1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_MUTEX(regulator_list_mutex); 53 static LIST_HEAD(regulator_list); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 int gpio; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static void _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 112 static const char *rdev_get_name(struct regulator_dev *rdev) 113 { 114 if (rdev->constraints && rdev->constraints->name) 115 return rdev->constraints->name; 116 else if (rdev->desc->name) 117 return rdev->desc->name; 118 else 119 return ""; 120 } 121 122 static bool have_full_constraints(void) 123 { 124 return has_full_constraints || of_have_populated_dt(); 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 static DEVICE_ATTR_RO(name); 334 335 static ssize_t regulator_print_opmode(char *buf, int mode) 336 { 337 switch (mode) { 338 case REGULATOR_MODE_FAST: 339 return sprintf(buf, "fast\n"); 340 case REGULATOR_MODE_NORMAL: 341 return sprintf(buf, "normal\n"); 342 case REGULATOR_MODE_IDLE: 343 return sprintf(buf, "idle\n"); 344 case REGULATOR_MODE_STANDBY: 345 return sprintf(buf, "standby\n"); 346 } 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_opmode_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 356 } 357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 358 359 static ssize_t regulator_print_state(char *buf, int state) 360 { 361 if (state > 0) 362 return sprintf(buf, "enabled\n"); 363 else if (state == 0) 364 return sprintf(buf, "disabled\n"); 365 else 366 return sprintf(buf, "unknown\n"); 367 } 368 369 static ssize_t regulator_state_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct regulator_dev *rdev = dev_get_drvdata(dev); 373 ssize_t ret; 374 375 mutex_lock(&rdev->mutex); 376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 377 mutex_unlock(&rdev->mutex); 378 379 return ret; 380 } 381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 382 383 static ssize_t regulator_status_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 int status; 388 char *label; 389 390 status = rdev->desc->ops->get_status(rdev); 391 if (status < 0) 392 return status; 393 394 switch (status) { 395 case REGULATOR_STATUS_OFF: 396 label = "off"; 397 break; 398 case REGULATOR_STATUS_ON: 399 label = "on"; 400 break; 401 case REGULATOR_STATUS_ERROR: 402 label = "error"; 403 break; 404 case REGULATOR_STATUS_FAST: 405 label = "fast"; 406 break; 407 case REGULATOR_STATUS_NORMAL: 408 label = "normal"; 409 break; 410 case REGULATOR_STATUS_IDLE: 411 label = "idle"; 412 break; 413 case REGULATOR_STATUS_STANDBY: 414 label = "standby"; 415 break; 416 case REGULATOR_STATUS_BYPASS: 417 label = "bypass"; 418 break; 419 case REGULATOR_STATUS_UNDEFINED: 420 label = "undefined"; 421 break; 422 default: 423 return -ERANGE; 424 } 425 426 return sprintf(buf, "%s\n", label); 427 } 428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 429 430 static ssize_t regulator_min_uA_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 if (!rdev->constraints) 436 return sprintf(buf, "constraint not defined\n"); 437 438 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 439 } 440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 441 442 static ssize_t regulator_max_uA_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct regulator_dev *rdev = dev_get_drvdata(dev); 446 447 if (!rdev->constraints) 448 return sprintf(buf, "constraint not defined\n"); 449 450 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 451 } 452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 453 454 static ssize_t regulator_min_uV_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 463 } 464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 465 466 static ssize_t regulator_max_uV_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 475 } 476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 477 478 static ssize_t regulator_total_uA_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 struct regulator *regulator; 483 int uA = 0; 484 485 mutex_lock(&rdev->mutex); 486 list_for_each_entry(regulator, &rdev->consumer_list, list) 487 uA += regulator->uA_load; 488 mutex_unlock(&rdev->mutex); 489 return sprintf(buf, "%d\n", uA); 490 } 491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 492 493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 494 char *buf) 495 { 496 struct regulator_dev *rdev = dev_get_drvdata(dev); 497 return sprintf(buf, "%d\n", rdev->use_count); 498 } 499 static DEVICE_ATTR_RO(num_users); 500 501 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 506 switch (rdev->desc->type) { 507 case REGULATOR_VOLTAGE: 508 return sprintf(buf, "voltage\n"); 509 case REGULATOR_CURRENT: 510 return sprintf(buf, "current\n"); 511 } 512 return sprintf(buf, "unknown\n"); 513 } 514 static DEVICE_ATTR_RO(type); 515 516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 522 } 523 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 524 regulator_suspend_mem_uV_show, NULL); 525 526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 532 } 533 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 534 regulator_suspend_disk_uV_show, NULL); 535 536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 542 } 543 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 544 regulator_suspend_standby_uV_show, NULL); 545 546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct regulator_dev *rdev = dev_get_drvdata(dev); 550 551 return regulator_print_opmode(buf, 552 rdev->constraints->state_mem.mode); 553 } 554 static DEVICE_ATTR(suspend_mem_mode, 0444, 555 regulator_suspend_mem_mode_show, NULL); 556 557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct regulator_dev *rdev = dev_get_drvdata(dev); 561 562 return regulator_print_opmode(buf, 563 rdev->constraints->state_disk.mode); 564 } 565 static DEVICE_ATTR(suspend_disk_mode, 0444, 566 regulator_suspend_disk_mode_show, NULL); 567 568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 569 struct device_attribute *attr, char *buf) 570 { 571 struct regulator_dev *rdev = dev_get_drvdata(dev); 572 573 return regulator_print_opmode(buf, 574 rdev->constraints->state_standby.mode); 575 } 576 static DEVICE_ATTR(suspend_standby_mode, 0444, 577 regulator_suspend_standby_mode_show, NULL); 578 579 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct regulator_dev *rdev = dev_get_drvdata(dev); 583 584 return regulator_print_state(buf, 585 rdev->constraints->state_mem.enabled); 586 } 587 static DEVICE_ATTR(suspend_mem_state, 0444, 588 regulator_suspend_mem_state_show, NULL); 589 590 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_state(buf, 596 rdev->constraints->state_disk.enabled); 597 } 598 static DEVICE_ATTR(suspend_disk_state, 0444, 599 regulator_suspend_disk_state_show, NULL); 600 601 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_state(buf, 607 rdev->constraints->state_standby.enabled); 608 } 609 static DEVICE_ATTR(suspend_standby_state, 0444, 610 regulator_suspend_standby_state_show, NULL); 611 612 static ssize_t regulator_bypass_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 const char *report; 617 bool bypass; 618 int ret; 619 620 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 621 622 if (ret != 0) 623 report = "unknown"; 624 else if (bypass) 625 report = "enabled"; 626 else 627 report = "disabled"; 628 629 return sprintf(buf, "%s\n", report); 630 } 631 static DEVICE_ATTR(bypass, 0444, 632 regulator_bypass_show, NULL); 633 634 /* 635 * These are the only attributes are present for all regulators. 636 * Other attributes are a function of regulator functionality. 637 */ 638 static struct attribute *regulator_dev_attrs[] = { 639 &dev_attr_name.attr, 640 &dev_attr_num_users.attr, 641 &dev_attr_type.attr, 642 NULL, 643 }; 644 ATTRIBUTE_GROUPS(regulator_dev); 645 646 static void regulator_dev_release(struct device *dev) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 kfree(rdev); 650 } 651 652 static struct class regulator_class = { 653 .name = "regulator", 654 .dev_release = regulator_dev_release, 655 .dev_groups = regulator_dev_groups, 656 }; 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static void drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 err = regulator_check_drms(rdev); 667 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 668 (!rdev->desc->ops->get_voltage && 669 !rdev->desc->ops->get_voltage_sel) || 670 !rdev->desc->ops->set_mode) 671 return; 672 673 /* get output voltage */ 674 output_uV = _regulator_get_voltage(rdev); 675 if (output_uV <= 0) 676 return; 677 678 /* get input voltage */ 679 input_uV = 0; 680 if (rdev->supply) 681 input_uV = regulator_get_voltage(rdev->supply); 682 if (input_uV <= 0) 683 input_uV = rdev->constraints->input_uV; 684 if (input_uV <= 0) 685 return; 686 687 /* calc total requested load */ 688 list_for_each_entry(sibling, &rdev->consumer_list, list) 689 current_uA += sibling->uA_load; 690 691 /* now get the optimum mode for our new total regulator load */ 692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 693 output_uV, current_uA); 694 695 /* check the new mode is allowed */ 696 err = regulator_mode_constrain(rdev, &mode); 697 if (err == 0) 698 rdev->desc->ops->set_mode(rdev, mode); 699 } 700 701 static int suspend_set_state(struct regulator_dev *rdev, 702 struct regulator_state *rstate) 703 { 704 int ret = 0; 705 706 /* If we have no suspend mode configration don't set anything; 707 * only warn if the driver implements set_suspend_voltage or 708 * set_suspend_mode callback. 709 */ 710 if (!rstate->enabled && !rstate->disabled) { 711 if (rdev->desc->ops->set_suspend_voltage || 712 rdev->desc->ops->set_suspend_mode) 713 rdev_warn(rdev, "No configuration\n"); 714 return 0; 715 } 716 717 if (rstate->enabled && rstate->disabled) { 718 rdev_err(rdev, "invalid configuration\n"); 719 return -EINVAL; 720 } 721 722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 723 ret = rdev->desc->ops->set_suspend_enable(rdev); 724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 725 ret = rdev->desc->ops->set_suspend_disable(rdev); 726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 727 ret = 0; 728 729 if (ret < 0) { 730 rdev_err(rdev, "failed to enabled/disable\n"); 731 return ret; 732 } 733 734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 736 if (ret < 0) { 737 rdev_err(rdev, "failed to set voltage\n"); 738 return ret; 739 } 740 } 741 742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set mode\n"); 746 return ret; 747 } 748 } 749 return ret; 750 } 751 752 /* locks held by caller */ 753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 754 { 755 if (!rdev->constraints) 756 return -EINVAL; 757 758 switch (state) { 759 case PM_SUSPEND_STANDBY: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_standby); 762 case PM_SUSPEND_MEM: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_mem); 765 case PM_SUSPEND_MAX: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_disk); 768 default: 769 return -EINVAL; 770 } 771 } 772 773 static void print_constraints(struct regulator_dev *rdev) 774 { 775 struct regulation_constraints *constraints = rdev->constraints; 776 char buf[80] = ""; 777 int count = 0; 778 int ret; 779 780 if (constraints->min_uV && constraints->max_uV) { 781 if (constraints->min_uV == constraints->max_uV) 782 count += sprintf(buf + count, "%d mV ", 783 constraints->min_uV / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mV ", 786 constraints->min_uV / 1000, 787 constraints->max_uV / 1000); 788 } 789 790 if (!constraints->min_uV || 791 constraints->min_uV != constraints->max_uV) { 792 ret = _regulator_get_voltage(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mV ", ret / 1000); 795 } 796 797 if (constraints->uV_offset) 798 count += sprintf(buf, "%dmV offset ", 799 constraints->uV_offset / 1000); 800 801 if (constraints->min_uA && constraints->max_uA) { 802 if (constraints->min_uA == constraints->max_uA) 803 count += sprintf(buf + count, "%d mA ", 804 constraints->min_uA / 1000); 805 else 806 count += sprintf(buf + count, "%d <--> %d mA ", 807 constraints->min_uA / 1000, 808 constraints->max_uA / 1000); 809 } 810 811 if (!constraints->min_uA || 812 constraints->min_uA != constraints->max_uA) { 813 ret = _regulator_get_current_limit(rdev); 814 if (ret > 0) 815 count += sprintf(buf + count, "at %d mA ", ret / 1000); 816 } 817 818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 819 count += sprintf(buf + count, "fast "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 821 count += sprintf(buf + count, "normal "); 822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 823 count += sprintf(buf + count, "idle "); 824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 825 count += sprintf(buf + count, "standby"); 826 827 if (!count) 828 sprintf(buf, "no parameters"); 829 830 rdev_info(rdev, "%s\n", buf); 831 832 if ((constraints->min_uV != constraints->max_uV) && 833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 834 rdev_warn(rdev, 835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 836 } 837 838 static int machine_constraints_voltage(struct regulator_dev *rdev, 839 struct regulation_constraints *constraints) 840 { 841 struct regulator_ops *ops = rdev->desc->ops; 842 int ret; 843 844 /* do we need to apply the constraint voltage */ 845 if (rdev->constraints->apply_uV && 846 rdev->constraints->min_uV == rdev->constraints->max_uV) { 847 ret = _regulator_do_set_voltage(rdev, 848 rdev->constraints->min_uV, 849 rdev->constraints->max_uV); 850 if (ret < 0) { 851 rdev_err(rdev, "failed to apply %duV constraint\n", 852 rdev->constraints->min_uV); 853 return ret; 854 } 855 } 856 857 /* constrain machine-level voltage specs to fit 858 * the actual range supported by this regulator. 859 */ 860 if (ops->list_voltage && rdev->desc->n_voltages) { 861 int count = rdev->desc->n_voltages; 862 int i; 863 int min_uV = INT_MAX; 864 int max_uV = INT_MIN; 865 int cmin = constraints->min_uV; 866 int cmax = constraints->max_uV; 867 868 /* it's safe to autoconfigure fixed-voltage supplies 869 and the constraints are used by list_voltage. */ 870 if (count == 1 && !cmin) { 871 cmin = 1; 872 cmax = INT_MAX; 873 constraints->min_uV = cmin; 874 constraints->max_uV = cmax; 875 } 876 877 /* voltage constraints are optional */ 878 if ((cmin == 0) && (cmax == 0)) 879 return 0; 880 881 /* else require explicit machine-level constraints */ 882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 883 rdev_err(rdev, "invalid voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 888 for (i = 0; i < count; i++) { 889 int value; 890 891 value = ops->list_voltage(rdev, i); 892 if (value <= 0) 893 continue; 894 895 /* maybe adjust [min_uV..max_uV] */ 896 if (value >= cmin && value < min_uV) 897 min_uV = value; 898 if (value <= cmax && value > max_uV) 899 max_uV = value; 900 } 901 902 /* final: [min_uV..max_uV] valid iff constraints valid */ 903 if (max_uV < min_uV) { 904 rdev_err(rdev, 905 "unsupportable voltage constraints %u-%uuV\n", 906 min_uV, max_uV); 907 return -EINVAL; 908 } 909 910 /* use regulator's subset of machine constraints */ 911 if (constraints->min_uV < min_uV) { 912 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 913 constraints->min_uV, min_uV); 914 constraints->min_uV = min_uV; 915 } 916 if (constraints->max_uV > max_uV) { 917 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 918 constraints->max_uV, max_uV); 919 constraints->max_uV = max_uV; 920 } 921 } 922 923 return 0; 924 } 925 926 static int machine_constraints_current(struct regulator_dev *rdev, 927 struct regulation_constraints *constraints) 928 { 929 struct regulator_ops *ops = rdev->desc->ops; 930 int ret; 931 932 if (!constraints->min_uA && !constraints->max_uA) 933 return 0; 934 935 if (constraints->min_uA > constraints->max_uA) { 936 rdev_err(rdev, "Invalid current constraints\n"); 937 return -EINVAL; 938 } 939 940 if (!ops->set_current_limit || !ops->get_current_limit) { 941 rdev_warn(rdev, "Operation of current configuration missing\n"); 942 return 0; 943 } 944 945 /* Set regulator current in constraints range */ 946 ret = ops->set_current_limit(rdev, constraints->min_uA, 947 constraints->max_uA); 948 if (ret < 0) { 949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 950 return ret; 951 } 952 953 return 0; 954 } 955 956 /** 957 * set_machine_constraints - sets regulator constraints 958 * @rdev: regulator source 959 * @constraints: constraints to apply 960 * 961 * Allows platform initialisation code to define and constrain 962 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 963 * Constraints *must* be set by platform code in order for some 964 * regulator operations to proceed i.e. set_voltage, set_current_limit, 965 * set_mode. 966 */ 967 static int set_machine_constraints(struct regulator_dev *rdev, 968 const struct regulation_constraints *constraints) 969 { 970 int ret = 0; 971 struct regulator_ops *ops = rdev->desc->ops; 972 973 if (constraints) 974 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 975 GFP_KERNEL); 976 else 977 rdev->constraints = kzalloc(sizeof(*constraints), 978 GFP_KERNEL); 979 if (!rdev->constraints) 980 return -ENOMEM; 981 982 ret = machine_constraints_voltage(rdev, rdev->constraints); 983 if (ret != 0) 984 goto out; 985 986 ret = machine_constraints_current(rdev, rdev->constraints); 987 if (ret != 0) 988 goto out; 989 990 /* do we need to setup our suspend state */ 991 if (rdev->constraints->initial_state) { 992 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 993 if (ret < 0) { 994 rdev_err(rdev, "failed to set suspend state\n"); 995 goto out; 996 } 997 } 998 999 if (rdev->constraints->initial_mode) { 1000 if (!ops->set_mode) { 1001 rdev_err(rdev, "no set_mode operation\n"); 1002 ret = -EINVAL; 1003 goto out; 1004 } 1005 1006 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1007 if (ret < 0) { 1008 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1009 goto out; 1010 } 1011 } 1012 1013 /* If the constraints say the regulator should be on at this point 1014 * and we have control then make sure it is enabled. 1015 */ 1016 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 1017 ops->enable) { 1018 ret = ops->enable(rdev); 1019 if (ret < 0) { 1020 rdev_err(rdev, "failed to enable\n"); 1021 goto out; 1022 } 1023 } 1024 1025 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1026 && ops->set_ramp_delay) { 1027 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1028 if (ret < 0) { 1029 rdev_err(rdev, "failed to set ramp_delay\n"); 1030 goto out; 1031 } 1032 } 1033 1034 print_constraints(rdev); 1035 return 0; 1036 out: 1037 kfree(rdev->constraints); 1038 rdev->constraints = NULL; 1039 return ret; 1040 } 1041 1042 /** 1043 * set_supply - set regulator supply regulator 1044 * @rdev: regulator name 1045 * @supply_rdev: supply regulator name 1046 * 1047 * Called by platform initialisation code to set the supply regulator for this 1048 * regulator. This ensures that a regulators supply will also be enabled by the 1049 * core if it's child is enabled. 1050 */ 1051 static int set_supply(struct regulator_dev *rdev, 1052 struct regulator_dev *supply_rdev) 1053 { 1054 int err; 1055 1056 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1057 1058 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1059 if (rdev->supply == NULL) { 1060 err = -ENOMEM; 1061 return err; 1062 } 1063 supply_rdev->open_count++; 1064 1065 return 0; 1066 } 1067 1068 /** 1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1070 * @rdev: regulator source 1071 * @consumer_dev_name: dev_name() string for device supply applies to 1072 * @supply: symbolic name for supply 1073 * 1074 * Allows platform initialisation code to map physical regulator 1075 * sources to symbolic names for supplies for use by devices. Devices 1076 * should use these symbolic names to request regulators, avoiding the 1077 * need to provide board-specific regulator names as platform data. 1078 */ 1079 static int set_consumer_device_supply(struct regulator_dev *rdev, 1080 const char *consumer_dev_name, 1081 const char *supply) 1082 { 1083 struct regulator_map *node; 1084 int has_dev; 1085 1086 if (supply == NULL) 1087 return -EINVAL; 1088 1089 if (consumer_dev_name != NULL) 1090 has_dev = 1; 1091 else 1092 has_dev = 0; 1093 1094 list_for_each_entry(node, ®ulator_map_list, list) { 1095 if (node->dev_name && consumer_dev_name) { 1096 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1097 continue; 1098 } else if (node->dev_name || consumer_dev_name) { 1099 continue; 1100 } 1101 1102 if (strcmp(node->supply, supply) != 0) 1103 continue; 1104 1105 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1106 consumer_dev_name, 1107 dev_name(&node->regulator->dev), 1108 node->regulator->desc->name, 1109 supply, 1110 dev_name(&rdev->dev), rdev_get_name(rdev)); 1111 return -EBUSY; 1112 } 1113 1114 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1115 if (node == NULL) 1116 return -ENOMEM; 1117 1118 node->regulator = rdev; 1119 node->supply = supply; 1120 1121 if (has_dev) { 1122 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1123 if (node->dev_name == NULL) { 1124 kfree(node); 1125 return -ENOMEM; 1126 } 1127 } 1128 1129 list_add(&node->list, ®ulator_map_list); 1130 return 0; 1131 } 1132 1133 static void unset_regulator_supplies(struct regulator_dev *rdev) 1134 { 1135 struct regulator_map *node, *n; 1136 1137 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1138 if (rdev == node->regulator) { 1139 list_del(&node->list); 1140 kfree(node->dev_name); 1141 kfree(node); 1142 } 1143 } 1144 } 1145 1146 #define REG_STR_SIZE 64 1147 1148 static struct regulator *create_regulator(struct regulator_dev *rdev, 1149 struct device *dev, 1150 const char *supply_name) 1151 { 1152 struct regulator *regulator; 1153 char buf[REG_STR_SIZE]; 1154 int err, size; 1155 1156 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1157 if (regulator == NULL) 1158 return NULL; 1159 1160 mutex_lock(&rdev->mutex); 1161 regulator->rdev = rdev; 1162 list_add(®ulator->list, &rdev->consumer_list); 1163 1164 if (dev) { 1165 regulator->dev = dev; 1166 1167 /* Add a link to the device sysfs entry */ 1168 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1169 dev->kobj.name, supply_name); 1170 if (size >= REG_STR_SIZE) 1171 goto overflow_err; 1172 1173 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1174 if (regulator->supply_name == NULL) 1175 goto overflow_err; 1176 1177 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1178 buf); 1179 if (err) { 1180 rdev_warn(rdev, "could not add device link %s err %d\n", 1181 dev->kobj.name, err); 1182 /* non-fatal */ 1183 } 1184 } else { 1185 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1186 if (regulator->supply_name == NULL) 1187 goto overflow_err; 1188 } 1189 1190 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1191 rdev->debugfs); 1192 if (!regulator->debugfs) { 1193 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1194 } else { 1195 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1196 ®ulator->uA_load); 1197 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1198 ®ulator->min_uV); 1199 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1200 ®ulator->max_uV); 1201 } 1202 1203 /* 1204 * Check now if the regulator is an always on regulator - if 1205 * it is then we don't need to do nearly so much work for 1206 * enable/disable calls. 1207 */ 1208 if (!_regulator_can_change_status(rdev) && 1209 _regulator_is_enabled(rdev)) 1210 regulator->always_on = true; 1211 1212 mutex_unlock(&rdev->mutex); 1213 return regulator; 1214 overflow_err: 1215 list_del(®ulator->list); 1216 kfree(regulator); 1217 mutex_unlock(&rdev->mutex); 1218 return NULL; 1219 } 1220 1221 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1222 { 1223 if (rdev->constraints && rdev->constraints->enable_time) 1224 return rdev->constraints->enable_time; 1225 if (!rdev->desc->ops->enable_time) 1226 return rdev->desc->enable_time; 1227 return rdev->desc->ops->enable_time(rdev); 1228 } 1229 1230 static struct regulator_supply_alias *regulator_find_supply_alias( 1231 struct device *dev, const char *supply) 1232 { 1233 struct regulator_supply_alias *map; 1234 1235 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1236 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1237 return map; 1238 1239 return NULL; 1240 } 1241 1242 static void regulator_supply_alias(struct device **dev, const char **supply) 1243 { 1244 struct regulator_supply_alias *map; 1245 1246 map = regulator_find_supply_alias(*dev, *supply); 1247 if (map) { 1248 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1249 *supply, map->alias_supply, 1250 dev_name(map->alias_dev)); 1251 *dev = map->alias_dev; 1252 *supply = map->alias_supply; 1253 } 1254 } 1255 1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1257 const char *supply, 1258 int *ret) 1259 { 1260 struct regulator_dev *r; 1261 struct device_node *node; 1262 struct regulator_map *map; 1263 const char *devname = NULL; 1264 1265 regulator_supply_alias(&dev, &supply); 1266 1267 /* first do a dt based lookup */ 1268 if (dev && dev->of_node) { 1269 node = of_get_regulator(dev, supply); 1270 if (node) { 1271 list_for_each_entry(r, ®ulator_list, list) 1272 if (r->dev.parent && 1273 node == r->dev.of_node) 1274 return r; 1275 } else { 1276 /* 1277 * If we couldn't even get the node then it's 1278 * not just that the device didn't register 1279 * yet, there's no node and we'll never 1280 * succeed. 1281 */ 1282 *ret = -ENODEV; 1283 } 1284 } 1285 1286 /* if not found, try doing it non-dt way */ 1287 if (dev) 1288 devname = dev_name(dev); 1289 1290 list_for_each_entry(r, ®ulator_list, list) 1291 if (strcmp(rdev_get_name(r), supply) == 0) 1292 return r; 1293 1294 list_for_each_entry(map, ®ulator_map_list, list) { 1295 /* If the mapping has a device set up it must match */ 1296 if (map->dev_name && 1297 (!devname || strcmp(map->dev_name, devname))) 1298 continue; 1299 1300 if (strcmp(map->supply, supply) == 0) 1301 return map->regulator; 1302 } 1303 1304 1305 return NULL; 1306 } 1307 1308 /* Internal regulator request function */ 1309 static struct regulator *_regulator_get(struct device *dev, const char *id, 1310 bool exclusive, bool allow_dummy) 1311 { 1312 struct regulator_dev *rdev; 1313 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1314 const char *devname = NULL; 1315 int ret = -EPROBE_DEFER; 1316 1317 if (id == NULL) { 1318 pr_err("get() with no identifier\n"); 1319 return ERR_PTR(-EINVAL); 1320 } 1321 1322 if (dev) 1323 devname = dev_name(dev); 1324 1325 mutex_lock(®ulator_list_mutex); 1326 1327 rdev = regulator_dev_lookup(dev, id, &ret); 1328 if (rdev) 1329 goto found; 1330 1331 regulator = ERR_PTR(ret); 1332 1333 /* 1334 * If we have return value from dev_lookup fail, we do not expect to 1335 * succeed, so, quit with appropriate error value 1336 */ 1337 if (ret && ret != -ENODEV) { 1338 goto out; 1339 } 1340 1341 if (!devname) 1342 devname = "deviceless"; 1343 1344 /* 1345 * Assume that a regulator is physically present and enabled 1346 * even if it isn't hooked up and just provide a dummy. 1347 */ 1348 if (have_full_constraints() && allow_dummy) { 1349 pr_warn("%s supply %s not found, using dummy regulator\n", 1350 devname, id); 1351 1352 rdev = dummy_regulator_rdev; 1353 goto found; 1354 } else { 1355 dev_err(dev, "dummy supplies not allowed\n"); 1356 } 1357 1358 mutex_unlock(®ulator_list_mutex); 1359 return regulator; 1360 1361 found: 1362 if (rdev->exclusive) { 1363 regulator = ERR_PTR(-EPERM); 1364 goto out; 1365 } 1366 1367 if (exclusive && rdev->open_count) { 1368 regulator = ERR_PTR(-EBUSY); 1369 goto out; 1370 } 1371 1372 if (!try_module_get(rdev->owner)) 1373 goto out; 1374 1375 regulator = create_regulator(rdev, dev, id); 1376 if (regulator == NULL) { 1377 regulator = ERR_PTR(-ENOMEM); 1378 module_put(rdev->owner); 1379 goto out; 1380 } 1381 1382 rdev->open_count++; 1383 if (exclusive) { 1384 rdev->exclusive = 1; 1385 1386 ret = _regulator_is_enabled(rdev); 1387 if (ret > 0) 1388 rdev->use_count = 1; 1389 else 1390 rdev->use_count = 0; 1391 } 1392 1393 out: 1394 mutex_unlock(®ulator_list_mutex); 1395 1396 return regulator; 1397 } 1398 1399 /** 1400 * regulator_get - lookup and obtain a reference to a regulator. 1401 * @dev: device for regulator "consumer" 1402 * @id: Supply name or regulator ID. 1403 * 1404 * Returns a struct regulator corresponding to the regulator producer, 1405 * or IS_ERR() condition containing errno. 1406 * 1407 * Use of supply names configured via regulator_set_device_supply() is 1408 * strongly encouraged. It is recommended that the supply name used 1409 * should match the name used for the supply and/or the relevant 1410 * device pins in the datasheet. 1411 */ 1412 struct regulator *regulator_get(struct device *dev, const char *id) 1413 { 1414 return _regulator_get(dev, id, false, true); 1415 } 1416 EXPORT_SYMBOL_GPL(regulator_get); 1417 1418 /** 1419 * regulator_get_exclusive - obtain exclusive access to a regulator. 1420 * @dev: device for regulator "consumer" 1421 * @id: Supply name or regulator ID. 1422 * 1423 * Returns a struct regulator corresponding to the regulator producer, 1424 * or IS_ERR() condition containing errno. Other consumers will be 1425 * unable to obtain this reference is held and the use count for the 1426 * regulator will be initialised to reflect the current state of the 1427 * regulator. 1428 * 1429 * This is intended for use by consumers which cannot tolerate shared 1430 * use of the regulator such as those which need to force the 1431 * regulator off for correct operation of the hardware they are 1432 * controlling. 1433 * 1434 * Use of supply names configured via regulator_set_device_supply() is 1435 * strongly encouraged. It is recommended that the supply name used 1436 * should match the name used for the supply and/or the relevant 1437 * device pins in the datasheet. 1438 */ 1439 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1440 { 1441 return _regulator_get(dev, id, true, false); 1442 } 1443 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1444 1445 /** 1446 * regulator_get_optional - obtain optional access to a regulator. 1447 * @dev: device for regulator "consumer" 1448 * @id: Supply name or regulator ID. 1449 * 1450 * Returns a struct regulator corresponding to the regulator producer, 1451 * or IS_ERR() condition containing errno. Other consumers will be 1452 * unable to obtain this reference is held and the use count for the 1453 * regulator will be initialised to reflect the current state of the 1454 * regulator. 1455 * 1456 * This is intended for use by consumers for devices which can have 1457 * some supplies unconnected in normal use, such as some MMC devices. 1458 * It can allow the regulator core to provide stub supplies for other 1459 * supplies requested using normal regulator_get() calls without 1460 * disrupting the operation of drivers that can handle absent 1461 * supplies. 1462 * 1463 * Use of supply names configured via regulator_set_device_supply() is 1464 * strongly encouraged. It is recommended that the supply name used 1465 * should match the name used for the supply and/or the relevant 1466 * device pins in the datasheet. 1467 */ 1468 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1469 { 1470 return _regulator_get(dev, id, false, false); 1471 } 1472 EXPORT_SYMBOL_GPL(regulator_get_optional); 1473 1474 /* Locks held by regulator_put() */ 1475 static void _regulator_put(struct regulator *regulator) 1476 { 1477 struct regulator_dev *rdev; 1478 1479 if (regulator == NULL || IS_ERR(regulator)) 1480 return; 1481 1482 rdev = regulator->rdev; 1483 1484 debugfs_remove_recursive(regulator->debugfs); 1485 1486 /* remove any sysfs entries */ 1487 if (regulator->dev) 1488 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1489 kfree(regulator->supply_name); 1490 list_del(®ulator->list); 1491 kfree(regulator); 1492 1493 rdev->open_count--; 1494 rdev->exclusive = 0; 1495 1496 module_put(rdev->owner); 1497 } 1498 1499 /** 1500 * regulator_put - "free" the regulator source 1501 * @regulator: regulator source 1502 * 1503 * Note: drivers must ensure that all regulator_enable calls made on this 1504 * regulator source are balanced by regulator_disable calls prior to calling 1505 * this function. 1506 */ 1507 void regulator_put(struct regulator *regulator) 1508 { 1509 mutex_lock(®ulator_list_mutex); 1510 _regulator_put(regulator); 1511 mutex_unlock(®ulator_list_mutex); 1512 } 1513 EXPORT_SYMBOL_GPL(regulator_put); 1514 1515 /** 1516 * regulator_register_supply_alias - Provide device alias for supply lookup 1517 * 1518 * @dev: device that will be given as the regulator "consumer" 1519 * @id: Supply name or regulator ID 1520 * @alias_dev: device that should be used to lookup the supply 1521 * @alias_id: Supply name or regulator ID that should be used to lookup the 1522 * supply 1523 * 1524 * All lookups for id on dev will instead be conducted for alias_id on 1525 * alias_dev. 1526 */ 1527 int regulator_register_supply_alias(struct device *dev, const char *id, 1528 struct device *alias_dev, 1529 const char *alias_id) 1530 { 1531 struct regulator_supply_alias *map; 1532 1533 map = regulator_find_supply_alias(dev, id); 1534 if (map) 1535 return -EEXIST; 1536 1537 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1538 if (!map) 1539 return -ENOMEM; 1540 1541 map->src_dev = dev; 1542 map->src_supply = id; 1543 map->alias_dev = alias_dev; 1544 map->alias_supply = alias_id; 1545 1546 list_add(&map->list, ®ulator_supply_alias_list); 1547 1548 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1549 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1554 1555 /** 1556 * regulator_unregister_supply_alias - Remove device alias 1557 * 1558 * @dev: device that will be given as the regulator "consumer" 1559 * @id: Supply name or regulator ID 1560 * 1561 * Remove a lookup alias if one exists for id on dev. 1562 */ 1563 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1564 { 1565 struct regulator_supply_alias *map; 1566 1567 map = regulator_find_supply_alias(dev, id); 1568 if (map) { 1569 list_del(&map->list); 1570 kfree(map); 1571 } 1572 } 1573 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1574 1575 /** 1576 * regulator_bulk_register_supply_alias - register multiple aliases 1577 * 1578 * @dev: device that will be given as the regulator "consumer" 1579 * @id: List of supply names or regulator IDs 1580 * @alias_dev: device that should be used to lookup the supply 1581 * @alias_id: List of supply names or regulator IDs that should be used to 1582 * lookup the supply 1583 * @num_id: Number of aliases to register 1584 * 1585 * @return 0 on success, an errno on failure. 1586 * 1587 * This helper function allows drivers to register several supply 1588 * aliases in one operation. If any of the aliases cannot be 1589 * registered any aliases that were registered will be removed 1590 * before returning to the caller. 1591 */ 1592 int regulator_bulk_register_supply_alias(struct device *dev, const char **id, 1593 struct device *alias_dev, 1594 const char **alias_id, 1595 int num_id) 1596 { 1597 int i; 1598 int ret; 1599 1600 for (i = 0; i < num_id; ++i) { 1601 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1602 alias_id[i]); 1603 if (ret < 0) 1604 goto err; 1605 } 1606 1607 return 0; 1608 1609 err: 1610 dev_err(dev, 1611 "Failed to create supply alias %s,%s -> %s,%s\n", 1612 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1613 1614 while (--i >= 0) 1615 regulator_unregister_supply_alias(dev, id[i]); 1616 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1620 1621 /** 1622 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1623 * 1624 * @dev: device that will be given as the regulator "consumer" 1625 * @id: List of supply names or regulator IDs 1626 * @num_id: Number of aliases to unregister 1627 * 1628 * This helper function allows drivers to unregister several supply 1629 * aliases in one operation. 1630 */ 1631 void regulator_bulk_unregister_supply_alias(struct device *dev, 1632 const char **id, 1633 int num_id) 1634 { 1635 int i; 1636 1637 for (i = 0; i < num_id; ++i) 1638 regulator_unregister_supply_alias(dev, id[i]); 1639 } 1640 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1641 1642 1643 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1644 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1645 const struct regulator_config *config) 1646 { 1647 struct regulator_enable_gpio *pin; 1648 int ret; 1649 1650 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1651 if (pin->gpio == config->ena_gpio) { 1652 rdev_dbg(rdev, "GPIO %d is already used\n", 1653 config->ena_gpio); 1654 goto update_ena_gpio_to_rdev; 1655 } 1656 } 1657 1658 ret = gpio_request_one(config->ena_gpio, 1659 GPIOF_DIR_OUT | config->ena_gpio_flags, 1660 rdev_get_name(rdev)); 1661 if (ret) 1662 return ret; 1663 1664 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1665 if (pin == NULL) { 1666 gpio_free(config->ena_gpio); 1667 return -ENOMEM; 1668 } 1669 1670 pin->gpio = config->ena_gpio; 1671 pin->ena_gpio_invert = config->ena_gpio_invert; 1672 list_add(&pin->list, ®ulator_ena_gpio_list); 1673 1674 update_ena_gpio_to_rdev: 1675 pin->request_count++; 1676 rdev->ena_pin = pin; 1677 return 0; 1678 } 1679 1680 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1681 { 1682 struct regulator_enable_gpio *pin, *n; 1683 1684 if (!rdev->ena_pin) 1685 return; 1686 1687 /* Free the GPIO only in case of no use */ 1688 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1689 if (pin->gpio == rdev->ena_pin->gpio) { 1690 if (pin->request_count <= 1) { 1691 pin->request_count = 0; 1692 gpio_free(pin->gpio); 1693 list_del(&pin->list); 1694 kfree(pin); 1695 } else { 1696 pin->request_count--; 1697 } 1698 } 1699 } 1700 } 1701 1702 /** 1703 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1704 * @rdev: regulator_dev structure 1705 * @enable: enable GPIO at initial use? 1706 * 1707 * GPIO is enabled in case of initial use. (enable_count is 0) 1708 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1709 */ 1710 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1711 { 1712 struct regulator_enable_gpio *pin = rdev->ena_pin; 1713 1714 if (!pin) 1715 return -EINVAL; 1716 1717 if (enable) { 1718 /* Enable GPIO at initial use */ 1719 if (pin->enable_count == 0) 1720 gpio_set_value_cansleep(pin->gpio, 1721 !pin->ena_gpio_invert); 1722 1723 pin->enable_count++; 1724 } else { 1725 if (pin->enable_count > 1) { 1726 pin->enable_count--; 1727 return 0; 1728 } 1729 1730 /* Disable GPIO if not used */ 1731 if (pin->enable_count <= 1) { 1732 gpio_set_value_cansleep(pin->gpio, 1733 pin->ena_gpio_invert); 1734 pin->enable_count = 0; 1735 } 1736 } 1737 1738 return 0; 1739 } 1740 1741 static int _regulator_do_enable(struct regulator_dev *rdev) 1742 { 1743 int ret, delay; 1744 1745 /* Query before enabling in case configuration dependent. */ 1746 ret = _regulator_get_enable_time(rdev); 1747 if (ret >= 0) { 1748 delay = ret; 1749 } else { 1750 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1751 delay = 0; 1752 } 1753 1754 trace_regulator_enable(rdev_get_name(rdev)); 1755 1756 if (rdev->ena_pin) { 1757 ret = regulator_ena_gpio_ctrl(rdev, true); 1758 if (ret < 0) 1759 return ret; 1760 rdev->ena_gpio_state = 1; 1761 } else if (rdev->desc->ops->enable) { 1762 ret = rdev->desc->ops->enable(rdev); 1763 if (ret < 0) 1764 return ret; 1765 } else { 1766 return -EINVAL; 1767 } 1768 1769 /* Allow the regulator to ramp; it would be useful to extend 1770 * this for bulk operations so that the regulators can ramp 1771 * together. */ 1772 trace_regulator_enable_delay(rdev_get_name(rdev)); 1773 1774 /* 1775 * Delay for the requested amount of time as per the guidelines in: 1776 * 1777 * Documentation/timers/timers-howto.txt 1778 * 1779 * The assumption here is that regulators will never be enabled in 1780 * atomic context and therefore sleeping functions can be used. 1781 */ 1782 if (delay) { 1783 unsigned int ms = delay / 1000; 1784 unsigned int us = delay % 1000; 1785 1786 if (ms > 0) { 1787 /* 1788 * For small enough values, handle super-millisecond 1789 * delays in the usleep_range() call below. 1790 */ 1791 if (ms < 20) 1792 us += ms * 1000; 1793 else 1794 msleep(ms); 1795 } 1796 1797 /* 1798 * Give the scheduler some room to coalesce with any other 1799 * wakeup sources. For delays shorter than 10 us, don't even 1800 * bother setting up high-resolution timers and just busy- 1801 * loop. 1802 */ 1803 if (us >= 10) 1804 usleep_range(us, us + 100); 1805 else 1806 udelay(us); 1807 } 1808 1809 trace_regulator_enable_complete(rdev_get_name(rdev)); 1810 1811 return 0; 1812 } 1813 1814 /* locks held by regulator_enable() */ 1815 static int _regulator_enable(struct regulator_dev *rdev) 1816 { 1817 int ret; 1818 1819 /* check voltage and requested load before enabling */ 1820 if (rdev->constraints && 1821 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1822 drms_uA_update(rdev); 1823 1824 if (rdev->use_count == 0) { 1825 /* The regulator may on if it's not switchable or left on */ 1826 ret = _regulator_is_enabled(rdev); 1827 if (ret == -EINVAL || ret == 0) { 1828 if (!_regulator_can_change_status(rdev)) 1829 return -EPERM; 1830 1831 ret = _regulator_do_enable(rdev); 1832 if (ret < 0) 1833 return ret; 1834 1835 } else if (ret < 0) { 1836 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1837 return ret; 1838 } 1839 /* Fallthrough on positive return values - already enabled */ 1840 } 1841 1842 rdev->use_count++; 1843 1844 return 0; 1845 } 1846 1847 /** 1848 * regulator_enable - enable regulator output 1849 * @regulator: regulator source 1850 * 1851 * Request that the regulator be enabled with the regulator output at 1852 * the predefined voltage or current value. Calls to regulator_enable() 1853 * must be balanced with calls to regulator_disable(). 1854 * 1855 * NOTE: the output value can be set by other drivers, boot loader or may be 1856 * hardwired in the regulator. 1857 */ 1858 int regulator_enable(struct regulator *regulator) 1859 { 1860 struct regulator_dev *rdev = regulator->rdev; 1861 int ret = 0; 1862 1863 if (regulator->always_on) 1864 return 0; 1865 1866 if (rdev->supply) { 1867 ret = regulator_enable(rdev->supply); 1868 if (ret != 0) 1869 return ret; 1870 } 1871 1872 mutex_lock(&rdev->mutex); 1873 ret = _regulator_enable(rdev); 1874 mutex_unlock(&rdev->mutex); 1875 1876 if (ret != 0 && rdev->supply) 1877 regulator_disable(rdev->supply); 1878 1879 return ret; 1880 } 1881 EXPORT_SYMBOL_GPL(regulator_enable); 1882 1883 static int _regulator_do_disable(struct regulator_dev *rdev) 1884 { 1885 int ret; 1886 1887 trace_regulator_disable(rdev_get_name(rdev)); 1888 1889 if (rdev->ena_pin) { 1890 ret = regulator_ena_gpio_ctrl(rdev, false); 1891 if (ret < 0) 1892 return ret; 1893 rdev->ena_gpio_state = 0; 1894 1895 } else if (rdev->desc->ops->disable) { 1896 ret = rdev->desc->ops->disable(rdev); 1897 if (ret != 0) 1898 return ret; 1899 } 1900 1901 trace_regulator_disable_complete(rdev_get_name(rdev)); 1902 1903 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1904 NULL); 1905 return 0; 1906 } 1907 1908 /* locks held by regulator_disable() */ 1909 static int _regulator_disable(struct regulator_dev *rdev) 1910 { 1911 int ret = 0; 1912 1913 if (WARN(rdev->use_count <= 0, 1914 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1915 return -EIO; 1916 1917 /* are we the last user and permitted to disable ? */ 1918 if (rdev->use_count == 1 && 1919 (rdev->constraints && !rdev->constraints->always_on)) { 1920 1921 /* we are last user */ 1922 if (_regulator_can_change_status(rdev)) { 1923 ret = _regulator_do_disable(rdev); 1924 if (ret < 0) { 1925 rdev_err(rdev, "failed to disable\n"); 1926 return ret; 1927 } 1928 } 1929 1930 rdev->use_count = 0; 1931 } else if (rdev->use_count > 1) { 1932 1933 if (rdev->constraints && 1934 (rdev->constraints->valid_ops_mask & 1935 REGULATOR_CHANGE_DRMS)) 1936 drms_uA_update(rdev); 1937 1938 rdev->use_count--; 1939 } 1940 1941 return ret; 1942 } 1943 1944 /** 1945 * regulator_disable - disable regulator output 1946 * @regulator: regulator source 1947 * 1948 * Disable the regulator output voltage or current. Calls to 1949 * regulator_enable() must be balanced with calls to 1950 * regulator_disable(). 1951 * 1952 * NOTE: this will only disable the regulator output if no other consumer 1953 * devices have it enabled, the regulator device supports disabling and 1954 * machine constraints permit this operation. 1955 */ 1956 int regulator_disable(struct regulator *regulator) 1957 { 1958 struct regulator_dev *rdev = regulator->rdev; 1959 int ret = 0; 1960 1961 if (regulator->always_on) 1962 return 0; 1963 1964 mutex_lock(&rdev->mutex); 1965 ret = _regulator_disable(rdev); 1966 mutex_unlock(&rdev->mutex); 1967 1968 if (ret == 0 && rdev->supply) 1969 regulator_disable(rdev->supply); 1970 1971 return ret; 1972 } 1973 EXPORT_SYMBOL_GPL(regulator_disable); 1974 1975 /* locks held by regulator_force_disable() */ 1976 static int _regulator_force_disable(struct regulator_dev *rdev) 1977 { 1978 int ret = 0; 1979 1980 /* force disable */ 1981 if (rdev->desc->ops->disable) { 1982 /* ah well, who wants to live forever... */ 1983 ret = rdev->desc->ops->disable(rdev); 1984 if (ret < 0) { 1985 rdev_err(rdev, "failed to force disable\n"); 1986 return ret; 1987 } 1988 /* notify other consumers that power has been forced off */ 1989 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1990 REGULATOR_EVENT_DISABLE, NULL); 1991 } 1992 1993 return ret; 1994 } 1995 1996 /** 1997 * regulator_force_disable - force disable regulator output 1998 * @regulator: regulator source 1999 * 2000 * Forcibly disable the regulator output voltage or current. 2001 * NOTE: this *will* disable the regulator output even if other consumer 2002 * devices have it enabled. This should be used for situations when device 2003 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2004 */ 2005 int regulator_force_disable(struct regulator *regulator) 2006 { 2007 struct regulator_dev *rdev = regulator->rdev; 2008 int ret; 2009 2010 mutex_lock(&rdev->mutex); 2011 regulator->uA_load = 0; 2012 ret = _regulator_force_disable(regulator->rdev); 2013 mutex_unlock(&rdev->mutex); 2014 2015 if (rdev->supply) 2016 while (rdev->open_count--) 2017 regulator_disable(rdev->supply); 2018 2019 return ret; 2020 } 2021 EXPORT_SYMBOL_GPL(regulator_force_disable); 2022 2023 static void regulator_disable_work(struct work_struct *work) 2024 { 2025 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2026 disable_work.work); 2027 int count, i, ret; 2028 2029 mutex_lock(&rdev->mutex); 2030 2031 BUG_ON(!rdev->deferred_disables); 2032 2033 count = rdev->deferred_disables; 2034 rdev->deferred_disables = 0; 2035 2036 for (i = 0; i < count; i++) { 2037 ret = _regulator_disable(rdev); 2038 if (ret != 0) 2039 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2040 } 2041 2042 mutex_unlock(&rdev->mutex); 2043 2044 if (rdev->supply) { 2045 for (i = 0; i < count; i++) { 2046 ret = regulator_disable(rdev->supply); 2047 if (ret != 0) { 2048 rdev_err(rdev, 2049 "Supply disable failed: %d\n", ret); 2050 } 2051 } 2052 } 2053 } 2054 2055 /** 2056 * regulator_disable_deferred - disable regulator output with delay 2057 * @regulator: regulator source 2058 * @ms: miliseconds until the regulator is disabled 2059 * 2060 * Execute regulator_disable() on the regulator after a delay. This 2061 * is intended for use with devices that require some time to quiesce. 2062 * 2063 * NOTE: this will only disable the regulator output if no other consumer 2064 * devices have it enabled, the regulator device supports disabling and 2065 * machine constraints permit this operation. 2066 */ 2067 int regulator_disable_deferred(struct regulator *regulator, int ms) 2068 { 2069 struct regulator_dev *rdev = regulator->rdev; 2070 int ret; 2071 2072 if (regulator->always_on) 2073 return 0; 2074 2075 if (!ms) 2076 return regulator_disable(regulator); 2077 2078 mutex_lock(&rdev->mutex); 2079 rdev->deferred_disables++; 2080 mutex_unlock(&rdev->mutex); 2081 2082 ret = queue_delayed_work(system_power_efficient_wq, 2083 &rdev->disable_work, 2084 msecs_to_jiffies(ms)); 2085 if (ret < 0) 2086 return ret; 2087 else 2088 return 0; 2089 } 2090 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2091 2092 static int _regulator_is_enabled(struct regulator_dev *rdev) 2093 { 2094 /* A GPIO control always takes precedence */ 2095 if (rdev->ena_pin) 2096 return rdev->ena_gpio_state; 2097 2098 /* If we don't know then assume that the regulator is always on */ 2099 if (!rdev->desc->ops->is_enabled) 2100 return 1; 2101 2102 return rdev->desc->ops->is_enabled(rdev); 2103 } 2104 2105 /** 2106 * regulator_is_enabled - is the regulator output enabled 2107 * @regulator: regulator source 2108 * 2109 * Returns positive if the regulator driver backing the source/client 2110 * has requested that the device be enabled, zero if it hasn't, else a 2111 * negative errno code. 2112 * 2113 * Note that the device backing this regulator handle can have multiple 2114 * users, so it might be enabled even if regulator_enable() was never 2115 * called for this particular source. 2116 */ 2117 int regulator_is_enabled(struct regulator *regulator) 2118 { 2119 int ret; 2120 2121 if (regulator->always_on) 2122 return 1; 2123 2124 mutex_lock(®ulator->rdev->mutex); 2125 ret = _regulator_is_enabled(regulator->rdev); 2126 mutex_unlock(®ulator->rdev->mutex); 2127 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2131 2132 /** 2133 * regulator_can_change_voltage - check if regulator can change voltage 2134 * @regulator: regulator source 2135 * 2136 * Returns positive if the regulator driver backing the source/client 2137 * can change its voltage, false otherwise. Usefull for detecting fixed 2138 * or dummy regulators and disabling voltage change logic in the client 2139 * driver. 2140 */ 2141 int regulator_can_change_voltage(struct regulator *regulator) 2142 { 2143 struct regulator_dev *rdev = regulator->rdev; 2144 2145 if (rdev->constraints && 2146 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2147 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2148 return 1; 2149 2150 if (rdev->desc->continuous_voltage_range && 2151 rdev->constraints->min_uV && rdev->constraints->max_uV && 2152 rdev->constraints->min_uV != rdev->constraints->max_uV) 2153 return 1; 2154 } 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2159 2160 /** 2161 * regulator_count_voltages - count regulator_list_voltage() selectors 2162 * @regulator: regulator source 2163 * 2164 * Returns number of selectors, or negative errno. Selectors are 2165 * numbered starting at zero, and typically correspond to bitfields 2166 * in hardware registers. 2167 */ 2168 int regulator_count_voltages(struct regulator *regulator) 2169 { 2170 struct regulator_dev *rdev = regulator->rdev; 2171 2172 return rdev->desc->n_voltages ? : -EINVAL; 2173 } 2174 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2175 2176 /** 2177 * regulator_list_voltage - enumerate supported voltages 2178 * @regulator: regulator source 2179 * @selector: identify voltage to list 2180 * Context: can sleep 2181 * 2182 * Returns a voltage that can be passed to @regulator_set_voltage(), 2183 * zero if this selector code can't be used on this system, or a 2184 * negative errno. 2185 */ 2186 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2187 { 2188 struct regulator_dev *rdev = regulator->rdev; 2189 struct regulator_ops *ops = rdev->desc->ops; 2190 int ret; 2191 2192 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2193 return rdev->desc->fixed_uV; 2194 2195 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2196 return -EINVAL; 2197 2198 mutex_lock(&rdev->mutex); 2199 ret = ops->list_voltage(rdev, selector); 2200 mutex_unlock(&rdev->mutex); 2201 2202 if (ret > 0) { 2203 if (ret < rdev->constraints->min_uV) 2204 ret = 0; 2205 else if (ret > rdev->constraints->max_uV) 2206 ret = 0; 2207 } 2208 2209 return ret; 2210 } 2211 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2212 2213 /** 2214 * regulator_get_linear_step - return the voltage step size between VSEL values 2215 * @regulator: regulator source 2216 * 2217 * Returns the voltage step size between VSEL values for linear 2218 * regulators, or return 0 if the regulator isn't a linear regulator. 2219 */ 2220 unsigned int regulator_get_linear_step(struct regulator *regulator) 2221 { 2222 struct regulator_dev *rdev = regulator->rdev; 2223 2224 return rdev->desc->uV_step; 2225 } 2226 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2227 2228 /** 2229 * regulator_is_supported_voltage - check if a voltage range can be supported 2230 * 2231 * @regulator: Regulator to check. 2232 * @min_uV: Minimum required voltage in uV. 2233 * @max_uV: Maximum required voltage in uV. 2234 * 2235 * Returns a boolean or a negative error code. 2236 */ 2237 int regulator_is_supported_voltage(struct regulator *regulator, 2238 int min_uV, int max_uV) 2239 { 2240 struct regulator_dev *rdev = regulator->rdev; 2241 int i, voltages, ret; 2242 2243 /* If we can't change voltage check the current voltage */ 2244 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2245 ret = regulator_get_voltage(regulator); 2246 if (ret >= 0) 2247 return (min_uV <= ret && ret <= max_uV); 2248 else 2249 return ret; 2250 } 2251 2252 /* Any voltage within constrains range is fine? */ 2253 if (rdev->desc->continuous_voltage_range) 2254 return min_uV >= rdev->constraints->min_uV && 2255 max_uV <= rdev->constraints->max_uV; 2256 2257 ret = regulator_count_voltages(regulator); 2258 if (ret < 0) 2259 return ret; 2260 voltages = ret; 2261 2262 for (i = 0; i < voltages; i++) { 2263 ret = regulator_list_voltage(regulator, i); 2264 2265 if (ret >= min_uV && ret <= max_uV) 2266 return 1; 2267 } 2268 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2272 2273 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2274 int min_uV, int max_uV) 2275 { 2276 int ret; 2277 int delay = 0; 2278 int best_val = 0; 2279 unsigned int selector; 2280 int old_selector = -1; 2281 2282 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2283 2284 min_uV += rdev->constraints->uV_offset; 2285 max_uV += rdev->constraints->uV_offset; 2286 2287 /* 2288 * If we can't obtain the old selector there is not enough 2289 * info to call set_voltage_time_sel(). 2290 */ 2291 if (_regulator_is_enabled(rdev) && 2292 rdev->desc->ops->set_voltage_time_sel && 2293 rdev->desc->ops->get_voltage_sel) { 2294 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2295 if (old_selector < 0) 2296 return old_selector; 2297 } 2298 2299 if (rdev->desc->ops->set_voltage) { 2300 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2301 &selector); 2302 2303 if (ret >= 0) { 2304 if (rdev->desc->ops->list_voltage) 2305 best_val = rdev->desc->ops->list_voltage(rdev, 2306 selector); 2307 else 2308 best_val = _regulator_get_voltage(rdev); 2309 } 2310 2311 } else if (rdev->desc->ops->set_voltage_sel) { 2312 if (rdev->desc->ops->map_voltage) { 2313 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2314 max_uV); 2315 } else { 2316 if (rdev->desc->ops->list_voltage == 2317 regulator_list_voltage_linear) 2318 ret = regulator_map_voltage_linear(rdev, 2319 min_uV, max_uV); 2320 else 2321 ret = regulator_map_voltage_iterate(rdev, 2322 min_uV, max_uV); 2323 } 2324 2325 if (ret >= 0) { 2326 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2327 if (min_uV <= best_val && max_uV >= best_val) { 2328 selector = ret; 2329 if (old_selector == selector) 2330 ret = 0; 2331 else 2332 ret = rdev->desc->ops->set_voltage_sel( 2333 rdev, ret); 2334 } else { 2335 ret = -EINVAL; 2336 } 2337 } 2338 } else { 2339 ret = -EINVAL; 2340 } 2341 2342 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2343 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2344 && old_selector != selector) { 2345 2346 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2347 old_selector, selector); 2348 if (delay < 0) { 2349 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2350 delay); 2351 delay = 0; 2352 } 2353 2354 /* Insert any necessary delays */ 2355 if (delay >= 1000) { 2356 mdelay(delay / 1000); 2357 udelay(delay % 1000); 2358 } else if (delay) { 2359 udelay(delay); 2360 } 2361 } 2362 2363 if (ret == 0 && best_val >= 0) { 2364 unsigned long data = best_val; 2365 2366 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2367 (void *)data); 2368 } 2369 2370 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2371 2372 return ret; 2373 } 2374 2375 /** 2376 * regulator_set_voltage - set regulator output voltage 2377 * @regulator: regulator source 2378 * @min_uV: Minimum required voltage in uV 2379 * @max_uV: Maximum acceptable voltage in uV 2380 * 2381 * Sets a voltage regulator to the desired output voltage. This can be set 2382 * during any regulator state. IOW, regulator can be disabled or enabled. 2383 * 2384 * If the regulator is enabled then the voltage will change to the new value 2385 * immediately otherwise if the regulator is disabled the regulator will 2386 * output at the new voltage when enabled. 2387 * 2388 * NOTE: If the regulator is shared between several devices then the lowest 2389 * request voltage that meets the system constraints will be used. 2390 * Regulator system constraints must be set for this regulator before 2391 * calling this function otherwise this call will fail. 2392 */ 2393 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2394 { 2395 struct regulator_dev *rdev = regulator->rdev; 2396 int ret = 0; 2397 int old_min_uV, old_max_uV; 2398 2399 mutex_lock(&rdev->mutex); 2400 2401 /* If we're setting the same range as last time the change 2402 * should be a noop (some cpufreq implementations use the same 2403 * voltage for multiple frequencies, for example). 2404 */ 2405 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2406 goto out; 2407 2408 /* sanity check */ 2409 if (!rdev->desc->ops->set_voltage && 2410 !rdev->desc->ops->set_voltage_sel) { 2411 ret = -EINVAL; 2412 goto out; 2413 } 2414 2415 /* constraints check */ 2416 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2417 if (ret < 0) 2418 goto out; 2419 2420 /* restore original values in case of error */ 2421 old_min_uV = regulator->min_uV; 2422 old_max_uV = regulator->max_uV; 2423 regulator->min_uV = min_uV; 2424 regulator->max_uV = max_uV; 2425 2426 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2427 if (ret < 0) 2428 goto out2; 2429 2430 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2431 if (ret < 0) 2432 goto out2; 2433 2434 out: 2435 mutex_unlock(&rdev->mutex); 2436 return ret; 2437 out2: 2438 regulator->min_uV = old_min_uV; 2439 regulator->max_uV = old_max_uV; 2440 mutex_unlock(&rdev->mutex); 2441 return ret; 2442 } 2443 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2444 2445 /** 2446 * regulator_set_voltage_time - get raise/fall time 2447 * @regulator: regulator source 2448 * @old_uV: starting voltage in microvolts 2449 * @new_uV: target voltage in microvolts 2450 * 2451 * Provided with the starting and ending voltage, this function attempts to 2452 * calculate the time in microseconds required to rise or fall to this new 2453 * voltage. 2454 */ 2455 int regulator_set_voltage_time(struct regulator *regulator, 2456 int old_uV, int new_uV) 2457 { 2458 struct regulator_dev *rdev = regulator->rdev; 2459 struct regulator_ops *ops = rdev->desc->ops; 2460 int old_sel = -1; 2461 int new_sel = -1; 2462 int voltage; 2463 int i; 2464 2465 /* Currently requires operations to do this */ 2466 if (!ops->list_voltage || !ops->set_voltage_time_sel 2467 || !rdev->desc->n_voltages) 2468 return -EINVAL; 2469 2470 for (i = 0; i < rdev->desc->n_voltages; i++) { 2471 /* We only look for exact voltage matches here */ 2472 voltage = regulator_list_voltage(regulator, i); 2473 if (voltage < 0) 2474 return -EINVAL; 2475 if (voltage == 0) 2476 continue; 2477 if (voltage == old_uV) 2478 old_sel = i; 2479 if (voltage == new_uV) 2480 new_sel = i; 2481 } 2482 2483 if (old_sel < 0 || new_sel < 0) 2484 return -EINVAL; 2485 2486 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2487 } 2488 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2489 2490 /** 2491 * regulator_set_voltage_time_sel - get raise/fall time 2492 * @rdev: regulator source device 2493 * @old_selector: selector for starting voltage 2494 * @new_selector: selector for target voltage 2495 * 2496 * Provided with the starting and target voltage selectors, this function 2497 * returns time in microseconds required to rise or fall to this new voltage 2498 * 2499 * Drivers providing ramp_delay in regulation_constraints can use this as their 2500 * set_voltage_time_sel() operation. 2501 */ 2502 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2503 unsigned int old_selector, 2504 unsigned int new_selector) 2505 { 2506 unsigned int ramp_delay = 0; 2507 int old_volt, new_volt; 2508 2509 if (rdev->constraints->ramp_delay) 2510 ramp_delay = rdev->constraints->ramp_delay; 2511 else if (rdev->desc->ramp_delay) 2512 ramp_delay = rdev->desc->ramp_delay; 2513 2514 if (ramp_delay == 0) { 2515 rdev_warn(rdev, "ramp_delay not set\n"); 2516 return 0; 2517 } 2518 2519 /* sanity check */ 2520 if (!rdev->desc->ops->list_voltage) 2521 return -EINVAL; 2522 2523 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2524 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2525 2526 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2527 } 2528 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2529 2530 /** 2531 * regulator_sync_voltage - re-apply last regulator output voltage 2532 * @regulator: regulator source 2533 * 2534 * Re-apply the last configured voltage. This is intended to be used 2535 * where some external control source the consumer is cooperating with 2536 * has caused the configured voltage to change. 2537 */ 2538 int regulator_sync_voltage(struct regulator *regulator) 2539 { 2540 struct regulator_dev *rdev = regulator->rdev; 2541 int ret, min_uV, max_uV; 2542 2543 mutex_lock(&rdev->mutex); 2544 2545 if (!rdev->desc->ops->set_voltage && 2546 !rdev->desc->ops->set_voltage_sel) { 2547 ret = -EINVAL; 2548 goto out; 2549 } 2550 2551 /* This is only going to work if we've had a voltage configured. */ 2552 if (!regulator->min_uV && !regulator->max_uV) { 2553 ret = -EINVAL; 2554 goto out; 2555 } 2556 2557 min_uV = regulator->min_uV; 2558 max_uV = regulator->max_uV; 2559 2560 /* This should be a paranoia check... */ 2561 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2562 if (ret < 0) 2563 goto out; 2564 2565 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2566 if (ret < 0) 2567 goto out; 2568 2569 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2570 2571 out: 2572 mutex_unlock(&rdev->mutex); 2573 return ret; 2574 } 2575 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2576 2577 static int _regulator_get_voltage(struct regulator_dev *rdev) 2578 { 2579 int sel, ret; 2580 2581 if (rdev->desc->ops->get_voltage_sel) { 2582 sel = rdev->desc->ops->get_voltage_sel(rdev); 2583 if (sel < 0) 2584 return sel; 2585 ret = rdev->desc->ops->list_voltage(rdev, sel); 2586 } else if (rdev->desc->ops->get_voltage) { 2587 ret = rdev->desc->ops->get_voltage(rdev); 2588 } else if (rdev->desc->ops->list_voltage) { 2589 ret = rdev->desc->ops->list_voltage(rdev, 0); 2590 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2591 ret = rdev->desc->fixed_uV; 2592 } else { 2593 return -EINVAL; 2594 } 2595 2596 if (ret < 0) 2597 return ret; 2598 return ret - rdev->constraints->uV_offset; 2599 } 2600 2601 /** 2602 * regulator_get_voltage - get regulator output voltage 2603 * @regulator: regulator source 2604 * 2605 * This returns the current regulator voltage in uV. 2606 * 2607 * NOTE: If the regulator is disabled it will return the voltage value. This 2608 * function should not be used to determine regulator state. 2609 */ 2610 int regulator_get_voltage(struct regulator *regulator) 2611 { 2612 int ret; 2613 2614 mutex_lock(®ulator->rdev->mutex); 2615 2616 ret = _regulator_get_voltage(regulator->rdev); 2617 2618 mutex_unlock(®ulator->rdev->mutex); 2619 2620 return ret; 2621 } 2622 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2623 2624 /** 2625 * regulator_set_current_limit - set regulator output current limit 2626 * @regulator: regulator source 2627 * @min_uA: Minimum supported current in uA 2628 * @max_uA: Maximum supported current in uA 2629 * 2630 * Sets current sink to the desired output current. This can be set during 2631 * any regulator state. IOW, regulator can be disabled or enabled. 2632 * 2633 * If the regulator is enabled then the current will change to the new value 2634 * immediately otherwise if the regulator is disabled the regulator will 2635 * output at the new current when enabled. 2636 * 2637 * NOTE: Regulator system constraints must be set for this regulator before 2638 * calling this function otherwise this call will fail. 2639 */ 2640 int regulator_set_current_limit(struct regulator *regulator, 2641 int min_uA, int max_uA) 2642 { 2643 struct regulator_dev *rdev = regulator->rdev; 2644 int ret; 2645 2646 mutex_lock(&rdev->mutex); 2647 2648 /* sanity check */ 2649 if (!rdev->desc->ops->set_current_limit) { 2650 ret = -EINVAL; 2651 goto out; 2652 } 2653 2654 /* constraints check */ 2655 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2656 if (ret < 0) 2657 goto out; 2658 2659 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2660 out: 2661 mutex_unlock(&rdev->mutex); 2662 return ret; 2663 } 2664 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2665 2666 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2667 { 2668 int ret; 2669 2670 mutex_lock(&rdev->mutex); 2671 2672 /* sanity check */ 2673 if (!rdev->desc->ops->get_current_limit) { 2674 ret = -EINVAL; 2675 goto out; 2676 } 2677 2678 ret = rdev->desc->ops->get_current_limit(rdev); 2679 out: 2680 mutex_unlock(&rdev->mutex); 2681 return ret; 2682 } 2683 2684 /** 2685 * regulator_get_current_limit - get regulator output current 2686 * @regulator: regulator source 2687 * 2688 * This returns the current supplied by the specified current sink in uA. 2689 * 2690 * NOTE: If the regulator is disabled it will return the current value. This 2691 * function should not be used to determine regulator state. 2692 */ 2693 int regulator_get_current_limit(struct regulator *regulator) 2694 { 2695 return _regulator_get_current_limit(regulator->rdev); 2696 } 2697 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2698 2699 /** 2700 * regulator_set_mode - set regulator operating mode 2701 * @regulator: regulator source 2702 * @mode: operating mode - one of the REGULATOR_MODE constants 2703 * 2704 * Set regulator operating mode to increase regulator efficiency or improve 2705 * regulation performance. 2706 * 2707 * NOTE: Regulator system constraints must be set for this regulator before 2708 * calling this function otherwise this call will fail. 2709 */ 2710 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2711 { 2712 struct regulator_dev *rdev = regulator->rdev; 2713 int ret; 2714 int regulator_curr_mode; 2715 2716 mutex_lock(&rdev->mutex); 2717 2718 /* sanity check */ 2719 if (!rdev->desc->ops->set_mode) { 2720 ret = -EINVAL; 2721 goto out; 2722 } 2723 2724 /* return if the same mode is requested */ 2725 if (rdev->desc->ops->get_mode) { 2726 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2727 if (regulator_curr_mode == mode) { 2728 ret = 0; 2729 goto out; 2730 } 2731 } 2732 2733 /* constraints check */ 2734 ret = regulator_mode_constrain(rdev, &mode); 2735 if (ret < 0) 2736 goto out; 2737 2738 ret = rdev->desc->ops->set_mode(rdev, mode); 2739 out: 2740 mutex_unlock(&rdev->mutex); 2741 return ret; 2742 } 2743 EXPORT_SYMBOL_GPL(regulator_set_mode); 2744 2745 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2746 { 2747 int ret; 2748 2749 mutex_lock(&rdev->mutex); 2750 2751 /* sanity check */ 2752 if (!rdev->desc->ops->get_mode) { 2753 ret = -EINVAL; 2754 goto out; 2755 } 2756 2757 ret = rdev->desc->ops->get_mode(rdev); 2758 out: 2759 mutex_unlock(&rdev->mutex); 2760 return ret; 2761 } 2762 2763 /** 2764 * regulator_get_mode - get regulator operating mode 2765 * @regulator: regulator source 2766 * 2767 * Get the current regulator operating mode. 2768 */ 2769 unsigned int regulator_get_mode(struct regulator *regulator) 2770 { 2771 return _regulator_get_mode(regulator->rdev); 2772 } 2773 EXPORT_SYMBOL_GPL(regulator_get_mode); 2774 2775 /** 2776 * regulator_set_optimum_mode - set regulator optimum operating mode 2777 * @regulator: regulator source 2778 * @uA_load: load current 2779 * 2780 * Notifies the regulator core of a new device load. This is then used by 2781 * DRMS (if enabled by constraints) to set the most efficient regulator 2782 * operating mode for the new regulator loading. 2783 * 2784 * Consumer devices notify their supply regulator of the maximum power 2785 * they will require (can be taken from device datasheet in the power 2786 * consumption tables) when they change operational status and hence power 2787 * state. Examples of operational state changes that can affect power 2788 * consumption are :- 2789 * 2790 * o Device is opened / closed. 2791 * o Device I/O is about to begin or has just finished. 2792 * o Device is idling in between work. 2793 * 2794 * This information is also exported via sysfs to userspace. 2795 * 2796 * DRMS will sum the total requested load on the regulator and change 2797 * to the most efficient operating mode if platform constraints allow. 2798 * 2799 * Returns the new regulator mode or error. 2800 */ 2801 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2802 { 2803 struct regulator_dev *rdev = regulator->rdev; 2804 struct regulator *consumer; 2805 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2806 unsigned int mode; 2807 2808 if (rdev->supply) 2809 input_uV = regulator_get_voltage(rdev->supply); 2810 2811 mutex_lock(&rdev->mutex); 2812 2813 /* 2814 * first check to see if we can set modes at all, otherwise just 2815 * tell the consumer everything is OK. 2816 */ 2817 regulator->uA_load = uA_load; 2818 ret = regulator_check_drms(rdev); 2819 if (ret < 0) { 2820 ret = 0; 2821 goto out; 2822 } 2823 2824 if (!rdev->desc->ops->get_optimum_mode) 2825 goto out; 2826 2827 /* 2828 * we can actually do this so any errors are indicators of 2829 * potential real failure. 2830 */ 2831 ret = -EINVAL; 2832 2833 if (!rdev->desc->ops->set_mode) 2834 goto out; 2835 2836 /* get output voltage */ 2837 output_uV = _regulator_get_voltage(rdev); 2838 if (output_uV <= 0) { 2839 rdev_err(rdev, "invalid output voltage found\n"); 2840 goto out; 2841 } 2842 2843 /* No supply? Use constraint voltage */ 2844 if (input_uV <= 0) 2845 input_uV = rdev->constraints->input_uV; 2846 if (input_uV <= 0) { 2847 rdev_err(rdev, "invalid input voltage found\n"); 2848 goto out; 2849 } 2850 2851 /* calc total requested load for this regulator */ 2852 list_for_each_entry(consumer, &rdev->consumer_list, list) 2853 total_uA_load += consumer->uA_load; 2854 2855 mode = rdev->desc->ops->get_optimum_mode(rdev, 2856 input_uV, output_uV, 2857 total_uA_load); 2858 ret = regulator_mode_constrain(rdev, &mode); 2859 if (ret < 0) { 2860 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2861 total_uA_load, input_uV, output_uV); 2862 goto out; 2863 } 2864 2865 ret = rdev->desc->ops->set_mode(rdev, mode); 2866 if (ret < 0) { 2867 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2868 goto out; 2869 } 2870 ret = mode; 2871 out: 2872 mutex_unlock(&rdev->mutex); 2873 return ret; 2874 } 2875 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2876 2877 /** 2878 * regulator_allow_bypass - allow the regulator to go into bypass mode 2879 * 2880 * @regulator: Regulator to configure 2881 * @enable: enable or disable bypass mode 2882 * 2883 * Allow the regulator to go into bypass mode if all other consumers 2884 * for the regulator also enable bypass mode and the machine 2885 * constraints allow this. Bypass mode means that the regulator is 2886 * simply passing the input directly to the output with no regulation. 2887 */ 2888 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2889 { 2890 struct regulator_dev *rdev = regulator->rdev; 2891 int ret = 0; 2892 2893 if (!rdev->desc->ops->set_bypass) 2894 return 0; 2895 2896 if (rdev->constraints && 2897 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2898 return 0; 2899 2900 mutex_lock(&rdev->mutex); 2901 2902 if (enable && !regulator->bypass) { 2903 rdev->bypass_count++; 2904 2905 if (rdev->bypass_count == rdev->open_count) { 2906 ret = rdev->desc->ops->set_bypass(rdev, enable); 2907 if (ret != 0) 2908 rdev->bypass_count--; 2909 } 2910 2911 } else if (!enable && regulator->bypass) { 2912 rdev->bypass_count--; 2913 2914 if (rdev->bypass_count != rdev->open_count) { 2915 ret = rdev->desc->ops->set_bypass(rdev, enable); 2916 if (ret != 0) 2917 rdev->bypass_count++; 2918 } 2919 } 2920 2921 if (ret == 0) 2922 regulator->bypass = enable; 2923 2924 mutex_unlock(&rdev->mutex); 2925 2926 return ret; 2927 } 2928 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2929 2930 /** 2931 * regulator_register_notifier - register regulator event notifier 2932 * @regulator: regulator source 2933 * @nb: notifier block 2934 * 2935 * Register notifier block to receive regulator events. 2936 */ 2937 int regulator_register_notifier(struct regulator *regulator, 2938 struct notifier_block *nb) 2939 { 2940 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2941 nb); 2942 } 2943 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2944 2945 /** 2946 * regulator_unregister_notifier - unregister regulator event notifier 2947 * @regulator: regulator source 2948 * @nb: notifier block 2949 * 2950 * Unregister regulator event notifier block. 2951 */ 2952 int regulator_unregister_notifier(struct regulator *regulator, 2953 struct notifier_block *nb) 2954 { 2955 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2956 nb); 2957 } 2958 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2959 2960 /* notify regulator consumers and downstream regulator consumers. 2961 * Note mutex must be held by caller. 2962 */ 2963 static void _notifier_call_chain(struct regulator_dev *rdev, 2964 unsigned long event, void *data) 2965 { 2966 /* call rdev chain first */ 2967 blocking_notifier_call_chain(&rdev->notifier, event, data); 2968 } 2969 2970 /** 2971 * regulator_bulk_get - get multiple regulator consumers 2972 * 2973 * @dev: Device to supply 2974 * @num_consumers: Number of consumers to register 2975 * @consumers: Configuration of consumers; clients are stored here. 2976 * 2977 * @return 0 on success, an errno on failure. 2978 * 2979 * This helper function allows drivers to get several regulator 2980 * consumers in one operation. If any of the regulators cannot be 2981 * acquired then any regulators that were allocated will be freed 2982 * before returning to the caller. 2983 */ 2984 int regulator_bulk_get(struct device *dev, int num_consumers, 2985 struct regulator_bulk_data *consumers) 2986 { 2987 int i; 2988 int ret; 2989 2990 for (i = 0; i < num_consumers; i++) 2991 consumers[i].consumer = NULL; 2992 2993 for (i = 0; i < num_consumers; i++) { 2994 consumers[i].consumer = regulator_get(dev, 2995 consumers[i].supply); 2996 if (IS_ERR(consumers[i].consumer)) { 2997 ret = PTR_ERR(consumers[i].consumer); 2998 dev_err(dev, "Failed to get supply '%s': %d\n", 2999 consumers[i].supply, ret); 3000 consumers[i].consumer = NULL; 3001 goto err; 3002 } 3003 } 3004 3005 return 0; 3006 3007 err: 3008 while (--i >= 0) 3009 regulator_put(consumers[i].consumer); 3010 3011 return ret; 3012 } 3013 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3014 3015 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3016 { 3017 struct regulator_bulk_data *bulk = data; 3018 3019 bulk->ret = regulator_enable(bulk->consumer); 3020 } 3021 3022 /** 3023 * regulator_bulk_enable - enable multiple regulator consumers 3024 * 3025 * @num_consumers: Number of consumers 3026 * @consumers: Consumer data; clients are stored here. 3027 * @return 0 on success, an errno on failure 3028 * 3029 * This convenience API allows consumers to enable multiple regulator 3030 * clients in a single API call. If any consumers cannot be enabled 3031 * then any others that were enabled will be disabled again prior to 3032 * return. 3033 */ 3034 int regulator_bulk_enable(int num_consumers, 3035 struct regulator_bulk_data *consumers) 3036 { 3037 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3038 int i; 3039 int ret = 0; 3040 3041 for (i = 0; i < num_consumers; i++) { 3042 if (consumers[i].consumer->always_on) 3043 consumers[i].ret = 0; 3044 else 3045 async_schedule_domain(regulator_bulk_enable_async, 3046 &consumers[i], &async_domain); 3047 } 3048 3049 async_synchronize_full_domain(&async_domain); 3050 3051 /* If any consumer failed we need to unwind any that succeeded */ 3052 for (i = 0; i < num_consumers; i++) { 3053 if (consumers[i].ret != 0) { 3054 ret = consumers[i].ret; 3055 goto err; 3056 } 3057 } 3058 3059 return 0; 3060 3061 err: 3062 for (i = 0; i < num_consumers; i++) { 3063 if (consumers[i].ret < 0) 3064 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3065 consumers[i].ret); 3066 else 3067 regulator_disable(consumers[i].consumer); 3068 } 3069 3070 return ret; 3071 } 3072 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3073 3074 /** 3075 * regulator_bulk_disable - disable multiple regulator consumers 3076 * 3077 * @num_consumers: Number of consumers 3078 * @consumers: Consumer data; clients are stored here. 3079 * @return 0 on success, an errno on failure 3080 * 3081 * This convenience API allows consumers to disable multiple regulator 3082 * clients in a single API call. If any consumers cannot be disabled 3083 * then any others that were disabled will be enabled again prior to 3084 * return. 3085 */ 3086 int regulator_bulk_disable(int num_consumers, 3087 struct regulator_bulk_data *consumers) 3088 { 3089 int i; 3090 int ret, r; 3091 3092 for (i = num_consumers - 1; i >= 0; --i) { 3093 ret = regulator_disable(consumers[i].consumer); 3094 if (ret != 0) 3095 goto err; 3096 } 3097 3098 return 0; 3099 3100 err: 3101 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3102 for (++i; i < num_consumers; ++i) { 3103 r = regulator_enable(consumers[i].consumer); 3104 if (r != 0) 3105 pr_err("Failed to reename %s: %d\n", 3106 consumers[i].supply, r); 3107 } 3108 3109 return ret; 3110 } 3111 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3112 3113 /** 3114 * regulator_bulk_force_disable - force disable multiple regulator consumers 3115 * 3116 * @num_consumers: Number of consumers 3117 * @consumers: Consumer data; clients are stored here. 3118 * @return 0 on success, an errno on failure 3119 * 3120 * This convenience API allows consumers to forcibly disable multiple regulator 3121 * clients in a single API call. 3122 * NOTE: This should be used for situations when device damage will 3123 * likely occur if the regulators are not disabled (e.g. over temp). 3124 * Although regulator_force_disable function call for some consumers can 3125 * return error numbers, the function is called for all consumers. 3126 */ 3127 int regulator_bulk_force_disable(int num_consumers, 3128 struct regulator_bulk_data *consumers) 3129 { 3130 int i; 3131 int ret; 3132 3133 for (i = 0; i < num_consumers; i++) 3134 consumers[i].ret = 3135 regulator_force_disable(consumers[i].consumer); 3136 3137 for (i = 0; i < num_consumers; i++) { 3138 if (consumers[i].ret != 0) { 3139 ret = consumers[i].ret; 3140 goto out; 3141 } 3142 } 3143 3144 return 0; 3145 out: 3146 return ret; 3147 } 3148 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3149 3150 /** 3151 * regulator_bulk_free - free multiple regulator consumers 3152 * 3153 * @num_consumers: Number of consumers 3154 * @consumers: Consumer data; clients are stored here. 3155 * 3156 * This convenience API allows consumers to free multiple regulator 3157 * clients in a single API call. 3158 */ 3159 void regulator_bulk_free(int num_consumers, 3160 struct regulator_bulk_data *consumers) 3161 { 3162 int i; 3163 3164 for (i = 0; i < num_consumers; i++) { 3165 regulator_put(consumers[i].consumer); 3166 consumers[i].consumer = NULL; 3167 } 3168 } 3169 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3170 3171 /** 3172 * regulator_notifier_call_chain - call regulator event notifier 3173 * @rdev: regulator source 3174 * @event: notifier block 3175 * @data: callback-specific data. 3176 * 3177 * Called by regulator drivers to notify clients a regulator event has 3178 * occurred. We also notify regulator clients downstream. 3179 * Note lock must be held by caller. 3180 */ 3181 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3182 unsigned long event, void *data) 3183 { 3184 _notifier_call_chain(rdev, event, data); 3185 return NOTIFY_DONE; 3186 3187 } 3188 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3189 3190 /** 3191 * regulator_mode_to_status - convert a regulator mode into a status 3192 * 3193 * @mode: Mode to convert 3194 * 3195 * Convert a regulator mode into a status. 3196 */ 3197 int regulator_mode_to_status(unsigned int mode) 3198 { 3199 switch (mode) { 3200 case REGULATOR_MODE_FAST: 3201 return REGULATOR_STATUS_FAST; 3202 case REGULATOR_MODE_NORMAL: 3203 return REGULATOR_STATUS_NORMAL; 3204 case REGULATOR_MODE_IDLE: 3205 return REGULATOR_STATUS_IDLE; 3206 case REGULATOR_MODE_STANDBY: 3207 return REGULATOR_STATUS_STANDBY; 3208 default: 3209 return REGULATOR_STATUS_UNDEFINED; 3210 } 3211 } 3212 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3213 3214 /* 3215 * To avoid cluttering sysfs (and memory) with useless state, only 3216 * create attributes that can be meaningfully displayed. 3217 */ 3218 static int add_regulator_attributes(struct regulator_dev *rdev) 3219 { 3220 struct device *dev = &rdev->dev; 3221 struct regulator_ops *ops = rdev->desc->ops; 3222 int status = 0; 3223 3224 /* some attributes need specific methods to be displayed */ 3225 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3226 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3227 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3228 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) { 3229 status = device_create_file(dev, &dev_attr_microvolts); 3230 if (status < 0) 3231 return status; 3232 } 3233 if (ops->get_current_limit) { 3234 status = device_create_file(dev, &dev_attr_microamps); 3235 if (status < 0) 3236 return status; 3237 } 3238 if (ops->get_mode) { 3239 status = device_create_file(dev, &dev_attr_opmode); 3240 if (status < 0) 3241 return status; 3242 } 3243 if (rdev->ena_pin || ops->is_enabled) { 3244 status = device_create_file(dev, &dev_attr_state); 3245 if (status < 0) 3246 return status; 3247 } 3248 if (ops->get_status) { 3249 status = device_create_file(dev, &dev_attr_status); 3250 if (status < 0) 3251 return status; 3252 } 3253 if (ops->get_bypass) { 3254 status = device_create_file(dev, &dev_attr_bypass); 3255 if (status < 0) 3256 return status; 3257 } 3258 3259 /* some attributes are type-specific */ 3260 if (rdev->desc->type == REGULATOR_CURRENT) { 3261 status = device_create_file(dev, &dev_attr_requested_microamps); 3262 if (status < 0) 3263 return status; 3264 } 3265 3266 /* all the other attributes exist to support constraints; 3267 * don't show them if there are no constraints, or if the 3268 * relevant supporting methods are missing. 3269 */ 3270 if (!rdev->constraints) 3271 return status; 3272 3273 /* constraints need specific supporting methods */ 3274 if (ops->set_voltage || ops->set_voltage_sel) { 3275 status = device_create_file(dev, &dev_attr_min_microvolts); 3276 if (status < 0) 3277 return status; 3278 status = device_create_file(dev, &dev_attr_max_microvolts); 3279 if (status < 0) 3280 return status; 3281 } 3282 if (ops->set_current_limit) { 3283 status = device_create_file(dev, &dev_attr_min_microamps); 3284 if (status < 0) 3285 return status; 3286 status = device_create_file(dev, &dev_attr_max_microamps); 3287 if (status < 0) 3288 return status; 3289 } 3290 3291 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3292 if (status < 0) 3293 return status; 3294 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3295 if (status < 0) 3296 return status; 3297 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3298 if (status < 0) 3299 return status; 3300 3301 if (ops->set_suspend_voltage) { 3302 status = device_create_file(dev, 3303 &dev_attr_suspend_standby_microvolts); 3304 if (status < 0) 3305 return status; 3306 status = device_create_file(dev, 3307 &dev_attr_suspend_mem_microvolts); 3308 if (status < 0) 3309 return status; 3310 status = device_create_file(dev, 3311 &dev_attr_suspend_disk_microvolts); 3312 if (status < 0) 3313 return status; 3314 } 3315 3316 if (ops->set_suspend_mode) { 3317 status = device_create_file(dev, 3318 &dev_attr_suspend_standby_mode); 3319 if (status < 0) 3320 return status; 3321 status = device_create_file(dev, 3322 &dev_attr_suspend_mem_mode); 3323 if (status < 0) 3324 return status; 3325 status = device_create_file(dev, 3326 &dev_attr_suspend_disk_mode); 3327 if (status < 0) 3328 return status; 3329 } 3330 3331 return status; 3332 } 3333 3334 static void rdev_init_debugfs(struct regulator_dev *rdev) 3335 { 3336 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3337 if (!rdev->debugfs) { 3338 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3339 return; 3340 } 3341 3342 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3343 &rdev->use_count); 3344 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3345 &rdev->open_count); 3346 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3347 &rdev->bypass_count); 3348 } 3349 3350 /** 3351 * regulator_register - register regulator 3352 * @regulator_desc: regulator to register 3353 * @config: runtime configuration for regulator 3354 * 3355 * Called by regulator drivers to register a regulator. 3356 * Returns a valid pointer to struct regulator_dev on success 3357 * or an ERR_PTR() on error. 3358 */ 3359 struct regulator_dev * 3360 regulator_register(const struct regulator_desc *regulator_desc, 3361 const struct regulator_config *config) 3362 { 3363 const struct regulation_constraints *constraints = NULL; 3364 const struct regulator_init_data *init_data; 3365 static atomic_t regulator_no = ATOMIC_INIT(0); 3366 struct regulator_dev *rdev; 3367 struct device *dev; 3368 int ret, i; 3369 const char *supply = NULL; 3370 3371 if (regulator_desc == NULL || config == NULL) 3372 return ERR_PTR(-EINVAL); 3373 3374 dev = config->dev; 3375 WARN_ON(!dev); 3376 3377 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3378 return ERR_PTR(-EINVAL); 3379 3380 if (regulator_desc->type != REGULATOR_VOLTAGE && 3381 regulator_desc->type != REGULATOR_CURRENT) 3382 return ERR_PTR(-EINVAL); 3383 3384 /* Only one of each should be implemented */ 3385 WARN_ON(regulator_desc->ops->get_voltage && 3386 regulator_desc->ops->get_voltage_sel); 3387 WARN_ON(regulator_desc->ops->set_voltage && 3388 regulator_desc->ops->set_voltage_sel); 3389 3390 /* If we're using selectors we must implement list_voltage. */ 3391 if (regulator_desc->ops->get_voltage_sel && 3392 !regulator_desc->ops->list_voltage) { 3393 return ERR_PTR(-EINVAL); 3394 } 3395 if (regulator_desc->ops->set_voltage_sel && 3396 !regulator_desc->ops->list_voltage) { 3397 return ERR_PTR(-EINVAL); 3398 } 3399 3400 init_data = config->init_data; 3401 3402 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3403 if (rdev == NULL) 3404 return ERR_PTR(-ENOMEM); 3405 3406 mutex_lock(®ulator_list_mutex); 3407 3408 mutex_init(&rdev->mutex); 3409 rdev->reg_data = config->driver_data; 3410 rdev->owner = regulator_desc->owner; 3411 rdev->desc = regulator_desc; 3412 if (config->regmap) 3413 rdev->regmap = config->regmap; 3414 else if (dev_get_regmap(dev, NULL)) 3415 rdev->regmap = dev_get_regmap(dev, NULL); 3416 else if (dev->parent) 3417 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3418 INIT_LIST_HEAD(&rdev->consumer_list); 3419 INIT_LIST_HEAD(&rdev->list); 3420 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3421 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3422 3423 /* preform any regulator specific init */ 3424 if (init_data && init_data->regulator_init) { 3425 ret = init_data->regulator_init(rdev->reg_data); 3426 if (ret < 0) 3427 goto clean; 3428 } 3429 3430 /* register with sysfs */ 3431 rdev->dev.class = ®ulator_class; 3432 rdev->dev.of_node = config->of_node; 3433 rdev->dev.parent = dev; 3434 dev_set_name(&rdev->dev, "regulator.%d", 3435 atomic_inc_return(®ulator_no) - 1); 3436 ret = device_register(&rdev->dev); 3437 if (ret != 0) { 3438 put_device(&rdev->dev); 3439 goto clean; 3440 } 3441 3442 dev_set_drvdata(&rdev->dev, rdev); 3443 3444 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3445 ret = regulator_ena_gpio_request(rdev, config); 3446 if (ret != 0) { 3447 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3448 config->ena_gpio, ret); 3449 goto wash; 3450 } 3451 3452 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3453 rdev->ena_gpio_state = 1; 3454 3455 if (config->ena_gpio_invert) 3456 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3457 } 3458 3459 /* set regulator constraints */ 3460 if (init_data) 3461 constraints = &init_data->constraints; 3462 3463 ret = set_machine_constraints(rdev, constraints); 3464 if (ret < 0) 3465 goto scrub; 3466 3467 /* add attributes supported by this regulator */ 3468 ret = add_regulator_attributes(rdev); 3469 if (ret < 0) 3470 goto scrub; 3471 3472 if (init_data && init_data->supply_regulator) 3473 supply = init_data->supply_regulator; 3474 else if (regulator_desc->supply_name) 3475 supply = regulator_desc->supply_name; 3476 3477 if (supply) { 3478 struct regulator_dev *r; 3479 3480 r = regulator_dev_lookup(dev, supply, &ret); 3481 3482 if (ret == -ENODEV) { 3483 /* 3484 * No supply was specified for this regulator and 3485 * there will never be one. 3486 */ 3487 ret = 0; 3488 goto add_dev; 3489 } else if (!r) { 3490 dev_err(dev, "Failed to find supply %s\n", supply); 3491 ret = -EPROBE_DEFER; 3492 goto scrub; 3493 } 3494 3495 ret = set_supply(rdev, r); 3496 if (ret < 0) 3497 goto scrub; 3498 3499 /* Enable supply if rail is enabled */ 3500 if (_regulator_is_enabled(rdev)) { 3501 ret = regulator_enable(rdev->supply); 3502 if (ret < 0) 3503 goto scrub; 3504 } 3505 } 3506 3507 add_dev: 3508 /* add consumers devices */ 3509 if (init_data) { 3510 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3511 ret = set_consumer_device_supply(rdev, 3512 init_data->consumer_supplies[i].dev_name, 3513 init_data->consumer_supplies[i].supply); 3514 if (ret < 0) { 3515 dev_err(dev, "Failed to set supply %s\n", 3516 init_data->consumer_supplies[i].supply); 3517 goto unset_supplies; 3518 } 3519 } 3520 } 3521 3522 list_add(&rdev->list, ®ulator_list); 3523 3524 rdev_init_debugfs(rdev); 3525 out: 3526 mutex_unlock(®ulator_list_mutex); 3527 return rdev; 3528 3529 unset_supplies: 3530 unset_regulator_supplies(rdev); 3531 3532 scrub: 3533 if (rdev->supply) 3534 _regulator_put(rdev->supply); 3535 regulator_ena_gpio_free(rdev); 3536 kfree(rdev->constraints); 3537 wash: 3538 device_unregister(&rdev->dev); 3539 /* device core frees rdev */ 3540 rdev = ERR_PTR(ret); 3541 goto out; 3542 3543 clean: 3544 kfree(rdev); 3545 rdev = ERR_PTR(ret); 3546 goto out; 3547 } 3548 EXPORT_SYMBOL_GPL(regulator_register); 3549 3550 /** 3551 * regulator_unregister - unregister regulator 3552 * @rdev: regulator to unregister 3553 * 3554 * Called by regulator drivers to unregister a regulator. 3555 */ 3556 void regulator_unregister(struct regulator_dev *rdev) 3557 { 3558 if (rdev == NULL) 3559 return; 3560 3561 if (rdev->supply) { 3562 while (rdev->use_count--) 3563 regulator_disable(rdev->supply); 3564 regulator_put(rdev->supply); 3565 } 3566 mutex_lock(®ulator_list_mutex); 3567 debugfs_remove_recursive(rdev->debugfs); 3568 flush_work(&rdev->disable_work.work); 3569 WARN_ON(rdev->open_count); 3570 unset_regulator_supplies(rdev); 3571 list_del(&rdev->list); 3572 kfree(rdev->constraints); 3573 regulator_ena_gpio_free(rdev); 3574 device_unregister(&rdev->dev); 3575 mutex_unlock(®ulator_list_mutex); 3576 } 3577 EXPORT_SYMBOL_GPL(regulator_unregister); 3578 3579 /** 3580 * regulator_suspend_prepare - prepare regulators for system wide suspend 3581 * @state: system suspend state 3582 * 3583 * Configure each regulator with it's suspend operating parameters for state. 3584 * This will usually be called by machine suspend code prior to supending. 3585 */ 3586 int regulator_suspend_prepare(suspend_state_t state) 3587 { 3588 struct regulator_dev *rdev; 3589 int ret = 0; 3590 3591 /* ON is handled by regulator active state */ 3592 if (state == PM_SUSPEND_ON) 3593 return -EINVAL; 3594 3595 mutex_lock(®ulator_list_mutex); 3596 list_for_each_entry(rdev, ®ulator_list, list) { 3597 3598 mutex_lock(&rdev->mutex); 3599 ret = suspend_prepare(rdev, state); 3600 mutex_unlock(&rdev->mutex); 3601 3602 if (ret < 0) { 3603 rdev_err(rdev, "failed to prepare\n"); 3604 goto out; 3605 } 3606 } 3607 out: 3608 mutex_unlock(®ulator_list_mutex); 3609 return ret; 3610 } 3611 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3612 3613 /** 3614 * regulator_suspend_finish - resume regulators from system wide suspend 3615 * 3616 * Turn on regulators that might be turned off by regulator_suspend_prepare 3617 * and that should be turned on according to the regulators properties. 3618 */ 3619 int regulator_suspend_finish(void) 3620 { 3621 struct regulator_dev *rdev; 3622 int ret = 0, error; 3623 3624 mutex_lock(®ulator_list_mutex); 3625 list_for_each_entry(rdev, ®ulator_list, list) { 3626 struct regulator_ops *ops = rdev->desc->ops; 3627 3628 mutex_lock(&rdev->mutex); 3629 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3630 ops->enable) { 3631 error = ops->enable(rdev); 3632 if (error) 3633 ret = error; 3634 } else { 3635 if (!have_full_constraints()) 3636 goto unlock; 3637 if (!ops->disable) 3638 goto unlock; 3639 if (!_regulator_is_enabled(rdev)) 3640 goto unlock; 3641 3642 error = ops->disable(rdev); 3643 if (error) 3644 ret = error; 3645 } 3646 unlock: 3647 mutex_unlock(&rdev->mutex); 3648 } 3649 mutex_unlock(®ulator_list_mutex); 3650 return ret; 3651 } 3652 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3653 3654 /** 3655 * regulator_has_full_constraints - the system has fully specified constraints 3656 * 3657 * Calling this function will cause the regulator API to disable all 3658 * regulators which have a zero use count and don't have an always_on 3659 * constraint in a late_initcall. 3660 * 3661 * The intention is that this will become the default behaviour in a 3662 * future kernel release so users are encouraged to use this facility 3663 * now. 3664 */ 3665 void regulator_has_full_constraints(void) 3666 { 3667 has_full_constraints = 1; 3668 } 3669 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3670 3671 /** 3672 * rdev_get_drvdata - get rdev regulator driver data 3673 * @rdev: regulator 3674 * 3675 * Get rdev regulator driver private data. This call can be used in the 3676 * regulator driver context. 3677 */ 3678 void *rdev_get_drvdata(struct regulator_dev *rdev) 3679 { 3680 return rdev->reg_data; 3681 } 3682 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3683 3684 /** 3685 * regulator_get_drvdata - get regulator driver data 3686 * @regulator: regulator 3687 * 3688 * Get regulator driver private data. This call can be used in the consumer 3689 * driver context when non API regulator specific functions need to be called. 3690 */ 3691 void *regulator_get_drvdata(struct regulator *regulator) 3692 { 3693 return regulator->rdev->reg_data; 3694 } 3695 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3696 3697 /** 3698 * regulator_set_drvdata - set regulator driver data 3699 * @regulator: regulator 3700 * @data: data 3701 */ 3702 void regulator_set_drvdata(struct regulator *regulator, void *data) 3703 { 3704 regulator->rdev->reg_data = data; 3705 } 3706 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3707 3708 /** 3709 * regulator_get_id - get regulator ID 3710 * @rdev: regulator 3711 */ 3712 int rdev_get_id(struct regulator_dev *rdev) 3713 { 3714 return rdev->desc->id; 3715 } 3716 EXPORT_SYMBOL_GPL(rdev_get_id); 3717 3718 struct device *rdev_get_dev(struct regulator_dev *rdev) 3719 { 3720 return &rdev->dev; 3721 } 3722 EXPORT_SYMBOL_GPL(rdev_get_dev); 3723 3724 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3725 { 3726 return reg_init_data->driver_data; 3727 } 3728 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3729 3730 #ifdef CONFIG_DEBUG_FS 3731 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3732 size_t count, loff_t *ppos) 3733 { 3734 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3735 ssize_t len, ret = 0; 3736 struct regulator_map *map; 3737 3738 if (!buf) 3739 return -ENOMEM; 3740 3741 list_for_each_entry(map, ®ulator_map_list, list) { 3742 len = snprintf(buf + ret, PAGE_SIZE - ret, 3743 "%s -> %s.%s\n", 3744 rdev_get_name(map->regulator), map->dev_name, 3745 map->supply); 3746 if (len >= 0) 3747 ret += len; 3748 if (ret > PAGE_SIZE) { 3749 ret = PAGE_SIZE; 3750 break; 3751 } 3752 } 3753 3754 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3755 3756 kfree(buf); 3757 3758 return ret; 3759 } 3760 #endif 3761 3762 static const struct file_operations supply_map_fops = { 3763 #ifdef CONFIG_DEBUG_FS 3764 .read = supply_map_read_file, 3765 .llseek = default_llseek, 3766 #endif 3767 }; 3768 3769 static int __init regulator_init(void) 3770 { 3771 int ret; 3772 3773 ret = class_register(®ulator_class); 3774 3775 debugfs_root = debugfs_create_dir("regulator", NULL); 3776 if (!debugfs_root) 3777 pr_warn("regulator: Failed to create debugfs directory\n"); 3778 3779 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3780 &supply_map_fops); 3781 3782 regulator_dummy_init(); 3783 3784 return ret; 3785 } 3786 3787 /* init early to allow our consumers to complete system booting */ 3788 core_initcall(regulator_init); 3789 3790 static int __init regulator_init_complete(void) 3791 { 3792 struct regulator_dev *rdev; 3793 struct regulator_ops *ops; 3794 struct regulation_constraints *c; 3795 int enabled, ret; 3796 3797 /* 3798 * Since DT doesn't provide an idiomatic mechanism for 3799 * enabling full constraints and since it's much more natural 3800 * with DT to provide them just assume that a DT enabled 3801 * system has full constraints. 3802 */ 3803 if (of_have_populated_dt()) 3804 has_full_constraints = true; 3805 3806 mutex_lock(®ulator_list_mutex); 3807 3808 /* If we have a full configuration then disable any regulators 3809 * which are not in use or always_on. This will become the 3810 * default behaviour in the future. 3811 */ 3812 list_for_each_entry(rdev, ®ulator_list, list) { 3813 ops = rdev->desc->ops; 3814 c = rdev->constraints; 3815 3816 if (!ops->disable || (c && c->always_on)) 3817 continue; 3818 3819 mutex_lock(&rdev->mutex); 3820 3821 if (rdev->use_count) 3822 goto unlock; 3823 3824 /* If we can't read the status assume it's on. */ 3825 if (ops->is_enabled) 3826 enabled = ops->is_enabled(rdev); 3827 else 3828 enabled = 1; 3829 3830 if (!enabled) 3831 goto unlock; 3832 3833 if (have_full_constraints()) { 3834 /* We log since this may kill the system if it 3835 * goes wrong. */ 3836 rdev_info(rdev, "disabling\n"); 3837 ret = ops->disable(rdev); 3838 if (ret != 0) { 3839 rdev_err(rdev, "couldn't disable: %d\n", ret); 3840 } 3841 } else { 3842 /* The intention is that in future we will 3843 * assume that full constraints are provided 3844 * so warn even if we aren't going to do 3845 * anything here. 3846 */ 3847 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3848 } 3849 3850 unlock: 3851 mutex_unlock(&rdev->mutex); 3852 } 3853 3854 mutex_unlock(®ulator_list_mutex); 3855 3856 return 0; 3857 } 3858 late_initcall(regulator_init_complete); 3859