xref: /openbmc/linux/drivers/regulator/core.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27 
28 #include "dummy.h"
29 
30 #define REGULATOR_VERSION "0.5"
31 
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37 
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44 	struct list_head list;
45 	const char *dev_name;   /* The dev_name() for the consumer */
46 	const char *supply;
47 	struct regulator_dev *regulator;
48 };
49 
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56 	struct device *dev;
57 	struct list_head list;
58 	int uA_load;
59 	int min_uV;
60 	int max_uV;
61 	char *supply_name;
62 	struct device_attribute dev_attr;
63 	struct regulator_dev *rdev;
64 };
65 
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68 		struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73 				  unsigned long event, void *data);
74 
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77 	if (rdev->constraints && rdev->constraints->name)
78 		return rdev->constraints->name;
79 	else if (rdev->desc->name)
80 		return rdev->desc->name;
81 	else
82 		return "";
83 }
84 
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88 	struct regulator *regulator = NULL;
89 	struct regulator_dev *rdev;
90 
91 	mutex_lock(&regulator_list_mutex);
92 	list_for_each_entry(rdev, &regulator_list, list) {
93 		mutex_lock(&rdev->mutex);
94 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
95 			if (regulator->dev == dev) {
96 				mutex_unlock(&rdev->mutex);
97 				mutex_unlock(&regulator_list_mutex);
98 				return regulator;
99 			}
100 		}
101 		mutex_unlock(&rdev->mutex);
102 	}
103 	mutex_unlock(&regulator_list_mutex);
104 	return NULL;
105 }
106 
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109 				   int *min_uV, int *max_uV)
110 {
111 	BUG_ON(*min_uV > *max_uV);
112 
113 	if (!rdev->constraints) {
114 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115 		       rdev_get_name(rdev));
116 		return -ENODEV;
117 	}
118 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119 		printk(KERN_ERR "%s: operation not allowed for %s\n",
120 		       __func__, rdev_get_name(rdev));
121 		return -EPERM;
122 	}
123 
124 	if (*max_uV > rdev->constraints->max_uV)
125 		*max_uV = rdev->constraints->max_uV;
126 	if (*min_uV < rdev->constraints->min_uV)
127 		*min_uV = rdev->constraints->min_uV;
128 
129 	if (*min_uV > *max_uV)
130 		return -EINVAL;
131 
132 	return 0;
133 }
134 
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137 					int *min_uA, int *max_uA)
138 {
139 	BUG_ON(*min_uA > *max_uA);
140 
141 	if (!rdev->constraints) {
142 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143 		       rdev_get_name(rdev));
144 		return -ENODEV;
145 	}
146 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147 		printk(KERN_ERR "%s: operation not allowed for %s\n",
148 		       __func__, rdev_get_name(rdev));
149 		return -EPERM;
150 	}
151 
152 	if (*max_uA > rdev->constraints->max_uA)
153 		*max_uA = rdev->constraints->max_uA;
154 	if (*min_uA < rdev->constraints->min_uA)
155 		*min_uA = rdev->constraints->min_uA;
156 
157 	if (*min_uA > *max_uA)
158 		return -EINVAL;
159 
160 	return 0;
161 }
162 
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166 	switch (mode) {
167 	case REGULATOR_MODE_FAST:
168 	case REGULATOR_MODE_NORMAL:
169 	case REGULATOR_MODE_IDLE:
170 	case REGULATOR_MODE_STANDBY:
171 		break;
172 	default:
173 		return -EINVAL;
174 	}
175 
176 	if (!rdev->constraints) {
177 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178 		       rdev_get_name(rdev));
179 		return -ENODEV;
180 	}
181 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182 		printk(KERN_ERR "%s: operation not allowed for %s\n",
183 		       __func__, rdev_get_name(rdev));
184 		return -EPERM;
185 	}
186 	if (!(rdev->constraints->valid_modes_mask & mode)) {
187 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
188 		       __func__, mode, rdev_get_name(rdev));
189 		return -EINVAL;
190 	}
191 	return 0;
192 }
193 
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197 	if (!rdev->constraints) {
198 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199 		       rdev_get_name(rdev));
200 		return -ENODEV;
201 	}
202 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203 		printk(KERN_ERR "%s: operation not allowed for %s\n",
204 		       __func__, rdev_get_name(rdev));
205 		return -EPERM;
206 	}
207 	return 0;
208 }
209 
210 static ssize_t device_requested_uA_show(struct device *dev,
211 			     struct device_attribute *attr, char *buf)
212 {
213 	struct regulator *regulator;
214 
215 	regulator = get_device_regulator(dev);
216 	if (regulator == NULL)
217 		return 0;
218 
219 	return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221 
222 static ssize_t regulator_uV_show(struct device *dev,
223 				struct device_attribute *attr, char *buf)
224 {
225 	struct regulator_dev *rdev = dev_get_drvdata(dev);
226 	ssize_t ret;
227 
228 	mutex_lock(&rdev->mutex);
229 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230 	mutex_unlock(&rdev->mutex);
231 
232 	return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235 
236 static ssize_t regulator_uA_show(struct device *dev,
237 				struct device_attribute *attr, char *buf)
238 {
239 	struct regulator_dev *rdev = dev_get_drvdata(dev);
240 
241 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244 
245 static ssize_t regulator_name_show(struct device *dev,
246 			     struct device_attribute *attr, char *buf)
247 {
248 	struct regulator_dev *rdev = dev_get_drvdata(dev);
249 
250 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252 
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255 	switch (mode) {
256 	case REGULATOR_MODE_FAST:
257 		return sprintf(buf, "fast\n");
258 	case REGULATOR_MODE_NORMAL:
259 		return sprintf(buf, "normal\n");
260 	case REGULATOR_MODE_IDLE:
261 		return sprintf(buf, "idle\n");
262 	case REGULATOR_MODE_STANDBY:
263 		return sprintf(buf, "standby\n");
264 	}
265 	return sprintf(buf, "unknown\n");
266 }
267 
268 static ssize_t regulator_opmode_show(struct device *dev,
269 				    struct device_attribute *attr, char *buf)
270 {
271 	struct regulator_dev *rdev = dev_get_drvdata(dev);
272 
273 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276 
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279 	if (state > 0)
280 		return sprintf(buf, "enabled\n");
281 	else if (state == 0)
282 		return sprintf(buf, "disabled\n");
283 	else
284 		return sprintf(buf, "unknown\n");
285 }
286 
287 static ssize_t regulator_state_show(struct device *dev,
288 				   struct device_attribute *attr, char *buf)
289 {
290 	struct regulator_dev *rdev = dev_get_drvdata(dev);
291 	ssize_t ret;
292 
293 	mutex_lock(&rdev->mutex);
294 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295 	mutex_unlock(&rdev->mutex);
296 
297 	return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300 
301 static ssize_t regulator_status_show(struct device *dev,
302 				   struct device_attribute *attr, char *buf)
303 {
304 	struct regulator_dev *rdev = dev_get_drvdata(dev);
305 	int status;
306 	char *label;
307 
308 	status = rdev->desc->ops->get_status(rdev);
309 	if (status < 0)
310 		return status;
311 
312 	switch (status) {
313 	case REGULATOR_STATUS_OFF:
314 		label = "off";
315 		break;
316 	case REGULATOR_STATUS_ON:
317 		label = "on";
318 		break;
319 	case REGULATOR_STATUS_ERROR:
320 		label = "error";
321 		break;
322 	case REGULATOR_STATUS_FAST:
323 		label = "fast";
324 		break;
325 	case REGULATOR_STATUS_NORMAL:
326 		label = "normal";
327 		break;
328 	case REGULATOR_STATUS_IDLE:
329 		label = "idle";
330 		break;
331 	case REGULATOR_STATUS_STANDBY:
332 		label = "standby";
333 		break;
334 	default:
335 		return -ERANGE;
336 	}
337 
338 	return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341 
342 static ssize_t regulator_min_uA_show(struct device *dev,
343 				    struct device_attribute *attr, char *buf)
344 {
345 	struct regulator_dev *rdev = dev_get_drvdata(dev);
346 
347 	if (!rdev->constraints)
348 		return sprintf(buf, "constraint not defined\n");
349 
350 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353 
354 static ssize_t regulator_max_uA_show(struct device *dev,
355 				    struct device_attribute *attr, char *buf)
356 {
357 	struct regulator_dev *rdev = dev_get_drvdata(dev);
358 
359 	if (!rdev->constraints)
360 		return sprintf(buf, "constraint not defined\n");
361 
362 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365 
366 static ssize_t regulator_min_uV_show(struct device *dev,
367 				    struct device_attribute *attr, char *buf)
368 {
369 	struct regulator_dev *rdev = dev_get_drvdata(dev);
370 
371 	if (!rdev->constraints)
372 		return sprintf(buf, "constraint not defined\n");
373 
374 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377 
378 static ssize_t regulator_max_uV_show(struct device *dev,
379 				    struct device_attribute *attr, char *buf)
380 {
381 	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 
383 	if (!rdev->constraints)
384 		return sprintf(buf, "constraint not defined\n");
385 
386 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389 
390 static ssize_t regulator_total_uA_show(struct device *dev,
391 				      struct device_attribute *attr, char *buf)
392 {
393 	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 	struct regulator *regulator;
395 	int uA = 0;
396 
397 	mutex_lock(&rdev->mutex);
398 	list_for_each_entry(regulator, &rdev->consumer_list, list)
399 		uA += regulator->uA_load;
400 	mutex_unlock(&rdev->mutex);
401 	return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404 
405 static ssize_t regulator_num_users_show(struct device *dev,
406 				      struct device_attribute *attr, char *buf)
407 {
408 	struct regulator_dev *rdev = dev_get_drvdata(dev);
409 	return sprintf(buf, "%d\n", rdev->use_count);
410 }
411 
412 static ssize_t regulator_type_show(struct device *dev,
413 				  struct device_attribute *attr, char *buf)
414 {
415 	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 
417 	switch (rdev->desc->type) {
418 	case REGULATOR_VOLTAGE:
419 		return sprintf(buf, "voltage\n");
420 	case REGULATOR_CURRENT:
421 		return sprintf(buf, "current\n");
422 	}
423 	return sprintf(buf, "unknown\n");
424 }
425 
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427 				struct device_attribute *attr, char *buf)
428 {
429 	struct regulator_dev *rdev = dev_get_drvdata(dev);
430 
431 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434 		regulator_suspend_mem_uV_show, NULL);
435 
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437 				struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 
441 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444 		regulator_suspend_disk_uV_show, NULL);
445 
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447 				struct device_attribute *attr, char *buf)
448 {
449 	struct regulator_dev *rdev = dev_get_drvdata(dev);
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454 		regulator_suspend_standby_uV_show, NULL);
455 
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457 				struct device_attribute *attr, char *buf)
458 {
459 	struct regulator_dev *rdev = dev_get_drvdata(dev);
460 
461 	return regulator_print_opmode(buf,
462 		rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465 		regulator_suspend_mem_mode_show, NULL);
466 
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468 				struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	return regulator_print_opmode(buf,
473 		rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476 		regulator_suspend_disk_mode_show, NULL);
477 
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479 				struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	return regulator_print_opmode(buf,
484 		rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487 		regulator_suspend_standby_mode_show, NULL);
488 
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490 				   struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	return regulator_print_state(buf,
495 			rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498 		regulator_suspend_mem_state_show, NULL);
499 
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501 				   struct device_attribute *attr, char *buf)
502 {
503 	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 
505 	return regulator_print_state(buf,
506 			rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509 		regulator_suspend_disk_state_show, NULL);
510 
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512 				   struct device_attribute *attr, char *buf)
513 {
514 	struct regulator_dev *rdev = dev_get_drvdata(dev);
515 
516 	return regulator_print_state(buf,
517 			rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520 		regulator_suspend_standby_state_show, NULL);
521 
522 
523 /*
524  * These are the only attributes are present for all regulators.
525  * Other attributes are a function of regulator functionality.
526  */
527 static struct device_attribute regulator_dev_attrs[] = {
528 	__ATTR(name, 0444, regulator_name_show, NULL),
529 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
530 	__ATTR(type, 0444, regulator_type_show, NULL),
531 	__ATTR_NULL,
532 };
533 
534 static void regulator_dev_release(struct device *dev)
535 {
536 	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 	kfree(rdev);
538 }
539 
540 static struct class regulator_class = {
541 	.name = "regulator",
542 	.dev_release = regulator_dev_release,
543 	.dev_attrs = regulator_dev_attrs,
544 };
545 
546 /* Calculate the new optimum regulator operating mode based on the new total
547  * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550 	struct regulator *sibling;
551 	int current_uA = 0, output_uV, input_uV, err;
552 	unsigned int mode;
553 
554 	err = regulator_check_drms(rdev);
555 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557 		return;
558 
559 	/* get output voltage */
560 	output_uV = rdev->desc->ops->get_voltage(rdev);
561 	if (output_uV <= 0)
562 		return;
563 
564 	/* get input voltage */
565 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567 	else
568 		input_uV = rdev->constraints->input_uV;
569 	if (input_uV <= 0)
570 		return;
571 
572 	/* calc total requested load */
573 	list_for_each_entry(sibling, &rdev->consumer_list, list)
574 		current_uA += sibling->uA_load;
575 
576 	/* now get the optimum mode for our new total regulator load */
577 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578 						  output_uV, current_uA);
579 
580 	/* check the new mode is allowed */
581 	err = regulator_check_mode(rdev, mode);
582 	if (err == 0)
583 		rdev->desc->ops->set_mode(rdev, mode);
584 }
585 
586 static int suspend_set_state(struct regulator_dev *rdev,
587 	struct regulator_state *rstate)
588 {
589 	int ret = 0;
590 	bool can_set_state;
591 
592 	can_set_state = rdev->desc->ops->set_suspend_enable &&
593 		rdev->desc->ops->set_suspend_disable;
594 
595 	/* If we have no suspend mode configration don't set anything;
596 	 * only warn if the driver actually makes the suspend mode
597 	 * configurable.
598 	 */
599 	if (!rstate->enabled && !rstate->disabled) {
600 		if (can_set_state)
601 			printk(KERN_WARNING "%s: No configuration for %s\n",
602 			       __func__, rdev_get_name(rdev));
603 		return 0;
604 	}
605 
606 	if (rstate->enabled && rstate->disabled) {
607 		printk(KERN_ERR "%s: invalid configuration for %s\n",
608 		       __func__, rdev_get_name(rdev));
609 		return -EINVAL;
610 	}
611 
612 	if (!can_set_state) {
613 		printk(KERN_ERR "%s: no way to set suspend state\n",
614 			__func__);
615 		return -EINVAL;
616 	}
617 
618 	if (rstate->enabled)
619 		ret = rdev->desc->ops->set_suspend_enable(rdev);
620 	else
621 		ret = rdev->desc->ops->set_suspend_disable(rdev);
622 	if (ret < 0) {
623 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624 		return ret;
625 	}
626 
627 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629 		if (ret < 0) {
630 			printk(KERN_ERR "%s: failed to set voltage\n",
631 				__func__);
632 			return ret;
633 		}
634 	}
635 
636 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638 		if (ret < 0) {
639 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
640 			return ret;
641 		}
642 	}
643 	return ret;
644 }
645 
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649 	if (!rdev->constraints)
650 		return -EINVAL;
651 
652 	switch (state) {
653 	case PM_SUSPEND_STANDBY:
654 		return suspend_set_state(rdev,
655 			&rdev->constraints->state_standby);
656 	case PM_SUSPEND_MEM:
657 		return suspend_set_state(rdev,
658 			&rdev->constraints->state_mem);
659 	case PM_SUSPEND_MAX:
660 		return suspend_set_state(rdev,
661 			&rdev->constraints->state_disk);
662 	default:
663 		return -EINVAL;
664 	}
665 }
666 
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669 	struct regulation_constraints *constraints = rdev->constraints;
670 	char buf[80] = "";
671 	int count = 0;
672 	int ret;
673 
674 	if (constraints->min_uV && constraints->max_uV) {
675 		if (constraints->min_uV == constraints->max_uV)
676 			count += sprintf(buf + count, "%d mV ",
677 					 constraints->min_uV / 1000);
678 		else
679 			count += sprintf(buf + count, "%d <--> %d mV ",
680 					 constraints->min_uV / 1000,
681 					 constraints->max_uV / 1000);
682 	}
683 
684 	if (!constraints->min_uV ||
685 	    constraints->min_uV != constraints->max_uV) {
686 		ret = _regulator_get_voltage(rdev);
687 		if (ret > 0)
688 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 	}
690 
691 	if (constraints->min_uA && constraints->max_uA) {
692 		if (constraints->min_uA == constraints->max_uA)
693 			count += sprintf(buf + count, "%d mA ",
694 					 constraints->min_uA / 1000);
695 		else
696 			count += sprintf(buf + count, "%d <--> %d mA ",
697 					 constraints->min_uA / 1000,
698 					 constraints->max_uA / 1000);
699 	}
700 
701 	if (!constraints->min_uA ||
702 	    constraints->min_uA != constraints->max_uA) {
703 		ret = _regulator_get_current_limit(rdev);
704 		if (ret > 0)
705 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
706 	}
707 
708 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709 		count += sprintf(buf + count, "fast ");
710 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711 		count += sprintf(buf + count, "normal ");
712 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713 		count += sprintf(buf + count, "idle ");
714 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715 		count += sprintf(buf + count, "standby");
716 
717 	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719 
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721 	struct regulation_constraints *constraints)
722 {
723 	struct regulator_ops *ops = rdev->desc->ops;
724 	const char *name = rdev_get_name(rdev);
725 	int ret;
726 
727 	/* do we need to apply the constraint voltage */
728 	if (rdev->constraints->apply_uV &&
729 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
730 		ops->set_voltage) {
731 		ret = ops->set_voltage(rdev,
732 			rdev->constraints->min_uV, rdev->constraints->max_uV);
733 			if (ret < 0) {
734 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735 				       __func__,
736 				       rdev->constraints->min_uV, name);
737 				rdev->constraints = NULL;
738 				return ret;
739 			}
740 	}
741 
742 	/* constrain machine-level voltage specs to fit
743 	 * the actual range supported by this regulator.
744 	 */
745 	if (ops->list_voltage && rdev->desc->n_voltages) {
746 		int	count = rdev->desc->n_voltages;
747 		int	i;
748 		int	min_uV = INT_MAX;
749 		int	max_uV = INT_MIN;
750 		int	cmin = constraints->min_uV;
751 		int	cmax = constraints->max_uV;
752 
753 		/* it's safe to autoconfigure fixed-voltage supplies
754 		   and the constraints are used by list_voltage. */
755 		if (count == 1 && !cmin) {
756 			cmin = 1;
757 			cmax = INT_MAX;
758 			constraints->min_uV = cmin;
759 			constraints->max_uV = cmax;
760 		}
761 
762 		/* voltage constraints are optional */
763 		if ((cmin == 0) && (cmax == 0))
764 			return 0;
765 
766 		/* else require explicit machine-level constraints */
767 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 			pr_err("%s: %s '%s' voltage constraints\n",
769 				       __func__, "invalid", name);
770 			return -EINVAL;
771 		}
772 
773 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774 		for (i = 0; i < count; i++) {
775 			int	value;
776 
777 			value = ops->list_voltage(rdev, i);
778 			if (value <= 0)
779 				continue;
780 
781 			/* maybe adjust [min_uV..max_uV] */
782 			if (value >= cmin && value < min_uV)
783 				min_uV = value;
784 			if (value <= cmax && value > max_uV)
785 				max_uV = value;
786 		}
787 
788 		/* final: [min_uV..max_uV] valid iff constraints valid */
789 		if (max_uV < min_uV) {
790 			pr_err("%s: %s '%s' voltage constraints\n",
791 				       __func__, "unsupportable", name);
792 			return -EINVAL;
793 		}
794 
795 		/* use regulator's subset of machine constraints */
796 		if (constraints->min_uV < min_uV) {
797 			pr_debug("%s: override '%s' %s, %d -> %d\n",
798 				       __func__, name, "min_uV",
799 					constraints->min_uV, min_uV);
800 			constraints->min_uV = min_uV;
801 		}
802 		if (constraints->max_uV > max_uV) {
803 			pr_debug("%s: override '%s' %s, %d -> %d\n",
804 				       __func__, name, "max_uV",
805 					constraints->max_uV, max_uV);
806 			constraints->max_uV = max_uV;
807 		}
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  * set_machine_constraints - sets regulator constraints
815  * @rdev: regulator source
816  * @constraints: constraints to apply
817  *
818  * Allows platform initialisation code to define and constrain
819  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820  * Constraints *must* be set by platform code in order for some
821  * regulator operations to proceed i.e. set_voltage, set_current_limit,
822  * set_mode.
823  */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825 	struct regulation_constraints *constraints)
826 {
827 	int ret = 0;
828 	const char *name;
829 	struct regulator_ops *ops = rdev->desc->ops;
830 
831 	rdev->constraints = constraints;
832 
833 	name = rdev_get_name(rdev);
834 
835 	ret = machine_constraints_voltage(rdev, constraints);
836 	if (ret != 0)
837 		goto out;
838 
839 	/* do we need to setup our suspend state */
840 	if (constraints->initial_state) {
841 		ret = suspend_prepare(rdev, constraints->initial_state);
842 		if (ret < 0) {
843 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844 			       __func__, name);
845 			rdev->constraints = NULL;
846 			goto out;
847 		}
848 	}
849 
850 	if (constraints->initial_mode) {
851 		if (!ops->set_mode) {
852 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
853 			       __func__, name);
854 			ret = -EINVAL;
855 			goto out;
856 		}
857 
858 		ret = ops->set_mode(rdev, constraints->initial_mode);
859 		if (ret < 0) {
860 			printk(KERN_ERR
861 			       "%s: failed to set initial mode for %s: %d\n",
862 			       __func__, name, ret);
863 			goto out;
864 		}
865 	}
866 
867 	/* If the constraints say the regulator should be on at this point
868 	 * and we have control then make sure it is enabled.
869 	 */
870 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 		ret = ops->enable(rdev);
872 		if (ret < 0) {
873 			printk(KERN_ERR "%s: failed to enable %s\n",
874 			       __func__, name);
875 			rdev->constraints = NULL;
876 			goto out;
877 		}
878 	}
879 
880 	print_constraints(rdev);
881 out:
882 	return ret;
883 }
884 
885 /**
886  * set_supply - set regulator supply regulator
887  * @rdev: regulator name
888  * @supply_rdev: supply regulator name
889  *
890  * Called by platform initialisation code to set the supply regulator for this
891  * regulator. This ensures that a regulators supply will also be enabled by the
892  * core if it's child is enabled.
893  */
894 static int set_supply(struct regulator_dev *rdev,
895 	struct regulator_dev *supply_rdev)
896 {
897 	int err;
898 
899 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900 				"supply");
901 	if (err) {
902 		printk(KERN_ERR
903 		       "%s: could not add device link %s err %d\n",
904 		       __func__, supply_rdev->dev.kobj.name, err);
905 		       goto out;
906 	}
907 	rdev->supply = supply_rdev;
908 	list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910 	return err;
911 }
912 
913 /**
914  * set_consumer_device_supply - Bind a regulator to a symbolic supply
915  * @rdev:         regulator source
916  * @consumer_dev: device the supply applies to
917  * @consumer_dev_name: dev_name() string for device supply applies to
918  * @supply:       symbolic name for supply
919  *
920  * Allows platform initialisation code to map physical regulator
921  * sources to symbolic names for supplies for use by devices.  Devices
922  * should use these symbolic names to request regulators, avoiding the
923  * need to provide board-specific regulator names as platform data.
924  *
925  * Only one of consumer_dev and consumer_dev_name may be specified.
926  */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928 	struct device *consumer_dev, const char *consumer_dev_name,
929 	const char *supply)
930 {
931 	struct regulator_map *node;
932 	int has_dev;
933 
934 	if (consumer_dev && consumer_dev_name)
935 		return -EINVAL;
936 
937 	if (!consumer_dev_name && consumer_dev)
938 		consumer_dev_name = dev_name(consumer_dev);
939 
940 	if (supply == NULL)
941 		return -EINVAL;
942 
943 	if (consumer_dev_name != NULL)
944 		has_dev = 1;
945 	else
946 		has_dev = 0;
947 
948 	list_for_each_entry(node, &regulator_map_list, list) {
949 		if (node->dev_name && consumer_dev_name) {
950 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
951 				continue;
952 		} else if (node->dev_name || consumer_dev_name) {
953 			continue;
954 		}
955 
956 		if (strcmp(node->supply, supply) != 0)
957 			continue;
958 
959 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960 				dev_name(&node->regulator->dev),
961 				node->regulator->desc->name,
962 				supply,
963 				dev_name(&rdev->dev), rdev_get_name(rdev));
964 		return -EBUSY;
965 	}
966 
967 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968 	if (node == NULL)
969 		return -ENOMEM;
970 
971 	node->regulator = rdev;
972 	node->supply = supply;
973 
974 	if (has_dev) {
975 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976 		if (node->dev_name == NULL) {
977 			kfree(node);
978 			return -ENOMEM;
979 		}
980 	}
981 
982 	list_add(&node->list, &regulator_map_list);
983 	return 0;
984 }
985 
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988 	struct regulator_map *node, *n;
989 
990 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991 		if (rdev == node->regulator) {
992 			list_del(&node->list);
993 			kfree(node->dev_name);
994 			kfree(node);
995 		}
996 	}
997 }
998 
999 #define REG_STR_SIZE	32
1000 
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002 					  struct device *dev,
1003 					  const char *supply_name)
1004 {
1005 	struct regulator *regulator;
1006 	char buf[REG_STR_SIZE];
1007 	int err, size;
1008 
1009 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010 	if (regulator == NULL)
1011 		return NULL;
1012 
1013 	mutex_lock(&rdev->mutex);
1014 	regulator->rdev = rdev;
1015 	list_add(&regulator->list, &rdev->consumer_list);
1016 
1017 	if (dev) {
1018 		/* create a 'requested_microamps_name' sysfs entry */
1019 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020 			supply_name);
1021 		if (size >= REG_STR_SIZE)
1022 			goto overflow_err;
1023 
1024 		regulator->dev = dev;
1025 		sysfs_attr_init(&regulator->dev_attr.attr);
1026 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027 		if (regulator->dev_attr.attr.name == NULL)
1028 			goto attr_name_err;
1029 
1030 		regulator->dev_attr.attr.mode = 0444;
1031 		regulator->dev_attr.show = device_requested_uA_show;
1032 		err = device_create_file(dev, &regulator->dev_attr);
1033 		if (err < 0) {
1034 			printk(KERN_WARNING "%s: could not add regulator_dev"
1035 				" load sysfs\n", __func__);
1036 			goto attr_name_err;
1037 		}
1038 
1039 		/* also add a link to the device sysfs entry */
1040 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041 				 dev->kobj.name, supply_name);
1042 		if (size >= REG_STR_SIZE)
1043 			goto attr_err;
1044 
1045 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046 		if (regulator->supply_name == NULL)
1047 			goto attr_err;
1048 
1049 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050 					buf);
1051 		if (err) {
1052 			printk(KERN_WARNING
1053 			       "%s: could not add device link %s err %d\n",
1054 			       __func__, dev->kobj.name, err);
1055 			goto link_name_err;
1056 		}
1057 	}
1058 	mutex_unlock(&rdev->mutex);
1059 	return regulator;
1060 link_name_err:
1061 	kfree(regulator->supply_name);
1062 attr_err:
1063 	device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065 	kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067 	list_del(&regulator->list);
1068 	kfree(regulator);
1069 	mutex_unlock(&rdev->mutex);
1070 	return NULL;
1071 }
1072 
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075 	if (!rdev->desc->ops->enable_time)
1076 		return 0;
1077 	return rdev->desc->ops->enable_time(rdev);
1078 }
1079 
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082 					int exclusive)
1083 {
1084 	struct regulator_dev *rdev;
1085 	struct regulator_map *map;
1086 	struct regulator *regulator = ERR_PTR(-ENODEV);
1087 	const char *devname = NULL;
1088 	int ret;
1089 
1090 	if (id == NULL) {
1091 		printk(KERN_ERR "regulator: get() with no identifier\n");
1092 		return regulator;
1093 	}
1094 
1095 	if (dev)
1096 		devname = dev_name(dev);
1097 
1098 	mutex_lock(&regulator_list_mutex);
1099 
1100 	list_for_each_entry(map, &regulator_map_list, list) {
1101 		/* If the mapping has a device set up it must match */
1102 		if (map->dev_name &&
1103 		    (!devname || strcmp(map->dev_name, devname)))
1104 			continue;
1105 
1106 		if (strcmp(map->supply, id) == 0) {
1107 			rdev = map->regulator;
1108 			goto found;
1109 		}
1110 	}
1111 
1112 	if (board_wants_dummy_regulator) {
1113 		rdev = dummy_regulator_rdev;
1114 		goto found;
1115 	}
1116 
1117 #ifdef CONFIG_REGULATOR_DUMMY
1118 	if (!devname)
1119 		devname = "deviceless";
1120 
1121 	/* If the board didn't flag that it was fully constrained then
1122 	 * substitute in a dummy regulator so consumers can continue.
1123 	 */
1124 	if (!has_full_constraints) {
1125 		pr_warning("%s supply %s not found, using dummy regulator\n",
1126 			   devname, id);
1127 		rdev = dummy_regulator_rdev;
1128 		goto found;
1129 	}
1130 #endif
1131 
1132 	mutex_unlock(&regulator_list_mutex);
1133 	return regulator;
1134 
1135 found:
1136 	if (rdev->exclusive) {
1137 		regulator = ERR_PTR(-EPERM);
1138 		goto out;
1139 	}
1140 
1141 	if (exclusive && rdev->open_count) {
1142 		regulator = ERR_PTR(-EBUSY);
1143 		goto out;
1144 	}
1145 
1146 	if (!try_module_get(rdev->owner))
1147 		goto out;
1148 
1149 	regulator = create_regulator(rdev, dev, id);
1150 	if (regulator == NULL) {
1151 		regulator = ERR_PTR(-ENOMEM);
1152 		module_put(rdev->owner);
1153 	}
1154 
1155 	rdev->open_count++;
1156 	if (exclusive) {
1157 		rdev->exclusive = 1;
1158 
1159 		ret = _regulator_is_enabled(rdev);
1160 		if (ret > 0)
1161 			rdev->use_count = 1;
1162 		else
1163 			rdev->use_count = 0;
1164 	}
1165 
1166 out:
1167 	mutex_unlock(&regulator_list_mutex);
1168 
1169 	return regulator;
1170 }
1171 
1172 /**
1173  * regulator_get - lookup and obtain a reference to a regulator.
1174  * @dev: device for regulator "consumer"
1175  * @id: Supply name or regulator ID.
1176  *
1177  * Returns a struct regulator corresponding to the regulator producer,
1178  * or IS_ERR() condition containing errno.
1179  *
1180  * Use of supply names configured via regulator_set_device_supply() is
1181  * strongly encouraged.  It is recommended that the supply name used
1182  * should match the name used for the supply and/or the relevant
1183  * device pins in the datasheet.
1184  */
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1186 {
1187 	return _regulator_get(dev, id, 0);
1188 }
1189 EXPORT_SYMBOL_GPL(regulator_get);
1190 
1191 /**
1192  * regulator_get_exclusive - obtain exclusive access to a regulator.
1193  * @dev: device for regulator "consumer"
1194  * @id: Supply name or regulator ID.
1195  *
1196  * Returns a struct regulator corresponding to the regulator producer,
1197  * or IS_ERR() condition containing errno.  Other consumers will be
1198  * unable to obtain this reference is held and the use count for the
1199  * regulator will be initialised to reflect the current state of the
1200  * regulator.
1201  *
1202  * This is intended for use by consumers which cannot tolerate shared
1203  * use of the regulator such as those which need to force the
1204  * regulator off for correct operation of the hardware they are
1205  * controlling.
1206  *
1207  * Use of supply names configured via regulator_set_device_supply() is
1208  * strongly encouraged.  It is recommended that the supply name used
1209  * should match the name used for the supply and/or the relevant
1210  * device pins in the datasheet.
1211  */
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1213 {
1214 	return _regulator_get(dev, id, 1);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1217 
1218 /**
1219  * regulator_put - "free" the regulator source
1220  * @regulator: regulator source
1221  *
1222  * Note: drivers must ensure that all regulator_enable calls made on this
1223  * regulator source are balanced by regulator_disable calls prior to calling
1224  * this function.
1225  */
1226 void regulator_put(struct regulator *regulator)
1227 {
1228 	struct regulator_dev *rdev;
1229 
1230 	if (regulator == NULL || IS_ERR(regulator))
1231 		return;
1232 
1233 	mutex_lock(&regulator_list_mutex);
1234 	rdev = regulator->rdev;
1235 
1236 	/* remove any sysfs entries */
1237 	if (regulator->dev) {
1238 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239 		kfree(regulator->supply_name);
1240 		device_remove_file(regulator->dev, &regulator->dev_attr);
1241 		kfree(regulator->dev_attr.attr.name);
1242 	}
1243 	list_del(&regulator->list);
1244 	kfree(regulator);
1245 
1246 	rdev->open_count--;
1247 	rdev->exclusive = 0;
1248 
1249 	module_put(rdev->owner);
1250 	mutex_unlock(&regulator_list_mutex);
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_put);
1253 
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1255 {
1256 	if (!rdev->constraints)
1257 		return 0;
1258 
1259 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1260 		return 1;
1261 	else
1262 		return 0;
1263 }
1264 
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1267 {
1268 	int ret, delay;
1269 
1270 	if (rdev->use_count == 0) {
1271 		/* do we need to enable the supply regulator first */
1272 		if (rdev->supply) {
1273 			mutex_lock(&rdev->supply->mutex);
1274 			ret = _regulator_enable(rdev->supply);
1275 			mutex_unlock(&rdev->supply->mutex);
1276 			if (ret < 0) {
1277 				printk(KERN_ERR "%s: failed to enable %s: %d\n",
1278 				       __func__, rdev_get_name(rdev), ret);
1279 				return ret;
1280 			}
1281 		}
1282 	}
1283 
1284 	/* check voltage and requested load before enabling */
1285 	if (rdev->constraints &&
1286 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1287 		drms_uA_update(rdev);
1288 
1289 	if (rdev->use_count == 0) {
1290 		/* The regulator may on if it's not switchable or left on */
1291 		ret = _regulator_is_enabled(rdev);
1292 		if (ret == -EINVAL || ret == 0) {
1293 			if (!_regulator_can_change_status(rdev))
1294 				return -EPERM;
1295 
1296 			if (!rdev->desc->ops->enable)
1297 				return -EINVAL;
1298 
1299 			/* Query before enabling in case configuration
1300 			 * dependant.  */
1301 			ret = _regulator_get_enable_time(rdev);
1302 			if (ret >= 0) {
1303 				delay = ret;
1304 			} else {
1305 				printk(KERN_WARNING
1306 					"%s: enable_time() failed for %s: %d\n",
1307 					__func__, rdev_get_name(rdev),
1308 					ret);
1309 				delay = 0;
1310 			}
1311 
1312 			/* Allow the regulator to ramp; it would be useful
1313 			 * to extend this for bulk operations so that the
1314 			 * regulators can ramp together.  */
1315 			ret = rdev->desc->ops->enable(rdev);
1316 			if (ret < 0)
1317 				return ret;
1318 
1319 			if (delay >= 1000) {
1320 				mdelay(delay / 1000);
1321 				udelay(delay % 1000);
1322 			} else if (delay) {
1323 				udelay(delay);
1324 			}
1325 
1326 		} else if (ret < 0) {
1327 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1328 			       __func__, rdev_get_name(rdev), ret);
1329 			return ret;
1330 		}
1331 		/* Fallthrough on positive return values - already enabled */
1332 	}
1333 
1334 	rdev->use_count++;
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * regulator_enable - enable regulator output
1341  * @regulator: regulator source
1342  *
1343  * Request that the regulator be enabled with the regulator output at
1344  * the predefined voltage or current value.  Calls to regulator_enable()
1345  * must be balanced with calls to regulator_disable().
1346  *
1347  * NOTE: the output value can be set by other drivers, boot loader or may be
1348  * hardwired in the regulator.
1349  */
1350 int regulator_enable(struct regulator *regulator)
1351 {
1352 	struct regulator_dev *rdev = regulator->rdev;
1353 	int ret = 0;
1354 
1355 	mutex_lock(&rdev->mutex);
1356 	ret = _regulator_enable(rdev);
1357 	mutex_unlock(&rdev->mutex);
1358 	return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(regulator_enable);
1361 
1362 /* locks held by regulator_disable() */
1363 static int _regulator_disable(struct regulator_dev *rdev,
1364 		struct regulator_dev **supply_rdev_ptr)
1365 {
1366 	int ret = 0;
1367 	*supply_rdev_ptr = NULL;
1368 
1369 	if (WARN(rdev->use_count <= 0,
1370 			"unbalanced disables for %s\n",
1371 			rdev_get_name(rdev)))
1372 		return -EIO;
1373 
1374 	/* are we the last user and permitted to disable ? */
1375 	if (rdev->use_count == 1 &&
1376 	    (rdev->constraints && !rdev->constraints->always_on)) {
1377 
1378 		/* we are last user */
1379 		if (_regulator_can_change_status(rdev) &&
1380 		    rdev->desc->ops->disable) {
1381 			ret = rdev->desc->ops->disable(rdev);
1382 			if (ret < 0) {
1383 				printk(KERN_ERR "%s: failed to disable %s\n",
1384 				       __func__, rdev_get_name(rdev));
1385 				return ret;
1386 			}
1387 
1388 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1389 					     NULL);
1390 		}
1391 
1392 		/* decrease our supplies ref count and disable if required */
1393 		*supply_rdev_ptr = rdev->supply;
1394 
1395 		rdev->use_count = 0;
1396 	} else if (rdev->use_count > 1) {
1397 
1398 		if (rdev->constraints &&
1399 			(rdev->constraints->valid_ops_mask &
1400 			REGULATOR_CHANGE_DRMS))
1401 			drms_uA_update(rdev);
1402 
1403 		rdev->use_count--;
1404 	}
1405 	return ret;
1406 }
1407 
1408 /**
1409  * regulator_disable - disable regulator output
1410  * @regulator: regulator source
1411  *
1412  * Disable the regulator output voltage or current.  Calls to
1413  * regulator_enable() must be balanced with calls to
1414  * regulator_disable().
1415  *
1416  * NOTE: this will only disable the regulator output if no other consumer
1417  * devices have it enabled, the regulator device supports disabling and
1418  * machine constraints permit this operation.
1419  */
1420 int regulator_disable(struct regulator *regulator)
1421 {
1422 	struct regulator_dev *rdev = regulator->rdev;
1423 	struct regulator_dev *supply_rdev = NULL;
1424 	int ret = 0;
1425 
1426 	mutex_lock(&rdev->mutex);
1427 	ret = _regulator_disable(rdev, &supply_rdev);
1428 	mutex_unlock(&rdev->mutex);
1429 
1430 	/* decrease our supplies ref count and disable if required */
1431 	while (supply_rdev != NULL) {
1432 		rdev = supply_rdev;
1433 
1434 		mutex_lock(&rdev->mutex);
1435 		_regulator_disable(rdev, &supply_rdev);
1436 		mutex_unlock(&rdev->mutex);
1437 	}
1438 
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(regulator_disable);
1442 
1443 /* locks held by regulator_force_disable() */
1444 static int _regulator_force_disable(struct regulator_dev *rdev,
1445 		struct regulator_dev **supply_rdev_ptr)
1446 {
1447 	int ret = 0;
1448 
1449 	/* force disable */
1450 	if (rdev->desc->ops->disable) {
1451 		/* ah well, who wants to live forever... */
1452 		ret = rdev->desc->ops->disable(rdev);
1453 		if (ret < 0) {
1454 			printk(KERN_ERR "%s: failed to force disable %s\n",
1455 			       __func__, rdev_get_name(rdev));
1456 			return ret;
1457 		}
1458 		/* notify other consumers that power has been forced off */
1459 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1460 			REGULATOR_EVENT_DISABLE, NULL);
1461 	}
1462 
1463 	/* decrease our supplies ref count and disable if required */
1464 	*supply_rdev_ptr = rdev->supply;
1465 
1466 	rdev->use_count = 0;
1467 	return ret;
1468 }
1469 
1470 /**
1471  * regulator_force_disable - force disable regulator output
1472  * @regulator: regulator source
1473  *
1474  * Forcibly disable the regulator output voltage or current.
1475  * NOTE: this *will* disable the regulator output even if other consumer
1476  * devices have it enabled. This should be used for situations when device
1477  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1478  */
1479 int regulator_force_disable(struct regulator *regulator)
1480 {
1481 	struct regulator_dev *supply_rdev = NULL;
1482 	int ret;
1483 
1484 	mutex_lock(&regulator->rdev->mutex);
1485 	regulator->uA_load = 0;
1486 	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1487 	mutex_unlock(&regulator->rdev->mutex);
1488 
1489 	if (supply_rdev)
1490 		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(regulator_force_disable);
1495 
1496 static int _regulator_is_enabled(struct regulator_dev *rdev)
1497 {
1498 	/* If we don't know then assume that the regulator is always on */
1499 	if (!rdev->desc->ops->is_enabled)
1500 		return 1;
1501 
1502 	return rdev->desc->ops->is_enabled(rdev);
1503 }
1504 
1505 /**
1506  * regulator_is_enabled - is the regulator output enabled
1507  * @regulator: regulator source
1508  *
1509  * Returns positive if the regulator driver backing the source/client
1510  * has requested that the device be enabled, zero if it hasn't, else a
1511  * negative errno code.
1512  *
1513  * Note that the device backing this regulator handle can have multiple
1514  * users, so it might be enabled even if regulator_enable() was never
1515  * called for this particular source.
1516  */
1517 int regulator_is_enabled(struct regulator *regulator)
1518 {
1519 	int ret;
1520 
1521 	mutex_lock(&regulator->rdev->mutex);
1522 	ret = _regulator_is_enabled(regulator->rdev);
1523 	mutex_unlock(&regulator->rdev->mutex);
1524 
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1528 
1529 /**
1530  * regulator_count_voltages - count regulator_list_voltage() selectors
1531  * @regulator: regulator source
1532  *
1533  * Returns number of selectors, or negative errno.  Selectors are
1534  * numbered starting at zero, and typically correspond to bitfields
1535  * in hardware registers.
1536  */
1537 int regulator_count_voltages(struct regulator *regulator)
1538 {
1539 	struct regulator_dev	*rdev = regulator->rdev;
1540 
1541 	return rdev->desc->n_voltages ? : -EINVAL;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1544 
1545 /**
1546  * regulator_list_voltage - enumerate supported voltages
1547  * @regulator: regulator source
1548  * @selector: identify voltage to list
1549  * Context: can sleep
1550  *
1551  * Returns a voltage that can be passed to @regulator_set_voltage(),
1552  * zero if this selector code can't be used on this system, or a
1553  * negative errno.
1554  */
1555 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1556 {
1557 	struct regulator_dev	*rdev = regulator->rdev;
1558 	struct regulator_ops	*ops = rdev->desc->ops;
1559 	int			ret;
1560 
1561 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1562 		return -EINVAL;
1563 
1564 	mutex_lock(&rdev->mutex);
1565 	ret = ops->list_voltage(rdev, selector);
1566 	mutex_unlock(&rdev->mutex);
1567 
1568 	if (ret > 0) {
1569 		if (ret < rdev->constraints->min_uV)
1570 			ret = 0;
1571 		else if (ret > rdev->constraints->max_uV)
1572 			ret = 0;
1573 	}
1574 
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1578 
1579 /**
1580  * regulator_is_supported_voltage - check if a voltage range can be supported
1581  *
1582  * @regulator: Regulator to check.
1583  * @min_uV: Minimum required voltage in uV.
1584  * @max_uV: Maximum required voltage in uV.
1585  *
1586  * Returns a boolean or a negative error code.
1587  */
1588 int regulator_is_supported_voltage(struct regulator *regulator,
1589 				   int min_uV, int max_uV)
1590 {
1591 	int i, voltages, ret;
1592 
1593 	ret = regulator_count_voltages(regulator);
1594 	if (ret < 0)
1595 		return ret;
1596 	voltages = ret;
1597 
1598 	for (i = 0; i < voltages; i++) {
1599 		ret = regulator_list_voltage(regulator, i);
1600 
1601 		if (ret >= min_uV && ret <= max_uV)
1602 			return 1;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 /**
1609  * regulator_set_voltage - set regulator output voltage
1610  * @regulator: regulator source
1611  * @min_uV: Minimum required voltage in uV
1612  * @max_uV: Maximum acceptable voltage in uV
1613  *
1614  * Sets a voltage regulator to the desired output voltage. This can be set
1615  * during any regulator state. IOW, regulator can be disabled or enabled.
1616  *
1617  * If the regulator is enabled then the voltage will change to the new value
1618  * immediately otherwise if the regulator is disabled the regulator will
1619  * output at the new voltage when enabled.
1620  *
1621  * NOTE: If the regulator is shared between several devices then the lowest
1622  * request voltage that meets the system constraints will be used.
1623  * Regulator system constraints must be set for this regulator before
1624  * calling this function otherwise this call will fail.
1625  */
1626 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1627 {
1628 	struct regulator_dev *rdev = regulator->rdev;
1629 	int ret;
1630 
1631 	mutex_lock(&rdev->mutex);
1632 
1633 	/* sanity check */
1634 	if (!rdev->desc->ops->set_voltage) {
1635 		ret = -EINVAL;
1636 		goto out;
1637 	}
1638 
1639 	/* constraints check */
1640 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1641 	if (ret < 0)
1642 		goto out;
1643 	regulator->min_uV = min_uV;
1644 	regulator->max_uV = max_uV;
1645 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1646 
1647 out:
1648 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1649 	mutex_unlock(&rdev->mutex);
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1653 
1654 static int _regulator_get_voltage(struct regulator_dev *rdev)
1655 {
1656 	/* sanity check */
1657 	if (rdev->desc->ops->get_voltage)
1658 		return rdev->desc->ops->get_voltage(rdev);
1659 	else
1660 		return -EINVAL;
1661 }
1662 
1663 /**
1664  * regulator_get_voltage - get regulator output voltage
1665  * @regulator: regulator source
1666  *
1667  * This returns the current regulator voltage in uV.
1668  *
1669  * NOTE: If the regulator is disabled it will return the voltage value. This
1670  * function should not be used to determine regulator state.
1671  */
1672 int regulator_get_voltage(struct regulator *regulator)
1673 {
1674 	int ret;
1675 
1676 	mutex_lock(&regulator->rdev->mutex);
1677 
1678 	ret = _regulator_get_voltage(regulator->rdev);
1679 
1680 	mutex_unlock(&regulator->rdev->mutex);
1681 
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1685 
1686 /**
1687  * regulator_set_current_limit - set regulator output current limit
1688  * @regulator: regulator source
1689  * @min_uA: Minimuum supported current in uA
1690  * @max_uA: Maximum supported current in uA
1691  *
1692  * Sets current sink to the desired output current. This can be set during
1693  * any regulator state. IOW, regulator can be disabled or enabled.
1694  *
1695  * If the regulator is enabled then the current will change to the new value
1696  * immediately otherwise if the regulator is disabled the regulator will
1697  * output at the new current when enabled.
1698  *
1699  * NOTE: Regulator system constraints must be set for this regulator before
1700  * calling this function otherwise this call will fail.
1701  */
1702 int regulator_set_current_limit(struct regulator *regulator,
1703 			       int min_uA, int max_uA)
1704 {
1705 	struct regulator_dev *rdev = regulator->rdev;
1706 	int ret;
1707 
1708 	mutex_lock(&rdev->mutex);
1709 
1710 	/* sanity check */
1711 	if (!rdev->desc->ops->set_current_limit) {
1712 		ret = -EINVAL;
1713 		goto out;
1714 	}
1715 
1716 	/* constraints check */
1717 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1718 	if (ret < 0)
1719 		goto out;
1720 
1721 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1722 out:
1723 	mutex_unlock(&rdev->mutex);
1724 	return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1727 
1728 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1729 {
1730 	int ret;
1731 
1732 	mutex_lock(&rdev->mutex);
1733 
1734 	/* sanity check */
1735 	if (!rdev->desc->ops->get_current_limit) {
1736 		ret = -EINVAL;
1737 		goto out;
1738 	}
1739 
1740 	ret = rdev->desc->ops->get_current_limit(rdev);
1741 out:
1742 	mutex_unlock(&rdev->mutex);
1743 	return ret;
1744 }
1745 
1746 /**
1747  * regulator_get_current_limit - get regulator output current
1748  * @regulator: regulator source
1749  *
1750  * This returns the current supplied by the specified current sink in uA.
1751  *
1752  * NOTE: If the regulator is disabled it will return the current value. This
1753  * function should not be used to determine regulator state.
1754  */
1755 int regulator_get_current_limit(struct regulator *regulator)
1756 {
1757 	return _regulator_get_current_limit(regulator->rdev);
1758 }
1759 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1760 
1761 /**
1762  * regulator_set_mode - set regulator operating mode
1763  * @regulator: regulator source
1764  * @mode: operating mode - one of the REGULATOR_MODE constants
1765  *
1766  * Set regulator operating mode to increase regulator efficiency or improve
1767  * regulation performance.
1768  *
1769  * NOTE: Regulator system constraints must be set for this regulator before
1770  * calling this function otherwise this call will fail.
1771  */
1772 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1773 {
1774 	struct regulator_dev *rdev = regulator->rdev;
1775 	int ret;
1776 	int regulator_curr_mode;
1777 
1778 	mutex_lock(&rdev->mutex);
1779 
1780 	/* sanity check */
1781 	if (!rdev->desc->ops->set_mode) {
1782 		ret = -EINVAL;
1783 		goto out;
1784 	}
1785 
1786 	/* return if the same mode is requested */
1787 	if (rdev->desc->ops->get_mode) {
1788 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1789 		if (regulator_curr_mode == mode) {
1790 			ret = 0;
1791 			goto out;
1792 		}
1793 	}
1794 
1795 	/* constraints check */
1796 	ret = regulator_check_mode(rdev, mode);
1797 	if (ret < 0)
1798 		goto out;
1799 
1800 	ret = rdev->desc->ops->set_mode(rdev, mode);
1801 out:
1802 	mutex_unlock(&rdev->mutex);
1803 	return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_set_mode);
1806 
1807 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1808 {
1809 	int ret;
1810 
1811 	mutex_lock(&rdev->mutex);
1812 
1813 	/* sanity check */
1814 	if (!rdev->desc->ops->get_mode) {
1815 		ret = -EINVAL;
1816 		goto out;
1817 	}
1818 
1819 	ret = rdev->desc->ops->get_mode(rdev);
1820 out:
1821 	mutex_unlock(&rdev->mutex);
1822 	return ret;
1823 }
1824 
1825 /**
1826  * regulator_get_mode - get regulator operating mode
1827  * @regulator: regulator source
1828  *
1829  * Get the current regulator operating mode.
1830  */
1831 unsigned int regulator_get_mode(struct regulator *regulator)
1832 {
1833 	return _regulator_get_mode(regulator->rdev);
1834 }
1835 EXPORT_SYMBOL_GPL(regulator_get_mode);
1836 
1837 /**
1838  * regulator_set_optimum_mode - set regulator optimum operating mode
1839  * @regulator: regulator source
1840  * @uA_load: load current
1841  *
1842  * Notifies the regulator core of a new device load. This is then used by
1843  * DRMS (if enabled by constraints) to set the most efficient regulator
1844  * operating mode for the new regulator loading.
1845  *
1846  * Consumer devices notify their supply regulator of the maximum power
1847  * they will require (can be taken from device datasheet in the power
1848  * consumption tables) when they change operational status and hence power
1849  * state. Examples of operational state changes that can affect power
1850  * consumption are :-
1851  *
1852  *    o Device is opened / closed.
1853  *    o Device I/O is about to begin or has just finished.
1854  *    o Device is idling in between work.
1855  *
1856  * This information is also exported via sysfs to userspace.
1857  *
1858  * DRMS will sum the total requested load on the regulator and change
1859  * to the most efficient operating mode if platform constraints allow.
1860  *
1861  * Returns the new regulator mode or error.
1862  */
1863 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1864 {
1865 	struct regulator_dev *rdev = regulator->rdev;
1866 	struct regulator *consumer;
1867 	int ret, output_uV, input_uV, total_uA_load = 0;
1868 	unsigned int mode;
1869 
1870 	mutex_lock(&rdev->mutex);
1871 
1872 	regulator->uA_load = uA_load;
1873 	ret = regulator_check_drms(rdev);
1874 	if (ret < 0)
1875 		goto out;
1876 	ret = -EINVAL;
1877 
1878 	/* sanity check */
1879 	if (!rdev->desc->ops->get_optimum_mode)
1880 		goto out;
1881 
1882 	/* get output voltage */
1883 	output_uV = rdev->desc->ops->get_voltage(rdev);
1884 	if (output_uV <= 0) {
1885 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1886 			__func__, rdev_get_name(rdev));
1887 		goto out;
1888 	}
1889 
1890 	/* get input voltage */
1891 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1892 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1893 	else
1894 		input_uV = rdev->constraints->input_uV;
1895 	if (input_uV <= 0) {
1896 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1897 			__func__, rdev_get_name(rdev));
1898 		goto out;
1899 	}
1900 
1901 	/* calc total requested load for this regulator */
1902 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1903 		total_uA_load += consumer->uA_load;
1904 
1905 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1906 						 input_uV, output_uV,
1907 						 total_uA_load);
1908 	ret = regulator_check_mode(rdev, mode);
1909 	if (ret < 0) {
1910 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1911 			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1912 			total_uA_load, input_uV, output_uV);
1913 		goto out;
1914 	}
1915 
1916 	ret = rdev->desc->ops->set_mode(rdev, mode);
1917 	if (ret < 0) {
1918 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1919 			__func__, mode, rdev_get_name(rdev));
1920 		goto out;
1921 	}
1922 	ret = mode;
1923 out:
1924 	mutex_unlock(&rdev->mutex);
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1928 
1929 /**
1930  * regulator_register_notifier - register regulator event notifier
1931  * @regulator: regulator source
1932  * @nb: notifier block
1933  *
1934  * Register notifier block to receive regulator events.
1935  */
1936 int regulator_register_notifier(struct regulator *regulator,
1937 			      struct notifier_block *nb)
1938 {
1939 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1940 						nb);
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1943 
1944 /**
1945  * regulator_unregister_notifier - unregister regulator event notifier
1946  * @regulator: regulator source
1947  * @nb: notifier block
1948  *
1949  * Unregister regulator event notifier block.
1950  */
1951 int regulator_unregister_notifier(struct regulator *regulator,
1952 				struct notifier_block *nb)
1953 {
1954 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1955 						  nb);
1956 }
1957 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1958 
1959 /* notify regulator consumers and downstream regulator consumers.
1960  * Note mutex must be held by caller.
1961  */
1962 static void _notifier_call_chain(struct regulator_dev *rdev,
1963 				  unsigned long event, void *data)
1964 {
1965 	struct regulator_dev *_rdev;
1966 
1967 	/* call rdev chain first */
1968 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1969 
1970 	/* now notify regulator we supply */
1971 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1972 		mutex_lock(&_rdev->mutex);
1973 		_notifier_call_chain(_rdev, event, data);
1974 		mutex_unlock(&_rdev->mutex);
1975 	}
1976 }
1977 
1978 /**
1979  * regulator_bulk_get - get multiple regulator consumers
1980  *
1981  * @dev:           Device to supply
1982  * @num_consumers: Number of consumers to register
1983  * @consumers:     Configuration of consumers; clients are stored here.
1984  *
1985  * @return 0 on success, an errno on failure.
1986  *
1987  * This helper function allows drivers to get several regulator
1988  * consumers in one operation.  If any of the regulators cannot be
1989  * acquired then any regulators that were allocated will be freed
1990  * before returning to the caller.
1991  */
1992 int regulator_bulk_get(struct device *dev, int num_consumers,
1993 		       struct regulator_bulk_data *consumers)
1994 {
1995 	int i;
1996 	int ret;
1997 
1998 	for (i = 0; i < num_consumers; i++)
1999 		consumers[i].consumer = NULL;
2000 
2001 	for (i = 0; i < num_consumers; i++) {
2002 		consumers[i].consumer = regulator_get(dev,
2003 						      consumers[i].supply);
2004 		if (IS_ERR(consumers[i].consumer)) {
2005 			ret = PTR_ERR(consumers[i].consumer);
2006 			dev_err(dev, "Failed to get supply '%s': %d\n",
2007 				consumers[i].supply, ret);
2008 			consumers[i].consumer = NULL;
2009 			goto err;
2010 		}
2011 	}
2012 
2013 	return 0;
2014 
2015 err:
2016 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2017 		regulator_put(consumers[i].consumer);
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2022 
2023 /**
2024  * regulator_bulk_enable - enable multiple regulator consumers
2025  *
2026  * @num_consumers: Number of consumers
2027  * @consumers:     Consumer data; clients are stored here.
2028  * @return         0 on success, an errno on failure
2029  *
2030  * This convenience API allows consumers to enable multiple regulator
2031  * clients in a single API call.  If any consumers cannot be enabled
2032  * then any others that were enabled will be disabled again prior to
2033  * return.
2034  */
2035 int regulator_bulk_enable(int num_consumers,
2036 			  struct regulator_bulk_data *consumers)
2037 {
2038 	int i;
2039 	int ret;
2040 
2041 	for (i = 0; i < num_consumers; i++) {
2042 		ret = regulator_enable(consumers[i].consumer);
2043 		if (ret != 0)
2044 			goto err;
2045 	}
2046 
2047 	return 0;
2048 
2049 err:
2050 	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2051 	for (--i; i >= 0; --i)
2052 		regulator_disable(consumers[i].consumer);
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2057 
2058 /**
2059  * regulator_bulk_disable - disable multiple regulator consumers
2060  *
2061  * @num_consumers: Number of consumers
2062  * @consumers:     Consumer data; clients are stored here.
2063  * @return         0 on success, an errno on failure
2064  *
2065  * This convenience API allows consumers to disable multiple regulator
2066  * clients in a single API call.  If any consumers cannot be enabled
2067  * then any others that were disabled will be disabled again prior to
2068  * return.
2069  */
2070 int regulator_bulk_disable(int num_consumers,
2071 			   struct regulator_bulk_data *consumers)
2072 {
2073 	int i;
2074 	int ret;
2075 
2076 	for (i = 0; i < num_consumers; i++) {
2077 		ret = regulator_disable(consumers[i].consumer);
2078 		if (ret != 0)
2079 			goto err;
2080 	}
2081 
2082 	return 0;
2083 
2084 err:
2085 	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2086 	       ret);
2087 	for (--i; i >= 0; --i)
2088 		regulator_enable(consumers[i].consumer);
2089 
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2093 
2094 /**
2095  * regulator_bulk_free - free multiple regulator consumers
2096  *
2097  * @num_consumers: Number of consumers
2098  * @consumers:     Consumer data; clients are stored here.
2099  *
2100  * This convenience API allows consumers to free multiple regulator
2101  * clients in a single API call.
2102  */
2103 void regulator_bulk_free(int num_consumers,
2104 			 struct regulator_bulk_data *consumers)
2105 {
2106 	int i;
2107 
2108 	for (i = 0; i < num_consumers; i++) {
2109 		regulator_put(consumers[i].consumer);
2110 		consumers[i].consumer = NULL;
2111 	}
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2114 
2115 /**
2116  * regulator_notifier_call_chain - call regulator event notifier
2117  * @rdev: regulator source
2118  * @event: notifier block
2119  * @data: callback-specific data.
2120  *
2121  * Called by regulator drivers to notify clients a regulator event has
2122  * occurred. We also notify regulator clients downstream.
2123  * Note lock must be held by caller.
2124  */
2125 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2126 				  unsigned long event, void *data)
2127 {
2128 	_notifier_call_chain(rdev, event, data);
2129 	return NOTIFY_DONE;
2130 
2131 }
2132 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2133 
2134 /**
2135  * regulator_mode_to_status - convert a regulator mode into a status
2136  *
2137  * @mode: Mode to convert
2138  *
2139  * Convert a regulator mode into a status.
2140  */
2141 int regulator_mode_to_status(unsigned int mode)
2142 {
2143 	switch (mode) {
2144 	case REGULATOR_MODE_FAST:
2145 		return REGULATOR_STATUS_FAST;
2146 	case REGULATOR_MODE_NORMAL:
2147 		return REGULATOR_STATUS_NORMAL;
2148 	case REGULATOR_MODE_IDLE:
2149 		return REGULATOR_STATUS_IDLE;
2150 	case REGULATOR_STATUS_STANDBY:
2151 		return REGULATOR_STATUS_STANDBY;
2152 	default:
2153 		return 0;
2154 	}
2155 }
2156 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2157 
2158 /*
2159  * To avoid cluttering sysfs (and memory) with useless state, only
2160  * create attributes that can be meaningfully displayed.
2161  */
2162 static int add_regulator_attributes(struct regulator_dev *rdev)
2163 {
2164 	struct device		*dev = &rdev->dev;
2165 	struct regulator_ops	*ops = rdev->desc->ops;
2166 	int			status = 0;
2167 
2168 	/* some attributes need specific methods to be displayed */
2169 	if (ops->get_voltage) {
2170 		status = device_create_file(dev, &dev_attr_microvolts);
2171 		if (status < 0)
2172 			return status;
2173 	}
2174 	if (ops->get_current_limit) {
2175 		status = device_create_file(dev, &dev_attr_microamps);
2176 		if (status < 0)
2177 			return status;
2178 	}
2179 	if (ops->get_mode) {
2180 		status = device_create_file(dev, &dev_attr_opmode);
2181 		if (status < 0)
2182 			return status;
2183 	}
2184 	if (ops->is_enabled) {
2185 		status = device_create_file(dev, &dev_attr_state);
2186 		if (status < 0)
2187 			return status;
2188 	}
2189 	if (ops->get_status) {
2190 		status = device_create_file(dev, &dev_attr_status);
2191 		if (status < 0)
2192 			return status;
2193 	}
2194 
2195 	/* some attributes are type-specific */
2196 	if (rdev->desc->type == REGULATOR_CURRENT) {
2197 		status = device_create_file(dev, &dev_attr_requested_microamps);
2198 		if (status < 0)
2199 			return status;
2200 	}
2201 
2202 	/* all the other attributes exist to support constraints;
2203 	 * don't show them if there are no constraints, or if the
2204 	 * relevant supporting methods are missing.
2205 	 */
2206 	if (!rdev->constraints)
2207 		return status;
2208 
2209 	/* constraints need specific supporting methods */
2210 	if (ops->set_voltage) {
2211 		status = device_create_file(dev, &dev_attr_min_microvolts);
2212 		if (status < 0)
2213 			return status;
2214 		status = device_create_file(dev, &dev_attr_max_microvolts);
2215 		if (status < 0)
2216 			return status;
2217 	}
2218 	if (ops->set_current_limit) {
2219 		status = device_create_file(dev, &dev_attr_min_microamps);
2220 		if (status < 0)
2221 			return status;
2222 		status = device_create_file(dev, &dev_attr_max_microamps);
2223 		if (status < 0)
2224 			return status;
2225 	}
2226 
2227 	/* suspend mode constraints need multiple supporting methods */
2228 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2229 		return status;
2230 
2231 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2232 	if (status < 0)
2233 		return status;
2234 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2235 	if (status < 0)
2236 		return status;
2237 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2238 	if (status < 0)
2239 		return status;
2240 
2241 	if (ops->set_suspend_voltage) {
2242 		status = device_create_file(dev,
2243 				&dev_attr_suspend_standby_microvolts);
2244 		if (status < 0)
2245 			return status;
2246 		status = device_create_file(dev,
2247 				&dev_attr_suspend_mem_microvolts);
2248 		if (status < 0)
2249 			return status;
2250 		status = device_create_file(dev,
2251 				&dev_attr_suspend_disk_microvolts);
2252 		if (status < 0)
2253 			return status;
2254 	}
2255 
2256 	if (ops->set_suspend_mode) {
2257 		status = device_create_file(dev,
2258 				&dev_attr_suspend_standby_mode);
2259 		if (status < 0)
2260 			return status;
2261 		status = device_create_file(dev,
2262 				&dev_attr_suspend_mem_mode);
2263 		if (status < 0)
2264 			return status;
2265 		status = device_create_file(dev,
2266 				&dev_attr_suspend_disk_mode);
2267 		if (status < 0)
2268 			return status;
2269 	}
2270 
2271 	return status;
2272 }
2273 
2274 /**
2275  * regulator_register - register regulator
2276  * @regulator_desc: regulator to register
2277  * @dev: struct device for the regulator
2278  * @init_data: platform provided init data, passed through by driver
2279  * @driver_data: private regulator data
2280  *
2281  * Called by regulator drivers to register a regulator.
2282  * Returns 0 on success.
2283  */
2284 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2285 	struct device *dev, struct regulator_init_data *init_data,
2286 	void *driver_data)
2287 {
2288 	static atomic_t regulator_no = ATOMIC_INIT(0);
2289 	struct regulator_dev *rdev;
2290 	int ret, i;
2291 
2292 	if (regulator_desc == NULL)
2293 		return ERR_PTR(-EINVAL);
2294 
2295 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2296 		return ERR_PTR(-EINVAL);
2297 
2298 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2299 	    regulator_desc->type != REGULATOR_CURRENT)
2300 		return ERR_PTR(-EINVAL);
2301 
2302 	if (!init_data)
2303 		return ERR_PTR(-EINVAL);
2304 
2305 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2306 	if (rdev == NULL)
2307 		return ERR_PTR(-ENOMEM);
2308 
2309 	mutex_lock(&regulator_list_mutex);
2310 
2311 	mutex_init(&rdev->mutex);
2312 	rdev->reg_data = driver_data;
2313 	rdev->owner = regulator_desc->owner;
2314 	rdev->desc = regulator_desc;
2315 	INIT_LIST_HEAD(&rdev->consumer_list);
2316 	INIT_LIST_HEAD(&rdev->supply_list);
2317 	INIT_LIST_HEAD(&rdev->list);
2318 	INIT_LIST_HEAD(&rdev->slist);
2319 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2320 
2321 	/* preform any regulator specific init */
2322 	if (init_data->regulator_init) {
2323 		ret = init_data->regulator_init(rdev->reg_data);
2324 		if (ret < 0)
2325 			goto clean;
2326 	}
2327 
2328 	/* register with sysfs */
2329 	rdev->dev.class = &regulator_class;
2330 	rdev->dev.parent = dev;
2331 	dev_set_name(&rdev->dev, "regulator.%d",
2332 		     atomic_inc_return(&regulator_no) - 1);
2333 	ret = device_register(&rdev->dev);
2334 	if (ret != 0) {
2335 		put_device(&rdev->dev);
2336 		goto clean;
2337 	}
2338 
2339 	dev_set_drvdata(&rdev->dev, rdev);
2340 
2341 	/* set regulator constraints */
2342 	ret = set_machine_constraints(rdev, &init_data->constraints);
2343 	if (ret < 0)
2344 		goto scrub;
2345 
2346 	/* add attributes supported by this regulator */
2347 	ret = add_regulator_attributes(rdev);
2348 	if (ret < 0)
2349 		goto scrub;
2350 
2351 	/* set supply regulator if it exists */
2352 	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2353 		dev_err(dev,
2354 			"Supply regulator specified by both name and dev\n");
2355 		ret = -EINVAL;
2356 		goto scrub;
2357 	}
2358 
2359 	if (init_data->supply_regulator) {
2360 		struct regulator_dev *r;
2361 		int found = 0;
2362 
2363 		list_for_each_entry(r, &regulator_list, list) {
2364 			if (strcmp(rdev_get_name(r),
2365 				   init_data->supply_regulator) == 0) {
2366 				found = 1;
2367 				break;
2368 			}
2369 		}
2370 
2371 		if (!found) {
2372 			dev_err(dev, "Failed to find supply %s\n",
2373 				init_data->supply_regulator);
2374 			ret = -ENODEV;
2375 			goto scrub;
2376 		}
2377 
2378 		ret = set_supply(rdev, r);
2379 		if (ret < 0)
2380 			goto scrub;
2381 	}
2382 
2383 	if (init_data->supply_regulator_dev) {
2384 		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2385 		ret = set_supply(rdev,
2386 			dev_get_drvdata(init_data->supply_regulator_dev));
2387 		if (ret < 0)
2388 			goto scrub;
2389 	}
2390 
2391 	/* add consumers devices */
2392 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2393 		ret = set_consumer_device_supply(rdev,
2394 			init_data->consumer_supplies[i].dev,
2395 			init_data->consumer_supplies[i].dev_name,
2396 			init_data->consumer_supplies[i].supply);
2397 		if (ret < 0)
2398 			goto unset_supplies;
2399 	}
2400 
2401 	list_add(&rdev->list, &regulator_list);
2402 out:
2403 	mutex_unlock(&regulator_list_mutex);
2404 	return rdev;
2405 
2406 unset_supplies:
2407 	unset_regulator_supplies(rdev);
2408 
2409 scrub:
2410 	device_unregister(&rdev->dev);
2411 	/* device core frees rdev */
2412 	rdev = ERR_PTR(ret);
2413 	goto out;
2414 
2415 clean:
2416 	kfree(rdev);
2417 	rdev = ERR_PTR(ret);
2418 	goto out;
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_register);
2421 
2422 /**
2423  * regulator_unregister - unregister regulator
2424  * @rdev: regulator to unregister
2425  *
2426  * Called by regulator drivers to unregister a regulator.
2427  */
2428 void regulator_unregister(struct regulator_dev *rdev)
2429 {
2430 	if (rdev == NULL)
2431 		return;
2432 
2433 	mutex_lock(&regulator_list_mutex);
2434 	WARN_ON(rdev->open_count);
2435 	unset_regulator_supplies(rdev);
2436 	list_del(&rdev->list);
2437 	if (rdev->supply)
2438 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2439 	device_unregister(&rdev->dev);
2440 	mutex_unlock(&regulator_list_mutex);
2441 }
2442 EXPORT_SYMBOL_GPL(regulator_unregister);
2443 
2444 /**
2445  * regulator_suspend_prepare - prepare regulators for system wide suspend
2446  * @state: system suspend state
2447  *
2448  * Configure each regulator with it's suspend operating parameters for state.
2449  * This will usually be called by machine suspend code prior to supending.
2450  */
2451 int regulator_suspend_prepare(suspend_state_t state)
2452 {
2453 	struct regulator_dev *rdev;
2454 	int ret = 0;
2455 
2456 	/* ON is handled by regulator active state */
2457 	if (state == PM_SUSPEND_ON)
2458 		return -EINVAL;
2459 
2460 	mutex_lock(&regulator_list_mutex);
2461 	list_for_each_entry(rdev, &regulator_list, list) {
2462 
2463 		mutex_lock(&rdev->mutex);
2464 		ret = suspend_prepare(rdev, state);
2465 		mutex_unlock(&rdev->mutex);
2466 
2467 		if (ret < 0) {
2468 			printk(KERN_ERR "%s: failed to prepare %s\n",
2469 				__func__, rdev_get_name(rdev));
2470 			goto out;
2471 		}
2472 	}
2473 out:
2474 	mutex_unlock(&regulator_list_mutex);
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2478 
2479 /**
2480  * regulator_has_full_constraints - the system has fully specified constraints
2481  *
2482  * Calling this function will cause the regulator API to disable all
2483  * regulators which have a zero use count and don't have an always_on
2484  * constraint in a late_initcall.
2485  *
2486  * The intention is that this will become the default behaviour in a
2487  * future kernel release so users are encouraged to use this facility
2488  * now.
2489  */
2490 void regulator_has_full_constraints(void)
2491 {
2492 	has_full_constraints = 1;
2493 }
2494 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2495 
2496 /**
2497  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2498  *
2499  * Calling this function will cause the regulator API to provide a
2500  * dummy regulator to consumers if no physical regulator is found,
2501  * allowing most consumers to proceed as though a regulator were
2502  * configured.  This allows systems such as those with software
2503  * controllable regulators for the CPU core only to be brought up more
2504  * readily.
2505  */
2506 void regulator_use_dummy_regulator(void)
2507 {
2508 	board_wants_dummy_regulator = true;
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2511 
2512 /**
2513  * rdev_get_drvdata - get rdev regulator driver data
2514  * @rdev: regulator
2515  *
2516  * Get rdev regulator driver private data. This call can be used in the
2517  * regulator driver context.
2518  */
2519 void *rdev_get_drvdata(struct regulator_dev *rdev)
2520 {
2521 	return rdev->reg_data;
2522 }
2523 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2524 
2525 /**
2526  * regulator_get_drvdata - get regulator driver data
2527  * @regulator: regulator
2528  *
2529  * Get regulator driver private data. This call can be used in the consumer
2530  * driver context when non API regulator specific functions need to be called.
2531  */
2532 void *regulator_get_drvdata(struct regulator *regulator)
2533 {
2534 	return regulator->rdev->reg_data;
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2537 
2538 /**
2539  * regulator_set_drvdata - set regulator driver data
2540  * @regulator: regulator
2541  * @data: data
2542  */
2543 void regulator_set_drvdata(struct regulator *regulator, void *data)
2544 {
2545 	regulator->rdev->reg_data = data;
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2548 
2549 /**
2550  * regulator_get_id - get regulator ID
2551  * @rdev: regulator
2552  */
2553 int rdev_get_id(struct regulator_dev *rdev)
2554 {
2555 	return rdev->desc->id;
2556 }
2557 EXPORT_SYMBOL_GPL(rdev_get_id);
2558 
2559 struct device *rdev_get_dev(struct regulator_dev *rdev)
2560 {
2561 	return &rdev->dev;
2562 }
2563 EXPORT_SYMBOL_GPL(rdev_get_dev);
2564 
2565 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2566 {
2567 	return reg_init_data->driver_data;
2568 }
2569 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2570 
2571 static int __init regulator_init(void)
2572 {
2573 	int ret;
2574 
2575 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2576 
2577 	ret = class_register(&regulator_class);
2578 
2579 	regulator_dummy_init();
2580 
2581 	return ret;
2582 }
2583 
2584 /* init early to allow our consumers to complete system booting */
2585 core_initcall(regulator_init);
2586 
2587 static int __init regulator_init_complete(void)
2588 {
2589 	struct regulator_dev *rdev;
2590 	struct regulator_ops *ops;
2591 	struct regulation_constraints *c;
2592 	int enabled, ret;
2593 	const char *name;
2594 
2595 	mutex_lock(&regulator_list_mutex);
2596 
2597 	/* If we have a full configuration then disable any regulators
2598 	 * which are not in use or always_on.  This will become the
2599 	 * default behaviour in the future.
2600 	 */
2601 	list_for_each_entry(rdev, &regulator_list, list) {
2602 		ops = rdev->desc->ops;
2603 		c = rdev->constraints;
2604 
2605 		name = rdev_get_name(rdev);
2606 
2607 		if (!ops->disable || (c && c->always_on))
2608 			continue;
2609 
2610 		mutex_lock(&rdev->mutex);
2611 
2612 		if (rdev->use_count)
2613 			goto unlock;
2614 
2615 		/* If we can't read the status assume it's on. */
2616 		if (ops->is_enabled)
2617 			enabled = ops->is_enabled(rdev);
2618 		else
2619 			enabled = 1;
2620 
2621 		if (!enabled)
2622 			goto unlock;
2623 
2624 		if (has_full_constraints) {
2625 			/* We log since this may kill the system if it
2626 			 * goes wrong. */
2627 			printk(KERN_INFO "%s: disabling %s\n",
2628 			       __func__, name);
2629 			ret = ops->disable(rdev);
2630 			if (ret != 0) {
2631 				printk(KERN_ERR
2632 				       "%s: couldn't disable %s: %d\n",
2633 				       __func__, name, ret);
2634 			}
2635 		} else {
2636 			/* The intention is that in future we will
2637 			 * assume that full constraints are provided
2638 			 * so warn even if we aren't going to do
2639 			 * anything here.
2640 			 */
2641 			printk(KERN_WARNING
2642 			       "%s: incomplete constraints, leaving %s on\n",
2643 			       __func__, name);
2644 		}
2645 
2646 unlock:
2647 		mutex_unlock(&rdev->mutex);
2648 	}
2649 
2650 	mutex_unlock(&regulator_list_mutex);
2651 
2652 	return 0;
2653 }
2654 late_initcall(regulator_init_complete);
2655