xref: /openbmc/linux/drivers/regulator/core.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 	struct regulator_dev *c_rdev;
222 	int i;
223 
224 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226 
227 		if (rdev->supply->rdev == c_rdev)
228 			return true;
229 	}
230 
231 	return false;
232 }
233 
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 				       unsigned int n_coupled)
236 {
237 	struct regulator_dev *c_rdev, *supply_rdev;
238 	int i, supply_n_coupled;
239 
240 	for (i = n_coupled; i > 0; i--) {
241 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 
243 		if (!c_rdev)
244 			continue;
245 
246 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 			supply_rdev = c_rdev->supply->rdev;
248 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249 
250 			regulator_unlock_recursive(supply_rdev,
251 						   supply_n_coupled);
252 		}
253 
254 		regulator_unlock(c_rdev);
255 	}
256 }
257 
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 				    struct regulator_dev **new_contended_rdev,
260 				    struct regulator_dev **old_contended_rdev,
261 				    struct ww_acquire_ctx *ww_ctx)
262 {
263 	struct regulator_dev *c_rdev;
264 	int i, err;
265 
266 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268 
269 		if (!c_rdev)
270 			continue;
271 
272 		if (c_rdev != *old_contended_rdev) {
273 			err = regulator_lock_nested(c_rdev, ww_ctx);
274 			if (err) {
275 				if (err == -EDEADLK) {
276 					*new_contended_rdev = c_rdev;
277 					goto err_unlock;
278 				}
279 
280 				/* shouldn't happen */
281 				WARN_ON_ONCE(err != -EALREADY);
282 			}
283 		} else {
284 			*old_contended_rdev = NULL;
285 		}
286 
287 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 			err = regulator_lock_recursive(c_rdev->supply->rdev,
289 						       new_contended_rdev,
290 						       old_contended_rdev,
291 						       ww_ctx);
292 			if (err) {
293 				regulator_unlock(c_rdev);
294 				goto err_unlock;
295 			}
296 		}
297 	}
298 
299 	return 0;
300 
301 err_unlock:
302 	regulator_unlock_recursive(rdev, i);
303 
304 	return err;
305 }
306 
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *				regulators
310  * @rdev:			regulator source
311  * @ww_ctx:			w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 				       struct ww_acquire_ctx *ww_ctx)
317 {
318 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 	ww_acquire_fini(ww_ctx);
320 }
321 
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:			regulator source
325  * @ww_ctx:			w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 				     struct ww_acquire_ctx *ww_ctx)
332 {
333 	struct regulator_dev *new_contended_rdev = NULL;
334 	struct regulator_dev *old_contended_rdev = NULL;
335 	int err;
336 
337 	mutex_lock(&regulator_list_mutex);
338 
339 	ww_acquire_init(ww_ctx, &regulator_ww_class);
340 
341 	do {
342 		if (new_contended_rdev) {
343 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 			old_contended_rdev = new_contended_rdev;
345 			old_contended_rdev->ref_cnt++;
346 		}
347 
348 		err = regulator_lock_recursive(rdev,
349 					       &new_contended_rdev,
350 					       &old_contended_rdev,
351 					       ww_ctx);
352 
353 		if (old_contended_rdev)
354 			regulator_unlock(old_contended_rdev);
355 
356 	} while (err == -EDEADLK);
357 
358 	ww_acquire_done(ww_ctx);
359 
360 	mutex_unlock(&regulator_list_mutex);
361 }
362 
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 						  const char *prop_name)
376 {
377 	struct device_node *regnode = NULL;
378 	struct device_node *child = NULL;
379 
380 	for_each_child_of_node(parent, child) {
381 		regnode = of_parse_phandle(child, prop_name, 0);
382 
383 		if (!regnode) {
384 			regnode = of_get_child_regulator(child, prop_name);
385 			if (regnode)
386 				goto err_node_put;
387 		} else {
388 			goto err_node_put;
389 		}
390 	}
391 	return NULL;
392 
393 err_node_put:
394 	of_node_put(child);
395 	return regnode;
396 }
397 
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 	struct device_node *regnode = NULL;
410 	char prop_name[64]; /* 64 is max size of property name */
411 
412 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413 
414 	snprintf(prop_name, 64, "%s-supply", supply);
415 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416 
417 	if (!regnode) {
418 		regnode = of_get_child_regulator(dev->of_node, prop_name);
419 		if (regnode)
420 			return regnode;
421 
422 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 				prop_name, dev->of_node);
424 		return NULL;
425 	}
426 	return regnode;
427 }
428 
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 			    int *min_uV, int *max_uV)
432 {
433 	BUG_ON(*min_uV > *max_uV);
434 
435 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 		rdev_err(rdev, "voltage operation not allowed\n");
437 		return -EPERM;
438 	}
439 
440 	if (*max_uV > rdev->constraints->max_uV)
441 		*max_uV = rdev->constraints->max_uV;
442 	if (*min_uV < rdev->constraints->min_uV)
443 		*min_uV = rdev->constraints->min_uV;
444 
445 	if (*min_uV > *max_uV) {
446 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 			 *min_uV, *max_uV);
448 		return -EINVAL;
449 	}
450 
451 	return 0;
452 }
453 
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459 
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 			      int *min_uV, int *max_uV,
465 			      suspend_state_t state)
466 {
467 	struct regulator *regulator;
468 	struct regulator_voltage *voltage;
469 
470 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 		voltage = &regulator->voltage[state];
472 		/*
473 		 * Assume consumers that didn't say anything are OK
474 		 * with anything in the constraint range.
475 		 */
476 		if (!voltage->min_uV && !voltage->max_uV)
477 			continue;
478 
479 		if (*max_uV > voltage->max_uV)
480 			*max_uV = voltage->max_uV;
481 		if (*min_uV < voltage->min_uV)
482 			*min_uV = voltage->min_uV;
483 	}
484 
485 	if (*min_uV > *max_uV) {
486 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 			*min_uV, *max_uV);
488 		return -EINVAL;
489 	}
490 
491 	return 0;
492 }
493 
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 					int *min_uA, int *max_uA)
497 {
498 	BUG_ON(*min_uA > *max_uA);
499 
500 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 		rdev_err(rdev, "current operation not allowed\n");
502 		return -EPERM;
503 	}
504 
505 	if (*max_uA > rdev->constraints->max_uA)
506 		*max_uA = rdev->constraints->max_uA;
507 	if (*min_uA < rdev->constraints->min_uA)
508 		*min_uA = rdev->constraints->min_uA;
509 
510 	if (*min_uA > *max_uA) {
511 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 			 *min_uA, *max_uA);
513 		return -EINVAL;
514 	}
515 
516 	return 0;
517 }
518 
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 				    unsigned int *mode)
522 {
523 	switch (*mode) {
524 	case REGULATOR_MODE_FAST:
525 	case REGULATOR_MODE_NORMAL:
526 	case REGULATOR_MODE_IDLE:
527 	case REGULATOR_MODE_STANDBY:
528 		break;
529 	default:
530 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 		return -EINVAL;
532 	}
533 
534 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 		rdev_err(rdev, "mode operation not allowed\n");
536 		return -EPERM;
537 	}
538 
539 	/* The modes are bitmasks, the most power hungry modes having
540 	 * the lowest values. If the requested mode isn't supported
541 	 * try higher modes.
542 	 */
543 	while (*mode) {
544 		if (rdev->constraints->valid_modes_mask & *mode)
545 			return 0;
546 		*mode /= 2;
547 	}
548 
549 	return -EINVAL;
550 }
551 
552 static inline struct regulator_state *
553 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
554 {
555 	if (rdev->constraints == NULL)
556 		return NULL;
557 
558 	switch (state) {
559 	case PM_SUSPEND_STANDBY:
560 		return &rdev->constraints->state_standby;
561 	case PM_SUSPEND_MEM:
562 		return &rdev->constraints->state_mem;
563 	case PM_SUSPEND_MAX:
564 		return &rdev->constraints->state_disk;
565 	default:
566 		return NULL;
567 	}
568 }
569 
570 static const struct regulator_state *
571 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
572 {
573 	const struct regulator_state *rstate;
574 
575 	rstate = regulator_get_suspend_state(rdev, state);
576 	if (rstate == NULL)
577 		return NULL;
578 
579 	/* If we have no suspend mode configuration don't set anything;
580 	 * only warn if the driver implements set_suspend_voltage or
581 	 * set_suspend_mode callback.
582 	 */
583 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
584 	    rstate->enabled != DISABLE_IN_SUSPEND) {
585 		if (rdev->desc->ops->set_suspend_voltage ||
586 		    rdev->desc->ops->set_suspend_mode)
587 			rdev_warn(rdev, "No configuration\n");
588 		return NULL;
589 	}
590 
591 	return rstate;
592 }
593 
594 static ssize_t regulator_uV_show(struct device *dev,
595 				struct device_attribute *attr, char *buf)
596 {
597 	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 	int uV;
599 
600 	regulator_lock(rdev);
601 	uV = regulator_get_voltage_rdev(rdev);
602 	regulator_unlock(rdev);
603 
604 	if (uV < 0)
605 		return uV;
606 	return sprintf(buf, "%d\n", uV);
607 }
608 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
609 
610 static ssize_t regulator_uA_show(struct device *dev,
611 				struct device_attribute *attr, char *buf)
612 {
613 	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 
615 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
616 }
617 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
618 
619 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
620 			 char *buf)
621 {
622 	struct regulator_dev *rdev = dev_get_drvdata(dev);
623 
624 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
625 }
626 static DEVICE_ATTR_RO(name);
627 
628 static const char *regulator_opmode_to_str(int mode)
629 {
630 	switch (mode) {
631 	case REGULATOR_MODE_FAST:
632 		return "fast";
633 	case REGULATOR_MODE_NORMAL:
634 		return "normal";
635 	case REGULATOR_MODE_IDLE:
636 		return "idle";
637 	case REGULATOR_MODE_STANDBY:
638 		return "standby";
639 	}
640 	return "unknown";
641 }
642 
643 static ssize_t regulator_print_opmode(char *buf, int mode)
644 {
645 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
646 }
647 
648 static ssize_t regulator_opmode_show(struct device *dev,
649 				    struct device_attribute *attr, char *buf)
650 {
651 	struct regulator_dev *rdev = dev_get_drvdata(dev);
652 
653 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
654 }
655 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
656 
657 static ssize_t regulator_print_state(char *buf, int state)
658 {
659 	if (state > 0)
660 		return sprintf(buf, "enabled\n");
661 	else if (state == 0)
662 		return sprintf(buf, "disabled\n");
663 	else
664 		return sprintf(buf, "unknown\n");
665 }
666 
667 static ssize_t regulator_state_show(struct device *dev,
668 				   struct device_attribute *attr, char *buf)
669 {
670 	struct regulator_dev *rdev = dev_get_drvdata(dev);
671 	ssize_t ret;
672 
673 	regulator_lock(rdev);
674 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
675 	regulator_unlock(rdev);
676 
677 	return ret;
678 }
679 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
680 
681 static ssize_t regulator_status_show(struct device *dev,
682 				   struct device_attribute *attr, char *buf)
683 {
684 	struct regulator_dev *rdev = dev_get_drvdata(dev);
685 	int status;
686 	char *label;
687 
688 	status = rdev->desc->ops->get_status(rdev);
689 	if (status < 0)
690 		return status;
691 
692 	switch (status) {
693 	case REGULATOR_STATUS_OFF:
694 		label = "off";
695 		break;
696 	case REGULATOR_STATUS_ON:
697 		label = "on";
698 		break;
699 	case REGULATOR_STATUS_ERROR:
700 		label = "error";
701 		break;
702 	case REGULATOR_STATUS_FAST:
703 		label = "fast";
704 		break;
705 	case REGULATOR_STATUS_NORMAL:
706 		label = "normal";
707 		break;
708 	case REGULATOR_STATUS_IDLE:
709 		label = "idle";
710 		break;
711 	case REGULATOR_STATUS_STANDBY:
712 		label = "standby";
713 		break;
714 	case REGULATOR_STATUS_BYPASS:
715 		label = "bypass";
716 		break;
717 	case REGULATOR_STATUS_UNDEFINED:
718 		label = "undefined";
719 		break;
720 	default:
721 		return -ERANGE;
722 	}
723 
724 	return sprintf(buf, "%s\n", label);
725 }
726 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
727 
728 static ssize_t regulator_min_uA_show(struct device *dev,
729 				    struct device_attribute *attr, char *buf)
730 {
731 	struct regulator_dev *rdev = dev_get_drvdata(dev);
732 
733 	if (!rdev->constraints)
734 		return sprintf(buf, "constraint not defined\n");
735 
736 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
737 }
738 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
739 
740 static ssize_t regulator_max_uA_show(struct device *dev,
741 				    struct device_attribute *attr, char *buf)
742 {
743 	struct regulator_dev *rdev = dev_get_drvdata(dev);
744 
745 	if (!rdev->constraints)
746 		return sprintf(buf, "constraint not defined\n");
747 
748 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
749 }
750 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
751 
752 static ssize_t regulator_min_uV_show(struct device *dev,
753 				    struct device_attribute *attr, char *buf)
754 {
755 	struct regulator_dev *rdev = dev_get_drvdata(dev);
756 
757 	if (!rdev->constraints)
758 		return sprintf(buf, "constraint not defined\n");
759 
760 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
761 }
762 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
763 
764 static ssize_t regulator_max_uV_show(struct device *dev,
765 				    struct device_attribute *attr, char *buf)
766 {
767 	struct regulator_dev *rdev = dev_get_drvdata(dev);
768 
769 	if (!rdev->constraints)
770 		return sprintf(buf, "constraint not defined\n");
771 
772 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
773 }
774 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
775 
776 static ssize_t regulator_total_uA_show(struct device *dev,
777 				      struct device_attribute *attr, char *buf)
778 {
779 	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 	struct regulator *regulator;
781 	int uA = 0;
782 
783 	regulator_lock(rdev);
784 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
785 		if (regulator->enable_count)
786 			uA += regulator->uA_load;
787 	}
788 	regulator_unlock(rdev);
789 	return sprintf(buf, "%d\n", uA);
790 }
791 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
792 
793 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
794 			      char *buf)
795 {
796 	struct regulator_dev *rdev = dev_get_drvdata(dev);
797 	return sprintf(buf, "%d\n", rdev->use_count);
798 }
799 static DEVICE_ATTR_RO(num_users);
800 
801 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
802 			 char *buf)
803 {
804 	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 
806 	switch (rdev->desc->type) {
807 	case REGULATOR_VOLTAGE:
808 		return sprintf(buf, "voltage\n");
809 	case REGULATOR_CURRENT:
810 		return sprintf(buf, "current\n");
811 	}
812 	return sprintf(buf, "unknown\n");
813 }
814 static DEVICE_ATTR_RO(type);
815 
816 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
817 				struct device_attribute *attr, char *buf)
818 {
819 	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 
821 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
822 }
823 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
824 		regulator_suspend_mem_uV_show, NULL);
825 
826 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
827 				struct device_attribute *attr, char *buf)
828 {
829 	struct regulator_dev *rdev = dev_get_drvdata(dev);
830 
831 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
832 }
833 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
834 		regulator_suspend_disk_uV_show, NULL);
835 
836 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
837 				struct device_attribute *attr, char *buf)
838 {
839 	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 
841 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
842 }
843 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
844 		regulator_suspend_standby_uV_show, NULL);
845 
846 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
847 				struct device_attribute *attr, char *buf)
848 {
849 	struct regulator_dev *rdev = dev_get_drvdata(dev);
850 
851 	return regulator_print_opmode(buf,
852 		rdev->constraints->state_mem.mode);
853 }
854 static DEVICE_ATTR(suspend_mem_mode, 0444,
855 		regulator_suspend_mem_mode_show, NULL);
856 
857 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
858 				struct device_attribute *attr, char *buf)
859 {
860 	struct regulator_dev *rdev = dev_get_drvdata(dev);
861 
862 	return regulator_print_opmode(buf,
863 		rdev->constraints->state_disk.mode);
864 }
865 static DEVICE_ATTR(suspend_disk_mode, 0444,
866 		regulator_suspend_disk_mode_show, NULL);
867 
868 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
869 				struct device_attribute *attr, char *buf)
870 {
871 	struct regulator_dev *rdev = dev_get_drvdata(dev);
872 
873 	return regulator_print_opmode(buf,
874 		rdev->constraints->state_standby.mode);
875 }
876 static DEVICE_ATTR(suspend_standby_mode, 0444,
877 		regulator_suspend_standby_mode_show, NULL);
878 
879 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
880 				   struct device_attribute *attr, char *buf)
881 {
882 	struct regulator_dev *rdev = dev_get_drvdata(dev);
883 
884 	return regulator_print_state(buf,
885 			rdev->constraints->state_mem.enabled);
886 }
887 static DEVICE_ATTR(suspend_mem_state, 0444,
888 		regulator_suspend_mem_state_show, NULL);
889 
890 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
891 				   struct device_attribute *attr, char *buf)
892 {
893 	struct regulator_dev *rdev = dev_get_drvdata(dev);
894 
895 	return regulator_print_state(buf,
896 			rdev->constraints->state_disk.enabled);
897 }
898 static DEVICE_ATTR(suspend_disk_state, 0444,
899 		regulator_suspend_disk_state_show, NULL);
900 
901 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
902 				   struct device_attribute *attr, char *buf)
903 {
904 	struct regulator_dev *rdev = dev_get_drvdata(dev);
905 
906 	return regulator_print_state(buf,
907 			rdev->constraints->state_standby.enabled);
908 }
909 static DEVICE_ATTR(suspend_standby_state, 0444,
910 		regulator_suspend_standby_state_show, NULL);
911 
912 static ssize_t regulator_bypass_show(struct device *dev,
913 				     struct device_attribute *attr, char *buf)
914 {
915 	struct regulator_dev *rdev = dev_get_drvdata(dev);
916 	const char *report;
917 	bool bypass;
918 	int ret;
919 
920 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
921 
922 	if (ret != 0)
923 		report = "unknown";
924 	else if (bypass)
925 		report = "enabled";
926 	else
927 		report = "disabled";
928 
929 	return sprintf(buf, "%s\n", report);
930 }
931 static DEVICE_ATTR(bypass, 0444,
932 		   regulator_bypass_show, NULL);
933 
934 /* Calculate the new optimum regulator operating mode based on the new total
935  * consumer load. All locks held by caller
936  */
937 static int drms_uA_update(struct regulator_dev *rdev)
938 {
939 	struct regulator *sibling;
940 	int current_uA = 0, output_uV, input_uV, err;
941 	unsigned int mode;
942 
943 	/*
944 	 * first check to see if we can set modes at all, otherwise just
945 	 * tell the consumer everything is OK.
946 	 */
947 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
948 		rdev_dbg(rdev, "DRMS operation not allowed\n");
949 		return 0;
950 	}
951 
952 	if (!rdev->desc->ops->get_optimum_mode &&
953 	    !rdev->desc->ops->set_load)
954 		return 0;
955 
956 	if (!rdev->desc->ops->set_mode &&
957 	    !rdev->desc->ops->set_load)
958 		return -EINVAL;
959 
960 	/* calc total requested load */
961 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
962 		if (sibling->enable_count)
963 			current_uA += sibling->uA_load;
964 	}
965 
966 	current_uA += rdev->constraints->system_load;
967 
968 	if (rdev->desc->ops->set_load) {
969 		/* set the optimum mode for our new total regulator load */
970 		err = rdev->desc->ops->set_load(rdev, current_uA);
971 		if (err < 0)
972 			rdev_err(rdev, "failed to set load %d: %pe\n",
973 				 current_uA, ERR_PTR(err));
974 	} else {
975 		/* get output voltage */
976 		output_uV = regulator_get_voltage_rdev(rdev);
977 		if (output_uV <= 0) {
978 			rdev_err(rdev, "invalid output voltage found\n");
979 			return -EINVAL;
980 		}
981 
982 		/* get input voltage */
983 		input_uV = 0;
984 		if (rdev->supply)
985 			input_uV = regulator_get_voltage(rdev->supply);
986 		if (input_uV <= 0)
987 			input_uV = rdev->constraints->input_uV;
988 		if (input_uV <= 0) {
989 			rdev_err(rdev, "invalid input voltage found\n");
990 			return -EINVAL;
991 		}
992 
993 		/* now get the optimum mode for our new total regulator load */
994 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
995 							 output_uV, current_uA);
996 
997 		/* check the new mode is allowed */
998 		err = regulator_mode_constrain(rdev, &mode);
999 		if (err < 0) {
1000 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1001 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1002 			return err;
1003 		}
1004 
1005 		err = rdev->desc->ops->set_mode(rdev, mode);
1006 		if (err < 0)
1007 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1008 				 mode, ERR_PTR(err));
1009 	}
1010 
1011 	return err;
1012 }
1013 
1014 static int __suspend_set_state(struct regulator_dev *rdev,
1015 			       const struct regulator_state *rstate)
1016 {
1017 	int ret = 0;
1018 
1019 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1020 		rdev->desc->ops->set_suspend_enable)
1021 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1022 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1023 		rdev->desc->ops->set_suspend_disable)
1024 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1025 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1026 		ret = 0;
1027 
1028 	if (ret < 0) {
1029 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1030 		return ret;
1031 	}
1032 
1033 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1034 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1035 		if (ret < 0) {
1036 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1037 			return ret;
1038 		}
1039 	}
1040 
1041 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1042 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1043 		if (ret < 0) {
1044 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1045 			return ret;
1046 		}
1047 	}
1048 
1049 	return ret;
1050 }
1051 
1052 static int suspend_set_initial_state(struct regulator_dev *rdev)
1053 {
1054 	const struct regulator_state *rstate;
1055 
1056 	rstate = regulator_get_suspend_state_check(rdev,
1057 			rdev->constraints->initial_state);
1058 	if (!rstate)
1059 		return 0;
1060 
1061 	return __suspend_set_state(rdev, rstate);
1062 }
1063 
1064 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1065 static void print_constraints_debug(struct regulator_dev *rdev)
1066 {
1067 	struct regulation_constraints *constraints = rdev->constraints;
1068 	char buf[160] = "";
1069 	size_t len = sizeof(buf) - 1;
1070 	int count = 0;
1071 	int ret;
1072 
1073 	if (constraints->min_uV && constraints->max_uV) {
1074 		if (constraints->min_uV == constraints->max_uV)
1075 			count += scnprintf(buf + count, len - count, "%d mV ",
1076 					   constraints->min_uV / 1000);
1077 		else
1078 			count += scnprintf(buf + count, len - count,
1079 					   "%d <--> %d mV ",
1080 					   constraints->min_uV / 1000,
1081 					   constraints->max_uV / 1000);
1082 	}
1083 
1084 	if (!constraints->min_uV ||
1085 	    constraints->min_uV != constraints->max_uV) {
1086 		ret = regulator_get_voltage_rdev(rdev);
1087 		if (ret > 0)
1088 			count += scnprintf(buf + count, len - count,
1089 					   "at %d mV ", ret / 1000);
1090 	}
1091 
1092 	if (constraints->uV_offset)
1093 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1094 				   constraints->uV_offset / 1000);
1095 
1096 	if (constraints->min_uA && constraints->max_uA) {
1097 		if (constraints->min_uA == constraints->max_uA)
1098 			count += scnprintf(buf + count, len - count, "%d mA ",
1099 					   constraints->min_uA / 1000);
1100 		else
1101 			count += scnprintf(buf + count, len - count,
1102 					   "%d <--> %d mA ",
1103 					   constraints->min_uA / 1000,
1104 					   constraints->max_uA / 1000);
1105 	}
1106 
1107 	if (!constraints->min_uA ||
1108 	    constraints->min_uA != constraints->max_uA) {
1109 		ret = _regulator_get_current_limit(rdev);
1110 		if (ret > 0)
1111 			count += scnprintf(buf + count, len - count,
1112 					   "at %d mA ", ret / 1000);
1113 	}
1114 
1115 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1116 		count += scnprintf(buf + count, len - count, "fast ");
1117 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1118 		count += scnprintf(buf + count, len - count, "normal ");
1119 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1120 		count += scnprintf(buf + count, len - count, "idle ");
1121 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1122 		count += scnprintf(buf + count, len - count, "standby ");
1123 
1124 	if (!count)
1125 		count = scnprintf(buf, len, "no parameters");
1126 	else
1127 		--count;
1128 
1129 	count += scnprintf(buf + count, len - count, ", %s",
1130 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1131 
1132 	rdev_dbg(rdev, "%s\n", buf);
1133 }
1134 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1136 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1137 
1138 static void print_constraints(struct regulator_dev *rdev)
1139 {
1140 	struct regulation_constraints *constraints = rdev->constraints;
1141 
1142 	print_constraints_debug(rdev);
1143 
1144 	if ((constraints->min_uV != constraints->max_uV) &&
1145 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1146 		rdev_warn(rdev,
1147 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1148 }
1149 
1150 static int machine_constraints_voltage(struct regulator_dev *rdev,
1151 	struct regulation_constraints *constraints)
1152 {
1153 	const struct regulator_ops *ops = rdev->desc->ops;
1154 	int ret;
1155 
1156 	/* do we need to apply the constraint voltage */
1157 	if (rdev->constraints->apply_uV &&
1158 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1159 		int target_min, target_max;
1160 		int current_uV = regulator_get_voltage_rdev(rdev);
1161 
1162 		if (current_uV == -ENOTRECOVERABLE) {
1163 			/* This regulator can't be read and must be initialized */
1164 			rdev_info(rdev, "Setting %d-%duV\n",
1165 				  rdev->constraints->min_uV,
1166 				  rdev->constraints->max_uV);
1167 			_regulator_do_set_voltage(rdev,
1168 						  rdev->constraints->min_uV,
1169 						  rdev->constraints->max_uV);
1170 			current_uV = regulator_get_voltage_rdev(rdev);
1171 		}
1172 
1173 		if (current_uV < 0) {
1174 			rdev_err(rdev,
1175 				 "failed to get the current voltage: %pe\n",
1176 				 ERR_PTR(current_uV));
1177 			return current_uV;
1178 		}
1179 
1180 		/*
1181 		 * If we're below the minimum voltage move up to the
1182 		 * minimum voltage, if we're above the maximum voltage
1183 		 * then move down to the maximum.
1184 		 */
1185 		target_min = current_uV;
1186 		target_max = current_uV;
1187 
1188 		if (current_uV < rdev->constraints->min_uV) {
1189 			target_min = rdev->constraints->min_uV;
1190 			target_max = rdev->constraints->min_uV;
1191 		}
1192 
1193 		if (current_uV > rdev->constraints->max_uV) {
1194 			target_min = rdev->constraints->max_uV;
1195 			target_max = rdev->constraints->max_uV;
1196 		}
1197 
1198 		if (target_min != current_uV || target_max != current_uV) {
1199 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1200 				  current_uV, target_min, target_max);
1201 			ret = _regulator_do_set_voltage(
1202 				rdev, target_min, target_max);
1203 			if (ret < 0) {
1204 				rdev_err(rdev,
1205 					"failed to apply %d-%duV constraint: %pe\n",
1206 					target_min, target_max, ERR_PTR(ret));
1207 				return ret;
1208 			}
1209 		}
1210 	}
1211 
1212 	/* constrain machine-level voltage specs to fit
1213 	 * the actual range supported by this regulator.
1214 	 */
1215 	if (ops->list_voltage && rdev->desc->n_voltages) {
1216 		int	count = rdev->desc->n_voltages;
1217 		int	i;
1218 		int	min_uV = INT_MAX;
1219 		int	max_uV = INT_MIN;
1220 		int	cmin = constraints->min_uV;
1221 		int	cmax = constraints->max_uV;
1222 
1223 		/* it's safe to autoconfigure fixed-voltage supplies
1224 		 * and the constraints are used by list_voltage.
1225 		 */
1226 		if (count == 1 && !cmin) {
1227 			cmin = 1;
1228 			cmax = INT_MAX;
1229 			constraints->min_uV = cmin;
1230 			constraints->max_uV = cmax;
1231 		}
1232 
1233 		/* voltage constraints are optional */
1234 		if ((cmin == 0) && (cmax == 0))
1235 			return 0;
1236 
1237 		/* else require explicit machine-level constraints */
1238 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1239 			rdev_err(rdev, "invalid voltage constraints\n");
1240 			return -EINVAL;
1241 		}
1242 
1243 		/* no need to loop voltages if range is continuous */
1244 		if (rdev->desc->continuous_voltage_range)
1245 			return 0;
1246 
1247 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1248 		for (i = 0; i < count; i++) {
1249 			int	value;
1250 
1251 			value = ops->list_voltage(rdev, i);
1252 			if (value <= 0)
1253 				continue;
1254 
1255 			/* maybe adjust [min_uV..max_uV] */
1256 			if (value >= cmin && value < min_uV)
1257 				min_uV = value;
1258 			if (value <= cmax && value > max_uV)
1259 				max_uV = value;
1260 		}
1261 
1262 		/* final: [min_uV..max_uV] valid iff constraints valid */
1263 		if (max_uV < min_uV) {
1264 			rdev_err(rdev,
1265 				 "unsupportable voltage constraints %u-%uuV\n",
1266 				 min_uV, max_uV);
1267 			return -EINVAL;
1268 		}
1269 
1270 		/* use regulator's subset of machine constraints */
1271 		if (constraints->min_uV < min_uV) {
1272 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1273 				 constraints->min_uV, min_uV);
1274 			constraints->min_uV = min_uV;
1275 		}
1276 		if (constraints->max_uV > max_uV) {
1277 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1278 				 constraints->max_uV, max_uV);
1279 			constraints->max_uV = max_uV;
1280 		}
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int machine_constraints_current(struct regulator_dev *rdev,
1287 	struct regulation_constraints *constraints)
1288 {
1289 	const struct regulator_ops *ops = rdev->desc->ops;
1290 	int ret;
1291 
1292 	if (!constraints->min_uA && !constraints->max_uA)
1293 		return 0;
1294 
1295 	if (constraints->min_uA > constraints->max_uA) {
1296 		rdev_err(rdev, "Invalid current constraints\n");
1297 		return -EINVAL;
1298 	}
1299 
1300 	if (!ops->set_current_limit || !ops->get_current_limit) {
1301 		rdev_warn(rdev, "Operation of current configuration missing\n");
1302 		return 0;
1303 	}
1304 
1305 	/* Set regulator current in constraints range */
1306 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1307 			constraints->max_uA);
1308 	if (ret < 0) {
1309 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1310 		return ret;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int _regulator_do_enable(struct regulator_dev *rdev);
1317 
1318 /**
1319  * set_machine_constraints - sets regulator constraints
1320  * @rdev: regulator source
1321  *
1322  * Allows platform initialisation code to define and constrain
1323  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1324  * Constraints *must* be set by platform code in order for some
1325  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1326  * set_mode.
1327  */
1328 static int set_machine_constraints(struct regulator_dev *rdev)
1329 {
1330 	int ret = 0;
1331 	const struct regulator_ops *ops = rdev->desc->ops;
1332 
1333 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1334 	if (ret != 0)
1335 		return ret;
1336 
1337 	ret = machine_constraints_current(rdev, rdev->constraints);
1338 	if (ret != 0)
1339 		return ret;
1340 
1341 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1342 		ret = ops->set_input_current_limit(rdev,
1343 						   rdev->constraints->ilim_uA);
1344 		if (ret < 0) {
1345 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1346 			return ret;
1347 		}
1348 	}
1349 
1350 	/* do we need to setup our suspend state */
1351 	if (rdev->constraints->initial_state) {
1352 		ret = suspend_set_initial_state(rdev);
1353 		if (ret < 0) {
1354 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1355 			return ret;
1356 		}
1357 	}
1358 
1359 	if (rdev->constraints->initial_mode) {
1360 		if (!ops->set_mode) {
1361 			rdev_err(rdev, "no set_mode operation\n");
1362 			return -EINVAL;
1363 		}
1364 
1365 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1366 		if (ret < 0) {
1367 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1368 			return ret;
1369 		}
1370 	} else if (rdev->constraints->system_load) {
1371 		/*
1372 		 * We'll only apply the initial system load if an
1373 		 * initial mode wasn't specified.
1374 		 */
1375 		drms_uA_update(rdev);
1376 	}
1377 
1378 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1379 		&& ops->set_ramp_delay) {
1380 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1381 		if (ret < 0) {
1382 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1383 			return ret;
1384 		}
1385 	}
1386 
1387 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1388 		ret = ops->set_pull_down(rdev);
1389 		if (ret < 0) {
1390 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1391 			return ret;
1392 		}
1393 	}
1394 
1395 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1396 		ret = ops->set_soft_start(rdev);
1397 		if (ret < 0) {
1398 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1399 			return ret;
1400 		}
1401 	}
1402 
1403 	if (rdev->constraints->over_current_protection
1404 		&& ops->set_over_current_protection) {
1405 		ret = ops->set_over_current_protection(rdev);
1406 		if (ret < 0) {
1407 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1408 				 ERR_PTR(ret));
1409 			return ret;
1410 		}
1411 	}
1412 
1413 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1414 		bool ad_state = (rdev->constraints->active_discharge ==
1415 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1416 
1417 		ret = ops->set_active_discharge(rdev, ad_state);
1418 		if (ret < 0) {
1419 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1420 			return ret;
1421 		}
1422 	}
1423 
1424 	/* If the constraints say the regulator should be on at this point
1425 	 * and we have control then make sure it is enabled.
1426 	 */
1427 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1428 		/* If we want to enable this regulator, make sure that we know
1429 		 * the supplying regulator.
1430 		 */
1431 		if (rdev->supply_name && !rdev->supply)
1432 			return -EPROBE_DEFER;
1433 
1434 		if (rdev->supply) {
1435 			ret = regulator_enable(rdev->supply);
1436 			if (ret < 0) {
1437 				_regulator_put(rdev->supply);
1438 				rdev->supply = NULL;
1439 				return ret;
1440 			}
1441 		}
1442 
1443 		ret = _regulator_do_enable(rdev);
1444 		if (ret < 0 && ret != -EINVAL) {
1445 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1446 			return ret;
1447 		}
1448 
1449 		if (rdev->constraints->always_on)
1450 			rdev->use_count++;
1451 	} else if (rdev->desc->off_on_delay) {
1452 		rdev->last_off = ktime_get();
1453 	}
1454 
1455 	print_constraints(rdev);
1456 	return 0;
1457 }
1458 
1459 /**
1460  * set_supply - set regulator supply regulator
1461  * @rdev: regulator name
1462  * @supply_rdev: supply regulator name
1463  *
1464  * Called by platform initialisation code to set the supply regulator for this
1465  * regulator. This ensures that a regulators supply will also be enabled by the
1466  * core if it's child is enabled.
1467  */
1468 static int set_supply(struct regulator_dev *rdev,
1469 		      struct regulator_dev *supply_rdev)
1470 {
1471 	int err;
1472 
1473 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1474 
1475 	if (!try_module_get(supply_rdev->owner))
1476 		return -ENODEV;
1477 
1478 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479 	if (rdev->supply == NULL) {
1480 		err = -ENOMEM;
1481 		return err;
1482 	}
1483 	supply_rdev->open_count++;
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490  * @rdev:         regulator source
1491  * @consumer_dev_name: dev_name() string for device supply applies to
1492  * @supply:       symbolic name for supply
1493  *
1494  * Allows platform initialisation code to map physical regulator
1495  * sources to symbolic names for supplies for use by devices.  Devices
1496  * should use these symbolic names to request regulators, avoiding the
1497  * need to provide board-specific regulator names as platform data.
1498  */
1499 static int set_consumer_device_supply(struct regulator_dev *rdev,
1500 				      const char *consumer_dev_name,
1501 				      const char *supply)
1502 {
1503 	struct regulator_map *node, *new_node;
1504 	int has_dev;
1505 
1506 	if (supply == NULL)
1507 		return -EINVAL;
1508 
1509 	if (consumer_dev_name != NULL)
1510 		has_dev = 1;
1511 	else
1512 		has_dev = 0;
1513 
1514 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1515 	if (new_node == NULL)
1516 		return -ENOMEM;
1517 
1518 	new_node->regulator = rdev;
1519 	new_node->supply = supply;
1520 
1521 	if (has_dev) {
1522 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1523 		if (new_node->dev_name == NULL) {
1524 			kfree(new_node);
1525 			return -ENOMEM;
1526 		}
1527 	}
1528 
1529 	mutex_lock(&regulator_list_mutex);
1530 	list_for_each_entry(node, &regulator_map_list, list) {
1531 		if (node->dev_name && consumer_dev_name) {
1532 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1533 				continue;
1534 		} else if (node->dev_name || consumer_dev_name) {
1535 			continue;
1536 		}
1537 
1538 		if (strcmp(node->supply, supply) != 0)
1539 			continue;
1540 
1541 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1542 			 consumer_dev_name,
1543 			 dev_name(&node->regulator->dev),
1544 			 node->regulator->desc->name,
1545 			 supply,
1546 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1547 		goto fail;
1548 	}
1549 
1550 	list_add(&new_node->list, &regulator_map_list);
1551 	mutex_unlock(&regulator_list_mutex);
1552 
1553 	return 0;
1554 
1555 fail:
1556 	mutex_unlock(&regulator_list_mutex);
1557 	kfree(new_node->dev_name);
1558 	kfree(new_node);
1559 	return -EBUSY;
1560 }
1561 
1562 static void unset_regulator_supplies(struct regulator_dev *rdev)
1563 {
1564 	struct regulator_map *node, *n;
1565 
1566 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1567 		if (rdev == node->regulator) {
1568 			list_del(&node->list);
1569 			kfree(node->dev_name);
1570 			kfree(node);
1571 		}
1572 	}
1573 }
1574 
1575 #ifdef CONFIG_DEBUG_FS
1576 static ssize_t constraint_flags_read_file(struct file *file,
1577 					  char __user *user_buf,
1578 					  size_t count, loff_t *ppos)
1579 {
1580 	const struct regulator *regulator = file->private_data;
1581 	const struct regulation_constraints *c = regulator->rdev->constraints;
1582 	char *buf;
1583 	ssize_t ret;
1584 
1585 	if (!c)
1586 		return 0;
1587 
1588 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1589 	if (!buf)
1590 		return -ENOMEM;
1591 
1592 	ret = snprintf(buf, PAGE_SIZE,
1593 			"always_on: %u\n"
1594 			"boot_on: %u\n"
1595 			"apply_uV: %u\n"
1596 			"ramp_disable: %u\n"
1597 			"soft_start: %u\n"
1598 			"pull_down: %u\n"
1599 			"over_current_protection: %u\n",
1600 			c->always_on,
1601 			c->boot_on,
1602 			c->apply_uV,
1603 			c->ramp_disable,
1604 			c->soft_start,
1605 			c->pull_down,
1606 			c->over_current_protection);
1607 
1608 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1609 	kfree(buf);
1610 
1611 	return ret;
1612 }
1613 
1614 #endif
1615 
1616 static const struct file_operations constraint_flags_fops = {
1617 #ifdef CONFIG_DEBUG_FS
1618 	.open = simple_open,
1619 	.read = constraint_flags_read_file,
1620 	.llseek = default_llseek,
1621 #endif
1622 };
1623 
1624 #define REG_STR_SIZE	64
1625 
1626 static struct regulator *create_regulator(struct regulator_dev *rdev,
1627 					  struct device *dev,
1628 					  const char *supply_name)
1629 {
1630 	struct regulator *regulator;
1631 	int err = 0;
1632 
1633 	if (dev) {
1634 		char buf[REG_STR_SIZE];
1635 		int size;
1636 
1637 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1638 				dev->kobj.name, supply_name);
1639 		if (size >= REG_STR_SIZE)
1640 			return NULL;
1641 
1642 		supply_name = kstrdup(buf, GFP_KERNEL);
1643 		if (supply_name == NULL)
1644 			return NULL;
1645 	} else {
1646 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1647 		if (supply_name == NULL)
1648 			return NULL;
1649 	}
1650 
1651 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652 	if (regulator == NULL) {
1653 		kfree(supply_name);
1654 		return NULL;
1655 	}
1656 
1657 	regulator->rdev = rdev;
1658 	regulator->supply_name = supply_name;
1659 
1660 	regulator_lock(rdev);
1661 	list_add(&regulator->list, &rdev->consumer_list);
1662 	regulator_unlock(rdev);
1663 
1664 	if (dev) {
1665 		regulator->dev = dev;
1666 
1667 		/* Add a link to the device sysfs entry */
1668 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669 					       supply_name);
1670 		if (err) {
1671 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1672 				  dev->kobj.name, ERR_PTR(err));
1673 			/* non-fatal */
1674 		}
1675 	}
1676 
1677 	if (err != -EEXIST)
1678 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1679 	if (!regulator->debugfs) {
1680 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681 	} else {
1682 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1683 				   &regulator->uA_load);
1684 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688 		debugfs_create_file("constraint_flags", 0444,
1689 				    regulator->debugfs, regulator,
1690 				    &constraint_flags_fops);
1691 	}
1692 
1693 	/*
1694 	 * Check now if the regulator is an always on regulator - if
1695 	 * it is then we don't need to do nearly so much work for
1696 	 * enable/disable calls.
1697 	 */
1698 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699 	    _regulator_is_enabled(rdev))
1700 		regulator->always_on = true;
1701 
1702 	return regulator;
1703 }
1704 
1705 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1706 {
1707 	if (rdev->constraints && rdev->constraints->enable_time)
1708 		return rdev->constraints->enable_time;
1709 	if (rdev->desc->ops->enable_time)
1710 		return rdev->desc->ops->enable_time(rdev);
1711 	return rdev->desc->enable_time;
1712 }
1713 
1714 static struct regulator_supply_alias *regulator_find_supply_alias(
1715 		struct device *dev, const char *supply)
1716 {
1717 	struct regulator_supply_alias *map;
1718 
1719 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1720 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1721 			return map;
1722 
1723 	return NULL;
1724 }
1725 
1726 static void regulator_supply_alias(struct device **dev, const char **supply)
1727 {
1728 	struct regulator_supply_alias *map;
1729 
1730 	map = regulator_find_supply_alias(*dev, *supply);
1731 	if (map) {
1732 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1733 				*supply, map->alias_supply,
1734 				dev_name(map->alias_dev));
1735 		*dev = map->alias_dev;
1736 		*supply = map->alias_supply;
1737 	}
1738 }
1739 
1740 static int regulator_match(struct device *dev, const void *data)
1741 {
1742 	struct regulator_dev *r = dev_to_rdev(dev);
1743 
1744 	return strcmp(rdev_get_name(r), data) == 0;
1745 }
1746 
1747 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1748 {
1749 	struct device *dev;
1750 
1751 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1752 
1753 	return dev ? dev_to_rdev(dev) : NULL;
1754 }
1755 
1756 /**
1757  * regulator_dev_lookup - lookup a regulator device.
1758  * @dev: device for regulator "consumer".
1759  * @supply: Supply name or regulator ID.
1760  *
1761  * If successful, returns a struct regulator_dev that corresponds to the name
1762  * @supply and with the embedded struct device refcount incremented by one.
1763  * The refcount must be dropped by calling put_device().
1764  * On failure one of the following ERR-PTR-encoded values is returned:
1765  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1766  * in the future.
1767  */
1768 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769 						  const char *supply)
1770 {
1771 	struct regulator_dev *r = NULL;
1772 	struct device_node *node;
1773 	struct regulator_map *map;
1774 	const char *devname = NULL;
1775 
1776 	regulator_supply_alias(&dev, &supply);
1777 
1778 	/* first do a dt based lookup */
1779 	if (dev && dev->of_node) {
1780 		node = of_get_regulator(dev, supply);
1781 		if (node) {
1782 			r = of_find_regulator_by_node(node);
1783 			if (r)
1784 				return r;
1785 
1786 			/*
1787 			 * We have a node, but there is no device.
1788 			 * assume it has not registered yet.
1789 			 */
1790 			return ERR_PTR(-EPROBE_DEFER);
1791 		}
1792 	}
1793 
1794 	/* if not found, try doing it non-dt way */
1795 	if (dev)
1796 		devname = dev_name(dev);
1797 
1798 	mutex_lock(&regulator_list_mutex);
1799 	list_for_each_entry(map, &regulator_map_list, list) {
1800 		/* If the mapping has a device set up it must match */
1801 		if (map->dev_name &&
1802 		    (!devname || strcmp(map->dev_name, devname)))
1803 			continue;
1804 
1805 		if (strcmp(map->supply, supply) == 0 &&
1806 		    get_device(&map->regulator->dev)) {
1807 			r = map->regulator;
1808 			break;
1809 		}
1810 	}
1811 	mutex_unlock(&regulator_list_mutex);
1812 
1813 	if (r)
1814 		return r;
1815 
1816 	r = regulator_lookup_by_name(supply);
1817 	if (r)
1818 		return r;
1819 
1820 	return ERR_PTR(-ENODEV);
1821 }
1822 
1823 static int regulator_resolve_supply(struct regulator_dev *rdev)
1824 {
1825 	struct regulator_dev *r;
1826 	struct device *dev = rdev->dev.parent;
1827 	int ret = 0;
1828 
1829 	/* No supply to resolve? */
1830 	if (!rdev->supply_name)
1831 		return 0;
1832 
1833 	/* Supply already resolved? (fast-path without locking contention) */
1834 	if (rdev->supply)
1835 		return 0;
1836 
1837 	r = regulator_dev_lookup(dev, rdev->supply_name);
1838 	if (IS_ERR(r)) {
1839 		ret = PTR_ERR(r);
1840 
1841 		/* Did the lookup explicitly defer for us? */
1842 		if (ret == -EPROBE_DEFER)
1843 			goto out;
1844 
1845 		if (have_full_constraints()) {
1846 			r = dummy_regulator_rdev;
1847 			get_device(&r->dev);
1848 		} else {
1849 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1850 				rdev->supply_name, rdev->desc->name);
1851 			ret = -EPROBE_DEFER;
1852 			goto out;
1853 		}
1854 	}
1855 
1856 	if (r == rdev) {
1857 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1858 			rdev->desc->name, rdev->supply_name);
1859 		if (!have_full_constraints()) {
1860 			ret = -EINVAL;
1861 			goto out;
1862 		}
1863 		r = dummy_regulator_rdev;
1864 		get_device(&r->dev);
1865 	}
1866 
1867 	/*
1868 	 * If the supply's parent device is not the same as the
1869 	 * regulator's parent device, then ensure the parent device
1870 	 * is bound before we resolve the supply, in case the parent
1871 	 * device get probe deferred and unregisters the supply.
1872 	 */
1873 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1874 		if (!device_is_bound(r->dev.parent)) {
1875 			put_device(&r->dev);
1876 			ret = -EPROBE_DEFER;
1877 			goto out;
1878 		}
1879 	}
1880 
1881 	/* Recursively resolve the supply of the supply */
1882 	ret = regulator_resolve_supply(r);
1883 	if (ret < 0) {
1884 		put_device(&r->dev);
1885 		goto out;
1886 	}
1887 
1888 	/*
1889 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1890 	 * between rdev->supply null check and setting rdev->supply in
1891 	 * set_supply() from concurrent tasks.
1892 	 */
1893 	regulator_lock(rdev);
1894 
1895 	/* Supply just resolved by a concurrent task? */
1896 	if (rdev->supply) {
1897 		regulator_unlock(rdev);
1898 		put_device(&r->dev);
1899 		goto out;
1900 	}
1901 
1902 	ret = set_supply(rdev, r);
1903 	if (ret < 0) {
1904 		regulator_unlock(rdev);
1905 		put_device(&r->dev);
1906 		goto out;
1907 	}
1908 
1909 	regulator_unlock(rdev);
1910 
1911 	/*
1912 	 * In set_machine_constraints() we may have turned this regulator on
1913 	 * but we couldn't propagate to the supply if it hadn't been resolved
1914 	 * yet.  Do it now.
1915 	 */
1916 	if (rdev->use_count) {
1917 		ret = regulator_enable(rdev->supply);
1918 		if (ret < 0) {
1919 			_regulator_put(rdev->supply);
1920 			rdev->supply = NULL;
1921 			goto out;
1922 		}
1923 	}
1924 
1925 out:
1926 	return ret;
1927 }
1928 
1929 /* Internal regulator request function */
1930 struct regulator *_regulator_get(struct device *dev, const char *id,
1931 				 enum regulator_get_type get_type)
1932 {
1933 	struct regulator_dev *rdev;
1934 	struct regulator *regulator;
1935 	struct device_link *link;
1936 	int ret;
1937 
1938 	if (get_type >= MAX_GET_TYPE) {
1939 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1940 		return ERR_PTR(-EINVAL);
1941 	}
1942 
1943 	if (id == NULL) {
1944 		pr_err("get() with no identifier\n");
1945 		return ERR_PTR(-EINVAL);
1946 	}
1947 
1948 	rdev = regulator_dev_lookup(dev, id);
1949 	if (IS_ERR(rdev)) {
1950 		ret = PTR_ERR(rdev);
1951 
1952 		/*
1953 		 * If regulator_dev_lookup() fails with error other
1954 		 * than -ENODEV our job here is done, we simply return it.
1955 		 */
1956 		if (ret != -ENODEV)
1957 			return ERR_PTR(ret);
1958 
1959 		if (!have_full_constraints()) {
1960 			dev_warn(dev,
1961 				 "incomplete constraints, dummy supplies not allowed\n");
1962 			return ERR_PTR(-ENODEV);
1963 		}
1964 
1965 		switch (get_type) {
1966 		case NORMAL_GET:
1967 			/*
1968 			 * Assume that a regulator is physically present and
1969 			 * enabled, even if it isn't hooked up, and just
1970 			 * provide a dummy.
1971 			 */
1972 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1973 			rdev = dummy_regulator_rdev;
1974 			get_device(&rdev->dev);
1975 			break;
1976 
1977 		case EXCLUSIVE_GET:
1978 			dev_warn(dev,
1979 				 "dummy supplies not allowed for exclusive requests\n");
1980 			fallthrough;
1981 
1982 		default:
1983 			return ERR_PTR(-ENODEV);
1984 		}
1985 	}
1986 
1987 	if (rdev->exclusive) {
1988 		regulator = ERR_PTR(-EPERM);
1989 		put_device(&rdev->dev);
1990 		return regulator;
1991 	}
1992 
1993 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1994 		regulator = ERR_PTR(-EBUSY);
1995 		put_device(&rdev->dev);
1996 		return regulator;
1997 	}
1998 
1999 	mutex_lock(&regulator_list_mutex);
2000 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2001 	mutex_unlock(&regulator_list_mutex);
2002 
2003 	if (ret != 0) {
2004 		regulator = ERR_PTR(-EPROBE_DEFER);
2005 		put_device(&rdev->dev);
2006 		return regulator;
2007 	}
2008 
2009 	ret = regulator_resolve_supply(rdev);
2010 	if (ret < 0) {
2011 		regulator = ERR_PTR(ret);
2012 		put_device(&rdev->dev);
2013 		return regulator;
2014 	}
2015 
2016 	if (!try_module_get(rdev->owner)) {
2017 		regulator = ERR_PTR(-EPROBE_DEFER);
2018 		put_device(&rdev->dev);
2019 		return regulator;
2020 	}
2021 
2022 	regulator = create_regulator(rdev, dev, id);
2023 	if (regulator == NULL) {
2024 		regulator = ERR_PTR(-ENOMEM);
2025 		module_put(rdev->owner);
2026 		put_device(&rdev->dev);
2027 		return regulator;
2028 	}
2029 
2030 	rdev->open_count++;
2031 	if (get_type == EXCLUSIVE_GET) {
2032 		rdev->exclusive = 1;
2033 
2034 		ret = _regulator_is_enabled(rdev);
2035 		if (ret > 0)
2036 			rdev->use_count = 1;
2037 		else
2038 			rdev->use_count = 0;
2039 	}
2040 
2041 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2042 	if (!IS_ERR_OR_NULL(link))
2043 		regulator->device_link = true;
2044 
2045 	return regulator;
2046 }
2047 
2048 /**
2049  * regulator_get - lookup and obtain a reference to a regulator.
2050  * @dev: device for regulator "consumer"
2051  * @id: Supply name or regulator ID.
2052  *
2053  * Returns a struct regulator corresponding to the regulator producer,
2054  * or IS_ERR() condition containing errno.
2055  *
2056  * Use of supply names configured via set_consumer_device_supply() is
2057  * strongly encouraged.  It is recommended that the supply name used
2058  * should match the name used for the supply and/or the relevant
2059  * device pins in the datasheet.
2060  */
2061 struct regulator *regulator_get(struct device *dev, const char *id)
2062 {
2063 	return _regulator_get(dev, id, NORMAL_GET);
2064 }
2065 EXPORT_SYMBOL_GPL(regulator_get);
2066 
2067 /**
2068  * regulator_get_exclusive - obtain exclusive access to a regulator.
2069  * @dev: device for regulator "consumer"
2070  * @id: Supply name or regulator ID.
2071  *
2072  * Returns a struct regulator corresponding to the regulator producer,
2073  * or IS_ERR() condition containing errno.  Other consumers will be
2074  * unable to obtain this regulator while this reference is held and the
2075  * use count for the regulator will be initialised to reflect the current
2076  * state of the regulator.
2077  *
2078  * This is intended for use by consumers which cannot tolerate shared
2079  * use of the regulator such as those which need to force the
2080  * regulator off for correct operation of the hardware they are
2081  * controlling.
2082  *
2083  * Use of supply names configured via set_consumer_device_supply() is
2084  * strongly encouraged.  It is recommended that the supply name used
2085  * should match the name used for the supply and/or the relevant
2086  * device pins in the datasheet.
2087  */
2088 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2089 {
2090 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2093 
2094 /**
2095  * regulator_get_optional - obtain optional access to a regulator.
2096  * @dev: device for regulator "consumer"
2097  * @id: Supply name or regulator ID.
2098  *
2099  * Returns a struct regulator corresponding to the regulator producer,
2100  * or IS_ERR() condition containing errno.
2101  *
2102  * This is intended for use by consumers for devices which can have
2103  * some supplies unconnected in normal use, such as some MMC devices.
2104  * It can allow the regulator core to provide stub supplies for other
2105  * supplies requested using normal regulator_get() calls without
2106  * disrupting the operation of drivers that can handle absent
2107  * supplies.
2108  *
2109  * Use of supply names configured via set_consumer_device_supply() is
2110  * strongly encouraged.  It is recommended that the supply name used
2111  * should match the name used for the supply and/or the relevant
2112  * device pins in the datasheet.
2113  */
2114 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2115 {
2116 	return _regulator_get(dev, id, OPTIONAL_GET);
2117 }
2118 EXPORT_SYMBOL_GPL(regulator_get_optional);
2119 
2120 static void destroy_regulator(struct regulator *regulator)
2121 {
2122 	struct regulator_dev *rdev = regulator->rdev;
2123 
2124 	debugfs_remove_recursive(regulator->debugfs);
2125 
2126 	if (regulator->dev) {
2127 		if (regulator->device_link)
2128 			device_link_remove(regulator->dev, &rdev->dev);
2129 
2130 		/* remove any sysfs entries */
2131 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2132 	}
2133 
2134 	regulator_lock(rdev);
2135 	list_del(&regulator->list);
2136 
2137 	rdev->open_count--;
2138 	rdev->exclusive = 0;
2139 	regulator_unlock(rdev);
2140 
2141 	kfree_const(regulator->supply_name);
2142 	kfree(regulator);
2143 }
2144 
2145 /* regulator_list_mutex lock held by regulator_put() */
2146 static void _regulator_put(struct regulator *regulator)
2147 {
2148 	struct regulator_dev *rdev;
2149 
2150 	if (IS_ERR_OR_NULL(regulator))
2151 		return;
2152 
2153 	lockdep_assert_held_once(&regulator_list_mutex);
2154 
2155 	/* Docs say you must disable before calling regulator_put() */
2156 	WARN_ON(regulator->enable_count);
2157 
2158 	rdev = regulator->rdev;
2159 
2160 	destroy_regulator(regulator);
2161 
2162 	module_put(rdev->owner);
2163 	put_device(&rdev->dev);
2164 }
2165 
2166 /**
2167  * regulator_put - "free" the regulator source
2168  * @regulator: regulator source
2169  *
2170  * Note: drivers must ensure that all regulator_enable calls made on this
2171  * regulator source are balanced by regulator_disable calls prior to calling
2172  * this function.
2173  */
2174 void regulator_put(struct regulator *regulator)
2175 {
2176 	mutex_lock(&regulator_list_mutex);
2177 	_regulator_put(regulator);
2178 	mutex_unlock(&regulator_list_mutex);
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_put);
2181 
2182 /**
2183  * regulator_register_supply_alias - Provide device alias for supply lookup
2184  *
2185  * @dev: device that will be given as the regulator "consumer"
2186  * @id: Supply name or regulator ID
2187  * @alias_dev: device that should be used to lookup the supply
2188  * @alias_id: Supply name or regulator ID that should be used to lookup the
2189  * supply
2190  *
2191  * All lookups for id on dev will instead be conducted for alias_id on
2192  * alias_dev.
2193  */
2194 int regulator_register_supply_alias(struct device *dev, const char *id,
2195 				    struct device *alias_dev,
2196 				    const char *alias_id)
2197 {
2198 	struct regulator_supply_alias *map;
2199 
2200 	map = regulator_find_supply_alias(dev, id);
2201 	if (map)
2202 		return -EEXIST;
2203 
2204 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2205 	if (!map)
2206 		return -ENOMEM;
2207 
2208 	map->src_dev = dev;
2209 	map->src_supply = id;
2210 	map->alias_dev = alias_dev;
2211 	map->alias_supply = alias_id;
2212 
2213 	list_add(&map->list, &regulator_supply_alias_list);
2214 
2215 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2216 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2217 
2218 	return 0;
2219 }
2220 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2221 
2222 /**
2223  * regulator_unregister_supply_alias - Remove device alias
2224  *
2225  * @dev: device that will be given as the regulator "consumer"
2226  * @id: Supply name or regulator ID
2227  *
2228  * Remove a lookup alias if one exists for id on dev.
2229  */
2230 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2231 {
2232 	struct regulator_supply_alias *map;
2233 
2234 	map = regulator_find_supply_alias(dev, id);
2235 	if (map) {
2236 		list_del(&map->list);
2237 		kfree(map);
2238 	}
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2241 
2242 /**
2243  * regulator_bulk_register_supply_alias - register multiple aliases
2244  *
2245  * @dev: device that will be given as the regulator "consumer"
2246  * @id: List of supply names or regulator IDs
2247  * @alias_dev: device that should be used to lookup the supply
2248  * @alias_id: List of supply names or regulator IDs that should be used to
2249  * lookup the supply
2250  * @num_id: Number of aliases to register
2251  *
2252  * @return 0 on success, an errno on failure.
2253  *
2254  * This helper function allows drivers to register several supply
2255  * aliases in one operation.  If any of the aliases cannot be
2256  * registered any aliases that were registered will be removed
2257  * before returning to the caller.
2258  */
2259 int regulator_bulk_register_supply_alias(struct device *dev,
2260 					 const char *const *id,
2261 					 struct device *alias_dev,
2262 					 const char *const *alias_id,
2263 					 int num_id)
2264 {
2265 	int i;
2266 	int ret;
2267 
2268 	for (i = 0; i < num_id; ++i) {
2269 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2270 						      alias_id[i]);
2271 		if (ret < 0)
2272 			goto err;
2273 	}
2274 
2275 	return 0;
2276 
2277 err:
2278 	dev_err(dev,
2279 		"Failed to create supply alias %s,%s -> %s,%s\n",
2280 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2281 
2282 	while (--i >= 0)
2283 		regulator_unregister_supply_alias(dev, id[i]);
2284 
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2288 
2289 /**
2290  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2291  *
2292  * @dev: device that will be given as the regulator "consumer"
2293  * @id: List of supply names or regulator IDs
2294  * @num_id: Number of aliases to unregister
2295  *
2296  * This helper function allows drivers to unregister several supply
2297  * aliases in one operation.
2298  */
2299 void regulator_bulk_unregister_supply_alias(struct device *dev,
2300 					    const char *const *id,
2301 					    int num_id)
2302 {
2303 	int i;
2304 
2305 	for (i = 0; i < num_id; ++i)
2306 		regulator_unregister_supply_alias(dev, id[i]);
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2309 
2310 
2311 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2312 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2313 				const struct regulator_config *config)
2314 {
2315 	struct regulator_enable_gpio *pin, *new_pin;
2316 	struct gpio_desc *gpiod;
2317 
2318 	gpiod = config->ena_gpiod;
2319 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2320 
2321 	mutex_lock(&regulator_list_mutex);
2322 
2323 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2324 		if (pin->gpiod == gpiod) {
2325 			rdev_dbg(rdev, "GPIO is already used\n");
2326 			goto update_ena_gpio_to_rdev;
2327 		}
2328 	}
2329 
2330 	if (new_pin == NULL) {
2331 		mutex_unlock(&regulator_list_mutex);
2332 		return -ENOMEM;
2333 	}
2334 
2335 	pin = new_pin;
2336 	new_pin = NULL;
2337 
2338 	pin->gpiod = gpiod;
2339 	list_add(&pin->list, &regulator_ena_gpio_list);
2340 
2341 update_ena_gpio_to_rdev:
2342 	pin->request_count++;
2343 	rdev->ena_pin = pin;
2344 
2345 	mutex_unlock(&regulator_list_mutex);
2346 	kfree(new_pin);
2347 
2348 	return 0;
2349 }
2350 
2351 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2352 {
2353 	struct regulator_enable_gpio *pin, *n;
2354 
2355 	if (!rdev->ena_pin)
2356 		return;
2357 
2358 	/* Free the GPIO only in case of no use */
2359 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2360 		if (pin != rdev->ena_pin)
2361 			continue;
2362 
2363 		if (--pin->request_count)
2364 			break;
2365 
2366 		gpiod_put(pin->gpiod);
2367 		list_del(&pin->list);
2368 		kfree(pin);
2369 		break;
2370 	}
2371 
2372 	rdev->ena_pin = NULL;
2373 }
2374 
2375 /**
2376  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2377  * @rdev: regulator_dev structure
2378  * @enable: enable GPIO at initial use?
2379  *
2380  * GPIO is enabled in case of initial use. (enable_count is 0)
2381  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2382  */
2383 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2384 {
2385 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2386 
2387 	if (!pin)
2388 		return -EINVAL;
2389 
2390 	if (enable) {
2391 		/* Enable GPIO at initial use */
2392 		if (pin->enable_count == 0)
2393 			gpiod_set_value_cansleep(pin->gpiod, 1);
2394 
2395 		pin->enable_count++;
2396 	} else {
2397 		if (pin->enable_count > 1) {
2398 			pin->enable_count--;
2399 			return 0;
2400 		}
2401 
2402 		/* Disable GPIO if not used */
2403 		if (pin->enable_count <= 1) {
2404 			gpiod_set_value_cansleep(pin->gpiod, 0);
2405 			pin->enable_count = 0;
2406 		}
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 /**
2413  * _regulator_enable_delay - a delay helper function
2414  * @delay: time to delay in microseconds
2415  *
2416  * Delay for the requested amount of time as per the guidelines in:
2417  *
2418  *     Documentation/timers/timers-howto.rst
2419  *
2420  * The assumption here is that regulators will never be enabled in
2421  * atomic context and therefore sleeping functions can be used.
2422  */
2423 static void _regulator_enable_delay(unsigned int delay)
2424 {
2425 	unsigned int ms = delay / 1000;
2426 	unsigned int us = delay % 1000;
2427 
2428 	if (ms > 0) {
2429 		/*
2430 		 * For small enough values, handle super-millisecond
2431 		 * delays in the usleep_range() call below.
2432 		 */
2433 		if (ms < 20)
2434 			us += ms * 1000;
2435 		else
2436 			msleep(ms);
2437 	}
2438 
2439 	/*
2440 	 * Give the scheduler some room to coalesce with any other
2441 	 * wakeup sources. For delays shorter than 10 us, don't even
2442 	 * bother setting up high-resolution timers and just busy-
2443 	 * loop.
2444 	 */
2445 	if (us >= 10)
2446 		usleep_range(us, us + 100);
2447 	else
2448 		udelay(us);
2449 }
2450 
2451 /**
2452  * _regulator_check_status_enabled
2453  *
2454  * A helper function to check if the regulator status can be interpreted
2455  * as 'regulator is enabled'.
2456  * @rdev: the regulator device to check
2457  *
2458  * Return:
2459  * * 1			- if status shows regulator is in enabled state
2460  * * 0			- if not enabled state
2461  * * Error Value	- as received from ops->get_status()
2462  */
2463 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2464 {
2465 	int ret = rdev->desc->ops->get_status(rdev);
2466 
2467 	if (ret < 0) {
2468 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2469 		return ret;
2470 	}
2471 
2472 	switch (ret) {
2473 	case REGULATOR_STATUS_OFF:
2474 	case REGULATOR_STATUS_ERROR:
2475 	case REGULATOR_STATUS_UNDEFINED:
2476 		return 0;
2477 	default:
2478 		return 1;
2479 	}
2480 }
2481 
2482 static int _regulator_do_enable(struct regulator_dev *rdev)
2483 {
2484 	int ret, delay;
2485 
2486 	/* Query before enabling in case configuration dependent.  */
2487 	ret = _regulator_get_enable_time(rdev);
2488 	if (ret >= 0) {
2489 		delay = ret;
2490 	} else {
2491 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2492 		delay = 0;
2493 	}
2494 
2495 	trace_regulator_enable(rdev_get_name(rdev));
2496 
2497 	if (rdev->desc->off_on_delay && rdev->last_off) {
2498 		/* if needed, keep a distance of off_on_delay from last time
2499 		 * this regulator was disabled.
2500 		 */
2501 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2502 		s64 remaining = ktime_us_delta(end, ktime_get());
2503 
2504 		if (remaining > 0)
2505 			_regulator_enable_delay(remaining);
2506 	}
2507 
2508 	if (rdev->ena_pin) {
2509 		if (!rdev->ena_gpio_state) {
2510 			ret = regulator_ena_gpio_ctrl(rdev, true);
2511 			if (ret < 0)
2512 				return ret;
2513 			rdev->ena_gpio_state = 1;
2514 		}
2515 	} else if (rdev->desc->ops->enable) {
2516 		ret = rdev->desc->ops->enable(rdev);
2517 		if (ret < 0)
2518 			return ret;
2519 	} else {
2520 		return -EINVAL;
2521 	}
2522 
2523 	/* Allow the regulator to ramp; it would be useful to extend
2524 	 * this for bulk operations so that the regulators can ramp
2525 	 * together.
2526 	 */
2527 	trace_regulator_enable_delay(rdev_get_name(rdev));
2528 
2529 	/* If poll_enabled_time is set, poll upto the delay calculated
2530 	 * above, delaying poll_enabled_time uS to check if the regulator
2531 	 * actually got enabled.
2532 	 * If the regulator isn't enabled after enable_delay has
2533 	 * expired, return -ETIMEDOUT.
2534 	 */
2535 	if (rdev->desc->poll_enabled_time) {
2536 		unsigned int time_remaining = delay;
2537 
2538 		while (time_remaining > 0) {
2539 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2540 
2541 			if (rdev->desc->ops->get_status) {
2542 				ret = _regulator_check_status_enabled(rdev);
2543 				if (ret < 0)
2544 					return ret;
2545 				else if (ret)
2546 					break;
2547 			} else if (rdev->desc->ops->is_enabled(rdev))
2548 				break;
2549 
2550 			time_remaining -= rdev->desc->poll_enabled_time;
2551 		}
2552 
2553 		if (time_remaining <= 0) {
2554 			rdev_err(rdev, "Enabled check timed out\n");
2555 			return -ETIMEDOUT;
2556 		}
2557 	} else {
2558 		_regulator_enable_delay(delay);
2559 	}
2560 
2561 	trace_regulator_enable_complete(rdev_get_name(rdev));
2562 
2563 	return 0;
2564 }
2565 
2566 /**
2567  * _regulator_handle_consumer_enable - handle that a consumer enabled
2568  * @regulator: regulator source
2569  *
2570  * Some things on a regulator consumer (like the contribution towards total
2571  * load on the regulator) only have an effect when the consumer wants the
2572  * regulator enabled.  Explained in example with two consumers of the same
2573  * regulator:
2574  *   consumer A: set_load(100);       => total load = 0
2575  *   consumer A: regulator_enable();  => total load = 100
2576  *   consumer B: set_load(1000);      => total load = 100
2577  *   consumer B: regulator_enable();  => total load = 1100
2578  *   consumer A: regulator_disable(); => total_load = 1000
2579  *
2580  * This function (together with _regulator_handle_consumer_disable) is
2581  * responsible for keeping track of the refcount for a given regulator consumer
2582  * and applying / unapplying these things.
2583  *
2584  * Returns 0 upon no error; -error upon error.
2585  */
2586 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2587 {
2588 	struct regulator_dev *rdev = regulator->rdev;
2589 
2590 	lockdep_assert_held_once(&rdev->mutex.base);
2591 
2592 	regulator->enable_count++;
2593 	if (regulator->uA_load && regulator->enable_count == 1)
2594 		return drms_uA_update(rdev);
2595 
2596 	return 0;
2597 }
2598 
2599 /**
2600  * _regulator_handle_consumer_disable - handle that a consumer disabled
2601  * @regulator: regulator source
2602  *
2603  * The opposite of _regulator_handle_consumer_enable().
2604  *
2605  * Returns 0 upon no error; -error upon error.
2606  */
2607 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2608 {
2609 	struct regulator_dev *rdev = regulator->rdev;
2610 
2611 	lockdep_assert_held_once(&rdev->mutex.base);
2612 
2613 	if (!regulator->enable_count) {
2614 		rdev_err(rdev, "Underflow of regulator enable count\n");
2615 		return -EINVAL;
2616 	}
2617 
2618 	regulator->enable_count--;
2619 	if (regulator->uA_load && regulator->enable_count == 0)
2620 		return drms_uA_update(rdev);
2621 
2622 	return 0;
2623 }
2624 
2625 /* locks held by regulator_enable() */
2626 static int _regulator_enable(struct regulator *regulator)
2627 {
2628 	struct regulator_dev *rdev = regulator->rdev;
2629 	int ret;
2630 
2631 	lockdep_assert_held_once(&rdev->mutex.base);
2632 
2633 	if (rdev->use_count == 0 && rdev->supply) {
2634 		ret = _regulator_enable(rdev->supply);
2635 		if (ret < 0)
2636 			return ret;
2637 	}
2638 
2639 	/* balance only if there are regulators coupled */
2640 	if (rdev->coupling_desc.n_coupled > 1) {
2641 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2642 		if (ret < 0)
2643 			goto err_disable_supply;
2644 	}
2645 
2646 	ret = _regulator_handle_consumer_enable(regulator);
2647 	if (ret < 0)
2648 		goto err_disable_supply;
2649 
2650 	if (rdev->use_count == 0) {
2651 		/*
2652 		 * The regulator may already be enabled if it's not switchable
2653 		 * or was left on
2654 		 */
2655 		ret = _regulator_is_enabled(rdev);
2656 		if (ret == -EINVAL || ret == 0) {
2657 			if (!regulator_ops_is_valid(rdev,
2658 					REGULATOR_CHANGE_STATUS)) {
2659 				ret = -EPERM;
2660 				goto err_consumer_disable;
2661 			}
2662 
2663 			ret = _regulator_do_enable(rdev);
2664 			if (ret < 0)
2665 				goto err_consumer_disable;
2666 
2667 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2668 					     NULL);
2669 		} else if (ret < 0) {
2670 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2671 			goto err_consumer_disable;
2672 		}
2673 		/* Fallthrough on positive return values - already enabled */
2674 	}
2675 
2676 	rdev->use_count++;
2677 
2678 	return 0;
2679 
2680 err_consumer_disable:
2681 	_regulator_handle_consumer_disable(regulator);
2682 
2683 err_disable_supply:
2684 	if (rdev->use_count == 0 && rdev->supply)
2685 		_regulator_disable(rdev->supply);
2686 
2687 	return ret;
2688 }
2689 
2690 /**
2691  * regulator_enable - enable regulator output
2692  * @regulator: regulator source
2693  *
2694  * Request that the regulator be enabled with the regulator output at
2695  * the predefined voltage or current value.  Calls to regulator_enable()
2696  * must be balanced with calls to regulator_disable().
2697  *
2698  * NOTE: the output value can be set by other drivers, boot loader or may be
2699  * hardwired in the regulator.
2700  */
2701 int regulator_enable(struct regulator *regulator)
2702 {
2703 	struct regulator_dev *rdev = regulator->rdev;
2704 	struct ww_acquire_ctx ww_ctx;
2705 	int ret;
2706 
2707 	regulator_lock_dependent(rdev, &ww_ctx);
2708 	ret = _regulator_enable(regulator);
2709 	regulator_unlock_dependent(rdev, &ww_ctx);
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(regulator_enable);
2714 
2715 static int _regulator_do_disable(struct regulator_dev *rdev)
2716 {
2717 	int ret;
2718 
2719 	trace_regulator_disable(rdev_get_name(rdev));
2720 
2721 	if (rdev->ena_pin) {
2722 		if (rdev->ena_gpio_state) {
2723 			ret = regulator_ena_gpio_ctrl(rdev, false);
2724 			if (ret < 0)
2725 				return ret;
2726 			rdev->ena_gpio_state = 0;
2727 		}
2728 
2729 	} else if (rdev->desc->ops->disable) {
2730 		ret = rdev->desc->ops->disable(rdev);
2731 		if (ret != 0)
2732 			return ret;
2733 	}
2734 
2735 	if (rdev->desc->off_on_delay)
2736 		rdev->last_off = ktime_get();
2737 
2738 	trace_regulator_disable_complete(rdev_get_name(rdev));
2739 
2740 	return 0;
2741 }
2742 
2743 /* locks held by regulator_disable() */
2744 static int _regulator_disable(struct regulator *regulator)
2745 {
2746 	struct regulator_dev *rdev = regulator->rdev;
2747 	int ret = 0;
2748 
2749 	lockdep_assert_held_once(&rdev->mutex.base);
2750 
2751 	if (WARN(rdev->use_count <= 0,
2752 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2753 		return -EIO;
2754 
2755 	/* are we the last user and permitted to disable ? */
2756 	if (rdev->use_count == 1 &&
2757 	    (rdev->constraints && !rdev->constraints->always_on)) {
2758 
2759 		/* we are last user */
2760 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2761 			ret = _notifier_call_chain(rdev,
2762 						   REGULATOR_EVENT_PRE_DISABLE,
2763 						   NULL);
2764 			if (ret & NOTIFY_STOP_MASK)
2765 				return -EINVAL;
2766 
2767 			ret = _regulator_do_disable(rdev);
2768 			if (ret < 0) {
2769 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2770 				_notifier_call_chain(rdev,
2771 						REGULATOR_EVENT_ABORT_DISABLE,
2772 						NULL);
2773 				return ret;
2774 			}
2775 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2776 					NULL);
2777 		}
2778 
2779 		rdev->use_count = 0;
2780 	} else if (rdev->use_count > 1) {
2781 		rdev->use_count--;
2782 	}
2783 
2784 	if (ret == 0)
2785 		ret = _regulator_handle_consumer_disable(regulator);
2786 
2787 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2788 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789 
2790 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2791 		ret = _regulator_disable(rdev->supply);
2792 
2793 	return ret;
2794 }
2795 
2796 /**
2797  * regulator_disable - disable regulator output
2798  * @regulator: regulator source
2799  *
2800  * Disable the regulator output voltage or current.  Calls to
2801  * regulator_enable() must be balanced with calls to
2802  * regulator_disable().
2803  *
2804  * NOTE: this will only disable the regulator output if no other consumer
2805  * devices have it enabled, the regulator device supports disabling and
2806  * machine constraints permit this operation.
2807  */
2808 int regulator_disable(struct regulator *regulator)
2809 {
2810 	struct regulator_dev *rdev = regulator->rdev;
2811 	struct ww_acquire_ctx ww_ctx;
2812 	int ret;
2813 
2814 	regulator_lock_dependent(rdev, &ww_ctx);
2815 	ret = _regulator_disable(regulator);
2816 	regulator_unlock_dependent(rdev, &ww_ctx);
2817 
2818 	return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(regulator_disable);
2821 
2822 /* locks held by regulator_force_disable() */
2823 static int _regulator_force_disable(struct regulator_dev *rdev)
2824 {
2825 	int ret = 0;
2826 
2827 	lockdep_assert_held_once(&rdev->mutex.base);
2828 
2829 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2830 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2831 	if (ret & NOTIFY_STOP_MASK)
2832 		return -EINVAL;
2833 
2834 	ret = _regulator_do_disable(rdev);
2835 	if (ret < 0) {
2836 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2837 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2838 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2839 		return ret;
2840 	}
2841 
2842 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2843 			REGULATOR_EVENT_DISABLE, NULL);
2844 
2845 	return 0;
2846 }
2847 
2848 /**
2849  * regulator_force_disable - force disable regulator output
2850  * @regulator: regulator source
2851  *
2852  * Forcibly disable the regulator output voltage or current.
2853  * NOTE: this *will* disable the regulator output even if other consumer
2854  * devices have it enabled. This should be used for situations when device
2855  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2856  */
2857 int regulator_force_disable(struct regulator *regulator)
2858 {
2859 	struct regulator_dev *rdev = regulator->rdev;
2860 	struct ww_acquire_ctx ww_ctx;
2861 	int ret;
2862 
2863 	regulator_lock_dependent(rdev, &ww_ctx);
2864 
2865 	ret = _regulator_force_disable(regulator->rdev);
2866 
2867 	if (rdev->coupling_desc.n_coupled > 1)
2868 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2869 
2870 	if (regulator->uA_load) {
2871 		regulator->uA_load = 0;
2872 		ret = drms_uA_update(rdev);
2873 	}
2874 
2875 	if (rdev->use_count != 0 && rdev->supply)
2876 		_regulator_disable(rdev->supply);
2877 
2878 	regulator_unlock_dependent(rdev, &ww_ctx);
2879 
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_force_disable);
2883 
2884 static void regulator_disable_work(struct work_struct *work)
2885 {
2886 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2887 						  disable_work.work);
2888 	struct ww_acquire_ctx ww_ctx;
2889 	int count, i, ret;
2890 	struct regulator *regulator;
2891 	int total_count = 0;
2892 
2893 	regulator_lock_dependent(rdev, &ww_ctx);
2894 
2895 	/*
2896 	 * Workqueue functions queue the new work instance while the previous
2897 	 * work instance is being processed. Cancel the queued work instance
2898 	 * as the work instance under processing does the job of the queued
2899 	 * work instance.
2900 	 */
2901 	cancel_delayed_work(&rdev->disable_work);
2902 
2903 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2904 		count = regulator->deferred_disables;
2905 
2906 		if (!count)
2907 			continue;
2908 
2909 		total_count += count;
2910 		regulator->deferred_disables = 0;
2911 
2912 		for (i = 0; i < count; i++) {
2913 			ret = _regulator_disable(regulator);
2914 			if (ret != 0)
2915 				rdev_err(rdev, "Deferred disable failed: %pe\n",
2916 					 ERR_PTR(ret));
2917 		}
2918 	}
2919 	WARN_ON(!total_count);
2920 
2921 	if (rdev->coupling_desc.n_coupled > 1)
2922 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2923 
2924 	regulator_unlock_dependent(rdev, &ww_ctx);
2925 }
2926 
2927 /**
2928  * regulator_disable_deferred - disable regulator output with delay
2929  * @regulator: regulator source
2930  * @ms: milliseconds until the regulator is disabled
2931  *
2932  * Execute regulator_disable() on the regulator after a delay.  This
2933  * is intended for use with devices that require some time to quiesce.
2934  *
2935  * NOTE: this will only disable the regulator output if no other consumer
2936  * devices have it enabled, the regulator device supports disabling and
2937  * machine constraints permit this operation.
2938  */
2939 int regulator_disable_deferred(struct regulator *regulator, int ms)
2940 {
2941 	struct regulator_dev *rdev = regulator->rdev;
2942 
2943 	if (!ms)
2944 		return regulator_disable(regulator);
2945 
2946 	regulator_lock(rdev);
2947 	regulator->deferred_disables++;
2948 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2949 			 msecs_to_jiffies(ms));
2950 	regulator_unlock(rdev);
2951 
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2955 
2956 static int _regulator_is_enabled(struct regulator_dev *rdev)
2957 {
2958 	/* A GPIO control always takes precedence */
2959 	if (rdev->ena_pin)
2960 		return rdev->ena_gpio_state;
2961 
2962 	/* If we don't know then assume that the regulator is always on */
2963 	if (!rdev->desc->ops->is_enabled)
2964 		return 1;
2965 
2966 	return rdev->desc->ops->is_enabled(rdev);
2967 }
2968 
2969 static int _regulator_list_voltage(struct regulator_dev *rdev,
2970 				   unsigned selector, int lock)
2971 {
2972 	const struct regulator_ops *ops = rdev->desc->ops;
2973 	int ret;
2974 
2975 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2976 		return rdev->desc->fixed_uV;
2977 
2978 	if (ops->list_voltage) {
2979 		if (selector >= rdev->desc->n_voltages)
2980 			return -EINVAL;
2981 		if (selector < rdev->desc->linear_min_sel)
2982 			return 0;
2983 		if (lock)
2984 			regulator_lock(rdev);
2985 		ret = ops->list_voltage(rdev, selector);
2986 		if (lock)
2987 			regulator_unlock(rdev);
2988 	} else if (rdev->is_switch && rdev->supply) {
2989 		ret = _regulator_list_voltage(rdev->supply->rdev,
2990 					      selector, lock);
2991 	} else {
2992 		return -EINVAL;
2993 	}
2994 
2995 	if (ret > 0) {
2996 		if (ret < rdev->constraints->min_uV)
2997 			ret = 0;
2998 		else if (ret > rdev->constraints->max_uV)
2999 			ret = 0;
3000 	}
3001 
3002 	return ret;
3003 }
3004 
3005 /**
3006  * regulator_is_enabled - is the regulator output enabled
3007  * @regulator: regulator source
3008  *
3009  * Returns positive if the regulator driver backing the source/client
3010  * has requested that the device be enabled, zero if it hasn't, else a
3011  * negative errno code.
3012  *
3013  * Note that the device backing this regulator handle can have multiple
3014  * users, so it might be enabled even if regulator_enable() was never
3015  * called for this particular source.
3016  */
3017 int regulator_is_enabled(struct regulator *regulator)
3018 {
3019 	int ret;
3020 
3021 	if (regulator->always_on)
3022 		return 1;
3023 
3024 	regulator_lock(regulator->rdev);
3025 	ret = _regulator_is_enabled(regulator->rdev);
3026 	regulator_unlock(regulator->rdev);
3027 
3028 	return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3031 
3032 /**
3033  * regulator_count_voltages - count regulator_list_voltage() selectors
3034  * @regulator: regulator source
3035  *
3036  * Returns number of selectors, or negative errno.  Selectors are
3037  * numbered starting at zero, and typically correspond to bitfields
3038  * in hardware registers.
3039  */
3040 int regulator_count_voltages(struct regulator *regulator)
3041 {
3042 	struct regulator_dev	*rdev = regulator->rdev;
3043 
3044 	if (rdev->desc->n_voltages)
3045 		return rdev->desc->n_voltages;
3046 
3047 	if (!rdev->is_switch || !rdev->supply)
3048 		return -EINVAL;
3049 
3050 	return regulator_count_voltages(rdev->supply);
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3053 
3054 /**
3055  * regulator_list_voltage - enumerate supported voltages
3056  * @regulator: regulator source
3057  * @selector: identify voltage to list
3058  * Context: can sleep
3059  *
3060  * Returns a voltage that can be passed to @regulator_set_voltage(),
3061  * zero if this selector code can't be used on this system, or a
3062  * negative errno.
3063  */
3064 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3065 {
3066 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3069 
3070 /**
3071  * regulator_get_regmap - get the regulator's register map
3072  * @regulator: regulator source
3073  *
3074  * Returns the register map for the given regulator, or an ERR_PTR value
3075  * if the regulator doesn't use regmap.
3076  */
3077 struct regmap *regulator_get_regmap(struct regulator *regulator)
3078 {
3079 	struct regmap *map = regulator->rdev->regmap;
3080 
3081 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3082 }
3083 
3084 /**
3085  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3086  * @regulator: regulator source
3087  * @vsel_reg: voltage selector register, output parameter
3088  * @vsel_mask: mask for voltage selector bitfield, output parameter
3089  *
3090  * Returns the hardware register offset and bitmask used for setting the
3091  * regulator voltage. This might be useful when configuring voltage-scaling
3092  * hardware or firmware that can make I2C requests behind the kernel's back,
3093  * for example.
3094  *
3095  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3096  * and 0 is returned, otherwise a negative errno is returned.
3097  */
3098 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3099 					 unsigned *vsel_reg,
3100 					 unsigned *vsel_mask)
3101 {
3102 	struct regulator_dev *rdev = regulator->rdev;
3103 	const struct regulator_ops *ops = rdev->desc->ops;
3104 
3105 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3106 		return -EOPNOTSUPP;
3107 
3108 	*vsel_reg = rdev->desc->vsel_reg;
3109 	*vsel_mask = rdev->desc->vsel_mask;
3110 
3111 	return 0;
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3114 
3115 /**
3116  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3117  * @regulator: regulator source
3118  * @selector: identify voltage to list
3119  *
3120  * Converts the selector to a hardware-specific voltage selector that can be
3121  * directly written to the regulator registers. The address of the voltage
3122  * register can be determined by calling @regulator_get_hardware_vsel_register.
3123  *
3124  * On error a negative errno is returned.
3125  */
3126 int regulator_list_hardware_vsel(struct regulator *regulator,
3127 				 unsigned selector)
3128 {
3129 	struct regulator_dev *rdev = regulator->rdev;
3130 	const struct regulator_ops *ops = rdev->desc->ops;
3131 
3132 	if (selector >= rdev->desc->n_voltages)
3133 		return -EINVAL;
3134 	if (selector < rdev->desc->linear_min_sel)
3135 		return 0;
3136 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3137 		return -EOPNOTSUPP;
3138 
3139 	return selector;
3140 }
3141 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3142 
3143 /**
3144  * regulator_get_linear_step - return the voltage step size between VSEL values
3145  * @regulator: regulator source
3146  *
3147  * Returns the voltage step size between VSEL values for linear
3148  * regulators, or return 0 if the regulator isn't a linear regulator.
3149  */
3150 unsigned int regulator_get_linear_step(struct regulator *regulator)
3151 {
3152 	struct regulator_dev *rdev = regulator->rdev;
3153 
3154 	return rdev->desc->uV_step;
3155 }
3156 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3157 
3158 /**
3159  * regulator_is_supported_voltage - check if a voltage range can be supported
3160  *
3161  * @regulator: Regulator to check.
3162  * @min_uV: Minimum required voltage in uV.
3163  * @max_uV: Maximum required voltage in uV.
3164  *
3165  * Returns a boolean.
3166  */
3167 int regulator_is_supported_voltage(struct regulator *regulator,
3168 				   int min_uV, int max_uV)
3169 {
3170 	struct regulator_dev *rdev = regulator->rdev;
3171 	int i, voltages, ret;
3172 
3173 	/* If we can't change voltage check the current voltage */
3174 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3175 		ret = regulator_get_voltage(regulator);
3176 		if (ret >= 0)
3177 			return min_uV <= ret && ret <= max_uV;
3178 		else
3179 			return ret;
3180 	}
3181 
3182 	/* Any voltage within constrains range is fine? */
3183 	if (rdev->desc->continuous_voltage_range)
3184 		return min_uV >= rdev->constraints->min_uV &&
3185 				max_uV <= rdev->constraints->max_uV;
3186 
3187 	ret = regulator_count_voltages(regulator);
3188 	if (ret < 0)
3189 		return 0;
3190 	voltages = ret;
3191 
3192 	for (i = 0; i < voltages; i++) {
3193 		ret = regulator_list_voltage(regulator, i);
3194 
3195 		if (ret >= min_uV && ret <= max_uV)
3196 			return 1;
3197 	}
3198 
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3202 
3203 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3204 				 int max_uV)
3205 {
3206 	const struct regulator_desc *desc = rdev->desc;
3207 
3208 	if (desc->ops->map_voltage)
3209 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3210 
3211 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3212 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3213 
3214 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3215 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3216 
3217 	if (desc->ops->list_voltage ==
3218 		regulator_list_voltage_pickable_linear_range)
3219 		return regulator_map_voltage_pickable_linear_range(rdev,
3220 							min_uV, max_uV);
3221 
3222 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3223 }
3224 
3225 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3226 				       int min_uV, int max_uV,
3227 				       unsigned *selector)
3228 {
3229 	struct pre_voltage_change_data data;
3230 	int ret;
3231 
3232 	data.old_uV = regulator_get_voltage_rdev(rdev);
3233 	data.min_uV = min_uV;
3234 	data.max_uV = max_uV;
3235 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3236 				   &data);
3237 	if (ret & NOTIFY_STOP_MASK)
3238 		return -EINVAL;
3239 
3240 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3241 	if (ret >= 0)
3242 		return ret;
3243 
3244 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3245 			     (void *)data.old_uV);
3246 
3247 	return ret;
3248 }
3249 
3250 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3251 					   int uV, unsigned selector)
3252 {
3253 	struct pre_voltage_change_data data;
3254 	int ret;
3255 
3256 	data.old_uV = regulator_get_voltage_rdev(rdev);
3257 	data.min_uV = uV;
3258 	data.max_uV = uV;
3259 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3260 				   &data);
3261 	if (ret & NOTIFY_STOP_MASK)
3262 		return -EINVAL;
3263 
3264 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3265 	if (ret >= 0)
3266 		return ret;
3267 
3268 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3269 			     (void *)data.old_uV);
3270 
3271 	return ret;
3272 }
3273 
3274 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3275 					   int uV, int new_selector)
3276 {
3277 	const struct regulator_ops *ops = rdev->desc->ops;
3278 	int diff, old_sel, curr_sel, ret;
3279 
3280 	/* Stepping is only needed if the regulator is enabled. */
3281 	if (!_regulator_is_enabled(rdev))
3282 		goto final_set;
3283 
3284 	if (!ops->get_voltage_sel)
3285 		return -EINVAL;
3286 
3287 	old_sel = ops->get_voltage_sel(rdev);
3288 	if (old_sel < 0)
3289 		return old_sel;
3290 
3291 	diff = new_selector - old_sel;
3292 	if (diff == 0)
3293 		return 0; /* No change needed. */
3294 
3295 	if (diff > 0) {
3296 		/* Stepping up. */
3297 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3298 		     curr_sel < new_selector;
3299 		     curr_sel += rdev->desc->vsel_step) {
3300 			/*
3301 			 * Call the callback directly instead of using
3302 			 * _regulator_call_set_voltage_sel() as we don't
3303 			 * want to notify anyone yet. Same in the branch
3304 			 * below.
3305 			 */
3306 			ret = ops->set_voltage_sel(rdev, curr_sel);
3307 			if (ret)
3308 				goto try_revert;
3309 		}
3310 	} else {
3311 		/* Stepping down. */
3312 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3313 		     curr_sel > new_selector;
3314 		     curr_sel -= rdev->desc->vsel_step) {
3315 			ret = ops->set_voltage_sel(rdev, curr_sel);
3316 			if (ret)
3317 				goto try_revert;
3318 		}
3319 	}
3320 
3321 final_set:
3322 	/* The final selector will trigger the notifiers. */
3323 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3324 
3325 try_revert:
3326 	/*
3327 	 * At least try to return to the previous voltage if setting a new
3328 	 * one failed.
3329 	 */
3330 	(void)ops->set_voltage_sel(rdev, old_sel);
3331 	return ret;
3332 }
3333 
3334 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3335 				       int old_uV, int new_uV)
3336 {
3337 	unsigned int ramp_delay = 0;
3338 
3339 	if (rdev->constraints->ramp_delay)
3340 		ramp_delay = rdev->constraints->ramp_delay;
3341 	else if (rdev->desc->ramp_delay)
3342 		ramp_delay = rdev->desc->ramp_delay;
3343 	else if (rdev->constraints->settling_time)
3344 		return rdev->constraints->settling_time;
3345 	else if (rdev->constraints->settling_time_up &&
3346 		 (new_uV > old_uV))
3347 		return rdev->constraints->settling_time_up;
3348 	else if (rdev->constraints->settling_time_down &&
3349 		 (new_uV < old_uV))
3350 		return rdev->constraints->settling_time_down;
3351 
3352 	if (ramp_delay == 0) {
3353 		rdev_dbg(rdev, "ramp_delay not set\n");
3354 		return 0;
3355 	}
3356 
3357 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3358 }
3359 
3360 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3361 				     int min_uV, int max_uV)
3362 {
3363 	int ret;
3364 	int delay = 0;
3365 	int best_val = 0;
3366 	unsigned int selector;
3367 	int old_selector = -1;
3368 	const struct regulator_ops *ops = rdev->desc->ops;
3369 	int old_uV = regulator_get_voltage_rdev(rdev);
3370 
3371 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3372 
3373 	min_uV += rdev->constraints->uV_offset;
3374 	max_uV += rdev->constraints->uV_offset;
3375 
3376 	/*
3377 	 * If we can't obtain the old selector there is not enough
3378 	 * info to call set_voltage_time_sel().
3379 	 */
3380 	if (_regulator_is_enabled(rdev) &&
3381 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3382 		old_selector = ops->get_voltage_sel(rdev);
3383 		if (old_selector < 0)
3384 			return old_selector;
3385 	}
3386 
3387 	if (ops->set_voltage) {
3388 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3389 						  &selector);
3390 
3391 		if (ret >= 0) {
3392 			if (ops->list_voltage)
3393 				best_val = ops->list_voltage(rdev,
3394 							     selector);
3395 			else
3396 				best_val = regulator_get_voltage_rdev(rdev);
3397 		}
3398 
3399 	} else if (ops->set_voltage_sel) {
3400 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3401 		if (ret >= 0) {
3402 			best_val = ops->list_voltage(rdev, ret);
3403 			if (min_uV <= best_val && max_uV >= best_val) {
3404 				selector = ret;
3405 				if (old_selector == selector)
3406 					ret = 0;
3407 				else if (rdev->desc->vsel_step)
3408 					ret = _regulator_set_voltage_sel_step(
3409 						rdev, best_val, selector);
3410 				else
3411 					ret = _regulator_call_set_voltage_sel(
3412 						rdev, best_val, selector);
3413 			} else {
3414 				ret = -EINVAL;
3415 			}
3416 		}
3417 	} else {
3418 		ret = -EINVAL;
3419 	}
3420 
3421 	if (ret)
3422 		goto out;
3423 
3424 	if (ops->set_voltage_time_sel) {
3425 		/*
3426 		 * Call set_voltage_time_sel if successfully obtained
3427 		 * old_selector
3428 		 */
3429 		if (old_selector >= 0 && old_selector != selector)
3430 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3431 							  selector);
3432 	} else {
3433 		if (old_uV != best_val) {
3434 			if (ops->set_voltage_time)
3435 				delay = ops->set_voltage_time(rdev, old_uV,
3436 							      best_val);
3437 			else
3438 				delay = _regulator_set_voltage_time(rdev,
3439 								    old_uV,
3440 								    best_val);
3441 		}
3442 	}
3443 
3444 	if (delay < 0) {
3445 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3446 		delay = 0;
3447 	}
3448 
3449 	/* Insert any necessary delays */
3450 	if (delay >= 1000) {
3451 		mdelay(delay / 1000);
3452 		udelay(delay % 1000);
3453 	} else if (delay) {
3454 		udelay(delay);
3455 	}
3456 
3457 	if (best_val >= 0) {
3458 		unsigned long data = best_val;
3459 
3460 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3461 				     (void *)data);
3462 	}
3463 
3464 out:
3465 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3466 
3467 	return ret;
3468 }
3469 
3470 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3471 				  int min_uV, int max_uV, suspend_state_t state)
3472 {
3473 	struct regulator_state *rstate;
3474 	int uV, sel;
3475 
3476 	rstate = regulator_get_suspend_state(rdev, state);
3477 	if (rstate == NULL)
3478 		return -EINVAL;
3479 
3480 	if (min_uV < rstate->min_uV)
3481 		min_uV = rstate->min_uV;
3482 	if (max_uV > rstate->max_uV)
3483 		max_uV = rstate->max_uV;
3484 
3485 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3486 	if (sel < 0)
3487 		return sel;
3488 
3489 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3490 	if (uV >= min_uV && uV <= max_uV)
3491 		rstate->uV = uV;
3492 
3493 	return 0;
3494 }
3495 
3496 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3497 					  int min_uV, int max_uV,
3498 					  suspend_state_t state)
3499 {
3500 	struct regulator_dev *rdev = regulator->rdev;
3501 	struct regulator_voltage *voltage = &regulator->voltage[state];
3502 	int ret = 0;
3503 	int old_min_uV, old_max_uV;
3504 	int current_uV;
3505 
3506 	/* If we're setting the same range as last time the change
3507 	 * should be a noop (some cpufreq implementations use the same
3508 	 * voltage for multiple frequencies, for example).
3509 	 */
3510 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3511 		goto out;
3512 
3513 	/* If we're trying to set a range that overlaps the current voltage,
3514 	 * return successfully even though the regulator does not support
3515 	 * changing the voltage.
3516 	 */
3517 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3518 		current_uV = regulator_get_voltage_rdev(rdev);
3519 		if (min_uV <= current_uV && current_uV <= max_uV) {
3520 			voltage->min_uV = min_uV;
3521 			voltage->max_uV = max_uV;
3522 			goto out;
3523 		}
3524 	}
3525 
3526 	/* sanity check */
3527 	if (!rdev->desc->ops->set_voltage &&
3528 	    !rdev->desc->ops->set_voltage_sel) {
3529 		ret = -EINVAL;
3530 		goto out;
3531 	}
3532 
3533 	/* constraints check */
3534 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3535 	if (ret < 0)
3536 		goto out;
3537 
3538 	/* restore original values in case of error */
3539 	old_min_uV = voltage->min_uV;
3540 	old_max_uV = voltage->max_uV;
3541 	voltage->min_uV = min_uV;
3542 	voltage->max_uV = max_uV;
3543 
3544 	/* for not coupled regulators this will just set the voltage */
3545 	ret = regulator_balance_voltage(rdev, state);
3546 	if (ret < 0) {
3547 		voltage->min_uV = old_min_uV;
3548 		voltage->max_uV = old_max_uV;
3549 	}
3550 
3551 out:
3552 	return ret;
3553 }
3554 
3555 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3556 			       int max_uV, suspend_state_t state)
3557 {
3558 	int best_supply_uV = 0;
3559 	int supply_change_uV = 0;
3560 	int ret;
3561 
3562 	if (rdev->supply &&
3563 	    regulator_ops_is_valid(rdev->supply->rdev,
3564 				   REGULATOR_CHANGE_VOLTAGE) &&
3565 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3566 					   rdev->desc->ops->get_voltage_sel))) {
3567 		int current_supply_uV;
3568 		int selector;
3569 
3570 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3571 		if (selector < 0) {
3572 			ret = selector;
3573 			goto out;
3574 		}
3575 
3576 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3577 		if (best_supply_uV < 0) {
3578 			ret = best_supply_uV;
3579 			goto out;
3580 		}
3581 
3582 		best_supply_uV += rdev->desc->min_dropout_uV;
3583 
3584 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3585 		if (current_supply_uV < 0) {
3586 			ret = current_supply_uV;
3587 			goto out;
3588 		}
3589 
3590 		supply_change_uV = best_supply_uV - current_supply_uV;
3591 	}
3592 
3593 	if (supply_change_uV > 0) {
3594 		ret = regulator_set_voltage_unlocked(rdev->supply,
3595 				best_supply_uV, INT_MAX, state);
3596 		if (ret) {
3597 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3598 				ERR_PTR(ret));
3599 			goto out;
3600 		}
3601 	}
3602 
3603 	if (state == PM_SUSPEND_ON)
3604 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3605 	else
3606 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3607 							max_uV, state);
3608 	if (ret < 0)
3609 		goto out;
3610 
3611 	if (supply_change_uV < 0) {
3612 		ret = regulator_set_voltage_unlocked(rdev->supply,
3613 				best_supply_uV, INT_MAX, state);
3614 		if (ret)
3615 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3616 				 ERR_PTR(ret));
3617 		/* No need to fail here */
3618 		ret = 0;
3619 	}
3620 
3621 out:
3622 	return ret;
3623 }
3624 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3625 
3626 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3627 					int *current_uV, int *min_uV)
3628 {
3629 	struct regulation_constraints *constraints = rdev->constraints;
3630 
3631 	/* Limit voltage change only if necessary */
3632 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3633 		return 1;
3634 
3635 	if (*current_uV < 0) {
3636 		*current_uV = regulator_get_voltage_rdev(rdev);
3637 
3638 		if (*current_uV < 0)
3639 			return *current_uV;
3640 	}
3641 
3642 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3643 		return 1;
3644 
3645 	/* Clamp target voltage within the given step */
3646 	if (*current_uV < *min_uV)
3647 		*min_uV = min(*current_uV + constraints->max_uV_step,
3648 			      *min_uV);
3649 	else
3650 		*min_uV = max(*current_uV - constraints->max_uV_step,
3651 			      *min_uV);
3652 
3653 	return 0;
3654 }
3655 
3656 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3657 					 int *current_uV,
3658 					 int *min_uV, int *max_uV,
3659 					 suspend_state_t state,
3660 					 int n_coupled)
3661 {
3662 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3663 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3664 	struct regulation_constraints *constraints = rdev->constraints;
3665 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3666 	int max_current_uV = 0, min_current_uV = INT_MAX;
3667 	int highest_min_uV = 0, target_uV, possible_uV;
3668 	int i, ret, max_spread;
3669 	bool done;
3670 
3671 	*current_uV = -1;
3672 
3673 	/*
3674 	 * If there are no coupled regulators, simply set the voltage
3675 	 * demanded by consumers.
3676 	 */
3677 	if (n_coupled == 1) {
3678 		/*
3679 		 * If consumers don't provide any demands, set voltage
3680 		 * to min_uV
3681 		 */
3682 		desired_min_uV = constraints->min_uV;
3683 		desired_max_uV = constraints->max_uV;
3684 
3685 		ret = regulator_check_consumers(rdev,
3686 						&desired_min_uV,
3687 						&desired_max_uV, state);
3688 		if (ret < 0)
3689 			return ret;
3690 
3691 		possible_uV = desired_min_uV;
3692 		done = true;
3693 
3694 		goto finish;
3695 	}
3696 
3697 	/* Find highest min desired voltage */
3698 	for (i = 0; i < n_coupled; i++) {
3699 		int tmp_min = 0;
3700 		int tmp_max = INT_MAX;
3701 
3702 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3703 
3704 		ret = regulator_check_consumers(c_rdevs[i],
3705 						&tmp_min,
3706 						&tmp_max, state);
3707 		if (ret < 0)
3708 			return ret;
3709 
3710 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3711 		if (ret < 0)
3712 			return ret;
3713 
3714 		highest_min_uV = max(highest_min_uV, tmp_min);
3715 
3716 		if (i == 0) {
3717 			desired_min_uV = tmp_min;
3718 			desired_max_uV = tmp_max;
3719 		}
3720 	}
3721 
3722 	max_spread = constraints->max_spread[0];
3723 
3724 	/*
3725 	 * Let target_uV be equal to the desired one if possible.
3726 	 * If not, set it to minimum voltage, allowed by other coupled
3727 	 * regulators.
3728 	 */
3729 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3730 
3731 	/*
3732 	 * Find min and max voltages, which currently aren't violating
3733 	 * max_spread.
3734 	 */
3735 	for (i = 1; i < n_coupled; i++) {
3736 		int tmp_act;
3737 
3738 		if (!_regulator_is_enabled(c_rdevs[i]))
3739 			continue;
3740 
3741 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3742 		if (tmp_act < 0)
3743 			return tmp_act;
3744 
3745 		min_current_uV = min(tmp_act, min_current_uV);
3746 		max_current_uV = max(tmp_act, max_current_uV);
3747 	}
3748 
3749 	/* There aren't any other regulators enabled */
3750 	if (max_current_uV == 0) {
3751 		possible_uV = target_uV;
3752 	} else {
3753 		/*
3754 		 * Correct target voltage, so as it currently isn't
3755 		 * violating max_spread
3756 		 */
3757 		possible_uV = max(target_uV, max_current_uV - max_spread);
3758 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3759 	}
3760 
3761 	if (possible_uV > desired_max_uV)
3762 		return -EINVAL;
3763 
3764 	done = (possible_uV == target_uV);
3765 	desired_min_uV = possible_uV;
3766 
3767 finish:
3768 	/* Apply max_uV_step constraint if necessary */
3769 	if (state == PM_SUSPEND_ON) {
3770 		ret = regulator_limit_voltage_step(rdev, current_uV,
3771 						   &desired_min_uV);
3772 		if (ret < 0)
3773 			return ret;
3774 
3775 		if (ret == 0)
3776 			done = false;
3777 	}
3778 
3779 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3780 	if (n_coupled > 1 && *current_uV == -1) {
3781 
3782 		if (_regulator_is_enabled(rdev)) {
3783 			ret = regulator_get_voltage_rdev(rdev);
3784 			if (ret < 0)
3785 				return ret;
3786 
3787 			*current_uV = ret;
3788 		} else {
3789 			*current_uV = desired_min_uV;
3790 		}
3791 	}
3792 
3793 	*min_uV = desired_min_uV;
3794 	*max_uV = desired_max_uV;
3795 
3796 	return done;
3797 }
3798 
3799 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3800 				 suspend_state_t state, bool skip_coupled)
3801 {
3802 	struct regulator_dev **c_rdevs;
3803 	struct regulator_dev *best_rdev;
3804 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3805 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3806 	unsigned int delta, best_delta;
3807 	unsigned long c_rdev_done = 0;
3808 	bool best_c_rdev_done;
3809 
3810 	c_rdevs = c_desc->coupled_rdevs;
3811 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3812 
3813 	/*
3814 	 * Find the best possible voltage change on each loop. Leave the loop
3815 	 * if there isn't any possible change.
3816 	 */
3817 	do {
3818 		best_c_rdev_done = false;
3819 		best_delta = 0;
3820 		best_min_uV = 0;
3821 		best_max_uV = 0;
3822 		best_c_rdev = 0;
3823 		best_rdev = NULL;
3824 
3825 		/*
3826 		 * Find highest difference between optimal voltage
3827 		 * and current voltage.
3828 		 */
3829 		for (i = 0; i < n_coupled; i++) {
3830 			/*
3831 			 * optimal_uV is the best voltage that can be set for
3832 			 * i-th regulator at the moment without violating
3833 			 * max_spread constraint in order to balance
3834 			 * the coupled voltages.
3835 			 */
3836 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3837 
3838 			if (test_bit(i, &c_rdev_done))
3839 				continue;
3840 
3841 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3842 							    &current_uV,
3843 							    &optimal_uV,
3844 							    &optimal_max_uV,
3845 							    state, n_coupled);
3846 			if (ret < 0)
3847 				goto out;
3848 
3849 			delta = abs(optimal_uV - current_uV);
3850 
3851 			if (delta && best_delta <= delta) {
3852 				best_c_rdev_done = ret;
3853 				best_delta = delta;
3854 				best_rdev = c_rdevs[i];
3855 				best_min_uV = optimal_uV;
3856 				best_max_uV = optimal_max_uV;
3857 				best_c_rdev = i;
3858 			}
3859 		}
3860 
3861 		/* Nothing to change, return successfully */
3862 		if (!best_rdev) {
3863 			ret = 0;
3864 			goto out;
3865 		}
3866 
3867 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3868 						 best_max_uV, state);
3869 
3870 		if (ret < 0)
3871 			goto out;
3872 
3873 		if (best_c_rdev_done)
3874 			set_bit(best_c_rdev, &c_rdev_done);
3875 
3876 	} while (n_coupled > 1);
3877 
3878 out:
3879 	return ret;
3880 }
3881 
3882 static int regulator_balance_voltage(struct regulator_dev *rdev,
3883 				     suspend_state_t state)
3884 {
3885 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3886 	struct regulator_coupler *coupler = c_desc->coupler;
3887 	bool skip_coupled = false;
3888 
3889 	/*
3890 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3891 	 * other coupled regulators.
3892 	 */
3893 	if (state != PM_SUSPEND_ON)
3894 		skip_coupled = true;
3895 
3896 	if (c_desc->n_resolved < c_desc->n_coupled) {
3897 		rdev_err(rdev, "Not all coupled regulators registered\n");
3898 		return -EPERM;
3899 	}
3900 
3901 	/* Invoke custom balancer for customized couplers */
3902 	if (coupler && coupler->balance_voltage)
3903 		return coupler->balance_voltage(coupler, rdev, state);
3904 
3905 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3906 }
3907 
3908 /**
3909  * regulator_set_voltage - set regulator output voltage
3910  * @regulator: regulator source
3911  * @min_uV: Minimum required voltage in uV
3912  * @max_uV: Maximum acceptable voltage in uV
3913  *
3914  * Sets a voltage regulator to the desired output voltage. This can be set
3915  * during any regulator state. IOW, regulator can be disabled or enabled.
3916  *
3917  * If the regulator is enabled then the voltage will change to the new value
3918  * immediately otherwise if the regulator is disabled the regulator will
3919  * output at the new voltage when enabled.
3920  *
3921  * NOTE: If the regulator is shared between several devices then the lowest
3922  * request voltage that meets the system constraints will be used.
3923  * Regulator system constraints must be set for this regulator before
3924  * calling this function otherwise this call will fail.
3925  */
3926 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3927 {
3928 	struct ww_acquire_ctx ww_ctx;
3929 	int ret;
3930 
3931 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3932 
3933 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3934 					     PM_SUSPEND_ON);
3935 
3936 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3937 
3938 	return ret;
3939 }
3940 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3941 
3942 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3943 					   suspend_state_t state, bool en)
3944 {
3945 	struct regulator_state *rstate;
3946 
3947 	rstate = regulator_get_suspend_state(rdev, state);
3948 	if (rstate == NULL)
3949 		return -EINVAL;
3950 
3951 	if (!rstate->changeable)
3952 		return -EPERM;
3953 
3954 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3955 
3956 	return 0;
3957 }
3958 
3959 int regulator_suspend_enable(struct regulator_dev *rdev,
3960 				    suspend_state_t state)
3961 {
3962 	return regulator_suspend_toggle(rdev, state, true);
3963 }
3964 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3965 
3966 int regulator_suspend_disable(struct regulator_dev *rdev,
3967 				     suspend_state_t state)
3968 {
3969 	struct regulator *regulator;
3970 	struct regulator_voltage *voltage;
3971 
3972 	/*
3973 	 * if any consumer wants this regulator device keeping on in
3974 	 * suspend states, don't set it as disabled.
3975 	 */
3976 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3977 		voltage = &regulator->voltage[state];
3978 		if (voltage->min_uV || voltage->max_uV)
3979 			return 0;
3980 	}
3981 
3982 	return regulator_suspend_toggle(rdev, state, false);
3983 }
3984 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3985 
3986 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3987 					  int min_uV, int max_uV,
3988 					  suspend_state_t state)
3989 {
3990 	struct regulator_dev *rdev = regulator->rdev;
3991 	struct regulator_state *rstate;
3992 
3993 	rstate = regulator_get_suspend_state(rdev, state);
3994 	if (rstate == NULL)
3995 		return -EINVAL;
3996 
3997 	if (rstate->min_uV == rstate->max_uV) {
3998 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3999 		return -EPERM;
4000 	}
4001 
4002 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4003 }
4004 
4005 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4006 				  int max_uV, suspend_state_t state)
4007 {
4008 	struct ww_acquire_ctx ww_ctx;
4009 	int ret;
4010 
4011 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4012 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4013 		return -EINVAL;
4014 
4015 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4016 
4017 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4018 					     max_uV, state);
4019 
4020 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4021 
4022 	return ret;
4023 }
4024 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4025 
4026 /**
4027  * regulator_set_voltage_time - get raise/fall time
4028  * @regulator: regulator source
4029  * @old_uV: starting voltage in microvolts
4030  * @new_uV: target voltage in microvolts
4031  *
4032  * Provided with the starting and ending voltage, this function attempts to
4033  * calculate the time in microseconds required to rise or fall to this new
4034  * voltage.
4035  */
4036 int regulator_set_voltage_time(struct regulator *regulator,
4037 			       int old_uV, int new_uV)
4038 {
4039 	struct regulator_dev *rdev = regulator->rdev;
4040 	const struct regulator_ops *ops = rdev->desc->ops;
4041 	int old_sel = -1;
4042 	int new_sel = -1;
4043 	int voltage;
4044 	int i;
4045 
4046 	if (ops->set_voltage_time)
4047 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4048 	else if (!ops->set_voltage_time_sel)
4049 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4050 
4051 	/* Currently requires operations to do this */
4052 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4053 		return -EINVAL;
4054 
4055 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4056 		/* We only look for exact voltage matches here */
4057 		if (i < rdev->desc->linear_min_sel)
4058 			continue;
4059 
4060 		if (old_sel >= 0 && new_sel >= 0)
4061 			break;
4062 
4063 		voltage = regulator_list_voltage(regulator, i);
4064 		if (voltage < 0)
4065 			return -EINVAL;
4066 		if (voltage == 0)
4067 			continue;
4068 		if (voltage == old_uV)
4069 			old_sel = i;
4070 		if (voltage == new_uV)
4071 			new_sel = i;
4072 	}
4073 
4074 	if (old_sel < 0 || new_sel < 0)
4075 		return -EINVAL;
4076 
4077 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4078 }
4079 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4080 
4081 /**
4082  * regulator_set_voltage_time_sel - get raise/fall time
4083  * @rdev: regulator source device
4084  * @old_selector: selector for starting voltage
4085  * @new_selector: selector for target voltage
4086  *
4087  * Provided with the starting and target voltage selectors, this function
4088  * returns time in microseconds required to rise or fall to this new voltage
4089  *
4090  * Drivers providing ramp_delay in regulation_constraints can use this as their
4091  * set_voltage_time_sel() operation.
4092  */
4093 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4094 				   unsigned int old_selector,
4095 				   unsigned int new_selector)
4096 {
4097 	int old_volt, new_volt;
4098 
4099 	/* sanity check */
4100 	if (!rdev->desc->ops->list_voltage)
4101 		return -EINVAL;
4102 
4103 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4104 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4105 
4106 	if (rdev->desc->ops->set_voltage_time)
4107 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4108 							 new_volt);
4109 	else
4110 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4111 }
4112 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4113 
4114 /**
4115  * regulator_sync_voltage - re-apply last regulator output voltage
4116  * @regulator: regulator source
4117  *
4118  * Re-apply the last configured voltage.  This is intended to be used
4119  * where some external control source the consumer is cooperating with
4120  * has caused the configured voltage to change.
4121  */
4122 int regulator_sync_voltage(struct regulator *regulator)
4123 {
4124 	struct regulator_dev *rdev = regulator->rdev;
4125 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4126 	int ret, min_uV, max_uV;
4127 
4128 	regulator_lock(rdev);
4129 
4130 	if (!rdev->desc->ops->set_voltage &&
4131 	    !rdev->desc->ops->set_voltage_sel) {
4132 		ret = -EINVAL;
4133 		goto out;
4134 	}
4135 
4136 	/* This is only going to work if we've had a voltage configured. */
4137 	if (!voltage->min_uV && !voltage->max_uV) {
4138 		ret = -EINVAL;
4139 		goto out;
4140 	}
4141 
4142 	min_uV = voltage->min_uV;
4143 	max_uV = voltage->max_uV;
4144 
4145 	/* This should be a paranoia check... */
4146 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4147 	if (ret < 0)
4148 		goto out;
4149 
4150 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4151 	if (ret < 0)
4152 		goto out;
4153 
4154 	/* balance only, if regulator is coupled */
4155 	if (rdev->coupling_desc.n_coupled > 1)
4156 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4157 	else
4158 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4159 
4160 out:
4161 	regulator_unlock(rdev);
4162 	return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4165 
4166 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4167 {
4168 	int sel, ret;
4169 	bool bypassed;
4170 
4171 	if (rdev->desc->ops->get_bypass) {
4172 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4173 		if (ret < 0)
4174 			return ret;
4175 		if (bypassed) {
4176 			/* if bypassed the regulator must have a supply */
4177 			if (!rdev->supply) {
4178 				rdev_err(rdev,
4179 					 "bypassed regulator has no supply!\n");
4180 				return -EPROBE_DEFER;
4181 			}
4182 
4183 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4184 		}
4185 	}
4186 
4187 	if (rdev->desc->ops->get_voltage_sel) {
4188 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4189 		if (sel < 0)
4190 			return sel;
4191 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4192 	} else if (rdev->desc->ops->get_voltage) {
4193 		ret = rdev->desc->ops->get_voltage(rdev);
4194 	} else if (rdev->desc->ops->list_voltage) {
4195 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4196 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4197 		ret = rdev->desc->fixed_uV;
4198 	} else if (rdev->supply) {
4199 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4200 	} else if (rdev->supply_name) {
4201 		return -EPROBE_DEFER;
4202 	} else {
4203 		return -EINVAL;
4204 	}
4205 
4206 	if (ret < 0)
4207 		return ret;
4208 	return ret - rdev->constraints->uV_offset;
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4211 
4212 /**
4213  * regulator_get_voltage - get regulator output voltage
4214  * @regulator: regulator source
4215  *
4216  * This returns the current regulator voltage in uV.
4217  *
4218  * NOTE: If the regulator is disabled it will return the voltage value. This
4219  * function should not be used to determine regulator state.
4220  */
4221 int regulator_get_voltage(struct regulator *regulator)
4222 {
4223 	struct ww_acquire_ctx ww_ctx;
4224 	int ret;
4225 
4226 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4227 	ret = regulator_get_voltage_rdev(regulator->rdev);
4228 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4229 
4230 	return ret;
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4233 
4234 /**
4235  * regulator_set_current_limit - set regulator output current limit
4236  * @regulator: regulator source
4237  * @min_uA: Minimum supported current in uA
4238  * @max_uA: Maximum supported current in uA
4239  *
4240  * Sets current sink to the desired output current. This can be set during
4241  * any regulator state. IOW, regulator can be disabled or enabled.
4242  *
4243  * If the regulator is enabled then the current will change to the new value
4244  * immediately otherwise if the regulator is disabled the regulator will
4245  * output at the new current when enabled.
4246  *
4247  * NOTE: Regulator system constraints must be set for this regulator before
4248  * calling this function otherwise this call will fail.
4249  */
4250 int regulator_set_current_limit(struct regulator *regulator,
4251 			       int min_uA, int max_uA)
4252 {
4253 	struct regulator_dev *rdev = regulator->rdev;
4254 	int ret;
4255 
4256 	regulator_lock(rdev);
4257 
4258 	/* sanity check */
4259 	if (!rdev->desc->ops->set_current_limit) {
4260 		ret = -EINVAL;
4261 		goto out;
4262 	}
4263 
4264 	/* constraints check */
4265 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4266 	if (ret < 0)
4267 		goto out;
4268 
4269 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4270 out:
4271 	regulator_unlock(rdev);
4272 	return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4275 
4276 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4277 {
4278 	/* sanity check */
4279 	if (!rdev->desc->ops->get_current_limit)
4280 		return -EINVAL;
4281 
4282 	return rdev->desc->ops->get_current_limit(rdev);
4283 }
4284 
4285 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4286 {
4287 	int ret;
4288 
4289 	regulator_lock(rdev);
4290 	ret = _regulator_get_current_limit_unlocked(rdev);
4291 	regulator_unlock(rdev);
4292 
4293 	return ret;
4294 }
4295 
4296 /**
4297  * regulator_get_current_limit - get regulator output current
4298  * @regulator: regulator source
4299  *
4300  * This returns the current supplied by the specified current sink in uA.
4301  *
4302  * NOTE: If the regulator is disabled it will return the current value. This
4303  * function should not be used to determine regulator state.
4304  */
4305 int regulator_get_current_limit(struct regulator *regulator)
4306 {
4307 	return _regulator_get_current_limit(regulator->rdev);
4308 }
4309 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4310 
4311 /**
4312  * regulator_set_mode - set regulator operating mode
4313  * @regulator: regulator source
4314  * @mode: operating mode - one of the REGULATOR_MODE constants
4315  *
4316  * Set regulator operating mode to increase regulator efficiency or improve
4317  * regulation performance.
4318  *
4319  * NOTE: Regulator system constraints must be set for this regulator before
4320  * calling this function otherwise this call will fail.
4321  */
4322 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4323 {
4324 	struct regulator_dev *rdev = regulator->rdev;
4325 	int ret;
4326 	int regulator_curr_mode;
4327 
4328 	regulator_lock(rdev);
4329 
4330 	/* sanity check */
4331 	if (!rdev->desc->ops->set_mode) {
4332 		ret = -EINVAL;
4333 		goto out;
4334 	}
4335 
4336 	/* return if the same mode is requested */
4337 	if (rdev->desc->ops->get_mode) {
4338 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4339 		if (regulator_curr_mode == mode) {
4340 			ret = 0;
4341 			goto out;
4342 		}
4343 	}
4344 
4345 	/* constraints check */
4346 	ret = regulator_mode_constrain(rdev, &mode);
4347 	if (ret < 0)
4348 		goto out;
4349 
4350 	ret = rdev->desc->ops->set_mode(rdev, mode);
4351 out:
4352 	regulator_unlock(rdev);
4353 	return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_set_mode);
4356 
4357 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4358 {
4359 	/* sanity check */
4360 	if (!rdev->desc->ops->get_mode)
4361 		return -EINVAL;
4362 
4363 	return rdev->desc->ops->get_mode(rdev);
4364 }
4365 
4366 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4367 {
4368 	int ret;
4369 
4370 	regulator_lock(rdev);
4371 	ret = _regulator_get_mode_unlocked(rdev);
4372 	regulator_unlock(rdev);
4373 
4374 	return ret;
4375 }
4376 
4377 /**
4378  * regulator_get_mode - get regulator operating mode
4379  * @regulator: regulator source
4380  *
4381  * Get the current regulator operating mode.
4382  */
4383 unsigned int regulator_get_mode(struct regulator *regulator)
4384 {
4385 	return _regulator_get_mode(regulator->rdev);
4386 }
4387 EXPORT_SYMBOL_GPL(regulator_get_mode);
4388 
4389 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4390 					unsigned int *flags)
4391 {
4392 	int ret;
4393 
4394 	regulator_lock(rdev);
4395 
4396 	/* sanity check */
4397 	if (!rdev->desc->ops->get_error_flags) {
4398 		ret = -EINVAL;
4399 		goto out;
4400 	}
4401 
4402 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4403 out:
4404 	regulator_unlock(rdev);
4405 	return ret;
4406 }
4407 
4408 /**
4409  * regulator_get_error_flags - get regulator error information
4410  * @regulator: regulator source
4411  * @flags: pointer to store error flags
4412  *
4413  * Get the current regulator error information.
4414  */
4415 int regulator_get_error_flags(struct regulator *regulator,
4416 				unsigned int *flags)
4417 {
4418 	return _regulator_get_error_flags(regulator->rdev, flags);
4419 }
4420 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4421 
4422 /**
4423  * regulator_set_load - set regulator load
4424  * @regulator: regulator source
4425  * @uA_load: load current
4426  *
4427  * Notifies the regulator core of a new device load. This is then used by
4428  * DRMS (if enabled by constraints) to set the most efficient regulator
4429  * operating mode for the new regulator loading.
4430  *
4431  * Consumer devices notify their supply regulator of the maximum power
4432  * they will require (can be taken from device datasheet in the power
4433  * consumption tables) when they change operational status and hence power
4434  * state. Examples of operational state changes that can affect power
4435  * consumption are :-
4436  *
4437  *    o Device is opened / closed.
4438  *    o Device I/O is about to begin or has just finished.
4439  *    o Device is idling in between work.
4440  *
4441  * This information is also exported via sysfs to userspace.
4442  *
4443  * DRMS will sum the total requested load on the regulator and change
4444  * to the most efficient operating mode if platform constraints allow.
4445  *
4446  * NOTE: when a regulator consumer requests to have a regulator
4447  * disabled then any load that consumer requested no longer counts
4448  * toward the total requested load.  If the regulator is re-enabled
4449  * then the previously requested load will start counting again.
4450  *
4451  * If a regulator is an always-on regulator then an individual consumer's
4452  * load will still be removed if that consumer is fully disabled.
4453  *
4454  * On error a negative errno is returned.
4455  */
4456 int regulator_set_load(struct regulator *regulator, int uA_load)
4457 {
4458 	struct regulator_dev *rdev = regulator->rdev;
4459 	int old_uA_load;
4460 	int ret = 0;
4461 
4462 	regulator_lock(rdev);
4463 	old_uA_load = regulator->uA_load;
4464 	regulator->uA_load = uA_load;
4465 	if (regulator->enable_count && old_uA_load != uA_load) {
4466 		ret = drms_uA_update(rdev);
4467 		if (ret < 0)
4468 			regulator->uA_load = old_uA_load;
4469 	}
4470 	regulator_unlock(rdev);
4471 
4472 	return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(regulator_set_load);
4475 
4476 /**
4477  * regulator_allow_bypass - allow the regulator to go into bypass mode
4478  *
4479  * @regulator: Regulator to configure
4480  * @enable: enable or disable bypass mode
4481  *
4482  * Allow the regulator to go into bypass mode if all other consumers
4483  * for the regulator also enable bypass mode and the machine
4484  * constraints allow this.  Bypass mode means that the regulator is
4485  * simply passing the input directly to the output with no regulation.
4486  */
4487 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4488 {
4489 	struct regulator_dev *rdev = regulator->rdev;
4490 	const char *name = rdev_get_name(rdev);
4491 	int ret = 0;
4492 
4493 	if (!rdev->desc->ops->set_bypass)
4494 		return 0;
4495 
4496 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4497 		return 0;
4498 
4499 	regulator_lock(rdev);
4500 
4501 	if (enable && !regulator->bypass) {
4502 		rdev->bypass_count++;
4503 
4504 		if (rdev->bypass_count == rdev->open_count) {
4505 			trace_regulator_bypass_enable(name);
4506 
4507 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4508 			if (ret != 0)
4509 				rdev->bypass_count--;
4510 			else
4511 				trace_regulator_bypass_enable_complete(name);
4512 		}
4513 
4514 	} else if (!enable && regulator->bypass) {
4515 		rdev->bypass_count--;
4516 
4517 		if (rdev->bypass_count != rdev->open_count) {
4518 			trace_regulator_bypass_disable(name);
4519 
4520 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4521 			if (ret != 0)
4522 				rdev->bypass_count++;
4523 			else
4524 				trace_regulator_bypass_disable_complete(name);
4525 		}
4526 	}
4527 
4528 	if (ret == 0)
4529 		regulator->bypass = enable;
4530 
4531 	regulator_unlock(rdev);
4532 
4533 	return ret;
4534 }
4535 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4536 
4537 /**
4538  * regulator_register_notifier - register regulator event notifier
4539  * @regulator: regulator source
4540  * @nb: notifier block
4541  *
4542  * Register notifier block to receive regulator events.
4543  */
4544 int regulator_register_notifier(struct regulator *regulator,
4545 			      struct notifier_block *nb)
4546 {
4547 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4548 						nb);
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4551 
4552 /**
4553  * regulator_unregister_notifier - unregister regulator event notifier
4554  * @regulator: regulator source
4555  * @nb: notifier block
4556  *
4557  * Unregister regulator event notifier block.
4558  */
4559 int regulator_unregister_notifier(struct regulator *regulator,
4560 				struct notifier_block *nb)
4561 {
4562 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4563 						  nb);
4564 }
4565 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4566 
4567 /* notify regulator consumers and downstream regulator consumers.
4568  * Note mutex must be held by caller.
4569  */
4570 static int _notifier_call_chain(struct regulator_dev *rdev,
4571 				  unsigned long event, void *data)
4572 {
4573 	/* call rdev chain first */
4574 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4575 }
4576 
4577 /**
4578  * regulator_bulk_get - get multiple regulator consumers
4579  *
4580  * @dev:           Device to supply
4581  * @num_consumers: Number of consumers to register
4582  * @consumers:     Configuration of consumers; clients are stored here.
4583  *
4584  * @return 0 on success, an errno on failure.
4585  *
4586  * This helper function allows drivers to get several regulator
4587  * consumers in one operation.  If any of the regulators cannot be
4588  * acquired then any regulators that were allocated will be freed
4589  * before returning to the caller.
4590  */
4591 int regulator_bulk_get(struct device *dev, int num_consumers,
4592 		       struct regulator_bulk_data *consumers)
4593 {
4594 	int i;
4595 	int ret;
4596 
4597 	for (i = 0; i < num_consumers; i++)
4598 		consumers[i].consumer = NULL;
4599 
4600 	for (i = 0; i < num_consumers; i++) {
4601 		consumers[i].consumer = regulator_get(dev,
4602 						      consumers[i].supply);
4603 		if (IS_ERR(consumers[i].consumer)) {
4604 			ret = PTR_ERR(consumers[i].consumer);
4605 			consumers[i].consumer = NULL;
4606 			goto err;
4607 		}
4608 	}
4609 
4610 	return 0;
4611 
4612 err:
4613 	if (ret != -EPROBE_DEFER)
4614 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4615 			consumers[i].supply, ERR_PTR(ret));
4616 	else
4617 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4618 			consumers[i].supply);
4619 
4620 	while (--i >= 0)
4621 		regulator_put(consumers[i].consumer);
4622 
4623 	return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4626 
4627 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4628 {
4629 	struct regulator_bulk_data *bulk = data;
4630 
4631 	bulk->ret = regulator_enable(bulk->consumer);
4632 }
4633 
4634 /**
4635  * regulator_bulk_enable - enable multiple regulator consumers
4636  *
4637  * @num_consumers: Number of consumers
4638  * @consumers:     Consumer data; clients are stored here.
4639  * @return         0 on success, an errno on failure
4640  *
4641  * This convenience API allows consumers to enable multiple regulator
4642  * clients in a single API call.  If any consumers cannot be enabled
4643  * then any others that were enabled will be disabled again prior to
4644  * return.
4645  */
4646 int regulator_bulk_enable(int num_consumers,
4647 			  struct regulator_bulk_data *consumers)
4648 {
4649 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4650 	int i;
4651 	int ret = 0;
4652 
4653 	for (i = 0; i < num_consumers; i++) {
4654 		async_schedule_domain(regulator_bulk_enable_async,
4655 				      &consumers[i], &async_domain);
4656 	}
4657 
4658 	async_synchronize_full_domain(&async_domain);
4659 
4660 	/* If any consumer failed we need to unwind any that succeeded */
4661 	for (i = 0; i < num_consumers; i++) {
4662 		if (consumers[i].ret != 0) {
4663 			ret = consumers[i].ret;
4664 			goto err;
4665 		}
4666 	}
4667 
4668 	return 0;
4669 
4670 err:
4671 	for (i = 0; i < num_consumers; i++) {
4672 		if (consumers[i].ret < 0)
4673 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4674 			       ERR_PTR(consumers[i].ret));
4675 		else
4676 			regulator_disable(consumers[i].consumer);
4677 	}
4678 
4679 	return ret;
4680 }
4681 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4682 
4683 /**
4684  * regulator_bulk_disable - disable multiple regulator consumers
4685  *
4686  * @num_consumers: Number of consumers
4687  * @consumers:     Consumer data; clients are stored here.
4688  * @return         0 on success, an errno on failure
4689  *
4690  * This convenience API allows consumers to disable multiple regulator
4691  * clients in a single API call.  If any consumers cannot be disabled
4692  * then any others that were disabled will be enabled again prior to
4693  * return.
4694  */
4695 int regulator_bulk_disable(int num_consumers,
4696 			   struct regulator_bulk_data *consumers)
4697 {
4698 	int i;
4699 	int ret, r;
4700 
4701 	for (i = num_consumers - 1; i >= 0; --i) {
4702 		ret = regulator_disable(consumers[i].consumer);
4703 		if (ret != 0)
4704 			goto err;
4705 	}
4706 
4707 	return 0;
4708 
4709 err:
4710 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4711 	for (++i; i < num_consumers; ++i) {
4712 		r = regulator_enable(consumers[i].consumer);
4713 		if (r != 0)
4714 			pr_err("Failed to re-enable %s: %pe\n",
4715 			       consumers[i].supply, ERR_PTR(r));
4716 	}
4717 
4718 	return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4721 
4722 /**
4723  * regulator_bulk_force_disable - force disable multiple regulator consumers
4724  *
4725  * @num_consumers: Number of consumers
4726  * @consumers:     Consumer data; clients are stored here.
4727  * @return         0 on success, an errno on failure
4728  *
4729  * This convenience API allows consumers to forcibly disable multiple regulator
4730  * clients in a single API call.
4731  * NOTE: This should be used for situations when device damage will
4732  * likely occur if the regulators are not disabled (e.g. over temp).
4733  * Although regulator_force_disable function call for some consumers can
4734  * return error numbers, the function is called for all consumers.
4735  */
4736 int regulator_bulk_force_disable(int num_consumers,
4737 			   struct regulator_bulk_data *consumers)
4738 {
4739 	int i;
4740 	int ret = 0;
4741 
4742 	for (i = 0; i < num_consumers; i++) {
4743 		consumers[i].ret =
4744 			    regulator_force_disable(consumers[i].consumer);
4745 
4746 		/* Store first error for reporting */
4747 		if (consumers[i].ret && !ret)
4748 			ret = consumers[i].ret;
4749 	}
4750 
4751 	return ret;
4752 }
4753 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4754 
4755 /**
4756  * regulator_bulk_free - free multiple regulator consumers
4757  *
4758  * @num_consumers: Number of consumers
4759  * @consumers:     Consumer data; clients are stored here.
4760  *
4761  * This convenience API allows consumers to free multiple regulator
4762  * clients in a single API call.
4763  */
4764 void regulator_bulk_free(int num_consumers,
4765 			 struct regulator_bulk_data *consumers)
4766 {
4767 	int i;
4768 
4769 	for (i = 0; i < num_consumers; i++) {
4770 		regulator_put(consumers[i].consumer);
4771 		consumers[i].consumer = NULL;
4772 	}
4773 }
4774 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4775 
4776 /**
4777  * regulator_notifier_call_chain - call regulator event notifier
4778  * @rdev: regulator source
4779  * @event: notifier block
4780  * @data: callback-specific data.
4781  *
4782  * Called by regulator drivers to notify clients a regulator event has
4783  * occurred.
4784  */
4785 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4786 				  unsigned long event, void *data)
4787 {
4788 	_notifier_call_chain(rdev, event, data);
4789 	return NOTIFY_DONE;
4790 
4791 }
4792 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4793 
4794 /**
4795  * regulator_mode_to_status - convert a regulator mode into a status
4796  *
4797  * @mode: Mode to convert
4798  *
4799  * Convert a regulator mode into a status.
4800  */
4801 int regulator_mode_to_status(unsigned int mode)
4802 {
4803 	switch (mode) {
4804 	case REGULATOR_MODE_FAST:
4805 		return REGULATOR_STATUS_FAST;
4806 	case REGULATOR_MODE_NORMAL:
4807 		return REGULATOR_STATUS_NORMAL;
4808 	case REGULATOR_MODE_IDLE:
4809 		return REGULATOR_STATUS_IDLE;
4810 	case REGULATOR_MODE_STANDBY:
4811 		return REGULATOR_STATUS_STANDBY;
4812 	default:
4813 		return REGULATOR_STATUS_UNDEFINED;
4814 	}
4815 }
4816 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4817 
4818 static struct attribute *regulator_dev_attrs[] = {
4819 	&dev_attr_name.attr,
4820 	&dev_attr_num_users.attr,
4821 	&dev_attr_type.attr,
4822 	&dev_attr_microvolts.attr,
4823 	&dev_attr_microamps.attr,
4824 	&dev_attr_opmode.attr,
4825 	&dev_attr_state.attr,
4826 	&dev_attr_status.attr,
4827 	&dev_attr_bypass.attr,
4828 	&dev_attr_requested_microamps.attr,
4829 	&dev_attr_min_microvolts.attr,
4830 	&dev_attr_max_microvolts.attr,
4831 	&dev_attr_min_microamps.attr,
4832 	&dev_attr_max_microamps.attr,
4833 	&dev_attr_suspend_standby_state.attr,
4834 	&dev_attr_suspend_mem_state.attr,
4835 	&dev_attr_suspend_disk_state.attr,
4836 	&dev_attr_suspend_standby_microvolts.attr,
4837 	&dev_attr_suspend_mem_microvolts.attr,
4838 	&dev_attr_suspend_disk_microvolts.attr,
4839 	&dev_attr_suspend_standby_mode.attr,
4840 	&dev_attr_suspend_mem_mode.attr,
4841 	&dev_attr_suspend_disk_mode.attr,
4842 	NULL
4843 };
4844 
4845 /*
4846  * To avoid cluttering sysfs (and memory) with useless state, only
4847  * create attributes that can be meaningfully displayed.
4848  */
4849 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4850 					 struct attribute *attr, int idx)
4851 {
4852 	struct device *dev = kobj_to_dev(kobj);
4853 	struct regulator_dev *rdev = dev_to_rdev(dev);
4854 	const struct regulator_ops *ops = rdev->desc->ops;
4855 	umode_t mode = attr->mode;
4856 
4857 	/* these three are always present */
4858 	if (attr == &dev_attr_name.attr ||
4859 	    attr == &dev_attr_num_users.attr ||
4860 	    attr == &dev_attr_type.attr)
4861 		return mode;
4862 
4863 	/* some attributes need specific methods to be displayed */
4864 	if (attr == &dev_attr_microvolts.attr) {
4865 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4866 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4867 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4868 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4869 			return mode;
4870 		return 0;
4871 	}
4872 
4873 	if (attr == &dev_attr_microamps.attr)
4874 		return ops->get_current_limit ? mode : 0;
4875 
4876 	if (attr == &dev_attr_opmode.attr)
4877 		return ops->get_mode ? mode : 0;
4878 
4879 	if (attr == &dev_attr_state.attr)
4880 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4881 
4882 	if (attr == &dev_attr_status.attr)
4883 		return ops->get_status ? mode : 0;
4884 
4885 	if (attr == &dev_attr_bypass.attr)
4886 		return ops->get_bypass ? mode : 0;
4887 
4888 	/* constraints need specific supporting methods */
4889 	if (attr == &dev_attr_min_microvolts.attr ||
4890 	    attr == &dev_attr_max_microvolts.attr)
4891 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4892 
4893 	if (attr == &dev_attr_min_microamps.attr ||
4894 	    attr == &dev_attr_max_microamps.attr)
4895 		return ops->set_current_limit ? mode : 0;
4896 
4897 	if (attr == &dev_attr_suspend_standby_state.attr ||
4898 	    attr == &dev_attr_suspend_mem_state.attr ||
4899 	    attr == &dev_attr_suspend_disk_state.attr)
4900 		return mode;
4901 
4902 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4903 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4904 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4905 		return ops->set_suspend_voltage ? mode : 0;
4906 
4907 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4908 	    attr == &dev_attr_suspend_mem_mode.attr ||
4909 	    attr == &dev_attr_suspend_disk_mode.attr)
4910 		return ops->set_suspend_mode ? mode : 0;
4911 
4912 	return mode;
4913 }
4914 
4915 static const struct attribute_group regulator_dev_group = {
4916 	.attrs = regulator_dev_attrs,
4917 	.is_visible = regulator_attr_is_visible,
4918 };
4919 
4920 static const struct attribute_group *regulator_dev_groups[] = {
4921 	&regulator_dev_group,
4922 	NULL
4923 };
4924 
4925 static void regulator_dev_release(struct device *dev)
4926 {
4927 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4928 
4929 	kfree(rdev->constraints);
4930 	of_node_put(rdev->dev.of_node);
4931 	kfree(rdev);
4932 }
4933 
4934 static void rdev_init_debugfs(struct regulator_dev *rdev)
4935 {
4936 	struct device *parent = rdev->dev.parent;
4937 	const char *rname = rdev_get_name(rdev);
4938 	char name[NAME_MAX];
4939 
4940 	/* Avoid duplicate debugfs directory names */
4941 	if (parent && rname == rdev->desc->name) {
4942 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4943 			 rname);
4944 		rname = name;
4945 	}
4946 
4947 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4948 	if (!rdev->debugfs) {
4949 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4950 		return;
4951 	}
4952 
4953 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4954 			   &rdev->use_count);
4955 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4956 			   &rdev->open_count);
4957 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4958 			   &rdev->bypass_count);
4959 }
4960 
4961 static int regulator_register_resolve_supply(struct device *dev, void *data)
4962 {
4963 	struct regulator_dev *rdev = dev_to_rdev(dev);
4964 
4965 	if (regulator_resolve_supply(rdev))
4966 		rdev_dbg(rdev, "unable to resolve supply\n");
4967 
4968 	return 0;
4969 }
4970 
4971 int regulator_coupler_register(struct regulator_coupler *coupler)
4972 {
4973 	mutex_lock(&regulator_list_mutex);
4974 	list_add_tail(&coupler->list, &regulator_coupler_list);
4975 	mutex_unlock(&regulator_list_mutex);
4976 
4977 	return 0;
4978 }
4979 
4980 static struct regulator_coupler *
4981 regulator_find_coupler(struct regulator_dev *rdev)
4982 {
4983 	struct regulator_coupler *coupler;
4984 	int err;
4985 
4986 	/*
4987 	 * Note that regulators are appended to the list and the generic
4988 	 * coupler is registered first, hence it will be attached at last
4989 	 * if nobody cared.
4990 	 */
4991 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4992 		err = coupler->attach_regulator(coupler, rdev);
4993 		if (!err) {
4994 			if (!coupler->balance_voltage &&
4995 			    rdev->coupling_desc.n_coupled > 2)
4996 				goto err_unsupported;
4997 
4998 			return coupler;
4999 		}
5000 
5001 		if (err < 0)
5002 			return ERR_PTR(err);
5003 
5004 		if (err == 1)
5005 			continue;
5006 
5007 		break;
5008 	}
5009 
5010 	return ERR_PTR(-EINVAL);
5011 
5012 err_unsupported:
5013 	if (coupler->detach_regulator)
5014 		coupler->detach_regulator(coupler, rdev);
5015 
5016 	rdev_err(rdev,
5017 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5018 
5019 	return ERR_PTR(-EPERM);
5020 }
5021 
5022 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5023 {
5024 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5025 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5026 	int n_coupled = c_desc->n_coupled;
5027 	struct regulator_dev *c_rdev;
5028 	int i;
5029 
5030 	for (i = 1; i < n_coupled; i++) {
5031 		/* already resolved */
5032 		if (c_desc->coupled_rdevs[i])
5033 			continue;
5034 
5035 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5036 
5037 		if (!c_rdev)
5038 			continue;
5039 
5040 		if (c_rdev->coupling_desc.coupler != coupler) {
5041 			rdev_err(rdev, "coupler mismatch with %s\n",
5042 				 rdev_get_name(c_rdev));
5043 			return;
5044 		}
5045 
5046 		c_desc->coupled_rdevs[i] = c_rdev;
5047 		c_desc->n_resolved++;
5048 
5049 		regulator_resolve_coupling(c_rdev);
5050 	}
5051 }
5052 
5053 static void regulator_remove_coupling(struct regulator_dev *rdev)
5054 {
5055 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5056 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5057 	struct regulator_dev *__c_rdev, *c_rdev;
5058 	unsigned int __n_coupled, n_coupled;
5059 	int i, k;
5060 	int err;
5061 
5062 	n_coupled = c_desc->n_coupled;
5063 
5064 	for (i = 1; i < n_coupled; i++) {
5065 		c_rdev = c_desc->coupled_rdevs[i];
5066 
5067 		if (!c_rdev)
5068 			continue;
5069 
5070 		regulator_lock(c_rdev);
5071 
5072 		__c_desc = &c_rdev->coupling_desc;
5073 		__n_coupled = __c_desc->n_coupled;
5074 
5075 		for (k = 1; k < __n_coupled; k++) {
5076 			__c_rdev = __c_desc->coupled_rdevs[k];
5077 
5078 			if (__c_rdev == rdev) {
5079 				__c_desc->coupled_rdevs[k] = NULL;
5080 				__c_desc->n_resolved--;
5081 				break;
5082 			}
5083 		}
5084 
5085 		regulator_unlock(c_rdev);
5086 
5087 		c_desc->coupled_rdevs[i] = NULL;
5088 		c_desc->n_resolved--;
5089 	}
5090 
5091 	if (coupler && coupler->detach_regulator) {
5092 		err = coupler->detach_regulator(coupler, rdev);
5093 		if (err)
5094 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5095 				 ERR_PTR(err));
5096 	}
5097 
5098 	kfree(rdev->coupling_desc.coupled_rdevs);
5099 	rdev->coupling_desc.coupled_rdevs = NULL;
5100 }
5101 
5102 static int regulator_init_coupling(struct regulator_dev *rdev)
5103 {
5104 	struct regulator_dev **coupled;
5105 	int err, n_phandles;
5106 
5107 	if (!IS_ENABLED(CONFIG_OF))
5108 		n_phandles = 0;
5109 	else
5110 		n_phandles = of_get_n_coupled(rdev);
5111 
5112 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5113 	if (!coupled)
5114 		return -ENOMEM;
5115 
5116 	rdev->coupling_desc.coupled_rdevs = coupled;
5117 
5118 	/*
5119 	 * Every regulator should always have coupling descriptor filled with
5120 	 * at least pointer to itself.
5121 	 */
5122 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5123 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5124 	rdev->coupling_desc.n_resolved++;
5125 
5126 	/* regulator isn't coupled */
5127 	if (n_phandles == 0)
5128 		return 0;
5129 
5130 	if (!of_check_coupling_data(rdev))
5131 		return -EPERM;
5132 
5133 	mutex_lock(&regulator_list_mutex);
5134 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5135 	mutex_unlock(&regulator_list_mutex);
5136 
5137 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5138 		err = PTR_ERR(rdev->coupling_desc.coupler);
5139 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5140 		return err;
5141 	}
5142 
5143 	return 0;
5144 }
5145 
5146 static int generic_coupler_attach(struct regulator_coupler *coupler,
5147 				  struct regulator_dev *rdev)
5148 {
5149 	if (rdev->coupling_desc.n_coupled > 2) {
5150 		rdev_err(rdev,
5151 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5152 		return -EPERM;
5153 	}
5154 
5155 	if (!rdev->constraints->always_on) {
5156 		rdev_err(rdev,
5157 			 "Coupling of a non always-on regulator is unimplemented\n");
5158 		return -ENOTSUPP;
5159 	}
5160 
5161 	return 0;
5162 }
5163 
5164 static struct regulator_coupler generic_regulator_coupler = {
5165 	.attach_regulator = generic_coupler_attach,
5166 };
5167 
5168 /**
5169  * regulator_register - register regulator
5170  * @regulator_desc: regulator to register
5171  * @cfg: runtime configuration for regulator
5172  *
5173  * Called by regulator drivers to register a regulator.
5174  * Returns a valid pointer to struct regulator_dev on success
5175  * or an ERR_PTR() on error.
5176  */
5177 struct regulator_dev *
5178 regulator_register(const struct regulator_desc *regulator_desc,
5179 		   const struct regulator_config *cfg)
5180 {
5181 	const struct regulator_init_data *init_data;
5182 	struct regulator_config *config = NULL;
5183 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5184 	struct regulator_dev *rdev;
5185 	bool dangling_cfg_gpiod = false;
5186 	bool dangling_of_gpiod = false;
5187 	struct device *dev;
5188 	int ret, i;
5189 
5190 	if (cfg == NULL)
5191 		return ERR_PTR(-EINVAL);
5192 	if (cfg->ena_gpiod)
5193 		dangling_cfg_gpiod = true;
5194 	if (regulator_desc == NULL) {
5195 		ret = -EINVAL;
5196 		goto rinse;
5197 	}
5198 
5199 	dev = cfg->dev;
5200 	WARN_ON(!dev);
5201 
5202 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5203 		ret = -EINVAL;
5204 		goto rinse;
5205 	}
5206 
5207 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5208 	    regulator_desc->type != REGULATOR_CURRENT) {
5209 		ret = -EINVAL;
5210 		goto rinse;
5211 	}
5212 
5213 	/* Only one of each should be implemented */
5214 	WARN_ON(regulator_desc->ops->get_voltage &&
5215 		regulator_desc->ops->get_voltage_sel);
5216 	WARN_ON(regulator_desc->ops->set_voltage &&
5217 		regulator_desc->ops->set_voltage_sel);
5218 
5219 	/* If we're using selectors we must implement list_voltage. */
5220 	if (regulator_desc->ops->get_voltage_sel &&
5221 	    !regulator_desc->ops->list_voltage) {
5222 		ret = -EINVAL;
5223 		goto rinse;
5224 	}
5225 	if (regulator_desc->ops->set_voltage_sel &&
5226 	    !regulator_desc->ops->list_voltage) {
5227 		ret = -EINVAL;
5228 		goto rinse;
5229 	}
5230 
5231 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5232 	if (rdev == NULL) {
5233 		ret = -ENOMEM;
5234 		goto rinse;
5235 	}
5236 	device_initialize(&rdev->dev);
5237 
5238 	/*
5239 	 * Duplicate the config so the driver could override it after
5240 	 * parsing init data.
5241 	 */
5242 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5243 	if (config == NULL) {
5244 		ret = -ENOMEM;
5245 		goto clean;
5246 	}
5247 
5248 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5249 					       &rdev->dev.of_node);
5250 
5251 	/*
5252 	 * Sometimes not all resources are probed already so we need to take
5253 	 * that into account. This happens most the time if the ena_gpiod comes
5254 	 * from a gpio extender or something else.
5255 	 */
5256 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5257 		ret = -EPROBE_DEFER;
5258 		goto clean;
5259 	}
5260 
5261 	/*
5262 	 * We need to keep track of any GPIO descriptor coming from the
5263 	 * device tree until we have handled it over to the core. If the
5264 	 * config that was passed in to this function DOES NOT contain
5265 	 * a descriptor, and the config after this call DOES contain
5266 	 * a descriptor, we definitely got one from parsing the device
5267 	 * tree.
5268 	 */
5269 	if (!cfg->ena_gpiod && config->ena_gpiod)
5270 		dangling_of_gpiod = true;
5271 	if (!init_data) {
5272 		init_data = config->init_data;
5273 		rdev->dev.of_node = of_node_get(config->of_node);
5274 	}
5275 
5276 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5277 	rdev->reg_data = config->driver_data;
5278 	rdev->owner = regulator_desc->owner;
5279 	rdev->desc = regulator_desc;
5280 	if (config->regmap)
5281 		rdev->regmap = config->regmap;
5282 	else if (dev_get_regmap(dev, NULL))
5283 		rdev->regmap = dev_get_regmap(dev, NULL);
5284 	else if (dev->parent)
5285 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5286 	INIT_LIST_HEAD(&rdev->consumer_list);
5287 	INIT_LIST_HEAD(&rdev->list);
5288 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5289 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5290 
5291 	/* preform any regulator specific init */
5292 	if (init_data && init_data->regulator_init) {
5293 		ret = init_data->regulator_init(rdev->reg_data);
5294 		if (ret < 0)
5295 			goto clean;
5296 	}
5297 
5298 	if (config->ena_gpiod) {
5299 		ret = regulator_ena_gpio_request(rdev, config);
5300 		if (ret != 0) {
5301 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5302 				 ERR_PTR(ret));
5303 			goto clean;
5304 		}
5305 		/* The regulator core took over the GPIO descriptor */
5306 		dangling_cfg_gpiod = false;
5307 		dangling_of_gpiod = false;
5308 	}
5309 
5310 	/* register with sysfs */
5311 	rdev->dev.class = &regulator_class;
5312 	rdev->dev.parent = dev;
5313 	dev_set_name(&rdev->dev, "regulator.%lu",
5314 		    (unsigned long) atomic_inc_return(&regulator_no));
5315 	dev_set_drvdata(&rdev->dev, rdev);
5316 
5317 	/* set regulator constraints */
5318 	if (init_data)
5319 		rdev->constraints = kmemdup(&init_data->constraints,
5320 					    sizeof(*rdev->constraints),
5321 					    GFP_KERNEL);
5322 	else
5323 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5324 					    GFP_KERNEL);
5325 	if (!rdev->constraints) {
5326 		ret = -ENOMEM;
5327 		goto wash;
5328 	}
5329 
5330 	if (init_data && init_data->supply_regulator)
5331 		rdev->supply_name = init_data->supply_regulator;
5332 	else if (regulator_desc->supply_name)
5333 		rdev->supply_name = regulator_desc->supply_name;
5334 
5335 	ret = set_machine_constraints(rdev);
5336 	if (ret == -EPROBE_DEFER) {
5337 		/* Regulator might be in bypass mode and so needs its supply
5338 		 * to set the constraints
5339 		 */
5340 		/* FIXME: this currently triggers a chicken-and-egg problem
5341 		 * when creating -SUPPLY symlink in sysfs to a regulator
5342 		 * that is just being created
5343 		 */
5344 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5345 			 rdev->supply_name);
5346 		ret = regulator_resolve_supply(rdev);
5347 		if (!ret)
5348 			ret = set_machine_constraints(rdev);
5349 		else
5350 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5351 				 ERR_PTR(ret));
5352 	}
5353 	if (ret < 0)
5354 		goto wash;
5355 
5356 	ret = regulator_init_coupling(rdev);
5357 	if (ret < 0)
5358 		goto wash;
5359 
5360 	/* add consumers devices */
5361 	if (init_data) {
5362 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5363 			ret = set_consumer_device_supply(rdev,
5364 				init_data->consumer_supplies[i].dev_name,
5365 				init_data->consumer_supplies[i].supply);
5366 			if (ret < 0) {
5367 				dev_err(dev, "Failed to set supply %s\n",
5368 					init_data->consumer_supplies[i].supply);
5369 				goto unset_supplies;
5370 			}
5371 		}
5372 	}
5373 
5374 	if (!rdev->desc->ops->get_voltage &&
5375 	    !rdev->desc->ops->list_voltage &&
5376 	    !rdev->desc->fixed_uV)
5377 		rdev->is_switch = true;
5378 
5379 	ret = device_add(&rdev->dev);
5380 	if (ret != 0)
5381 		goto unset_supplies;
5382 
5383 	rdev_init_debugfs(rdev);
5384 
5385 	/* try to resolve regulators coupling since a new one was registered */
5386 	mutex_lock(&regulator_list_mutex);
5387 	regulator_resolve_coupling(rdev);
5388 	mutex_unlock(&regulator_list_mutex);
5389 
5390 	/* try to resolve regulators supply since a new one was registered */
5391 	class_for_each_device(&regulator_class, NULL, NULL,
5392 			      regulator_register_resolve_supply);
5393 	kfree(config);
5394 	return rdev;
5395 
5396 unset_supplies:
5397 	mutex_lock(&regulator_list_mutex);
5398 	unset_regulator_supplies(rdev);
5399 	regulator_remove_coupling(rdev);
5400 	mutex_unlock(&regulator_list_mutex);
5401 wash:
5402 	kfree(rdev->coupling_desc.coupled_rdevs);
5403 	mutex_lock(&regulator_list_mutex);
5404 	regulator_ena_gpio_free(rdev);
5405 	mutex_unlock(&regulator_list_mutex);
5406 clean:
5407 	if (dangling_of_gpiod)
5408 		gpiod_put(config->ena_gpiod);
5409 	kfree(config);
5410 	put_device(&rdev->dev);
5411 rinse:
5412 	if (dangling_cfg_gpiod)
5413 		gpiod_put(cfg->ena_gpiod);
5414 	return ERR_PTR(ret);
5415 }
5416 EXPORT_SYMBOL_GPL(regulator_register);
5417 
5418 /**
5419  * regulator_unregister - unregister regulator
5420  * @rdev: regulator to unregister
5421  *
5422  * Called by regulator drivers to unregister a regulator.
5423  */
5424 void regulator_unregister(struct regulator_dev *rdev)
5425 {
5426 	if (rdev == NULL)
5427 		return;
5428 
5429 	if (rdev->supply) {
5430 		while (rdev->use_count--)
5431 			regulator_disable(rdev->supply);
5432 		regulator_put(rdev->supply);
5433 	}
5434 
5435 	flush_work(&rdev->disable_work.work);
5436 
5437 	mutex_lock(&regulator_list_mutex);
5438 
5439 	debugfs_remove_recursive(rdev->debugfs);
5440 	WARN_ON(rdev->open_count);
5441 	regulator_remove_coupling(rdev);
5442 	unset_regulator_supplies(rdev);
5443 	list_del(&rdev->list);
5444 	regulator_ena_gpio_free(rdev);
5445 	device_unregister(&rdev->dev);
5446 
5447 	mutex_unlock(&regulator_list_mutex);
5448 }
5449 EXPORT_SYMBOL_GPL(regulator_unregister);
5450 
5451 #ifdef CONFIG_SUSPEND
5452 /**
5453  * regulator_suspend - prepare regulators for system wide suspend
5454  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5455  *
5456  * Configure each regulator with it's suspend operating parameters for state.
5457  */
5458 static int regulator_suspend(struct device *dev)
5459 {
5460 	struct regulator_dev *rdev = dev_to_rdev(dev);
5461 	suspend_state_t state = pm_suspend_target_state;
5462 	int ret;
5463 	const struct regulator_state *rstate;
5464 
5465 	rstate = regulator_get_suspend_state_check(rdev, state);
5466 	if (!rstate)
5467 		return 0;
5468 
5469 	regulator_lock(rdev);
5470 	ret = __suspend_set_state(rdev, rstate);
5471 	regulator_unlock(rdev);
5472 
5473 	return ret;
5474 }
5475 
5476 static int regulator_resume(struct device *dev)
5477 {
5478 	suspend_state_t state = pm_suspend_target_state;
5479 	struct regulator_dev *rdev = dev_to_rdev(dev);
5480 	struct regulator_state *rstate;
5481 	int ret = 0;
5482 
5483 	rstate = regulator_get_suspend_state(rdev, state);
5484 	if (rstate == NULL)
5485 		return 0;
5486 
5487 	/* Avoid grabbing the lock if we don't need to */
5488 	if (!rdev->desc->ops->resume)
5489 		return 0;
5490 
5491 	regulator_lock(rdev);
5492 
5493 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5494 	    rstate->enabled == DISABLE_IN_SUSPEND)
5495 		ret = rdev->desc->ops->resume(rdev);
5496 
5497 	regulator_unlock(rdev);
5498 
5499 	return ret;
5500 }
5501 #else /* !CONFIG_SUSPEND */
5502 
5503 #define regulator_suspend	NULL
5504 #define regulator_resume	NULL
5505 
5506 #endif /* !CONFIG_SUSPEND */
5507 
5508 #ifdef CONFIG_PM
5509 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510 	.suspend	= regulator_suspend,
5511 	.resume		= regulator_resume,
5512 };
5513 #endif
5514 
5515 struct class regulator_class = {
5516 	.name = "regulator",
5517 	.dev_release = regulator_dev_release,
5518 	.dev_groups = regulator_dev_groups,
5519 #ifdef CONFIG_PM
5520 	.pm = &regulator_pm_ops,
5521 #endif
5522 };
5523 /**
5524  * regulator_has_full_constraints - the system has fully specified constraints
5525  *
5526  * Calling this function will cause the regulator API to disable all
5527  * regulators which have a zero use count and don't have an always_on
5528  * constraint in a late_initcall.
5529  *
5530  * The intention is that this will become the default behaviour in a
5531  * future kernel release so users are encouraged to use this facility
5532  * now.
5533  */
5534 void regulator_has_full_constraints(void)
5535 {
5536 	has_full_constraints = 1;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5539 
5540 /**
5541  * rdev_get_drvdata - get rdev regulator driver data
5542  * @rdev: regulator
5543  *
5544  * Get rdev regulator driver private data. This call can be used in the
5545  * regulator driver context.
5546  */
5547 void *rdev_get_drvdata(struct regulator_dev *rdev)
5548 {
5549 	return rdev->reg_data;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5552 
5553 /**
5554  * regulator_get_drvdata - get regulator driver data
5555  * @regulator: regulator
5556  *
5557  * Get regulator driver private data. This call can be used in the consumer
5558  * driver context when non API regulator specific functions need to be called.
5559  */
5560 void *regulator_get_drvdata(struct regulator *regulator)
5561 {
5562 	return regulator->rdev->reg_data;
5563 }
5564 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5565 
5566 /**
5567  * regulator_set_drvdata - set regulator driver data
5568  * @regulator: regulator
5569  * @data: data
5570  */
5571 void regulator_set_drvdata(struct regulator *regulator, void *data)
5572 {
5573 	regulator->rdev->reg_data = data;
5574 }
5575 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5576 
5577 /**
5578  * rdev_get_id - get regulator ID
5579  * @rdev: regulator
5580  */
5581 int rdev_get_id(struct regulator_dev *rdev)
5582 {
5583 	return rdev->desc->id;
5584 }
5585 EXPORT_SYMBOL_GPL(rdev_get_id);
5586 
5587 struct device *rdev_get_dev(struct regulator_dev *rdev)
5588 {
5589 	return &rdev->dev;
5590 }
5591 EXPORT_SYMBOL_GPL(rdev_get_dev);
5592 
5593 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5594 {
5595 	return rdev->regmap;
5596 }
5597 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5598 
5599 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5600 {
5601 	return reg_init_data->driver_data;
5602 }
5603 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5604 
5605 #ifdef CONFIG_DEBUG_FS
5606 static int supply_map_show(struct seq_file *sf, void *data)
5607 {
5608 	struct regulator_map *map;
5609 
5610 	list_for_each_entry(map, &regulator_map_list, list) {
5611 		seq_printf(sf, "%s -> %s.%s\n",
5612 				rdev_get_name(map->regulator), map->dev_name,
5613 				map->supply);
5614 	}
5615 
5616 	return 0;
5617 }
5618 DEFINE_SHOW_ATTRIBUTE(supply_map);
5619 
5620 struct summary_data {
5621 	struct seq_file *s;
5622 	struct regulator_dev *parent;
5623 	int level;
5624 };
5625 
5626 static void regulator_summary_show_subtree(struct seq_file *s,
5627 					   struct regulator_dev *rdev,
5628 					   int level);
5629 
5630 static int regulator_summary_show_children(struct device *dev, void *data)
5631 {
5632 	struct regulator_dev *rdev = dev_to_rdev(dev);
5633 	struct summary_data *summary_data = data;
5634 
5635 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5636 		regulator_summary_show_subtree(summary_data->s, rdev,
5637 					       summary_data->level + 1);
5638 
5639 	return 0;
5640 }
5641 
5642 static void regulator_summary_show_subtree(struct seq_file *s,
5643 					   struct regulator_dev *rdev,
5644 					   int level)
5645 {
5646 	struct regulation_constraints *c;
5647 	struct regulator *consumer;
5648 	struct summary_data summary_data;
5649 	unsigned int opmode;
5650 
5651 	if (!rdev)
5652 		return;
5653 
5654 	opmode = _regulator_get_mode_unlocked(rdev);
5655 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5656 		   level * 3 + 1, "",
5657 		   30 - level * 3, rdev_get_name(rdev),
5658 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5659 		   regulator_opmode_to_str(opmode));
5660 
5661 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662 	seq_printf(s, "%5dmA ",
5663 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5664 
5665 	c = rdev->constraints;
5666 	if (c) {
5667 		switch (rdev->desc->type) {
5668 		case REGULATOR_VOLTAGE:
5669 			seq_printf(s, "%5dmV %5dmV ",
5670 				   c->min_uV / 1000, c->max_uV / 1000);
5671 			break;
5672 		case REGULATOR_CURRENT:
5673 			seq_printf(s, "%5dmA %5dmA ",
5674 				   c->min_uA / 1000, c->max_uA / 1000);
5675 			break;
5676 		}
5677 	}
5678 
5679 	seq_puts(s, "\n");
5680 
5681 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682 		if (consumer->dev && consumer->dev->class == &regulator_class)
5683 			continue;
5684 
5685 		seq_printf(s, "%*s%-*s ",
5686 			   (level + 1) * 3 + 1, "",
5687 			   30 - (level + 1) * 3,
5688 			   consumer->supply_name ? consumer->supply_name :
5689 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5690 
5691 		switch (rdev->desc->type) {
5692 		case REGULATOR_VOLTAGE:
5693 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5694 				   consumer->enable_count,
5695 				   consumer->uA_load / 1000,
5696 				   consumer->uA_load && !consumer->enable_count ?
5697 				   '*' : ' ',
5698 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5699 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5700 			break;
5701 		case REGULATOR_CURRENT:
5702 			break;
5703 		}
5704 
5705 		seq_puts(s, "\n");
5706 	}
5707 
5708 	summary_data.s = s;
5709 	summary_data.level = level;
5710 	summary_data.parent = rdev;
5711 
5712 	class_for_each_device(&regulator_class, NULL, &summary_data,
5713 			      regulator_summary_show_children);
5714 }
5715 
5716 struct summary_lock_data {
5717 	struct ww_acquire_ctx *ww_ctx;
5718 	struct regulator_dev **new_contended_rdev;
5719 	struct regulator_dev **old_contended_rdev;
5720 };
5721 
5722 static int regulator_summary_lock_one(struct device *dev, void *data)
5723 {
5724 	struct regulator_dev *rdev = dev_to_rdev(dev);
5725 	struct summary_lock_data *lock_data = data;
5726 	int ret = 0;
5727 
5728 	if (rdev != *lock_data->old_contended_rdev) {
5729 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5730 
5731 		if (ret == -EDEADLK)
5732 			*lock_data->new_contended_rdev = rdev;
5733 		else
5734 			WARN_ON_ONCE(ret);
5735 	} else {
5736 		*lock_data->old_contended_rdev = NULL;
5737 	}
5738 
5739 	return ret;
5740 }
5741 
5742 static int regulator_summary_unlock_one(struct device *dev, void *data)
5743 {
5744 	struct regulator_dev *rdev = dev_to_rdev(dev);
5745 	struct summary_lock_data *lock_data = data;
5746 
5747 	if (lock_data) {
5748 		if (rdev == *lock_data->new_contended_rdev)
5749 			return -EDEADLK;
5750 	}
5751 
5752 	regulator_unlock(rdev);
5753 
5754 	return 0;
5755 }
5756 
5757 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5758 				      struct regulator_dev **new_contended_rdev,
5759 				      struct regulator_dev **old_contended_rdev)
5760 {
5761 	struct summary_lock_data lock_data;
5762 	int ret;
5763 
5764 	lock_data.ww_ctx = ww_ctx;
5765 	lock_data.new_contended_rdev = new_contended_rdev;
5766 	lock_data.old_contended_rdev = old_contended_rdev;
5767 
5768 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5769 				    regulator_summary_lock_one);
5770 	if (ret)
5771 		class_for_each_device(&regulator_class, NULL, &lock_data,
5772 				      regulator_summary_unlock_one);
5773 
5774 	return ret;
5775 }
5776 
5777 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5778 {
5779 	struct regulator_dev *new_contended_rdev = NULL;
5780 	struct regulator_dev *old_contended_rdev = NULL;
5781 	int err;
5782 
5783 	mutex_lock(&regulator_list_mutex);
5784 
5785 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5786 
5787 	do {
5788 		if (new_contended_rdev) {
5789 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5790 			old_contended_rdev = new_contended_rdev;
5791 			old_contended_rdev->ref_cnt++;
5792 		}
5793 
5794 		err = regulator_summary_lock_all(ww_ctx,
5795 						 &new_contended_rdev,
5796 						 &old_contended_rdev);
5797 
5798 		if (old_contended_rdev)
5799 			regulator_unlock(old_contended_rdev);
5800 
5801 	} while (err == -EDEADLK);
5802 
5803 	ww_acquire_done(ww_ctx);
5804 }
5805 
5806 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5807 {
5808 	class_for_each_device(&regulator_class, NULL, NULL,
5809 			      regulator_summary_unlock_one);
5810 	ww_acquire_fini(ww_ctx);
5811 
5812 	mutex_unlock(&regulator_list_mutex);
5813 }
5814 
5815 static int regulator_summary_show_roots(struct device *dev, void *data)
5816 {
5817 	struct regulator_dev *rdev = dev_to_rdev(dev);
5818 	struct seq_file *s = data;
5819 
5820 	if (!rdev->supply)
5821 		regulator_summary_show_subtree(s, rdev, 0);
5822 
5823 	return 0;
5824 }
5825 
5826 static int regulator_summary_show(struct seq_file *s, void *data)
5827 {
5828 	struct ww_acquire_ctx ww_ctx;
5829 
5830 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5831 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5832 
5833 	regulator_summary_lock(&ww_ctx);
5834 
5835 	class_for_each_device(&regulator_class, NULL, s,
5836 			      regulator_summary_show_roots);
5837 
5838 	regulator_summary_unlock(&ww_ctx);
5839 
5840 	return 0;
5841 }
5842 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5843 #endif /* CONFIG_DEBUG_FS */
5844 
5845 static int __init regulator_init(void)
5846 {
5847 	int ret;
5848 
5849 	ret = class_register(&regulator_class);
5850 
5851 	debugfs_root = debugfs_create_dir("regulator", NULL);
5852 	if (!debugfs_root)
5853 		pr_warn("regulator: Failed to create debugfs directory\n");
5854 
5855 #ifdef CONFIG_DEBUG_FS
5856 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5857 			    &supply_map_fops);
5858 
5859 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860 			    NULL, &regulator_summary_fops);
5861 #endif
5862 	regulator_dummy_init();
5863 
5864 	regulator_coupler_register(&generic_regulator_coupler);
5865 
5866 	return ret;
5867 }
5868 
5869 /* init early to allow our consumers to complete system booting */
5870 core_initcall(regulator_init);
5871 
5872 static int regulator_late_cleanup(struct device *dev, void *data)
5873 {
5874 	struct regulator_dev *rdev = dev_to_rdev(dev);
5875 	const struct regulator_ops *ops = rdev->desc->ops;
5876 	struct regulation_constraints *c = rdev->constraints;
5877 	int enabled, ret;
5878 
5879 	if (c && c->always_on)
5880 		return 0;
5881 
5882 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5883 		return 0;
5884 
5885 	regulator_lock(rdev);
5886 
5887 	if (rdev->use_count)
5888 		goto unlock;
5889 
5890 	/* If we can't read the status assume it's always on. */
5891 	if (ops->is_enabled)
5892 		enabled = ops->is_enabled(rdev);
5893 	else
5894 		enabled = 1;
5895 
5896 	/* But if reading the status failed, assume that it's off. */
5897 	if (enabled <= 0)
5898 		goto unlock;
5899 
5900 	if (have_full_constraints()) {
5901 		/* We log since this may kill the system if it goes
5902 		 * wrong.
5903 		 */
5904 		rdev_info(rdev, "disabling\n");
5905 		ret = _regulator_do_disable(rdev);
5906 		if (ret != 0)
5907 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5908 	} else {
5909 		/* The intention is that in future we will
5910 		 * assume that full constraints are provided
5911 		 * so warn even if we aren't going to do
5912 		 * anything here.
5913 		 */
5914 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5915 	}
5916 
5917 unlock:
5918 	regulator_unlock(rdev);
5919 
5920 	return 0;
5921 }
5922 
5923 static void regulator_init_complete_work_function(struct work_struct *work)
5924 {
5925 	/*
5926 	 * Regulators may had failed to resolve their input supplies
5927 	 * when were registered, either because the input supply was
5928 	 * not registered yet or because its parent device was not
5929 	 * bound yet. So attempt to resolve the input supplies for
5930 	 * pending regulators before trying to disable unused ones.
5931 	 */
5932 	class_for_each_device(&regulator_class, NULL, NULL,
5933 			      regulator_register_resolve_supply);
5934 
5935 	/* If we have a full configuration then disable any regulators
5936 	 * we have permission to change the status for and which are
5937 	 * not in use or always_on.  This is effectively the default
5938 	 * for DT and ACPI as they have full constraints.
5939 	 */
5940 	class_for_each_device(&regulator_class, NULL, NULL,
5941 			      regulator_late_cleanup);
5942 }
5943 
5944 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5945 			    regulator_init_complete_work_function);
5946 
5947 static int __init regulator_init_complete(void)
5948 {
5949 	/*
5950 	 * Since DT doesn't provide an idiomatic mechanism for
5951 	 * enabling full constraints and since it's much more natural
5952 	 * with DT to provide them just assume that a DT enabled
5953 	 * system has full constraints.
5954 	 */
5955 	if (of_have_populated_dt())
5956 		has_full_constraints = true;
5957 
5958 	/*
5959 	 * We punt completion for an arbitrary amount of time since
5960 	 * systems like distros will load many drivers from userspace
5961 	 * so consumers might not always be ready yet, this is
5962 	 * particularly an issue with laptops where this might bounce
5963 	 * the display off then on.  Ideally we'd get a notification
5964 	 * from userspace when this happens but we don't so just wait
5965 	 * a bit and hope we waited long enough.  It'd be better if
5966 	 * we'd only do this on systems that need it, and a kernel
5967 	 * command line option might be useful.
5968 	 */
5969 	schedule_delayed_work(&regulator_init_complete_work,
5970 			      msecs_to_jiffies(30000));
5971 
5972 	return 0;
5973 }
5974 late_initcall_sync(regulator_init_complete);
5975