xref: /openbmc/linux/drivers/regulator/core.c (revision bc000245)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	int gpio;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 	if (rdev->constraints && rdev->constraints->name)
115 		return rdev->constraints->name;
116 	else if (rdev->desc->name)
117 		return rdev->desc->name;
118 	else
119 		return "";
120 }
121 
122 static bool have_full_constraints(void)
123 {
124 	return has_full_constraints || of_have_populated_dt();
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 			 char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334 
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 	switch (mode) {
338 	case REGULATOR_MODE_FAST:
339 		return sprintf(buf, "fast\n");
340 	case REGULATOR_MODE_NORMAL:
341 		return sprintf(buf, "normal\n");
342 	case REGULATOR_MODE_IDLE:
343 		return sprintf(buf, "idle\n");
344 	case REGULATOR_MODE_STANDBY:
345 		return sprintf(buf, "standby\n");
346 	}
347 	return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_opmode_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 	if (state > 0)
362 		return sprintf(buf, "enabled\n");
363 	else if (state == 0)
364 		return sprintf(buf, "disabled\n");
365 	else
366 		return sprintf(buf, "unknown\n");
367 }
368 
369 static ssize_t regulator_state_show(struct device *dev,
370 				   struct device_attribute *attr, char *buf)
371 {
372 	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 	ssize_t ret;
374 
375 	mutex_lock(&rdev->mutex);
376 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 	mutex_unlock(&rdev->mutex);
378 
379 	return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 
383 static ssize_t regulator_status_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	int status;
388 	char *label;
389 
390 	status = rdev->desc->ops->get_status(rdev);
391 	if (status < 0)
392 		return status;
393 
394 	switch (status) {
395 	case REGULATOR_STATUS_OFF:
396 		label = "off";
397 		break;
398 	case REGULATOR_STATUS_ON:
399 		label = "on";
400 		break;
401 	case REGULATOR_STATUS_ERROR:
402 		label = "error";
403 		break;
404 	case REGULATOR_STATUS_FAST:
405 		label = "fast";
406 		break;
407 	case REGULATOR_STATUS_NORMAL:
408 		label = "normal";
409 		break;
410 	case REGULATOR_STATUS_IDLE:
411 		label = "idle";
412 		break;
413 	case REGULATOR_STATUS_STANDBY:
414 		label = "standby";
415 		break;
416 	case REGULATOR_STATUS_BYPASS:
417 		label = "bypass";
418 		break;
419 	case REGULATOR_STATUS_UNDEFINED:
420 		label = "undefined";
421 		break;
422 	default:
423 		return -ERANGE;
424 	}
425 
426 	return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 				    struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	if (!rdev->constraints)
436 		return sprintf(buf, "constraint not defined\n");
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 				    struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 
447 	if (!rdev->constraints)
448 		return sprintf(buf, "constraint not defined\n");
449 
450 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	struct regulator *regulator;
483 	int uA = 0;
484 
485 	mutex_lock(&rdev->mutex);
486 	list_for_each_entry(regulator, &rdev->consumer_list, list)
487 		uA += regulator->uA_load;
488 	mutex_unlock(&rdev->mutex);
489 	return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 			      char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 	return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500 
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 			 char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515 
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 		regulator_suspend_mem_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 		regulator_suspend_disk_uV_show, NULL);
535 
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 				struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 		regulator_suspend_standby_uV_show, NULL);
545 
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 				struct device_attribute *attr, char *buf)
548 {
549 	struct regulator_dev *rdev = dev_get_drvdata(dev);
550 
551 	return regulator_print_opmode(buf,
552 		rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 		regulator_suspend_mem_mode_show, NULL);
556 
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 				struct device_attribute *attr, char *buf)
559 {
560 	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 
562 	return regulator_print_opmode(buf,
563 		rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 		regulator_suspend_disk_mode_show, NULL);
567 
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 
573 	return regulator_print_opmode(buf,
574 		rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 		regulator_suspend_standby_mode_show, NULL);
578 
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 				   struct device_attribute *attr, char *buf)
581 {
582 	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 
584 	return regulator_print_state(buf,
585 			rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 		regulator_suspend_mem_state_show, NULL);
589 
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 				   struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_state(buf,
596 			rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 		regulator_suspend_disk_state_show, NULL);
600 
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 				   struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_state(buf,
607 			rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 		regulator_suspend_standby_state_show, NULL);
611 
612 static ssize_t regulator_bypass_show(struct device *dev,
613 				     struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 	const char *report;
617 	bool bypass;
618 	int ret;
619 
620 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621 
622 	if (ret != 0)
623 		report = "unknown";
624 	else if (bypass)
625 		report = "enabled";
626 	else
627 		report = "disabled";
628 
629 	return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 		   regulator_bypass_show, NULL);
633 
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639 	&dev_attr_name.attr,
640 	&dev_attr_num_users.attr,
641 	&dev_attr_type.attr,
642 	NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645 
646 static void regulator_dev_release(struct device *dev)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 	kfree(rdev);
650 }
651 
652 static struct class regulator_class = {
653 	.name = "regulator",
654 	.dev_release = regulator_dev_release,
655 	.dev_groups = regulator_dev_groups,
656 };
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	err = regulator_check_drms(rdev);
667 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 	    (!rdev->desc->ops->get_voltage &&
669 	     !rdev->desc->ops->get_voltage_sel) ||
670 	    !rdev->desc->ops->set_mode)
671 		return;
672 
673 	/* get output voltage */
674 	output_uV = _regulator_get_voltage(rdev);
675 	if (output_uV <= 0)
676 		return;
677 
678 	/* get input voltage */
679 	input_uV = 0;
680 	if (rdev->supply)
681 		input_uV = regulator_get_voltage(rdev->supply);
682 	if (input_uV <= 0)
683 		input_uV = rdev->constraints->input_uV;
684 	if (input_uV <= 0)
685 		return;
686 
687 	/* calc total requested load */
688 	list_for_each_entry(sibling, &rdev->consumer_list, list)
689 		current_uA += sibling->uA_load;
690 
691 	/* now get the optimum mode for our new total regulator load */
692 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 						  output_uV, current_uA);
694 
695 	/* check the new mode is allowed */
696 	err = regulator_mode_constrain(rdev, &mode);
697 	if (err == 0)
698 		rdev->desc->ops->set_mode(rdev, mode);
699 }
700 
701 static int suspend_set_state(struct regulator_dev *rdev,
702 	struct regulator_state *rstate)
703 {
704 	int ret = 0;
705 
706 	/* If we have no suspend mode configration don't set anything;
707 	 * only warn if the driver implements set_suspend_voltage or
708 	 * set_suspend_mode callback.
709 	 */
710 	if (!rstate->enabled && !rstate->disabled) {
711 		if (rdev->desc->ops->set_suspend_voltage ||
712 		    rdev->desc->ops->set_suspend_mode)
713 			rdev_warn(rdev, "No configuration\n");
714 		return 0;
715 	}
716 
717 	if (rstate->enabled && rstate->disabled) {
718 		rdev_err(rdev, "invalid configuration\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 		ret = rdev->desc->ops->set_suspend_enable(rdev);
724 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 		ret = 0;
728 
729 	if (ret < 0) {
730 		rdev_err(rdev, "failed to enabled/disable\n");
731 		return ret;
732 	}
733 
734 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 		if (ret < 0) {
737 			rdev_err(rdev, "failed to set voltage\n");
738 			return ret;
739 		}
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set mode\n");
746 			return ret;
747 		}
748 	}
749 	return ret;
750 }
751 
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 	if (!rdev->constraints)
756 		return -EINVAL;
757 
758 	switch (state) {
759 	case PM_SUSPEND_STANDBY:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_standby);
762 	case PM_SUSPEND_MEM:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_mem);
765 	case PM_SUSPEND_MAX:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_disk);
768 	default:
769 		return -EINVAL;
770 	}
771 }
772 
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 	struct regulation_constraints *constraints = rdev->constraints;
776 	char buf[80] = "";
777 	int count = 0;
778 	int ret;
779 
780 	if (constraints->min_uV && constraints->max_uV) {
781 		if (constraints->min_uV == constraints->max_uV)
782 			count += sprintf(buf + count, "%d mV ",
783 					 constraints->min_uV / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mV ",
786 					 constraints->min_uV / 1000,
787 					 constraints->max_uV / 1000);
788 	}
789 
790 	if (!constraints->min_uV ||
791 	    constraints->min_uV != constraints->max_uV) {
792 		ret = _regulator_get_voltage(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 	}
796 
797 	if (constraints->uV_offset)
798 		count += sprintf(buf, "%dmV offset ",
799 				 constraints->uV_offset / 1000);
800 
801 	if (constraints->min_uA && constraints->max_uA) {
802 		if (constraints->min_uA == constraints->max_uA)
803 			count += sprintf(buf + count, "%d mA ",
804 					 constraints->min_uA / 1000);
805 		else
806 			count += sprintf(buf + count, "%d <--> %d mA ",
807 					 constraints->min_uA / 1000,
808 					 constraints->max_uA / 1000);
809 	}
810 
811 	if (!constraints->min_uA ||
812 	    constraints->min_uA != constraints->max_uA) {
813 		ret = _regulator_get_current_limit(rdev);
814 		if (ret > 0)
815 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 	}
817 
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 		count += sprintf(buf + count, "fast ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 		count += sprintf(buf + count, "normal ");
822 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 		count += sprintf(buf + count, "idle ");
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 		count += sprintf(buf + count, "standby");
826 
827 	if (!count)
828 		sprintf(buf, "no parameters");
829 
830 	rdev_info(rdev, "%s\n", buf);
831 
832 	if ((constraints->min_uV != constraints->max_uV) &&
833 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 		rdev_warn(rdev,
835 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837 
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 	struct regulation_constraints *constraints)
840 {
841 	struct regulator_ops *ops = rdev->desc->ops;
842 	int ret;
843 
844 	/* do we need to apply the constraint voltage */
845 	if (rdev->constraints->apply_uV &&
846 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 		ret = _regulator_do_set_voltage(rdev,
848 						rdev->constraints->min_uV,
849 						rdev->constraints->max_uV);
850 		if (ret < 0) {
851 			rdev_err(rdev, "failed to apply %duV constraint\n",
852 				 rdev->constraints->min_uV);
853 			return ret;
854 		}
855 	}
856 
857 	/* constrain machine-level voltage specs to fit
858 	 * the actual range supported by this regulator.
859 	 */
860 	if (ops->list_voltage && rdev->desc->n_voltages) {
861 		int	count = rdev->desc->n_voltages;
862 		int	i;
863 		int	min_uV = INT_MAX;
864 		int	max_uV = INT_MIN;
865 		int	cmin = constraints->min_uV;
866 		int	cmax = constraints->max_uV;
867 
868 		/* it's safe to autoconfigure fixed-voltage supplies
869 		   and the constraints are used by list_voltage. */
870 		if (count == 1 && !cmin) {
871 			cmin = 1;
872 			cmax = INT_MAX;
873 			constraints->min_uV = cmin;
874 			constraints->max_uV = cmax;
875 		}
876 
877 		/* voltage constraints are optional */
878 		if ((cmin == 0) && (cmax == 0))
879 			return 0;
880 
881 		/* else require explicit machine-level constraints */
882 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 			rdev_err(rdev, "invalid voltage constraints\n");
884 			return -EINVAL;
885 		}
886 
887 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 		for (i = 0; i < count; i++) {
889 			int	value;
890 
891 			value = ops->list_voltage(rdev, i);
892 			if (value <= 0)
893 				continue;
894 
895 			/* maybe adjust [min_uV..max_uV] */
896 			if (value >= cmin && value < min_uV)
897 				min_uV = value;
898 			if (value <= cmax && value > max_uV)
899 				max_uV = value;
900 		}
901 
902 		/* final: [min_uV..max_uV] valid iff constraints valid */
903 		if (max_uV < min_uV) {
904 			rdev_err(rdev,
905 				 "unsupportable voltage constraints %u-%uuV\n",
906 				 min_uV, max_uV);
907 			return -EINVAL;
908 		}
909 
910 		/* use regulator's subset of machine constraints */
911 		if (constraints->min_uV < min_uV) {
912 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 				 constraints->min_uV, min_uV);
914 			constraints->min_uV = min_uV;
915 		}
916 		if (constraints->max_uV > max_uV) {
917 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 				 constraints->max_uV, max_uV);
919 			constraints->max_uV = max_uV;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 	struct regulation_constraints *constraints)
928 {
929 	struct regulator_ops *ops = rdev->desc->ops;
930 	int ret;
931 
932 	if (!constraints->min_uA && !constraints->max_uA)
933 		return 0;
934 
935 	if (constraints->min_uA > constraints->max_uA) {
936 		rdev_err(rdev, "Invalid current constraints\n");
937 		return -EINVAL;
938 	}
939 
940 	if (!ops->set_current_limit || !ops->get_current_limit) {
941 		rdev_warn(rdev, "Operation of current configuration missing\n");
942 		return 0;
943 	}
944 
945 	/* Set regulator current in constraints range */
946 	ret = ops->set_current_limit(rdev, constraints->min_uA,
947 			constraints->max_uA);
948 	if (ret < 0) {
949 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 		return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 /**
957  * set_machine_constraints - sets regulator constraints
958  * @rdev: regulator source
959  * @constraints: constraints to apply
960  *
961  * Allows platform initialisation code to define and constrain
962  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963  * Constraints *must* be set by platform code in order for some
964  * regulator operations to proceed i.e. set_voltage, set_current_limit,
965  * set_mode.
966  */
967 static int set_machine_constraints(struct regulator_dev *rdev,
968 	const struct regulation_constraints *constraints)
969 {
970 	int ret = 0;
971 	struct regulator_ops *ops = rdev->desc->ops;
972 
973 	if (constraints)
974 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975 					    GFP_KERNEL);
976 	else
977 		rdev->constraints = kzalloc(sizeof(*constraints),
978 					    GFP_KERNEL);
979 	if (!rdev->constraints)
980 		return -ENOMEM;
981 
982 	ret = machine_constraints_voltage(rdev, rdev->constraints);
983 	if (ret != 0)
984 		goto out;
985 
986 	ret = machine_constraints_current(rdev, rdev->constraints);
987 	if (ret != 0)
988 		goto out;
989 
990 	/* do we need to setup our suspend state */
991 	if (rdev->constraints->initial_state) {
992 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993 		if (ret < 0) {
994 			rdev_err(rdev, "failed to set suspend state\n");
995 			goto out;
996 		}
997 	}
998 
999 	if (rdev->constraints->initial_mode) {
1000 		if (!ops->set_mode) {
1001 			rdev_err(rdev, "no set_mode operation\n");
1002 			ret = -EINVAL;
1003 			goto out;
1004 		}
1005 
1006 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007 		if (ret < 0) {
1008 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	/* If the constraints say the regulator should be on at this point
1014 	 * and we have control then make sure it is enabled.
1015 	 */
1016 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017 	    ops->enable) {
1018 		ret = ops->enable(rdev);
1019 		if (ret < 0) {
1020 			rdev_err(rdev, "failed to enable\n");
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026 		&& ops->set_ramp_delay) {
1027 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028 		if (ret < 0) {
1029 			rdev_err(rdev, "failed to set ramp_delay\n");
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	print_constraints(rdev);
1035 	return 0;
1036 out:
1037 	kfree(rdev->constraints);
1038 	rdev->constraints = NULL;
1039 	return ret;
1040 }
1041 
1042 /**
1043  * set_supply - set regulator supply regulator
1044  * @rdev: regulator name
1045  * @supply_rdev: supply regulator name
1046  *
1047  * Called by platform initialisation code to set the supply regulator for this
1048  * regulator. This ensures that a regulators supply will also be enabled by the
1049  * core if it's child is enabled.
1050  */
1051 static int set_supply(struct regulator_dev *rdev,
1052 		      struct regulator_dev *supply_rdev)
1053 {
1054 	int err;
1055 
1056 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057 
1058 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059 	if (rdev->supply == NULL) {
1060 		err = -ENOMEM;
1061 		return err;
1062 	}
1063 	supply_rdev->open_count++;
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070  * @rdev:         regulator source
1071  * @consumer_dev_name: dev_name() string for device supply applies to
1072  * @supply:       symbolic name for supply
1073  *
1074  * Allows platform initialisation code to map physical regulator
1075  * sources to symbolic names for supplies for use by devices.  Devices
1076  * should use these symbolic names to request regulators, avoiding the
1077  * need to provide board-specific regulator names as platform data.
1078  */
1079 static int set_consumer_device_supply(struct regulator_dev *rdev,
1080 				      const char *consumer_dev_name,
1081 				      const char *supply)
1082 {
1083 	struct regulator_map *node;
1084 	int has_dev;
1085 
1086 	if (supply == NULL)
1087 		return -EINVAL;
1088 
1089 	if (consumer_dev_name != NULL)
1090 		has_dev = 1;
1091 	else
1092 		has_dev = 0;
1093 
1094 	list_for_each_entry(node, &regulator_map_list, list) {
1095 		if (node->dev_name && consumer_dev_name) {
1096 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097 				continue;
1098 		} else if (node->dev_name || consumer_dev_name) {
1099 			continue;
1100 		}
1101 
1102 		if (strcmp(node->supply, supply) != 0)
1103 			continue;
1104 
1105 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106 			 consumer_dev_name,
1107 			 dev_name(&node->regulator->dev),
1108 			 node->regulator->desc->name,
1109 			 supply,
1110 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1111 		return -EBUSY;
1112 	}
1113 
1114 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115 	if (node == NULL)
1116 		return -ENOMEM;
1117 
1118 	node->regulator = rdev;
1119 	node->supply = supply;
1120 
1121 	if (has_dev) {
1122 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123 		if (node->dev_name == NULL) {
1124 			kfree(node);
1125 			return -ENOMEM;
1126 		}
1127 	}
1128 
1129 	list_add(&node->list, &regulator_map_list);
1130 	return 0;
1131 }
1132 
1133 static void unset_regulator_supplies(struct regulator_dev *rdev)
1134 {
1135 	struct regulator_map *node, *n;
1136 
1137 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138 		if (rdev == node->regulator) {
1139 			list_del(&node->list);
1140 			kfree(node->dev_name);
1141 			kfree(node);
1142 		}
1143 	}
1144 }
1145 
1146 #define REG_STR_SIZE	64
1147 
1148 static struct regulator *create_regulator(struct regulator_dev *rdev,
1149 					  struct device *dev,
1150 					  const char *supply_name)
1151 {
1152 	struct regulator *regulator;
1153 	char buf[REG_STR_SIZE];
1154 	int err, size;
1155 
1156 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157 	if (regulator == NULL)
1158 		return NULL;
1159 
1160 	mutex_lock(&rdev->mutex);
1161 	regulator->rdev = rdev;
1162 	list_add(&regulator->list, &rdev->consumer_list);
1163 
1164 	if (dev) {
1165 		regulator->dev = dev;
1166 
1167 		/* Add a link to the device sysfs entry */
1168 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169 				 dev->kobj.name, supply_name);
1170 		if (size >= REG_STR_SIZE)
1171 			goto overflow_err;
1172 
1173 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174 		if (regulator->supply_name == NULL)
1175 			goto overflow_err;
1176 
1177 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178 					buf);
1179 		if (err) {
1180 			rdev_warn(rdev, "could not add device link %s err %d\n",
1181 				  dev->kobj.name, err);
1182 			/* non-fatal */
1183 		}
1184 	} else {
1185 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186 		if (regulator->supply_name == NULL)
1187 			goto overflow_err;
1188 	}
1189 
1190 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191 						rdev->debugfs);
1192 	if (!regulator->debugfs) {
1193 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1194 	} else {
1195 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196 				   &regulator->uA_load);
1197 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198 				   &regulator->min_uV);
1199 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200 				   &regulator->max_uV);
1201 	}
1202 
1203 	/*
1204 	 * Check now if the regulator is an always on regulator - if
1205 	 * it is then we don't need to do nearly so much work for
1206 	 * enable/disable calls.
1207 	 */
1208 	if (!_regulator_can_change_status(rdev) &&
1209 	    _regulator_is_enabled(rdev))
1210 		regulator->always_on = true;
1211 
1212 	mutex_unlock(&rdev->mutex);
1213 	return regulator;
1214 overflow_err:
1215 	list_del(&regulator->list);
1216 	kfree(regulator);
1217 	mutex_unlock(&rdev->mutex);
1218 	return NULL;
1219 }
1220 
1221 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222 {
1223 	if (rdev->constraints && rdev->constraints->enable_time)
1224 		return rdev->constraints->enable_time;
1225 	if (!rdev->desc->ops->enable_time)
1226 		return rdev->desc->enable_time;
1227 	return rdev->desc->ops->enable_time(rdev);
1228 }
1229 
1230 static struct regulator_supply_alias *regulator_find_supply_alias(
1231 		struct device *dev, const char *supply)
1232 {
1233 	struct regulator_supply_alias *map;
1234 
1235 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1236 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237 			return map;
1238 
1239 	return NULL;
1240 }
1241 
1242 static void regulator_supply_alias(struct device **dev, const char **supply)
1243 {
1244 	struct regulator_supply_alias *map;
1245 
1246 	map = regulator_find_supply_alias(*dev, *supply);
1247 	if (map) {
1248 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249 				*supply, map->alias_supply,
1250 				dev_name(map->alias_dev));
1251 		*dev = map->alias_dev;
1252 		*supply = map->alias_supply;
1253 	}
1254 }
1255 
1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257 						  const char *supply,
1258 						  int *ret)
1259 {
1260 	struct regulator_dev *r;
1261 	struct device_node *node;
1262 	struct regulator_map *map;
1263 	const char *devname = NULL;
1264 
1265 	regulator_supply_alias(&dev, &supply);
1266 
1267 	/* first do a dt based lookup */
1268 	if (dev && dev->of_node) {
1269 		node = of_get_regulator(dev, supply);
1270 		if (node) {
1271 			list_for_each_entry(r, &regulator_list, list)
1272 				if (r->dev.parent &&
1273 					node == r->dev.of_node)
1274 					return r;
1275 		} else {
1276 			/*
1277 			 * If we couldn't even get the node then it's
1278 			 * not just that the device didn't register
1279 			 * yet, there's no node and we'll never
1280 			 * succeed.
1281 			 */
1282 			*ret = -ENODEV;
1283 		}
1284 	}
1285 
1286 	/* if not found, try doing it non-dt way */
1287 	if (dev)
1288 		devname = dev_name(dev);
1289 
1290 	list_for_each_entry(r, &regulator_list, list)
1291 		if (strcmp(rdev_get_name(r), supply) == 0)
1292 			return r;
1293 
1294 	list_for_each_entry(map, &regulator_map_list, list) {
1295 		/* If the mapping has a device set up it must match */
1296 		if (map->dev_name &&
1297 		    (!devname || strcmp(map->dev_name, devname)))
1298 			continue;
1299 
1300 		if (strcmp(map->supply, supply) == 0)
1301 			return map->regulator;
1302 	}
1303 
1304 
1305 	return NULL;
1306 }
1307 
1308 /* Internal regulator request function */
1309 static struct regulator *_regulator_get(struct device *dev, const char *id,
1310 					bool exclusive, bool allow_dummy)
1311 {
1312 	struct regulator_dev *rdev;
1313 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1314 	const char *devname = NULL;
1315 	int ret = -EPROBE_DEFER;
1316 
1317 	if (id == NULL) {
1318 		pr_err("get() with no identifier\n");
1319 		return ERR_PTR(-EINVAL);
1320 	}
1321 
1322 	if (dev)
1323 		devname = dev_name(dev);
1324 
1325 	mutex_lock(&regulator_list_mutex);
1326 
1327 	rdev = regulator_dev_lookup(dev, id, &ret);
1328 	if (rdev)
1329 		goto found;
1330 
1331 	regulator = ERR_PTR(ret);
1332 
1333 	/*
1334 	 * If we have return value from dev_lookup fail, we do not expect to
1335 	 * succeed, so, quit with appropriate error value
1336 	 */
1337 	if (ret && ret != -ENODEV) {
1338 		goto out;
1339 	}
1340 
1341 	if (!devname)
1342 		devname = "deviceless";
1343 
1344 	/*
1345 	 * Assume that a regulator is physically present and enabled
1346 	 * even if it isn't hooked up and just provide a dummy.
1347 	 */
1348 	if (have_full_constraints() && allow_dummy) {
1349 		pr_warn("%s supply %s not found, using dummy regulator\n",
1350 			devname, id);
1351 
1352 		rdev = dummy_regulator_rdev;
1353 		goto found;
1354 	} else {
1355 		dev_err(dev, "dummy supplies not allowed\n");
1356 	}
1357 
1358 	mutex_unlock(&regulator_list_mutex);
1359 	return regulator;
1360 
1361 found:
1362 	if (rdev->exclusive) {
1363 		regulator = ERR_PTR(-EPERM);
1364 		goto out;
1365 	}
1366 
1367 	if (exclusive && rdev->open_count) {
1368 		regulator = ERR_PTR(-EBUSY);
1369 		goto out;
1370 	}
1371 
1372 	if (!try_module_get(rdev->owner))
1373 		goto out;
1374 
1375 	regulator = create_regulator(rdev, dev, id);
1376 	if (regulator == NULL) {
1377 		regulator = ERR_PTR(-ENOMEM);
1378 		module_put(rdev->owner);
1379 		goto out;
1380 	}
1381 
1382 	rdev->open_count++;
1383 	if (exclusive) {
1384 		rdev->exclusive = 1;
1385 
1386 		ret = _regulator_is_enabled(rdev);
1387 		if (ret > 0)
1388 			rdev->use_count = 1;
1389 		else
1390 			rdev->use_count = 0;
1391 	}
1392 
1393 out:
1394 	mutex_unlock(&regulator_list_mutex);
1395 
1396 	return regulator;
1397 }
1398 
1399 /**
1400  * regulator_get - lookup and obtain a reference to a regulator.
1401  * @dev: device for regulator "consumer"
1402  * @id: Supply name or regulator ID.
1403  *
1404  * Returns a struct regulator corresponding to the regulator producer,
1405  * or IS_ERR() condition containing errno.
1406  *
1407  * Use of supply names configured via regulator_set_device_supply() is
1408  * strongly encouraged.  It is recommended that the supply name used
1409  * should match the name used for the supply and/or the relevant
1410  * device pins in the datasheet.
1411  */
1412 struct regulator *regulator_get(struct device *dev, const char *id)
1413 {
1414 	return _regulator_get(dev, id, false, true);
1415 }
1416 EXPORT_SYMBOL_GPL(regulator_get);
1417 
1418 /**
1419  * regulator_get_exclusive - obtain exclusive access to a regulator.
1420  * @dev: device for regulator "consumer"
1421  * @id: Supply name or regulator ID.
1422  *
1423  * Returns a struct regulator corresponding to the regulator producer,
1424  * or IS_ERR() condition containing errno.  Other consumers will be
1425  * unable to obtain this reference is held and the use count for the
1426  * regulator will be initialised to reflect the current state of the
1427  * regulator.
1428  *
1429  * This is intended for use by consumers which cannot tolerate shared
1430  * use of the regulator such as those which need to force the
1431  * regulator off for correct operation of the hardware they are
1432  * controlling.
1433  *
1434  * Use of supply names configured via regulator_set_device_supply() is
1435  * strongly encouraged.  It is recommended that the supply name used
1436  * should match the name used for the supply and/or the relevant
1437  * device pins in the datasheet.
1438  */
1439 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1440 {
1441 	return _regulator_get(dev, id, true, false);
1442 }
1443 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1444 
1445 /**
1446  * regulator_get_optional - obtain optional access to a regulator.
1447  * @dev: device for regulator "consumer"
1448  * @id: Supply name or regulator ID.
1449  *
1450  * Returns a struct regulator corresponding to the regulator producer,
1451  * or IS_ERR() condition containing errno.  Other consumers will be
1452  * unable to obtain this reference is held and the use count for the
1453  * regulator will be initialised to reflect the current state of the
1454  * regulator.
1455  *
1456  * This is intended for use by consumers for devices which can have
1457  * some supplies unconnected in normal use, such as some MMC devices.
1458  * It can allow the regulator core to provide stub supplies for other
1459  * supplies requested using normal regulator_get() calls without
1460  * disrupting the operation of drivers that can handle absent
1461  * supplies.
1462  *
1463  * Use of supply names configured via regulator_set_device_supply() is
1464  * strongly encouraged.  It is recommended that the supply name used
1465  * should match the name used for the supply and/or the relevant
1466  * device pins in the datasheet.
1467  */
1468 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1469 {
1470 	return _regulator_get(dev, id, false, false);
1471 }
1472 EXPORT_SYMBOL_GPL(regulator_get_optional);
1473 
1474 /* Locks held by regulator_put() */
1475 static void _regulator_put(struct regulator *regulator)
1476 {
1477 	struct regulator_dev *rdev;
1478 
1479 	if (regulator == NULL || IS_ERR(regulator))
1480 		return;
1481 
1482 	rdev = regulator->rdev;
1483 
1484 	debugfs_remove_recursive(regulator->debugfs);
1485 
1486 	/* remove any sysfs entries */
1487 	if (regulator->dev)
1488 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1489 	kfree(regulator->supply_name);
1490 	list_del(&regulator->list);
1491 	kfree(regulator);
1492 
1493 	rdev->open_count--;
1494 	rdev->exclusive = 0;
1495 
1496 	module_put(rdev->owner);
1497 }
1498 
1499 /**
1500  * regulator_put - "free" the regulator source
1501  * @regulator: regulator source
1502  *
1503  * Note: drivers must ensure that all regulator_enable calls made on this
1504  * regulator source are balanced by regulator_disable calls prior to calling
1505  * this function.
1506  */
1507 void regulator_put(struct regulator *regulator)
1508 {
1509 	mutex_lock(&regulator_list_mutex);
1510 	_regulator_put(regulator);
1511 	mutex_unlock(&regulator_list_mutex);
1512 }
1513 EXPORT_SYMBOL_GPL(regulator_put);
1514 
1515 /**
1516  * regulator_register_supply_alias - Provide device alias for supply lookup
1517  *
1518  * @dev: device that will be given as the regulator "consumer"
1519  * @id: Supply name or regulator ID
1520  * @alias_dev: device that should be used to lookup the supply
1521  * @alias_id: Supply name or regulator ID that should be used to lookup the
1522  * supply
1523  *
1524  * All lookups for id on dev will instead be conducted for alias_id on
1525  * alias_dev.
1526  */
1527 int regulator_register_supply_alias(struct device *dev, const char *id,
1528 				    struct device *alias_dev,
1529 				    const char *alias_id)
1530 {
1531 	struct regulator_supply_alias *map;
1532 
1533 	map = regulator_find_supply_alias(dev, id);
1534 	if (map)
1535 		return -EEXIST;
1536 
1537 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1538 	if (!map)
1539 		return -ENOMEM;
1540 
1541 	map->src_dev = dev;
1542 	map->src_supply = id;
1543 	map->alias_dev = alias_dev;
1544 	map->alias_supply = alias_id;
1545 
1546 	list_add(&map->list, &regulator_supply_alias_list);
1547 
1548 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1549 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1550 
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1554 
1555 /**
1556  * regulator_unregister_supply_alias - Remove device alias
1557  *
1558  * @dev: device that will be given as the regulator "consumer"
1559  * @id: Supply name or regulator ID
1560  *
1561  * Remove a lookup alias if one exists for id on dev.
1562  */
1563 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1564 {
1565 	struct regulator_supply_alias *map;
1566 
1567 	map = regulator_find_supply_alias(dev, id);
1568 	if (map) {
1569 		list_del(&map->list);
1570 		kfree(map);
1571 	}
1572 }
1573 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1574 
1575 /**
1576  * regulator_bulk_register_supply_alias - register multiple aliases
1577  *
1578  * @dev: device that will be given as the regulator "consumer"
1579  * @id: List of supply names or regulator IDs
1580  * @alias_dev: device that should be used to lookup the supply
1581  * @alias_id: List of supply names or regulator IDs that should be used to
1582  * lookup the supply
1583  * @num_id: Number of aliases to register
1584  *
1585  * @return 0 on success, an errno on failure.
1586  *
1587  * This helper function allows drivers to register several supply
1588  * aliases in one operation.  If any of the aliases cannot be
1589  * registered any aliases that were registered will be removed
1590  * before returning to the caller.
1591  */
1592 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1593 					 struct device *alias_dev,
1594 					 const char **alias_id,
1595 					 int num_id)
1596 {
1597 	int i;
1598 	int ret;
1599 
1600 	for (i = 0; i < num_id; ++i) {
1601 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1602 						      alias_id[i]);
1603 		if (ret < 0)
1604 			goto err;
1605 	}
1606 
1607 	return 0;
1608 
1609 err:
1610 	dev_err(dev,
1611 		"Failed to create supply alias %s,%s -> %s,%s\n",
1612 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1613 
1614 	while (--i >= 0)
1615 		regulator_unregister_supply_alias(dev, id[i]);
1616 
1617 	return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1620 
1621 /**
1622  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1623  *
1624  * @dev: device that will be given as the regulator "consumer"
1625  * @id: List of supply names or regulator IDs
1626  * @num_id: Number of aliases to unregister
1627  *
1628  * This helper function allows drivers to unregister several supply
1629  * aliases in one operation.
1630  */
1631 void regulator_bulk_unregister_supply_alias(struct device *dev,
1632 					    const char **id,
1633 					    int num_id)
1634 {
1635 	int i;
1636 
1637 	for (i = 0; i < num_id; ++i)
1638 		regulator_unregister_supply_alias(dev, id[i]);
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1641 
1642 
1643 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1644 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1645 				const struct regulator_config *config)
1646 {
1647 	struct regulator_enable_gpio *pin;
1648 	int ret;
1649 
1650 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1651 		if (pin->gpio == config->ena_gpio) {
1652 			rdev_dbg(rdev, "GPIO %d is already used\n",
1653 				config->ena_gpio);
1654 			goto update_ena_gpio_to_rdev;
1655 		}
1656 	}
1657 
1658 	ret = gpio_request_one(config->ena_gpio,
1659 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1660 				rdev_get_name(rdev));
1661 	if (ret)
1662 		return ret;
1663 
1664 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1665 	if (pin == NULL) {
1666 		gpio_free(config->ena_gpio);
1667 		return -ENOMEM;
1668 	}
1669 
1670 	pin->gpio = config->ena_gpio;
1671 	pin->ena_gpio_invert = config->ena_gpio_invert;
1672 	list_add(&pin->list, &regulator_ena_gpio_list);
1673 
1674 update_ena_gpio_to_rdev:
1675 	pin->request_count++;
1676 	rdev->ena_pin = pin;
1677 	return 0;
1678 }
1679 
1680 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1681 {
1682 	struct regulator_enable_gpio *pin, *n;
1683 
1684 	if (!rdev->ena_pin)
1685 		return;
1686 
1687 	/* Free the GPIO only in case of no use */
1688 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1689 		if (pin->gpio == rdev->ena_pin->gpio) {
1690 			if (pin->request_count <= 1) {
1691 				pin->request_count = 0;
1692 				gpio_free(pin->gpio);
1693 				list_del(&pin->list);
1694 				kfree(pin);
1695 			} else {
1696 				pin->request_count--;
1697 			}
1698 		}
1699 	}
1700 }
1701 
1702 /**
1703  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1704  * @rdev: regulator_dev structure
1705  * @enable: enable GPIO at initial use?
1706  *
1707  * GPIO is enabled in case of initial use. (enable_count is 0)
1708  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1709  */
1710 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1711 {
1712 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1713 
1714 	if (!pin)
1715 		return -EINVAL;
1716 
1717 	if (enable) {
1718 		/* Enable GPIO at initial use */
1719 		if (pin->enable_count == 0)
1720 			gpio_set_value_cansleep(pin->gpio,
1721 						!pin->ena_gpio_invert);
1722 
1723 		pin->enable_count++;
1724 	} else {
1725 		if (pin->enable_count > 1) {
1726 			pin->enable_count--;
1727 			return 0;
1728 		}
1729 
1730 		/* Disable GPIO if not used */
1731 		if (pin->enable_count <= 1) {
1732 			gpio_set_value_cansleep(pin->gpio,
1733 						pin->ena_gpio_invert);
1734 			pin->enable_count = 0;
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static int _regulator_do_enable(struct regulator_dev *rdev)
1742 {
1743 	int ret, delay;
1744 
1745 	/* Query before enabling in case configuration dependent.  */
1746 	ret = _regulator_get_enable_time(rdev);
1747 	if (ret >= 0) {
1748 		delay = ret;
1749 	} else {
1750 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1751 		delay = 0;
1752 	}
1753 
1754 	trace_regulator_enable(rdev_get_name(rdev));
1755 
1756 	if (rdev->ena_pin) {
1757 		ret = regulator_ena_gpio_ctrl(rdev, true);
1758 		if (ret < 0)
1759 			return ret;
1760 		rdev->ena_gpio_state = 1;
1761 	} else if (rdev->desc->ops->enable) {
1762 		ret = rdev->desc->ops->enable(rdev);
1763 		if (ret < 0)
1764 			return ret;
1765 	} else {
1766 		return -EINVAL;
1767 	}
1768 
1769 	/* Allow the regulator to ramp; it would be useful to extend
1770 	 * this for bulk operations so that the regulators can ramp
1771 	 * together.  */
1772 	trace_regulator_enable_delay(rdev_get_name(rdev));
1773 
1774 	/*
1775 	 * Delay for the requested amount of time as per the guidelines in:
1776 	 *
1777 	 *     Documentation/timers/timers-howto.txt
1778 	 *
1779 	 * The assumption here is that regulators will never be enabled in
1780 	 * atomic context and therefore sleeping functions can be used.
1781 	 */
1782 	if (delay) {
1783 		unsigned int ms = delay / 1000;
1784 		unsigned int us = delay % 1000;
1785 
1786 		if (ms > 0) {
1787 			/*
1788 			 * For small enough values, handle super-millisecond
1789 			 * delays in the usleep_range() call below.
1790 			 */
1791 			if (ms < 20)
1792 				us += ms * 1000;
1793 			else
1794 				msleep(ms);
1795 		}
1796 
1797 		/*
1798 		 * Give the scheduler some room to coalesce with any other
1799 		 * wakeup sources. For delays shorter than 10 us, don't even
1800 		 * bother setting up high-resolution timers and just busy-
1801 		 * loop.
1802 		 */
1803 		if (us >= 10)
1804 			usleep_range(us, us + 100);
1805 		else
1806 			udelay(us);
1807 	}
1808 
1809 	trace_regulator_enable_complete(rdev_get_name(rdev));
1810 
1811 	return 0;
1812 }
1813 
1814 /* locks held by regulator_enable() */
1815 static int _regulator_enable(struct regulator_dev *rdev)
1816 {
1817 	int ret;
1818 
1819 	/* check voltage and requested load before enabling */
1820 	if (rdev->constraints &&
1821 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1822 		drms_uA_update(rdev);
1823 
1824 	if (rdev->use_count == 0) {
1825 		/* The regulator may on if it's not switchable or left on */
1826 		ret = _regulator_is_enabled(rdev);
1827 		if (ret == -EINVAL || ret == 0) {
1828 			if (!_regulator_can_change_status(rdev))
1829 				return -EPERM;
1830 
1831 			ret = _regulator_do_enable(rdev);
1832 			if (ret < 0)
1833 				return ret;
1834 
1835 		} else if (ret < 0) {
1836 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1837 			return ret;
1838 		}
1839 		/* Fallthrough on positive return values - already enabled */
1840 	}
1841 
1842 	rdev->use_count++;
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  * regulator_enable - enable regulator output
1849  * @regulator: regulator source
1850  *
1851  * Request that the regulator be enabled with the regulator output at
1852  * the predefined voltage or current value.  Calls to regulator_enable()
1853  * must be balanced with calls to regulator_disable().
1854  *
1855  * NOTE: the output value can be set by other drivers, boot loader or may be
1856  * hardwired in the regulator.
1857  */
1858 int regulator_enable(struct regulator *regulator)
1859 {
1860 	struct regulator_dev *rdev = regulator->rdev;
1861 	int ret = 0;
1862 
1863 	if (regulator->always_on)
1864 		return 0;
1865 
1866 	if (rdev->supply) {
1867 		ret = regulator_enable(rdev->supply);
1868 		if (ret != 0)
1869 			return ret;
1870 	}
1871 
1872 	mutex_lock(&rdev->mutex);
1873 	ret = _regulator_enable(rdev);
1874 	mutex_unlock(&rdev->mutex);
1875 
1876 	if (ret != 0 && rdev->supply)
1877 		regulator_disable(rdev->supply);
1878 
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regulator_enable);
1882 
1883 static int _regulator_do_disable(struct regulator_dev *rdev)
1884 {
1885 	int ret;
1886 
1887 	trace_regulator_disable(rdev_get_name(rdev));
1888 
1889 	if (rdev->ena_pin) {
1890 		ret = regulator_ena_gpio_ctrl(rdev, false);
1891 		if (ret < 0)
1892 			return ret;
1893 		rdev->ena_gpio_state = 0;
1894 
1895 	} else if (rdev->desc->ops->disable) {
1896 		ret = rdev->desc->ops->disable(rdev);
1897 		if (ret != 0)
1898 			return ret;
1899 	}
1900 
1901 	trace_regulator_disable_complete(rdev_get_name(rdev));
1902 
1903 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1904 			     NULL);
1905 	return 0;
1906 }
1907 
1908 /* locks held by regulator_disable() */
1909 static int _regulator_disable(struct regulator_dev *rdev)
1910 {
1911 	int ret = 0;
1912 
1913 	if (WARN(rdev->use_count <= 0,
1914 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1915 		return -EIO;
1916 
1917 	/* are we the last user and permitted to disable ? */
1918 	if (rdev->use_count == 1 &&
1919 	    (rdev->constraints && !rdev->constraints->always_on)) {
1920 
1921 		/* we are last user */
1922 		if (_regulator_can_change_status(rdev)) {
1923 			ret = _regulator_do_disable(rdev);
1924 			if (ret < 0) {
1925 				rdev_err(rdev, "failed to disable\n");
1926 				return ret;
1927 			}
1928 		}
1929 
1930 		rdev->use_count = 0;
1931 	} else if (rdev->use_count > 1) {
1932 
1933 		if (rdev->constraints &&
1934 			(rdev->constraints->valid_ops_mask &
1935 			REGULATOR_CHANGE_DRMS))
1936 			drms_uA_update(rdev);
1937 
1938 		rdev->use_count--;
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 /**
1945  * regulator_disable - disable regulator output
1946  * @regulator: regulator source
1947  *
1948  * Disable the regulator output voltage or current.  Calls to
1949  * regulator_enable() must be balanced with calls to
1950  * regulator_disable().
1951  *
1952  * NOTE: this will only disable the regulator output if no other consumer
1953  * devices have it enabled, the regulator device supports disabling and
1954  * machine constraints permit this operation.
1955  */
1956 int regulator_disable(struct regulator *regulator)
1957 {
1958 	struct regulator_dev *rdev = regulator->rdev;
1959 	int ret = 0;
1960 
1961 	if (regulator->always_on)
1962 		return 0;
1963 
1964 	mutex_lock(&rdev->mutex);
1965 	ret = _regulator_disable(rdev);
1966 	mutex_unlock(&rdev->mutex);
1967 
1968 	if (ret == 0 && rdev->supply)
1969 		regulator_disable(rdev->supply);
1970 
1971 	return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_disable);
1974 
1975 /* locks held by regulator_force_disable() */
1976 static int _regulator_force_disable(struct regulator_dev *rdev)
1977 {
1978 	int ret = 0;
1979 
1980 	/* force disable */
1981 	if (rdev->desc->ops->disable) {
1982 		/* ah well, who wants to live forever... */
1983 		ret = rdev->desc->ops->disable(rdev);
1984 		if (ret < 0) {
1985 			rdev_err(rdev, "failed to force disable\n");
1986 			return ret;
1987 		}
1988 		/* notify other consumers that power has been forced off */
1989 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1990 			REGULATOR_EVENT_DISABLE, NULL);
1991 	}
1992 
1993 	return ret;
1994 }
1995 
1996 /**
1997  * regulator_force_disable - force disable regulator output
1998  * @regulator: regulator source
1999  *
2000  * Forcibly disable the regulator output voltage or current.
2001  * NOTE: this *will* disable the regulator output even if other consumer
2002  * devices have it enabled. This should be used for situations when device
2003  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2004  */
2005 int regulator_force_disable(struct regulator *regulator)
2006 {
2007 	struct regulator_dev *rdev = regulator->rdev;
2008 	int ret;
2009 
2010 	mutex_lock(&rdev->mutex);
2011 	regulator->uA_load = 0;
2012 	ret = _regulator_force_disable(regulator->rdev);
2013 	mutex_unlock(&rdev->mutex);
2014 
2015 	if (rdev->supply)
2016 		while (rdev->open_count--)
2017 			regulator_disable(rdev->supply);
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_force_disable);
2022 
2023 static void regulator_disable_work(struct work_struct *work)
2024 {
2025 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2026 						  disable_work.work);
2027 	int count, i, ret;
2028 
2029 	mutex_lock(&rdev->mutex);
2030 
2031 	BUG_ON(!rdev->deferred_disables);
2032 
2033 	count = rdev->deferred_disables;
2034 	rdev->deferred_disables = 0;
2035 
2036 	for (i = 0; i < count; i++) {
2037 		ret = _regulator_disable(rdev);
2038 		if (ret != 0)
2039 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2040 	}
2041 
2042 	mutex_unlock(&rdev->mutex);
2043 
2044 	if (rdev->supply) {
2045 		for (i = 0; i < count; i++) {
2046 			ret = regulator_disable(rdev->supply);
2047 			if (ret != 0) {
2048 				rdev_err(rdev,
2049 					 "Supply disable failed: %d\n", ret);
2050 			}
2051 		}
2052 	}
2053 }
2054 
2055 /**
2056  * regulator_disable_deferred - disable regulator output with delay
2057  * @regulator: regulator source
2058  * @ms: miliseconds until the regulator is disabled
2059  *
2060  * Execute regulator_disable() on the regulator after a delay.  This
2061  * is intended for use with devices that require some time to quiesce.
2062  *
2063  * NOTE: this will only disable the regulator output if no other consumer
2064  * devices have it enabled, the regulator device supports disabling and
2065  * machine constraints permit this operation.
2066  */
2067 int regulator_disable_deferred(struct regulator *regulator, int ms)
2068 {
2069 	struct regulator_dev *rdev = regulator->rdev;
2070 	int ret;
2071 
2072 	if (regulator->always_on)
2073 		return 0;
2074 
2075 	if (!ms)
2076 		return regulator_disable(regulator);
2077 
2078 	mutex_lock(&rdev->mutex);
2079 	rdev->deferred_disables++;
2080 	mutex_unlock(&rdev->mutex);
2081 
2082 	ret = queue_delayed_work(system_power_efficient_wq,
2083 				 &rdev->disable_work,
2084 				 msecs_to_jiffies(ms));
2085 	if (ret < 0)
2086 		return ret;
2087 	else
2088 		return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2091 
2092 static int _regulator_is_enabled(struct regulator_dev *rdev)
2093 {
2094 	/* A GPIO control always takes precedence */
2095 	if (rdev->ena_pin)
2096 		return rdev->ena_gpio_state;
2097 
2098 	/* If we don't know then assume that the regulator is always on */
2099 	if (!rdev->desc->ops->is_enabled)
2100 		return 1;
2101 
2102 	return rdev->desc->ops->is_enabled(rdev);
2103 }
2104 
2105 /**
2106  * regulator_is_enabled - is the regulator output enabled
2107  * @regulator: regulator source
2108  *
2109  * Returns positive if the regulator driver backing the source/client
2110  * has requested that the device be enabled, zero if it hasn't, else a
2111  * negative errno code.
2112  *
2113  * Note that the device backing this regulator handle can have multiple
2114  * users, so it might be enabled even if regulator_enable() was never
2115  * called for this particular source.
2116  */
2117 int regulator_is_enabled(struct regulator *regulator)
2118 {
2119 	int ret;
2120 
2121 	if (regulator->always_on)
2122 		return 1;
2123 
2124 	mutex_lock(&regulator->rdev->mutex);
2125 	ret = _regulator_is_enabled(regulator->rdev);
2126 	mutex_unlock(&regulator->rdev->mutex);
2127 
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2131 
2132 /**
2133  * regulator_can_change_voltage - check if regulator can change voltage
2134  * @regulator: regulator source
2135  *
2136  * Returns positive if the regulator driver backing the source/client
2137  * can change its voltage, false otherwise. Usefull for detecting fixed
2138  * or dummy regulators and disabling voltage change logic in the client
2139  * driver.
2140  */
2141 int regulator_can_change_voltage(struct regulator *regulator)
2142 {
2143 	struct regulator_dev	*rdev = regulator->rdev;
2144 
2145 	if (rdev->constraints &&
2146 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2148 			return 1;
2149 
2150 		if (rdev->desc->continuous_voltage_range &&
2151 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2152 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2153 			return 1;
2154 	}
2155 
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2159 
2160 /**
2161  * regulator_count_voltages - count regulator_list_voltage() selectors
2162  * @regulator: regulator source
2163  *
2164  * Returns number of selectors, or negative errno.  Selectors are
2165  * numbered starting at zero, and typically correspond to bitfields
2166  * in hardware registers.
2167  */
2168 int regulator_count_voltages(struct regulator *regulator)
2169 {
2170 	struct regulator_dev	*rdev = regulator->rdev;
2171 
2172 	return rdev->desc->n_voltages ? : -EINVAL;
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2175 
2176 /**
2177  * regulator_list_voltage - enumerate supported voltages
2178  * @regulator: regulator source
2179  * @selector: identify voltage to list
2180  * Context: can sleep
2181  *
2182  * Returns a voltage that can be passed to @regulator_set_voltage(),
2183  * zero if this selector code can't be used on this system, or a
2184  * negative errno.
2185  */
2186 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2187 {
2188 	struct regulator_dev	*rdev = regulator->rdev;
2189 	struct regulator_ops	*ops = rdev->desc->ops;
2190 	int			ret;
2191 
2192 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2193 		return rdev->desc->fixed_uV;
2194 
2195 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2196 		return -EINVAL;
2197 
2198 	mutex_lock(&rdev->mutex);
2199 	ret = ops->list_voltage(rdev, selector);
2200 	mutex_unlock(&rdev->mutex);
2201 
2202 	if (ret > 0) {
2203 		if (ret < rdev->constraints->min_uV)
2204 			ret = 0;
2205 		else if (ret > rdev->constraints->max_uV)
2206 			ret = 0;
2207 	}
2208 
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2212 
2213 /**
2214  * regulator_get_linear_step - return the voltage step size between VSEL values
2215  * @regulator: regulator source
2216  *
2217  * Returns the voltage step size between VSEL values for linear
2218  * regulators, or return 0 if the regulator isn't a linear regulator.
2219  */
2220 unsigned int regulator_get_linear_step(struct regulator *regulator)
2221 {
2222 	struct regulator_dev *rdev = regulator->rdev;
2223 
2224 	return rdev->desc->uV_step;
2225 }
2226 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2227 
2228 /**
2229  * regulator_is_supported_voltage - check if a voltage range can be supported
2230  *
2231  * @regulator: Regulator to check.
2232  * @min_uV: Minimum required voltage in uV.
2233  * @max_uV: Maximum required voltage in uV.
2234  *
2235  * Returns a boolean or a negative error code.
2236  */
2237 int regulator_is_supported_voltage(struct regulator *regulator,
2238 				   int min_uV, int max_uV)
2239 {
2240 	struct regulator_dev *rdev = regulator->rdev;
2241 	int i, voltages, ret;
2242 
2243 	/* If we can't change voltage check the current voltage */
2244 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2245 		ret = regulator_get_voltage(regulator);
2246 		if (ret >= 0)
2247 			return (min_uV <= ret && ret <= max_uV);
2248 		else
2249 			return ret;
2250 	}
2251 
2252 	/* Any voltage within constrains range is fine? */
2253 	if (rdev->desc->continuous_voltage_range)
2254 		return min_uV >= rdev->constraints->min_uV &&
2255 				max_uV <= rdev->constraints->max_uV;
2256 
2257 	ret = regulator_count_voltages(regulator);
2258 	if (ret < 0)
2259 		return ret;
2260 	voltages = ret;
2261 
2262 	for (i = 0; i < voltages; i++) {
2263 		ret = regulator_list_voltage(regulator, i);
2264 
2265 		if (ret >= min_uV && ret <= max_uV)
2266 			return 1;
2267 	}
2268 
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2272 
2273 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2274 				     int min_uV, int max_uV)
2275 {
2276 	int ret;
2277 	int delay = 0;
2278 	int best_val = 0;
2279 	unsigned int selector;
2280 	int old_selector = -1;
2281 
2282 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2283 
2284 	min_uV += rdev->constraints->uV_offset;
2285 	max_uV += rdev->constraints->uV_offset;
2286 
2287 	/*
2288 	 * If we can't obtain the old selector there is not enough
2289 	 * info to call set_voltage_time_sel().
2290 	 */
2291 	if (_regulator_is_enabled(rdev) &&
2292 	    rdev->desc->ops->set_voltage_time_sel &&
2293 	    rdev->desc->ops->get_voltage_sel) {
2294 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2295 		if (old_selector < 0)
2296 			return old_selector;
2297 	}
2298 
2299 	if (rdev->desc->ops->set_voltage) {
2300 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2301 						   &selector);
2302 
2303 		if (ret >= 0) {
2304 			if (rdev->desc->ops->list_voltage)
2305 				best_val = rdev->desc->ops->list_voltage(rdev,
2306 									 selector);
2307 			else
2308 				best_val = _regulator_get_voltage(rdev);
2309 		}
2310 
2311 	} else if (rdev->desc->ops->set_voltage_sel) {
2312 		if (rdev->desc->ops->map_voltage) {
2313 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2314 							   max_uV);
2315 		} else {
2316 			if (rdev->desc->ops->list_voltage ==
2317 			    regulator_list_voltage_linear)
2318 				ret = regulator_map_voltage_linear(rdev,
2319 								min_uV, max_uV);
2320 			else
2321 				ret = regulator_map_voltage_iterate(rdev,
2322 								min_uV, max_uV);
2323 		}
2324 
2325 		if (ret >= 0) {
2326 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2327 			if (min_uV <= best_val && max_uV >= best_val) {
2328 				selector = ret;
2329 				if (old_selector == selector)
2330 					ret = 0;
2331 				else
2332 					ret = rdev->desc->ops->set_voltage_sel(
2333 								rdev, ret);
2334 			} else {
2335 				ret = -EINVAL;
2336 			}
2337 		}
2338 	} else {
2339 		ret = -EINVAL;
2340 	}
2341 
2342 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2343 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2344 		&& old_selector != selector) {
2345 
2346 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2347 						old_selector, selector);
2348 		if (delay < 0) {
2349 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2350 				  delay);
2351 			delay = 0;
2352 		}
2353 
2354 		/* Insert any necessary delays */
2355 		if (delay >= 1000) {
2356 			mdelay(delay / 1000);
2357 			udelay(delay % 1000);
2358 		} else if (delay) {
2359 			udelay(delay);
2360 		}
2361 	}
2362 
2363 	if (ret == 0 && best_val >= 0) {
2364 		unsigned long data = best_val;
2365 
2366 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2367 				     (void *)data);
2368 	}
2369 
2370 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2371 
2372 	return ret;
2373 }
2374 
2375 /**
2376  * regulator_set_voltage - set regulator output voltage
2377  * @regulator: regulator source
2378  * @min_uV: Minimum required voltage in uV
2379  * @max_uV: Maximum acceptable voltage in uV
2380  *
2381  * Sets a voltage regulator to the desired output voltage. This can be set
2382  * during any regulator state. IOW, regulator can be disabled or enabled.
2383  *
2384  * If the regulator is enabled then the voltage will change to the new value
2385  * immediately otherwise if the regulator is disabled the regulator will
2386  * output at the new voltage when enabled.
2387  *
2388  * NOTE: If the regulator is shared between several devices then the lowest
2389  * request voltage that meets the system constraints will be used.
2390  * Regulator system constraints must be set for this regulator before
2391  * calling this function otherwise this call will fail.
2392  */
2393 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2394 {
2395 	struct regulator_dev *rdev = regulator->rdev;
2396 	int ret = 0;
2397 	int old_min_uV, old_max_uV;
2398 
2399 	mutex_lock(&rdev->mutex);
2400 
2401 	/* If we're setting the same range as last time the change
2402 	 * should be a noop (some cpufreq implementations use the same
2403 	 * voltage for multiple frequencies, for example).
2404 	 */
2405 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2406 		goto out;
2407 
2408 	/* sanity check */
2409 	if (!rdev->desc->ops->set_voltage &&
2410 	    !rdev->desc->ops->set_voltage_sel) {
2411 		ret = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	/* constraints check */
2416 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2417 	if (ret < 0)
2418 		goto out;
2419 
2420 	/* restore original values in case of error */
2421 	old_min_uV = regulator->min_uV;
2422 	old_max_uV = regulator->max_uV;
2423 	regulator->min_uV = min_uV;
2424 	regulator->max_uV = max_uV;
2425 
2426 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2427 	if (ret < 0)
2428 		goto out2;
2429 
2430 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2431 	if (ret < 0)
2432 		goto out2;
2433 
2434 out:
2435 	mutex_unlock(&rdev->mutex);
2436 	return ret;
2437 out2:
2438 	regulator->min_uV = old_min_uV;
2439 	regulator->max_uV = old_max_uV;
2440 	mutex_unlock(&rdev->mutex);
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2444 
2445 /**
2446  * regulator_set_voltage_time - get raise/fall time
2447  * @regulator: regulator source
2448  * @old_uV: starting voltage in microvolts
2449  * @new_uV: target voltage in microvolts
2450  *
2451  * Provided with the starting and ending voltage, this function attempts to
2452  * calculate the time in microseconds required to rise or fall to this new
2453  * voltage.
2454  */
2455 int regulator_set_voltage_time(struct regulator *regulator,
2456 			       int old_uV, int new_uV)
2457 {
2458 	struct regulator_dev	*rdev = regulator->rdev;
2459 	struct regulator_ops	*ops = rdev->desc->ops;
2460 	int old_sel = -1;
2461 	int new_sel = -1;
2462 	int voltage;
2463 	int i;
2464 
2465 	/* Currently requires operations to do this */
2466 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2467 	    || !rdev->desc->n_voltages)
2468 		return -EINVAL;
2469 
2470 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2471 		/* We only look for exact voltage matches here */
2472 		voltage = regulator_list_voltage(regulator, i);
2473 		if (voltage < 0)
2474 			return -EINVAL;
2475 		if (voltage == 0)
2476 			continue;
2477 		if (voltage == old_uV)
2478 			old_sel = i;
2479 		if (voltage == new_uV)
2480 			new_sel = i;
2481 	}
2482 
2483 	if (old_sel < 0 || new_sel < 0)
2484 		return -EINVAL;
2485 
2486 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2489 
2490 /**
2491  * regulator_set_voltage_time_sel - get raise/fall time
2492  * @rdev: regulator source device
2493  * @old_selector: selector for starting voltage
2494  * @new_selector: selector for target voltage
2495  *
2496  * Provided with the starting and target voltage selectors, this function
2497  * returns time in microseconds required to rise or fall to this new voltage
2498  *
2499  * Drivers providing ramp_delay in regulation_constraints can use this as their
2500  * set_voltage_time_sel() operation.
2501  */
2502 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2503 				   unsigned int old_selector,
2504 				   unsigned int new_selector)
2505 {
2506 	unsigned int ramp_delay = 0;
2507 	int old_volt, new_volt;
2508 
2509 	if (rdev->constraints->ramp_delay)
2510 		ramp_delay = rdev->constraints->ramp_delay;
2511 	else if (rdev->desc->ramp_delay)
2512 		ramp_delay = rdev->desc->ramp_delay;
2513 
2514 	if (ramp_delay == 0) {
2515 		rdev_warn(rdev, "ramp_delay not set\n");
2516 		return 0;
2517 	}
2518 
2519 	/* sanity check */
2520 	if (!rdev->desc->ops->list_voltage)
2521 		return -EINVAL;
2522 
2523 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2524 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2525 
2526 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2529 
2530 /**
2531  * regulator_sync_voltage - re-apply last regulator output voltage
2532  * @regulator: regulator source
2533  *
2534  * Re-apply the last configured voltage.  This is intended to be used
2535  * where some external control source the consumer is cooperating with
2536  * has caused the configured voltage to change.
2537  */
2538 int regulator_sync_voltage(struct regulator *regulator)
2539 {
2540 	struct regulator_dev *rdev = regulator->rdev;
2541 	int ret, min_uV, max_uV;
2542 
2543 	mutex_lock(&rdev->mutex);
2544 
2545 	if (!rdev->desc->ops->set_voltage &&
2546 	    !rdev->desc->ops->set_voltage_sel) {
2547 		ret = -EINVAL;
2548 		goto out;
2549 	}
2550 
2551 	/* This is only going to work if we've had a voltage configured. */
2552 	if (!regulator->min_uV && !regulator->max_uV) {
2553 		ret = -EINVAL;
2554 		goto out;
2555 	}
2556 
2557 	min_uV = regulator->min_uV;
2558 	max_uV = regulator->max_uV;
2559 
2560 	/* This should be a paranoia check... */
2561 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2562 	if (ret < 0)
2563 		goto out;
2564 
2565 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2566 	if (ret < 0)
2567 		goto out;
2568 
2569 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2570 
2571 out:
2572 	mutex_unlock(&rdev->mutex);
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2576 
2577 static int _regulator_get_voltage(struct regulator_dev *rdev)
2578 {
2579 	int sel, ret;
2580 
2581 	if (rdev->desc->ops->get_voltage_sel) {
2582 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2583 		if (sel < 0)
2584 			return sel;
2585 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2586 	} else if (rdev->desc->ops->get_voltage) {
2587 		ret = rdev->desc->ops->get_voltage(rdev);
2588 	} else if (rdev->desc->ops->list_voltage) {
2589 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2590 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2591 		ret = rdev->desc->fixed_uV;
2592 	} else {
2593 		return -EINVAL;
2594 	}
2595 
2596 	if (ret < 0)
2597 		return ret;
2598 	return ret - rdev->constraints->uV_offset;
2599 }
2600 
2601 /**
2602  * regulator_get_voltage - get regulator output voltage
2603  * @regulator: regulator source
2604  *
2605  * This returns the current regulator voltage in uV.
2606  *
2607  * NOTE: If the regulator is disabled it will return the voltage value. This
2608  * function should not be used to determine regulator state.
2609  */
2610 int regulator_get_voltage(struct regulator *regulator)
2611 {
2612 	int ret;
2613 
2614 	mutex_lock(&regulator->rdev->mutex);
2615 
2616 	ret = _regulator_get_voltage(regulator->rdev);
2617 
2618 	mutex_unlock(&regulator->rdev->mutex);
2619 
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2623 
2624 /**
2625  * regulator_set_current_limit - set regulator output current limit
2626  * @regulator: regulator source
2627  * @min_uA: Minimum supported current in uA
2628  * @max_uA: Maximum supported current in uA
2629  *
2630  * Sets current sink to the desired output current. This can be set during
2631  * any regulator state. IOW, regulator can be disabled or enabled.
2632  *
2633  * If the regulator is enabled then the current will change to the new value
2634  * immediately otherwise if the regulator is disabled the regulator will
2635  * output at the new current when enabled.
2636  *
2637  * NOTE: Regulator system constraints must be set for this regulator before
2638  * calling this function otherwise this call will fail.
2639  */
2640 int regulator_set_current_limit(struct regulator *regulator,
2641 			       int min_uA, int max_uA)
2642 {
2643 	struct regulator_dev *rdev = regulator->rdev;
2644 	int ret;
2645 
2646 	mutex_lock(&rdev->mutex);
2647 
2648 	/* sanity check */
2649 	if (!rdev->desc->ops->set_current_limit) {
2650 		ret = -EINVAL;
2651 		goto out;
2652 	}
2653 
2654 	/* constraints check */
2655 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2656 	if (ret < 0)
2657 		goto out;
2658 
2659 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2660 out:
2661 	mutex_unlock(&rdev->mutex);
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2665 
2666 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2667 {
2668 	int ret;
2669 
2670 	mutex_lock(&rdev->mutex);
2671 
2672 	/* sanity check */
2673 	if (!rdev->desc->ops->get_current_limit) {
2674 		ret = -EINVAL;
2675 		goto out;
2676 	}
2677 
2678 	ret = rdev->desc->ops->get_current_limit(rdev);
2679 out:
2680 	mutex_unlock(&rdev->mutex);
2681 	return ret;
2682 }
2683 
2684 /**
2685  * regulator_get_current_limit - get regulator output current
2686  * @regulator: regulator source
2687  *
2688  * This returns the current supplied by the specified current sink in uA.
2689  *
2690  * NOTE: If the regulator is disabled it will return the current value. This
2691  * function should not be used to determine regulator state.
2692  */
2693 int regulator_get_current_limit(struct regulator *regulator)
2694 {
2695 	return _regulator_get_current_limit(regulator->rdev);
2696 }
2697 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2698 
2699 /**
2700  * regulator_set_mode - set regulator operating mode
2701  * @regulator: regulator source
2702  * @mode: operating mode - one of the REGULATOR_MODE constants
2703  *
2704  * Set regulator operating mode to increase regulator efficiency or improve
2705  * regulation performance.
2706  *
2707  * NOTE: Regulator system constraints must be set for this regulator before
2708  * calling this function otherwise this call will fail.
2709  */
2710 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2711 {
2712 	struct regulator_dev *rdev = regulator->rdev;
2713 	int ret;
2714 	int regulator_curr_mode;
2715 
2716 	mutex_lock(&rdev->mutex);
2717 
2718 	/* sanity check */
2719 	if (!rdev->desc->ops->set_mode) {
2720 		ret = -EINVAL;
2721 		goto out;
2722 	}
2723 
2724 	/* return if the same mode is requested */
2725 	if (rdev->desc->ops->get_mode) {
2726 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2727 		if (regulator_curr_mode == mode) {
2728 			ret = 0;
2729 			goto out;
2730 		}
2731 	}
2732 
2733 	/* constraints check */
2734 	ret = regulator_mode_constrain(rdev, &mode);
2735 	if (ret < 0)
2736 		goto out;
2737 
2738 	ret = rdev->desc->ops->set_mode(rdev, mode);
2739 out:
2740 	mutex_unlock(&rdev->mutex);
2741 	return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(regulator_set_mode);
2744 
2745 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2746 {
2747 	int ret;
2748 
2749 	mutex_lock(&rdev->mutex);
2750 
2751 	/* sanity check */
2752 	if (!rdev->desc->ops->get_mode) {
2753 		ret = -EINVAL;
2754 		goto out;
2755 	}
2756 
2757 	ret = rdev->desc->ops->get_mode(rdev);
2758 out:
2759 	mutex_unlock(&rdev->mutex);
2760 	return ret;
2761 }
2762 
2763 /**
2764  * regulator_get_mode - get regulator operating mode
2765  * @regulator: regulator source
2766  *
2767  * Get the current regulator operating mode.
2768  */
2769 unsigned int regulator_get_mode(struct regulator *regulator)
2770 {
2771 	return _regulator_get_mode(regulator->rdev);
2772 }
2773 EXPORT_SYMBOL_GPL(regulator_get_mode);
2774 
2775 /**
2776  * regulator_set_optimum_mode - set regulator optimum operating mode
2777  * @regulator: regulator source
2778  * @uA_load: load current
2779  *
2780  * Notifies the regulator core of a new device load. This is then used by
2781  * DRMS (if enabled by constraints) to set the most efficient regulator
2782  * operating mode for the new regulator loading.
2783  *
2784  * Consumer devices notify their supply regulator of the maximum power
2785  * they will require (can be taken from device datasheet in the power
2786  * consumption tables) when they change operational status and hence power
2787  * state. Examples of operational state changes that can affect power
2788  * consumption are :-
2789  *
2790  *    o Device is opened / closed.
2791  *    o Device I/O is about to begin or has just finished.
2792  *    o Device is idling in between work.
2793  *
2794  * This information is also exported via sysfs to userspace.
2795  *
2796  * DRMS will sum the total requested load on the regulator and change
2797  * to the most efficient operating mode if platform constraints allow.
2798  *
2799  * Returns the new regulator mode or error.
2800  */
2801 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2802 {
2803 	struct regulator_dev *rdev = regulator->rdev;
2804 	struct regulator *consumer;
2805 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2806 	unsigned int mode;
2807 
2808 	if (rdev->supply)
2809 		input_uV = regulator_get_voltage(rdev->supply);
2810 
2811 	mutex_lock(&rdev->mutex);
2812 
2813 	/*
2814 	 * first check to see if we can set modes at all, otherwise just
2815 	 * tell the consumer everything is OK.
2816 	 */
2817 	regulator->uA_load = uA_load;
2818 	ret = regulator_check_drms(rdev);
2819 	if (ret < 0) {
2820 		ret = 0;
2821 		goto out;
2822 	}
2823 
2824 	if (!rdev->desc->ops->get_optimum_mode)
2825 		goto out;
2826 
2827 	/*
2828 	 * we can actually do this so any errors are indicators of
2829 	 * potential real failure.
2830 	 */
2831 	ret = -EINVAL;
2832 
2833 	if (!rdev->desc->ops->set_mode)
2834 		goto out;
2835 
2836 	/* get output voltage */
2837 	output_uV = _regulator_get_voltage(rdev);
2838 	if (output_uV <= 0) {
2839 		rdev_err(rdev, "invalid output voltage found\n");
2840 		goto out;
2841 	}
2842 
2843 	/* No supply? Use constraint voltage */
2844 	if (input_uV <= 0)
2845 		input_uV = rdev->constraints->input_uV;
2846 	if (input_uV <= 0) {
2847 		rdev_err(rdev, "invalid input voltage found\n");
2848 		goto out;
2849 	}
2850 
2851 	/* calc total requested load for this regulator */
2852 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2853 		total_uA_load += consumer->uA_load;
2854 
2855 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2856 						 input_uV, output_uV,
2857 						 total_uA_load);
2858 	ret = regulator_mode_constrain(rdev, &mode);
2859 	if (ret < 0) {
2860 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2861 			 total_uA_load, input_uV, output_uV);
2862 		goto out;
2863 	}
2864 
2865 	ret = rdev->desc->ops->set_mode(rdev, mode);
2866 	if (ret < 0) {
2867 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2868 		goto out;
2869 	}
2870 	ret = mode;
2871 out:
2872 	mutex_unlock(&rdev->mutex);
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2876 
2877 /**
2878  * regulator_allow_bypass - allow the regulator to go into bypass mode
2879  *
2880  * @regulator: Regulator to configure
2881  * @enable: enable or disable bypass mode
2882  *
2883  * Allow the regulator to go into bypass mode if all other consumers
2884  * for the regulator also enable bypass mode and the machine
2885  * constraints allow this.  Bypass mode means that the regulator is
2886  * simply passing the input directly to the output with no regulation.
2887  */
2888 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2889 {
2890 	struct regulator_dev *rdev = regulator->rdev;
2891 	int ret = 0;
2892 
2893 	if (!rdev->desc->ops->set_bypass)
2894 		return 0;
2895 
2896 	if (rdev->constraints &&
2897 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2898 		return 0;
2899 
2900 	mutex_lock(&rdev->mutex);
2901 
2902 	if (enable && !regulator->bypass) {
2903 		rdev->bypass_count++;
2904 
2905 		if (rdev->bypass_count == rdev->open_count) {
2906 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2907 			if (ret != 0)
2908 				rdev->bypass_count--;
2909 		}
2910 
2911 	} else if (!enable && regulator->bypass) {
2912 		rdev->bypass_count--;
2913 
2914 		if (rdev->bypass_count != rdev->open_count) {
2915 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2916 			if (ret != 0)
2917 				rdev->bypass_count++;
2918 		}
2919 	}
2920 
2921 	if (ret == 0)
2922 		regulator->bypass = enable;
2923 
2924 	mutex_unlock(&rdev->mutex);
2925 
2926 	return ret;
2927 }
2928 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2929 
2930 /**
2931  * regulator_register_notifier - register regulator event notifier
2932  * @regulator: regulator source
2933  * @nb: notifier block
2934  *
2935  * Register notifier block to receive regulator events.
2936  */
2937 int regulator_register_notifier(struct regulator *regulator,
2938 			      struct notifier_block *nb)
2939 {
2940 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2941 						nb);
2942 }
2943 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2944 
2945 /**
2946  * regulator_unregister_notifier - unregister regulator event notifier
2947  * @regulator: regulator source
2948  * @nb: notifier block
2949  *
2950  * Unregister regulator event notifier block.
2951  */
2952 int regulator_unregister_notifier(struct regulator *regulator,
2953 				struct notifier_block *nb)
2954 {
2955 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2956 						  nb);
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2959 
2960 /* notify regulator consumers and downstream regulator consumers.
2961  * Note mutex must be held by caller.
2962  */
2963 static void _notifier_call_chain(struct regulator_dev *rdev,
2964 				  unsigned long event, void *data)
2965 {
2966 	/* call rdev chain first */
2967 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2968 }
2969 
2970 /**
2971  * regulator_bulk_get - get multiple regulator consumers
2972  *
2973  * @dev:           Device to supply
2974  * @num_consumers: Number of consumers to register
2975  * @consumers:     Configuration of consumers; clients are stored here.
2976  *
2977  * @return 0 on success, an errno on failure.
2978  *
2979  * This helper function allows drivers to get several regulator
2980  * consumers in one operation.  If any of the regulators cannot be
2981  * acquired then any regulators that were allocated will be freed
2982  * before returning to the caller.
2983  */
2984 int regulator_bulk_get(struct device *dev, int num_consumers,
2985 		       struct regulator_bulk_data *consumers)
2986 {
2987 	int i;
2988 	int ret;
2989 
2990 	for (i = 0; i < num_consumers; i++)
2991 		consumers[i].consumer = NULL;
2992 
2993 	for (i = 0; i < num_consumers; i++) {
2994 		consumers[i].consumer = regulator_get(dev,
2995 						      consumers[i].supply);
2996 		if (IS_ERR(consumers[i].consumer)) {
2997 			ret = PTR_ERR(consumers[i].consumer);
2998 			dev_err(dev, "Failed to get supply '%s': %d\n",
2999 				consumers[i].supply, ret);
3000 			consumers[i].consumer = NULL;
3001 			goto err;
3002 		}
3003 	}
3004 
3005 	return 0;
3006 
3007 err:
3008 	while (--i >= 0)
3009 		regulator_put(consumers[i].consumer);
3010 
3011 	return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3014 
3015 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3016 {
3017 	struct regulator_bulk_data *bulk = data;
3018 
3019 	bulk->ret = regulator_enable(bulk->consumer);
3020 }
3021 
3022 /**
3023  * regulator_bulk_enable - enable multiple regulator consumers
3024  *
3025  * @num_consumers: Number of consumers
3026  * @consumers:     Consumer data; clients are stored here.
3027  * @return         0 on success, an errno on failure
3028  *
3029  * This convenience API allows consumers to enable multiple regulator
3030  * clients in a single API call.  If any consumers cannot be enabled
3031  * then any others that were enabled will be disabled again prior to
3032  * return.
3033  */
3034 int regulator_bulk_enable(int num_consumers,
3035 			  struct regulator_bulk_data *consumers)
3036 {
3037 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3038 	int i;
3039 	int ret = 0;
3040 
3041 	for (i = 0; i < num_consumers; i++) {
3042 		if (consumers[i].consumer->always_on)
3043 			consumers[i].ret = 0;
3044 		else
3045 			async_schedule_domain(regulator_bulk_enable_async,
3046 					      &consumers[i], &async_domain);
3047 	}
3048 
3049 	async_synchronize_full_domain(&async_domain);
3050 
3051 	/* If any consumer failed we need to unwind any that succeeded */
3052 	for (i = 0; i < num_consumers; i++) {
3053 		if (consumers[i].ret != 0) {
3054 			ret = consumers[i].ret;
3055 			goto err;
3056 		}
3057 	}
3058 
3059 	return 0;
3060 
3061 err:
3062 	for (i = 0; i < num_consumers; i++) {
3063 		if (consumers[i].ret < 0)
3064 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3065 			       consumers[i].ret);
3066 		else
3067 			regulator_disable(consumers[i].consumer);
3068 	}
3069 
3070 	return ret;
3071 }
3072 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3073 
3074 /**
3075  * regulator_bulk_disable - disable multiple regulator consumers
3076  *
3077  * @num_consumers: Number of consumers
3078  * @consumers:     Consumer data; clients are stored here.
3079  * @return         0 on success, an errno on failure
3080  *
3081  * This convenience API allows consumers to disable multiple regulator
3082  * clients in a single API call.  If any consumers cannot be disabled
3083  * then any others that were disabled will be enabled again prior to
3084  * return.
3085  */
3086 int regulator_bulk_disable(int num_consumers,
3087 			   struct regulator_bulk_data *consumers)
3088 {
3089 	int i;
3090 	int ret, r;
3091 
3092 	for (i = num_consumers - 1; i >= 0; --i) {
3093 		ret = regulator_disable(consumers[i].consumer);
3094 		if (ret != 0)
3095 			goto err;
3096 	}
3097 
3098 	return 0;
3099 
3100 err:
3101 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3102 	for (++i; i < num_consumers; ++i) {
3103 		r = regulator_enable(consumers[i].consumer);
3104 		if (r != 0)
3105 			pr_err("Failed to reename %s: %d\n",
3106 			       consumers[i].supply, r);
3107 	}
3108 
3109 	return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3112 
3113 /**
3114  * regulator_bulk_force_disable - force disable multiple regulator consumers
3115  *
3116  * @num_consumers: Number of consumers
3117  * @consumers:     Consumer data; clients are stored here.
3118  * @return         0 on success, an errno on failure
3119  *
3120  * This convenience API allows consumers to forcibly disable multiple regulator
3121  * clients in a single API call.
3122  * NOTE: This should be used for situations when device damage will
3123  * likely occur if the regulators are not disabled (e.g. over temp).
3124  * Although regulator_force_disable function call for some consumers can
3125  * return error numbers, the function is called for all consumers.
3126  */
3127 int regulator_bulk_force_disable(int num_consumers,
3128 			   struct regulator_bulk_data *consumers)
3129 {
3130 	int i;
3131 	int ret;
3132 
3133 	for (i = 0; i < num_consumers; i++)
3134 		consumers[i].ret =
3135 			    regulator_force_disable(consumers[i].consumer);
3136 
3137 	for (i = 0; i < num_consumers; i++) {
3138 		if (consumers[i].ret != 0) {
3139 			ret = consumers[i].ret;
3140 			goto out;
3141 		}
3142 	}
3143 
3144 	return 0;
3145 out:
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3149 
3150 /**
3151  * regulator_bulk_free - free multiple regulator consumers
3152  *
3153  * @num_consumers: Number of consumers
3154  * @consumers:     Consumer data; clients are stored here.
3155  *
3156  * This convenience API allows consumers to free multiple regulator
3157  * clients in a single API call.
3158  */
3159 void regulator_bulk_free(int num_consumers,
3160 			 struct regulator_bulk_data *consumers)
3161 {
3162 	int i;
3163 
3164 	for (i = 0; i < num_consumers; i++) {
3165 		regulator_put(consumers[i].consumer);
3166 		consumers[i].consumer = NULL;
3167 	}
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3170 
3171 /**
3172  * regulator_notifier_call_chain - call regulator event notifier
3173  * @rdev: regulator source
3174  * @event: notifier block
3175  * @data: callback-specific data.
3176  *
3177  * Called by regulator drivers to notify clients a regulator event has
3178  * occurred. We also notify regulator clients downstream.
3179  * Note lock must be held by caller.
3180  */
3181 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3182 				  unsigned long event, void *data)
3183 {
3184 	_notifier_call_chain(rdev, event, data);
3185 	return NOTIFY_DONE;
3186 
3187 }
3188 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3189 
3190 /**
3191  * regulator_mode_to_status - convert a regulator mode into a status
3192  *
3193  * @mode: Mode to convert
3194  *
3195  * Convert a regulator mode into a status.
3196  */
3197 int regulator_mode_to_status(unsigned int mode)
3198 {
3199 	switch (mode) {
3200 	case REGULATOR_MODE_FAST:
3201 		return REGULATOR_STATUS_FAST;
3202 	case REGULATOR_MODE_NORMAL:
3203 		return REGULATOR_STATUS_NORMAL;
3204 	case REGULATOR_MODE_IDLE:
3205 		return REGULATOR_STATUS_IDLE;
3206 	case REGULATOR_MODE_STANDBY:
3207 		return REGULATOR_STATUS_STANDBY;
3208 	default:
3209 		return REGULATOR_STATUS_UNDEFINED;
3210 	}
3211 }
3212 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3213 
3214 /*
3215  * To avoid cluttering sysfs (and memory) with useless state, only
3216  * create attributes that can be meaningfully displayed.
3217  */
3218 static int add_regulator_attributes(struct regulator_dev *rdev)
3219 {
3220 	struct device		*dev = &rdev->dev;
3221 	struct regulator_ops	*ops = rdev->desc->ops;
3222 	int			status = 0;
3223 
3224 	/* some attributes need specific methods to be displayed */
3225 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3226 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3227 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3228 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3229 		status = device_create_file(dev, &dev_attr_microvolts);
3230 		if (status < 0)
3231 			return status;
3232 	}
3233 	if (ops->get_current_limit) {
3234 		status = device_create_file(dev, &dev_attr_microamps);
3235 		if (status < 0)
3236 			return status;
3237 	}
3238 	if (ops->get_mode) {
3239 		status = device_create_file(dev, &dev_attr_opmode);
3240 		if (status < 0)
3241 			return status;
3242 	}
3243 	if (rdev->ena_pin || ops->is_enabled) {
3244 		status = device_create_file(dev, &dev_attr_state);
3245 		if (status < 0)
3246 			return status;
3247 	}
3248 	if (ops->get_status) {
3249 		status = device_create_file(dev, &dev_attr_status);
3250 		if (status < 0)
3251 			return status;
3252 	}
3253 	if (ops->get_bypass) {
3254 		status = device_create_file(dev, &dev_attr_bypass);
3255 		if (status < 0)
3256 			return status;
3257 	}
3258 
3259 	/* some attributes are type-specific */
3260 	if (rdev->desc->type == REGULATOR_CURRENT) {
3261 		status = device_create_file(dev, &dev_attr_requested_microamps);
3262 		if (status < 0)
3263 			return status;
3264 	}
3265 
3266 	/* all the other attributes exist to support constraints;
3267 	 * don't show them if there are no constraints, or if the
3268 	 * relevant supporting methods are missing.
3269 	 */
3270 	if (!rdev->constraints)
3271 		return status;
3272 
3273 	/* constraints need specific supporting methods */
3274 	if (ops->set_voltage || ops->set_voltage_sel) {
3275 		status = device_create_file(dev, &dev_attr_min_microvolts);
3276 		if (status < 0)
3277 			return status;
3278 		status = device_create_file(dev, &dev_attr_max_microvolts);
3279 		if (status < 0)
3280 			return status;
3281 	}
3282 	if (ops->set_current_limit) {
3283 		status = device_create_file(dev, &dev_attr_min_microamps);
3284 		if (status < 0)
3285 			return status;
3286 		status = device_create_file(dev, &dev_attr_max_microamps);
3287 		if (status < 0)
3288 			return status;
3289 	}
3290 
3291 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3292 	if (status < 0)
3293 		return status;
3294 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3295 	if (status < 0)
3296 		return status;
3297 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3298 	if (status < 0)
3299 		return status;
3300 
3301 	if (ops->set_suspend_voltage) {
3302 		status = device_create_file(dev,
3303 				&dev_attr_suspend_standby_microvolts);
3304 		if (status < 0)
3305 			return status;
3306 		status = device_create_file(dev,
3307 				&dev_attr_suspend_mem_microvolts);
3308 		if (status < 0)
3309 			return status;
3310 		status = device_create_file(dev,
3311 				&dev_attr_suspend_disk_microvolts);
3312 		if (status < 0)
3313 			return status;
3314 	}
3315 
3316 	if (ops->set_suspend_mode) {
3317 		status = device_create_file(dev,
3318 				&dev_attr_suspend_standby_mode);
3319 		if (status < 0)
3320 			return status;
3321 		status = device_create_file(dev,
3322 				&dev_attr_suspend_mem_mode);
3323 		if (status < 0)
3324 			return status;
3325 		status = device_create_file(dev,
3326 				&dev_attr_suspend_disk_mode);
3327 		if (status < 0)
3328 			return status;
3329 	}
3330 
3331 	return status;
3332 }
3333 
3334 static void rdev_init_debugfs(struct regulator_dev *rdev)
3335 {
3336 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3337 	if (!rdev->debugfs) {
3338 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3339 		return;
3340 	}
3341 
3342 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3343 			   &rdev->use_count);
3344 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3345 			   &rdev->open_count);
3346 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3347 			   &rdev->bypass_count);
3348 }
3349 
3350 /**
3351  * regulator_register - register regulator
3352  * @regulator_desc: regulator to register
3353  * @config: runtime configuration for regulator
3354  *
3355  * Called by regulator drivers to register a regulator.
3356  * Returns a valid pointer to struct regulator_dev on success
3357  * or an ERR_PTR() on error.
3358  */
3359 struct regulator_dev *
3360 regulator_register(const struct regulator_desc *regulator_desc,
3361 		   const struct regulator_config *config)
3362 {
3363 	const struct regulation_constraints *constraints = NULL;
3364 	const struct regulator_init_data *init_data;
3365 	static atomic_t regulator_no = ATOMIC_INIT(0);
3366 	struct regulator_dev *rdev;
3367 	struct device *dev;
3368 	int ret, i;
3369 	const char *supply = NULL;
3370 
3371 	if (regulator_desc == NULL || config == NULL)
3372 		return ERR_PTR(-EINVAL);
3373 
3374 	dev = config->dev;
3375 	WARN_ON(!dev);
3376 
3377 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3378 		return ERR_PTR(-EINVAL);
3379 
3380 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3381 	    regulator_desc->type != REGULATOR_CURRENT)
3382 		return ERR_PTR(-EINVAL);
3383 
3384 	/* Only one of each should be implemented */
3385 	WARN_ON(regulator_desc->ops->get_voltage &&
3386 		regulator_desc->ops->get_voltage_sel);
3387 	WARN_ON(regulator_desc->ops->set_voltage &&
3388 		regulator_desc->ops->set_voltage_sel);
3389 
3390 	/* If we're using selectors we must implement list_voltage. */
3391 	if (regulator_desc->ops->get_voltage_sel &&
3392 	    !regulator_desc->ops->list_voltage) {
3393 		return ERR_PTR(-EINVAL);
3394 	}
3395 	if (regulator_desc->ops->set_voltage_sel &&
3396 	    !regulator_desc->ops->list_voltage) {
3397 		return ERR_PTR(-EINVAL);
3398 	}
3399 
3400 	init_data = config->init_data;
3401 
3402 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3403 	if (rdev == NULL)
3404 		return ERR_PTR(-ENOMEM);
3405 
3406 	mutex_lock(&regulator_list_mutex);
3407 
3408 	mutex_init(&rdev->mutex);
3409 	rdev->reg_data = config->driver_data;
3410 	rdev->owner = regulator_desc->owner;
3411 	rdev->desc = regulator_desc;
3412 	if (config->regmap)
3413 		rdev->regmap = config->regmap;
3414 	else if (dev_get_regmap(dev, NULL))
3415 		rdev->regmap = dev_get_regmap(dev, NULL);
3416 	else if (dev->parent)
3417 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3418 	INIT_LIST_HEAD(&rdev->consumer_list);
3419 	INIT_LIST_HEAD(&rdev->list);
3420 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3421 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3422 
3423 	/* preform any regulator specific init */
3424 	if (init_data && init_data->regulator_init) {
3425 		ret = init_data->regulator_init(rdev->reg_data);
3426 		if (ret < 0)
3427 			goto clean;
3428 	}
3429 
3430 	/* register with sysfs */
3431 	rdev->dev.class = &regulator_class;
3432 	rdev->dev.of_node = config->of_node;
3433 	rdev->dev.parent = dev;
3434 	dev_set_name(&rdev->dev, "regulator.%d",
3435 		     atomic_inc_return(&regulator_no) - 1);
3436 	ret = device_register(&rdev->dev);
3437 	if (ret != 0) {
3438 		put_device(&rdev->dev);
3439 		goto clean;
3440 	}
3441 
3442 	dev_set_drvdata(&rdev->dev, rdev);
3443 
3444 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3445 		ret = regulator_ena_gpio_request(rdev, config);
3446 		if (ret != 0) {
3447 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3448 				 config->ena_gpio, ret);
3449 			goto wash;
3450 		}
3451 
3452 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3453 			rdev->ena_gpio_state = 1;
3454 
3455 		if (config->ena_gpio_invert)
3456 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3457 	}
3458 
3459 	/* set regulator constraints */
3460 	if (init_data)
3461 		constraints = &init_data->constraints;
3462 
3463 	ret = set_machine_constraints(rdev, constraints);
3464 	if (ret < 0)
3465 		goto scrub;
3466 
3467 	/* add attributes supported by this regulator */
3468 	ret = add_regulator_attributes(rdev);
3469 	if (ret < 0)
3470 		goto scrub;
3471 
3472 	if (init_data && init_data->supply_regulator)
3473 		supply = init_data->supply_regulator;
3474 	else if (regulator_desc->supply_name)
3475 		supply = regulator_desc->supply_name;
3476 
3477 	if (supply) {
3478 		struct regulator_dev *r;
3479 
3480 		r = regulator_dev_lookup(dev, supply, &ret);
3481 
3482 		if (ret == -ENODEV) {
3483 			/*
3484 			 * No supply was specified for this regulator and
3485 			 * there will never be one.
3486 			 */
3487 			ret = 0;
3488 			goto add_dev;
3489 		} else if (!r) {
3490 			dev_err(dev, "Failed to find supply %s\n", supply);
3491 			ret = -EPROBE_DEFER;
3492 			goto scrub;
3493 		}
3494 
3495 		ret = set_supply(rdev, r);
3496 		if (ret < 0)
3497 			goto scrub;
3498 
3499 		/* Enable supply if rail is enabled */
3500 		if (_regulator_is_enabled(rdev)) {
3501 			ret = regulator_enable(rdev->supply);
3502 			if (ret < 0)
3503 				goto scrub;
3504 		}
3505 	}
3506 
3507 add_dev:
3508 	/* add consumers devices */
3509 	if (init_data) {
3510 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3511 			ret = set_consumer_device_supply(rdev,
3512 				init_data->consumer_supplies[i].dev_name,
3513 				init_data->consumer_supplies[i].supply);
3514 			if (ret < 0) {
3515 				dev_err(dev, "Failed to set supply %s\n",
3516 					init_data->consumer_supplies[i].supply);
3517 				goto unset_supplies;
3518 			}
3519 		}
3520 	}
3521 
3522 	list_add(&rdev->list, &regulator_list);
3523 
3524 	rdev_init_debugfs(rdev);
3525 out:
3526 	mutex_unlock(&regulator_list_mutex);
3527 	return rdev;
3528 
3529 unset_supplies:
3530 	unset_regulator_supplies(rdev);
3531 
3532 scrub:
3533 	if (rdev->supply)
3534 		_regulator_put(rdev->supply);
3535 	regulator_ena_gpio_free(rdev);
3536 	kfree(rdev->constraints);
3537 wash:
3538 	device_unregister(&rdev->dev);
3539 	/* device core frees rdev */
3540 	rdev = ERR_PTR(ret);
3541 	goto out;
3542 
3543 clean:
3544 	kfree(rdev);
3545 	rdev = ERR_PTR(ret);
3546 	goto out;
3547 }
3548 EXPORT_SYMBOL_GPL(regulator_register);
3549 
3550 /**
3551  * regulator_unregister - unregister regulator
3552  * @rdev: regulator to unregister
3553  *
3554  * Called by regulator drivers to unregister a regulator.
3555  */
3556 void regulator_unregister(struct regulator_dev *rdev)
3557 {
3558 	if (rdev == NULL)
3559 		return;
3560 
3561 	if (rdev->supply) {
3562 		while (rdev->use_count--)
3563 			regulator_disable(rdev->supply);
3564 		regulator_put(rdev->supply);
3565 	}
3566 	mutex_lock(&regulator_list_mutex);
3567 	debugfs_remove_recursive(rdev->debugfs);
3568 	flush_work(&rdev->disable_work.work);
3569 	WARN_ON(rdev->open_count);
3570 	unset_regulator_supplies(rdev);
3571 	list_del(&rdev->list);
3572 	kfree(rdev->constraints);
3573 	regulator_ena_gpio_free(rdev);
3574 	device_unregister(&rdev->dev);
3575 	mutex_unlock(&regulator_list_mutex);
3576 }
3577 EXPORT_SYMBOL_GPL(regulator_unregister);
3578 
3579 /**
3580  * regulator_suspend_prepare - prepare regulators for system wide suspend
3581  * @state: system suspend state
3582  *
3583  * Configure each regulator with it's suspend operating parameters for state.
3584  * This will usually be called by machine suspend code prior to supending.
3585  */
3586 int regulator_suspend_prepare(suspend_state_t state)
3587 {
3588 	struct regulator_dev *rdev;
3589 	int ret = 0;
3590 
3591 	/* ON is handled by regulator active state */
3592 	if (state == PM_SUSPEND_ON)
3593 		return -EINVAL;
3594 
3595 	mutex_lock(&regulator_list_mutex);
3596 	list_for_each_entry(rdev, &regulator_list, list) {
3597 
3598 		mutex_lock(&rdev->mutex);
3599 		ret = suspend_prepare(rdev, state);
3600 		mutex_unlock(&rdev->mutex);
3601 
3602 		if (ret < 0) {
3603 			rdev_err(rdev, "failed to prepare\n");
3604 			goto out;
3605 		}
3606 	}
3607 out:
3608 	mutex_unlock(&regulator_list_mutex);
3609 	return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3612 
3613 /**
3614  * regulator_suspend_finish - resume regulators from system wide suspend
3615  *
3616  * Turn on regulators that might be turned off by regulator_suspend_prepare
3617  * and that should be turned on according to the regulators properties.
3618  */
3619 int regulator_suspend_finish(void)
3620 {
3621 	struct regulator_dev *rdev;
3622 	int ret = 0, error;
3623 
3624 	mutex_lock(&regulator_list_mutex);
3625 	list_for_each_entry(rdev, &regulator_list, list) {
3626 		struct regulator_ops *ops = rdev->desc->ops;
3627 
3628 		mutex_lock(&rdev->mutex);
3629 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3630 				ops->enable) {
3631 			error = ops->enable(rdev);
3632 			if (error)
3633 				ret = error;
3634 		} else {
3635 			if (!have_full_constraints())
3636 				goto unlock;
3637 			if (!ops->disable)
3638 				goto unlock;
3639 			if (!_regulator_is_enabled(rdev))
3640 				goto unlock;
3641 
3642 			error = ops->disable(rdev);
3643 			if (error)
3644 				ret = error;
3645 		}
3646 unlock:
3647 		mutex_unlock(&rdev->mutex);
3648 	}
3649 	mutex_unlock(&regulator_list_mutex);
3650 	return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3653 
3654 /**
3655  * regulator_has_full_constraints - the system has fully specified constraints
3656  *
3657  * Calling this function will cause the regulator API to disable all
3658  * regulators which have a zero use count and don't have an always_on
3659  * constraint in a late_initcall.
3660  *
3661  * The intention is that this will become the default behaviour in a
3662  * future kernel release so users are encouraged to use this facility
3663  * now.
3664  */
3665 void regulator_has_full_constraints(void)
3666 {
3667 	has_full_constraints = 1;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3670 
3671 /**
3672  * rdev_get_drvdata - get rdev regulator driver data
3673  * @rdev: regulator
3674  *
3675  * Get rdev regulator driver private data. This call can be used in the
3676  * regulator driver context.
3677  */
3678 void *rdev_get_drvdata(struct regulator_dev *rdev)
3679 {
3680 	return rdev->reg_data;
3681 }
3682 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3683 
3684 /**
3685  * regulator_get_drvdata - get regulator driver data
3686  * @regulator: regulator
3687  *
3688  * Get regulator driver private data. This call can be used in the consumer
3689  * driver context when non API regulator specific functions need to be called.
3690  */
3691 void *regulator_get_drvdata(struct regulator *regulator)
3692 {
3693 	return regulator->rdev->reg_data;
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3696 
3697 /**
3698  * regulator_set_drvdata - set regulator driver data
3699  * @regulator: regulator
3700  * @data: data
3701  */
3702 void regulator_set_drvdata(struct regulator *regulator, void *data)
3703 {
3704 	regulator->rdev->reg_data = data;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3707 
3708 /**
3709  * regulator_get_id - get regulator ID
3710  * @rdev: regulator
3711  */
3712 int rdev_get_id(struct regulator_dev *rdev)
3713 {
3714 	return rdev->desc->id;
3715 }
3716 EXPORT_SYMBOL_GPL(rdev_get_id);
3717 
3718 struct device *rdev_get_dev(struct regulator_dev *rdev)
3719 {
3720 	return &rdev->dev;
3721 }
3722 EXPORT_SYMBOL_GPL(rdev_get_dev);
3723 
3724 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3725 {
3726 	return reg_init_data->driver_data;
3727 }
3728 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3729 
3730 #ifdef CONFIG_DEBUG_FS
3731 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3732 				    size_t count, loff_t *ppos)
3733 {
3734 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3735 	ssize_t len, ret = 0;
3736 	struct regulator_map *map;
3737 
3738 	if (!buf)
3739 		return -ENOMEM;
3740 
3741 	list_for_each_entry(map, &regulator_map_list, list) {
3742 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3743 			       "%s -> %s.%s\n",
3744 			       rdev_get_name(map->regulator), map->dev_name,
3745 			       map->supply);
3746 		if (len >= 0)
3747 			ret += len;
3748 		if (ret > PAGE_SIZE) {
3749 			ret = PAGE_SIZE;
3750 			break;
3751 		}
3752 	}
3753 
3754 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3755 
3756 	kfree(buf);
3757 
3758 	return ret;
3759 }
3760 #endif
3761 
3762 static const struct file_operations supply_map_fops = {
3763 #ifdef CONFIG_DEBUG_FS
3764 	.read = supply_map_read_file,
3765 	.llseek = default_llseek,
3766 #endif
3767 };
3768 
3769 static int __init regulator_init(void)
3770 {
3771 	int ret;
3772 
3773 	ret = class_register(&regulator_class);
3774 
3775 	debugfs_root = debugfs_create_dir("regulator", NULL);
3776 	if (!debugfs_root)
3777 		pr_warn("regulator: Failed to create debugfs directory\n");
3778 
3779 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3780 			    &supply_map_fops);
3781 
3782 	regulator_dummy_init();
3783 
3784 	return ret;
3785 }
3786 
3787 /* init early to allow our consumers to complete system booting */
3788 core_initcall(regulator_init);
3789 
3790 static int __init regulator_init_complete(void)
3791 {
3792 	struct regulator_dev *rdev;
3793 	struct regulator_ops *ops;
3794 	struct regulation_constraints *c;
3795 	int enabled, ret;
3796 
3797 	/*
3798 	 * Since DT doesn't provide an idiomatic mechanism for
3799 	 * enabling full constraints and since it's much more natural
3800 	 * with DT to provide them just assume that a DT enabled
3801 	 * system has full constraints.
3802 	 */
3803 	if (of_have_populated_dt())
3804 		has_full_constraints = true;
3805 
3806 	mutex_lock(&regulator_list_mutex);
3807 
3808 	/* If we have a full configuration then disable any regulators
3809 	 * which are not in use or always_on.  This will become the
3810 	 * default behaviour in the future.
3811 	 */
3812 	list_for_each_entry(rdev, &regulator_list, list) {
3813 		ops = rdev->desc->ops;
3814 		c = rdev->constraints;
3815 
3816 		if (!ops->disable || (c && c->always_on))
3817 			continue;
3818 
3819 		mutex_lock(&rdev->mutex);
3820 
3821 		if (rdev->use_count)
3822 			goto unlock;
3823 
3824 		/* If we can't read the status assume it's on. */
3825 		if (ops->is_enabled)
3826 			enabled = ops->is_enabled(rdev);
3827 		else
3828 			enabled = 1;
3829 
3830 		if (!enabled)
3831 			goto unlock;
3832 
3833 		if (have_full_constraints()) {
3834 			/* We log since this may kill the system if it
3835 			 * goes wrong. */
3836 			rdev_info(rdev, "disabling\n");
3837 			ret = ops->disable(rdev);
3838 			if (ret != 0) {
3839 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3840 			}
3841 		} else {
3842 			/* The intention is that in future we will
3843 			 * assume that full constraints are provided
3844 			 * so warn even if we aren't going to do
3845 			 * anything here.
3846 			 */
3847 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3848 		}
3849 
3850 unlock:
3851 		mutex_unlock(&rdev->mutex);
3852 	}
3853 
3854 	mutex_unlock(&regulator_list_mutex);
3855 
3856 	return 0;
3857 }
3858 late_initcall(regulator_init_complete);
3859