1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/slab.h> 20 #include <linux/err.h> 21 #include <linux/mutex.h> 22 #include <linux/suspend.h> 23 #include <linux/delay.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/driver.h> 26 #include <linux/regulator/machine.h> 27 28 #include "dummy.h" 29 30 #define REGULATOR_VERSION "0.5" 31 32 static DEFINE_MUTEX(regulator_list_mutex); 33 static LIST_HEAD(regulator_list); 34 static LIST_HEAD(regulator_map_list); 35 static int has_full_constraints; 36 static bool board_wants_dummy_regulator; 37 38 /* 39 * struct regulator_map 40 * 41 * Used to provide symbolic supply names to devices. 42 */ 43 struct regulator_map { 44 struct list_head list; 45 const char *dev_name; /* The dev_name() for the consumer */ 46 const char *supply; 47 struct regulator_dev *regulator; 48 }; 49 50 /* 51 * struct regulator 52 * 53 * One for each consumer device. 54 */ 55 struct regulator { 56 struct device *dev; 57 struct list_head list; 58 int uA_load; 59 int min_uV; 60 int max_uV; 61 char *supply_name; 62 struct device_attribute dev_attr; 63 struct regulator_dev *rdev; 64 }; 65 66 static int _regulator_is_enabled(struct regulator_dev *rdev); 67 static int _regulator_disable(struct regulator_dev *rdev, 68 struct regulator_dev **supply_rdev_ptr); 69 static int _regulator_get_voltage(struct regulator_dev *rdev); 70 static int _regulator_get_current_limit(struct regulator_dev *rdev); 71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 72 static void _notifier_call_chain(struct regulator_dev *rdev, 73 unsigned long event, void *data); 74 75 static const char *rdev_get_name(struct regulator_dev *rdev) 76 { 77 if (rdev->constraints && rdev->constraints->name) 78 return rdev->constraints->name; 79 else if (rdev->desc->name) 80 return rdev->desc->name; 81 else 82 return ""; 83 } 84 85 /* gets the regulator for a given consumer device */ 86 static struct regulator *get_device_regulator(struct device *dev) 87 { 88 struct regulator *regulator = NULL; 89 struct regulator_dev *rdev; 90 91 mutex_lock(®ulator_list_mutex); 92 list_for_each_entry(rdev, ®ulator_list, list) { 93 mutex_lock(&rdev->mutex); 94 list_for_each_entry(regulator, &rdev->consumer_list, list) { 95 if (regulator->dev == dev) { 96 mutex_unlock(&rdev->mutex); 97 mutex_unlock(®ulator_list_mutex); 98 return regulator; 99 } 100 } 101 mutex_unlock(&rdev->mutex); 102 } 103 mutex_unlock(®ulator_list_mutex); 104 return NULL; 105 } 106 107 /* Platform voltage constraint check */ 108 static int regulator_check_voltage(struct regulator_dev *rdev, 109 int *min_uV, int *max_uV) 110 { 111 BUG_ON(*min_uV > *max_uV); 112 113 if (!rdev->constraints) { 114 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 115 rdev_get_name(rdev)); 116 return -ENODEV; 117 } 118 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 119 printk(KERN_ERR "%s: operation not allowed for %s\n", 120 __func__, rdev_get_name(rdev)); 121 return -EPERM; 122 } 123 124 if (*max_uV > rdev->constraints->max_uV) 125 *max_uV = rdev->constraints->max_uV; 126 if (*min_uV < rdev->constraints->min_uV) 127 *min_uV = rdev->constraints->min_uV; 128 129 if (*min_uV > *max_uV) 130 return -EINVAL; 131 132 return 0; 133 } 134 135 /* current constraint check */ 136 static int regulator_check_current_limit(struct regulator_dev *rdev, 137 int *min_uA, int *max_uA) 138 { 139 BUG_ON(*min_uA > *max_uA); 140 141 if (!rdev->constraints) { 142 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 143 rdev_get_name(rdev)); 144 return -ENODEV; 145 } 146 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 147 printk(KERN_ERR "%s: operation not allowed for %s\n", 148 __func__, rdev_get_name(rdev)); 149 return -EPERM; 150 } 151 152 if (*max_uA > rdev->constraints->max_uA) 153 *max_uA = rdev->constraints->max_uA; 154 if (*min_uA < rdev->constraints->min_uA) 155 *min_uA = rdev->constraints->min_uA; 156 157 if (*min_uA > *max_uA) 158 return -EINVAL; 159 160 return 0; 161 } 162 163 /* operating mode constraint check */ 164 static int regulator_check_mode(struct regulator_dev *rdev, int mode) 165 { 166 switch (mode) { 167 case REGULATOR_MODE_FAST: 168 case REGULATOR_MODE_NORMAL: 169 case REGULATOR_MODE_IDLE: 170 case REGULATOR_MODE_STANDBY: 171 break; 172 default: 173 return -EINVAL; 174 } 175 176 if (!rdev->constraints) { 177 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 178 rdev_get_name(rdev)); 179 return -ENODEV; 180 } 181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 182 printk(KERN_ERR "%s: operation not allowed for %s\n", 183 __func__, rdev_get_name(rdev)); 184 return -EPERM; 185 } 186 if (!(rdev->constraints->valid_modes_mask & mode)) { 187 printk(KERN_ERR "%s: invalid mode %x for %s\n", 188 __func__, mode, rdev_get_name(rdev)); 189 return -EINVAL; 190 } 191 return 0; 192 } 193 194 /* dynamic regulator mode switching constraint check */ 195 static int regulator_check_drms(struct regulator_dev *rdev) 196 { 197 if (!rdev->constraints) { 198 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 199 rdev_get_name(rdev)); 200 return -ENODEV; 201 } 202 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 203 printk(KERN_ERR "%s: operation not allowed for %s\n", 204 __func__, rdev_get_name(rdev)); 205 return -EPERM; 206 } 207 return 0; 208 } 209 210 static ssize_t device_requested_uA_show(struct device *dev, 211 struct device_attribute *attr, char *buf) 212 { 213 struct regulator *regulator; 214 215 regulator = get_device_regulator(dev); 216 if (regulator == NULL) 217 return 0; 218 219 return sprintf(buf, "%d\n", regulator->uA_load); 220 } 221 222 static ssize_t regulator_uV_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct regulator_dev *rdev = dev_get_drvdata(dev); 226 ssize_t ret; 227 228 mutex_lock(&rdev->mutex); 229 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 230 mutex_unlock(&rdev->mutex); 231 232 return ret; 233 } 234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 235 236 static ssize_t regulator_uA_show(struct device *dev, 237 struct device_attribute *attr, char *buf) 238 { 239 struct regulator_dev *rdev = dev_get_drvdata(dev); 240 241 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 242 } 243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 244 245 static ssize_t regulator_name_show(struct device *dev, 246 struct device_attribute *attr, char *buf) 247 { 248 struct regulator_dev *rdev = dev_get_drvdata(dev); 249 250 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 251 } 252 253 static ssize_t regulator_print_opmode(char *buf, int mode) 254 { 255 switch (mode) { 256 case REGULATOR_MODE_FAST: 257 return sprintf(buf, "fast\n"); 258 case REGULATOR_MODE_NORMAL: 259 return sprintf(buf, "normal\n"); 260 case REGULATOR_MODE_IDLE: 261 return sprintf(buf, "idle\n"); 262 case REGULATOR_MODE_STANDBY: 263 return sprintf(buf, "standby\n"); 264 } 265 return sprintf(buf, "unknown\n"); 266 } 267 268 static ssize_t regulator_opmode_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 struct regulator_dev *rdev = dev_get_drvdata(dev); 272 273 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 274 } 275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 276 277 static ssize_t regulator_print_state(char *buf, int state) 278 { 279 if (state > 0) 280 return sprintf(buf, "enabled\n"); 281 else if (state == 0) 282 return sprintf(buf, "disabled\n"); 283 else 284 return sprintf(buf, "unknown\n"); 285 } 286 287 static ssize_t regulator_state_show(struct device *dev, 288 struct device_attribute *attr, char *buf) 289 { 290 struct regulator_dev *rdev = dev_get_drvdata(dev); 291 ssize_t ret; 292 293 mutex_lock(&rdev->mutex); 294 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 295 mutex_unlock(&rdev->mutex); 296 297 return ret; 298 } 299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 300 301 static ssize_t regulator_status_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct regulator_dev *rdev = dev_get_drvdata(dev); 305 int status; 306 char *label; 307 308 status = rdev->desc->ops->get_status(rdev); 309 if (status < 0) 310 return status; 311 312 switch (status) { 313 case REGULATOR_STATUS_OFF: 314 label = "off"; 315 break; 316 case REGULATOR_STATUS_ON: 317 label = "on"; 318 break; 319 case REGULATOR_STATUS_ERROR: 320 label = "error"; 321 break; 322 case REGULATOR_STATUS_FAST: 323 label = "fast"; 324 break; 325 case REGULATOR_STATUS_NORMAL: 326 label = "normal"; 327 break; 328 case REGULATOR_STATUS_IDLE: 329 label = "idle"; 330 break; 331 case REGULATOR_STATUS_STANDBY: 332 label = "standby"; 333 break; 334 default: 335 return -ERANGE; 336 } 337 338 return sprintf(buf, "%s\n", label); 339 } 340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 341 342 static ssize_t regulator_min_uA_show(struct device *dev, 343 struct device_attribute *attr, char *buf) 344 { 345 struct regulator_dev *rdev = dev_get_drvdata(dev); 346 347 if (!rdev->constraints) 348 return sprintf(buf, "constraint not defined\n"); 349 350 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 351 } 352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 353 354 static ssize_t regulator_max_uA_show(struct device *dev, 355 struct device_attribute *attr, char *buf) 356 { 357 struct regulator_dev *rdev = dev_get_drvdata(dev); 358 359 if (!rdev->constraints) 360 return sprintf(buf, "constraint not defined\n"); 361 362 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 363 } 364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 365 366 static ssize_t regulator_min_uV_show(struct device *dev, 367 struct device_attribute *attr, char *buf) 368 { 369 struct regulator_dev *rdev = dev_get_drvdata(dev); 370 371 if (!rdev->constraints) 372 return sprintf(buf, "constraint not defined\n"); 373 374 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 375 } 376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 377 378 static ssize_t regulator_max_uV_show(struct device *dev, 379 struct device_attribute *attr, char *buf) 380 { 381 struct regulator_dev *rdev = dev_get_drvdata(dev); 382 383 if (!rdev->constraints) 384 return sprintf(buf, "constraint not defined\n"); 385 386 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 387 } 388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 389 390 static ssize_t regulator_total_uA_show(struct device *dev, 391 struct device_attribute *attr, char *buf) 392 { 393 struct regulator_dev *rdev = dev_get_drvdata(dev); 394 struct regulator *regulator; 395 int uA = 0; 396 397 mutex_lock(&rdev->mutex); 398 list_for_each_entry(regulator, &rdev->consumer_list, list) 399 uA += regulator->uA_load; 400 mutex_unlock(&rdev->mutex); 401 return sprintf(buf, "%d\n", uA); 402 } 403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 404 405 static ssize_t regulator_num_users_show(struct device *dev, 406 struct device_attribute *attr, char *buf) 407 { 408 struct regulator_dev *rdev = dev_get_drvdata(dev); 409 return sprintf(buf, "%d\n", rdev->use_count); 410 } 411 412 static ssize_t regulator_type_show(struct device *dev, 413 struct device_attribute *attr, char *buf) 414 { 415 struct regulator_dev *rdev = dev_get_drvdata(dev); 416 417 switch (rdev->desc->type) { 418 case REGULATOR_VOLTAGE: 419 return sprintf(buf, "voltage\n"); 420 case REGULATOR_CURRENT: 421 return sprintf(buf, "current\n"); 422 } 423 return sprintf(buf, "unknown\n"); 424 } 425 426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 427 struct device_attribute *attr, char *buf) 428 { 429 struct regulator_dev *rdev = dev_get_drvdata(dev); 430 431 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 432 } 433 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 434 regulator_suspend_mem_uV_show, NULL); 435 436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct regulator_dev *rdev = dev_get_drvdata(dev); 440 441 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 442 } 443 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 444 regulator_suspend_disk_uV_show, NULL); 445 446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 447 struct device_attribute *attr, char *buf) 448 { 449 struct regulator_dev *rdev = dev_get_drvdata(dev); 450 451 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 452 } 453 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 454 regulator_suspend_standby_uV_show, NULL); 455 456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct regulator_dev *rdev = dev_get_drvdata(dev); 460 461 return regulator_print_opmode(buf, 462 rdev->constraints->state_mem.mode); 463 } 464 static DEVICE_ATTR(suspend_mem_mode, 0444, 465 regulator_suspend_mem_mode_show, NULL); 466 467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct regulator_dev *rdev = dev_get_drvdata(dev); 471 472 return regulator_print_opmode(buf, 473 rdev->constraints->state_disk.mode); 474 } 475 static DEVICE_ATTR(suspend_disk_mode, 0444, 476 regulator_suspend_disk_mode_show, NULL); 477 478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 483 return regulator_print_opmode(buf, 484 rdev->constraints->state_standby.mode); 485 } 486 static DEVICE_ATTR(suspend_standby_mode, 0444, 487 regulator_suspend_standby_mode_show, NULL); 488 489 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct regulator_dev *rdev = dev_get_drvdata(dev); 493 494 return regulator_print_state(buf, 495 rdev->constraints->state_mem.enabled); 496 } 497 static DEVICE_ATTR(suspend_mem_state, 0444, 498 regulator_suspend_mem_state_show, NULL); 499 500 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 501 struct device_attribute *attr, char *buf) 502 { 503 struct regulator_dev *rdev = dev_get_drvdata(dev); 504 505 return regulator_print_state(buf, 506 rdev->constraints->state_disk.enabled); 507 } 508 static DEVICE_ATTR(suspend_disk_state, 0444, 509 regulator_suspend_disk_state_show, NULL); 510 511 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 512 struct device_attribute *attr, char *buf) 513 { 514 struct regulator_dev *rdev = dev_get_drvdata(dev); 515 516 return regulator_print_state(buf, 517 rdev->constraints->state_standby.enabled); 518 } 519 static DEVICE_ATTR(suspend_standby_state, 0444, 520 regulator_suspend_standby_state_show, NULL); 521 522 523 /* 524 * These are the only attributes are present for all regulators. 525 * Other attributes are a function of regulator functionality. 526 */ 527 static struct device_attribute regulator_dev_attrs[] = { 528 __ATTR(name, 0444, regulator_name_show, NULL), 529 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 530 __ATTR(type, 0444, regulator_type_show, NULL), 531 __ATTR_NULL, 532 }; 533 534 static void regulator_dev_release(struct device *dev) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 kfree(rdev); 538 } 539 540 static struct class regulator_class = { 541 .name = "regulator", 542 .dev_release = regulator_dev_release, 543 .dev_attrs = regulator_dev_attrs, 544 }; 545 546 /* Calculate the new optimum regulator operating mode based on the new total 547 * consumer load. All locks held by caller */ 548 static void drms_uA_update(struct regulator_dev *rdev) 549 { 550 struct regulator *sibling; 551 int current_uA = 0, output_uV, input_uV, err; 552 unsigned int mode; 553 554 err = regulator_check_drms(rdev); 555 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 556 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode) 557 return; 558 559 /* get output voltage */ 560 output_uV = rdev->desc->ops->get_voltage(rdev); 561 if (output_uV <= 0) 562 return; 563 564 /* get input voltage */ 565 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 566 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 567 else 568 input_uV = rdev->constraints->input_uV; 569 if (input_uV <= 0) 570 return; 571 572 /* calc total requested load */ 573 list_for_each_entry(sibling, &rdev->consumer_list, list) 574 current_uA += sibling->uA_load; 575 576 /* now get the optimum mode for our new total regulator load */ 577 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 578 output_uV, current_uA); 579 580 /* check the new mode is allowed */ 581 err = regulator_check_mode(rdev, mode); 582 if (err == 0) 583 rdev->desc->ops->set_mode(rdev, mode); 584 } 585 586 static int suspend_set_state(struct regulator_dev *rdev, 587 struct regulator_state *rstate) 588 { 589 int ret = 0; 590 bool can_set_state; 591 592 can_set_state = rdev->desc->ops->set_suspend_enable && 593 rdev->desc->ops->set_suspend_disable; 594 595 /* If we have no suspend mode configration don't set anything; 596 * only warn if the driver actually makes the suspend mode 597 * configurable. 598 */ 599 if (!rstate->enabled && !rstate->disabled) { 600 if (can_set_state) 601 printk(KERN_WARNING "%s: No configuration for %s\n", 602 __func__, rdev_get_name(rdev)); 603 return 0; 604 } 605 606 if (rstate->enabled && rstate->disabled) { 607 printk(KERN_ERR "%s: invalid configuration for %s\n", 608 __func__, rdev_get_name(rdev)); 609 return -EINVAL; 610 } 611 612 if (!can_set_state) { 613 printk(KERN_ERR "%s: no way to set suspend state\n", 614 __func__); 615 return -EINVAL; 616 } 617 618 if (rstate->enabled) 619 ret = rdev->desc->ops->set_suspend_enable(rdev); 620 else 621 ret = rdev->desc->ops->set_suspend_disable(rdev); 622 if (ret < 0) { 623 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); 624 return ret; 625 } 626 627 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 628 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 629 if (ret < 0) { 630 printk(KERN_ERR "%s: failed to set voltage\n", 631 __func__); 632 return ret; 633 } 634 } 635 636 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 637 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 638 if (ret < 0) { 639 printk(KERN_ERR "%s: failed to set mode\n", __func__); 640 return ret; 641 } 642 } 643 return ret; 644 } 645 646 /* locks held by caller */ 647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 648 { 649 if (!rdev->constraints) 650 return -EINVAL; 651 652 switch (state) { 653 case PM_SUSPEND_STANDBY: 654 return suspend_set_state(rdev, 655 &rdev->constraints->state_standby); 656 case PM_SUSPEND_MEM: 657 return suspend_set_state(rdev, 658 &rdev->constraints->state_mem); 659 case PM_SUSPEND_MAX: 660 return suspend_set_state(rdev, 661 &rdev->constraints->state_disk); 662 default: 663 return -EINVAL; 664 } 665 } 666 667 static void print_constraints(struct regulator_dev *rdev) 668 { 669 struct regulation_constraints *constraints = rdev->constraints; 670 char buf[80] = ""; 671 int count = 0; 672 int ret; 673 674 if (constraints->min_uV && constraints->max_uV) { 675 if (constraints->min_uV == constraints->max_uV) 676 count += sprintf(buf + count, "%d mV ", 677 constraints->min_uV / 1000); 678 else 679 count += sprintf(buf + count, "%d <--> %d mV ", 680 constraints->min_uV / 1000, 681 constraints->max_uV / 1000); 682 } 683 684 if (!constraints->min_uV || 685 constraints->min_uV != constraints->max_uV) { 686 ret = _regulator_get_voltage(rdev); 687 if (ret > 0) 688 count += sprintf(buf + count, "at %d mV ", ret / 1000); 689 } 690 691 if (constraints->min_uA && constraints->max_uA) { 692 if (constraints->min_uA == constraints->max_uA) 693 count += sprintf(buf + count, "%d mA ", 694 constraints->min_uA / 1000); 695 else 696 count += sprintf(buf + count, "%d <--> %d mA ", 697 constraints->min_uA / 1000, 698 constraints->max_uA / 1000); 699 } 700 701 if (!constraints->min_uA || 702 constraints->min_uA != constraints->max_uA) { 703 ret = _regulator_get_current_limit(rdev); 704 if (ret > 0) 705 count += sprintf(buf + count, "at %d mA ", ret / 1000); 706 } 707 708 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 709 count += sprintf(buf + count, "fast "); 710 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 711 count += sprintf(buf + count, "normal "); 712 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 713 count += sprintf(buf + count, "idle "); 714 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 715 count += sprintf(buf + count, "standby"); 716 717 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf); 718 } 719 720 static int machine_constraints_voltage(struct regulator_dev *rdev, 721 struct regulation_constraints *constraints) 722 { 723 struct regulator_ops *ops = rdev->desc->ops; 724 const char *name = rdev_get_name(rdev); 725 int ret; 726 727 /* do we need to apply the constraint voltage */ 728 if (rdev->constraints->apply_uV && 729 rdev->constraints->min_uV == rdev->constraints->max_uV && 730 ops->set_voltage) { 731 ret = ops->set_voltage(rdev, 732 rdev->constraints->min_uV, rdev->constraints->max_uV); 733 if (ret < 0) { 734 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", 735 __func__, 736 rdev->constraints->min_uV, name); 737 rdev->constraints = NULL; 738 return ret; 739 } 740 } 741 742 /* constrain machine-level voltage specs to fit 743 * the actual range supported by this regulator. 744 */ 745 if (ops->list_voltage && rdev->desc->n_voltages) { 746 int count = rdev->desc->n_voltages; 747 int i; 748 int min_uV = INT_MAX; 749 int max_uV = INT_MIN; 750 int cmin = constraints->min_uV; 751 int cmax = constraints->max_uV; 752 753 /* it's safe to autoconfigure fixed-voltage supplies 754 and the constraints are used by list_voltage. */ 755 if (count == 1 && !cmin) { 756 cmin = 1; 757 cmax = INT_MAX; 758 constraints->min_uV = cmin; 759 constraints->max_uV = cmax; 760 } 761 762 /* voltage constraints are optional */ 763 if ((cmin == 0) && (cmax == 0)) 764 return 0; 765 766 /* else require explicit machine-level constraints */ 767 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 768 pr_err("%s: %s '%s' voltage constraints\n", 769 __func__, "invalid", name); 770 return -EINVAL; 771 } 772 773 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 774 for (i = 0; i < count; i++) { 775 int value; 776 777 value = ops->list_voltage(rdev, i); 778 if (value <= 0) 779 continue; 780 781 /* maybe adjust [min_uV..max_uV] */ 782 if (value >= cmin && value < min_uV) 783 min_uV = value; 784 if (value <= cmax && value > max_uV) 785 max_uV = value; 786 } 787 788 /* final: [min_uV..max_uV] valid iff constraints valid */ 789 if (max_uV < min_uV) { 790 pr_err("%s: %s '%s' voltage constraints\n", 791 __func__, "unsupportable", name); 792 return -EINVAL; 793 } 794 795 /* use regulator's subset of machine constraints */ 796 if (constraints->min_uV < min_uV) { 797 pr_debug("%s: override '%s' %s, %d -> %d\n", 798 __func__, name, "min_uV", 799 constraints->min_uV, min_uV); 800 constraints->min_uV = min_uV; 801 } 802 if (constraints->max_uV > max_uV) { 803 pr_debug("%s: override '%s' %s, %d -> %d\n", 804 __func__, name, "max_uV", 805 constraints->max_uV, max_uV); 806 constraints->max_uV = max_uV; 807 } 808 } 809 810 return 0; 811 } 812 813 /** 814 * set_machine_constraints - sets regulator constraints 815 * @rdev: regulator source 816 * @constraints: constraints to apply 817 * 818 * Allows platform initialisation code to define and constrain 819 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 820 * Constraints *must* be set by platform code in order for some 821 * regulator operations to proceed i.e. set_voltage, set_current_limit, 822 * set_mode. 823 */ 824 static int set_machine_constraints(struct regulator_dev *rdev, 825 struct regulation_constraints *constraints) 826 { 827 int ret = 0; 828 const char *name; 829 struct regulator_ops *ops = rdev->desc->ops; 830 831 rdev->constraints = constraints; 832 833 name = rdev_get_name(rdev); 834 835 ret = machine_constraints_voltage(rdev, constraints); 836 if (ret != 0) 837 goto out; 838 839 /* do we need to setup our suspend state */ 840 if (constraints->initial_state) { 841 ret = suspend_prepare(rdev, constraints->initial_state); 842 if (ret < 0) { 843 printk(KERN_ERR "%s: failed to set suspend state for %s\n", 844 __func__, name); 845 rdev->constraints = NULL; 846 goto out; 847 } 848 } 849 850 if (constraints->initial_mode) { 851 if (!ops->set_mode) { 852 printk(KERN_ERR "%s: no set_mode operation for %s\n", 853 __func__, name); 854 ret = -EINVAL; 855 goto out; 856 } 857 858 ret = ops->set_mode(rdev, constraints->initial_mode); 859 if (ret < 0) { 860 printk(KERN_ERR 861 "%s: failed to set initial mode for %s: %d\n", 862 __func__, name, ret); 863 goto out; 864 } 865 } 866 867 /* If the constraints say the regulator should be on at this point 868 * and we have control then make sure it is enabled. 869 */ 870 if ((constraints->always_on || constraints->boot_on) && ops->enable) { 871 ret = ops->enable(rdev); 872 if (ret < 0) { 873 printk(KERN_ERR "%s: failed to enable %s\n", 874 __func__, name); 875 rdev->constraints = NULL; 876 goto out; 877 } 878 } 879 880 print_constraints(rdev); 881 out: 882 return ret; 883 } 884 885 /** 886 * set_supply - set regulator supply regulator 887 * @rdev: regulator name 888 * @supply_rdev: supply regulator name 889 * 890 * Called by platform initialisation code to set the supply regulator for this 891 * regulator. This ensures that a regulators supply will also be enabled by the 892 * core if it's child is enabled. 893 */ 894 static int set_supply(struct regulator_dev *rdev, 895 struct regulator_dev *supply_rdev) 896 { 897 int err; 898 899 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, 900 "supply"); 901 if (err) { 902 printk(KERN_ERR 903 "%s: could not add device link %s err %d\n", 904 __func__, supply_rdev->dev.kobj.name, err); 905 goto out; 906 } 907 rdev->supply = supply_rdev; 908 list_add(&rdev->slist, &supply_rdev->supply_list); 909 out: 910 return err; 911 } 912 913 /** 914 * set_consumer_device_supply - Bind a regulator to a symbolic supply 915 * @rdev: regulator source 916 * @consumer_dev: device the supply applies to 917 * @consumer_dev_name: dev_name() string for device supply applies to 918 * @supply: symbolic name for supply 919 * 920 * Allows platform initialisation code to map physical regulator 921 * sources to symbolic names for supplies for use by devices. Devices 922 * should use these symbolic names to request regulators, avoiding the 923 * need to provide board-specific regulator names as platform data. 924 * 925 * Only one of consumer_dev and consumer_dev_name may be specified. 926 */ 927 static int set_consumer_device_supply(struct regulator_dev *rdev, 928 struct device *consumer_dev, const char *consumer_dev_name, 929 const char *supply) 930 { 931 struct regulator_map *node; 932 int has_dev; 933 934 if (consumer_dev && consumer_dev_name) 935 return -EINVAL; 936 937 if (!consumer_dev_name && consumer_dev) 938 consumer_dev_name = dev_name(consumer_dev); 939 940 if (supply == NULL) 941 return -EINVAL; 942 943 if (consumer_dev_name != NULL) 944 has_dev = 1; 945 else 946 has_dev = 0; 947 948 list_for_each_entry(node, ®ulator_map_list, list) { 949 if (node->dev_name && consumer_dev_name) { 950 if (strcmp(node->dev_name, consumer_dev_name) != 0) 951 continue; 952 } else if (node->dev_name || consumer_dev_name) { 953 continue; 954 } 955 956 if (strcmp(node->supply, supply) != 0) 957 continue; 958 959 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", 960 dev_name(&node->regulator->dev), 961 node->regulator->desc->name, 962 supply, 963 dev_name(&rdev->dev), rdev_get_name(rdev)); 964 return -EBUSY; 965 } 966 967 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 968 if (node == NULL) 969 return -ENOMEM; 970 971 node->regulator = rdev; 972 node->supply = supply; 973 974 if (has_dev) { 975 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 976 if (node->dev_name == NULL) { 977 kfree(node); 978 return -ENOMEM; 979 } 980 } 981 982 list_add(&node->list, ®ulator_map_list); 983 return 0; 984 } 985 986 static void unset_regulator_supplies(struct regulator_dev *rdev) 987 { 988 struct regulator_map *node, *n; 989 990 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 991 if (rdev == node->regulator) { 992 list_del(&node->list); 993 kfree(node->dev_name); 994 kfree(node); 995 } 996 } 997 } 998 999 #define REG_STR_SIZE 32 1000 1001 static struct regulator *create_regulator(struct regulator_dev *rdev, 1002 struct device *dev, 1003 const char *supply_name) 1004 { 1005 struct regulator *regulator; 1006 char buf[REG_STR_SIZE]; 1007 int err, size; 1008 1009 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1010 if (regulator == NULL) 1011 return NULL; 1012 1013 mutex_lock(&rdev->mutex); 1014 regulator->rdev = rdev; 1015 list_add(®ulator->list, &rdev->consumer_list); 1016 1017 if (dev) { 1018 /* create a 'requested_microamps_name' sysfs entry */ 1019 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", 1020 supply_name); 1021 if (size >= REG_STR_SIZE) 1022 goto overflow_err; 1023 1024 regulator->dev = dev; 1025 sysfs_attr_init(®ulator->dev_attr.attr); 1026 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 1027 if (regulator->dev_attr.attr.name == NULL) 1028 goto attr_name_err; 1029 1030 regulator->dev_attr.attr.mode = 0444; 1031 regulator->dev_attr.show = device_requested_uA_show; 1032 err = device_create_file(dev, ®ulator->dev_attr); 1033 if (err < 0) { 1034 printk(KERN_WARNING "%s: could not add regulator_dev" 1035 " load sysfs\n", __func__); 1036 goto attr_name_err; 1037 } 1038 1039 /* also add a link to the device sysfs entry */ 1040 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1041 dev->kobj.name, supply_name); 1042 if (size >= REG_STR_SIZE) 1043 goto attr_err; 1044 1045 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1046 if (regulator->supply_name == NULL) 1047 goto attr_err; 1048 1049 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1050 buf); 1051 if (err) { 1052 printk(KERN_WARNING 1053 "%s: could not add device link %s err %d\n", 1054 __func__, dev->kobj.name, err); 1055 goto link_name_err; 1056 } 1057 } 1058 mutex_unlock(&rdev->mutex); 1059 return regulator; 1060 link_name_err: 1061 kfree(regulator->supply_name); 1062 attr_err: 1063 device_remove_file(regulator->dev, ®ulator->dev_attr); 1064 attr_name_err: 1065 kfree(regulator->dev_attr.attr.name); 1066 overflow_err: 1067 list_del(®ulator->list); 1068 kfree(regulator); 1069 mutex_unlock(&rdev->mutex); 1070 return NULL; 1071 } 1072 1073 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1074 { 1075 if (!rdev->desc->ops->enable_time) 1076 return 0; 1077 return rdev->desc->ops->enable_time(rdev); 1078 } 1079 1080 /* Internal regulator request function */ 1081 static struct regulator *_regulator_get(struct device *dev, const char *id, 1082 int exclusive) 1083 { 1084 struct regulator_dev *rdev; 1085 struct regulator_map *map; 1086 struct regulator *regulator = ERR_PTR(-ENODEV); 1087 const char *devname = NULL; 1088 int ret; 1089 1090 if (id == NULL) { 1091 printk(KERN_ERR "regulator: get() with no identifier\n"); 1092 return regulator; 1093 } 1094 1095 if (dev) 1096 devname = dev_name(dev); 1097 1098 mutex_lock(®ulator_list_mutex); 1099 1100 list_for_each_entry(map, ®ulator_map_list, list) { 1101 /* If the mapping has a device set up it must match */ 1102 if (map->dev_name && 1103 (!devname || strcmp(map->dev_name, devname))) 1104 continue; 1105 1106 if (strcmp(map->supply, id) == 0) { 1107 rdev = map->regulator; 1108 goto found; 1109 } 1110 } 1111 1112 if (board_wants_dummy_regulator) { 1113 rdev = dummy_regulator_rdev; 1114 goto found; 1115 } 1116 1117 #ifdef CONFIG_REGULATOR_DUMMY 1118 if (!devname) 1119 devname = "deviceless"; 1120 1121 /* If the board didn't flag that it was fully constrained then 1122 * substitute in a dummy regulator so consumers can continue. 1123 */ 1124 if (!has_full_constraints) { 1125 pr_warning("%s supply %s not found, using dummy regulator\n", 1126 devname, id); 1127 rdev = dummy_regulator_rdev; 1128 goto found; 1129 } 1130 #endif 1131 1132 mutex_unlock(®ulator_list_mutex); 1133 return regulator; 1134 1135 found: 1136 if (rdev->exclusive) { 1137 regulator = ERR_PTR(-EPERM); 1138 goto out; 1139 } 1140 1141 if (exclusive && rdev->open_count) { 1142 regulator = ERR_PTR(-EBUSY); 1143 goto out; 1144 } 1145 1146 if (!try_module_get(rdev->owner)) 1147 goto out; 1148 1149 regulator = create_regulator(rdev, dev, id); 1150 if (regulator == NULL) { 1151 regulator = ERR_PTR(-ENOMEM); 1152 module_put(rdev->owner); 1153 } 1154 1155 rdev->open_count++; 1156 if (exclusive) { 1157 rdev->exclusive = 1; 1158 1159 ret = _regulator_is_enabled(rdev); 1160 if (ret > 0) 1161 rdev->use_count = 1; 1162 else 1163 rdev->use_count = 0; 1164 } 1165 1166 out: 1167 mutex_unlock(®ulator_list_mutex); 1168 1169 return regulator; 1170 } 1171 1172 /** 1173 * regulator_get - lookup and obtain a reference to a regulator. 1174 * @dev: device for regulator "consumer" 1175 * @id: Supply name or regulator ID. 1176 * 1177 * Returns a struct regulator corresponding to the regulator producer, 1178 * or IS_ERR() condition containing errno. 1179 * 1180 * Use of supply names configured via regulator_set_device_supply() is 1181 * strongly encouraged. It is recommended that the supply name used 1182 * should match the name used for the supply and/or the relevant 1183 * device pins in the datasheet. 1184 */ 1185 struct regulator *regulator_get(struct device *dev, const char *id) 1186 { 1187 return _regulator_get(dev, id, 0); 1188 } 1189 EXPORT_SYMBOL_GPL(regulator_get); 1190 1191 /** 1192 * regulator_get_exclusive - obtain exclusive access to a regulator. 1193 * @dev: device for regulator "consumer" 1194 * @id: Supply name or regulator ID. 1195 * 1196 * Returns a struct regulator corresponding to the regulator producer, 1197 * or IS_ERR() condition containing errno. Other consumers will be 1198 * unable to obtain this reference is held and the use count for the 1199 * regulator will be initialised to reflect the current state of the 1200 * regulator. 1201 * 1202 * This is intended for use by consumers which cannot tolerate shared 1203 * use of the regulator such as those which need to force the 1204 * regulator off for correct operation of the hardware they are 1205 * controlling. 1206 * 1207 * Use of supply names configured via regulator_set_device_supply() is 1208 * strongly encouraged. It is recommended that the supply name used 1209 * should match the name used for the supply and/or the relevant 1210 * device pins in the datasheet. 1211 */ 1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1213 { 1214 return _regulator_get(dev, id, 1); 1215 } 1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1217 1218 /** 1219 * regulator_put - "free" the regulator source 1220 * @regulator: regulator source 1221 * 1222 * Note: drivers must ensure that all regulator_enable calls made on this 1223 * regulator source are balanced by regulator_disable calls prior to calling 1224 * this function. 1225 */ 1226 void regulator_put(struct regulator *regulator) 1227 { 1228 struct regulator_dev *rdev; 1229 1230 if (regulator == NULL || IS_ERR(regulator)) 1231 return; 1232 1233 mutex_lock(®ulator_list_mutex); 1234 rdev = regulator->rdev; 1235 1236 /* remove any sysfs entries */ 1237 if (regulator->dev) { 1238 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1239 kfree(regulator->supply_name); 1240 device_remove_file(regulator->dev, ®ulator->dev_attr); 1241 kfree(regulator->dev_attr.attr.name); 1242 } 1243 list_del(®ulator->list); 1244 kfree(regulator); 1245 1246 rdev->open_count--; 1247 rdev->exclusive = 0; 1248 1249 module_put(rdev->owner); 1250 mutex_unlock(®ulator_list_mutex); 1251 } 1252 EXPORT_SYMBOL_GPL(regulator_put); 1253 1254 static int _regulator_can_change_status(struct regulator_dev *rdev) 1255 { 1256 if (!rdev->constraints) 1257 return 0; 1258 1259 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 1260 return 1; 1261 else 1262 return 0; 1263 } 1264 1265 /* locks held by regulator_enable() */ 1266 static int _regulator_enable(struct regulator_dev *rdev) 1267 { 1268 int ret, delay; 1269 1270 if (rdev->use_count == 0) { 1271 /* do we need to enable the supply regulator first */ 1272 if (rdev->supply) { 1273 mutex_lock(&rdev->supply->mutex); 1274 ret = _regulator_enable(rdev->supply); 1275 mutex_unlock(&rdev->supply->mutex); 1276 if (ret < 0) { 1277 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1278 __func__, rdev_get_name(rdev), ret); 1279 return ret; 1280 } 1281 } 1282 } 1283 1284 /* check voltage and requested load before enabling */ 1285 if (rdev->constraints && 1286 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1287 drms_uA_update(rdev); 1288 1289 if (rdev->use_count == 0) { 1290 /* The regulator may on if it's not switchable or left on */ 1291 ret = _regulator_is_enabled(rdev); 1292 if (ret == -EINVAL || ret == 0) { 1293 if (!_regulator_can_change_status(rdev)) 1294 return -EPERM; 1295 1296 if (!rdev->desc->ops->enable) 1297 return -EINVAL; 1298 1299 /* Query before enabling in case configuration 1300 * dependant. */ 1301 ret = _regulator_get_enable_time(rdev); 1302 if (ret >= 0) { 1303 delay = ret; 1304 } else { 1305 printk(KERN_WARNING 1306 "%s: enable_time() failed for %s: %d\n", 1307 __func__, rdev_get_name(rdev), 1308 ret); 1309 delay = 0; 1310 } 1311 1312 /* Allow the regulator to ramp; it would be useful 1313 * to extend this for bulk operations so that the 1314 * regulators can ramp together. */ 1315 ret = rdev->desc->ops->enable(rdev); 1316 if (ret < 0) 1317 return ret; 1318 1319 if (delay >= 1000) { 1320 mdelay(delay / 1000); 1321 udelay(delay % 1000); 1322 } else if (delay) { 1323 udelay(delay); 1324 } 1325 1326 } else if (ret < 0) { 1327 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n", 1328 __func__, rdev_get_name(rdev), ret); 1329 return ret; 1330 } 1331 /* Fallthrough on positive return values - already enabled */ 1332 } 1333 1334 rdev->use_count++; 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * regulator_enable - enable regulator output 1341 * @regulator: regulator source 1342 * 1343 * Request that the regulator be enabled with the regulator output at 1344 * the predefined voltage or current value. Calls to regulator_enable() 1345 * must be balanced with calls to regulator_disable(). 1346 * 1347 * NOTE: the output value can be set by other drivers, boot loader or may be 1348 * hardwired in the regulator. 1349 */ 1350 int regulator_enable(struct regulator *regulator) 1351 { 1352 struct regulator_dev *rdev = regulator->rdev; 1353 int ret = 0; 1354 1355 mutex_lock(&rdev->mutex); 1356 ret = _regulator_enable(rdev); 1357 mutex_unlock(&rdev->mutex); 1358 return ret; 1359 } 1360 EXPORT_SYMBOL_GPL(regulator_enable); 1361 1362 /* locks held by regulator_disable() */ 1363 static int _regulator_disable(struct regulator_dev *rdev, 1364 struct regulator_dev **supply_rdev_ptr) 1365 { 1366 int ret = 0; 1367 *supply_rdev_ptr = NULL; 1368 1369 if (WARN(rdev->use_count <= 0, 1370 "unbalanced disables for %s\n", 1371 rdev_get_name(rdev))) 1372 return -EIO; 1373 1374 /* are we the last user and permitted to disable ? */ 1375 if (rdev->use_count == 1 && 1376 (rdev->constraints && !rdev->constraints->always_on)) { 1377 1378 /* we are last user */ 1379 if (_regulator_can_change_status(rdev) && 1380 rdev->desc->ops->disable) { 1381 ret = rdev->desc->ops->disable(rdev); 1382 if (ret < 0) { 1383 printk(KERN_ERR "%s: failed to disable %s\n", 1384 __func__, rdev_get_name(rdev)); 1385 return ret; 1386 } 1387 1388 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1389 NULL); 1390 } 1391 1392 /* decrease our supplies ref count and disable if required */ 1393 *supply_rdev_ptr = rdev->supply; 1394 1395 rdev->use_count = 0; 1396 } else if (rdev->use_count > 1) { 1397 1398 if (rdev->constraints && 1399 (rdev->constraints->valid_ops_mask & 1400 REGULATOR_CHANGE_DRMS)) 1401 drms_uA_update(rdev); 1402 1403 rdev->use_count--; 1404 } 1405 return ret; 1406 } 1407 1408 /** 1409 * regulator_disable - disable regulator output 1410 * @regulator: regulator source 1411 * 1412 * Disable the regulator output voltage or current. Calls to 1413 * regulator_enable() must be balanced with calls to 1414 * regulator_disable(). 1415 * 1416 * NOTE: this will only disable the regulator output if no other consumer 1417 * devices have it enabled, the regulator device supports disabling and 1418 * machine constraints permit this operation. 1419 */ 1420 int regulator_disable(struct regulator *regulator) 1421 { 1422 struct regulator_dev *rdev = regulator->rdev; 1423 struct regulator_dev *supply_rdev = NULL; 1424 int ret = 0; 1425 1426 mutex_lock(&rdev->mutex); 1427 ret = _regulator_disable(rdev, &supply_rdev); 1428 mutex_unlock(&rdev->mutex); 1429 1430 /* decrease our supplies ref count and disable if required */ 1431 while (supply_rdev != NULL) { 1432 rdev = supply_rdev; 1433 1434 mutex_lock(&rdev->mutex); 1435 _regulator_disable(rdev, &supply_rdev); 1436 mutex_unlock(&rdev->mutex); 1437 } 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL_GPL(regulator_disable); 1442 1443 /* locks held by regulator_force_disable() */ 1444 static int _regulator_force_disable(struct regulator_dev *rdev, 1445 struct regulator_dev **supply_rdev_ptr) 1446 { 1447 int ret = 0; 1448 1449 /* force disable */ 1450 if (rdev->desc->ops->disable) { 1451 /* ah well, who wants to live forever... */ 1452 ret = rdev->desc->ops->disable(rdev); 1453 if (ret < 0) { 1454 printk(KERN_ERR "%s: failed to force disable %s\n", 1455 __func__, rdev_get_name(rdev)); 1456 return ret; 1457 } 1458 /* notify other consumers that power has been forced off */ 1459 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1460 REGULATOR_EVENT_DISABLE, NULL); 1461 } 1462 1463 /* decrease our supplies ref count and disable if required */ 1464 *supply_rdev_ptr = rdev->supply; 1465 1466 rdev->use_count = 0; 1467 return ret; 1468 } 1469 1470 /** 1471 * regulator_force_disable - force disable regulator output 1472 * @regulator: regulator source 1473 * 1474 * Forcibly disable the regulator output voltage or current. 1475 * NOTE: this *will* disable the regulator output even if other consumer 1476 * devices have it enabled. This should be used for situations when device 1477 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1478 */ 1479 int regulator_force_disable(struct regulator *regulator) 1480 { 1481 struct regulator_dev *supply_rdev = NULL; 1482 int ret; 1483 1484 mutex_lock(®ulator->rdev->mutex); 1485 regulator->uA_load = 0; 1486 ret = _regulator_force_disable(regulator->rdev, &supply_rdev); 1487 mutex_unlock(®ulator->rdev->mutex); 1488 1489 if (supply_rdev) 1490 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev))); 1491 1492 return ret; 1493 } 1494 EXPORT_SYMBOL_GPL(regulator_force_disable); 1495 1496 static int _regulator_is_enabled(struct regulator_dev *rdev) 1497 { 1498 /* If we don't know then assume that the regulator is always on */ 1499 if (!rdev->desc->ops->is_enabled) 1500 return 1; 1501 1502 return rdev->desc->ops->is_enabled(rdev); 1503 } 1504 1505 /** 1506 * regulator_is_enabled - is the regulator output enabled 1507 * @regulator: regulator source 1508 * 1509 * Returns positive if the regulator driver backing the source/client 1510 * has requested that the device be enabled, zero if it hasn't, else a 1511 * negative errno code. 1512 * 1513 * Note that the device backing this regulator handle can have multiple 1514 * users, so it might be enabled even if regulator_enable() was never 1515 * called for this particular source. 1516 */ 1517 int regulator_is_enabled(struct regulator *regulator) 1518 { 1519 int ret; 1520 1521 mutex_lock(®ulator->rdev->mutex); 1522 ret = _regulator_is_enabled(regulator->rdev); 1523 mutex_unlock(®ulator->rdev->mutex); 1524 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1528 1529 /** 1530 * regulator_count_voltages - count regulator_list_voltage() selectors 1531 * @regulator: regulator source 1532 * 1533 * Returns number of selectors, or negative errno. Selectors are 1534 * numbered starting at zero, and typically correspond to bitfields 1535 * in hardware registers. 1536 */ 1537 int regulator_count_voltages(struct regulator *regulator) 1538 { 1539 struct regulator_dev *rdev = regulator->rdev; 1540 1541 return rdev->desc->n_voltages ? : -EINVAL; 1542 } 1543 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1544 1545 /** 1546 * regulator_list_voltage - enumerate supported voltages 1547 * @regulator: regulator source 1548 * @selector: identify voltage to list 1549 * Context: can sleep 1550 * 1551 * Returns a voltage that can be passed to @regulator_set_voltage(), 1552 * zero if this selector code can't be used on this system, or a 1553 * negative errno. 1554 */ 1555 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1556 { 1557 struct regulator_dev *rdev = regulator->rdev; 1558 struct regulator_ops *ops = rdev->desc->ops; 1559 int ret; 1560 1561 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1562 return -EINVAL; 1563 1564 mutex_lock(&rdev->mutex); 1565 ret = ops->list_voltage(rdev, selector); 1566 mutex_unlock(&rdev->mutex); 1567 1568 if (ret > 0) { 1569 if (ret < rdev->constraints->min_uV) 1570 ret = 0; 1571 else if (ret > rdev->constraints->max_uV) 1572 ret = 0; 1573 } 1574 1575 return ret; 1576 } 1577 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1578 1579 /** 1580 * regulator_is_supported_voltage - check if a voltage range can be supported 1581 * 1582 * @regulator: Regulator to check. 1583 * @min_uV: Minimum required voltage in uV. 1584 * @max_uV: Maximum required voltage in uV. 1585 * 1586 * Returns a boolean or a negative error code. 1587 */ 1588 int regulator_is_supported_voltage(struct regulator *regulator, 1589 int min_uV, int max_uV) 1590 { 1591 int i, voltages, ret; 1592 1593 ret = regulator_count_voltages(regulator); 1594 if (ret < 0) 1595 return ret; 1596 voltages = ret; 1597 1598 for (i = 0; i < voltages; i++) { 1599 ret = regulator_list_voltage(regulator, i); 1600 1601 if (ret >= min_uV && ret <= max_uV) 1602 return 1; 1603 } 1604 1605 return 0; 1606 } 1607 1608 /** 1609 * regulator_set_voltage - set regulator output voltage 1610 * @regulator: regulator source 1611 * @min_uV: Minimum required voltage in uV 1612 * @max_uV: Maximum acceptable voltage in uV 1613 * 1614 * Sets a voltage regulator to the desired output voltage. This can be set 1615 * during any regulator state. IOW, regulator can be disabled or enabled. 1616 * 1617 * If the regulator is enabled then the voltage will change to the new value 1618 * immediately otherwise if the regulator is disabled the regulator will 1619 * output at the new voltage when enabled. 1620 * 1621 * NOTE: If the regulator is shared between several devices then the lowest 1622 * request voltage that meets the system constraints will be used. 1623 * Regulator system constraints must be set for this regulator before 1624 * calling this function otherwise this call will fail. 1625 */ 1626 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1627 { 1628 struct regulator_dev *rdev = regulator->rdev; 1629 int ret; 1630 1631 mutex_lock(&rdev->mutex); 1632 1633 /* sanity check */ 1634 if (!rdev->desc->ops->set_voltage) { 1635 ret = -EINVAL; 1636 goto out; 1637 } 1638 1639 /* constraints check */ 1640 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1641 if (ret < 0) 1642 goto out; 1643 regulator->min_uV = min_uV; 1644 regulator->max_uV = max_uV; 1645 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); 1646 1647 out: 1648 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); 1649 mutex_unlock(&rdev->mutex); 1650 return ret; 1651 } 1652 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1653 1654 static int _regulator_get_voltage(struct regulator_dev *rdev) 1655 { 1656 /* sanity check */ 1657 if (rdev->desc->ops->get_voltage) 1658 return rdev->desc->ops->get_voltage(rdev); 1659 else 1660 return -EINVAL; 1661 } 1662 1663 /** 1664 * regulator_get_voltage - get regulator output voltage 1665 * @regulator: regulator source 1666 * 1667 * This returns the current regulator voltage in uV. 1668 * 1669 * NOTE: If the regulator is disabled it will return the voltage value. This 1670 * function should not be used to determine regulator state. 1671 */ 1672 int regulator_get_voltage(struct regulator *regulator) 1673 { 1674 int ret; 1675 1676 mutex_lock(®ulator->rdev->mutex); 1677 1678 ret = _regulator_get_voltage(regulator->rdev); 1679 1680 mutex_unlock(®ulator->rdev->mutex); 1681 1682 return ret; 1683 } 1684 EXPORT_SYMBOL_GPL(regulator_get_voltage); 1685 1686 /** 1687 * regulator_set_current_limit - set regulator output current limit 1688 * @regulator: regulator source 1689 * @min_uA: Minimuum supported current in uA 1690 * @max_uA: Maximum supported current in uA 1691 * 1692 * Sets current sink to the desired output current. This can be set during 1693 * any regulator state. IOW, regulator can be disabled or enabled. 1694 * 1695 * If the regulator is enabled then the current will change to the new value 1696 * immediately otherwise if the regulator is disabled the regulator will 1697 * output at the new current when enabled. 1698 * 1699 * NOTE: Regulator system constraints must be set for this regulator before 1700 * calling this function otherwise this call will fail. 1701 */ 1702 int regulator_set_current_limit(struct regulator *regulator, 1703 int min_uA, int max_uA) 1704 { 1705 struct regulator_dev *rdev = regulator->rdev; 1706 int ret; 1707 1708 mutex_lock(&rdev->mutex); 1709 1710 /* sanity check */ 1711 if (!rdev->desc->ops->set_current_limit) { 1712 ret = -EINVAL; 1713 goto out; 1714 } 1715 1716 /* constraints check */ 1717 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 1718 if (ret < 0) 1719 goto out; 1720 1721 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 1722 out: 1723 mutex_unlock(&rdev->mutex); 1724 return ret; 1725 } 1726 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 1727 1728 static int _regulator_get_current_limit(struct regulator_dev *rdev) 1729 { 1730 int ret; 1731 1732 mutex_lock(&rdev->mutex); 1733 1734 /* sanity check */ 1735 if (!rdev->desc->ops->get_current_limit) { 1736 ret = -EINVAL; 1737 goto out; 1738 } 1739 1740 ret = rdev->desc->ops->get_current_limit(rdev); 1741 out: 1742 mutex_unlock(&rdev->mutex); 1743 return ret; 1744 } 1745 1746 /** 1747 * regulator_get_current_limit - get regulator output current 1748 * @regulator: regulator source 1749 * 1750 * This returns the current supplied by the specified current sink in uA. 1751 * 1752 * NOTE: If the regulator is disabled it will return the current value. This 1753 * function should not be used to determine regulator state. 1754 */ 1755 int regulator_get_current_limit(struct regulator *regulator) 1756 { 1757 return _regulator_get_current_limit(regulator->rdev); 1758 } 1759 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 1760 1761 /** 1762 * regulator_set_mode - set regulator operating mode 1763 * @regulator: regulator source 1764 * @mode: operating mode - one of the REGULATOR_MODE constants 1765 * 1766 * Set regulator operating mode to increase regulator efficiency or improve 1767 * regulation performance. 1768 * 1769 * NOTE: Regulator system constraints must be set for this regulator before 1770 * calling this function otherwise this call will fail. 1771 */ 1772 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 1773 { 1774 struct regulator_dev *rdev = regulator->rdev; 1775 int ret; 1776 int regulator_curr_mode; 1777 1778 mutex_lock(&rdev->mutex); 1779 1780 /* sanity check */ 1781 if (!rdev->desc->ops->set_mode) { 1782 ret = -EINVAL; 1783 goto out; 1784 } 1785 1786 /* return if the same mode is requested */ 1787 if (rdev->desc->ops->get_mode) { 1788 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 1789 if (regulator_curr_mode == mode) { 1790 ret = 0; 1791 goto out; 1792 } 1793 } 1794 1795 /* constraints check */ 1796 ret = regulator_check_mode(rdev, mode); 1797 if (ret < 0) 1798 goto out; 1799 1800 ret = rdev->desc->ops->set_mode(rdev, mode); 1801 out: 1802 mutex_unlock(&rdev->mutex); 1803 return ret; 1804 } 1805 EXPORT_SYMBOL_GPL(regulator_set_mode); 1806 1807 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 1808 { 1809 int ret; 1810 1811 mutex_lock(&rdev->mutex); 1812 1813 /* sanity check */ 1814 if (!rdev->desc->ops->get_mode) { 1815 ret = -EINVAL; 1816 goto out; 1817 } 1818 1819 ret = rdev->desc->ops->get_mode(rdev); 1820 out: 1821 mutex_unlock(&rdev->mutex); 1822 return ret; 1823 } 1824 1825 /** 1826 * regulator_get_mode - get regulator operating mode 1827 * @regulator: regulator source 1828 * 1829 * Get the current regulator operating mode. 1830 */ 1831 unsigned int regulator_get_mode(struct regulator *regulator) 1832 { 1833 return _regulator_get_mode(regulator->rdev); 1834 } 1835 EXPORT_SYMBOL_GPL(regulator_get_mode); 1836 1837 /** 1838 * regulator_set_optimum_mode - set regulator optimum operating mode 1839 * @regulator: regulator source 1840 * @uA_load: load current 1841 * 1842 * Notifies the regulator core of a new device load. This is then used by 1843 * DRMS (if enabled by constraints) to set the most efficient regulator 1844 * operating mode for the new regulator loading. 1845 * 1846 * Consumer devices notify their supply regulator of the maximum power 1847 * they will require (can be taken from device datasheet in the power 1848 * consumption tables) when they change operational status and hence power 1849 * state. Examples of operational state changes that can affect power 1850 * consumption are :- 1851 * 1852 * o Device is opened / closed. 1853 * o Device I/O is about to begin or has just finished. 1854 * o Device is idling in between work. 1855 * 1856 * This information is also exported via sysfs to userspace. 1857 * 1858 * DRMS will sum the total requested load on the regulator and change 1859 * to the most efficient operating mode if platform constraints allow. 1860 * 1861 * Returns the new regulator mode or error. 1862 */ 1863 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 1864 { 1865 struct regulator_dev *rdev = regulator->rdev; 1866 struct regulator *consumer; 1867 int ret, output_uV, input_uV, total_uA_load = 0; 1868 unsigned int mode; 1869 1870 mutex_lock(&rdev->mutex); 1871 1872 regulator->uA_load = uA_load; 1873 ret = regulator_check_drms(rdev); 1874 if (ret < 0) 1875 goto out; 1876 ret = -EINVAL; 1877 1878 /* sanity check */ 1879 if (!rdev->desc->ops->get_optimum_mode) 1880 goto out; 1881 1882 /* get output voltage */ 1883 output_uV = rdev->desc->ops->get_voltage(rdev); 1884 if (output_uV <= 0) { 1885 printk(KERN_ERR "%s: invalid output voltage found for %s\n", 1886 __func__, rdev_get_name(rdev)); 1887 goto out; 1888 } 1889 1890 /* get input voltage */ 1891 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 1892 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 1893 else 1894 input_uV = rdev->constraints->input_uV; 1895 if (input_uV <= 0) { 1896 printk(KERN_ERR "%s: invalid input voltage found for %s\n", 1897 __func__, rdev_get_name(rdev)); 1898 goto out; 1899 } 1900 1901 /* calc total requested load for this regulator */ 1902 list_for_each_entry(consumer, &rdev->consumer_list, list) 1903 total_uA_load += consumer->uA_load; 1904 1905 mode = rdev->desc->ops->get_optimum_mode(rdev, 1906 input_uV, output_uV, 1907 total_uA_load); 1908 ret = regulator_check_mode(rdev, mode); 1909 if (ret < 0) { 1910 printk(KERN_ERR "%s: failed to get optimum mode for %s @" 1911 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev), 1912 total_uA_load, input_uV, output_uV); 1913 goto out; 1914 } 1915 1916 ret = rdev->desc->ops->set_mode(rdev, mode); 1917 if (ret < 0) { 1918 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", 1919 __func__, mode, rdev_get_name(rdev)); 1920 goto out; 1921 } 1922 ret = mode; 1923 out: 1924 mutex_unlock(&rdev->mutex); 1925 return ret; 1926 } 1927 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 1928 1929 /** 1930 * regulator_register_notifier - register regulator event notifier 1931 * @regulator: regulator source 1932 * @nb: notifier block 1933 * 1934 * Register notifier block to receive regulator events. 1935 */ 1936 int regulator_register_notifier(struct regulator *regulator, 1937 struct notifier_block *nb) 1938 { 1939 return blocking_notifier_chain_register(®ulator->rdev->notifier, 1940 nb); 1941 } 1942 EXPORT_SYMBOL_GPL(regulator_register_notifier); 1943 1944 /** 1945 * regulator_unregister_notifier - unregister regulator event notifier 1946 * @regulator: regulator source 1947 * @nb: notifier block 1948 * 1949 * Unregister regulator event notifier block. 1950 */ 1951 int regulator_unregister_notifier(struct regulator *regulator, 1952 struct notifier_block *nb) 1953 { 1954 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 1955 nb); 1956 } 1957 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 1958 1959 /* notify regulator consumers and downstream regulator consumers. 1960 * Note mutex must be held by caller. 1961 */ 1962 static void _notifier_call_chain(struct regulator_dev *rdev, 1963 unsigned long event, void *data) 1964 { 1965 struct regulator_dev *_rdev; 1966 1967 /* call rdev chain first */ 1968 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 1969 1970 /* now notify regulator we supply */ 1971 list_for_each_entry(_rdev, &rdev->supply_list, slist) { 1972 mutex_lock(&_rdev->mutex); 1973 _notifier_call_chain(_rdev, event, data); 1974 mutex_unlock(&_rdev->mutex); 1975 } 1976 } 1977 1978 /** 1979 * regulator_bulk_get - get multiple regulator consumers 1980 * 1981 * @dev: Device to supply 1982 * @num_consumers: Number of consumers to register 1983 * @consumers: Configuration of consumers; clients are stored here. 1984 * 1985 * @return 0 on success, an errno on failure. 1986 * 1987 * This helper function allows drivers to get several regulator 1988 * consumers in one operation. If any of the regulators cannot be 1989 * acquired then any regulators that were allocated will be freed 1990 * before returning to the caller. 1991 */ 1992 int regulator_bulk_get(struct device *dev, int num_consumers, 1993 struct regulator_bulk_data *consumers) 1994 { 1995 int i; 1996 int ret; 1997 1998 for (i = 0; i < num_consumers; i++) 1999 consumers[i].consumer = NULL; 2000 2001 for (i = 0; i < num_consumers; i++) { 2002 consumers[i].consumer = regulator_get(dev, 2003 consumers[i].supply); 2004 if (IS_ERR(consumers[i].consumer)) { 2005 ret = PTR_ERR(consumers[i].consumer); 2006 dev_err(dev, "Failed to get supply '%s': %d\n", 2007 consumers[i].supply, ret); 2008 consumers[i].consumer = NULL; 2009 goto err; 2010 } 2011 } 2012 2013 return 0; 2014 2015 err: 2016 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2017 regulator_put(consumers[i].consumer); 2018 2019 return ret; 2020 } 2021 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2022 2023 /** 2024 * regulator_bulk_enable - enable multiple regulator consumers 2025 * 2026 * @num_consumers: Number of consumers 2027 * @consumers: Consumer data; clients are stored here. 2028 * @return 0 on success, an errno on failure 2029 * 2030 * This convenience API allows consumers to enable multiple regulator 2031 * clients in a single API call. If any consumers cannot be enabled 2032 * then any others that were enabled will be disabled again prior to 2033 * return. 2034 */ 2035 int regulator_bulk_enable(int num_consumers, 2036 struct regulator_bulk_data *consumers) 2037 { 2038 int i; 2039 int ret; 2040 2041 for (i = 0; i < num_consumers; i++) { 2042 ret = regulator_enable(consumers[i].consumer); 2043 if (ret != 0) 2044 goto err; 2045 } 2046 2047 return 0; 2048 2049 err: 2050 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret); 2051 for (--i; i >= 0; --i) 2052 regulator_disable(consumers[i].consumer); 2053 2054 return ret; 2055 } 2056 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2057 2058 /** 2059 * regulator_bulk_disable - disable multiple regulator consumers 2060 * 2061 * @num_consumers: Number of consumers 2062 * @consumers: Consumer data; clients are stored here. 2063 * @return 0 on success, an errno on failure 2064 * 2065 * This convenience API allows consumers to disable multiple regulator 2066 * clients in a single API call. If any consumers cannot be enabled 2067 * then any others that were disabled will be disabled again prior to 2068 * return. 2069 */ 2070 int regulator_bulk_disable(int num_consumers, 2071 struct regulator_bulk_data *consumers) 2072 { 2073 int i; 2074 int ret; 2075 2076 for (i = 0; i < num_consumers; i++) { 2077 ret = regulator_disable(consumers[i].consumer); 2078 if (ret != 0) 2079 goto err; 2080 } 2081 2082 return 0; 2083 2084 err: 2085 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply, 2086 ret); 2087 for (--i; i >= 0; --i) 2088 regulator_enable(consumers[i].consumer); 2089 2090 return ret; 2091 } 2092 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 2093 2094 /** 2095 * regulator_bulk_free - free multiple regulator consumers 2096 * 2097 * @num_consumers: Number of consumers 2098 * @consumers: Consumer data; clients are stored here. 2099 * 2100 * This convenience API allows consumers to free multiple regulator 2101 * clients in a single API call. 2102 */ 2103 void regulator_bulk_free(int num_consumers, 2104 struct regulator_bulk_data *consumers) 2105 { 2106 int i; 2107 2108 for (i = 0; i < num_consumers; i++) { 2109 regulator_put(consumers[i].consumer); 2110 consumers[i].consumer = NULL; 2111 } 2112 } 2113 EXPORT_SYMBOL_GPL(regulator_bulk_free); 2114 2115 /** 2116 * regulator_notifier_call_chain - call regulator event notifier 2117 * @rdev: regulator source 2118 * @event: notifier block 2119 * @data: callback-specific data. 2120 * 2121 * Called by regulator drivers to notify clients a regulator event has 2122 * occurred. We also notify regulator clients downstream. 2123 * Note lock must be held by caller. 2124 */ 2125 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2126 unsigned long event, void *data) 2127 { 2128 _notifier_call_chain(rdev, event, data); 2129 return NOTIFY_DONE; 2130 2131 } 2132 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2133 2134 /** 2135 * regulator_mode_to_status - convert a regulator mode into a status 2136 * 2137 * @mode: Mode to convert 2138 * 2139 * Convert a regulator mode into a status. 2140 */ 2141 int regulator_mode_to_status(unsigned int mode) 2142 { 2143 switch (mode) { 2144 case REGULATOR_MODE_FAST: 2145 return REGULATOR_STATUS_FAST; 2146 case REGULATOR_MODE_NORMAL: 2147 return REGULATOR_STATUS_NORMAL; 2148 case REGULATOR_MODE_IDLE: 2149 return REGULATOR_STATUS_IDLE; 2150 case REGULATOR_STATUS_STANDBY: 2151 return REGULATOR_STATUS_STANDBY; 2152 default: 2153 return 0; 2154 } 2155 } 2156 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 2157 2158 /* 2159 * To avoid cluttering sysfs (and memory) with useless state, only 2160 * create attributes that can be meaningfully displayed. 2161 */ 2162 static int add_regulator_attributes(struct regulator_dev *rdev) 2163 { 2164 struct device *dev = &rdev->dev; 2165 struct regulator_ops *ops = rdev->desc->ops; 2166 int status = 0; 2167 2168 /* some attributes need specific methods to be displayed */ 2169 if (ops->get_voltage) { 2170 status = device_create_file(dev, &dev_attr_microvolts); 2171 if (status < 0) 2172 return status; 2173 } 2174 if (ops->get_current_limit) { 2175 status = device_create_file(dev, &dev_attr_microamps); 2176 if (status < 0) 2177 return status; 2178 } 2179 if (ops->get_mode) { 2180 status = device_create_file(dev, &dev_attr_opmode); 2181 if (status < 0) 2182 return status; 2183 } 2184 if (ops->is_enabled) { 2185 status = device_create_file(dev, &dev_attr_state); 2186 if (status < 0) 2187 return status; 2188 } 2189 if (ops->get_status) { 2190 status = device_create_file(dev, &dev_attr_status); 2191 if (status < 0) 2192 return status; 2193 } 2194 2195 /* some attributes are type-specific */ 2196 if (rdev->desc->type == REGULATOR_CURRENT) { 2197 status = device_create_file(dev, &dev_attr_requested_microamps); 2198 if (status < 0) 2199 return status; 2200 } 2201 2202 /* all the other attributes exist to support constraints; 2203 * don't show them if there are no constraints, or if the 2204 * relevant supporting methods are missing. 2205 */ 2206 if (!rdev->constraints) 2207 return status; 2208 2209 /* constraints need specific supporting methods */ 2210 if (ops->set_voltage) { 2211 status = device_create_file(dev, &dev_attr_min_microvolts); 2212 if (status < 0) 2213 return status; 2214 status = device_create_file(dev, &dev_attr_max_microvolts); 2215 if (status < 0) 2216 return status; 2217 } 2218 if (ops->set_current_limit) { 2219 status = device_create_file(dev, &dev_attr_min_microamps); 2220 if (status < 0) 2221 return status; 2222 status = device_create_file(dev, &dev_attr_max_microamps); 2223 if (status < 0) 2224 return status; 2225 } 2226 2227 /* suspend mode constraints need multiple supporting methods */ 2228 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 2229 return status; 2230 2231 status = device_create_file(dev, &dev_attr_suspend_standby_state); 2232 if (status < 0) 2233 return status; 2234 status = device_create_file(dev, &dev_attr_suspend_mem_state); 2235 if (status < 0) 2236 return status; 2237 status = device_create_file(dev, &dev_attr_suspend_disk_state); 2238 if (status < 0) 2239 return status; 2240 2241 if (ops->set_suspend_voltage) { 2242 status = device_create_file(dev, 2243 &dev_attr_suspend_standby_microvolts); 2244 if (status < 0) 2245 return status; 2246 status = device_create_file(dev, 2247 &dev_attr_suspend_mem_microvolts); 2248 if (status < 0) 2249 return status; 2250 status = device_create_file(dev, 2251 &dev_attr_suspend_disk_microvolts); 2252 if (status < 0) 2253 return status; 2254 } 2255 2256 if (ops->set_suspend_mode) { 2257 status = device_create_file(dev, 2258 &dev_attr_suspend_standby_mode); 2259 if (status < 0) 2260 return status; 2261 status = device_create_file(dev, 2262 &dev_attr_suspend_mem_mode); 2263 if (status < 0) 2264 return status; 2265 status = device_create_file(dev, 2266 &dev_attr_suspend_disk_mode); 2267 if (status < 0) 2268 return status; 2269 } 2270 2271 return status; 2272 } 2273 2274 /** 2275 * regulator_register - register regulator 2276 * @regulator_desc: regulator to register 2277 * @dev: struct device for the regulator 2278 * @init_data: platform provided init data, passed through by driver 2279 * @driver_data: private regulator data 2280 * 2281 * Called by regulator drivers to register a regulator. 2282 * Returns 0 on success. 2283 */ 2284 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 2285 struct device *dev, struct regulator_init_data *init_data, 2286 void *driver_data) 2287 { 2288 static atomic_t regulator_no = ATOMIC_INIT(0); 2289 struct regulator_dev *rdev; 2290 int ret, i; 2291 2292 if (regulator_desc == NULL) 2293 return ERR_PTR(-EINVAL); 2294 2295 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2296 return ERR_PTR(-EINVAL); 2297 2298 if (regulator_desc->type != REGULATOR_VOLTAGE && 2299 regulator_desc->type != REGULATOR_CURRENT) 2300 return ERR_PTR(-EINVAL); 2301 2302 if (!init_data) 2303 return ERR_PTR(-EINVAL); 2304 2305 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2306 if (rdev == NULL) 2307 return ERR_PTR(-ENOMEM); 2308 2309 mutex_lock(®ulator_list_mutex); 2310 2311 mutex_init(&rdev->mutex); 2312 rdev->reg_data = driver_data; 2313 rdev->owner = regulator_desc->owner; 2314 rdev->desc = regulator_desc; 2315 INIT_LIST_HEAD(&rdev->consumer_list); 2316 INIT_LIST_HEAD(&rdev->supply_list); 2317 INIT_LIST_HEAD(&rdev->list); 2318 INIT_LIST_HEAD(&rdev->slist); 2319 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2320 2321 /* preform any regulator specific init */ 2322 if (init_data->regulator_init) { 2323 ret = init_data->regulator_init(rdev->reg_data); 2324 if (ret < 0) 2325 goto clean; 2326 } 2327 2328 /* register with sysfs */ 2329 rdev->dev.class = ®ulator_class; 2330 rdev->dev.parent = dev; 2331 dev_set_name(&rdev->dev, "regulator.%d", 2332 atomic_inc_return(®ulator_no) - 1); 2333 ret = device_register(&rdev->dev); 2334 if (ret != 0) { 2335 put_device(&rdev->dev); 2336 goto clean; 2337 } 2338 2339 dev_set_drvdata(&rdev->dev, rdev); 2340 2341 /* set regulator constraints */ 2342 ret = set_machine_constraints(rdev, &init_data->constraints); 2343 if (ret < 0) 2344 goto scrub; 2345 2346 /* add attributes supported by this regulator */ 2347 ret = add_regulator_attributes(rdev); 2348 if (ret < 0) 2349 goto scrub; 2350 2351 /* set supply regulator if it exists */ 2352 if (init_data->supply_regulator && init_data->supply_regulator_dev) { 2353 dev_err(dev, 2354 "Supply regulator specified by both name and dev\n"); 2355 ret = -EINVAL; 2356 goto scrub; 2357 } 2358 2359 if (init_data->supply_regulator) { 2360 struct regulator_dev *r; 2361 int found = 0; 2362 2363 list_for_each_entry(r, ®ulator_list, list) { 2364 if (strcmp(rdev_get_name(r), 2365 init_data->supply_regulator) == 0) { 2366 found = 1; 2367 break; 2368 } 2369 } 2370 2371 if (!found) { 2372 dev_err(dev, "Failed to find supply %s\n", 2373 init_data->supply_regulator); 2374 ret = -ENODEV; 2375 goto scrub; 2376 } 2377 2378 ret = set_supply(rdev, r); 2379 if (ret < 0) 2380 goto scrub; 2381 } 2382 2383 if (init_data->supply_regulator_dev) { 2384 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n"); 2385 ret = set_supply(rdev, 2386 dev_get_drvdata(init_data->supply_regulator_dev)); 2387 if (ret < 0) 2388 goto scrub; 2389 } 2390 2391 /* add consumers devices */ 2392 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2393 ret = set_consumer_device_supply(rdev, 2394 init_data->consumer_supplies[i].dev, 2395 init_data->consumer_supplies[i].dev_name, 2396 init_data->consumer_supplies[i].supply); 2397 if (ret < 0) 2398 goto unset_supplies; 2399 } 2400 2401 list_add(&rdev->list, ®ulator_list); 2402 out: 2403 mutex_unlock(®ulator_list_mutex); 2404 return rdev; 2405 2406 unset_supplies: 2407 unset_regulator_supplies(rdev); 2408 2409 scrub: 2410 device_unregister(&rdev->dev); 2411 /* device core frees rdev */ 2412 rdev = ERR_PTR(ret); 2413 goto out; 2414 2415 clean: 2416 kfree(rdev); 2417 rdev = ERR_PTR(ret); 2418 goto out; 2419 } 2420 EXPORT_SYMBOL_GPL(regulator_register); 2421 2422 /** 2423 * regulator_unregister - unregister regulator 2424 * @rdev: regulator to unregister 2425 * 2426 * Called by regulator drivers to unregister a regulator. 2427 */ 2428 void regulator_unregister(struct regulator_dev *rdev) 2429 { 2430 if (rdev == NULL) 2431 return; 2432 2433 mutex_lock(®ulator_list_mutex); 2434 WARN_ON(rdev->open_count); 2435 unset_regulator_supplies(rdev); 2436 list_del(&rdev->list); 2437 if (rdev->supply) 2438 sysfs_remove_link(&rdev->dev.kobj, "supply"); 2439 device_unregister(&rdev->dev); 2440 mutex_unlock(®ulator_list_mutex); 2441 } 2442 EXPORT_SYMBOL_GPL(regulator_unregister); 2443 2444 /** 2445 * regulator_suspend_prepare - prepare regulators for system wide suspend 2446 * @state: system suspend state 2447 * 2448 * Configure each regulator with it's suspend operating parameters for state. 2449 * This will usually be called by machine suspend code prior to supending. 2450 */ 2451 int regulator_suspend_prepare(suspend_state_t state) 2452 { 2453 struct regulator_dev *rdev; 2454 int ret = 0; 2455 2456 /* ON is handled by regulator active state */ 2457 if (state == PM_SUSPEND_ON) 2458 return -EINVAL; 2459 2460 mutex_lock(®ulator_list_mutex); 2461 list_for_each_entry(rdev, ®ulator_list, list) { 2462 2463 mutex_lock(&rdev->mutex); 2464 ret = suspend_prepare(rdev, state); 2465 mutex_unlock(&rdev->mutex); 2466 2467 if (ret < 0) { 2468 printk(KERN_ERR "%s: failed to prepare %s\n", 2469 __func__, rdev_get_name(rdev)); 2470 goto out; 2471 } 2472 } 2473 out: 2474 mutex_unlock(®ulator_list_mutex); 2475 return ret; 2476 } 2477 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 2478 2479 /** 2480 * regulator_has_full_constraints - the system has fully specified constraints 2481 * 2482 * Calling this function will cause the regulator API to disable all 2483 * regulators which have a zero use count and don't have an always_on 2484 * constraint in a late_initcall. 2485 * 2486 * The intention is that this will become the default behaviour in a 2487 * future kernel release so users are encouraged to use this facility 2488 * now. 2489 */ 2490 void regulator_has_full_constraints(void) 2491 { 2492 has_full_constraints = 1; 2493 } 2494 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 2495 2496 /** 2497 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 2498 * 2499 * Calling this function will cause the regulator API to provide a 2500 * dummy regulator to consumers if no physical regulator is found, 2501 * allowing most consumers to proceed as though a regulator were 2502 * configured. This allows systems such as those with software 2503 * controllable regulators for the CPU core only to be brought up more 2504 * readily. 2505 */ 2506 void regulator_use_dummy_regulator(void) 2507 { 2508 board_wants_dummy_regulator = true; 2509 } 2510 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 2511 2512 /** 2513 * rdev_get_drvdata - get rdev regulator driver data 2514 * @rdev: regulator 2515 * 2516 * Get rdev regulator driver private data. This call can be used in the 2517 * regulator driver context. 2518 */ 2519 void *rdev_get_drvdata(struct regulator_dev *rdev) 2520 { 2521 return rdev->reg_data; 2522 } 2523 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 2524 2525 /** 2526 * regulator_get_drvdata - get regulator driver data 2527 * @regulator: regulator 2528 * 2529 * Get regulator driver private data. This call can be used in the consumer 2530 * driver context when non API regulator specific functions need to be called. 2531 */ 2532 void *regulator_get_drvdata(struct regulator *regulator) 2533 { 2534 return regulator->rdev->reg_data; 2535 } 2536 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 2537 2538 /** 2539 * regulator_set_drvdata - set regulator driver data 2540 * @regulator: regulator 2541 * @data: data 2542 */ 2543 void regulator_set_drvdata(struct regulator *regulator, void *data) 2544 { 2545 regulator->rdev->reg_data = data; 2546 } 2547 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 2548 2549 /** 2550 * regulator_get_id - get regulator ID 2551 * @rdev: regulator 2552 */ 2553 int rdev_get_id(struct regulator_dev *rdev) 2554 { 2555 return rdev->desc->id; 2556 } 2557 EXPORT_SYMBOL_GPL(rdev_get_id); 2558 2559 struct device *rdev_get_dev(struct regulator_dev *rdev) 2560 { 2561 return &rdev->dev; 2562 } 2563 EXPORT_SYMBOL_GPL(rdev_get_dev); 2564 2565 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 2566 { 2567 return reg_init_data->driver_data; 2568 } 2569 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 2570 2571 static int __init regulator_init(void) 2572 { 2573 int ret; 2574 2575 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); 2576 2577 ret = class_register(®ulator_class); 2578 2579 regulator_dummy_init(); 2580 2581 return ret; 2582 } 2583 2584 /* init early to allow our consumers to complete system booting */ 2585 core_initcall(regulator_init); 2586 2587 static int __init regulator_init_complete(void) 2588 { 2589 struct regulator_dev *rdev; 2590 struct regulator_ops *ops; 2591 struct regulation_constraints *c; 2592 int enabled, ret; 2593 const char *name; 2594 2595 mutex_lock(®ulator_list_mutex); 2596 2597 /* If we have a full configuration then disable any regulators 2598 * which are not in use or always_on. This will become the 2599 * default behaviour in the future. 2600 */ 2601 list_for_each_entry(rdev, ®ulator_list, list) { 2602 ops = rdev->desc->ops; 2603 c = rdev->constraints; 2604 2605 name = rdev_get_name(rdev); 2606 2607 if (!ops->disable || (c && c->always_on)) 2608 continue; 2609 2610 mutex_lock(&rdev->mutex); 2611 2612 if (rdev->use_count) 2613 goto unlock; 2614 2615 /* If we can't read the status assume it's on. */ 2616 if (ops->is_enabled) 2617 enabled = ops->is_enabled(rdev); 2618 else 2619 enabled = 1; 2620 2621 if (!enabled) 2622 goto unlock; 2623 2624 if (has_full_constraints) { 2625 /* We log since this may kill the system if it 2626 * goes wrong. */ 2627 printk(KERN_INFO "%s: disabling %s\n", 2628 __func__, name); 2629 ret = ops->disable(rdev); 2630 if (ret != 0) { 2631 printk(KERN_ERR 2632 "%s: couldn't disable %s: %d\n", 2633 __func__, name, ret); 2634 } 2635 } else { 2636 /* The intention is that in future we will 2637 * assume that full constraints are provided 2638 * so warn even if we aren't going to do 2639 * anything here. 2640 */ 2641 printk(KERN_WARNING 2642 "%s: incomplete constraints, leaving %s on\n", 2643 __func__, name); 2644 } 2645 2646 unlock: 2647 mutex_unlock(&rdev->mutex); 2648 } 2649 2650 mutex_unlock(®ulator_list_mutex); 2651 2652 return 0; 2653 } 2654 late_initcall(regulator_init_complete); 2655