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 				 constraints->max_uV, max_uV);
1369 			constraints->max_uV = max_uV;
1370 		}
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int machine_constraints_current(struct regulator_dev *rdev,
1377 	struct regulation_constraints *constraints)
1378 {
1379 	const struct regulator_ops *ops = rdev->desc->ops;
1380 	int ret;
1381 
1382 	if (!constraints->min_uA && !constraints->max_uA)
1383 		return 0;
1384 
1385 	if (constraints->min_uA > constraints->max_uA) {
1386 		rdev_err(rdev, "Invalid current constraints\n");
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (!ops->set_current_limit || !ops->get_current_limit) {
1391 		rdev_warn(rdev, "Operation of current configuration missing\n");
1392 		return 0;
1393 	}
1394 
1395 	/* Set regulator current in constraints range */
1396 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 			constraints->max_uA);
1398 	if (ret < 0) {
1399 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 		return ret;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int _regulator_do_enable(struct regulator_dev *rdev);
1407 
1408 static int notif_set_limit(struct regulator_dev *rdev,
1409 			   int (*set)(struct regulator_dev *, int, int, bool),
1410 			   int limit, int severity)
1411 {
1412 	bool enable;
1413 
1414 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 		enable = false;
1416 		limit = 0;
1417 	} else {
1418 		enable = true;
1419 	}
1420 
1421 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 		limit = 0;
1423 
1424 	return set(rdev, limit, severity, enable);
1425 }
1426 
1427 static int handle_notify_limits(struct regulator_dev *rdev,
1428 			int (*set)(struct regulator_dev *, int, int, bool),
1429 			struct notification_limit *limits)
1430 {
1431 	int ret = 0;
1432 
1433 	if (!set)
1434 		return -EOPNOTSUPP;
1435 
1436 	if (limits->prot)
1437 		ret = notif_set_limit(rdev, set, limits->prot,
1438 				      REGULATOR_SEVERITY_PROT);
1439 	if (ret)
1440 		return ret;
1441 
1442 	if (limits->err)
1443 		ret = notif_set_limit(rdev, set, limits->err,
1444 				      REGULATOR_SEVERITY_ERR);
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (limits->warn)
1449 		ret = notif_set_limit(rdev, set, limits->warn,
1450 				      REGULATOR_SEVERITY_WARN);
1451 
1452 	return ret;
1453 }
1454 /**
1455  * set_machine_constraints - sets regulator constraints
1456  * @rdev: regulator source
1457  *
1458  * Allows platform initialisation code to define and constrain
1459  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1460  * Constraints *must* be set by platform code in order for some
1461  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462  * set_mode.
1463  */
1464 static int set_machine_constraints(struct regulator_dev *rdev)
1465 {
1466 	int ret = 0;
1467 	const struct regulator_ops *ops = rdev->desc->ops;
1468 
1469 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 	if (ret != 0)
1471 		return ret;
1472 
1473 	ret = machine_constraints_current(rdev, rdev->constraints);
1474 	if (ret != 0)
1475 		return ret;
1476 
1477 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 		ret = ops->set_input_current_limit(rdev,
1479 						   rdev->constraints->ilim_uA);
1480 		if (ret < 0) {
1481 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 			return ret;
1483 		}
1484 	}
1485 
1486 	/* do we need to setup our suspend state */
1487 	if (rdev->constraints->initial_state) {
1488 		ret = suspend_set_initial_state(rdev);
1489 		if (ret < 0) {
1490 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 			return ret;
1492 		}
1493 	}
1494 
1495 	if (rdev->constraints->initial_mode) {
1496 		if (!ops->set_mode) {
1497 			rdev_err(rdev, "no set_mode operation\n");
1498 			return -EINVAL;
1499 		}
1500 
1501 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 		if (ret < 0) {
1503 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 			return ret;
1505 		}
1506 	} else if (rdev->constraints->system_load) {
1507 		/*
1508 		 * We'll only apply the initial system load if an
1509 		 * initial mode wasn't specified.
1510 		 */
1511 		drms_uA_update(rdev);
1512 	}
1513 
1514 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 		&& ops->set_ramp_delay) {
1516 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 		if (ret < 0) {
1518 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 			return ret;
1520 		}
1521 	}
1522 
1523 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 		ret = ops->set_pull_down(rdev);
1525 		if (ret < 0) {
1526 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 			return ret;
1528 		}
1529 	}
1530 
1531 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 		ret = ops->set_soft_start(rdev);
1533 		if (ret < 0) {
1534 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 			return ret;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Existing logic does not warn if over_current_protection is given as
1541 	 * a constraint but driver does not support that. I think we should
1542 	 * warn about this type of issues as it is possible someone changes
1543 	 * PMIC on board to another type - and the another PMIC's driver does
1544 	 * not support setting protection. Board composer may happily believe
1545 	 * the DT limits are respected - especially if the new PMIC HW also
1546 	 * supports protection but the driver does not. I won't change the logic
1547 	 * without hearing more experienced opinion on this though.
1548 	 *
1549 	 * If warning is seen as a good idea then we can merge handling the
1550 	 * over-curret protection and detection and get rid of this special
1551 	 * handling.
1552 	 */
1553 	if (rdev->constraints->over_current_protection
1554 		&& ops->set_over_current_protection) {
1555 		int lim = rdev->constraints->over_curr_limits.prot;
1556 
1557 		ret = ops->set_over_current_protection(rdev, lim,
1558 						       REGULATOR_SEVERITY_PROT,
1559 						       true);
1560 		if (ret < 0) {
1561 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 				 ERR_PTR(ret));
1563 			return ret;
1564 		}
1565 	}
1566 
1567 	if (rdev->constraints->over_current_detection)
1568 		ret = handle_notify_limits(rdev,
1569 					   ops->set_over_current_protection,
1570 					   &rdev->constraints->over_curr_limits);
1571 	if (ret) {
1572 		if (ret != -EOPNOTSUPP) {
1573 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 				 ERR_PTR(ret));
1575 			return ret;
1576 		}
1577 		rdev_warn(rdev,
1578 			  "IC does not support requested over-current limits\n");
1579 	}
1580 
1581 	if (rdev->constraints->over_voltage_detection)
1582 		ret = handle_notify_limits(rdev,
1583 					   ops->set_over_voltage_protection,
1584 					   &rdev->constraints->over_voltage_limits);
1585 	if (ret) {
1586 		if (ret != -EOPNOTSUPP) {
1587 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 				 ERR_PTR(ret));
1589 			return ret;
1590 		}
1591 		rdev_warn(rdev,
1592 			  "IC does not support requested over voltage limits\n");
1593 	}
1594 
1595 	if (rdev->constraints->under_voltage_detection)
1596 		ret = handle_notify_limits(rdev,
1597 					   ops->set_under_voltage_protection,
1598 					   &rdev->constraints->under_voltage_limits);
1599 	if (ret) {
1600 		if (ret != -EOPNOTSUPP) {
1601 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 				 ERR_PTR(ret));
1603 			return ret;
1604 		}
1605 		rdev_warn(rdev,
1606 			  "IC does not support requested under voltage limits\n");
1607 	}
1608 
1609 	if (rdev->constraints->over_temp_detection)
1610 		ret = handle_notify_limits(rdev,
1611 					   ops->set_thermal_protection,
1612 					   &rdev->constraints->temp_limits);
1613 	if (ret) {
1614 		if (ret != -EOPNOTSUPP) {
1615 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 				 ERR_PTR(ret));
1617 			return ret;
1618 		}
1619 		rdev_warn(rdev,
1620 			  "IC does not support requested temperature limits\n");
1621 	}
1622 
1623 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 		bool ad_state = (rdev->constraints->active_discharge ==
1625 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626 
1627 		ret = ops->set_active_discharge(rdev, ad_state);
1628 		if (ret < 0) {
1629 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 			return ret;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * If there is no mechanism for controlling the regulator then
1636 	 * flag it as always_on so we don't end up duplicating checks
1637 	 * for this so much.  Note that we could control the state of
1638 	 * a supply to control the output on a regulator that has no
1639 	 * direct control.
1640 	 */
1641 	if (!rdev->ena_pin && !ops->enable) {
1642 		if (rdev->supply_name && !rdev->supply)
1643 			return -EPROBE_DEFER;
1644 
1645 		if (rdev->supply)
1646 			rdev->constraints->always_on =
1647 				rdev->supply->rdev->constraints->always_on;
1648 		else
1649 			rdev->constraints->always_on = true;
1650 	}
1651 
1652 	/* If the constraints say the regulator should be on at this point
1653 	 * and we have control then make sure it is enabled.
1654 	 */
1655 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 		/* If we want to enable this regulator, make sure that we know
1657 		 * the supplying regulator.
1658 		 */
1659 		if (rdev->supply_name && !rdev->supply)
1660 			return -EPROBE_DEFER;
1661 
1662 		/* If supplying regulator has already been enabled,
1663 		 * it's not intended to have use_count increment
1664 		 * when rdev is only boot-on.
1665 		 */
1666 		if (rdev->supply &&
1667 		    (rdev->constraints->always_on ||
1668 		     !regulator_is_enabled(rdev->supply))) {
1669 			ret = regulator_enable(rdev->supply);
1670 			if (ret < 0) {
1671 				_regulator_put(rdev->supply);
1672 				rdev->supply = NULL;
1673 				return ret;
1674 			}
1675 		}
1676 
1677 		ret = _regulator_do_enable(rdev);
1678 		if (ret < 0 && ret != -EINVAL) {
1679 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 			return ret;
1681 		}
1682 
1683 		if (rdev->constraints->always_on)
1684 			rdev->use_count++;
1685 	} else if (rdev->desc->off_on_delay) {
1686 		rdev->last_off = ktime_get();
1687 	}
1688 
1689 	print_constraints(rdev);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * set_supply - set regulator supply regulator
1695  * @rdev: regulator (locked)
1696  * @supply_rdev: supply regulator (locked))
1697  *
1698  * Called by platform initialisation code to set the supply regulator for this
1699  * regulator. This ensures that a regulators supply will also be enabled by the
1700  * core if it's child is enabled.
1701  */
1702 static int set_supply(struct regulator_dev *rdev,
1703 		      struct regulator_dev *supply_rdev)
1704 {
1705 	int err;
1706 
1707 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708 
1709 	if (!try_module_get(supply_rdev->owner))
1710 		return -ENODEV;
1711 
1712 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 	if (rdev->supply == NULL) {
1714 		module_put(supply_rdev->owner);
1715 		err = -ENOMEM;
1716 		return err;
1717 	}
1718 	supply_rdev->open_count++;
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725  * @rdev:         regulator source
1726  * @consumer_dev_name: dev_name() string for device supply applies to
1727  * @supply:       symbolic name for supply
1728  *
1729  * Allows platform initialisation code to map physical regulator
1730  * sources to symbolic names for supplies for use by devices.  Devices
1731  * should use these symbolic names to request regulators, avoiding the
1732  * need to provide board-specific regulator names as platform data.
1733  */
1734 static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 				      const char *consumer_dev_name,
1736 				      const char *supply)
1737 {
1738 	struct regulator_map *node, *new_node;
1739 	int has_dev;
1740 
1741 	if (supply == NULL)
1742 		return -EINVAL;
1743 
1744 	if (consumer_dev_name != NULL)
1745 		has_dev = 1;
1746 	else
1747 		has_dev = 0;
1748 
1749 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 	if (new_node == NULL)
1751 		return -ENOMEM;
1752 
1753 	new_node->regulator = rdev;
1754 	new_node->supply = supply;
1755 
1756 	if (has_dev) {
1757 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 		if (new_node->dev_name == NULL) {
1759 			kfree(new_node);
1760 			return -ENOMEM;
1761 		}
1762 	}
1763 
1764 	mutex_lock(&regulator_list_mutex);
1765 	list_for_each_entry(node, &regulator_map_list, list) {
1766 		if (node->dev_name && consumer_dev_name) {
1767 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 				continue;
1769 		} else if (node->dev_name || consumer_dev_name) {
1770 			continue;
1771 		}
1772 
1773 		if (strcmp(node->supply, supply) != 0)
1774 			continue;
1775 
1776 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 			 consumer_dev_name,
1778 			 dev_name(&node->regulator->dev),
1779 			 node->regulator->desc->name,
1780 			 supply,
1781 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 		goto fail;
1783 	}
1784 
1785 	list_add(&new_node->list, &regulator_map_list);
1786 	mutex_unlock(&regulator_list_mutex);
1787 
1788 	return 0;
1789 
1790 fail:
1791 	mutex_unlock(&regulator_list_mutex);
1792 	kfree(new_node->dev_name);
1793 	kfree(new_node);
1794 	return -EBUSY;
1795 }
1796 
1797 static void unset_regulator_supplies(struct regulator_dev *rdev)
1798 {
1799 	struct regulator_map *node, *n;
1800 
1801 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1802 		if (rdev == node->regulator) {
1803 			list_del(&node->list);
1804 			kfree(node->dev_name);
1805 			kfree(node);
1806 		}
1807 	}
1808 }
1809 
1810 #ifdef CONFIG_DEBUG_FS
1811 static ssize_t constraint_flags_read_file(struct file *file,
1812 					  char __user *user_buf,
1813 					  size_t count, loff_t *ppos)
1814 {
1815 	const struct regulator *regulator = file->private_data;
1816 	const struct regulation_constraints *c = regulator->rdev->constraints;
1817 	char *buf;
1818 	ssize_t ret;
1819 
1820 	if (!c)
1821 		return 0;
1822 
1823 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 	if (!buf)
1825 		return -ENOMEM;
1826 
1827 	ret = snprintf(buf, PAGE_SIZE,
1828 			"always_on: %u\n"
1829 			"boot_on: %u\n"
1830 			"apply_uV: %u\n"
1831 			"ramp_disable: %u\n"
1832 			"soft_start: %u\n"
1833 			"pull_down: %u\n"
1834 			"over_current_protection: %u\n",
1835 			c->always_on,
1836 			c->boot_on,
1837 			c->apply_uV,
1838 			c->ramp_disable,
1839 			c->soft_start,
1840 			c->pull_down,
1841 			c->over_current_protection);
1842 
1843 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 	kfree(buf);
1845 
1846 	return ret;
1847 }
1848 
1849 #endif
1850 
1851 static const struct file_operations constraint_flags_fops = {
1852 #ifdef CONFIG_DEBUG_FS
1853 	.open = simple_open,
1854 	.read = constraint_flags_read_file,
1855 	.llseek = default_llseek,
1856 #endif
1857 };
1858 
1859 #define REG_STR_SIZE	64
1860 
1861 static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 					  struct device *dev,
1863 					  const char *supply_name)
1864 {
1865 	struct regulator *regulator;
1866 	int err = 0;
1867 
1868 	lockdep_assert_held_once(&rdev->mutex.base);
1869 
1870 	if (dev) {
1871 		char buf[REG_STR_SIZE];
1872 		int size;
1873 
1874 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 				dev->kobj.name, supply_name);
1876 		if (size >= REG_STR_SIZE)
1877 			return NULL;
1878 
1879 		supply_name = kstrdup(buf, GFP_KERNEL);
1880 		if (supply_name == NULL)
1881 			return NULL;
1882 	} else {
1883 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 		if (supply_name == NULL)
1885 			return NULL;
1886 	}
1887 
1888 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 	if (regulator == NULL) {
1890 		kfree_const(supply_name);
1891 		return NULL;
1892 	}
1893 
1894 	regulator->rdev = rdev;
1895 	regulator->supply_name = supply_name;
1896 
1897 	list_add(&regulator->list, &rdev->consumer_list);
1898 
1899 	if (dev) {
1900 		regulator->dev = dev;
1901 
1902 		/* Add a link to the device sysfs entry */
1903 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 					       supply_name);
1905 		if (err) {
1906 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 				  dev->kobj.name, ERR_PTR(err));
1908 			/* non-fatal */
1909 		}
1910 	}
1911 
1912 	if (err != -EEXIST)
1913 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 	if (IS_ERR(regulator->debugfs))
1915 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 
1917 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1918 			   &regulator->uA_load);
1919 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1920 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1921 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1922 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1923 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1924 			    regulator, &constraint_flags_fops);
1925 
1926 	/*
1927 	 * Check now if the regulator is an always on regulator - if
1928 	 * it is then we don't need to do nearly so much work for
1929 	 * enable/disable calls.
1930 	 */
1931 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1932 	    _regulator_is_enabled(rdev))
1933 		regulator->always_on = true;
1934 
1935 	return regulator;
1936 }
1937 
1938 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1939 {
1940 	if (rdev->constraints && rdev->constraints->enable_time)
1941 		return rdev->constraints->enable_time;
1942 	if (rdev->desc->ops->enable_time)
1943 		return rdev->desc->ops->enable_time(rdev);
1944 	return rdev->desc->enable_time;
1945 }
1946 
1947 static struct regulator_supply_alias *regulator_find_supply_alias(
1948 		struct device *dev, const char *supply)
1949 {
1950 	struct regulator_supply_alias *map;
1951 
1952 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1953 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1954 			return map;
1955 
1956 	return NULL;
1957 }
1958 
1959 static void regulator_supply_alias(struct device **dev, const char **supply)
1960 {
1961 	struct regulator_supply_alias *map;
1962 
1963 	map = regulator_find_supply_alias(*dev, *supply);
1964 	if (map) {
1965 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1966 				*supply, map->alias_supply,
1967 				dev_name(map->alias_dev));
1968 		*dev = map->alias_dev;
1969 		*supply = map->alias_supply;
1970 	}
1971 }
1972 
1973 static int regulator_match(struct device *dev, const void *data)
1974 {
1975 	struct regulator_dev *r = dev_to_rdev(dev);
1976 
1977 	return strcmp(rdev_get_name(r), data) == 0;
1978 }
1979 
1980 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1981 {
1982 	struct device *dev;
1983 
1984 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1985 
1986 	return dev ? dev_to_rdev(dev) : NULL;
1987 }
1988 
1989 /**
1990  * regulator_dev_lookup - lookup a regulator device.
1991  * @dev: device for regulator "consumer".
1992  * @supply: Supply name or regulator ID.
1993  *
1994  * If successful, returns a struct regulator_dev that corresponds to the name
1995  * @supply and with the embedded struct device refcount incremented by one.
1996  * The refcount must be dropped by calling put_device().
1997  * On failure one of the following ERR-PTR-encoded values is returned:
1998  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1999  * in the future.
2000  */
2001 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2002 						  const char *supply)
2003 {
2004 	struct regulator_dev *r = NULL;
2005 	struct device_node *node;
2006 	struct regulator_map *map;
2007 	const char *devname = NULL;
2008 
2009 	regulator_supply_alias(&dev, &supply);
2010 
2011 	/* first do a dt based lookup */
2012 	if (dev && dev->of_node) {
2013 		node = of_get_regulator(dev, supply);
2014 		if (node) {
2015 			r = of_find_regulator_by_node(node);
2016 			of_node_put(node);
2017 			if (r)
2018 				return r;
2019 
2020 			/*
2021 			 * We have a node, but there is no device.
2022 			 * assume it has not registered yet.
2023 			 */
2024 			return ERR_PTR(-EPROBE_DEFER);
2025 		}
2026 	}
2027 
2028 	/* if not found, try doing it non-dt way */
2029 	if (dev)
2030 		devname = dev_name(dev);
2031 
2032 	mutex_lock(&regulator_list_mutex);
2033 	list_for_each_entry(map, &regulator_map_list, list) {
2034 		/* If the mapping has a device set up it must match */
2035 		if (map->dev_name &&
2036 		    (!devname || strcmp(map->dev_name, devname)))
2037 			continue;
2038 
2039 		if (strcmp(map->supply, supply) == 0 &&
2040 		    get_device(&map->regulator->dev)) {
2041 			r = map->regulator;
2042 			break;
2043 		}
2044 	}
2045 	mutex_unlock(&regulator_list_mutex);
2046 
2047 	if (r)
2048 		return r;
2049 
2050 	r = regulator_lookup_by_name(supply);
2051 	if (r)
2052 		return r;
2053 
2054 	return ERR_PTR(-ENODEV);
2055 }
2056 
2057 static int regulator_resolve_supply(struct regulator_dev *rdev)
2058 {
2059 	struct regulator_dev *r;
2060 	struct device *dev = rdev->dev.parent;
2061 	struct ww_acquire_ctx ww_ctx;
2062 	int ret = 0;
2063 
2064 	/* No supply to resolve? */
2065 	if (!rdev->supply_name)
2066 		return 0;
2067 
2068 	/* Supply already resolved? (fast-path without locking contention) */
2069 	if (rdev->supply)
2070 		return 0;
2071 
2072 	r = regulator_dev_lookup(dev, rdev->supply_name);
2073 	if (IS_ERR(r)) {
2074 		ret = PTR_ERR(r);
2075 
2076 		/* Did the lookup explicitly defer for us? */
2077 		if (ret == -EPROBE_DEFER)
2078 			goto out;
2079 
2080 		if (have_full_constraints()) {
2081 			r = dummy_regulator_rdev;
2082 			get_device(&r->dev);
2083 		} else {
2084 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2085 				rdev->supply_name, rdev->desc->name);
2086 			ret = -EPROBE_DEFER;
2087 			goto out;
2088 		}
2089 	}
2090 
2091 	if (r == rdev) {
2092 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2093 			rdev->desc->name, rdev->supply_name);
2094 		if (!have_full_constraints()) {
2095 			ret = -EINVAL;
2096 			goto out;
2097 		}
2098 		r = dummy_regulator_rdev;
2099 		get_device(&r->dev);
2100 	}
2101 
2102 	/*
2103 	 * If the supply's parent device is not the same as the
2104 	 * regulator's parent device, then ensure the parent device
2105 	 * is bound before we resolve the supply, in case the parent
2106 	 * device get probe deferred and unregisters the supply.
2107 	 */
2108 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2109 		if (!device_is_bound(r->dev.parent)) {
2110 			put_device(&r->dev);
2111 			ret = -EPROBE_DEFER;
2112 			goto out;
2113 		}
2114 	}
2115 
2116 	/* Recursively resolve the supply of the supply */
2117 	ret = regulator_resolve_supply(r);
2118 	if (ret < 0) {
2119 		put_device(&r->dev);
2120 		goto out;
2121 	}
2122 
2123 	/*
2124 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2125 	 * between rdev->supply null check and setting rdev->supply in
2126 	 * set_supply() from concurrent tasks.
2127 	 */
2128 	regulator_lock_two(rdev, r, &ww_ctx);
2129 
2130 	/* Supply just resolved by a concurrent task? */
2131 	if (rdev->supply) {
2132 		regulator_unlock_two(rdev, r, &ww_ctx);
2133 		put_device(&r->dev);
2134 		goto out;
2135 	}
2136 
2137 	ret = set_supply(rdev, r);
2138 	if (ret < 0) {
2139 		regulator_unlock_two(rdev, r, &ww_ctx);
2140 		put_device(&r->dev);
2141 		goto out;
2142 	}
2143 
2144 	regulator_unlock_two(rdev, r, &ww_ctx);
2145 
2146 	/*
2147 	 * In set_machine_constraints() we may have turned this regulator on
2148 	 * but we couldn't propagate to the supply if it hadn't been resolved
2149 	 * yet.  Do it now.
2150 	 */
2151 	if (rdev->use_count) {
2152 		ret = regulator_enable(rdev->supply);
2153 		if (ret < 0) {
2154 			_regulator_put(rdev->supply);
2155 			rdev->supply = NULL;
2156 			goto out;
2157 		}
2158 	}
2159 
2160 out:
2161 	return ret;
2162 }
2163 
2164 /* Internal regulator request function */
2165 struct regulator *_regulator_get(struct device *dev, const char *id,
2166 				 enum regulator_get_type get_type)
2167 {
2168 	struct regulator_dev *rdev;
2169 	struct regulator *regulator;
2170 	struct device_link *link;
2171 	int ret;
2172 
2173 	if (get_type >= MAX_GET_TYPE) {
2174 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2175 		return ERR_PTR(-EINVAL);
2176 	}
2177 
2178 	if (id == NULL) {
2179 		pr_err("get() with no identifier\n");
2180 		return ERR_PTR(-EINVAL);
2181 	}
2182 
2183 	rdev = regulator_dev_lookup(dev, id);
2184 	if (IS_ERR(rdev)) {
2185 		ret = PTR_ERR(rdev);
2186 
2187 		/*
2188 		 * If regulator_dev_lookup() fails with error other
2189 		 * than -ENODEV our job here is done, we simply return it.
2190 		 */
2191 		if (ret != -ENODEV)
2192 			return ERR_PTR(ret);
2193 
2194 		if (!have_full_constraints()) {
2195 			dev_warn(dev,
2196 				 "incomplete constraints, dummy supplies not allowed\n");
2197 			return ERR_PTR(-ENODEV);
2198 		}
2199 
2200 		switch (get_type) {
2201 		case NORMAL_GET:
2202 			/*
2203 			 * Assume that a regulator is physically present and
2204 			 * enabled, even if it isn't hooked up, and just
2205 			 * provide a dummy.
2206 			 */
2207 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2208 			rdev = dummy_regulator_rdev;
2209 			get_device(&rdev->dev);
2210 			break;
2211 
2212 		case EXCLUSIVE_GET:
2213 			dev_warn(dev,
2214 				 "dummy supplies not allowed for exclusive requests\n");
2215 			fallthrough;
2216 
2217 		default:
2218 			return ERR_PTR(-ENODEV);
2219 		}
2220 	}
2221 
2222 	if (rdev->exclusive) {
2223 		regulator = ERR_PTR(-EPERM);
2224 		put_device(&rdev->dev);
2225 		return regulator;
2226 	}
2227 
2228 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2229 		regulator = ERR_PTR(-EBUSY);
2230 		put_device(&rdev->dev);
2231 		return regulator;
2232 	}
2233 
2234 	mutex_lock(&regulator_list_mutex);
2235 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2236 	mutex_unlock(&regulator_list_mutex);
2237 
2238 	if (ret != 0) {
2239 		regulator = ERR_PTR(-EPROBE_DEFER);
2240 		put_device(&rdev->dev);
2241 		return regulator;
2242 	}
2243 
2244 	ret = regulator_resolve_supply(rdev);
2245 	if (ret < 0) {
2246 		regulator = ERR_PTR(ret);
2247 		put_device(&rdev->dev);
2248 		return regulator;
2249 	}
2250 
2251 	if (!try_module_get(rdev->owner)) {
2252 		regulator = ERR_PTR(-EPROBE_DEFER);
2253 		put_device(&rdev->dev);
2254 		return regulator;
2255 	}
2256 
2257 	regulator_lock(rdev);
2258 	regulator = create_regulator(rdev, dev, id);
2259 	regulator_unlock(rdev);
2260 	if (regulator == NULL) {
2261 		regulator = ERR_PTR(-ENOMEM);
2262 		module_put(rdev->owner);
2263 		put_device(&rdev->dev);
2264 		return regulator;
2265 	}
2266 
2267 	rdev->open_count++;
2268 	if (get_type == EXCLUSIVE_GET) {
2269 		rdev->exclusive = 1;
2270 
2271 		ret = _regulator_is_enabled(rdev);
2272 		if (ret > 0) {
2273 			rdev->use_count = 1;
2274 			regulator->enable_count = 1;
2275 		} else {
2276 			rdev->use_count = 0;
2277 			regulator->enable_count = 0;
2278 		}
2279 	}
2280 
2281 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2282 	if (!IS_ERR_OR_NULL(link))
2283 		regulator->device_link = true;
2284 
2285 	return regulator;
2286 }
2287 
2288 /**
2289  * regulator_get - lookup and obtain a reference to a regulator.
2290  * @dev: device for regulator "consumer"
2291  * @id: Supply name or regulator ID.
2292  *
2293  * Returns a struct regulator corresponding to the regulator producer,
2294  * or IS_ERR() condition containing errno.
2295  *
2296  * Use of supply names configured via set_consumer_device_supply() is
2297  * strongly encouraged.  It is recommended that the supply name used
2298  * should match the name used for the supply and/or the relevant
2299  * device pins in the datasheet.
2300  */
2301 struct regulator *regulator_get(struct device *dev, const char *id)
2302 {
2303 	return _regulator_get(dev, id, NORMAL_GET);
2304 }
2305 EXPORT_SYMBOL_GPL(regulator_get);
2306 
2307 /**
2308  * regulator_get_exclusive - obtain exclusive access to a regulator.
2309  * @dev: device for regulator "consumer"
2310  * @id: Supply name or regulator ID.
2311  *
2312  * Returns a struct regulator corresponding to the regulator producer,
2313  * or IS_ERR() condition containing errno.  Other consumers will be
2314  * unable to obtain this regulator while this reference is held and the
2315  * use count for the regulator will be initialised to reflect the current
2316  * state of the regulator.
2317  *
2318  * This is intended for use by consumers which cannot tolerate shared
2319  * use of the regulator such as those which need to force the
2320  * regulator off for correct operation of the hardware they are
2321  * controlling.
2322  *
2323  * Use of supply names configured via set_consumer_device_supply() is
2324  * strongly encouraged.  It is recommended that the supply name used
2325  * should match the name used for the supply and/or the relevant
2326  * device pins in the datasheet.
2327  */
2328 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2329 {
2330 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2333 
2334 /**
2335  * regulator_get_optional - obtain optional access to a regulator.
2336  * @dev: device for regulator "consumer"
2337  * @id: Supply name or regulator ID.
2338  *
2339  * Returns a struct regulator corresponding to the regulator producer,
2340  * or IS_ERR() condition containing errno.
2341  *
2342  * This is intended for use by consumers for devices which can have
2343  * some supplies unconnected in normal use, such as some MMC devices.
2344  * It can allow the regulator core to provide stub supplies for other
2345  * supplies requested using normal regulator_get() calls without
2346  * disrupting the operation of drivers that can handle absent
2347  * supplies.
2348  *
2349  * Use of supply names configured via set_consumer_device_supply() is
2350  * strongly encouraged.  It is recommended that the supply name used
2351  * should match the name used for the supply and/or the relevant
2352  * device pins in the datasheet.
2353  */
2354 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2355 {
2356 	return _regulator_get(dev, id, OPTIONAL_GET);
2357 }
2358 EXPORT_SYMBOL_GPL(regulator_get_optional);
2359 
2360 static void destroy_regulator(struct regulator *regulator)
2361 {
2362 	struct regulator_dev *rdev = regulator->rdev;
2363 
2364 	debugfs_remove_recursive(regulator->debugfs);
2365 
2366 	if (regulator->dev) {
2367 		if (regulator->device_link)
2368 			device_link_remove(regulator->dev, &rdev->dev);
2369 
2370 		/* remove any sysfs entries */
2371 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2372 	}
2373 
2374 	regulator_lock(rdev);
2375 	list_del(&regulator->list);
2376 
2377 	rdev->open_count--;
2378 	rdev->exclusive = 0;
2379 	regulator_unlock(rdev);
2380 
2381 	kfree_const(regulator->supply_name);
2382 	kfree(regulator);
2383 }
2384 
2385 /* regulator_list_mutex lock held by regulator_put() */
2386 static void _regulator_put(struct regulator *regulator)
2387 {
2388 	struct regulator_dev *rdev;
2389 
2390 	if (IS_ERR_OR_NULL(regulator))
2391 		return;
2392 
2393 	lockdep_assert_held_once(&regulator_list_mutex);
2394 
2395 	/* Docs say you must disable before calling regulator_put() */
2396 	WARN_ON(regulator->enable_count);
2397 
2398 	rdev = regulator->rdev;
2399 
2400 	destroy_regulator(regulator);
2401 
2402 	module_put(rdev->owner);
2403 	put_device(&rdev->dev);
2404 }
2405 
2406 /**
2407  * regulator_put - "free" the regulator source
2408  * @regulator: regulator source
2409  *
2410  * Note: drivers must ensure that all regulator_enable calls made on this
2411  * regulator source are balanced by regulator_disable calls prior to calling
2412  * this function.
2413  */
2414 void regulator_put(struct regulator *regulator)
2415 {
2416 	mutex_lock(&regulator_list_mutex);
2417 	_regulator_put(regulator);
2418 	mutex_unlock(&regulator_list_mutex);
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_put);
2421 
2422 /**
2423  * regulator_register_supply_alias - Provide device alias for supply lookup
2424  *
2425  * @dev: device that will be given as the regulator "consumer"
2426  * @id: Supply name or regulator ID
2427  * @alias_dev: device that should be used to lookup the supply
2428  * @alias_id: Supply name or regulator ID that should be used to lookup the
2429  * supply
2430  *
2431  * All lookups for id on dev will instead be conducted for alias_id on
2432  * alias_dev.
2433  */
2434 int regulator_register_supply_alias(struct device *dev, const char *id,
2435 				    struct device *alias_dev,
2436 				    const char *alias_id)
2437 {
2438 	struct regulator_supply_alias *map;
2439 
2440 	map = regulator_find_supply_alias(dev, id);
2441 	if (map)
2442 		return -EEXIST;
2443 
2444 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2445 	if (!map)
2446 		return -ENOMEM;
2447 
2448 	map->src_dev = dev;
2449 	map->src_supply = id;
2450 	map->alias_dev = alias_dev;
2451 	map->alias_supply = alias_id;
2452 
2453 	list_add(&map->list, &regulator_supply_alias_list);
2454 
2455 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2456 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2457 
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2461 
2462 /**
2463  * regulator_unregister_supply_alias - Remove device alias
2464  *
2465  * @dev: device that will be given as the regulator "consumer"
2466  * @id: Supply name or regulator ID
2467  *
2468  * Remove a lookup alias if one exists for id on dev.
2469  */
2470 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2471 {
2472 	struct regulator_supply_alias *map;
2473 
2474 	map = regulator_find_supply_alias(dev, id);
2475 	if (map) {
2476 		list_del(&map->list);
2477 		kfree(map);
2478 	}
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2481 
2482 /**
2483  * regulator_bulk_register_supply_alias - register multiple aliases
2484  *
2485  * @dev: device that will be given as the regulator "consumer"
2486  * @id: List of supply names or regulator IDs
2487  * @alias_dev: device that should be used to lookup the supply
2488  * @alias_id: List of supply names or regulator IDs that should be used to
2489  * lookup the supply
2490  * @num_id: Number of aliases to register
2491  *
2492  * @return 0 on success, an errno on failure.
2493  *
2494  * This helper function allows drivers to register several supply
2495  * aliases in one operation.  If any of the aliases cannot be
2496  * registered any aliases that were registered will be removed
2497  * before returning to the caller.
2498  */
2499 int regulator_bulk_register_supply_alias(struct device *dev,
2500 					 const char *const *id,
2501 					 struct device *alias_dev,
2502 					 const char *const *alias_id,
2503 					 int num_id)
2504 {
2505 	int i;
2506 	int ret;
2507 
2508 	for (i = 0; i < num_id; ++i) {
2509 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2510 						      alias_id[i]);
2511 		if (ret < 0)
2512 			goto err;
2513 	}
2514 
2515 	return 0;
2516 
2517 err:
2518 	dev_err(dev,
2519 		"Failed to create supply alias %s,%s -> %s,%s\n",
2520 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2521 
2522 	while (--i >= 0)
2523 		regulator_unregister_supply_alias(dev, id[i]);
2524 
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2528 
2529 /**
2530  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2531  *
2532  * @dev: device that will be given as the regulator "consumer"
2533  * @id: List of supply names or regulator IDs
2534  * @num_id: Number of aliases to unregister
2535  *
2536  * This helper function allows drivers to unregister several supply
2537  * aliases in one operation.
2538  */
2539 void regulator_bulk_unregister_supply_alias(struct device *dev,
2540 					    const char *const *id,
2541 					    int num_id)
2542 {
2543 	int i;
2544 
2545 	for (i = 0; i < num_id; ++i)
2546 		regulator_unregister_supply_alias(dev, id[i]);
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2549 
2550 
2551 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2552 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2553 				const struct regulator_config *config)
2554 {
2555 	struct regulator_enable_gpio *pin, *new_pin;
2556 	struct gpio_desc *gpiod;
2557 
2558 	gpiod = config->ena_gpiod;
2559 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2560 
2561 	mutex_lock(&regulator_list_mutex);
2562 
2563 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2564 		if (pin->gpiod == gpiod) {
2565 			rdev_dbg(rdev, "GPIO is already used\n");
2566 			goto update_ena_gpio_to_rdev;
2567 		}
2568 	}
2569 
2570 	if (new_pin == NULL) {
2571 		mutex_unlock(&regulator_list_mutex);
2572 		return -ENOMEM;
2573 	}
2574 
2575 	pin = new_pin;
2576 	new_pin = NULL;
2577 
2578 	pin->gpiod = gpiod;
2579 	list_add(&pin->list, &regulator_ena_gpio_list);
2580 
2581 update_ena_gpio_to_rdev:
2582 	pin->request_count++;
2583 	rdev->ena_pin = pin;
2584 
2585 	mutex_unlock(&regulator_list_mutex);
2586 	kfree(new_pin);
2587 
2588 	return 0;
2589 }
2590 
2591 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2592 {
2593 	struct regulator_enable_gpio *pin, *n;
2594 
2595 	if (!rdev->ena_pin)
2596 		return;
2597 
2598 	/* Free the GPIO only in case of no use */
2599 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2600 		if (pin != rdev->ena_pin)
2601 			continue;
2602 
2603 		if (--pin->request_count)
2604 			break;
2605 
2606 		gpiod_put(pin->gpiod);
2607 		list_del(&pin->list);
2608 		kfree(pin);
2609 		break;
2610 	}
2611 
2612 	rdev->ena_pin = NULL;
2613 }
2614 
2615 /**
2616  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2617  * @rdev: regulator_dev structure
2618  * @enable: enable GPIO at initial use?
2619  *
2620  * GPIO is enabled in case of initial use. (enable_count is 0)
2621  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2622  */
2623 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2624 {
2625 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2626 
2627 	if (!pin)
2628 		return -EINVAL;
2629 
2630 	if (enable) {
2631 		/* Enable GPIO at initial use */
2632 		if (pin->enable_count == 0)
2633 			gpiod_set_value_cansleep(pin->gpiod, 1);
2634 
2635 		pin->enable_count++;
2636 	} else {
2637 		if (pin->enable_count > 1) {
2638 			pin->enable_count--;
2639 			return 0;
2640 		}
2641 
2642 		/* Disable GPIO if not used */
2643 		if (pin->enable_count <= 1) {
2644 			gpiod_set_value_cansleep(pin->gpiod, 0);
2645 			pin->enable_count = 0;
2646 		}
2647 	}
2648 
2649 	return 0;
2650 }
2651 
2652 /**
2653  * _regulator_delay_helper - a delay helper function
2654  * @delay: time to delay in microseconds
2655  *
2656  * Delay for the requested amount of time as per the guidelines in:
2657  *
2658  *     Documentation/timers/timers-howto.rst
2659  *
2660  * The assumption here is that these regulator operations will never used in
2661  * atomic context and therefore sleeping functions can be used.
2662  */
2663 static void _regulator_delay_helper(unsigned int delay)
2664 {
2665 	unsigned int ms = delay / 1000;
2666 	unsigned int us = delay % 1000;
2667 
2668 	if (ms > 0) {
2669 		/*
2670 		 * For small enough values, handle super-millisecond
2671 		 * delays in the usleep_range() call below.
2672 		 */
2673 		if (ms < 20)
2674 			us += ms * 1000;
2675 		else
2676 			msleep(ms);
2677 	}
2678 
2679 	/*
2680 	 * Give the scheduler some room to coalesce with any other
2681 	 * wakeup sources. For delays shorter than 10 us, don't even
2682 	 * bother setting up high-resolution timers and just busy-
2683 	 * loop.
2684 	 */
2685 	if (us >= 10)
2686 		usleep_range(us, us + 100);
2687 	else
2688 		udelay(us);
2689 }
2690 
2691 /**
2692  * _regulator_check_status_enabled
2693  *
2694  * A helper function to check if the regulator status can be interpreted
2695  * as 'regulator is enabled'.
2696  * @rdev: the regulator device to check
2697  *
2698  * Return:
2699  * * 1			- if status shows regulator is in enabled state
2700  * * 0			- if not enabled state
2701  * * Error Value	- as received from ops->get_status()
2702  */
2703 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2704 {
2705 	int ret = rdev->desc->ops->get_status(rdev);
2706 
2707 	if (ret < 0) {
2708 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2709 		return ret;
2710 	}
2711 
2712 	switch (ret) {
2713 	case REGULATOR_STATUS_OFF:
2714 	case REGULATOR_STATUS_ERROR:
2715 	case REGULATOR_STATUS_UNDEFINED:
2716 		return 0;
2717 	default:
2718 		return 1;
2719 	}
2720 }
2721 
2722 static int _regulator_do_enable(struct regulator_dev *rdev)
2723 {
2724 	int ret, delay;
2725 
2726 	/* Query before enabling in case configuration dependent.  */
2727 	ret = _regulator_get_enable_time(rdev);
2728 	if (ret >= 0) {
2729 		delay = ret;
2730 	} else {
2731 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2732 		delay = 0;
2733 	}
2734 
2735 	trace_regulator_enable(rdev_get_name(rdev));
2736 
2737 	if (rdev->desc->off_on_delay) {
2738 		/* if needed, keep a distance of off_on_delay from last time
2739 		 * this regulator was disabled.
2740 		 */
2741 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2742 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2743 
2744 		if (remaining > 0)
2745 			_regulator_delay_helper(remaining);
2746 	}
2747 
2748 	if (rdev->ena_pin) {
2749 		if (!rdev->ena_gpio_state) {
2750 			ret = regulator_ena_gpio_ctrl(rdev, true);
2751 			if (ret < 0)
2752 				return ret;
2753 			rdev->ena_gpio_state = 1;
2754 		}
2755 	} else if (rdev->desc->ops->enable) {
2756 		ret = rdev->desc->ops->enable(rdev);
2757 		if (ret < 0)
2758 			return ret;
2759 	} else {
2760 		return -EINVAL;
2761 	}
2762 
2763 	/* Allow the regulator to ramp; it would be useful to extend
2764 	 * this for bulk operations so that the regulators can ramp
2765 	 * together.
2766 	 */
2767 	trace_regulator_enable_delay(rdev_get_name(rdev));
2768 
2769 	/* If poll_enabled_time is set, poll upto the delay calculated
2770 	 * above, delaying poll_enabled_time uS to check if the regulator
2771 	 * actually got enabled.
2772 	 * If the regulator isn't enabled after our delay helper has expired,
2773 	 * return -ETIMEDOUT.
2774 	 */
2775 	if (rdev->desc->poll_enabled_time) {
2776 		int time_remaining = delay;
2777 
2778 		while (time_remaining > 0) {
2779 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2780 
2781 			if (rdev->desc->ops->get_status) {
2782 				ret = _regulator_check_status_enabled(rdev);
2783 				if (ret < 0)
2784 					return ret;
2785 				else if (ret)
2786 					break;
2787 			} else if (rdev->desc->ops->is_enabled(rdev))
2788 				break;
2789 
2790 			time_remaining -= rdev->desc->poll_enabled_time;
2791 		}
2792 
2793 		if (time_remaining <= 0) {
2794 			rdev_err(rdev, "Enabled check timed out\n");
2795 			return -ETIMEDOUT;
2796 		}
2797 	} else {
2798 		_regulator_delay_helper(delay);
2799 	}
2800 
2801 	trace_regulator_enable_complete(rdev_get_name(rdev));
2802 
2803 	return 0;
2804 }
2805 
2806 /**
2807  * _regulator_handle_consumer_enable - handle that a consumer enabled
2808  * @regulator: regulator source
2809  *
2810  * Some things on a regulator consumer (like the contribution towards total
2811  * load on the regulator) only have an effect when the consumer wants the
2812  * regulator enabled.  Explained in example with two consumers of the same
2813  * regulator:
2814  *   consumer A: set_load(100);       => total load = 0
2815  *   consumer A: regulator_enable();  => total load = 100
2816  *   consumer B: set_load(1000);      => total load = 100
2817  *   consumer B: regulator_enable();  => total load = 1100
2818  *   consumer A: regulator_disable(); => total_load = 1000
2819  *
2820  * This function (together with _regulator_handle_consumer_disable) is
2821  * responsible for keeping track of the refcount for a given regulator consumer
2822  * and applying / unapplying these things.
2823  *
2824  * Returns 0 upon no error; -error upon error.
2825  */
2826 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2827 {
2828 	int ret;
2829 	struct regulator_dev *rdev = regulator->rdev;
2830 
2831 	lockdep_assert_held_once(&rdev->mutex.base);
2832 
2833 	regulator->enable_count++;
2834 	if (regulator->uA_load && regulator->enable_count == 1) {
2835 		ret = drms_uA_update(rdev);
2836 		if (ret)
2837 			regulator->enable_count--;
2838 		return ret;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 /**
2845  * _regulator_handle_consumer_disable - handle that a consumer disabled
2846  * @regulator: regulator source
2847  *
2848  * The opposite of _regulator_handle_consumer_enable().
2849  *
2850  * Returns 0 upon no error; -error upon error.
2851  */
2852 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2853 {
2854 	struct regulator_dev *rdev = regulator->rdev;
2855 
2856 	lockdep_assert_held_once(&rdev->mutex.base);
2857 
2858 	if (!regulator->enable_count) {
2859 		rdev_err(rdev, "Underflow of regulator enable count\n");
2860 		return -EINVAL;
2861 	}
2862 
2863 	regulator->enable_count--;
2864 	if (regulator->uA_load && regulator->enable_count == 0)
2865 		return drms_uA_update(rdev);
2866 
2867 	return 0;
2868 }
2869 
2870 /* locks held by regulator_enable() */
2871 static int _regulator_enable(struct regulator *regulator)
2872 {
2873 	struct regulator_dev *rdev = regulator->rdev;
2874 	int ret;
2875 
2876 	lockdep_assert_held_once(&rdev->mutex.base);
2877 
2878 	if (rdev->use_count == 0 && rdev->supply) {
2879 		ret = _regulator_enable(rdev->supply);
2880 		if (ret < 0)
2881 			return ret;
2882 	}
2883 
2884 	/* balance only if there are regulators coupled */
2885 	if (rdev->coupling_desc.n_coupled > 1) {
2886 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2887 		if (ret < 0)
2888 			goto err_disable_supply;
2889 	}
2890 
2891 	ret = _regulator_handle_consumer_enable(regulator);
2892 	if (ret < 0)
2893 		goto err_disable_supply;
2894 
2895 	if (rdev->use_count == 0) {
2896 		/*
2897 		 * The regulator may already be enabled if it's not switchable
2898 		 * or was left on
2899 		 */
2900 		ret = _regulator_is_enabled(rdev);
2901 		if (ret == -EINVAL || ret == 0) {
2902 			if (!regulator_ops_is_valid(rdev,
2903 					REGULATOR_CHANGE_STATUS)) {
2904 				ret = -EPERM;
2905 				goto err_consumer_disable;
2906 			}
2907 
2908 			ret = _regulator_do_enable(rdev);
2909 			if (ret < 0)
2910 				goto err_consumer_disable;
2911 
2912 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2913 					     NULL);
2914 		} else if (ret < 0) {
2915 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2916 			goto err_consumer_disable;
2917 		}
2918 		/* Fallthrough on positive return values - already enabled */
2919 	}
2920 
2921 	rdev->use_count++;
2922 
2923 	return 0;
2924 
2925 err_consumer_disable:
2926 	_regulator_handle_consumer_disable(regulator);
2927 
2928 err_disable_supply:
2929 	if (rdev->use_count == 0 && rdev->supply)
2930 		_regulator_disable(rdev->supply);
2931 
2932 	return ret;
2933 }
2934 
2935 /**
2936  * regulator_enable - enable regulator output
2937  * @regulator: regulator source
2938  *
2939  * Request that the regulator be enabled with the regulator output at
2940  * the predefined voltage or current value.  Calls to regulator_enable()
2941  * must be balanced with calls to regulator_disable().
2942  *
2943  * NOTE: the output value can be set by other drivers, boot loader or may be
2944  * hardwired in the regulator.
2945  */
2946 int regulator_enable(struct regulator *regulator)
2947 {
2948 	struct regulator_dev *rdev = regulator->rdev;
2949 	struct ww_acquire_ctx ww_ctx;
2950 	int ret;
2951 
2952 	regulator_lock_dependent(rdev, &ww_ctx);
2953 	ret = _regulator_enable(regulator);
2954 	regulator_unlock_dependent(rdev, &ww_ctx);
2955 
2956 	return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_enable);
2959 
2960 static int _regulator_do_disable(struct regulator_dev *rdev)
2961 {
2962 	int ret;
2963 
2964 	trace_regulator_disable(rdev_get_name(rdev));
2965 
2966 	if (rdev->ena_pin) {
2967 		if (rdev->ena_gpio_state) {
2968 			ret = regulator_ena_gpio_ctrl(rdev, false);
2969 			if (ret < 0)
2970 				return ret;
2971 			rdev->ena_gpio_state = 0;
2972 		}
2973 
2974 	} else if (rdev->desc->ops->disable) {
2975 		ret = rdev->desc->ops->disable(rdev);
2976 		if (ret != 0)
2977 			return ret;
2978 	}
2979 
2980 	if (rdev->desc->off_on_delay)
2981 		rdev->last_off = ktime_get_boottime();
2982 
2983 	trace_regulator_disable_complete(rdev_get_name(rdev));
2984 
2985 	return 0;
2986 }
2987 
2988 /* locks held by regulator_disable() */
2989 static int _regulator_disable(struct regulator *regulator)
2990 {
2991 	struct regulator_dev *rdev = regulator->rdev;
2992 	int ret = 0;
2993 
2994 	lockdep_assert_held_once(&rdev->mutex.base);
2995 
2996 	if (WARN(rdev->use_count <= 0,
2997 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2998 		return -EIO;
2999 
3000 	/* are we the last user and permitted to disable ? */
3001 	if (rdev->use_count == 1 &&
3002 	    (rdev->constraints && !rdev->constraints->always_on)) {
3003 
3004 		/* we are last user */
3005 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3006 			ret = _notifier_call_chain(rdev,
3007 						   REGULATOR_EVENT_PRE_DISABLE,
3008 						   NULL);
3009 			if (ret & NOTIFY_STOP_MASK)
3010 				return -EINVAL;
3011 
3012 			ret = _regulator_do_disable(rdev);
3013 			if (ret < 0) {
3014 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3015 				_notifier_call_chain(rdev,
3016 						REGULATOR_EVENT_ABORT_DISABLE,
3017 						NULL);
3018 				return ret;
3019 			}
3020 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3021 					NULL);
3022 		}
3023 
3024 		rdev->use_count = 0;
3025 	} else if (rdev->use_count > 1) {
3026 		rdev->use_count--;
3027 	}
3028 
3029 	if (ret == 0)
3030 		ret = _regulator_handle_consumer_disable(regulator);
3031 
3032 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3033 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3034 
3035 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3036 		ret = _regulator_disable(rdev->supply);
3037 
3038 	return ret;
3039 }
3040 
3041 /**
3042  * regulator_disable - disable regulator output
3043  * @regulator: regulator source
3044  *
3045  * Disable the regulator output voltage or current.  Calls to
3046  * regulator_enable() must be balanced with calls to
3047  * regulator_disable().
3048  *
3049  * NOTE: this will only disable the regulator output if no other consumer
3050  * devices have it enabled, the regulator device supports disabling and
3051  * machine constraints permit this operation.
3052  */
3053 int regulator_disable(struct regulator *regulator)
3054 {
3055 	struct regulator_dev *rdev = regulator->rdev;
3056 	struct ww_acquire_ctx ww_ctx;
3057 	int ret;
3058 
3059 	regulator_lock_dependent(rdev, &ww_ctx);
3060 	ret = _regulator_disable(regulator);
3061 	regulator_unlock_dependent(rdev, &ww_ctx);
3062 
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(regulator_disable);
3066 
3067 /* locks held by regulator_force_disable() */
3068 static int _regulator_force_disable(struct regulator_dev *rdev)
3069 {
3070 	int ret = 0;
3071 
3072 	lockdep_assert_held_once(&rdev->mutex.base);
3073 
3074 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3075 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3076 	if (ret & NOTIFY_STOP_MASK)
3077 		return -EINVAL;
3078 
3079 	ret = _regulator_do_disable(rdev);
3080 	if (ret < 0) {
3081 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3082 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3083 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3084 		return ret;
3085 	}
3086 
3087 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3088 			REGULATOR_EVENT_DISABLE, NULL);
3089 
3090 	return 0;
3091 }
3092 
3093 /**
3094  * regulator_force_disable - force disable regulator output
3095  * @regulator: regulator source
3096  *
3097  * Forcibly disable the regulator output voltage or current.
3098  * NOTE: this *will* disable the regulator output even if other consumer
3099  * devices have it enabled. This should be used for situations when device
3100  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3101  */
3102 int regulator_force_disable(struct regulator *regulator)
3103 {
3104 	struct regulator_dev *rdev = regulator->rdev;
3105 	struct ww_acquire_ctx ww_ctx;
3106 	int ret;
3107 
3108 	regulator_lock_dependent(rdev, &ww_ctx);
3109 
3110 	ret = _regulator_force_disable(regulator->rdev);
3111 
3112 	if (rdev->coupling_desc.n_coupled > 1)
3113 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3114 
3115 	if (regulator->uA_load) {
3116 		regulator->uA_load = 0;
3117 		ret = drms_uA_update(rdev);
3118 	}
3119 
3120 	if (rdev->use_count != 0 && rdev->supply)
3121 		_regulator_disable(rdev->supply);
3122 
3123 	regulator_unlock_dependent(rdev, &ww_ctx);
3124 
3125 	return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(regulator_force_disable);
3128 
3129 static void regulator_disable_work(struct work_struct *work)
3130 {
3131 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3132 						  disable_work.work);
3133 	struct ww_acquire_ctx ww_ctx;
3134 	int count, i, ret;
3135 	struct regulator *regulator;
3136 	int total_count = 0;
3137 
3138 	regulator_lock_dependent(rdev, &ww_ctx);
3139 
3140 	/*
3141 	 * Workqueue functions queue the new work instance while the previous
3142 	 * work instance is being processed. Cancel the queued work instance
3143 	 * as the work instance under processing does the job of the queued
3144 	 * work instance.
3145 	 */
3146 	cancel_delayed_work(&rdev->disable_work);
3147 
3148 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3149 		count = regulator->deferred_disables;
3150 
3151 		if (!count)
3152 			continue;
3153 
3154 		total_count += count;
3155 		regulator->deferred_disables = 0;
3156 
3157 		for (i = 0; i < count; i++) {
3158 			ret = _regulator_disable(regulator);
3159 			if (ret != 0)
3160 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3161 					 ERR_PTR(ret));
3162 		}
3163 	}
3164 	WARN_ON(!total_count);
3165 
3166 	if (rdev->coupling_desc.n_coupled > 1)
3167 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3168 
3169 	regulator_unlock_dependent(rdev, &ww_ctx);
3170 }
3171 
3172 /**
3173  * regulator_disable_deferred - disable regulator output with delay
3174  * @regulator: regulator source
3175  * @ms: milliseconds until the regulator is disabled
3176  *
3177  * Execute regulator_disable() on the regulator after a delay.  This
3178  * is intended for use with devices that require some time to quiesce.
3179  *
3180  * NOTE: this will only disable the regulator output if no other consumer
3181  * devices have it enabled, the regulator device supports disabling and
3182  * machine constraints permit this operation.
3183  */
3184 int regulator_disable_deferred(struct regulator *regulator, int ms)
3185 {
3186 	struct regulator_dev *rdev = regulator->rdev;
3187 
3188 	if (!ms)
3189 		return regulator_disable(regulator);
3190 
3191 	regulator_lock(rdev);
3192 	regulator->deferred_disables++;
3193 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3194 			 msecs_to_jiffies(ms));
3195 	regulator_unlock(rdev);
3196 
3197 	return 0;
3198 }
3199 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3200 
3201 static int _regulator_is_enabled(struct regulator_dev *rdev)
3202 {
3203 	/* A GPIO control always takes precedence */
3204 	if (rdev->ena_pin)
3205 		return rdev->ena_gpio_state;
3206 
3207 	/* If we don't know then assume that the regulator is always on */
3208 	if (!rdev->desc->ops->is_enabled)
3209 		return 1;
3210 
3211 	return rdev->desc->ops->is_enabled(rdev);
3212 }
3213 
3214 static int _regulator_list_voltage(struct regulator_dev *rdev,
3215 				   unsigned selector, int lock)
3216 {
3217 	const struct regulator_ops *ops = rdev->desc->ops;
3218 	int ret;
3219 
3220 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3221 		return rdev->desc->fixed_uV;
3222 
3223 	if (ops->list_voltage) {
3224 		if (selector >= rdev->desc->n_voltages)
3225 			return -EINVAL;
3226 		if (selector < rdev->desc->linear_min_sel)
3227 			return 0;
3228 		if (lock)
3229 			regulator_lock(rdev);
3230 		ret = ops->list_voltage(rdev, selector);
3231 		if (lock)
3232 			regulator_unlock(rdev);
3233 	} else if (rdev->is_switch && rdev->supply) {
3234 		ret = _regulator_list_voltage(rdev->supply->rdev,
3235 					      selector, lock);
3236 	} else {
3237 		return -EINVAL;
3238 	}
3239 
3240 	if (ret > 0) {
3241 		if (ret < rdev->constraints->min_uV)
3242 			ret = 0;
3243 		else if (ret > rdev->constraints->max_uV)
3244 			ret = 0;
3245 	}
3246 
3247 	return ret;
3248 }
3249 
3250 /**
3251  * regulator_is_enabled - is the regulator output enabled
3252  * @regulator: regulator source
3253  *
3254  * Returns positive if the regulator driver backing the source/client
3255  * has requested that the device be enabled, zero if it hasn't, else a
3256  * negative errno code.
3257  *
3258  * Note that the device backing this regulator handle can have multiple
3259  * users, so it might be enabled even if regulator_enable() was never
3260  * called for this particular source.
3261  */
3262 int regulator_is_enabled(struct regulator *regulator)
3263 {
3264 	int ret;
3265 
3266 	if (regulator->always_on)
3267 		return 1;
3268 
3269 	regulator_lock(regulator->rdev);
3270 	ret = _regulator_is_enabled(regulator->rdev);
3271 	regulator_unlock(regulator->rdev);
3272 
3273 	return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3276 
3277 /**
3278  * regulator_count_voltages - count regulator_list_voltage() selectors
3279  * @regulator: regulator source
3280  *
3281  * Returns number of selectors, or negative errno.  Selectors are
3282  * numbered starting at zero, and typically correspond to bitfields
3283  * in hardware registers.
3284  */
3285 int regulator_count_voltages(struct regulator *regulator)
3286 {
3287 	struct regulator_dev	*rdev = regulator->rdev;
3288 
3289 	if (rdev->desc->n_voltages)
3290 		return rdev->desc->n_voltages;
3291 
3292 	if (!rdev->is_switch || !rdev->supply)
3293 		return -EINVAL;
3294 
3295 	return regulator_count_voltages(rdev->supply);
3296 }
3297 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3298 
3299 /**
3300  * regulator_list_voltage - enumerate supported voltages
3301  * @regulator: regulator source
3302  * @selector: identify voltage to list
3303  * Context: can sleep
3304  *
3305  * Returns a voltage that can be passed to @regulator_set_voltage(),
3306  * zero if this selector code can't be used on this system, or a
3307  * negative errno.
3308  */
3309 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3310 {
3311 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3312 }
3313 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3314 
3315 /**
3316  * regulator_get_regmap - get the regulator's register map
3317  * @regulator: regulator source
3318  *
3319  * Returns the register map for the given regulator, or an ERR_PTR value
3320  * if the regulator doesn't use regmap.
3321  */
3322 struct regmap *regulator_get_regmap(struct regulator *regulator)
3323 {
3324 	struct regmap *map = regulator->rdev->regmap;
3325 
3326 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3327 }
3328 
3329 /**
3330  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3331  * @regulator: regulator source
3332  * @vsel_reg: voltage selector register, output parameter
3333  * @vsel_mask: mask for voltage selector bitfield, output parameter
3334  *
3335  * Returns the hardware register offset and bitmask used for setting the
3336  * regulator voltage. This might be useful when configuring voltage-scaling
3337  * hardware or firmware that can make I2C requests behind the kernel's back,
3338  * for example.
3339  *
3340  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3341  * and 0 is returned, otherwise a negative errno is returned.
3342  */
3343 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3344 					 unsigned *vsel_reg,
3345 					 unsigned *vsel_mask)
3346 {
3347 	struct regulator_dev *rdev = regulator->rdev;
3348 	const struct regulator_ops *ops = rdev->desc->ops;
3349 
3350 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3351 		return -EOPNOTSUPP;
3352 
3353 	*vsel_reg = rdev->desc->vsel_reg;
3354 	*vsel_mask = rdev->desc->vsel_mask;
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3359 
3360 /**
3361  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3362  * @regulator: regulator source
3363  * @selector: identify voltage to list
3364  *
3365  * Converts the selector to a hardware-specific voltage selector that can be
3366  * directly written to the regulator registers. The address of the voltage
3367  * register can be determined by calling @regulator_get_hardware_vsel_register.
3368  *
3369  * On error a negative errno is returned.
3370  */
3371 int regulator_list_hardware_vsel(struct regulator *regulator,
3372 				 unsigned selector)
3373 {
3374 	struct regulator_dev *rdev = regulator->rdev;
3375 	const struct regulator_ops *ops = rdev->desc->ops;
3376 
3377 	if (selector >= rdev->desc->n_voltages)
3378 		return -EINVAL;
3379 	if (selector < rdev->desc->linear_min_sel)
3380 		return 0;
3381 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3382 		return -EOPNOTSUPP;
3383 
3384 	return selector;
3385 }
3386 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3387 
3388 /**
3389  * regulator_get_linear_step - return the voltage step size between VSEL values
3390  * @regulator: regulator source
3391  *
3392  * Returns the voltage step size between VSEL values for linear
3393  * regulators, or return 0 if the regulator isn't a linear regulator.
3394  */
3395 unsigned int regulator_get_linear_step(struct regulator *regulator)
3396 {
3397 	struct regulator_dev *rdev = regulator->rdev;
3398 
3399 	return rdev->desc->uV_step;
3400 }
3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402 
3403 /**
3404  * regulator_is_supported_voltage - check if a voltage range can be supported
3405  *
3406  * @regulator: Regulator to check.
3407  * @min_uV: Minimum required voltage in uV.
3408  * @max_uV: Maximum required voltage in uV.
3409  *
3410  * Returns a boolean.
3411  */
3412 int regulator_is_supported_voltage(struct regulator *regulator,
3413 				   int min_uV, int max_uV)
3414 {
3415 	struct regulator_dev *rdev = regulator->rdev;
3416 	int i, voltages, ret;
3417 
3418 	/* If we can't change voltage check the current voltage */
3419 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3420 		ret = regulator_get_voltage(regulator);
3421 		if (ret >= 0)
3422 			return min_uV <= ret && ret <= max_uV;
3423 		else
3424 			return ret;
3425 	}
3426 
3427 	/* Any voltage within constrains range is fine? */
3428 	if (rdev->desc->continuous_voltage_range)
3429 		return min_uV >= rdev->constraints->min_uV &&
3430 				max_uV <= rdev->constraints->max_uV;
3431 
3432 	ret = regulator_count_voltages(regulator);
3433 	if (ret < 0)
3434 		return 0;
3435 	voltages = ret;
3436 
3437 	for (i = 0; i < voltages; i++) {
3438 		ret = regulator_list_voltage(regulator, i);
3439 
3440 		if (ret >= min_uV && ret <= max_uV)
3441 			return 1;
3442 	}
3443 
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3447 
3448 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3449 				 int max_uV)
3450 {
3451 	const struct regulator_desc *desc = rdev->desc;
3452 
3453 	if (desc->ops->map_voltage)
3454 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3455 
3456 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3457 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3458 
3459 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3460 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3461 
3462 	if (desc->ops->list_voltage ==
3463 		regulator_list_voltage_pickable_linear_range)
3464 		return regulator_map_voltage_pickable_linear_range(rdev,
3465 							min_uV, max_uV);
3466 
3467 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3468 }
3469 
3470 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3471 				       int min_uV, int max_uV,
3472 				       unsigned *selector)
3473 {
3474 	struct pre_voltage_change_data data;
3475 	int ret;
3476 
3477 	data.old_uV = regulator_get_voltage_rdev(rdev);
3478 	data.min_uV = min_uV;
3479 	data.max_uV = max_uV;
3480 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3481 				   &data);
3482 	if (ret & NOTIFY_STOP_MASK)
3483 		return -EINVAL;
3484 
3485 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3486 	if (ret >= 0)
3487 		return ret;
3488 
3489 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3490 			     (void *)data.old_uV);
3491 
3492 	return ret;
3493 }
3494 
3495 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3496 					   int uV, unsigned selector)
3497 {
3498 	struct pre_voltage_change_data data;
3499 	int ret;
3500 
3501 	data.old_uV = regulator_get_voltage_rdev(rdev);
3502 	data.min_uV = uV;
3503 	data.max_uV = uV;
3504 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3505 				   &data);
3506 	if (ret & NOTIFY_STOP_MASK)
3507 		return -EINVAL;
3508 
3509 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3510 	if (ret >= 0)
3511 		return ret;
3512 
3513 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3514 			     (void *)data.old_uV);
3515 
3516 	return ret;
3517 }
3518 
3519 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3520 					   int uV, int new_selector)
3521 {
3522 	const struct regulator_ops *ops = rdev->desc->ops;
3523 	int diff, old_sel, curr_sel, ret;
3524 
3525 	/* Stepping is only needed if the regulator is enabled. */
3526 	if (!_regulator_is_enabled(rdev))
3527 		goto final_set;
3528 
3529 	if (!ops->get_voltage_sel)
3530 		return -EINVAL;
3531 
3532 	old_sel = ops->get_voltage_sel(rdev);
3533 	if (old_sel < 0)
3534 		return old_sel;
3535 
3536 	diff = new_selector - old_sel;
3537 	if (diff == 0)
3538 		return 0; /* No change needed. */
3539 
3540 	if (diff > 0) {
3541 		/* Stepping up. */
3542 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3543 		     curr_sel < new_selector;
3544 		     curr_sel += rdev->desc->vsel_step) {
3545 			/*
3546 			 * Call the callback directly instead of using
3547 			 * _regulator_call_set_voltage_sel() as we don't
3548 			 * want to notify anyone yet. Same in the branch
3549 			 * below.
3550 			 */
3551 			ret = ops->set_voltage_sel(rdev, curr_sel);
3552 			if (ret)
3553 				goto try_revert;
3554 		}
3555 	} else {
3556 		/* Stepping down. */
3557 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3558 		     curr_sel > new_selector;
3559 		     curr_sel -= rdev->desc->vsel_step) {
3560 			ret = ops->set_voltage_sel(rdev, curr_sel);
3561 			if (ret)
3562 				goto try_revert;
3563 		}
3564 	}
3565 
3566 final_set:
3567 	/* The final selector will trigger the notifiers. */
3568 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3569 
3570 try_revert:
3571 	/*
3572 	 * At least try to return to the previous voltage if setting a new
3573 	 * one failed.
3574 	 */
3575 	(void)ops->set_voltage_sel(rdev, old_sel);
3576 	return ret;
3577 }
3578 
3579 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3580 				       int old_uV, int new_uV)
3581 {
3582 	unsigned int ramp_delay = 0;
3583 
3584 	if (rdev->constraints->ramp_delay)
3585 		ramp_delay = rdev->constraints->ramp_delay;
3586 	else if (rdev->desc->ramp_delay)
3587 		ramp_delay = rdev->desc->ramp_delay;
3588 	else if (rdev->constraints->settling_time)
3589 		return rdev->constraints->settling_time;
3590 	else if (rdev->constraints->settling_time_up &&
3591 		 (new_uV > old_uV))
3592 		return rdev->constraints->settling_time_up;
3593 	else if (rdev->constraints->settling_time_down &&
3594 		 (new_uV < old_uV))
3595 		return rdev->constraints->settling_time_down;
3596 
3597 	if (ramp_delay == 0)
3598 		return 0;
3599 
3600 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3601 }
3602 
3603 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3604 				     int min_uV, int max_uV)
3605 {
3606 	int ret;
3607 	int delay = 0;
3608 	int best_val = 0;
3609 	unsigned int selector;
3610 	int old_selector = -1;
3611 	const struct regulator_ops *ops = rdev->desc->ops;
3612 	int old_uV = regulator_get_voltage_rdev(rdev);
3613 
3614 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3615 
3616 	min_uV += rdev->constraints->uV_offset;
3617 	max_uV += rdev->constraints->uV_offset;
3618 
3619 	/*
3620 	 * If we can't obtain the old selector there is not enough
3621 	 * info to call set_voltage_time_sel().
3622 	 */
3623 	if (_regulator_is_enabled(rdev) &&
3624 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3625 		old_selector = ops->get_voltage_sel(rdev);
3626 		if (old_selector < 0)
3627 			return old_selector;
3628 	}
3629 
3630 	if (ops->set_voltage) {
3631 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3632 						  &selector);
3633 
3634 		if (ret >= 0) {
3635 			if (ops->list_voltage)
3636 				best_val = ops->list_voltage(rdev,
3637 							     selector);
3638 			else
3639 				best_val = regulator_get_voltage_rdev(rdev);
3640 		}
3641 
3642 	} else if (ops->set_voltage_sel) {
3643 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3644 		if (ret >= 0) {
3645 			best_val = ops->list_voltage(rdev, ret);
3646 			if (min_uV <= best_val && max_uV >= best_val) {
3647 				selector = ret;
3648 				if (old_selector == selector)
3649 					ret = 0;
3650 				else if (rdev->desc->vsel_step)
3651 					ret = _regulator_set_voltage_sel_step(
3652 						rdev, best_val, selector);
3653 				else
3654 					ret = _regulator_call_set_voltage_sel(
3655 						rdev, best_val, selector);
3656 			} else {
3657 				ret = -EINVAL;
3658 			}
3659 		}
3660 	} else {
3661 		ret = -EINVAL;
3662 	}
3663 
3664 	if (ret)
3665 		goto out;
3666 
3667 	if (ops->set_voltage_time_sel) {
3668 		/*
3669 		 * Call set_voltage_time_sel if successfully obtained
3670 		 * old_selector
3671 		 */
3672 		if (old_selector >= 0 && old_selector != selector)
3673 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3674 							  selector);
3675 	} else {
3676 		if (old_uV != best_val) {
3677 			if (ops->set_voltage_time)
3678 				delay = ops->set_voltage_time(rdev, old_uV,
3679 							      best_val);
3680 			else
3681 				delay = _regulator_set_voltage_time(rdev,
3682 								    old_uV,
3683 								    best_val);
3684 		}
3685 	}
3686 
3687 	if (delay < 0) {
3688 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3689 		delay = 0;
3690 	}
3691 
3692 	/* Insert any necessary delays */
3693 	_regulator_delay_helper(delay);
3694 
3695 	if (best_val >= 0) {
3696 		unsigned long data = best_val;
3697 
3698 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3699 				     (void *)data);
3700 	}
3701 
3702 out:
3703 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3704 
3705 	return ret;
3706 }
3707 
3708 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3709 				  int min_uV, int max_uV, suspend_state_t state)
3710 {
3711 	struct regulator_state *rstate;
3712 	int uV, sel;
3713 
3714 	rstate = regulator_get_suspend_state(rdev, state);
3715 	if (rstate == NULL)
3716 		return -EINVAL;
3717 
3718 	if (min_uV < rstate->min_uV)
3719 		min_uV = rstate->min_uV;
3720 	if (max_uV > rstate->max_uV)
3721 		max_uV = rstate->max_uV;
3722 
3723 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3724 	if (sel < 0)
3725 		return sel;
3726 
3727 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3728 	if (uV >= min_uV && uV <= max_uV)
3729 		rstate->uV = uV;
3730 
3731 	return 0;
3732 }
3733 
3734 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3735 					  int min_uV, int max_uV,
3736 					  suspend_state_t state)
3737 {
3738 	struct regulator_dev *rdev = regulator->rdev;
3739 	struct regulator_voltage *voltage = &regulator->voltage[state];
3740 	int ret = 0;
3741 	int old_min_uV, old_max_uV;
3742 	int current_uV;
3743 
3744 	/* If we're setting the same range as last time the change
3745 	 * should be a noop (some cpufreq implementations use the same
3746 	 * voltage for multiple frequencies, for example).
3747 	 */
3748 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3749 		goto out;
3750 
3751 	/* If we're trying to set a range that overlaps the current voltage,
3752 	 * return successfully even though the regulator does not support
3753 	 * changing the voltage.
3754 	 */
3755 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3756 		current_uV = regulator_get_voltage_rdev(rdev);
3757 		if (min_uV <= current_uV && current_uV <= max_uV) {
3758 			voltage->min_uV = min_uV;
3759 			voltage->max_uV = max_uV;
3760 			goto out;
3761 		}
3762 	}
3763 
3764 	/* sanity check */
3765 	if (!rdev->desc->ops->set_voltage &&
3766 	    !rdev->desc->ops->set_voltage_sel) {
3767 		ret = -EINVAL;
3768 		goto out;
3769 	}
3770 
3771 	/* constraints check */
3772 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3773 	if (ret < 0)
3774 		goto out;
3775 
3776 	/* restore original values in case of error */
3777 	old_min_uV = voltage->min_uV;
3778 	old_max_uV = voltage->max_uV;
3779 	voltage->min_uV = min_uV;
3780 	voltage->max_uV = max_uV;
3781 
3782 	/* for not coupled regulators this will just set the voltage */
3783 	ret = regulator_balance_voltage(rdev, state);
3784 	if (ret < 0) {
3785 		voltage->min_uV = old_min_uV;
3786 		voltage->max_uV = old_max_uV;
3787 	}
3788 
3789 out:
3790 	return ret;
3791 }
3792 
3793 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3794 			       int max_uV, suspend_state_t state)
3795 {
3796 	int best_supply_uV = 0;
3797 	int supply_change_uV = 0;
3798 	int ret;
3799 
3800 	if (rdev->supply &&
3801 	    regulator_ops_is_valid(rdev->supply->rdev,
3802 				   REGULATOR_CHANGE_VOLTAGE) &&
3803 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3804 					   rdev->desc->ops->get_voltage_sel))) {
3805 		int current_supply_uV;
3806 		int selector;
3807 
3808 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3809 		if (selector < 0) {
3810 			ret = selector;
3811 			goto out;
3812 		}
3813 
3814 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3815 		if (best_supply_uV < 0) {
3816 			ret = best_supply_uV;
3817 			goto out;
3818 		}
3819 
3820 		best_supply_uV += rdev->desc->min_dropout_uV;
3821 
3822 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3823 		if (current_supply_uV < 0) {
3824 			ret = current_supply_uV;
3825 			goto out;
3826 		}
3827 
3828 		supply_change_uV = best_supply_uV - current_supply_uV;
3829 	}
3830 
3831 	if (supply_change_uV > 0) {
3832 		ret = regulator_set_voltage_unlocked(rdev->supply,
3833 				best_supply_uV, INT_MAX, state);
3834 		if (ret) {
3835 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3836 				ERR_PTR(ret));
3837 			goto out;
3838 		}
3839 	}
3840 
3841 	if (state == PM_SUSPEND_ON)
3842 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3843 	else
3844 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3845 							max_uV, state);
3846 	if (ret < 0)
3847 		goto out;
3848 
3849 	if (supply_change_uV < 0) {
3850 		ret = regulator_set_voltage_unlocked(rdev->supply,
3851 				best_supply_uV, INT_MAX, state);
3852 		if (ret)
3853 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3854 				 ERR_PTR(ret));
3855 		/* No need to fail here */
3856 		ret = 0;
3857 	}
3858 
3859 out:
3860 	return ret;
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3863 
3864 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3865 					int *current_uV, int *min_uV)
3866 {
3867 	struct regulation_constraints *constraints = rdev->constraints;
3868 
3869 	/* Limit voltage change only if necessary */
3870 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3871 		return 1;
3872 
3873 	if (*current_uV < 0) {
3874 		*current_uV = regulator_get_voltage_rdev(rdev);
3875 
3876 		if (*current_uV < 0)
3877 			return *current_uV;
3878 	}
3879 
3880 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3881 		return 1;
3882 
3883 	/* Clamp target voltage within the given step */
3884 	if (*current_uV < *min_uV)
3885 		*min_uV = min(*current_uV + constraints->max_uV_step,
3886 			      *min_uV);
3887 	else
3888 		*min_uV = max(*current_uV - constraints->max_uV_step,
3889 			      *min_uV);
3890 
3891 	return 0;
3892 }
3893 
3894 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3895 					 int *current_uV,
3896 					 int *min_uV, int *max_uV,
3897 					 suspend_state_t state,
3898 					 int n_coupled)
3899 {
3900 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3901 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3902 	struct regulation_constraints *constraints = rdev->constraints;
3903 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3904 	int max_current_uV = 0, min_current_uV = INT_MAX;
3905 	int highest_min_uV = 0, target_uV, possible_uV;
3906 	int i, ret, max_spread;
3907 	bool done;
3908 
3909 	*current_uV = -1;
3910 
3911 	/*
3912 	 * If there are no coupled regulators, simply set the voltage
3913 	 * demanded by consumers.
3914 	 */
3915 	if (n_coupled == 1) {
3916 		/*
3917 		 * If consumers don't provide any demands, set voltage
3918 		 * to min_uV
3919 		 */
3920 		desired_min_uV = constraints->min_uV;
3921 		desired_max_uV = constraints->max_uV;
3922 
3923 		ret = regulator_check_consumers(rdev,
3924 						&desired_min_uV,
3925 						&desired_max_uV, state);
3926 		if (ret < 0)
3927 			return ret;
3928 
3929 		possible_uV = desired_min_uV;
3930 		done = true;
3931 
3932 		goto finish;
3933 	}
3934 
3935 	/* Find highest min desired voltage */
3936 	for (i = 0; i < n_coupled; i++) {
3937 		int tmp_min = 0;
3938 		int tmp_max = INT_MAX;
3939 
3940 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3941 
3942 		ret = regulator_check_consumers(c_rdevs[i],
3943 						&tmp_min,
3944 						&tmp_max, state);
3945 		if (ret < 0)
3946 			return ret;
3947 
3948 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3949 		if (ret < 0)
3950 			return ret;
3951 
3952 		highest_min_uV = max(highest_min_uV, tmp_min);
3953 
3954 		if (i == 0) {
3955 			desired_min_uV = tmp_min;
3956 			desired_max_uV = tmp_max;
3957 		}
3958 	}
3959 
3960 	max_spread = constraints->max_spread[0];
3961 
3962 	/*
3963 	 * Let target_uV be equal to the desired one if possible.
3964 	 * If not, set it to minimum voltage, allowed by other coupled
3965 	 * regulators.
3966 	 */
3967 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3968 
3969 	/*
3970 	 * Find min and max voltages, which currently aren't violating
3971 	 * max_spread.
3972 	 */
3973 	for (i = 1; i < n_coupled; i++) {
3974 		int tmp_act;
3975 
3976 		if (!_regulator_is_enabled(c_rdevs[i]))
3977 			continue;
3978 
3979 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3980 		if (tmp_act < 0)
3981 			return tmp_act;
3982 
3983 		min_current_uV = min(tmp_act, min_current_uV);
3984 		max_current_uV = max(tmp_act, max_current_uV);
3985 	}
3986 
3987 	/* There aren't any other regulators enabled */
3988 	if (max_current_uV == 0) {
3989 		possible_uV = target_uV;
3990 	} else {
3991 		/*
3992 		 * Correct target voltage, so as it currently isn't
3993 		 * violating max_spread
3994 		 */
3995 		possible_uV = max(target_uV, max_current_uV - max_spread);
3996 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3997 	}
3998 
3999 	if (possible_uV > desired_max_uV)
4000 		return -EINVAL;
4001 
4002 	done = (possible_uV == target_uV);
4003 	desired_min_uV = possible_uV;
4004 
4005 finish:
4006 	/* Apply max_uV_step constraint if necessary */
4007 	if (state == PM_SUSPEND_ON) {
4008 		ret = regulator_limit_voltage_step(rdev, current_uV,
4009 						   &desired_min_uV);
4010 		if (ret < 0)
4011 			return ret;
4012 
4013 		if (ret == 0)
4014 			done = false;
4015 	}
4016 
4017 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4018 	if (n_coupled > 1 && *current_uV == -1) {
4019 
4020 		if (_regulator_is_enabled(rdev)) {
4021 			ret = regulator_get_voltage_rdev(rdev);
4022 			if (ret < 0)
4023 				return ret;
4024 
4025 			*current_uV = ret;
4026 		} else {
4027 			*current_uV = desired_min_uV;
4028 		}
4029 	}
4030 
4031 	*min_uV = desired_min_uV;
4032 	*max_uV = desired_max_uV;
4033 
4034 	return done;
4035 }
4036 
4037 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4038 				 suspend_state_t state, bool skip_coupled)
4039 {
4040 	struct regulator_dev **c_rdevs;
4041 	struct regulator_dev *best_rdev;
4042 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4043 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4044 	unsigned int delta, best_delta;
4045 	unsigned long c_rdev_done = 0;
4046 	bool best_c_rdev_done;
4047 
4048 	c_rdevs = c_desc->coupled_rdevs;
4049 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4050 
4051 	/*
4052 	 * Find the best possible voltage change on each loop. Leave the loop
4053 	 * if there isn't any possible change.
4054 	 */
4055 	do {
4056 		best_c_rdev_done = false;
4057 		best_delta = 0;
4058 		best_min_uV = 0;
4059 		best_max_uV = 0;
4060 		best_c_rdev = 0;
4061 		best_rdev = NULL;
4062 
4063 		/*
4064 		 * Find highest difference between optimal voltage
4065 		 * and current voltage.
4066 		 */
4067 		for (i = 0; i < n_coupled; i++) {
4068 			/*
4069 			 * optimal_uV is the best voltage that can be set for
4070 			 * i-th regulator at the moment without violating
4071 			 * max_spread constraint in order to balance
4072 			 * the coupled voltages.
4073 			 */
4074 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4075 
4076 			if (test_bit(i, &c_rdev_done))
4077 				continue;
4078 
4079 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4080 							    &current_uV,
4081 							    &optimal_uV,
4082 							    &optimal_max_uV,
4083 							    state, n_coupled);
4084 			if (ret < 0)
4085 				goto out;
4086 
4087 			delta = abs(optimal_uV - current_uV);
4088 
4089 			if (delta && best_delta <= delta) {
4090 				best_c_rdev_done = ret;
4091 				best_delta = delta;
4092 				best_rdev = c_rdevs[i];
4093 				best_min_uV = optimal_uV;
4094 				best_max_uV = optimal_max_uV;
4095 				best_c_rdev = i;
4096 			}
4097 		}
4098 
4099 		/* Nothing to change, return successfully */
4100 		if (!best_rdev) {
4101 			ret = 0;
4102 			goto out;
4103 		}
4104 
4105 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4106 						 best_max_uV, state);
4107 
4108 		if (ret < 0)
4109 			goto out;
4110 
4111 		if (best_c_rdev_done)
4112 			set_bit(best_c_rdev, &c_rdev_done);
4113 
4114 	} while (n_coupled > 1);
4115 
4116 out:
4117 	return ret;
4118 }
4119 
4120 static int regulator_balance_voltage(struct regulator_dev *rdev,
4121 				     suspend_state_t state)
4122 {
4123 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4124 	struct regulator_coupler *coupler = c_desc->coupler;
4125 	bool skip_coupled = false;
4126 
4127 	/*
4128 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4129 	 * other coupled regulators.
4130 	 */
4131 	if (state != PM_SUSPEND_ON)
4132 		skip_coupled = true;
4133 
4134 	if (c_desc->n_resolved < c_desc->n_coupled) {
4135 		rdev_err(rdev, "Not all coupled regulators registered\n");
4136 		return -EPERM;
4137 	}
4138 
4139 	/* Invoke custom balancer for customized couplers */
4140 	if (coupler && coupler->balance_voltage)
4141 		return coupler->balance_voltage(coupler, rdev, state);
4142 
4143 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4144 }
4145 
4146 /**
4147  * regulator_set_voltage - set regulator output voltage
4148  * @regulator: regulator source
4149  * @min_uV: Minimum required voltage in uV
4150  * @max_uV: Maximum acceptable voltage in uV
4151  *
4152  * Sets a voltage regulator to the desired output voltage. This can be set
4153  * during any regulator state. IOW, regulator can be disabled or enabled.
4154  *
4155  * If the regulator is enabled then the voltage will change to the new value
4156  * immediately otherwise if the regulator is disabled the regulator will
4157  * output at the new voltage when enabled.
4158  *
4159  * NOTE: If the regulator is shared between several devices then the lowest
4160  * request voltage that meets the system constraints will be used.
4161  * Regulator system constraints must be set for this regulator before
4162  * calling this function otherwise this call will fail.
4163  */
4164 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4165 {
4166 	struct ww_acquire_ctx ww_ctx;
4167 	int ret;
4168 
4169 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4170 
4171 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4172 					     PM_SUSPEND_ON);
4173 
4174 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4175 
4176 	return ret;
4177 }
4178 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4179 
4180 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4181 					   suspend_state_t state, bool en)
4182 {
4183 	struct regulator_state *rstate;
4184 
4185 	rstate = regulator_get_suspend_state(rdev, state);
4186 	if (rstate == NULL)
4187 		return -EINVAL;
4188 
4189 	if (!rstate->changeable)
4190 		return -EPERM;
4191 
4192 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4193 
4194 	return 0;
4195 }
4196 
4197 int regulator_suspend_enable(struct regulator_dev *rdev,
4198 				    suspend_state_t state)
4199 {
4200 	return regulator_suspend_toggle(rdev, state, true);
4201 }
4202 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4203 
4204 int regulator_suspend_disable(struct regulator_dev *rdev,
4205 				     suspend_state_t state)
4206 {
4207 	struct regulator *regulator;
4208 	struct regulator_voltage *voltage;
4209 
4210 	/*
4211 	 * if any consumer wants this regulator device keeping on in
4212 	 * suspend states, don't set it as disabled.
4213 	 */
4214 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4215 		voltage = &regulator->voltage[state];
4216 		if (voltage->min_uV || voltage->max_uV)
4217 			return 0;
4218 	}
4219 
4220 	return regulator_suspend_toggle(rdev, state, false);
4221 }
4222 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4223 
4224 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4225 					  int min_uV, int max_uV,
4226 					  suspend_state_t state)
4227 {
4228 	struct regulator_dev *rdev = regulator->rdev;
4229 	struct regulator_state *rstate;
4230 
4231 	rstate = regulator_get_suspend_state(rdev, state);
4232 	if (rstate == NULL)
4233 		return -EINVAL;
4234 
4235 	if (rstate->min_uV == rstate->max_uV) {
4236 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4237 		return -EPERM;
4238 	}
4239 
4240 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4241 }
4242 
4243 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4244 				  int max_uV, suspend_state_t state)
4245 {
4246 	struct ww_acquire_ctx ww_ctx;
4247 	int ret;
4248 
4249 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4250 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4251 		return -EINVAL;
4252 
4253 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4254 
4255 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4256 					     max_uV, state);
4257 
4258 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4259 
4260 	return ret;
4261 }
4262 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4263 
4264 /**
4265  * regulator_set_voltage_time - get raise/fall time
4266  * @regulator: regulator source
4267  * @old_uV: starting voltage in microvolts
4268  * @new_uV: target voltage in microvolts
4269  *
4270  * Provided with the starting and ending voltage, this function attempts to
4271  * calculate the time in microseconds required to rise or fall to this new
4272  * voltage.
4273  */
4274 int regulator_set_voltage_time(struct regulator *regulator,
4275 			       int old_uV, int new_uV)
4276 {
4277 	struct regulator_dev *rdev = regulator->rdev;
4278 	const struct regulator_ops *ops = rdev->desc->ops;
4279 	int old_sel = -1;
4280 	int new_sel = -1;
4281 	int voltage;
4282 	int i;
4283 
4284 	if (ops->set_voltage_time)
4285 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4286 	else if (!ops->set_voltage_time_sel)
4287 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4288 
4289 	/* Currently requires operations to do this */
4290 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4291 		return -EINVAL;
4292 
4293 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4294 		/* We only look for exact voltage matches here */
4295 		if (i < rdev->desc->linear_min_sel)
4296 			continue;
4297 
4298 		if (old_sel >= 0 && new_sel >= 0)
4299 			break;
4300 
4301 		voltage = regulator_list_voltage(regulator, i);
4302 		if (voltage < 0)
4303 			return -EINVAL;
4304 		if (voltage == 0)
4305 			continue;
4306 		if (voltage == old_uV)
4307 			old_sel = i;
4308 		if (voltage == new_uV)
4309 			new_sel = i;
4310 	}
4311 
4312 	if (old_sel < 0 || new_sel < 0)
4313 		return -EINVAL;
4314 
4315 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4316 }
4317 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4318 
4319 /**
4320  * regulator_set_voltage_time_sel - get raise/fall time
4321  * @rdev: regulator source device
4322  * @old_selector: selector for starting voltage
4323  * @new_selector: selector for target voltage
4324  *
4325  * Provided with the starting and target voltage selectors, this function
4326  * returns time in microseconds required to rise or fall to this new voltage
4327  *
4328  * Drivers providing ramp_delay in regulation_constraints can use this as their
4329  * set_voltage_time_sel() operation.
4330  */
4331 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4332 				   unsigned int old_selector,
4333 				   unsigned int new_selector)
4334 {
4335 	int old_volt, new_volt;
4336 
4337 	/* sanity check */
4338 	if (!rdev->desc->ops->list_voltage)
4339 		return -EINVAL;
4340 
4341 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4342 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4343 
4344 	if (rdev->desc->ops->set_voltage_time)
4345 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4346 							 new_volt);
4347 	else
4348 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4349 }
4350 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4351 
4352 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4353 {
4354 	int ret;
4355 
4356 	regulator_lock(rdev);
4357 
4358 	if (!rdev->desc->ops->set_voltage &&
4359 	    !rdev->desc->ops->set_voltage_sel) {
4360 		ret = -EINVAL;
4361 		goto out;
4362 	}
4363 
4364 	/* balance only, if regulator is coupled */
4365 	if (rdev->coupling_desc.n_coupled > 1)
4366 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4367 	else
4368 		ret = -EOPNOTSUPP;
4369 
4370 out:
4371 	regulator_unlock(rdev);
4372 	return ret;
4373 }
4374 
4375 /**
4376  * regulator_sync_voltage - re-apply last regulator output voltage
4377  * @regulator: regulator source
4378  *
4379  * Re-apply the last configured voltage.  This is intended to be used
4380  * where some external control source the consumer is cooperating with
4381  * has caused the configured voltage to change.
4382  */
4383 int regulator_sync_voltage(struct regulator *regulator)
4384 {
4385 	struct regulator_dev *rdev = regulator->rdev;
4386 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4387 	int ret, min_uV, max_uV;
4388 
4389 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4390 		return 0;
4391 
4392 	regulator_lock(rdev);
4393 
4394 	if (!rdev->desc->ops->set_voltage &&
4395 	    !rdev->desc->ops->set_voltage_sel) {
4396 		ret = -EINVAL;
4397 		goto out;
4398 	}
4399 
4400 	/* This is only going to work if we've had a voltage configured. */
4401 	if (!voltage->min_uV && !voltage->max_uV) {
4402 		ret = -EINVAL;
4403 		goto out;
4404 	}
4405 
4406 	min_uV = voltage->min_uV;
4407 	max_uV = voltage->max_uV;
4408 
4409 	/* This should be a paranoia check... */
4410 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4411 	if (ret < 0)
4412 		goto out;
4413 
4414 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4415 	if (ret < 0)
4416 		goto out;
4417 
4418 	/* balance only, if regulator is coupled */
4419 	if (rdev->coupling_desc.n_coupled > 1)
4420 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4421 	else
4422 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4423 
4424 out:
4425 	regulator_unlock(rdev);
4426 	return ret;
4427 }
4428 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4429 
4430 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4431 {
4432 	int sel, ret;
4433 	bool bypassed;
4434 
4435 	if (rdev->desc->ops->get_bypass) {
4436 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4437 		if (ret < 0)
4438 			return ret;
4439 		if (bypassed) {
4440 			/* if bypassed the regulator must have a supply */
4441 			if (!rdev->supply) {
4442 				rdev_err(rdev,
4443 					 "bypassed regulator has no supply!\n");
4444 				return -EPROBE_DEFER;
4445 			}
4446 
4447 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4448 		}
4449 	}
4450 
4451 	if (rdev->desc->ops->get_voltage_sel) {
4452 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4453 		if (sel < 0)
4454 			return sel;
4455 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4456 	} else if (rdev->desc->ops->get_voltage) {
4457 		ret = rdev->desc->ops->get_voltage(rdev);
4458 	} else if (rdev->desc->ops->list_voltage) {
4459 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4460 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4461 		ret = rdev->desc->fixed_uV;
4462 	} else if (rdev->supply) {
4463 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4464 	} else if (rdev->supply_name) {
4465 		return -EPROBE_DEFER;
4466 	} else {
4467 		return -EINVAL;
4468 	}
4469 
4470 	if (ret < 0)
4471 		return ret;
4472 	return ret - rdev->constraints->uV_offset;
4473 }
4474 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4475 
4476 /**
4477  * regulator_get_voltage - get regulator output voltage
4478  * @regulator: regulator source
4479  *
4480  * This returns the current regulator voltage in uV.
4481  *
4482  * NOTE: If the regulator is disabled it will return the voltage value. This
4483  * function should not be used to determine regulator state.
4484  */
4485 int regulator_get_voltage(struct regulator *regulator)
4486 {
4487 	struct ww_acquire_ctx ww_ctx;
4488 	int ret;
4489 
4490 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4491 	ret = regulator_get_voltage_rdev(regulator->rdev);
4492 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4493 
4494 	return ret;
4495 }
4496 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4497 
4498 /**
4499  * regulator_set_current_limit - set regulator output current limit
4500  * @regulator: regulator source
4501  * @min_uA: Minimum supported current in uA
4502  * @max_uA: Maximum supported current in uA
4503  *
4504  * Sets current sink to the desired output current. This can be set during
4505  * any regulator state. IOW, regulator can be disabled or enabled.
4506  *
4507  * If the regulator is enabled then the current will change to the new value
4508  * immediately otherwise if the regulator is disabled the regulator will
4509  * output at the new current when enabled.
4510  *
4511  * NOTE: Regulator system constraints must be set for this regulator before
4512  * calling this function otherwise this call will fail.
4513  */
4514 int regulator_set_current_limit(struct regulator *regulator,
4515 			       int min_uA, int max_uA)
4516 {
4517 	struct regulator_dev *rdev = regulator->rdev;
4518 	int ret;
4519 
4520 	regulator_lock(rdev);
4521 
4522 	/* sanity check */
4523 	if (!rdev->desc->ops->set_current_limit) {
4524 		ret = -EINVAL;
4525 		goto out;
4526 	}
4527 
4528 	/* constraints check */
4529 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4530 	if (ret < 0)
4531 		goto out;
4532 
4533 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4534 out:
4535 	regulator_unlock(rdev);
4536 	return ret;
4537 }
4538 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4539 
4540 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4541 {
4542 	/* sanity check */
4543 	if (!rdev->desc->ops->get_current_limit)
4544 		return -EINVAL;
4545 
4546 	return rdev->desc->ops->get_current_limit(rdev);
4547 }
4548 
4549 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4550 {
4551 	int ret;
4552 
4553 	regulator_lock(rdev);
4554 	ret = _regulator_get_current_limit_unlocked(rdev);
4555 	regulator_unlock(rdev);
4556 
4557 	return ret;
4558 }
4559 
4560 /**
4561  * regulator_get_current_limit - get regulator output current
4562  * @regulator: regulator source
4563  *
4564  * This returns the current supplied by the specified current sink in uA.
4565  *
4566  * NOTE: If the regulator is disabled it will return the current value. This
4567  * function should not be used to determine regulator state.
4568  */
4569 int regulator_get_current_limit(struct regulator *regulator)
4570 {
4571 	return _regulator_get_current_limit(regulator->rdev);
4572 }
4573 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4574 
4575 /**
4576  * regulator_set_mode - set regulator operating mode
4577  * @regulator: regulator source
4578  * @mode: operating mode - one of the REGULATOR_MODE constants
4579  *
4580  * Set regulator operating mode to increase regulator efficiency or improve
4581  * regulation performance.
4582  *
4583  * NOTE: Regulator system constraints must be set for this regulator before
4584  * calling this function otherwise this call will fail.
4585  */
4586 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4587 {
4588 	struct regulator_dev *rdev = regulator->rdev;
4589 	int ret;
4590 	int regulator_curr_mode;
4591 
4592 	regulator_lock(rdev);
4593 
4594 	/* sanity check */
4595 	if (!rdev->desc->ops->set_mode) {
4596 		ret = -EINVAL;
4597 		goto out;
4598 	}
4599 
4600 	/* return if the same mode is requested */
4601 	if (rdev->desc->ops->get_mode) {
4602 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4603 		if (regulator_curr_mode == mode) {
4604 			ret = 0;
4605 			goto out;
4606 		}
4607 	}
4608 
4609 	/* constraints check */
4610 	ret = regulator_mode_constrain(rdev, &mode);
4611 	if (ret < 0)
4612 		goto out;
4613 
4614 	ret = rdev->desc->ops->set_mode(rdev, mode);
4615 out:
4616 	regulator_unlock(rdev);
4617 	return ret;
4618 }
4619 EXPORT_SYMBOL_GPL(regulator_set_mode);
4620 
4621 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4622 {
4623 	/* sanity check */
4624 	if (!rdev->desc->ops->get_mode)
4625 		return -EINVAL;
4626 
4627 	return rdev->desc->ops->get_mode(rdev);
4628 }
4629 
4630 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4631 {
4632 	int ret;
4633 
4634 	regulator_lock(rdev);
4635 	ret = _regulator_get_mode_unlocked(rdev);
4636 	regulator_unlock(rdev);
4637 
4638 	return ret;
4639 }
4640 
4641 /**
4642  * regulator_get_mode - get regulator operating mode
4643  * @regulator: regulator source
4644  *
4645  * Get the current regulator operating mode.
4646  */
4647 unsigned int regulator_get_mode(struct regulator *regulator)
4648 {
4649 	return _regulator_get_mode(regulator->rdev);
4650 }
4651 EXPORT_SYMBOL_GPL(regulator_get_mode);
4652 
4653 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4654 {
4655 	int ret = 0;
4656 
4657 	if (rdev->use_cached_err) {
4658 		spin_lock(&rdev->err_lock);
4659 		ret = rdev->cached_err;
4660 		spin_unlock(&rdev->err_lock);
4661 	}
4662 	return ret;
4663 }
4664 
4665 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4666 					unsigned int *flags)
4667 {
4668 	int cached_flags, ret = 0;
4669 
4670 	regulator_lock(rdev);
4671 
4672 	cached_flags = rdev_get_cached_err_flags(rdev);
4673 
4674 	if (rdev->desc->ops->get_error_flags)
4675 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4676 	else if (!rdev->use_cached_err)
4677 		ret = -EINVAL;
4678 
4679 	*flags |= cached_flags;
4680 
4681 	regulator_unlock(rdev);
4682 
4683 	return ret;
4684 }
4685 
4686 /**
4687  * regulator_get_error_flags - get regulator error information
4688  * @regulator: regulator source
4689  * @flags: pointer to store error flags
4690  *
4691  * Get the current regulator error information.
4692  */
4693 int regulator_get_error_flags(struct regulator *regulator,
4694 				unsigned int *flags)
4695 {
4696 	return _regulator_get_error_flags(regulator->rdev, flags);
4697 }
4698 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4699 
4700 /**
4701  * regulator_set_load - set regulator load
4702  * @regulator: regulator source
4703  * @uA_load: load current
4704  *
4705  * Notifies the regulator core of a new device load. This is then used by
4706  * DRMS (if enabled by constraints) to set the most efficient regulator
4707  * operating mode for the new regulator loading.
4708  *
4709  * Consumer devices notify their supply regulator of the maximum power
4710  * they will require (can be taken from device datasheet in the power
4711  * consumption tables) when they change operational status and hence power
4712  * state. Examples of operational state changes that can affect power
4713  * consumption are :-
4714  *
4715  *    o Device is opened / closed.
4716  *    o Device I/O is about to begin or has just finished.
4717  *    o Device is idling in between work.
4718  *
4719  * This information is also exported via sysfs to userspace.
4720  *
4721  * DRMS will sum the total requested load on the regulator and change
4722  * to the most efficient operating mode if platform constraints allow.
4723  *
4724  * NOTE: when a regulator consumer requests to have a regulator
4725  * disabled then any load that consumer requested no longer counts
4726  * toward the total requested load.  If the regulator is re-enabled
4727  * then the previously requested load will start counting again.
4728  *
4729  * If a regulator is an always-on regulator then an individual consumer's
4730  * load will still be removed if that consumer is fully disabled.
4731  *
4732  * On error a negative errno is returned.
4733  */
4734 int regulator_set_load(struct regulator *regulator, int uA_load)
4735 {
4736 	struct regulator_dev *rdev = regulator->rdev;
4737 	int old_uA_load;
4738 	int ret = 0;
4739 
4740 	regulator_lock(rdev);
4741 	old_uA_load = regulator->uA_load;
4742 	regulator->uA_load = uA_load;
4743 	if (regulator->enable_count && old_uA_load != uA_load) {
4744 		ret = drms_uA_update(rdev);
4745 		if (ret < 0)
4746 			regulator->uA_load = old_uA_load;
4747 	}
4748 	regulator_unlock(rdev);
4749 
4750 	return ret;
4751 }
4752 EXPORT_SYMBOL_GPL(regulator_set_load);
4753 
4754 /**
4755  * regulator_allow_bypass - allow the regulator to go into bypass mode
4756  *
4757  * @regulator: Regulator to configure
4758  * @enable: enable or disable bypass mode
4759  *
4760  * Allow the regulator to go into bypass mode if all other consumers
4761  * for the regulator also enable bypass mode and the machine
4762  * constraints allow this.  Bypass mode means that the regulator is
4763  * simply passing the input directly to the output with no regulation.
4764  */
4765 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4766 {
4767 	struct regulator_dev *rdev = regulator->rdev;
4768 	const char *name = rdev_get_name(rdev);
4769 	int ret = 0;
4770 
4771 	if (!rdev->desc->ops->set_bypass)
4772 		return 0;
4773 
4774 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4775 		return 0;
4776 
4777 	regulator_lock(rdev);
4778 
4779 	if (enable && !regulator->bypass) {
4780 		rdev->bypass_count++;
4781 
4782 		if (rdev->bypass_count == rdev->open_count) {
4783 			trace_regulator_bypass_enable(name);
4784 
4785 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4786 			if (ret != 0)
4787 				rdev->bypass_count--;
4788 			else
4789 				trace_regulator_bypass_enable_complete(name);
4790 		}
4791 
4792 	} else if (!enable && regulator->bypass) {
4793 		rdev->bypass_count--;
4794 
4795 		if (rdev->bypass_count != rdev->open_count) {
4796 			trace_regulator_bypass_disable(name);
4797 
4798 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4799 			if (ret != 0)
4800 				rdev->bypass_count++;
4801 			else
4802 				trace_regulator_bypass_disable_complete(name);
4803 		}
4804 	}
4805 
4806 	if (ret == 0)
4807 		regulator->bypass = enable;
4808 
4809 	regulator_unlock(rdev);
4810 
4811 	return ret;
4812 }
4813 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4814 
4815 /**
4816  * regulator_register_notifier - register regulator event notifier
4817  * @regulator: regulator source
4818  * @nb: notifier block
4819  *
4820  * Register notifier block to receive regulator events.
4821  */
4822 int regulator_register_notifier(struct regulator *regulator,
4823 			      struct notifier_block *nb)
4824 {
4825 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4826 						nb);
4827 }
4828 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4829 
4830 /**
4831  * regulator_unregister_notifier - unregister regulator event notifier
4832  * @regulator: regulator source
4833  * @nb: notifier block
4834  *
4835  * Unregister regulator event notifier block.
4836  */
4837 int regulator_unregister_notifier(struct regulator *regulator,
4838 				struct notifier_block *nb)
4839 {
4840 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4841 						  nb);
4842 }
4843 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4844 
4845 /* notify regulator consumers and downstream regulator consumers.
4846  * Note mutex must be held by caller.
4847  */
4848 static int _notifier_call_chain(struct regulator_dev *rdev,
4849 				  unsigned long event, void *data)
4850 {
4851 	/* call rdev chain first */
4852 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4853 }
4854 
4855 int _regulator_bulk_get(struct device *dev, int num_consumers,
4856 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4857 {
4858 	int i;
4859 	int ret;
4860 
4861 	for (i = 0; i < num_consumers; i++)
4862 		consumers[i].consumer = NULL;
4863 
4864 	for (i = 0; i < num_consumers; i++) {
4865 		consumers[i].consumer = _regulator_get(dev,
4866 						       consumers[i].supply, get_type);
4867 		if (IS_ERR(consumers[i].consumer)) {
4868 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4869 					    "Failed to get supply '%s'",
4870 					    consumers[i].supply);
4871 			consumers[i].consumer = NULL;
4872 			goto err;
4873 		}
4874 
4875 		if (consumers[i].init_load_uA > 0) {
4876 			ret = regulator_set_load(consumers[i].consumer,
4877 						 consumers[i].init_load_uA);
4878 			if (ret) {
4879 				i++;
4880 				goto err;
4881 			}
4882 		}
4883 	}
4884 
4885 	return 0;
4886 
4887 err:
4888 	while (--i >= 0)
4889 		regulator_put(consumers[i].consumer);
4890 
4891 	return ret;
4892 }
4893 
4894 /**
4895  * regulator_bulk_get - get multiple regulator consumers
4896  *
4897  * @dev:           Device to supply
4898  * @num_consumers: Number of consumers to register
4899  * @consumers:     Configuration of consumers; clients are stored here.
4900  *
4901  * @return 0 on success, an errno on failure.
4902  *
4903  * This helper function allows drivers to get several regulator
4904  * consumers in one operation.  If any of the regulators cannot be
4905  * acquired then any regulators that were allocated will be freed
4906  * before returning to the caller.
4907  */
4908 int regulator_bulk_get(struct device *dev, int num_consumers,
4909 		       struct regulator_bulk_data *consumers)
4910 {
4911 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4912 }
4913 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4914 
4915 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4916 {
4917 	struct regulator_bulk_data *bulk = data;
4918 
4919 	bulk->ret = regulator_enable(bulk->consumer);
4920 }
4921 
4922 /**
4923  * regulator_bulk_enable - enable multiple regulator consumers
4924  *
4925  * @num_consumers: Number of consumers
4926  * @consumers:     Consumer data; clients are stored here.
4927  * @return         0 on success, an errno on failure
4928  *
4929  * This convenience API allows consumers to enable multiple regulator
4930  * clients in a single API call.  If any consumers cannot be enabled
4931  * then any others that were enabled will be disabled again prior to
4932  * return.
4933  */
4934 int regulator_bulk_enable(int num_consumers,
4935 			  struct regulator_bulk_data *consumers)
4936 {
4937 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4938 	int i;
4939 	int ret = 0;
4940 
4941 	for (i = 0; i < num_consumers; i++) {
4942 		async_schedule_domain(regulator_bulk_enable_async,
4943 				      &consumers[i], &async_domain);
4944 	}
4945 
4946 	async_synchronize_full_domain(&async_domain);
4947 
4948 	/* If any consumer failed we need to unwind any that succeeded */
4949 	for (i = 0; i < num_consumers; i++) {
4950 		if (consumers[i].ret != 0) {
4951 			ret = consumers[i].ret;
4952 			goto err;
4953 		}
4954 	}
4955 
4956 	return 0;
4957 
4958 err:
4959 	for (i = 0; i < num_consumers; i++) {
4960 		if (consumers[i].ret < 0)
4961 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4962 			       ERR_PTR(consumers[i].ret));
4963 		else
4964 			regulator_disable(consumers[i].consumer);
4965 	}
4966 
4967 	return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4970 
4971 /**
4972  * regulator_bulk_disable - disable multiple regulator consumers
4973  *
4974  * @num_consumers: Number of consumers
4975  * @consumers:     Consumer data; clients are stored here.
4976  * @return         0 on success, an errno on failure
4977  *
4978  * This convenience API allows consumers to disable multiple regulator
4979  * clients in a single API call.  If any consumers cannot be disabled
4980  * then any others that were disabled will be enabled again prior to
4981  * return.
4982  */
4983 int regulator_bulk_disable(int num_consumers,
4984 			   struct regulator_bulk_data *consumers)
4985 {
4986 	int i;
4987 	int ret, r;
4988 
4989 	for (i = num_consumers - 1; i >= 0; --i) {
4990 		ret = regulator_disable(consumers[i].consumer);
4991 		if (ret != 0)
4992 			goto err;
4993 	}
4994 
4995 	return 0;
4996 
4997 err:
4998 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4999 	for (++i; i < num_consumers; ++i) {
5000 		r = regulator_enable(consumers[i].consumer);
5001 		if (r != 0)
5002 			pr_err("Failed to re-enable %s: %pe\n",
5003 			       consumers[i].supply, ERR_PTR(r));
5004 	}
5005 
5006 	return ret;
5007 }
5008 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5009 
5010 /**
5011  * regulator_bulk_force_disable - force disable multiple regulator consumers
5012  *
5013  * @num_consumers: Number of consumers
5014  * @consumers:     Consumer data; clients are stored here.
5015  * @return         0 on success, an errno on failure
5016  *
5017  * This convenience API allows consumers to forcibly disable multiple regulator
5018  * clients in a single API call.
5019  * NOTE: This should be used for situations when device damage will
5020  * likely occur if the regulators are not disabled (e.g. over temp).
5021  * Although regulator_force_disable function call for some consumers can
5022  * return error numbers, the function is called for all consumers.
5023  */
5024 int regulator_bulk_force_disable(int num_consumers,
5025 			   struct regulator_bulk_data *consumers)
5026 {
5027 	int i;
5028 	int ret = 0;
5029 
5030 	for (i = 0; i < num_consumers; i++) {
5031 		consumers[i].ret =
5032 			    regulator_force_disable(consumers[i].consumer);
5033 
5034 		/* Store first error for reporting */
5035 		if (consumers[i].ret && !ret)
5036 			ret = consumers[i].ret;
5037 	}
5038 
5039 	return ret;
5040 }
5041 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5042 
5043 /**
5044  * regulator_bulk_free - free multiple regulator consumers
5045  *
5046  * @num_consumers: Number of consumers
5047  * @consumers:     Consumer data; clients are stored here.
5048  *
5049  * This convenience API allows consumers to free multiple regulator
5050  * clients in a single API call.
5051  */
5052 void regulator_bulk_free(int num_consumers,
5053 			 struct regulator_bulk_data *consumers)
5054 {
5055 	int i;
5056 
5057 	for (i = 0; i < num_consumers; i++) {
5058 		regulator_put(consumers[i].consumer);
5059 		consumers[i].consumer = NULL;
5060 	}
5061 }
5062 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5063 
5064 /**
5065  * regulator_notifier_call_chain - call regulator event notifier
5066  * @rdev: regulator source
5067  * @event: notifier block
5068  * @data: callback-specific data.
5069  *
5070  * Called by regulator drivers to notify clients a regulator event has
5071  * occurred.
5072  */
5073 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5074 				  unsigned long event, void *data)
5075 {
5076 	_notifier_call_chain(rdev, event, data);
5077 	return NOTIFY_DONE;
5078 
5079 }
5080 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5081 
5082 /**
5083  * regulator_mode_to_status - convert a regulator mode into a status
5084  *
5085  * @mode: Mode to convert
5086  *
5087  * Convert a regulator mode into a status.
5088  */
5089 int regulator_mode_to_status(unsigned int mode)
5090 {
5091 	switch (mode) {
5092 	case REGULATOR_MODE_FAST:
5093 		return REGULATOR_STATUS_FAST;
5094 	case REGULATOR_MODE_NORMAL:
5095 		return REGULATOR_STATUS_NORMAL;
5096 	case REGULATOR_MODE_IDLE:
5097 		return REGULATOR_STATUS_IDLE;
5098 	case REGULATOR_MODE_STANDBY:
5099 		return REGULATOR_STATUS_STANDBY;
5100 	default:
5101 		return REGULATOR_STATUS_UNDEFINED;
5102 	}
5103 }
5104 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5105 
5106 static struct attribute *regulator_dev_attrs[] = {
5107 	&dev_attr_name.attr,
5108 	&dev_attr_num_users.attr,
5109 	&dev_attr_type.attr,
5110 	&dev_attr_microvolts.attr,
5111 	&dev_attr_microamps.attr,
5112 	&dev_attr_opmode.attr,
5113 	&dev_attr_state.attr,
5114 	&dev_attr_status.attr,
5115 	&dev_attr_bypass.attr,
5116 	&dev_attr_requested_microamps.attr,
5117 	&dev_attr_min_microvolts.attr,
5118 	&dev_attr_max_microvolts.attr,
5119 	&dev_attr_min_microamps.attr,
5120 	&dev_attr_max_microamps.attr,
5121 	&dev_attr_under_voltage.attr,
5122 	&dev_attr_over_current.attr,
5123 	&dev_attr_regulation_out.attr,
5124 	&dev_attr_fail.attr,
5125 	&dev_attr_over_temp.attr,
5126 	&dev_attr_under_voltage_warn.attr,
5127 	&dev_attr_over_current_warn.attr,
5128 	&dev_attr_over_voltage_warn.attr,
5129 	&dev_attr_over_temp_warn.attr,
5130 	&dev_attr_suspend_standby_state.attr,
5131 	&dev_attr_suspend_mem_state.attr,
5132 	&dev_attr_suspend_disk_state.attr,
5133 	&dev_attr_suspend_standby_microvolts.attr,
5134 	&dev_attr_suspend_mem_microvolts.attr,
5135 	&dev_attr_suspend_disk_microvolts.attr,
5136 	&dev_attr_suspend_standby_mode.attr,
5137 	&dev_attr_suspend_mem_mode.attr,
5138 	&dev_attr_suspend_disk_mode.attr,
5139 	NULL
5140 };
5141 
5142 /*
5143  * To avoid cluttering sysfs (and memory) with useless state, only
5144  * create attributes that can be meaningfully displayed.
5145  */
5146 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5147 					 struct attribute *attr, int idx)
5148 {
5149 	struct device *dev = kobj_to_dev(kobj);
5150 	struct regulator_dev *rdev = dev_to_rdev(dev);
5151 	const struct regulator_ops *ops = rdev->desc->ops;
5152 	umode_t mode = attr->mode;
5153 
5154 	/* these three are always present */
5155 	if (attr == &dev_attr_name.attr ||
5156 	    attr == &dev_attr_num_users.attr ||
5157 	    attr == &dev_attr_type.attr)
5158 		return mode;
5159 
5160 	/* some attributes need specific methods to be displayed */
5161 	if (attr == &dev_attr_microvolts.attr) {
5162 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5163 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5164 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5165 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5166 			return mode;
5167 		return 0;
5168 	}
5169 
5170 	if (attr == &dev_attr_microamps.attr)
5171 		return ops->get_current_limit ? mode : 0;
5172 
5173 	if (attr == &dev_attr_opmode.attr)
5174 		return ops->get_mode ? mode : 0;
5175 
5176 	if (attr == &dev_attr_state.attr)
5177 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5178 
5179 	if (attr == &dev_attr_status.attr)
5180 		return ops->get_status ? mode : 0;
5181 
5182 	if (attr == &dev_attr_bypass.attr)
5183 		return ops->get_bypass ? mode : 0;
5184 
5185 	if (attr == &dev_attr_under_voltage.attr ||
5186 	    attr == &dev_attr_over_current.attr ||
5187 	    attr == &dev_attr_regulation_out.attr ||
5188 	    attr == &dev_attr_fail.attr ||
5189 	    attr == &dev_attr_over_temp.attr ||
5190 	    attr == &dev_attr_under_voltage_warn.attr ||
5191 	    attr == &dev_attr_over_current_warn.attr ||
5192 	    attr == &dev_attr_over_voltage_warn.attr ||
5193 	    attr == &dev_attr_over_temp_warn.attr)
5194 		return ops->get_error_flags ? mode : 0;
5195 
5196 	/* constraints need specific supporting methods */
5197 	if (attr == &dev_attr_min_microvolts.attr ||
5198 	    attr == &dev_attr_max_microvolts.attr)
5199 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5200 
5201 	if (attr == &dev_attr_min_microamps.attr ||
5202 	    attr == &dev_attr_max_microamps.attr)
5203 		return ops->set_current_limit ? mode : 0;
5204 
5205 	if (attr == &dev_attr_suspend_standby_state.attr ||
5206 	    attr == &dev_attr_suspend_mem_state.attr ||
5207 	    attr == &dev_attr_suspend_disk_state.attr)
5208 		return mode;
5209 
5210 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5211 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5212 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5213 		return ops->set_suspend_voltage ? mode : 0;
5214 
5215 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5216 	    attr == &dev_attr_suspend_mem_mode.attr ||
5217 	    attr == &dev_attr_suspend_disk_mode.attr)
5218 		return ops->set_suspend_mode ? mode : 0;
5219 
5220 	return mode;
5221 }
5222 
5223 static const struct attribute_group regulator_dev_group = {
5224 	.attrs = regulator_dev_attrs,
5225 	.is_visible = regulator_attr_is_visible,
5226 };
5227 
5228 static const struct attribute_group *regulator_dev_groups[] = {
5229 	&regulator_dev_group,
5230 	NULL
5231 };
5232 
5233 static void regulator_dev_release(struct device *dev)
5234 {
5235 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5236 
5237 	debugfs_remove_recursive(rdev->debugfs);
5238 	kfree(rdev->constraints);
5239 	of_node_put(rdev->dev.of_node);
5240 	kfree(rdev);
5241 }
5242 
5243 static void rdev_init_debugfs(struct regulator_dev *rdev)
5244 {
5245 	struct device *parent = rdev->dev.parent;
5246 	const char *rname = rdev_get_name(rdev);
5247 	char name[NAME_MAX];
5248 
5249 	/* Avoid duplicate debugfs directory names */
5250 	if (parent && rname == rdev->desc->name) {
5251 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5252 			 rname);
5253 		rname = name;
5254 	}
5255 
5256 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5257 	if (IS_ERR(rdev->debugfs))
5258 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5259 
5260 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5261 			   &rdev->use_count);
5262 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5263 			   &rdev->open_count);
5264 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5265 			   &rdev->bypass_count);
5266 }
5267 
5268 static int regulator_register_resolve_supply(struct device *dev, void *data)
5269 {
5270 	struct regulator_dev *rdev = dev_to_rdev(dev);
5271 
5272 	if (regulator_resolve_supply(rdev))
5273 		rdev_dbg(rdev, "unable to resolve supply\n");
5274 
5275 	return 0;
5276 }
5277 
5278 int regulator_coupler_register(struct regulator_coupler *coupler)
5279 {
5280 	mutex_lock(&regulator_list_mutex);
5281 	list_add_tail(&coupler->list, &regulator_coupler_list);
5282 	mutex_unlock(&regulator_list_mutex);
5283 
5284 	return 0;
5285 }
5286 
5287 static struct regulator_coupler *
5288 regulator_find_coupler(struct regulator_dev *rdev)
5289 {
5290 	struct regulator_coupler *coupler;
5291 	int err;
5292 
5293 	/*
5294 	 * Note that regulators are appended to the list and the generic
5295 	 * coupler is registered first, hence it will be attached at last
5296 	 * if nobody cared.
5297 	 */
5298 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5299 		err = coupler->attach_regulator(coupler, rdev);
5300 		if (!err) {
5301 			if (!coupler->balance_voltage &&
5302 			    rdev->coupling_desc.n_coupled > 2)
5303 				goto err_unsupported;
5304 
5305 			return coupler;
5306 		}
5307 
5308 		if (err < 0)
5309 			return ERR_PTR(err);
5310 
5311 		if (err == 1)
5312 			continue;
5313 
5314 		break;
5315 	}
5316 
5317 	return ERR_PTR(-EINVAL);
5318 
5319 err_unsupported:
5320 	if (coupler->detach_regulator)
5321 		coupler->detach_regulator(coupler, rdev);
5322 
5323 	rdev_err(rdev,
5324 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5325 
5326 	return ERR_PTR(-EPERM);
5327 }
5328 
5329 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5330 {
5331 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5332 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5333 	int n_coupled = c_desc->n_coupled;
5334 	struct regulator_dev *c_rdev;
5335 	int i;
5336 
5337 	for (i = 1; i < n_coupled; i++) {
5338 		/* already resolved */
5339 		if (c_desc->coupled_rdevs[i])
5340 			continue;
5341 
5342 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5343 
5344 		if (!c_rdev)
5345 			continue;
5346 
5347 		if (c_rdev->coupling_desc.coupler != coupler) {
5348 			rdev_err(rdev, "coupler mismatch with %s\n",
5349 				 rdev_get_name(c_rdev));
5350 			return;
5351 		}
5352 
5353 		c_desc->coupled_rdevs[i] = c_rdev;
5354 		c_desc->n_resolved++;
5355 
5356 		regulator_resolve_coupling(c_rdev);
5357 	}
5358 }
5359 
5360 static void regulator_remove_coupling(struct regulator_dev *rdev)
5361 {
5362 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5363 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5364 	struct regulator_dev *__c_rdev, *c_rdev;
5365 	unsigned int __n_coupled, n_coupled;
5366 	int i, k;
5367 	int err;
5368 
5369 	n_coupled = c_desc->n_coupled;
5370 
5371 	for (i = 1; i < n_coupled; i++) {
5372 		c_rdev = c_desc->coupled_rdevs[i];
5373 
5374 		if (!c_rdev)
5375 			continue;
5376 
5377 		regulator_lock(c_rdev);
5378 
5379 		__c_desc = &c_rdev->coupling_desc;
5380 		__n_coupled = __c_desc->n_coupled;
5381 
5382 		for (k = 1; k < __n_coupled; k++) {
5383 			__c_rdev = __c_desc->coupled_rdevs[k];
5384 
5385 			if (__c_rdev == rdev) {
5386 				__c_desc->coupled_rdevs[k] = NULL;
5387 				__c_desc->n_resolved--;
5388 				break;
5389 			}
5390 		}
5391 
5392 		regulator_unlock(c_rdev);
5393 
5394 		c_desc->coupled_rdevs[i] = NULL;
5395 		c_desc->n_resolved--;
5396 	}
5397 
5398 	if (coupler && coupler->detach_regulator) {
5399 		err = coupler->detach_regulator(coupler, rdev);
5400 		if (err)
5401 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5402 				 ERR_PTR(err));
5403 	}
5404 
5405 	kfree(rdev->coupling_desc.coupled_rdevs);
5406 	rdev->coupling_desc.coupled_rdevs = NULL;
5407 }
5408 
5409 static int regulator_init_coupling(struct regulator_dev *rdev)
5410 {
5411 	struct regulator_dev **coupled;
5412 	int err, n_phandles;
5413 
5414 	if (!IS_ENABLED(CONFIG_OF))
5415 		n_phandles = 0;
5416 	else
5417 		n_phandles = of_get_n_coupled(rdev);
5418 
5419 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5420 	if (!coupled)
5421 		return -ENOMEM;
5422 
5423 	rdev->coupling_desc.coupled_rdevs = coupled;
5424 
5425 	/*
5426 	 * Every regulator should always have coupling descriptor filled with
5427 	 * at least pointer to itself.
5428 	 */
5429 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5430 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5431 	rdev->coupling_desc.n_resolved++;
5432 
5433 	/* regulator isn't coupled */
5434 	if (n_phandles == 0)
5435 		return 0;
5436 
5437 	if (!of_check_coupling_data(rdev))
5438 		return -EPERM;
5439 
5440 	mutex_lock(&regulator_list_mutex);
5441 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5442 	mutex_unlock(&regulator_list_mutex);
5443 
5444 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5445 		err = PTR_ERR(rdev->coupling_desc.coupler);
5446 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5447 		return err;
5448 	}
5449 
5450 	return 0;
5451 }
5452 
5453 static int generic_coupler_attach(struct regulator_coupler *coupler,
5454 				  struct regulator_dev *rdev)
5455 {
5456 	if (rdev->coupling_desc.n_coupled > 2) {
5457 		rdev_err(rdev,
5458 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5459 		return -EPERM;
5460 	}
5461 
5462 	if (!rdev->constraints->always_on) {
5463 		rdev_err(rdev,
5464 			 "Coupling of a non always-on regulator is unimplemented\n");
5465 		return -ENOTSUPP;
5466 	}
5467 
5468 	return 0;
5469 }
5470 
5471 static struct regulator_coupler generic_regulator_coupler = {
5472 	.attach_regulator = generic_coupler_attach,
5473 };
5474 
5475 /**
5476  * regulator_register - register regulator
5477  * @dev: the device that drive the regulator
5478  * @regulator_desc: regulator to register
5479  * @cfg: runtime configuration for regulator
5480  *
5481  * Called by regulator drivers to register a regulator.
5482  * Returns a valid pointer to struct regulator_dev on success
5483  * or an ERR_PTR() on error.
5484  */
5485 struct regulator_dev *
5486 regulator_register(struct device *dev,
5487 		   const struct regulator_desc *regulator_desc,
5488 		   const struct regulator_config *cfg)
5489 {
5490 	const struct regulator_init_data *init_data;
5491 	struct regulator_config *config = NULL;
5492 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5493 	struct regulator_dev *rdev;
5494 	bool dangling_cfg_gpiod = false;
5495 	bool dangling_of_gpiod = false;
5496 	int ret, i;
5497 	bool resolved_early = false;
5498 
5499 	if (cfg == NULL)
5500 		return ERR_PTR(-EINVAL);
5501 	if (cfg->ena_gpiod)
5502 		dangling_cfg_gpiod = true;
5503 	if (regulator_desc == NULL) {
5504 		ret = -EINVAL;
5505 		goto rinse;
5506 	}
5507 
5508 	WARN_ON(!dev || !cfg->dev);
5509 
5510 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5511 		ret = -EINVAL;
5512 		goto rinse;
5513 	}
5514 
5515 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5516 	    regulator_desc->type != REGULATOR_CURRENT) {
5517 		ret = -EINVAL;
5518 		goto rinse;
5519 	}
5520 
5521 	/* Only one of each should be implemented */
5522 	WARN_ON(regulator_desc->ops->get_voltage &&
5523 		regulator_desc->ops->get_voltage_sel);
5524 	WARN_ON(regulator_desc->ops->set_voltage &&
5525 		regulator_desc->ops->set_voltage_sel);
5526 
5527 	/* If we're using selectors we must implement list_voltage. */
5528 	if (regulator_desc->ops->get_voltage_sel &&
5529 	    !regulator_desc->ops->list_voltage) {
5530 		ret = -EINVAL;
5531 		goto rinse;
5532 	}
5533 	if (regulator_desc->ops->set_voltage_sel &&
5534 	    !regulator_desc->ops->list_voltage) {
5535 		ret = -EINVAL;
5536 		goto rinse;
5537 	}
5538 
5539 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5540 	if (rdev == NULL) {
5541 		ret = -ENOMEM;
5542 		goto rinse;
5543 	}
5544 	device_initialize(&rdev->dev);
5545 	spin_lock_init(&rdev->err_lock);
5546 
5547 	/*
5548 	 * Duplicate the config so the driver could override it after
5549 	 * parsing init data.
5550 	 */
5551 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5552 	if (config == NULL) {
5553 		ret = -ENOMEM;
5554 		goto clean;
5555 	}
5556 
5557 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5558 					       &rdev->dev.of_node);
5559 
5560 	/*
5561 	 * Sometimes not all resources are probed already so we need to take
5562 	 * that into account. This happens most the time if the ena_gpiod comes
5563 	 * from a gpio extender or something else.
5564 	 */
5565 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5566 		ret = -EPROBE_DEFER;
5567 		goto clean;
5568 	}
5569 
5570 	/*
5571 	 * We need to keep track of any GPIO descriptor coming from the
5572 	 * device tree until we have handled it over to the core. If the
5573 	 * config that was passed in to this function DOES NOT contain
5574 	 * a descriptor, and the config after this call DOES contain
5575 	 * a descriptor, we definitely got one from parsing the device
5576 	 * tree.
5577 	 */
5578 	if (!cfg->ena_gpiod && config->ena_gpiod)
5579 		dangling_of_gpiod = true;
5580 	if (!init_data) {
5581 		init_data = config->init_data;
5582 		rdev->dev.of_node = of_node_get(config->of_node);
5583 	}
5584 
5585 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5586 	rdev->reg_data = config->driver_data;
5587 	rdev->owner = regulator_desc->owner;
5588 	rdev->desc = regulator_desc;
5589 	if (config->regmap)
5590 		rdev->regmap = config->regmap;
5591 	else if (dev_get_regmap(dev, NULL))
5592 		rdev->regmap = dev_get_regmap(dev, NULL);
5593 	else if (dev->parent)
5594 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5595 	INIT_LIST_HEAD(&rdev->consumer_list);
5596 	INIT_LIST_HEAD(&rdev->list);
5597 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5598 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5599 
5600 	if (init_data && init_data->supply_regulator)
5601 		rdev->supply_name = init_data->supply_regulator;
5602 	else if (regulator_desc->supply_name)
5603 		rdev->supply_name = regulator_desc->supply_name;
5604 
5605 	/* register with sysfs */
5606 	rdev->dev.class = &regulator_class;
5607 	rdev->dev.parent = config->dev;
5608 	dev_set_name(&rdev->dev, "regulator.%lu",
5609 		    (unsigned long) atomic_inc_return(&regulator_no));
5610 	dev_set_drvdata(&rdev->dev, rdev);
5611 
5612 	/* set regulator constraints */
5613 	if (init_data)
5614 		rdev->constraints = kmemdup(&init_data->constraints,
5615 					    sizeof(*rdev->constraints),
5616 					    GFP_KERNEL);
5617 	else
5618 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5619 					    GFP_KERNEL);
5620 	if (!rdev->constraints) {
5621 		ret = -ENOMEM;
5622 		goto wash;
5623 	}
5624 
5625 	if ((rdev->supply_name && !rdev->supply) &&
5626 		(rdev->constraints->always_on ||
5627 		 rdev->constraints->boot_on)) {
5628 		ret = regulator_resolve_supply(rdev);
5629 		if (ret)
5630 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5631 					 ERR_PTR(ret));
5632 
5633 		resolved_early = true;
5634 	}
5635 
5636 	/* perform any regulator specific init */
5637 	if (init_data && init_data->regulator_init) {
5638 		ret = init_data->regulator_init(rdev->reg_data);
5639 		if (ret < 0)
5640 			goto wash;
5641 	}
5642 
5643 	if (config->ena_gpiod) {
5644 		ret = regulator_ena_gpio_request(rdev, config);
5645 		if (ret != 0) {
5646 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5647 				 ERR_PTR(ret));
5648 			goto wash;
5649 		}
5650 		/* The regulator core took over the GPIO descriptor */
5651 		dangling_cfg_gpiod = false;
5652 		dangling_of_gpiod = false;
5653 	}
5654 
5655 	ret = set_machine_constraints(rdev);
5656 	if (ret == -EPROBE_DEFER && !resolved_early) {
5657 		/* Regulator might be in bypass mode and so needs its supply
5658 		 * to set the constraints
5659 		 */
5660 		/* FIXME: this currently triggers a chicken-and-egg problem
5661 		 * when creating -SUPPLY symlink in sysfs to a regulator
5662 		 * that is just being created
5663 		 */
5664 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5665 			 rdev->supply_name);
5666 		ret = regulator_resolve_supply(rdev);
5667 		if (!ret)
5668 			ret = set_machine_constraints(rdev);
5669 		else
5670 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5671 				 ERR_PTR(ret));
5672 	}
5673 	if (ret < 0)
5674 		goto wash;
5675 
5676 	ret = regulator_init_coupling(rdev);
5677 	if (ret < 0)
5678 		goto wash;
5679 
5680 	/* add consumers devices */
5681 	if (init_data) {
5682 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5683 			ret = set_consumer_device_supply(rdev,
5684 				init_data->consumer_supplies[i].dev_name,
5685 				init_data->consumer_supplies[i].supply);
5686 			if (ret < 0) {
5687 				dev_err(dev, "Failed to set supply %s\n",
5688 					init_data->consumer_supplies[i].supply);
5689 				goto unset_supplies;
5690 			}
5691 		}
5692 	}
5693 
5694 	if (!rdev->desc->ops->get_voltage &&
5695 	    !rdev->desc->ops->list_voltage &&
5696 	    !rdev->desc->fixed_uV)
5697 		rdev->is_switch = true;
5698 
5699 	ret = device_add(&rdev->dev);
5700 	if (ret != 0)
5701 		goto unset_supplies;
5702 
5703 	rdev_init_debugfs(rdev);
5704 
5705 	/* try to resolve regulators coupling since a new one was registered */
5706 	mutex_lock(&regulator_list_mutex);
5707 	regulator_resolve_coupling(rdev);
5708 	mutex_unlock(&regulator_list_mutex);
5709 
5710 	/* try to resolve regulators supply since a new one was registered */
5711 	class_for_each_device(&regulator_class, NULL, NULL,
5712 			      regulator_register_resolve_supply);
5713 	kfree(config);
5714 	return rdev;
5715 
5716 unset_supplies:
5717 	mutex_lock(&regulator_list_mutex);
5718 	unset_regulator_supplies(rdev);
5719 	regulator_remove_coupling(rdev);
5720 	mutex_unlock(&regulator_list_mutex);
5721 wash:
5722 	regulator_put(rdev->supply);
5723 	kfree(rdev->coupling_desc.coupled_rdevs);
5724 	mutex_lock(&regulator_list_mutex);
5725 	regulator_ena_gpio_free(rdev);
5726 	mutex_unlock(&regulator_list_mutex);
5727 	put_device(&rdev->dev);
5728 	rdev = NULL;
5729 clean:
5730 	if (dangling_of_gpiod)
5731 		gpiod_put(config->ena_gpiod);
5732 	if (rdev && rdev->dev.of_node)
5733 		of_node_put(rdev->dev.of_node);
5734 	kfree(rdev);
5735 	kfree(config);
5736 rinse:
5737 	if (dangling_cfg_gpiod)
5738 		gpiod_put(cfg->ena_gpiod);
5739 	return ERR_PTR(ret);
5740 }
5741 EXPORT_SYMBOL_GPL(regulator_register);
5742 
5743 /**
5744  * regulator_unregister - unregister regulator
5745  * @rdev: regulator to unregister
5746  *
5747  * Called by regulator drivers to unregister a regulator.
5748  */
5749 void regulator_unregister(struct regulator_dev *rdev)
5750 {
5751 	if (rdev == NULL)
5752 		return;
5753 
5754 	if (rdev->supply) {
5755 		while (rdev->use_count--)
5756 			regulator_disable(rdev->supply);
5757 		regulator_put(rdev->supply);
5758 	}
5759 
5760 	flush_work(&rdev->disable_work.work);
5761 
5762 	mutex_lock(&regulator_list_mutex);
5763 
5764 	WARN_ON(rdev->open_count);
5765 	regulator_remove_coupling(rdev);
5766 	unset_regulator_supplies(rdev);
5767 	list_del(&rdev->list);
5768 	regulator_ena_gpio_free(rdev);
5769 	device_unregister(&rdev->dev);
5770 
5771 	mutex_unlock(&regulator_list_mutex);
5772 }
5773 EXPORT_SYMBOL_GPL(regulator_unregister);
5774 
5775 #ifdef CONFIG_SUSPEND
5776 /**
5777  * regulator_suspend - prepare regulators for system wide suspend
5778  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5779  *
5780  * Configure each regulator with it's suspend operating parameters for state.
5781  */
5782 static int regulator_suspend(struct device *dev)
5783 {
5784 	struct regulator_dev *rdev = dev_to_rdev(dev);
5785 	suspend_state_t state = pm_suspend_target_state;
5786 	int ret;
5787 	const struct regulator_state *rstate;
5788 
5789 	rstate = regulator_get_suspend_state_check(rdev, state);
5790 	if (!rstate)
5791 		return 0;
5792 
5793 	regulator_lock(rdev);
5794 	ret = __suspend_set_state(rdev, rstate);
5795 	regulator_unlock(rdev);
5796 
5797 	return ret;
5798 }
5799 
5800 static int regulator_resume(struct device *dev)
5801 {
5802 	suspend_state_t state = pm_suspend_target_state;
5803 	struct regulator_dev *rdev = dev_to_rdev(dev);
5804 	struct regulator_state *rstate;
5805 	int ret = 0;
5806 
5807 	rstate = regulator_get_suspend_state(rdev, state);
5808 	if (rstate == NULL)
5809 		return 0;
5810 
5811 	/* Avoid grabbing the lock if we don't need to */
5812 	if (!rdev->desc->ops->resume)
5813 		return 0;
5814 
5815 	regulator_lock(rdev);
5816 
5817 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5818 	    rstate->enabled == DISABLE_IN_SUSPEND)
5819 		ret = rdev->desc->ops->resume(rdev);
5820 
5821 	regulator_unlock(rdev);
5822 
5823 	return ret;
5824 }
5825 #else /* !CONFIG_SUSPEND */
5826 
5827 #define regulator_suspend	NULL
5828 #define regulator_resume	NULL
5829 
5830 #endif /* !CONFIG_SUSPEND */
5831 
5832 #ifdef CONFIG_PM
5833 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5834 	.suspend	= regulator_suspend,
5835 	.resume		= regulator_resume,
5836 };
5837 #endif
5838 
5839 struct class regulator_class = {
5840 	.name = "regulator",
5841 	.dev_release = regulator_dev_release,
5842 	.dev_groups = regulator_dev_groups,
5843 #ifdef CONFIG_PM
5844 	.pm = &regulator_pm_ops,
5845 #endif
5846 };
5847 /**
5848  * regulator_has_full_constraints - the system has fully specified constraints
5849  *
5850  * Calling this function will cause the regulator API to disable all
5851  * regulators which have a zero use count and don't have an always_on
5852  * constraint in a late_initcall.
5853  *
5854  * The intention is that this will become the default behaviour in a
5855  * future kernel release so users are encouraged to use this facility
5856  * now.
5857  */
5858 void regulator_has_full_constraints(void)
5859 {
5860 	has_full_constraints = 1;
5861 }
5862 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5863 
5864 /**
5865  * rdev_get_drvdata - get rdev regulator driver data
5866  * @rdev: regulator
5867  *
5868  * Get rdev regulator driver private data. This call can be used in the
5869  * regulator driver context.
5870  */
5871 void *rdev_get_drvdata(struct regulator_dev *rdev)
5872 {
5873 	return rdev->reg_data;
5874 }
5875 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5876 
5877 /**
5878  * regulator_get_drvdata - get regulator driver data
5879  * @regulator: regulator
5880  *
5881  * Get regulator driver private data. This call can be used in the consumer
5882  * driver context when non API regulator specific functions need to be called.
5883  */
5884 void *regulator_get_drvdata(struct regulator *regulator)
5885 {
5886 	return regulator->rdev->reg_data;
5887 }
5888 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5889 
5890 /**
5891  * regulator_set_drvdata - set regulator driver data
5892  * @regulator: regulator
5893  * @data: data
5894  */
5895 void regulator_set_drvdata(struct regulator *regulator, void *data)
5896 {
5897 	regulator->rdev->reg_data = data;
5898 }
5899 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5900 
5901 /**
5902  * rdev_get_id - get regulator ID
5903  * @rdev: regulator
5904  */
5905 int rdev_get_id(struct regulator_dev *rdev)
5906 {
5907 	return rdev->desc->id;
5908 }
5909 EXPORT_SYMBOL_GPL(rdev_get_id);
5910 
5911 struct device *rdev_get_dev(struct regulator_dev *rdev)
5912 {
5913 	return &rdev->dev;
5914 }
5915 EXPORT_SYMBOL_GPL(rdev_get_dev);
5916 
5917 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5918 {
5919 	return rdev->regmap;
5920 }
5921 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5922 
5923 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5924 {
5925 	return reg_init_data->driver_data;
5926 }
5927 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5928 
5929 #ifdef CONFIG_DEBUG_FS
5930 static int supply_map_show(struct seq_file *sf, void *data)
5931 {
5932 	struct regulator_map *map;
5933 
5934 	list_for_each_entry(map, &regulator_map_list, list) {
5935 		seq_printf(sf, "%s -> %s.%s\n",
5936 				rdev_get_name(map->regulator), map->dev_name,
5937 				map->supply);
5938 	}
5939 
5940 	return 0;
5941 }
5942 DEFINE_SHOW_ATTRIBUTE(supply_map);
5943 
5944 struct summary_data {
5945 	struct seq_file *s;
5946 	struct regulator_dev *parent;
5947 	int level;
5948 };
5949 
5950 static void regulator_summary_show_subtree(struct seq_file *s,
5951 					   struct regulator_dev *rdev,
5952 					   int level);
5953 
5954 static int regulator_summary_show_children(struct device *dev, void *data)
5955 {
5956 	struct regulator_dev *rdev = dev_to_rdev(dev);
5957 	struct summary_data *summary_data = data;
5958 
5959 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5960 		regulator_summary_show_subtree(summary_data->s, rdev,
5961 					       summary_data->level + 1);
5962 
5963 	return 0;
5964 }
5965 
5966 static void regulator_summary_show_subtree(struct seq_file *s,
5967 					   struct regulator_dev *rdev,
5968 					   int level)
5969 {
5970 	struct regulation_constraints *c;
5971 	struct regulator *consumer;
5972 	struct summary_data summary_data;
5973 	unsigned int opmode;
5974 
5975 	if (!rdev)
5976 		return;
5977 
5978 	opmode = _regulator_get_mode_unlocked(rdev);
5979 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5980 		   level * 3 + 1, "",
5981 		   30 - level * 3, rdev_get_name(rdev),
5982 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5983 		   regulator_opmode_to_str(opmode));
5984 
5985 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5986 	seq_printf(s, "%5dmA ",
5987 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5988 
5989 	c = rdev->constraints;
5990 	if (c) {
5991 		switch (rdev->desc->type) {
5992 		case REGULATOR_VOLTAGE:
5993 			seq_printf(s, "%5dmV %5dmV ",
5994 				   c->min_uV / 1000, c->max_uV / 1000);
5995 			break;
5996 		case REGULATOR_CURRENT:
5997 			seq_printf(s, "%5dmA %5dmA ",
5998 				   c->min_uA / 1000, c->max_uA / 1000);
5999 			break;
6000 		}
6001 	}
6002 
6003 	seq_puts(s, "\n");
6004 
6005 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6006 		if (consumer->dev && consumer->dev->class == &regulator_class)
6007 			continue;
6008 
6009 		seq_printf(s, "%*s%-*s ",
6010 			   (level + 1) * 3 + 1, "",
6011 			   30 - (level + 1) * 3,
6012 			   consumer->supply_name ? consumer->supply_name :
6013 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6014 
6015 		switch (rdev->desc->type) {
6016 		case REGULATOR_VOLTAGE:
6017 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6018 				   consumer->enable_count,
6019 				   consumer->uA_load / 1000,
6020 				   consumer->uA_load && !consumer->enable_count ?
6021 				   '*' : ' ',
6022 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6023 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6024 			break;
6025 		case REGULATOR_CURRENT:
6026 			break;
6027 		}
6028 
6029 		seq_puts(s, "\n");
6030 	}
6031 
6032 	summary_data.s = s;
6033 	summary_data.level = level;
6034 	summary_data.parent = rdev;
6035 
6036 	class_for_each_device(&regulator_class, NULL, &summary_data,
6037 			      regulator_summary_show_children);
6038 }
6039 
6040 struct summary_lock_data {
6041 	struct ww_acquire_ctx *ww_ctx;
6042 	struct regulator_dev **new_contended_rdev;
6043 	struct regulator_dev **old_contended_rdev;
6044 };
6045 
6046 static int regulator_summary_lock_one(struct device *dev, void *data)
6047 {
6048 	struct regulator_dev *rdev = dev_to_rdev(dev);
6049 	struct summary_lock_data *lock_data = data;
6050 	int ret = 0;
6051 
6052 	if (rdev != *lock_data->old_contended_rdev) {
6053 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6054 
6055 		if (ret == -EDEADLK)
6056 			*lock_data->new_contended_rdev = rdev;
6057 		else
6058 			WARN_ON_ONCE(ret);
6059 	} else {
6060 		*lock_data->old_contended_rdev = NULL;
6061 	}
6062 
6063 	return ret;
6064 }
6065 
6066 static int regulator_summary_unlock_one(struct device *dev, void *data)
6067 {
6068 	struct regulator_dev *rdev = dev_to_rdev(dev);
6069 	struct summary_lock_data *lock_data = data;
6070 
6071 	if (lock_data) {
6072 		if (rdev == *lock_data->new_contended_rdev)
6073 			return -EDEADLK;
6074 	}
6075 
6076 	regulator_unlock(rdev);
6077 
6078 	return 0;
6079 }
6080 
6081 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6082 				      struct regulator_dev **new_contended_rdev,
6083 				      struct regulator_dev **old_contended_rdev)
6084 {
6085 	struct summary_lock_data lock_data;
6086 	int ret;
6087 
6088 	lock_data.ww_ctx = ww_ctx;
6089 	lock_data.new_contended_rdev = new_contended_rdev;
6090 	lock_data.old_contended_rdev = old_contended_rdev;
6091 
6092 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6093 				    regulator_summary_lock_one);
6094 	if (ret)
6095 		class_for_each_device(&regulator_class, NULL, &lock_data,
6096 				      regulator_summary_unlock_one);
6097 
6098 	return ret;
6099 }
6100 
6101 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6102 {
6103 	struct regulator_dev *new_contended_rdev = NULL;
6104 	struct regulator_dev *old_contended_rdev = NULL;
6105 	int err;
6106 
6107 	mutex_lock(&regulator_list_mutex);
6108 
6109 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6110 
6111 	do {
6112 		if (new_contended_rdev) {
6113 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6114 			old_contended_rdev = new_contended_rdev;
6115 			old_contended_rdev->ref_cnt++;
6116 			old_contended_rdev->mutex_owner = current;
6117 		}
6118 
6119 		err = regulator_summary_lock_all(ww_ctx,
6120 						 &new_contended_rdev,
6121 						 &old_contended_rdev);
6122 
6123 		if (old_contended_rdev)
6124 			regulator_unlock(old_contended_rdev);
6125 
6126 	} while (err == -EDEADLK);
6127 
6128 	ww_acquire_done(ww_ctx);
6129 }
6130 
6131 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6132 {
6133 	class_for_each_device(&regulator_class, NULL, NULL,
6134 			      regulator_summary_unlock_one);
6135 	ww_acquire_fini(ww_ctx);
6136 
6137 	mutex_unlock(&regulator_list_mutex);
6138 }
6139 
6140 static int regulator_summary_show_roots(struct device *dev, void *data)
6141 {
6142 	struct regulator_dev *rdev = dev_to_rdev(dev);
6143 	struct seq_file *s = data;
6144 
6145 	if (!rdev->supply)
6146 		regulator_summary_show_subtree(s, rdev, 0);
6147 
6148 	return 0;
6149 }
6150 
6151 static int regulator_summary_show(struct seq_file *s, void *data)
6152 {
6153 	struct ww_acquire_ctx ww_ctx;
6154 
6155 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6156 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6157 
6158 	regulator_summary_lock(&ww_ctx);
6159 
6160 	class_for_each_device(&regulator_class, NULL, s,
6161 			      regulator_summary_show_roots);
6162 
6163 	regulator_summary_unlock(&ww_ctx);
6164 
6165 	return 0;
6166 }
6167 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6168 #endif /* CONFIG_DEBUG_FS */
6169 
6170 static int __init regulator_init(void)
6171 {
6172 	int ret;
6173 
6174 	ret = class_register(&regulator_class);
6175 
6176 	debugfs_root = debugfs_create_dir("regulator", NULL);
6177 	if (IS_ERR(debugfs_root))
6178 		pr_debug("regulator: Failed to create debugfs directory\n");
6179 
6180 #ifdef CONFIG_DEBUG_FS
6181 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6182 			    &supply_map_fops);
6183 
6184 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6185 			    NULL, &regulator_summary_fops);
6186 #endif
6187 	regulator_dummy_init();
6188 
6189 	regulator_coupler_register(&generic_regulator_coupler);
6190 
6191 	return ret;
6192 }
6193 
6194 /* init early to allow our consumers to complete system booting */
6195 core_initcall(regulator_init);
6196 
6197 static int regulator_late_cleanup(struct device *dev, void *data)
6198 {
6199 	struct regulator_dev *rdev = dev_to_rdev(dev);
6200 	struct regulation_constraints *c = rdev->constraints;
6201 	int ret;
6202 
6203 	if (c && c->always_on)
6204 		return 0;
6205 
6206 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6207 		return 0;
6208 
6209 	regulator_lock(rdev);
6210 
6211 	if (rdev->use_count)
6212 		goto unlock;
6213 
6214 	/* If reading the status failed, assume that it's off. */
6215 	if (_regulator_is_enabled(rdev) <= 0)
6216 		goto unlock;
6217 
6218 	if (have_full_constraints()) {
6219 		/* We log since this may kill the system if it goes
6220 		 * wrong.
6221 		 */
6222 		rdev_info(rdev, "disabling\n");
6223 		ret = _regulator_do_disable(rdev);
6224 		if (ret != 0)
6225 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6226 	} else {
6227 		/* The intention is that in future we will
6228 		 * assume that full constraints are provided
6229 		 * so warn even if we aren't going to do
6230 		 * anything here.
6231 		 */
6232 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6233 	}
6234 
6235 unlock:
6236 	regulator_unlock(rdev);
6237 
6238 	return 0;
6239 }
6240 
6241 static void regulator_init_complete_work_function(struct work_struct *work)
6242 {
6243 	/*
6244 	 * Regulators may had failed to resolve their input supplies
6245 	 * when were registered, either because the input supply was
6246 	 * not registered yet or because its parent device was not
6247 	 * bound yet. So attempt to resolve the input supplies for
6248 	 * pending regulators before trying to disable unused ones.
6249 	 */
6250 	class_for_each_device(&regulator_class, NULL, NULL,
6251 			      regulator_register_resolve_supply);
6252 
6253 	/* If we have a full configuration then disable any regulators
6254 	 * we have permission to change the status for and which are
6255 	 * not in use or always_on.  This is effectively the default
6256 	 * for DT and ACPI as they have full constraints.
6257 	 */
6258 	class_for_each_device(&regulator_class, NULL, NULL,
6259 			      regulator_late_cleanup);
6260 }
6261 
6262 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6263 			    regulator_init_complete_work_function);
6264 
6265 static int __init regulator_init_complete(void)
6266 {
6267 	/*
6268 	 * Since DT doesn't provide an idiomatic mechanism for
6269 	 * enabling full constraints and since it's much more natural
6270 	 * with DT to provide them just assume that a DT enabled
6271 	 * system has full constraints.
6272 	 */
6273 	if (of_have_populated_dt())
6274 		has_full_constraints = true;
6275 
6276 	/*
6277 	 * We punt completion for an arbitrary amount of time since
6278 	 * systems like distros will load many drivers from userspace
6279 	 * so consumers might not always be ready yet, this is
6280 	 * particularly an issue with laptops where this might bounce
6281 	 * the display off then on.  Ideally we'd get a notification
6282 	 * from userspace when this happens but we don't so just wait
6283 	 * a bit and hope we waited long enough.  It'd be better if
6284 	 * we'd only do this on systems that need it, and a kernel
6285 	 * command line option might be useful.
6286 	 */
6287 	schedule_delayed_work(&regulator_init_complete_work,
6288 			      msecs_to_jiffies(30000));
6289 
6290 	return 0;
6291 }
6292 late_initcall_sync(regulator_init_complete);
6293