xref: /openbmc/linux/drivers/regulator/core.c (revision b664e06d)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_WW_CLASS(regulator_ww_class);
53 static DEFINE_MUTEX(regulator_nesting_mutex);
54 static DEFINE_MUTEX(regulator_list_mutex);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109 				     suspend_state_t state);
110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
111 				      int min_uV, int max_uV,
112 				      suspend_state_t state);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 					  struct device *dev,
115 					  const char *supply_name);
116 static void _regulator_put(struct regulator *regulator);
117 
118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 	if (rdev->constraints && rdev->constraints->name)
121 		return rdev->constraints->name;
122 	else if (rdev->desc->name)
123 		return rdev->desc->name;
124 	else
125 		return "";
126 }
127 
128 static bool have_full_constraints(void)
129 {
130 	return has_full_constraints || of_have_populated_dt();
131 }
132 
133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
134 {
135 	if (!rdev->constraints) {
136 		rdev_err(rdev, "no constraints\n");
137 		return false;
138 	}
139 
140 	if (rdev->constraints->valid_ops_mask & ops)
141 		return true;
142 
143 	return false;
144 }
145 
146 /**
147  * regulator_lock_nested - lock a single regulator
148  * @rdev:		regulator source
149  * @ww_ctx:		w/w mutex acquire context
150  *
151  * This function can be called many times by one task on
152  * a single regulator and its mutex will be locked only
153  * once. If a task, which is calling this function is other
154  * than the one, which initially locked the mutex, it will
155  * wait on mutex.
156  */
157 static inline int regulator_lock_nested(struct regulator_dev *rdev,
158 					struct ww_acquire_ctx *ww_ctx)
159 {
160 	bool lock = false;
161 	int ret = 0;
162 
163 	mutex_lock(&regulator_nesting_mutex);
164 
165 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
166 		if (rdev->mutex_owner == current)
167 			rdev->ref_cnt++;
168 		else
169 			lock = true;
170 
171 		if (lock) {
172 			mutex_unlock(&regulator_nesting_mutex);
173 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
174 			mutex_lock(&regulator_nesting_mutex);
175 		}
176 	} else {
177 		lock = true;
178 	}
179 
180 	if (lock && ret != -EDEADLK) {
181 		rdev->ref_cnt++;
182 		rdev->mutex_owner = current;
183 	}
184 
185 	mutex_unlock(&regulator_nesting_mutex);
186 
187 	return ret;
188 }
189 
190 /**
191  * regulator_lock - lock a single regulator
192  * @rdev:		regulator source
193  *
194  * This function can be called many times by one task on
195  * a single regulator and its mutex will be locked only
196  * once. If a task, which is calling this function is other
197  * than the one, which initially locked the mutex, it will
198  * wait on mutex.
199  */
200 void regulator_lock(struct regulator_dev *rdev)
201 {
202 	regulator_lock_nested(rdev, NULL);
203 }
204 EXPORT_SYMBOL_GPL(regulator_lock);
205 
206 /**
207  * regulator_unlock - unlock a single regulator
208  * @rdev:		regulator_source
209  *
210  * This function unlocks the mutex when the
211  * reference counter reaches 0.
212  */
213 void regulator_unlock(struct regulator_dev *rdev)
214 {
215 	mutex_lock(&regulator_nesting_mutex);
216 
217 	if (--rdev->ref_cnt == 0) {
218 		rdev->mutex_owner = NULL;
219 		ww_mutex_unlock(&rdev->mutex);
220 	}
221 
222 	WARN_ON_ONCE(rdev->ref_cnt < 0);
223 
224 	mutex_unlock(&regulator_nesting_mutex);
225 }
226 EXPORT_SYMBOL_GPL(regulator_unlock);
227 
228 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229 {
230 	struct regulator_dev *c_rdev;
231 	int i;
232 
233 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
234 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235 
236 		if (rdev->supply->rdev == c_rdev)
237 			return true;
238 	}
239 
240 	return false;
241 }
242 
243 static void regulator_unlock_recursive(struct regulator_dev *rdev,
244 				       unsigned int n_coupled)
245 {
246 	struct regulator_dev *c_rdev;
247 	int i;
248 
249 	for (i = n_coupled; i > 0; i--) {
250 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251 
252 		if (!c_rdev)
253 			continue;
254 
255 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256 			regulator_unlock_recursive(
257 					c_rdev->supply->rdev,
258 					c_rdev->coupling_desc.n_coupled);
259 
260 		regulator_unlock(c_rdev);
261 	}
262 }
263 
264 static int regulator_lock_recursive(struct regulator_dev *rdev,
265 				    struct regulator_dev **new_contended_rdev,
266 				    struct regulator_dev **old_contended_rdev,
267 				    struct ww_acquire_ctx *ww_ctx)
268 {
269 	struct regulator_dev *c_rdev;
270 	int i, err;
271 
272 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274 
275 		if (!c_rdev)
276 			continue;
277 
278 		if (c_rdev != *old_contended_rdev) {
279 			err = regulator_lock_nested(c_rdev, ww_ctx);
280 			if (err) {
281 				if (err == -EDEADLK) {
282 					*new_contended_rdev = c_rdev;
283 					goto err_unlock;
284 				}
285 
286 				/* shouldn't happen */
287 				WARN_ON_ONCE(err != -EALREADY);
288 			}
289 		} else {
290 			*old_contended_rdev = NULL;
291 		}
292 
293 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294 			err = regulator_lock_recursive(c_rdev->supply->rdev,
295 						       new_contended_rdev,
296 						       old_contended_rdev,
297 						       ww_ctx);
298 			if (err) {
299 				regulator_unlock(c_rdev);
300 				goto err_unlock;
301 			}
302 		}
303 	}
304 
305 	return 0;
306 
307 err_unlock:
308 	regulator_unlock_recursive(rdev, i);
309 
310 	return err;
311 }
312 
313 /**
314  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315  *				regulators
316  * @rdev:			regulator source
317  * @ww_ctx:			w/w mutex acquire context
318  *
319  * Unlock all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_unlock_dependent(struct regulator_dev *rdev,
322 				       struct ww_acquire_ctx *ww_ctx)
323 {
324 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325 	ww_acquire_fini(ww_ctx);
326 }
327 
328 /**
329  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330  * @rdev:			regulator source
331  * @ww_ctx:			w/w mutex acquire context
332  *
333  * This function as a wrapper on regulator_lock_recursive(), which locks
334  * all regulators related with rdev by coupling or supplying.
335  */
336 static void regulator_lock_dependent(struct regulator_dev *rdev,
337 				     struct ww_acquire_ctx *ww_ctx)
338 {
339 	struct regulator_dev *new_contended_rdev = NULL;
340 	struct regulator_dev *old_contended_rdev = NULL;
341 	int err;
342 
343 	mutex_lock(&regulator_list_mutex);
344 
345 	ww_acquire_init(ww_ctx, &regulator_ww_class);
346 
347 	do {
348 		if (new_contended_rdev) {
349 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350 			old_contended_rdev = new_contended_rdev;
351 			old_contended_rdev->ref_cnt++;
352 		}
353 
354 		err = regulator_lock_recursive(rdev,
355 					       &new_contended_rdev,
356 					       &old_contended_rdev,
357 					       ww_ctx);
358 
359 		if (old_contended_rdev)
360 			regulator_unlock(old_contended_rdev);
361 
362 	} while (err == -EDEADLK);
363 
364 	ww_acquire_done(ww_ctx);
365 
366 	mutex_unlock(&regulator_list_mutex);
367 }
368 
369 /**
370  * of_get_child_regulator - get a child regulator device node
371  * based on supply name
372  * @parent: Parent device node
373  * @prop_name: Combination regulator supply name and "-supply"
374  *
375  * Traverse all child nodes.
376  * Extract the child regulator device node corresponding to the supply name.
377  * returns the device node corresponding to the regulator if found, else
378  * returns NULL.
379  */
380 static struct device_node *of_get_child_regulator(struct device_node *parent,
381 						  const char *prop_name)
382 {
383 	struct device_node *regnode = NULL;
384 	struct device_node *child = NULL;
385 
386 	for_each_child_of_node(parent, child) {
387 		regnode = of_parse_phandle(child, prop_name, 0);
388 
389 		if (!regnode) {
390 			regnode = of_get_child_regulator(child, prop_name);
391 			if (regnode)
392 				return regnode;
393 		} else {
394 			return regnode;
395 		}
396 	}
397 	return NULL;
398 }
399 
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411 	struct device_node *regnode = NULL;
412 	char prop_name[32]; /* 32 is max size of property name */
413 
414 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415 
416 	snprintf(prop_name, 32, "%s-supply", supply);
417 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418 
419 	if (!regnode) {
420 		regnode = of_get_child_regulator(dev->of_node, prop_name);
421 		if (regnode)
422 			return regnode;
423 
424 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 				prop_name, dev->of_node);
426 		return NULL;
427 	}
428 	return regnode;
429 }
430 
431 /* Platform voltage constraint check */
432 static int regulator_check_voltage(struct regulator_dev *rdev,
433 				   int *min_uV, int *max_uV)
434 {
435 	BUG_ON(*min_uV > *max_uV);
436 
437 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 		rdev_err(rdev, "voltage operation not allowed\n");
439 		return -EPERM;
440 	}
441 
442 	if (*max_uV > rdev->constraints->max_uV)
443 		*max_uV = rdev->constraints->max_uV;
444 	if (*min_uV < rdev->constraints->min_uV)
445 		*min_uV = rdev->constraints->min_uV;
446 
447 	if (*min_uV > *max_uV) {
448 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 			 *min_uV, *max_uV);
450 		return -EINVAL;
451 	}
452 
453 	return 0;
454 }
455 
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461 
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 static int regulator_check_consumers(struct regulator_dev *rdev,
466 				     int *min_uV, int *max_uV,
467 				     suspend_state_t state)
468 {
469 	struct regulator *regulator;
470 	struct regulator_voltage *voltage;
471 
472 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 		voltage = &regulator->voltage[state];
474 		/*
475 		 * Assume consumers that didn't say anything are OK
476 		 * with anything in the constraint range.
477 		 */
478 		if (!voltage->min_uV && !voltage->max_uV)
479 			continue;
480 
481 		if (*max_uV > voltage->max_uV)
482 			*max_uV = voltage->max_uV;
483 		if (*min_uV < voltage->min_uV)
484 			*min_uV = voltage->min_uV;
485 	}
486 
487 	if (*min_uV > *max_uV) {
488 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 			*min_uV, *max_uV);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498 					int *min_uA, int *max_uA)
499 {
500 	BUG_ON(*min_uA > *max_uA);
501 
502 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 		rdev_err(rdev, "current operation not allowed\n");
504 		return -EPERM;
505 	}
506 
507 	if (*max_uA > rdev->constraints->max_uA)
508 		*max_uA = rdev->constraints->max_uA;
509 	if (*min_uA < rdev->constraints->min_uA)
510 		*min_uA = rdev->constraints->min_uA;
511 
512 	if (*min_uA > *max_uA) {
513 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 			 *min_uA, *max_uA);
515 		return -EINVAL;
516 	}
517 
518 	return 0;
519 }
520 
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523 				    unsigned int *mode)
524 {
525 	switch (*mode) {
526 	case REGULATOR_MODE_FAST:
527 	case REGULATOR_MODE_NORMAL:
528 	case REGULATOR_MODE_IDLE:
529 	case REGULATOR_MODE_STANDBY:
530 		break;
531 	default:
532 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 		return -EINVAL;
534 	}
535 
536 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 		rdev_err(rdev, "mode operation not allowed\n");
538 		return -EPERM;
539 	}
540 
541 	/* The modes are bitmasks, the most power hungry modes having
542 	 * the lowest values. If the requested mode isn't supported
543 	 * try higher modes. */
544 	while (*mode) {
545 		if (rdev->constraints->valid_modes_mask & *mode)
546 			return 0;
547 		*mode /= 2;
548 	}
549 
550 	return -EINVAL;
551 }
552 
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556 	if (rdev->constraints == NULL)
557 		return NULL;
558 
559 	switch (state) {
560 	case PM_SUSPEND_STANDBY:
561 		return &rdev->constraints->state_standby;
562 	case PM_SUSPEND_MEM:
563 		return &rdev->constraints->state_mem;
564 	case PM_SUSPEND_MAX:
565 		return &rdev->constraints->state_disk;
566 	default:
567 		return NULL;
568 	}
569 }
570 
571 static ssize_t regulator_uV_show(struct device *dev,
572 				struct device_attribute *attr, char *buf)
573 {
574 	struct regulator_dev *rdev = dev_get_drvdata(dev);
575 	ssize_t ret;
576 
577 	regulator_lock(rdev);
578 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579 	regulator_unlock(rdev);
580 
581 	return ret;
582 }
583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584 
585 static ssize_t regulator_uA_show(struct device *dev,
586 				struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
591 }
592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593 
594 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595 			 char *buf)
596 {
597 	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 
599 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
600 }
601 static DEVICE_ATTR_RO(name);
602 
603 static const char *regulator_opmode_to_str(int mode)
604 {
605 	switch (mode) {
606 	case REGULATOR_MODE_FAST:
607 		return "fast";
608 	case REGULATOR_MODE_NORMAL:
609 		return "normal";
610 	case REGULATOR_MODE_IDLE:
611 		return "idle";
612 	case REGULATOR_MODE_STANDBY:
613 		return "standby";
614 	}
615 	return "unknown";
616 }
617 
618 static ssize_t regulator_print_opmode(char *buf, int mode)
619 {
620 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 }
622 
623 static ssize_t regulator_opmode_show(struct device *dev,
624 				    struct device_attribute *attr, char *buf)
625 {
626 	struct regulator_dev *rdev = dev_get_drvdata(dev);
627 
628 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
629 }
630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
631 
632 static ssize_t regulator_print_state(char *buf, int state)
633 {
634 	if (state > 0)
635 		return sprintf(buf, "enabled\n");
636 	else if (state == 0)
637 		return sprintf(buf, "disabled\n");
638 	else
639 		return sprintf(buf, "unknown\n");
640 }
641 
642 static ssize_t regulator_state_show(struct device *dev,
643 				   struct device_attribute *attr, char *buf)
644 {
645 	struct regulator_dev *rdev = dev_get_drvdata(dev);
646 	ssize_t ret;
647 
648 	regulator_lock(rdev);
649 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650 	regulator_unlock(rdev);
651 
652 	return ret;
653 }
654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
655 
656 static ssize_t regulator_status_show(struct device *dev,
657 				   struct device_attribute *attr, char *buf)
658 {
659 	struct regulator_dev *rdev = dev_get_drvdata(dev);
660 	int status;
661 	char *label;
662 
663 	status = rdev->desc->ops->get_status(rdev);
664 	if (status < 0)
665 		return status;
666 
667 	switch (status) {
668 	case REGULATOR_STATUS_OFF:
669 		label = "off";
670 		break;
671 	case REGULATOR_STATUS_ON:
672 		label = "on";
673 		break;
674 	case REGULATOR_STATUS_ERROR:
675 		label = "error";
676 		break;
677 	case REGULATOR_STATUS_FAST:
678 		label = "fast";
679 		break;
680 	case REGULATOR_STATUS_NORMAL:
681 		label = "normal";
682 		break;
683 	case REGULATOR_STATUS_IDLE:
684 		label = "idle";
685 		break;
686 	case REGULATOR_STATUS_STANDBY:
687 		label = "standby";
688 		break;
689 	case REGULATOR_STATUS_BYPASS:
690 		label = "bypass";
691 		break;
692 	case REGULATOR_STATUS_UNDEFINED:
693 		label = "undefined";
694 		break;
695 	default:
696 		return -ERANGE;
697 	}
698 
699 	return sprintf(buf, "%s\n", label);
700 }
701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
702 
703 static ssize_t regulator_min_uA_show(struct device *dev,
704 				    struct device_attribute *attr, char *buf)
705 {
706 	struct regulator_dev *rdev = dev_get_drvdata(dev);
707 
708 	if (!rdev->constraints)
709 		return sprintf(buf, "constraint not defined\n");
710 
711 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
712 }
713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714 
715 static ssize_t regulator_max_uA_show(struct device *dev,
716 				    struct device_attribute *attr, char *buf)
717 {
718 	struct regulator_dev *rdev = dev_get_drvdata(dev);
719 
720 	if (!rdev->constraints)
721 		return sprintf(buf, "constraint not defined\n");
722 
723 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
724 }
725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726 
727 static ssize_t regulator_min_uV_show(struct device *dev,
728 				    struct device_attribute *attr, char *buf)
729 {
730 	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 
732 	if (!rdev->constraints)
733 		return sprintf(buf, "constraint not defined\n");
734 
735 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
736 }
737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738 
739 static ssize_t regulator_max_uV_show(struct device *dev,
740 				    struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 
744 	if (!rdev->constraints)
745 		return sprintf(buf, "constraint not defined\n");
746 
747 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
748 }
749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750 
751 static ssize_t regulator_total_uA_show(struct device *dev,
752 				      struct device_attribute *attr, char *buf)
753 {
754 	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 	struct regulator *regulator;
756 	int uA = 0;
757 
758 	regulator_lock(rdev);
759 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
760 		if (regulator->enable_count)
761 			uA += regulator->uA_load;
762 	}
763 	regulator_unlock(rdev);
764 	return sprintf(buf, "%d\n", uA);
765 }
766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767 
768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769 			      char *buf)
770 {
771 	struct regulator_dev *rdev = dev_get_drvdata(dev);
772 	return sprintf(buf, "%d\n", rdev->use_count);
773 }
774 static DEVICE_ATTR_RO(num_users);
775 
776 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777 			 char *buf)
778 {
779 	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 
781 	switch (rdev->desc->type) {
782 	case REGULATOR_VOLTAGE:
783 		return sprintf(buf, "voltage\n");
784 	case REGULATOR_CURRENT:
785 		return sprintf(buf, "current\n");
786 	}
787 	return sprintf(buf, "unknown\n");
788 }
789 static DEVICE_ATTR_RO(type);
790 
791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
792 				struct device_attribute *attr, char *buf)
793 {
794 	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 
796 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
797 }
798 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
799 		regulator_suspend_mem_uV_show, NULL);
800 
801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
802 				struct device_attribute *attr, char *buf)
803 {
804 	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 
806 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
807 }
808 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
809 		regulator_suspend_disk_uV_show, NULL);
810 
811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
812 				struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
817 }
818 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
819 		regulator_suspend_standby_uV_show, NULL);
820 
821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
822 				struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	return regulator_print_opmode(buf,
827 		rdev->constraints->state_mem.mode);
828 }
829 static DEVICE_ATTR(suspend_mem_mode, 0444,
830 		regulator_suspend_mem_mode_show, NULL);
831 
832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
833 				struct device_attribute *attr, char *buf)
834 {
835 	struct regulator_dev *rdev = dev_get_drvdata(dev);
836 
837 	return regulator_print_opmode(buf,
838 		rdev->constraints->state_disk.mode);
839 }
840 static DEVICE_ATTR(suspend_disk_mode, 0444,
841 		regulator_suspend_disk_mode_show, NULL);
842 
843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
844 				struct device_attribute *attr, char *buf)
845 {
846 	struct regulator_dev *rdev = dev_get_drvdata(dev);
847 
848 	return regulator_print_opmode(buf,
849 		rdev->constraints->state_standby.mode);
850 }
851 static DEVICE_ATTR(suspend_standby_mode, 0444,
852 		regulator_suspend_standby_mode_show, NULL);
853 
854 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
855 				   struct device_attribute *attr, char *buf)
856 {
857 	struct regulator_dev *rdev = dev_get_drvdata(dev);
858 
859 	return regulator_print_state(buf,
860 			rdev->constraints->state_mem.enabled);
861 }
862 static DEVICE_ATTR(suspend_mem_state, 0444,
863 		regulator_suspend_mem_state_show, NULL);
864 
865 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
866 				   struct device_attribute *attr, char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 
870 	return regulator_print_state(buf,
871 			rdev->constraints->state_disk.enabled);
872 }
873 static DEVICE_ATTR(suspend_disk_state, 0444,
874 		regulator_suspend_disk_state_show, NULL);
875 
876 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
877 				   struct device_attribute *attr, char *buf)
878 {
879 	struct regulator_dev *rdev = dev_get_drvdata(dev);
880 
881 	return regulator_print_state(buf,
882 			rdev->constraints->state_standby.enabled);
883 }
884 static DEVICE_ATTR(suspend_standby_state, 0444,
885 		regulator_suspend_standby_state_show, NULL);
886 
887 static ssize_t regulator_bypass_show(struct device *dev,
888 				     struct device_attribute *attr, char *buf)
889 {
890 	struct regulator_dev *rdev = dev_get_drvdata(dev);
891 	const char *report;
892 	bool bypass;
893 	int ret;
894 
895 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
896 
897 	if (ret != 0)
898 		report = "unknown";
899 	else if (bypass)
900 		report = "enabled";
901 	else
902 		report = "disabled";
903 
904 	return sprintf(buf, "%s\n", report);
905 }
906 static DEVICE_ATTR(bypass, 0444,
907 		   regulator_bypass_show, NULL);
908 
909 /* Calculate the new optimum regulator operating mode based on the new total
910  * consumer load. All locks held by caller */
911 static int drms_uA_update(struct regulator_dev *rdev)
912 {
913 	struct regulator *sibling;
914 	int current_uA = 0, output_uV, input_uV, err;
915 	unsigned int mode;
916 
917 	/*
918 	 * first check to see if we can set modes at all, otherwise just
919 	 * tell the consumer everything is OK.
920 	 */
921 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
922 		rdev_dbg(rdev, "DRMS operation not allowed\n");
923 		return 0;
924 	}
925 
926 	if (!rdev->desc->ops->get_optimum_mode &&
927 	    !rdev->desc->ops->set_load)
928 		return 0;
929 
930 	if (!rdev->desc->ops->set_mode &&
931 	    !rdev->desc->ops->set_load)
932 		return -EINVAL;
933 
934 	/* calc total requested load */
935 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
936 		if (sibling->enable_count)
937 			current_uA += sibling->uA_load;
938 	}
939 
940 	current_uA += rdev->constraints->system_load;
941 
942 	if (rdev->desc->ops->set_load) {
943 		/* set the optimum mode for our new total regulator load */
944 		err = rdev->desc->ops->set_load(rdev, current_uA);
945 		if (err < 0)
946 			rdev_err(rdev, "failed to set load %d\n", current_uA);
947 	} else {
948 		/* get output voltage */
949 		output_uV = _regulator_get_voltage(rdev);
950 		if (output_uV <= 0) {
951 			rdev_err(rdev, "invalid output voltage found\n");
952 			return -EINVAL;
953 		}
954 
955 		/* get input voltage */
956 		input_uV = 0;
957 		if (rdev->supply)
958 			input_uV = regulator_get_voltage(rdev->supply);
959 		if (input_uV <= 0)
960 			input_uV = rdev->constraints->input_uV;
961 		if (input_uV <= 0) {
962 			rdev_err(rdev, "invalid input voltage found\n");
963 			return -EINVAL;
964 		}
965 
966 		/* now get the optimum mode for our new total regulator load */
967 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
968 							 output_uV, current_uA);
969 
970 		/* check the new mode is allowed */
971 		err = regulator_mode_constrain(rdev, &mode);
972 		if (err < 0) {
973 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974 				 current_uA, input_uV, output_uV);
975 			return err;
976 		}
977 
978 		err = rdev->desc->ops->set_mode(rdev, mode);
979 		if (err < 0)
980 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981 	}
982 
983 	return err;
984 }
985 
986 static int suspend_set_state(struct regulator_dev *rdev,
987 				    suspend_state_t state)
988 {
989 	int ret = 0;
990 	struct regulator_state *rstate;
991 
992 	rstate = regulator_get_suspend_state(rdev, state);
993 	if (rstate == NULL)
994 		return 0;
995 
996 	/* If we have no suspend mode configuration don't set anything;
997 	 * only warn if the driver implements set_suspend_voltage or
998 	 * set_suspend_mode callback.
999 	 */
1000 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1001 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1002 		if (rdev->desc->ops->set_suspend_voltage ||
1003 		    rdev->desc->ops->set_suspend_mode)
1004 			rdev_warn(rdev, "No configuration\n");
1005 		return 0;
1006 	}
1007 
1008 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1009 		rdev->desc->ops->set_suspend_enable)
1010 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1011 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1012 		rdev->desc->ops->set_suspend_disable)
1013 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1014 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1015 		ret = 0;
1016 
1017 	if (ret < 0) {
1018 		rdev_err(rdev, "failed to enabled/disable\n");
1019 		return ret;
1020 	}
1021 
1022 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1023 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1024 		if (ret < 0) {
1025 			rdev_err(rdev, "failed to set voltage\n");
1026 			return ret;
1027 		}
1028 	}
1029 
1030 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1031 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1032 		if (ret < 0) {
1033 			rdev_err(rdev, "failed to set mode\n");
1034 			return ret;
1035 		}
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 static void print_constraints(struct regulator_dev *rdev)
1042 {
1043 	struct regulation_constraints *constraints = rdev->constraints;
1044 	char buf[160] = "";
1045 	size_t len = sizeof(buf) - 1;
1046 	int count = 0;
1047 	int ret;
1048 
1049 	if (constraints->min_uV && constraints->max_uV) {
1050 		if (constraints->min_uV == constraints->max_uV)
1051 			count += scnprintf(buf + count, len - count, "%d mV ",
1052 					   constraints->min_uV / 1000);
1053 		else
1054 			count += scnprintf(buf + count, len - count,
1055 					   "%d <--> %d mV ",
1056 					   constraints->min_uV / 1000,
1057 					   constraints->max_uV / 1000);
1058 	}
1059 
1060 	if (!constraints->min_uV ||
1061 	    constraints->min_uV != constraints->max_uV) {
1062 		ret = _regulator_get_voltage(rdev);
1063 		if (ret > 0)
1064 			count += scnprintf(buf + count, len - count,
1065 					   "at %d mV ", ret / 1000);
1066 	}
1067 
1068 	if (constraints->uV_offset)
1069 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1070 				   constraints->uV_offset / 1000);
1071 
1072 	if (constraints->min_uA && constraints->max_uA) {
1073 		if (constraints->min_uA == constraints->max_uA)
1074 			count += scnprintf(buf + count, len - count, "%d mA ",
1075 					   constraints->min_uA / 1000);
1076 		else
1077 			count += scnprintf(buf + count, len - count,
1078 					   "%d <--> %d mA ",
1079 					   constraints->min_uA / 1000,
1080 					   constraints->max_uA / 1000);
1081 	}
1082 
1083 	if (!constraints->min_uA ||
1084 	    constraints->min_uA != constraints->max_uA) {
1085 		ret = _regulator_get_current_limit(rdev);
1086 		if (ret > 0)
1087 			count += scnprintf(buf + count, len - count,
1088 					   "at %d mA ", ret / 1000);
1089 	}
1090 
1091 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092 		count += scnprintf(buf + count, len - count, "fast ");
1093 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094 		count += scnprintf(buf + count, len - count, "normal ");
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096 		count += scnprintf(buf + count, len - count, "idle ");
1097 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098 		count += scnprintf(buf + count, len - count, "standby");
1099 
1100 	if (!count)
1101 		scnprintf(buf, len, "no parameters");
1102 
1103 	rdev_dbg(rdev, "%s\n", buf);
1104 
1105 	if ((constraints->min_uV != constraints->max_uV) &&
1106 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107 		rdev_warn(rdev,
1108 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 }
1110 
1111 static int machine_constraints_voltage(struct regulator_dev *rdev,
1112 	struct regulation_constraints *constraints)
1113 {
1114 	const struct regulator_ops *ops = rdev->desc->ops;
1115 	int ret;
1116 
1117 	/* do we need to apply the constraint voltage */
1118 	if (rdev->constraints->apply_uV &&
1119 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1120 		int target_min, target_max;
1121 		int current_uV = _regulator_get_voltage(rdev);
1122 
1123 		if (current_uV == -ENOTRECOVERABLE) {
1124 			/* This regulator can't be read and must be initialized */
1125 			rdev_info(rdev, "Setting %d-%duV\n",
1126 				  rdev->constraints->min_uV,
1127 				  rdev->constraints->max_uV);
1128 			_regulator_do_set_voltage(rdev,
1129 						  rdev->constraints->min_uV,
1130 						  rdev->constraints->max_uV);
1131 			current_uV = _regulator_get_voltage(rdev);
1132 		}
1133 
1134 		if (current_uV < 0) {
1135 			rdev_err(rdev,
1136 				 "failed to get the current voltage(%d)\n",
1137 				 current_uV);
1138 			return current_uV;
1139 		}
1140 
1141 		/*
1142 		 * If we're below the minimum voltage move up to the
1143 		 * minimum voltage, if we're above the maximum voltage
1144 		 * then move down to the maximum.
1145 		 */
1146 		target_min = current_uV;
1147 		target_max = current_uV;
1148 
1149 		if (current_uV < rdev->constraints->min_uV) {
1150 			target_min = rdev->constraints->min_uV;
1151 			target_max = rdev->constraints->min_uV;
1152 		}
1153 
1154 		if (current_uV > rdev->constraints->max_uV) {
1155 			target_min = rdev->constraints->max_uV;
1156 			target_max = rdev->constraints->max_uV;
1157 		}
1158 
1159 		if (target_min != current_uV || target_max != current_uV) {
1160 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1161 				  current_uV, target_min, target_max);
1162 			ret = _regulator_do_set_voltage(
1163 				rdev, target_min, target_max);
1164 			if (ret < 0) {
1165 				rdev_err(rdev,
1166 					"failed to apply %d-%duV constraint(%d)\n",
1167 					target_min, target_max, ret);
1168 				return ret;
1169 			}
1170 		}
1171 	}
1172 
1173 	/* constrain machine-level voltage specs to fit
1174 	 * the actual range supported by this regulator.
1175 	 */
1176 	if (ops->list_voltage && rdev->desc->n_voltages) {
1177 		int	count = rdev->desc->n_voltages;
1178 		int	i;
1179 		int	min_uV = INT_MAX;
1180 		int	max_uV = INT_MIN;
1181 		int	cmin = constraints->min_uV;
1182 		int	cmax = constraints->max_uV;
1183 
1184 		/* it's safe to autoconfigure fixed-voltage supplies
1185 		   and the constraints are used by list_voltage. */
1186 		if (count == 1 && !cmin) {
1187 			cmin = 1;
1188 			cmax = INT_MAX;
1189 			constraints->min_uV = cmin;
1190 			constraints->max_uV = cmax;
1191 		}
1192 
1193 		/* voltage constraints are optional */
1194 		if ((cmin == 0) && (cmax == 0))
1195 			return 0;
1196 
1197 		/* else require explicit machine-level constraints */
1198 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199 			rdev_err(rdev, "invalid voltage constraints\n");
1200 			return -EINVAL;
1201 		}
1202 
1203 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204 		for (i = 0; i < count; i++) {
1205 			int	value;
1206 
1207 			value = ops->list_voltage(rdev, i);
1208 			if (value <= 0)
1209 				continue;
1210 
1211 			/* maybe adjust [min_uV..max_uV] */
1212 			if (value >= cmin && value < min_uV)
1213 				min_uV = value;
1214 			if (value <= cmax && value > max_uV)
1215 				max_uV = value;
1216 		}
1217 
1218 		/* final: [min_uV..max_uV] valid iff constraints valid */
1219 		if (max_uV < min_uV) {
1220 			rdev_err(rdev,
1221 				 "unsupportable voltage constraints %u-%uuV\n",
1222 				 min_uV, max_uV);
1223 			return -EINVAL;
1224 		}
1225 
1226 		/* use regulator's subset of machine constraints */
1227 		if (constraints->min_uV < min_uV) {
1228 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1229 				 constraints->min_uV, min_uV);
1230 			constraints->min_uV = min_uV;
1231 		}
1232 		if (constraints->max_uV > max_uV) {
1233 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1234 				 constraints->max_uV, max_uV);
1235 			constraints->max_uV = max_uV;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int machine_constraints_current(struct regulator_dev *rdev,
1243 	struct regulation_constraints *constraints)
1244 {
1245 	const struct regulator_ops *ops = rdev->desc->ops;
1246 	int ret;
1247 
1248 	if (!constraints->min_uA && !constraints->max_uA)
1249 		return 0;
1250 
1251 	if (constraints->min_uA > constraints->max_uA) {
1252 		rdev_err(rdev, "Invalid current constraints\n");
1253 		return -EINVAL;
1254 	}
1255 
1256 	if (!ops->set_current_limit || !ops->get_current_limit) {
1257 		rdev_warn(rdev, "Operation of current configuration missing\n");
1258 		return 0;
1259 	}
1260 
1261 	/* Set regulator current in constraints range */
1262 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1263 			constraints->max_uA);
1264 	if (ret < 0) {
1265 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1266 		return ret;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int _regulator_do_enable(struct regulator_dev *rdev);
1273 
1274 /**
1275  * set_machine_constraints - sets regulator constraints
1276  * @rdev: regulator source
1277  * @constraints: constraints to apply
1278  *
1279  * Allows platform initialisation code to define and constrain
1280  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1281  * Constraints *must* be set by platform code in order for some
1282  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283  * set_mode.
1284  */
1285 static int set_machine_constraints(struct regulator_dev *rdev,
1286 	const struct regulation_constraints *constraints)
1287 {
1288 	int ret = 0;
1289 	const struct regulator_ops *ops = rdev->desc->ops;
1290 
1291 	if (constraints)
1292 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293 					    GFP_KERNEL);
1294 	else
1295 		rdev->constraints = kzalloc(sizeof(*constraints),
1296 					    GFP_KERNEL);
1297 	if (!rdev->constraints)
1298 		return -ENOMEM;
1299 
1300 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1301 	if (ret != 0)
1302 		return ret;
1303 
1304 	ret = machine_constraints_current(rdev, rdev->constraints);
1305 	if (ret != 0)
1306 		return ret;
1307 
1308 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1309 		ret = ops->set_input_current_limit(rdev,
1310 						   rdev->constraints->ilim_uA);
1311 		if (ret < 0) {
1312 			rdev_err(rdev, "failed to set input limit\n");
1313 			return ret;
1314 		}
1315 	}
1316 
1317 	/* do we need to setup our suspend state */
1318 	if (rdev->constraints->initial_state) {
1319 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320 		if (ret < 0) {
1321 			rdev_err(rdev, "failed to set suspend state\n");
1322 			return ret;
1323 		}
1324 	}
1325 
1326 	if (rdev->constraints->initial_mode) {
1327 		if (!ops->set_mode) {
1328 			rdev_err(rdev, "no set_mode operation\n");
1329 			return -EINVAL;
1330 		}
1331 
1332 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333 		if (ret < 0) {
1334 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335 			return ret;
1336 		}
1337 	} else if (rdev->constraints->system_load) {
1338 		/*
1339 		 * We'll only apply the initial system load if an
1340 		 * initial mode wasn't specified.
1341 		 */
1342 		drms_uA_update(rdev);
1343 	}
1344 
1345 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1346 		&& ops->set_ramp_delay) {
1347 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1348 		if (ret < 0) {
1349 			rdev_err(rdev, "failed to set ramp_delay\n");
1350 			return ret;
1351 		}
1352 	}
1353 
1354 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1355 		ret = ops->set_pull_down(rdev);
1356 		if (ret < 0) {
1357 			rdev_err(rdev, "failed to set pull down\n");
1358 			return ret;
1359 		}
1360 	}
1361 
1362 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1363 		ret = ops->set_soft_start(rdev);
1364 		if (ret < 0) {
1365 			rdev_err(rdev, "failed to set soft start\n");
1366 			return ret;
1367 		}
1368 	}
1369 
1370 	if (rdev->constraints->over_current_protection
1371 		&& ops->set_over_current_protection) {
1372 		ret = ops->set_over_current_protection(rdev);
1373 		if (ret < 0) {
1374 			rdev_err(rdev, "failed to set over current protection\n");
1375 			return ret;
1376 		}
1377 	}
1378 
1379 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1380 		bool ad_state = (rdev->constraints->active_discharge ==
1381 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1382 
1383 		ret = ops->set_active_discharge(rdev, ad_state);
1384 		if (ret < 0) {
1385 			rdev_err(rdev, "failed to set active discharge\n");
1386 			return ret;
1387 		}
1388 	}
1389 
1390 	/* If the constraints say the regulator should be on at this point
1391 	 * and we have control then make sure it is enabled.
1392 	 */
1393 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1394 		if (rdev->supply) {
1395 			ret = regulator_enable(rdev->supply);
1396 			if (ret < 0) {
1397 				_regulator_put(rdev->supply);
1398 				rdev->supply = NULL;
1399 				return ret;
1400 			}
1401 		}
1402 
1403 		ret = _regulator_do_enable(rdev);
1404 		if (ret < 0 && ret != -EINVAL) {
1405 			rdev_err(rdev, "failed to enable\n");
1406 			return ret;
1407 		}
1408 		rdev->use_count++;
1409 	}
1410 
1411 	print_constraints(rdev);
1412 	return 0;
1413 }
1414 
1415 /**
1416  * set_supply - set regulator supply regulator
1417  * @rdev: regulator name
1418  * @supply_rdev: supply regulator name
1419  *
1420  * Called by platform initialisation code to set the supply regulator for this
1421  * regulator. This ensures that a regulators supply will also be enabled by the
1422  * core if it's child is enabled.
1423  */
1424 static int set_supply(struct regulator_dev *rdev,
1425 		      struct regulator_dev *supply_rdev)
1426 {
1427 	int err;
1428 
1429 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1430 
1431 	if (!try_module_get(supply_rdev->owner))
1432 		return -ENODEV;
1433 
1434 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435 	if (rdev->supply == NULL) {
1436 		err = -ENOMEM;
1437 		return err;
1438 	}
1439 	supply_rdev->open_count++;
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446  * @rdev:         regulator source
1447  * @consumer_dev_name: dev_name() string for device supply applies to
1448  * @supply:       symbolic name for supply
1449  *
1450  * Allows platform initialisation code to map physical regulator
1451  * sources to symbolic names for supplies for use by devices.  Devices
1452  * should use these symbolic names to request regulators, avoiding the
1453  * need to provide board-specific regulator names as platform data.
1454  */
1455 static int set_consumer_device_supply(struct regulator_dev *rdev,
1456 				      const char *consumer_dev_name,
1457 				      const char *supply)
1458 {
1459 	struct regulator_map *node;
1460 	int has_dev;
1461 
1462 	if (supply == NULL)
1463 		return -EINVAL;
1464 
1465 	if (consumer_dev_name != NULL)
1466 		has_dev = 1;
1467 	else
1468 		has_dev = 0;
1469 
1470 	list_for_each_entry(node, &regulator_map_list, list) {
1471 		if (node->dev_name && consumer_dev_name) {
1472 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1473 				continue;
1474 		} else if (node->dev_name || consumer_dev_name) {
1475 			continue;
1476 		}
1477 
1478 		if (strcmp(node->supply, supply) != 0)
1479 			continue;
1480 
1481 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1482 			 consumer_dev_name,
1483 			 dev_name(&node->regulator->dev),
1484 			 node->regulator->desc->name,
1485 			 supply,
1486 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1487 		return -EBUSY;
1488 	}
1489 
1490 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491 	if (node == NULL)
1492 		return -ENOMEM;
1493 
1494 	node->regulator = rdev;
1495 	node->supply = supply;
1496 
1497 	if (has_dev) {
1498 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1499 		if (node->dev_name == NULL) {
1500 			kfree(node);
1501 			return -ENOMEM;
1502 		}
1503 	}
1504 
1505 	list_add(&node->list, &regulator_map_list);
1506 	return 0;
1507 }
1508 
1509 static void unset_regulator_supplies(struct regulator_dev *rdev)
1510 {
1511 	struct regulator_map *node, *n;
1512 
1513 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1514 		if (rdev == node->regulator) {
1515 			list_del(&node->list);
1516 			kfree(node->dev_name);
1517 			kfree(node);
1518 		}
1519 	}
1520 }
1521 
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t constraint_flags_read_file(struct file *file,
1524 					  char __user *user_buf,
1525 					  size_t count, loff_t *ppos)
1526 {
1527 	const struct regulator *regulator = file->private_data;
1528 	const struct regulation_constraints *c = regulator->rdev->constraints;
1529 	char *buf;
1530 	ssize_t ret;
1531 
1532 	if (!c)
1533 		return 0;
1534 
1535 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1536 	if (!buf)
1537 		return -ENOMEM;
1538 
1539 	ret = snprintf(buf, PAGE_SIZE,
1540 			"always_on: %u\n"
1541 			"boot_on: %u\n"
1542 			"apply_uV: %u\n"
1543 			"ramp_disable: %u\n"
1544 			"soft_start: %u\n"
1545 			"pull_down: %u\n"
1546 			"over_current_protection: %u\n",
1547 			c->always_on,
1548 			c->boot_on,
1549 			c->apply_uV,
1550 			c->ramp_disable,
1551 			c->soft_start,
1552 			c->pull_down,
1553 			c->over_current_protection);
1554 
1555 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1556 	kfree(buf);
1557 
1558 	return ret;
1559 }
1560 
1561 #endif
1562 
1563 static const struct file_operations constraint_flags_fops = {
1564 #ifdef CONFIG_DEBUG_FS
1565 	.open = simple_open,
1566 	.read = constraint_flags_read_file,
1567 	.llseek = default_llseek,
1568 #endif
1569 };
1570 
1571 #define REG_STR_SIZE	64
1572 
1573 static struct regulator *create_regulator(struct regulator_dev *rdev,
1574 					  struct device *dev,
1575 					  const char *supply_name)
1576 {
1577 	struct regulator *regulator;
1578 	char buf[REG_STR_SIZE];
1579 	int err, size;
1580 
1581 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1582 	if (regulator == NULL)
1583 		return NULL;
1584 
1585 	regulator_lock(rdev);
1586 	regulator->rdev = rdev;
1587 	list_add(&regulator->list, &rdev->consumer_list);
1588 
1589 	if (dev) {
1590 		regulator->dev = dev;
1591 
1592 		/* Add a link to the device sysfs entry */
1593 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1594 				dev->kobj.name, supply_name);
1595 		if (size >= REG_STR_SIZE)
1596 			goto overflow_err;
1597 
1598 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1599 		if (regulator->supply_name == NULL)
1600 			goto overflow_err;
1601 
1602 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603 					buf);
1604 		if (err) {
1605 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1606 				  dev->kobj.name, err);
1607 			/* non-fatal */
1608 		}
1609 	} else {
1610 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 		if (regulator->supply_name == NULL)
1612 			goto overflow_err;
1613 	}
1614 
1615 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1616 						rdev->debugfs);
1617 	if (!regulator->debugfs) {
1618 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619 	} else {
1620 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1621 				   &regulator->uA_load);
1622 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626 		debugfs_create_file("constraint_flags", 0444,
1627 				    regulator->debugfs, regulator,
1628 				    &constraint_flags_fops);
1629 	}
1630 
1631 	/*
1632 	 * Check now if the regulator is an always on regulator - if
1633 	 * it is then we don't need to do nearly so much work for
1634 	 * enable/disable calls.
1635 	 */
1636 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637 	    _regulator_is_enabled(rdev))
1638 		regulator->always_on = true;
1639 
1640 	regulator_unlock(rdev);
1641 	return regulator;
1642 overflow_err:
1643 	list_del(&regulator->list);
1644 	kfree(regulator);
1645 	regulator_unlock(rdev);
1646 	return NULL;
1647 }
1648 
1649 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1650 {
1651 	if (rdev->constraints && rdev->constraints->enable_time)
1652 		return rdev->constraints->enable_time;
1653 	if (!rdev->desc->ops->enable_time)
1654 		return rdev->desc->enable_time;
1655 	return rdev->desc->ops->enable_time(rdev);
1656 }
1657 
1658 static struct regulator_supply_alias *regulator_find_supply_alias(
1659 		struct device *dev, const char *supply)
1660 {
1661 	struct regulator_supply_alias *map;
1662 
1663 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1664 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1665 			return map;
1666 
1667 	return NULL;
1668 }
1669 
1670 static void regulator_supply_alias(struct device **dev, const char **supply)
1671 {
1672 	struct regulator_supply_alias *map;
1673 
1674 	map = regulator_find_supply_alias(*dev, *supply);
1675 	if (map) {
1676 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1677 				*supply, map->alias_supply,
1678 				dev_name(map->alias_dev));
1679 		*dev = map->alias_dev;
1680 		*supply = map->alias_supply;
1681 	}
1682 }
1683 
1684 static int regulator_match(struct device *dev, const void *data)
1685 {
1686 	struct regulator_dev *r = dev_to_rdev(dev);
1687 
1688 	return strcmp(rdev_get_name(r), data) == 0;
1689 }
1690 
1691 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1692 {
1693 	struct device *dev;
1694 
1695 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1696 
1697 	return dev ? dev_to_rdev(dev) : NULL;
1698 }
1699 
1700 /**
1701  * regulator_dev_lookup - lookup a regulator device.
1702  * @dev: device for regulator "consumer".
1703  * @supply: Supply name or regulator ID.
1704  *
1705  * If successful, returns a struct regulator_dev that corresponds to the name
1706  * @supply and with the embedded struct device refcount incremented by one.
1707  * The refcount must be dropped by calling put_device().
1708  * On failure one of the following ERR-PTR-encoded values is returned:
1709  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710  * in the future.
1711  */
1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713 						  const char *supply)
1714 {
1715 	struct regulator_dev *r = NULL;
1716 	struct device_node *node;
1717 	struct regulator_map *map;
1718 	const char *devname = NULL;
1719 
1720 	regulator_supply_alias(&dev, &supply);
1721 
1722 	/* first do a dt based lookup */
1723 	if (dev && dev->of_node) {
1724 		node = of_get_regulator(dev, supply);
1725 		if (node) {
1726 			r = of_find_regulator_by_node(node);
1727 			if (r)
1728 				return r;
1729 
1730 			/*
1731 			 * We have a node, but there is no device.
1732 			 * assume it has not registered yet.
1733 			 */
1734 			return ERR_PTR(-EPROBE_DEFER);
1735 		}
1736 	}
1737 
1738 	/* if not found, try doing it non-dt way */
1739 	if (dev)
1740 		devname = dev_name(dev);
1741 
1742 	mutex_lock(&regulator_list_mutex);
1743 	list_for_each_entry(map, &regulator_map_list, list) {
1744 		/* If the mapping has a device set up it must match */
1745 		if (map->dev_name &&
1746 		    (!devname || strcmp(map->dev_name, devname)))
1747 			continue;
1748 
1749 		if (strcmp(map->supply, supply) == 0 &&
1750 		    get_device(&map->regulator->dev)) {
1751 			r = map->regulator;
1752 			break;
1753 		}
1754 	}
1755 	mutex_unlock(&regulator_list_mutex);
1756 
1757 	if (r)
1758 		return r;
1759 
1760 	r = regulator_lookup_by_name(supply);
1761 	if (r)
1762 		return r;
1763 
1764 	return ERR_PTR(-ENODEV);
1765 }
1766 
1767 static int regulator_resolve_supply(struct regulator_dev *rdev)
1768 {
1769 	struct regulator_dev *r;
1770 	struct device *dev = rdev->dev.parent;
1771 	int ret;
1772 
1773 	/* No supply to resolve? */
1774 	if (!rdev->supply_name)
1775 		return 0;
1776 
1777 	/* Supply already resolved? */
1778 	if (rdev->supply)
1779 		return 0;
1780 
1781 	r = regulator_dev_lookup(dev, rdev->supply_name);
1782 	if (IS_ERR(r)) {
1783 		ret = PTR_ERR(r);
1784 
1785 		/* Did the lookup explicitly defer for us? */
1786 		if (ret == -EPROBE_DEFER)
1787 			return ret;
1788 
1789 		if (have_full_constraints()) {
1790 			r = dummy_regulator_rdev;
1791 			get_device(&r->dev);
1792 		} else {
1793 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1794 				rdev->supply_name, rdev->desc->name);
1795 			return -EPROBE_DEFER;
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * If the supply's parent device is not the same as the
1801 	 * regulator's parent device, then ensure the parent device
1802 	 * is bound before we resolve the supply, in case the parent
1803 	 * device get probe deferred and unregisters the supply.
1804 	 */
1805 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1806 		if (!device_is_bound(r->dev.parent)) {
1807 			put_device(&r->dev);
1808 			return -EPROBE_DEFER;
1809 		}
1810 	}
1811 
1812 	/* Recursively resolve the supply of the supply */
1813 	ret = regulator_resolve_supply(r);
1814 	if (ret < 0) {
1815 		put_device(&r->dev);
1816 		return ret;
1817 	}
1818 
1819 	ret = set_supply(rdev, r);
1820 	if (ret < 0) {
1821 		put_device(&r->dev);
1822 		return ret;
1823 	}
1824 
1825 	/*
1826 	 * In set_machine_constraints() we may have turned this regulator on
1827 	 * but we couldn't propagate to the supply if it hadn't been resolved
1828 	 * yet.  Do it now.
1829 	 */
1830 	if (rdev->use_count) {
1831 		ret = regulator_enable(rdev->supply);
1832 		if (ret < 0) {
1833 			_regulator_put(rdev->supply);
1834 			rdev->supply = NULL;
1835 			return ret;
1836 		}
1837 	}
1838 
1839 	return 0;
1840 }
1841 
1842 /* Internal regulator request function */
1843 struct regulator *_regulator_get(struct device *dev, const char *id,
1844 				 enum regulator_get_type get_type)
1845 {
1846 	struct regulator_dev *rdev;
1847 	struct regulator *regulator;
1848 	const char *devname = dev ? dev_name(dev) : "deviceless";
1849 	int ret;
1850 
1851 	if (get_type >= MAX_GET_TYPE) {
1852 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1853 		return ERR_PTR(-EINVAL);
1854 	}
1855 
1856 	if (id == NULL) {
1857 		pr_err("get() with no identifier\n");
1858 		return ERR_PTR(-EINVAL);
1859 	}
1860 
1861 	rdev = regulator_dev_lookup(dev, id);
1862 	if (IS_ERR(rdev)) {
1863 		ret = PTR_ERR(rdev);
1864 
1865 		/*
1866 		 * If regulator_dev_lookup() fails with error other
1867 		 * than -ENODEV our job here is done, we simply return it.
1868 		 */
1869 		if (ret != -ENODEV)
1870 			return ERR_PTR(ret);
1871 
1872 		if (!have_full_constraints()) {
1873 			dev_warn(dev,
1874 				 "incomplete constraints, dummy supplies not allowed\n");
1875 			return ERR_PTR(-ENODEV);
1876 		}
1877 
1878 		switch (get_type) {
1879 		case NORMAL_GET:
1880 			/*
1881 			 * Assume that a regulator is physically present and
1882 			 * enabled, even if it isn't hooked up, and just
1883 			 * provide a dummy.
1884 			 */
1885 			dev_warn(dev,
1886 				 "%s supply %s not found, using dummy regulator\n",
1887 				 devname, id);
1888 			rdev = dummy_regulator_rdev;
1889 			get_device(&rdev->dev);
1890 			break;
1891 
1892 		case EXCLUSIVE_GET:
1893 			dev_warn(dev,
1894 				 "dummy supplies not allowed for exclusive requests\n");
1895 			/* fall through */
1896 
1897 		default:
1898 			return ERR_PTR(-ENODEV);
1899 		}
1900 	}
1901 
1902 	if (rdev->exclusive) {
1903 		regulator = ERR_PTR(-EPERM);
1904 		put_device(&rdev->dev);
1905 		return regulator;
1906 	}
1907 
1908 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1909 		regulator = ERR_PTR(-EBUSY);
1910 		put_device(&rdev->dev);
1911 		return regulator;
1912 	}
1913 
1914 	mutex_lock(&regulator_list_mutex);
1915 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1916 	mutex_unlock(&regulator_list_mutex);
1917 
1918 	if (ret != 0) {
1919 		regulator = ERR_PTR(-EPROBE_DEFER);
1920 		put_device(&rdev->dev);
1921 		return regulator;
1922 	}
1923 
1924 	ret = regulator_resolve_supply(rdev);
1925 	if (ret < 0) {
1926 		regulator = ERR_PTR(ret);
1927 		put_device(&rdev->dev);
1928 		return regulator;
1929 	}
1930 
1931 	if (!try_module_get(rdev->owner)) {
1932 		regulator = ERR_PTR(-EPROBE_DEFER);
1933 		put_device(&rdev->dev);
1934 		return regulator;
1935 	}
1936 
1937 	regulator = create_regulator(rdev, dev, id);
1938 	if (regulator == NULL) {
1939 		regulator = ERR_PTR(-ENOMEM);
1940 		put_device(&rdev->dev);
1941 		module_put(rdev->owner);
1942 		return regulator;
1943 	}
1944 
1945 	rdev->open_count++;
1946 	if (get_type == EXCLUSIVE_GET) {
1947 		rdev->exclusive = 1;
1948 
1949 		ret = _regulator_is_enabled(rdev);
1950 		if (ret > 0)
1951 			rdev->use_count = 1;
1952 		else
1953 			rdev->use_count = 0;
1954 	}
1955 
1956 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1957 
1958 	return regulator;
1959 }
1960 
1961 /**
1962  * regulator_get - lookup and obtain a reference to a regulator.
1963  * @dev: device for regulator "consumer"
1964  * @id: Supply name or regulator ID.
1965  *
1966  * Returns a struct regulator corresponding to the regulator producer,
1967  * or IS_ERR() condition containing errno.
1968  *
1969  * Use of supply names configured via regulator_set_device_supply() is
1970  * strongly encouraged.  It is recommended that the supply name used
1971  * should match the name used for the supply and/or the relevant
1972  * device pins in the datasheet.
1973  */
1974 struct regulator *regulator_get(struct device *dev, const char *id)
1975 {
1976 	return _regulator_get(dev, id, NORMAL_GET);
1977 }
1978 EXPORT_SYMBOL_GPL(regulator_get);
1979 
1980 /**
1981  * regulator_get_exclusive - obtain exclusive access to a regulator.
1982  * @dev: device for regulator "consumer"
1983  * @id: Supply name or regulator ID.
1984  *
1985  * Returns a struct regulator corresponding to the regulator producer,
1986  * or IS_ERR() condition containing errno.  Other consumers will be
1987  * unable to obtain this regulator while this reference is held and the
1988  * use count for the regulator will be initialised to reflect the current
1989  * state of the regulator.
1990  *
1991  * This is intended for use by consumers which cannot tolerate shared
1992  * use of the regulator such as those which need to force the
1993  * regulator off for correct operation of the hardware they are
1994  * controlling.
1995  *
1996  * Use of supply names configured via regulator_set_device_supply() is
1997  * strongly encouraged.  It is recommended that the supply name used
1998  * should match the name used for the supply and/or the relevant
1999  * device pins in the datasheet.
2000  */
2001 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2002 {
2003 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2006 
2007 /**
2008  * regulator_get_optional - obtain optional access to a regulator.
2009  * @dev: device for regulator "consumer"
2010  * @id: Supply name or regulator ID.
2011  *
2012  * Returns a struct regulator corresponding to the regulator producer,
2013  * or IS_ERR() condition containing errno.
2014  *
2015  * This is intended for use by consumers for devices which can have
2016  * some supplies unconnected in normal use, such as some MMC devices.
2017  * It can allow the regulator core to provide stub supplies for other
2018  * supplies requested using normal regulator_get() calls without
2019  * disrupting the operation of drivers that can handle absent
2020  * supplies.
2021  *
2022  * Use of supply names configured via regulator_set_device_supply() is
2023  * strongly encouraged.  It is recommended that the supply name used
2024  * should match the name used for the supply and/or the relevant
2025  * device pins in the datasheet.
2026  */
2027 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2028 {
2029 	return _regulator_get(dev, id, OPTIONAL_GET);
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_get_optional);
2032 
2033 /* regulator_list_mutex lock held by regulator_put() */
2034 static void _regulator_put(struct regulator *regulator)
2035 {
2036 	struct regulator_dev *rdev;
2037 
2038 	if (IS_ERR_OR_NULL(regulator))
2039 		return;
2040 
2041 	lockdep_assert_held_once(&regulator_list_mutex);
2042 
2043 	/* Docs say you must disable before calling regulator_put() */
2044 	WARN_ON(regulator->enable_count);
2045 
2046 	rdev = regulator->rdev;
2047 
2048 	debugfs_remove_recursive(regulator->debugfs);
2049 
2050 	if (regulator->dev) {
2051 		device_link_remove(regulator->dev, &rdev->dev);
2052 
2053 		/* remove any sysfs entries */
2054 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055 	}
2056 
2057 	regulator_lock(rdev);
2058 	list_del(&regulator->list);
2059 
2060 	rdev->open_count--;
2061 	rdev->exclusive = 0;
2062 	put_device(&rdev->dev);
2063 	regulator_unlock(rdev);
2064 
2065 	kfree_const(regulator->supply_name);
2066 	kfree(regulator);
2067 
2068 	module_put(rdev->owner);
2069 }
2070 
2071 /**
2072  * regulator_put - "free" the regulator source
2073  * @regulator: regulator source
2074  *
2075  * Note: drivers must ensure that all regulator_enable calls made on this
2076  * regulator source are balanced by regulator_disable calls prior to calling
2077  * this function.
2078  */
2079 void regulator_put(struct regulator *regulator)
2080 {
2081 	mutex_lock(&regulator_list_mutex);
2082 	_regulator_put(regulator);
2083 	mutex_unlock(&regulator_list_mutex);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_put);
2086 
2087 /**
2088  * regulator_register_supply_alias - Provide device alias for supply lookup
2089  *
2090  * @dev: device that will be given as the regulator "consumer"
2091  * @id: Supply name or regulator ID
2092  * @alias_dev: device that should be used to lookup the supply
2093  * @alias_id: Supply name or regulator ID that should be used to lookup the
2094  * supply
2095  *
2096  * All lookups for id on dev will instead be conducted for alias_id on
2097  * alias_dev.
2098  */
2099 int regulator_register_supply_alias(struct device *dev, const char *id,
2100 				    struct device *alias_dev,
2101 				    const char *alias_id)
2102 {
2103 	struct regulator_supply_alias *map;
2104 
2105 	map = regulator_find_supply_alias(dev, id);
2106 	if (map)
2107 		return -EEXIST;
2108 
2109 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2110 	if (!map)
2111 		return -ENOMEM;
2112 
2113 	map->src_dev = dev;
2114 	map->src_supply = id;
2115 	map->alias_dev = alias_dev;
2116 	map->alias_supply = alias_id;
2117 
2118 	list_add(&map->list, &regulator_supply_alias_list);
2119 
2120 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2121 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2122 
2123 	return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2126 
2127 /**
2128  * regulator_unregister_supply_alias - Remove device alias
2129  *
2130  * @dev: device that will be given as the regulator "consumer"
2131  * @id: Supply name or regulator ID
2132  *
2133  * Remove a lookup alias if one exists for id on dev.
2134  */
2135 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2136 {
2137 	struct regulator_supply_alias *map;
2138 
2139 	map = regulator_find_supply_alias(dev, id);
2140 	if (map) {
2141 		list_del(&map->list);
2142 		kfree(map);
2143 	}
2144 }
2145 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2146 
2147 /**
2148  * regulator_bulk_register_supply_alias - register multiple aliases
2149  *
2150  * @dev: device that will be given as the regulator "consumer"
2151  * @id: List of supply names or regulator IDs
2152  * @alias_dev: device that should be used to lookup the supply
2153  * @alias_id: List of supply names or regulator IDs that should be used to
2154  * lookup the supply
2155  * @num_id: Number of aliases to register
2156  *
2157  * @return 0 on success, an errno on failure.
2158  *
2159  * This helper function allows drivers to register several supply
2160  * aliases in one operation.  If any of the aliases cannot be
2161  * registered any aliases that were registered will be removed
2162  * before returning to the caller.
2163  */
2164 int regulator_bulk_register_supply_alias(struct device *dev,
2165 					 const char *const *id,
2166 					 struct device *alias_dev,
2167 					 const char *const *alias_id,
2168 					 int num_id)
2169 {
2170 	int i;
2171 	int ret;
2172 
2173 	for (i = 0; i < num_id; ++i) {
2174 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2175 						      alias_id[i]);
2176 		if (ret < 0)
2177 			goto err;
2178 	}
2179 
2180 	return 0;
2181 
2182 err:
2183 	dev_err(dev,
2184 		"Failed to create supply alias %s,%s -> %s,%s\n",
2185 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2186 
2187 	while (--i >= 0)
2188 		regulator_unregister_supply_alias(dev, id[i]);
2189 
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2193 
2194 /**
2195  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2196  *
2197  * @dev: device that will be given as the regulator "consumer"
2198  * @id: List of supply names or regulator IDs
2199  * @num_id: Number of aliases to unregister
2200  *
2201  * This helper function allows drivers to unregister several supply
2202  * aliases in one operation.
2203  */
2204 void regulator_bulk_unregister_supply_alias(struct device *dev,
2205 					    const char *const *id,
2206 					    int num_id)
2207 {
2208 	int i;
2209 
2210 	for (i = 0; i < num_id; ++i)
2211 		regulator_unregister_supply_alias(dev, id[i]);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2214 
2215 
2216 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2217 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2218 				const struct regulator_config *config)
2219 {
2220 	struct regulator_enable_gpio *pin;
2221 	struct gpio_desc *gpiod;
2222 
2223 	gpiod = config->ena_gpiod;
2224 
2225 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2226 		if (pin->gpiod == gpiod) {
2227 			rdev_dbg(rdev, "GPIO is already used\n");
2228 			goto update_ena_gpio_to_rdev;
2229 		}
2230 	}
2231 
2232 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2233 	if (pin == NULL)
2234 		return -ENOMEM;
2235 
2236 	pin->gpiod = gpiod;
2237 	list_add(&pin->list, &regulator_ena_gpio_list);
2238 
2239 update_ena_gpio_to_rdev:
2240 	pin->request_count++;
2241 	rdev->ena_pin = pin;
2242 	return 0;
2243 }
2244 
2245 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2246 {
2247 	struct regulator_enable_gpio *pin, *n;
2248 
2249 	if (!rdev->ena_pin)
2250 		return;
2251 
2252 	/* Free the GPIO only in case of no use */
2253 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2254 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2255 			if (pin->request_count <= 1) {
2256 				pin->request_count = 0;
2257 				gpiod_put(pin->gpiod);
2258 				list_del(&pin->list);
2259 				kfree(pin);
2260 				rdev->ena_pin = NULL;
2261 				return;
2262 			} else {
2263 				pin->request_count--;
2264 			}
2265 		}
2266 	}
2267 }
2268 
2269 /**
2270  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2271  * @rdev: regulator_dev structure
2272  * @enable: enable GPIO at initial use?
2273  *
2274  * GPIO is enabled in case of initial use. (enable_count is 0)
2275  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2276  */
2277 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2278 {
2279 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2280 
2281 	if (!pin)
2282 		return -EINVAL;
2283 
2284 	if (enable) {
2285 		/* Enable GPIO at initial use */
2286 		if (pin->enable_count == 0)
2287 			gpiod_set_value_cansleep(pin->gpiod, 1);
2288 
2289 		pin->enable_count++;
2290 	} else {
2291 		if (pin->enable_count > 1) {
2292 			pin->enable_count--;
2293 			return 0;
2294 		}
2295 
2296 		/* Disable GPIO if not used */
2297 		if (pin->enable_count <= 1) {
2298 			gpiod_set_value_cansleep(pin->gpiod, 0);
2299 			pin->enable_count = 0;
2300 		}
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 /**
2307  * _regulator_enable_delay - a delay helper function
2308  * @delay: time to delay in microseconds
2309  *
2310  * Delay for the requested amount of time as per the guidelines in:
2311  *
2312  *     Documentation/timers/timers-howto.txt
2313  *
2314  * The assumption here is that regulators will never be enabled in
2315  * atomic context and therefore sleeping functions can be used.
2316  */
2317 static void _regulator_enable_delay(unsigned int delay)
2318 {
2319 	unsigned int ms = delay / 1000;
2320 	unsigned int us = delay % 1000;
2321 
2322 	if (ms > 0) {
2323 		/*
2324 		 * For small enough values, handle super-millisecond
2325 		 * delays in the usleep_range() call below.
2326 		 */
2327 		if (ms < 20)
2328 			us += ms * 1000;
2329 		else
2330 			msleep(ms);
2331 	}
2332 
2333 	/*
2334 	 * Give the scheduler some room to coalesce with any other
2335 	 * wakeup sources. For delays shorter than 10 us, don't even
2336 	 * bother setting up high-resolution timers and just busy-
2337 	 * loop.
2338 	 */
2339 	if (us >= 10)
2340 		usleep_range(us, us + 100);
2341 	else
2342 		udelay(us);
2343 }
2344 
2345 static int _regulator_do_enable(struct regulator_dev *rdev)
2346 {
2347 	int ret, delay;
2348 
2349 	/* Query before enabling in case configuration dependent.  */
2350 	ret = _regulator_get_enable_time(rdev);
2351 	if (ret >= 0) {
2352 		delay = ret;
2353 	} else {
2354 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2355 		delay = 0;
2356 	}
2357 
2358 	trace_regulator_enable(rdev_get_name(rdev));
2359 
2360 	if (rdev->desc->off_on_delay) {
2361 		/* if needed, keep a distance of off_on_delay from last time
2362 		 * this regulator was disabled.
2363 		 */
2364 		unsigned long start_jiffy = jiffies;
2365 		unsigned long intended, max_delay, remaining;
2366 
2367 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2368 		intended = rdev->last_off_jiffy + max_delay;
2369 
2370 		if (time_before(start_jiffy, intended)) {
2371 			/* calc remaining jiffies to deal with one-time
2372 			 * timer wrapping.
2373 			 * in case of multiple timer wrapping, either it can be
2374 			 * detected by out-of-range remaining, or it cannot be
2375 			 * detected and we get a penalty of
2376 			 * _regulator_enable_delay().
2377 			 */
2378 			remaining = intended - start_jiffy;
2379 			if (remaining <= max_delay)
2380 				_regulator_enable_delay(
2381 						jiffies_to_usecs(remaining));
2382 		}
2383 	}
2384 
2385 	if (rdev->ena_pin) {
2386 		if (!rdev->ena_gpio_state) {
2387 			ret = regulator_ena_gpio_ctrl(rdev, true);
2388 			if (ret < 0)
2389 				return ret;
2390 			rdev->ena_gpio_state = 1;
2391 		}
2392 	} else if (rdev->desc->ops->enable) {
2393 		ret = rdev->desc->ops->enable(rdev);
2394 		if (ret < 0)
2395 			return ret;
2396 	} else {
2397 		return -EINVAL;
2398 	}
2399 
2400 	/* Allow the regulator to ramp; it would be useful to extend
2401 	 * this for bulk operations so that the regulators can ramp
2402 	 * together.  */
2403 	trace_regulator_enable_delay(rdev_get_name(rdev));
2404 
2405 	_regulator_enable_delay(delay);
2406 
2407 	trace_regulator_enable_complete(rdev_get_name(rdev));
2408 
2409 	return 0;
2410 }
2411 
2412 /**
2413  * _regulator_handle_consumer_enable - handle that a consumer enabled
2414  * @regulator: regulator source
2415  *
2416  * Some things on a regulator consumer (like the contribution towards total
2417  * load on the regulator) only have an effect when the consumer wants the
2418  * regulator enabled.  Explained in example with two consumers of the same
2419  * regulator:
2420  *   consumer A: set_load(100);       => total load = 0
2421  *   consumer A: regulator_enable();  => total load = 100
2422  *   consumer B: set_load(1000);      => total load = 100
2423  *   consumer B: regulator_enable();  => total load = 1100
2424  *   consumer A: regulator_disable(); => total_load = 1000
2425  *
2426  * This function (together with _regulator_handle_consumer_disable) is
2427  * responsible for keeping track of the refcount for a given regulator consumer
2428  * and applying / unapplying these things.
2429  *
2430  * Returns 0 upon no error; -error upon error.
2431  */
2432 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2433 {
2434 	struct regulator_dev *rdev = regulator->rdev;
2435 
2436 	lockdep_assert_held_once(&rdev->mutex.base);
2437 
2438 	regulator->enable_count++;
2439 	if (regulator->uA_load && regulator->enable_count == 1)
2440 		return drms_uA_update(rdev);
2441 
2442 	return 0;
2443 }
2444 
2445 /**
2446  * _regulator_handle_consumer_disable - handle that a consumer disabled
2447  * @regulator: regulator source
2448  *
2449  * The opposite of _regulator_handle_consumer_enable().
2450  *
2451  * Returns 0 upon no error; -error upon error.
2452  */
2453 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2454 {
2455 	struct regulator_dev *rdev = regulator->rdev;
2456 
2457 	lockdep_assert_held_once(&rdev->mutex.base);
2458 
2459 	if (!regulator->enable_count) {
2460 		rdev_err(rdev, "Underflow of regulator enable count\n");
2461 		return -EINVAL;
2462 	}
2463 
2464 	regulator->enable_count--;
2465 	if (regulator->uA_load && regulator->enable_count == 0)
2466 		return drms_uA_update(rdev);
2467 
2468 	return 0;
2469 }
2470 
2471 /* locks held by regulator_enable() */
2472 static int _regulator_enable(struct regulator *regulator)
2473 {
2474 	struct regulator_dev *rdev = regulator->rdev;
2475 	int ret;
2476 
2477 	lockdep_assert_held_once(&rdev->mutex.base);
2478 
2479 	if (rdev->use_count == 0 && rdev->supply) {
2480 		ret = _regulator_enable(rdev->supply);
2481 		if (ret < 0)
2482 			return ret;
2483 	}
2484 
2485 	/* balance only if there are regulators coupled */
2486 	if (rdev->coupling_desc.n_coupled > 1) {
2487 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2488 		if (ret < 0)
2489 			goto err_disable_supply;
2490 	}
2491 
2492 	ret = _regulator_handle_consumer_enable(regulator);
2493 	if (ret < 0)
2494 		goto err_disable_supply;
2495 
2496 	if (rdev->use_count == 0) {
2497 		/* The regulator may on if it's not switchable or left on */
2498 		ret = _regulator_is_enabled(rdev);
2499 		if (ret == -EINVAL || ret == 0) {
2500 			if (!regulator_ops_is_valid(rdev,
2501 					REGULATOR_CHANGE_STATUS)) {
2502 				ret = -EPERM;
2503 				goto err_consumer_disable;
2504 			}
2505 
2506 			ret = _regulator_do_enable(rdev);
2507 			if (ret < 0)
2508 				goto err_consumer_disable;
2509 
2510 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2511 					     NULL);
2512 		} else if (ret < 0) {
2513 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2514 			goto err_consumer_disable;
2515 		}
2516 		/* Fallthrough on positive return values - already enabled */
2517 	}
2518 
2519 	rdev->use_count++;
2520 
2521 	return 0;
2522 
2523 err_consumer_disable:
2524 	_regulator_handle_consumer_disable(regulator);
2525 
2526 err_disable_supply:
2527 	if (rdev->use_count == 0 && rdev->supply)
2528 		_regulator_disable(rdev->supply);
2529 
2530 	return ret;
2531 }
2532 
2533 /**
2534  * regulator_enable - enable regulator output
2535  * @regulator: regulator source
2536  *
2537  * Request that the regulator be enabled with the regulator output at
2538  * the predefined voltage or current value.  Calls to regulator_enable()
2539  * must be balanced with calls to regulator_disable().
2540  *
2541  * NOTE: the output value can be set by other drivers, boot loader or may be
2542  * hardwired in the regulator.
2543  */
2544 int regulator_enable(struct regulator *regulator)
2545 {
2546 	struct regulator_dev *rdev = regulator->rdev;
2547 	struct ww_acquire_ctx ww_ctx;
2548 	int ret;
2549 
2550 	regulator_lock_dependent(rdev, &ww_ctx);
2551 	ret = _regulator_enable(regulator);
2552 	regulator_unlock_dependent(rdev, &ww_ctx);
2553 
2554 	return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(regulator_enable);
2557 
2558 static int _regulator_do_disable(struct regulator_dev *rdev)
2559 {
2560 	int ret;
2561 
2562 	trace_regulator_disable(rdev_get_name(rdev));
2563 
2564 	if (rdev->ena_pin) {
2565 		if (rdev->ena_gpio_state) {
2566 			ret = regulator_ena_gpio_ctrl(rdev, false);
2567 			if (ret < 0)
2568 				return ret;
2569 			rdev->ena_gpio_state = 0;
2570 		}
2571 
2572 	} else if (rdev->desc->ops->disable) {
2573 		ret = rdev->desc->ops->disable(rdev);
2574 		if (ret != 0)
2575 			return ret;
2576 	}
2577 
2578 	/* cares about last_off_jiffy only if off_on_delay is required by
2579 	 * device.
2580 	 */
2581 	if (rdev->desc->off_on_delay)
2582 		rdev->last_off_jiffy = jiffies;
2583 
2584 	trace_regulator_disable_complete(rdev_get_name(rdev));
2585 
2586 	return 0;
2587 }
2588 
2589 /* locks held by regulator_disable() */
2590 static int _regulator_disable(struct regulator *regulator)
2591 {
2592 	struct regulator_dev *rdev = regulator->rdev;
2593 	int ret = 0;
2594 
2595 	lockdep_assert_held_once(&rdev->mutex.base);
2596 
2597 	if (WARN(rdev->use_count <= 0,
2598 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2599 		return -EIO;
2600 
2601 	/* are we the last user and permitted to disable ? */
2602 	if (rdev->use_count == 1 &&
2603 	    (rdev->constraints && !rdev->constraints->always_on)) {
2604 
2605 		/* we are last user */
2606 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2607 			ret = _notifier_call_chain(rdev,
2608 						   REGULATOR_EVENT_PRE_DISABLE,
2609 						   NULL);
2610 			if (ret & NOTIFY_STOP_MASK)
2611 				return -EINVAL;
2612 
2613 			ret = _regulator_do_disable(rdev);
2614 			if (ret < 0) {
2615 				rdev_err(rdev, "failed to disable\n");
2616 				_notifier_call_chain(rdev,
2617 						REGULATOR_EVENT_ABORT_DISABLE,
2618 						NULL);
2619 				return ret;
2620 			}
2621 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2622 					NULL);
2623 		}
2624 
2625 		rdev->use_count = 0;
2626 	} else if (rdev->use_count > 1) {
2627 		rdev->use_count--;
2628 	}
2629 
2630 	if (ret == 0)
2631 		ret = _regulator_handle_consumer_disable(regulator);
2632 
2633 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2634 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2635 
2636 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2637 		ret = _regulator_disable(rdev->supply);
2638 
2639 	return ret;
2640 }
2641 
2642 /**
2643  * regulator_disable - disable regulator output
2644  * @regulator: regulator source
2645  *
2646  * Disable the regulator output voltage or current.  Calls to
2647  * regulator_enable() must be balanced with calls to
2648  * regulator_disable().
2649  *
2650  * NOTE: this will only disable the regulator output if no other consumer
2651  * devices have it enabled, the regulator device supports disabling and
2652  * machine constraints permit this operation.
2653  */
2654 int regulator_disable(struct regulator *regulator)
2655 {
2656 	struct regulator_dev *rdev = regulator->rdev;
2657 	struct ww_acquire_ctx ww_ctx;
2658 	int ret;
2659 
2660 	regulator_lock_dependent(rdev, &ww_ctx);
2661 	ret = _regulator_disable(regulator);
2662 	regulator_unlock_dependent(rdev, &ww_ctx);
2663 
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_disable);
2667 
2668 /* locks held by regulator_force_disable() */
2669 static int _regulator_force_disable(struct regulator_dev *rdev)
2670 {
2671 	int ret = 0;
2672 
2673 	lockdep_assert_held_once(&rdev->mutex.base);
2674 
2675 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2676 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2677 	if (ret & NOTIFY_STOP_MASK)
2678 		return -EINVAL;
2679 
2680 	ret = _regulator_do_disable(rdev);
2681 	if (ret < 0) {
2682 		rdev_err(rdev, "failed to force disable\n");
2683 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2684 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2685 		return ret;
2686 	}
2687 
2688 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2689 			REGULATOR_EVENT_DISABLE, NULL);
2690 
2691 	return 0;
2692 }
2693 
2694 /**
2695  * regulator_force_disable - force disable regulator output
2696  * @regulator: regulator source
2697  *
2698  * Forcibly disable the regulator output voltage or current.
2699  * NOTE: this *will* disable the regulator output even if other consumer
2700  * devices have it enabled. This should be used for situations when device
2701  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2702  */
2703 int regulator_force_disable(struct regulator *regulator)
2704 {
2705 	struct regulator_dev *rdev = regulator->rdev;
2706 	struct ww_acquire_ctx ww_ctx;
2707 	int ret;
2708 
2709 	regulator_lock_dependent(rdev, &ww_ctx);
2710 
2711 	ret = _regulator_force_disable(regulator->rdev);
2712 
2713 	if (rdev->coupling_desc.n_coupled > 1)
2714 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2715 
2716 	if (regulator->uA_load) {
2717 		regulator->uA_load = 0;
2718 		ret = drms_uA_update(rdev);
2719 	}
2720 
2721 	if (rdev->use_count != 0 && rdev->supply)
2722 		_regulator_disable(rdev->supply);
2723 
2724 	regulator_unlock_dependent(rdev, &ww_ctx);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regulator_force_disable);
2729 
2730 static void regulator_disable_work(struct work_struct *work)
2731 {
2732 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2733 						  disable_work.work);
2734 	struct ww_acquire_ctx ww_ctx;
2735 	int count, i, ret;
2736 	struct regulator *regulator;
2737 	int total_count = 0;
2738 
2739 	regulator_lock_dependent(rdev, &ww_ctx);
2740 
2741 	/*
2742 	 * Workqueue functions queue the new work instance while the previous
2743 	 * work instance is being processed. Cancel the queued work instance
2744 	 * as the work instance under processing does the job of the queued
2745 	 * work instance.
2746 	 */
2747 	cancel_delayed_work(&rdev->disable_work);
2748 
2749 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2750 		count = regulator->deferred_disables;
2751 
2752 		if (!count)
2753 			continue;
2754 
2755 		total_count += count;
2756 		regulator->deferred_disables = 0;
2757 
2758 		for (i = 0; i < count; i++) {
2759 			ret = _regulator_disable(regulator);
2760 			if (ret != 0)
2761 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2762 		}
2763 	}
2764 	WARN_ON(!total_count);
2765 
2766 	if (rdev->coupling_desc.n_coupled > 1)
2767 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2768 
2769 	regulator_unlock_dependent(rdev, &ww_ctx);
2770 }
2771 
2772 /**
2773  * regulator_disable_deferred - disable regulator output with delay
2774  * @regulator: regulator source
2775  * @ms: milliseconds until the regulator is disabled
2776  *
2777  * Execute regulator_disable() on the regulator after a delay.  This
2778  * is intended for use with devices that require some time to quiesce.
2779  *
2780  * NOTE: this will only disable the regulator output if no other consumer
2781  * devices have it enabled, the regulator device supports disabling and
2782  * machine constraints permit this operation.
2783  */
2784 int regulator_disable_deferred(struct regulator *regulator, int ms)
2785 {
2786 	struct regulator_dev *rdev = regulator->rdev;
2787 
2788 	if (!ms)
2789 		return regulator_disable(regulator);
2790 
2791 	regulator_lock(rdev);
2792 	regulator->deferred_disables++;
2793 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2794 			 msecs_to_jiffies(ms));
2795 	regulator_unlock(rdev);
2796 
2797 	return 0;
2798 }
2799 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2800 
2801 static int _regulator_is_enabled(struct regulator_dev *rdev)
2802 {
2803 	/* A GPIO control always takes precedence */
2804 	if (rdev->ena_pin)
2805 		return rdev->ena_gpio_state;
2806 
2807 	/* If we don't know then assume that the regulator is always on */
2808 	if (!rdev->desc->ops->is_enabled)
2809 		return 1;
2810 
2811 	return rdev->desc->ops->is_enabled(rdev);
2812 }
2813 
2814 static int _regulator_list_voltage(struct regulator_dev *rdev,
2815 				   unsigned selector, int lock)
2816 {
2817 	const struct regulator_ops *ops = rdev->desc->ops;
2818 	int ret;
2819 
2820 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2821 		return rdev->desc->fixed_uV;
2822 
2823 	if (ops->list_voltage) {
2824 		if (selector >= rdev->desc->n_voltages)
2825 			return -EINVAL;
2826 		if (lock)
2827 			regulator_lock(rdev);
2828 		ret = ops->list_voltage(rdev, selector);
2829 		if (lock)
2830 			regulator_unlock(rdev);
2831 	} else if (rdev->is_switch && rdev->supply) {
2832 		ret = _regulator_list_voltage(rdev->supply->rdev,
2833 					      selector, lock);
2834 	} else {
2835 		return -EINVAL;
2836 	}
2837 
2838 	if (ret > 0) {
2839 		if (ret < rdev->constraints->min_uV)
2840 			ret = 0;
2841 		else if (ret > rdev->constraints->max_uV)
2842 			ret = 0;
2843 	}
2844 
2845 	return ret;
2846 }
2847 
2848 /**
2849  * regulator_is_enabled - is the regulator output enabled
2850  * @regulator: regulator source
2851  *
2852  * Returns positive if the regulator driver backing the source/client
2853  * has requested that the device be enabled, zero if it hasn't, else a
2854  * negative errno code.
2855  *
2856  * Note that the device backing this regulator handle can have multiple
2857  * users, so it might be enabled even if regulator_enable() was never
2858  * called for this particular source.
2859  */
2860 int regulator_is_enabled(struct regulator *regulator)
2861 {
2862 	int ret;
2863 
2864 	if (regulator->always_on)
2865 		return 1;
2866 
2867 	regulator_lock(regulator->rdev);
2868 	ret = _regulator_is_enabled(regulator->rdev);
2869 	regulator_unlock(regulator->rdev);
2870 
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2874 
2875 /**
2876  * regulator_count_voltages - count regulator_list_voltage() selectors
2877  * @regulator: regulator source
2878  *
2879  * Returns number of selectors, or negative errno.  Selectors are
2880  * numbered starting at zero, and typically correspond to bitfields
2881  * in hardware registers.
2882  */
2883 int regulator_count_voltages(struct regulator *regulator)
2884 {
2885 	struct regulator_dev	*rdev = regulator->rdev;
2886 
2887 	if (rdev->desc->n_voltages)
2888 		return rdev->desc->n_voltages;
2889 
2890 	if (!rdev->is_switch || !rdev->supply)
2891 		return -EINVAL;
2892 
2893 	return regulator_count_voltages(rdev->supply);
2894 }
2895 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2896 
2897 /**
2898  * regulator_list_voltage - enumerate supported voltages
2899  * @regulator: regulator source
2900  * @selector: identify voltage to list
2901  * Context: can sleep
2902  *
2903  * Returns a voltage that can be passed to @regulator_set_voltage(),
2904  * zero if this selector code can't be used on this system, or a
2905  * negative errno.
2906  */
2907 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2908 {
2909 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2910 }
2911 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2912 
2913 /**
2914  * regulator_get_regmap - get the regulator's register map
2915  * @regulator: regulator source
2916  *
2917  * Returns the register map for the given regulator, or an ERR_PTR value
2918  * if the regulator doesn't use regmap.
2919  */
2920 struct regmap *regulator_get_regmap(struct regulator *regulator)
2921 {
2922 	struct regmap *map = regulator->rdev->regmap;
2923 
2924 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2925 }
2926 
2927 /**
2928  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2929  * @regulator: regulator source
2930  * @vsel_reg: voltage selector register, output parameter
2931  * @vsel_mask: mask for voltage selector bitfield, output parameter
2932  *
2933  * Returns the hardware register offset and bitmask used for setting the
2934  * regulator voltage. This might be useful when configuring voltage-scaling
2935  * hardware or firmware that can make I2C requests behind the kernel's back,
2936  * for example.
2937  *
2938  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2939  * and 0 is returned, otherwise a negative errno is returned.
2940  */
2941 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2942 					 unsigned *vsel_reg,
2943 					 unsigned *vsel_mask)
2944 {
2945 	struct regulator_dev *rdev = regulator->rdev;
2946 	const struct regulator_ops *ops = rdev->desc->ops;
2947 
2948 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2949 		return -EOPNOTSUPP;
2950 
2951 	*vsel_reg = rdev->desc->vsel_reg;
2952 	*vsel_mask = rdev->desc->vsel_mask;
2953 
2954 	 return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2957 
2958 /**
2959  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2960  * @regulator: regulator source
2961  * @selector: identify voltage to list
2962  *
2963  * Converts the selector to a hardware-specific voltage selector that can be
2964  * directly written to the regulator registers. The address of the voltage
2965  * register can be determined by calling @regulator_get_hardware_vsel_register.
2966  *
2967  * On error a negative errno is returned.
2968  */
2969 int regulator_list_hardware_vsel(struct regulator *regulator,
2970 				 unsigned selector)
2971 {
2972 	struct regulator_dev *rdev = regulator->rdev;
2973 	const struct regulator_ops *ops = rdev->desc->ops;
2974 
2975 	if (selector >= rdev->desc->n_voltages)
2976 		return -EINVAL;
2977 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2978 		return -EOPNOTSUPP;
2979 
2980 	return selector;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2983 
2984 /**
2985  * regulator_get_linear_step - return the voltage step size between VSEL values
2986  * @regulator: regulator source
2987  *
2988  * Returns the voltage step size between VSEL values for linear
2989  * regulators, or return 0 if the regulator isn't a linear regulator.
2990  */
2991 unsigned int regulator_get_linear_step(struct regulator *regulator)
2992 {
2993 	struct regulator_dev *rdev = regulator->rdev;
2994 
2995 	return rdev->desc->uV_step;
2996 }
2997 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2998 
2999 /**
3000  * regulator_is_supported_voltage - check if a voltage range can be supported
3001  *
3002  * @regulator: Regulator to check.
3003  * @min_uV: Minimum required voltage in uV.
3004  * @max_uV: Maximum required voltage in uV.
3005  *
3006  * Returns a boolean.
3007  */
3008 int regulator_is_supported_voltage(struct regulator *regulator,
3009 				   int min_uV, int max_uV)
3010 {
3011 	struct regulator_dev *rdev = regulator->rdev;
3012 	int i, voltages, ret;
3013 
3014 	/* If we can't change voltage check the current voltage */
3015 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3016 		ret = regulator_get_voltage(regulator);
3017 		if (ret >= 0)
3018 			return min_uV <= ret && ret <= max_uV;
3019 		else
3020 			return ret;
3021 	}
3022 
3023 	/* Any voltage within constrains range is fine? */
3024 	if (rdev->desc->continuous_voltage_range)
3025 		return min_uV >= rdev->constraints->min_uV &&
3026 				max_uV <= rdev->constraints->max_uV;
3027 
3028 	ret = regulator_count_voltages(regulator);
3029 	if (ret < 0)
3030 		return 0;
3031 	voltages = ret;
3032 
3033 	for (i = 0; i < voltages; i++) {
3034 		ret = regulator_list_voltage(regulator, i);
3035 
3036 		if (ret >= min_uV && ret <= max_uV)
3037 			return 1;
3038 	}
3039 
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3043 
3044 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3045 				 int max_uV)
3046 {
3047 	const struct regulator_desc *desc = rdev->desc;
3048 
3049 	if (desc->ops->map_voltage)
3050 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3051 
3052 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3053 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3054 
3055 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3056 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3057 
3058 	if (desc->ops->list_voltage ==
3059 		regulator_list_voltage_pickable_linear_range)
3060 		return regulator_map_voltage_pickable_linear_range(rdev,
3061 							min_uV, max_uV);
3062 
3063 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3064 }
3065 
3066 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3067 				       int min_uV, int max_uV,
3068 				       unsigned *selector)
3069 {
3070 	struct pre_voltage_change_data data;
3071 	int ret;
3072 
3073 	data.old_uV = _regulator_get_voltage(rdev);
3074 	data.min_uV = min_uV;
3075 	data.max_uV = max_uV;
3076 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3077 				   &data);
3078 	if (ret & NOTIFY_STOP_MASK)
3079 		return -EINVAL;
3080 
3081 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3082 	if (ret >= 0)
3083 		return ret;
3084 
3085 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3086 			     (void *)data.old_uV);
3087 
3088 	return ret;
3089 }
3090 
3091 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3092 					   int uV, unsigned selector)
3093 {
3094 	struct pre_voltage_change_data data;
3095 	int ret;
3096 
3097 	data.old_uV = _regulator_get_voltage(rdev);
3098 	data.min_uV = uV;
3099 	data.max_uV = uV;
3100 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3101 				   &data);
3102 	if (ret & NOTIFY_STOP_MASK)
3103 		return -EINVAL;
3104 
3105 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3106 	if (ret >= 0)
3107 		return ret;
3108 
3109 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3110 			     (void *)data.old_uV);
3111 
3112 	return ret;
3113 }
3114 
3115 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3116 				       int old_uV, int new_uV)
3117 {
3118 	unsigned int ramp_delay = 0;
3119 
3120 	if (rdev->constraints->ramp_delay)
3121 		ramp_delay = rdev->constraints->ramp_delay;
3122 	else if (rdev->desc->ramp_delay)
3123 		ramp_delay = rdev->desc->ramp_delay;
3124 	else if (rdev->constraints->settling_time)
3125 		return rdev->constraints->settling_time;
3126 	else if (rdev->constraints->settling_time_up &&
3127 		 (new_uV > old_uV))
3128 		return rdev->constraints->settling_time_up;
3129 	else if (rdev->constraints->settling_time_down &&
3130 		 (new_uV < old_uV))
3131 		return rdev->constraints->settling_time_down;
3132 
3133 	if (ramp_delay == 0) {
3134 		rdev_dbg(rdev, "ramp_delay not set\n");
3135 		return 0;
3136 	}
3137 
3138 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3139 }
3140 
3141 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3142 				     int min_uV, int max_uV)
3143 {
3144 	int ret;
3145 	int delay = 0;
3146 	int best_val = 0;
3147 	unsigned int selector;
3148 	int old_selector = -1;
3149 	const struct regulator_ops *ops = rdev->desc->ops;
3150 	int old_uV = _regulator_get_voltage(rdev);
3151 
3152 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3153 
3154 	min_uV += rdev->constraints->uV_offset;
3155 	max_uV += rdev->constraints->uV_offset;
3156 
3157 	/*
3158 	 * If we can't obtain the old selector there is not enough
3159 	 * info to call set_voltage_time_sel().
3160 	 */
3161 	if (_regulator_is_enabled(rdev) &&
3162 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3163 		old_selector = ops->get_voltage_sel(rdev);
3164 		if (old_selector < 0)
3165 			return old_selector;
3166 	}
3167 
3168 	if (ops->set_voltage) {
3169 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3170 						  &selector);
3171 
3172 		if (ret >= 0) {
3173 			if (ops->list_voltage)
3174 				best_val = ops->list_voltage(rdev,
3175 							     selector);
3176 			else
3177 				best_val = _regulator_get_voltage(rdev);
3178 		}
3179 
3180 	} else if (ops->set_voltage_sel) {
3181 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3182 		if (ret >= 0) {
3183 			best_val = ops->list_voltage(rdev, ret);
3184 			if (min_uV <= best_val && max_uV >= best_val) {
3185 				selector = ret;
3186 				if (old_selector == selector)
3187 					ret = 0;
3188 				else
3189 					ret = _regulator_call_set_voltage_sel(
3190 						rdev, best_val, selector);
3191 			} else {
3192 				ret = -EINVAL;
3193 			}
3194 		}
3195 	} else {
3196 		ret = -EINVAL;
3197 	}
3198 
3199 	if (ret)
3200 		goto out;
3201 
3202 	if (ops->set_voltage_time_sel) {
3203 		/*
3204 		 * Call set_voltage_time_sel if successfully obtained
3205 		 * old_selector
3206 		 */
3207 		if (old_selector >= 0 && old_selector != selector)
3208 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3209 							  selector);
3210 	} else {
3211 		if (old_uV != best_val) {
3212 			if (ops->set_voltage_time)
3213 				delay = ops->set_voltage_time(rdev, old_uV,
3214 							      best_val);
3215 			else
3216 				delay = _regulator_set_voltage_time(rdev,
3217 								    old_uV,
3218 								    best_val);
3219 		}
3220 	}
3221 
3222 	if (delay < 0) {
3223 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3224 		delay = 0;
3225 	}
3226 
3227 	/* Insert any necessary delays */
3228 	if (delay >= 1000) {
3229 		mdelay(delay / 1000);
3230 		udelay(delay % 1000);
3231 	} else if (delay) {
3232 		udelay(delay);
3233 	}
3234 
3235 	if (best_val >= 0) {
3236 		unsigned long data = best_val;
3237 
3238 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3239 				     (void *)data);
3240 	}
3241 
3242 out:
3243 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3244 
3245 	return ret;
3246 }
3247 
3248 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3249 				  int min_uV, int max_uV, suspend_state_t state)
3250 {
3251 	struct regulator_state *rstate;
3252 	int uV, sel;
3253 
3254 	rstate = regulator_get_suspend_state(rdev, state);
3255 	if (rstate == NULL)
3256 		return -EINVAL;
3257 
3258 	if (min_uV < rstate->min_uV)
3259 		min_uV = rstate->min_uV;
3260 	if (max_uV > rstate->max_uV)
3261 		max_uV = rstate->max_uV;
3262 
3263 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3264 	if (sel < 0)
3265 		return sel;
3266 
3267 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3268 	if (uV >= min_uV && uV <= max_uV)
3269 		rstate->uV = uV;
3270 
3271 	return 0;
3272 }
3273 
3274 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3275 					  int min_uV, int max_uV,
3276 					  suspend_state_t state)
3277 {
3278 	struct regulator_dev *rdev = regulator->rdev;
3279 	struct regulator_voltage *voltage = &regulator->voltage[state];
3280 	int ret = 0;
3281 	int old_min_uV, old_max_uV;
3282 	int current_uV;
3283 
3284 	/* If we're setting the same range as last time the change
3285 	 * should be a noop (some cpufreq implementations use the same
3286 	 * voltage for multiple frequencies, for example).
3287 	 */
3288 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3289 		goto out;
3290 
3291 	/* If we're trying to set a range that overlaps the current voltage,
3292 	 * return successfully even though the regulator does not support
3293 	 * changing the voltage.
3294 	 */
3295 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3296 		current_uV = _regulator_get_voltage(rdev);
3297 		if (min_uV <= current_uV && current_uV <= max_uV) {
3298 			voltage->min_uV = min_uV;
3299 			voltage->max_uV = max_uV;
3300 			goto out;
3301 		}
3302 	}
3303 
3304 	/* sanity check */
3305 	if (!rdev->desc->ops->set_voltage &&
3306 	    !rdev->desc->ops->set_voltage_sel) {
3307 		ret = -EINVAL;
3308 		goto out;
3309 	}
3310 
3311 	/* constraints check */
3312 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3313 	if (ret < 0)
3314 		goto out;
3315 
3316 	/* restore original values in case of error */
3317 	old_min_uV = voltage->min_uV;
3318 	old_max_uV = voltage->max_uV;
3319 	voltage->min_uV = min_uV;
3320 	voltage->max_uV = max_uV;
3321 
3322 	/* for not coupled regulators this will just set the voltage */
3323 	ret = regulator_balance_voltage(rdev, state);
3324 	if (ret < 0) {
3325 		voltage->min_uV = old_min_uV;
3326 		voltage->max_uV = old_max_uV;
3327 	}
3328 
3329 out:
3330 	return ret;
3331 }
3332 
3333 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3334 				      int max_uV, suspend_state_t state)
3335 {
3336 	int best_supply_uV = 0;
3337 	int supply_change_uV = 0;
3338 	int ret;
3339 
3340 	if (rdev->supply &&
3341 	    regulator_ops_is_valid(rdev->supply->rdev,
3342 				   REGULATOR_CHANGE_VOLTAGE) &&
3343 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3344 					   rdev->desc->ops->get_voltage_sel))) {
3345 		int current_supply_uV;
3346 		int selector;
3347 
3348 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3349 		if (selector < 0) {
3350 			ret = selector;
3351 			goto out;
3352 		}
3353 
3354 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3355 		if (best_supply_uV < 0) {
3356 			ret = best_supply_uV;
3357 			goto out;
3358 		}
3359 
3360 		best_supply_uV += rdev->desc->min_dropout_uV;
3361 
3362 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3363 		if (current_supply_uV < 0) {
3364 			ret = current_supply_uV;
3365 			goto out;
3366 		}
3367 
3368 		supply_change_uV = best_supply_uV - current_supply_uV;
3369 	}
3370 
3371 	if (supply_change_uV > 0) {
3372 		ret = regulator_set_voltage_unlocked(rdev->supply,
3373 				best_supply_uV, INT_MAX, state);
3374 		if (ret) {
3375 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3376 					ret);
3377 			goto out;
3378 		}
3379 	}
3380 
3381 	if (state == PM_SUSPEND_ON)
3382 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3383 	else
3384 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3385 							max_uV, state);
3386 	if (ret < 0)
3387 		goto out;
3388 
3389 	if (supply_change_uV < 0) {
3390 		ret = regulator_set_voltage_unlocked(rdev->supply,
3391 				best_supply_uV, INT_MAX, state);
3392 		if (ret)
3393 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3394 					ret);
3395 		/* No need to fail here */
3396 		ret = 0;
3397 	}
3398 
3399 out:
3400 	return ret;
3401 }
3402 
3403 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3404 					int *current_uV, int *min_uV)
3405 {
3406 	struct regulation_constraints *constraints = rdev->constraints;
3407 
3408 	/* Limit voltage change only if necessary */
3409 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3410 		return 1;
3411 
3412 	if (*current_uV < 0) {
3413 		*current_uV = _regulator_get_voltage(rdev);
3414 
3415 		if (*current_uV < 0)
3416 			return *current_uV;
3417 	}
3418 
3419 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3420 		return 1;
3421 
3422 	/* Clamp target voltage within the given step */
3423 	if (*current_uV < *min_uV)
3424 		*min_uV = min(*current_uV + constraints->max_uV_step,
3425 			      *min_uV);
3426 	else
3427 		*min_uV = max(*current_uV - constraints->max_uV_step,
3428 			      *min_uV);
3429 
3430 	return 0;
3431 }
3432 
3433 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3434 					 int *current_uV,
3435 					 int *min_uV, int *max_uV,
3436 					 suspend_state_t state,
3437 					 int n_coupled)
3438 {
3439 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3440 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3441 	struct regulation_constraints *constraints = rdev->constraints;
3442 	int max_spread = constraints->max_spread;
3443 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3444 	int max_current_uV = 0, min_current_uV = INT_MAX;
3445 	int highest_min_uV = 0, target_uV, possible_uV;
3446 	int i, ret;
3447 	bool done;
3448 
3449 	*current_uV = -1;
3450 
3451 	/*
3452 	 * If there are no coupled regulators, simply set the voltage
3453 	 * demanded by consumers.
3454 	 */
3455 	if (n_coupled == 1) {
3456 		/*
3457 		 * If consumers don't provide any demands, set voltage
3458 		 * to min_uV
3459 		 */
3460 		desired_min_uV = constraints->min_uV;
3461 		desired_max_uV = constraints->max_uV;
3462 
3463 		ret = regulator_check_consumers(rdev,
3464 						&desired_min_uV,
3465 						&desired_max_uV, state);
3466 		if (ret < 0)
3467 			return ret;
3468 
3469 		possible_uV = desired_min_uV;
3470 		done = true;
3471 
3472 		goto finish;
3473 	}
3474 
3475 	/* Find highest min desired voltage */
3476 	for (i = 0; i < n_coupled; i++) {
3477 		int tmp_min = 0;
3478 		int tmp_max = INT_MAX;
3479 
3480 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3481 
3482 		ret = regulator_check_consumers(c_rdevs[i],
3483 						&tmp_min,
3484 						&tmp_max, state);
3485 		if (ret < 0)
3486 			return ret;
3487 
3488 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3489 		if (ret < 0)
3490 			return ret;
3491 
3492 		highest_min_uV = max(highest_min_uV, tmp_min);
3493 
3494 		if (i == 0) {
3495 			desired_min_uV = tmp_min;
3496 			desired_max_uV = tmp_max;
3497 		}
3498 	}
3499 
3500 	/*
3501 	 * Let target_uV be equal to the desired one if possible.
3502 	 * If not, set it to minimum voltage, allowed by other coupled
3503 	 * regulators.
3504 	 */
3505 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3506 
3507 	/*
3508 	 * Find min and max voltages, which currently aren't violating
3509 	 * max_spread.
3510 	 */
3511 	for (i = 1; i < n_coupled; i++) {
3512 		int tmp_act;
3513 
3514 		if (!_regulator_is_enabled(c_rdevs[i]))
3515 			continue;
3516 
3517 		tmp_act = _regulator_get_voltage(c_rdevs[i]);
3518 		if (tmp_act < 0)
3519 			return tmp_act;
3520 
3521 		min_current_uV = min(tmp_act, min_current_uV);
3522 		max_current_uV = max(tmp_act, max_current_uV);
3523 	}
3524 
3525 	/* There aren't any other regulators enabled */
3526 	if (max_current_uV == 0) {
3527 		possible_uV = target_uV;
3528 	} else {
3529 		/*
3530 		 * Correct target voltage, so as it currently isn't
3531 		 * violating max_spread
3532 		 */
3533 		possible_uV = max(target_uV, max_current_uV - max_spread);
3534 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3535 	}
3536 
3537 	if (possible_uV > desired_max_uV)
3538 		return -EINVAL;
3539 
3540 	done = (possible_uV == target_uV);
3541 	desired_min_uV = possible_uV;
3542 
3543 finish:
3544 	/* Apply max_uV_step constraint if necessary */
3545 	if (state == PM_SUSPEND_ON) {
3546 		ret = regulator_limit_voltage_step(rdev, current_uV,
3547 						   &desired_min_uV);
3548 		if (ret < 0)
3549 			return ret;
3550 
3551 		if (ret == 0)
3552 			done = false;
3553 	}
3554 
3555 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3556 	if (n_coupled > 1 && *current_uV == -1) {
3557 
3558 		if (_regulator_is_enabled(rdev)) {
3559 			ret = _regulator_get_voltage(rdev);
3560 			if (ret < 0)
3561 				return ret;
3562 
3563 			*current_uV = ret;
3564 		} else {
3565 			*current_uV = desired_min_uV;
3566 		}
3567 	}
3568 
3569 	*min_uV = desired_min_uV;
3570 	*max_uV = desired_max_uV;
3571 
3572 	return done;
3573 }
3574 
3575 static int regulator_balance_voltage(struct regulator_dev *rdev,
3576 				     suspend_state_t state)
3577 {
3578 	struct regulator_dev **c_rdevs;
3579 	struct regulator_dev *best_rdev;
3580 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3581 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3582 	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3583 	unsigned int delta, best_delta;
3584 
3585 	c_rdevs = c_desc->coupled_rdevs;
3586 	n_coupled = c_desc->n_coupled;
3587 
3588 	/*
3589 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3590 	 * other coupled regulators.
3591 	 */
3592 	if (state != PM_SUSPEND_ON)
3593 		n_coupled = 1;
3594 
3595 	if (c_desc->n_resolved < n_coupled) {
3596 		rdev_err(rdev, "Not all coupled regulators registered\n");
3597 		return -EPERM;
3598 	}
3599 
3600 	for (i = 0; i < n_coupled; i++)
3601 		c_rdev_done[i] = false;
3602 
3603 	/*
3604 	 * Find the best possible voltage change on each loop. Leave the loop
3605 	 * if there isn't any possible change.
3606 	 */
3607 	do {
3608 		best_c_rdev_done = false;
3609 		best_delta = 0;
3610 		best_min_uV = 0;
3611 		best_max_uV = 0;
3612 		best_c_rdev = 0;
3613 		best_rdev = NULL;
3614 
3615 		/*
3616 		 * Find highest difference between optimal voltage
3617 		 * and current voltage.
3618 		 */
3619 		for (i = 0; i < n_coupled; i++) {
3620 			/*
3621 			 * optimal_uV is the best voltage that can be set for
3622 			 * i-th regulator at the moment without violating
3623 			 * max_spread constraint in order to balance
3624 			 * the coupled voltages.
3625 			 */
3626 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3627 
3628 			if (c_rdev_done[i])
3629 				continue;
3630 
3631 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3632 							    &current_uV,
3633 							    &optimal_uV,
3634 							    &optimal_max_uV,
3635 							    state, n_coupled);
3636 			if (ret < 0)
3637 				goto out;
3638 
3639 			delta = abs(optimal_uV - current_uV);
3640 
3641 			if (delta && best_delta <= delta) {
3642 				best_c_rdev_done = ret;
3643 				best_delta = delta;
3644 				best_rdev = c_rdevs[i];
3645 				best_min_uV = optimal_uV;
3646 				best_max_uV = optimal_max_uV;
3647 				best_c_rdev = i;
3648 			}
3649 		}
3650 
3651 		/* Nothing to change, return successfully */
3652 		if (!best_rdev) {
3653 			ret = 0;
3654 			goto out;
3655 		}
3656 
3657 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3658 						 best_max_uV, state);
3659 
3660 		if (ret < 0)
3661 			goto out;
3662 
3663 		c_rdev_done[best_c_rdev] = best_c_rdev_done;
3664 
3665 	} while (n_coupled > 1);
3666 
3667 out:
3668 	return ret;
3669 }
3670 
3671 /**
3672  * regulator_set_voltage - set regulator output voltage
3673  * @regulator: regulator source
3674  * @min_uV: Minimum required voltage in uV
3675  * @max_uV: Maximum acceptable voltage in uV
3676  *
3677  * Sets a voltage regulator to the desired output voltage. This can be set
3678  * during any regulator state. IOW, regulator can be disabled or enabled.
3679  *
3680  * If the regulator is enabled then the voltage will change to the new value
3681  * immediately otherwise if the regulator is disabled the regulator will
3682  * output at the new voltage when enabled.
3683  *
3684  * NOTE: If the regulator is shared between several devices then the lowest
3685  * request voltage that meets the system constraints will be used.
3686  * Regulator system constraints must be set for this regulator before
3687  * calling this function otherwise this call will fail.
3688  */
3689 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3690 {
3691 	struct ww_acquire_ctx ww_ctx;
3692 	int ret;
3693 
3694 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3695 
3696 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3697 					     PM_SUSPEND_ON);
3698 
3699 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3700 
3701 	return ret;
3702 }
3703 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3704 
3705 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3706 					   suspend_state_t state, bool en)
3707 {
3708 	struct regulator_state *rstate;
3709 
3710 	rstate = regulator_get_suspend_state(rdev, state);
3711 	if (rstate == NULL)
3712 		return -EINVAL;
3713 
3714 	if (!rstate->changeable)
3715 		return -EPERM;
3716 
3717 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3718 
3719 	return 0;
3720 }
3721 
3722 int regulator_suspend_enable(struct regulator_dev *rdev,
3723 				    suspend_state_t state)
3724 {
3725 	return regulator_suspend_toggle(rdev, state, true);
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3728 
3729 int regulator_suspend_disable(struct regulator_dev *rdev,
3730 				     suspend_state_t state)
3731 {
3732 	struct regulator *regulator;
3733 	struct regulator_voltage *voltage;
3734 
3735 	/*
3736 	 * if any consumer wants this regulator device keeping on in
3737 	 * suspend states, don't set it as disabled.
3738 	 */
3739 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3740 		voltage = &regulator->voltage[state];
3741 		if (voltage->min_uV || voltage->max_uV)
3742 			return 0;
3743 	}
3744 
3745 	return regulator_suspend_toggle(rdev, state, false);
3746 }
3747 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3748 
3749 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3750 					  int min_uV, int max_uV,
3751 					  suspend_state_t state)
3752 {
3753 	struct regulator_dev *rdev = regulator->rdev;
3754 	struct regulator_state *rstate;
3755 
3756 	rstate = regulator_get_suspend_state(rdev, state);
3757 	if (rstate == NULL)
3758 		return -EINVAL;
3759 
3760 	if (rstate->min_uV == rstate->max_uV) {
3761 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3762 		return -EPERM;
3763 	}
3764 
3765 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3766 }
3767 
3768 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3769 				  int max_uV, suspend_state_t state)
3770 {
3771 	struct ww_acquire_ctx ww_ctx;
3772 	int ret;
3773 
3774 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3775 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3776 		return -EINVAL;
3777 
3778 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3779 
3780 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3781 					     max_uV, state);
3782 
3783 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3784 
3785 	return ret;
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3788 
3789 /**
3790  * regulator_set_voltage_time - get raise/fall time
3791  * @regulator: regulator source
3792  * @old_uV: starting voltage in microvolts
3793  * @new_uV: target voltage in microvolts
3794  *
3795  * Provided with the starting and ending voltage, this function attempts to
3796  * calculate the time in microseconds required to rise or fall to this new
3797  * voltage.
3798  */
3799 int regulator_set_voltage_time(struct regulator *regulator,
3800 			       int old_uV, int new_uV)
3801 {
3802 	struct regulator_dev *rdev = regulator->rdev;
3803 	const struct regulator_ops *ops = rdev->desc->ops;
3804 	int old_sel = -1;
3805 	int new_sel = -1;
3806 	int voltage;
3807 	int i;
3808 
3809 	if (ops->set_voltage_time)
3810 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3811 	else if (!ops->set_voltage_time_sel)
3812 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3813 
3814 	/* Currently requires operations to do this */
3815 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3816 		return -EINVAL;
3817 
3818 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3819 		/* We only look for exact voltage matches here */
3820 		voltage = regulator_list_voltage(regulator, i);
3821 		if (voltage < 0)
3822 			return -EINVAL;
3823 		if (voltage == 0)
3824 			continue;
3825 		if (voltage == old_uV)
3826 			old_sel = i;
3827 		if (voltage == new_uV)
3828 			new_sel = i;
3829 	}
3830 
3831 	if (old_sel < 0 || new_sel < 0)
3832 		return -EINVAL;
3833 
3834 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3835 }
3836 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3837 
3838 /**
3839  * regulator_set_voltage_time_sel - get raise/fall time
3840  * @rdev: regulator source device
3841  * @old_selector: selector for starting voltage
3842  * @new_selector: selector for target voltage
3843  *
3844  * Provided with the starting and target voltage selectors, this function
3845  * returns time in microseconds required to rise or fall to this new voltage
3846  *
3847  * Drivers providing ramp_delay in regulation_constraints can use this as their
3848  * set_voltage_time_sel() operation.
3849  */
3850 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3851 				   unsigned int old_selector,
3852 				   unsigned int new_selector)
3853 {
3854 	int old_volt, new_volt;
3855 
3856 	/* sanity check */
3857 	if (!rdev->desc->ops->list_voltage)
3858 		return -EINVAL;
3859 
3860 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3861 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3862 
3863 	if (rdev->desc->ops->set_voltage_time)
3864 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3865 							 new_volt);
3866 	else
3867 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3868 }
3869 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3870 
3871 /**
3872  * regulator_sync_voltage - re-apply last regulator output voltage
3873  * @regulator: regulator source
3874  *
3875  * Re-apply the last configured voltage.  This is intended to be used
3876  * where some external control source the consumer is cooperating with
3877  * has caused the configured voltage to change.
3878  */
3879 int regulator_sync_voltage(struct regulator *regulator)
3880 {
3881 	struct regulator_dev *rdev = regulator->rdev;
3882 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3883 	int ret, min_uV, max_uV;
3884 
3885 	regulator_lock(rdev);
3886 
3887 	if (!rdev->desc->ops->set_voltage &&
3888 	    !rdev->desc->ops->set_voltage_sel) {
3889 		ret = -EINVAL;
3890 		goto out;
3891 	}
3892 
3893 	/* This is only going to work if we've had a voltage configured. */
3894 	if (!voltage->min_uV && !voltage->max_uV) {
3895 		ret = -EINVAL;
3896 		goto out;
3897 	}
3898 
3899 	min_uV = voltage->min_uV;
3900 	max_uV = voltage->max_uV;
3901 
3902 	/* This should be a paranoia check... */
3903 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3904 	if (ret < 0)
3905 		goto out;
3906 
3907 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3908 	if (ret < 0)
3909 		goto out;
3910 
3911 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3912 
3913 out:
3914 	regulator_unlock(rdev);
3915 	return ret;
3916 }
3917 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3918 
3919 static int _regulator_get_voltage(struct regulator_dev *rdev)
3920 {
3921 	int sel, ret;
3922 	bool bypassed;
3923 
3924 	if (rdev->desc->ops->get_bypass) {
3925 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3926 		if (ret < 0)
3927 			return ret;
3928 		if (bypassed) {
3929 			/* if bypassed the regulator must have a supply */
3930 			if (!rdev->supply) {
3931 				rdev_err(rdev,
3932 					 "bypassed regulator has no supply!\n");
3933 				return -EPROBE_DEFER;
3934 			}
3935 
3936 			return _regulator_get_voltage(rdev->supply->rdev);
3937 		}
3938 	}
3939 
3940 	if (rdev->desc->ops->get_voltage_sel) {
3941 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3942 		if (sel < 0)
3943 			return sel;
3944 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3945 	} else if (rdev->desc->ops->get_voltage) {
3946 		ret = rdev->desc->ops->get_voltage(rdev);
3947 	} else if (rdev->desc->ops->list_voltage) {
3948 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3949 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3950 		ret = rdev->desc->fixed_uV;
3951 	} else if (rdev->supply) {
3952 		ret = _regulator_get_voltage(rdev->supply->rdev);
3953 	} else {
3954 		return -EINVAL;
3955 	}
3956 
3957 	if (ret < 0)
3958 		return ret;
3959 	return ret - rdev->constraints->uV_offset;
3960 }
3961 
3962 /**
3963  * regulator_get_voltage - get regulator output voltage
3964  * @regulator: regulator source
3965  *
3966  * This returns the current regulator voltage in uV.
3967  *
3968  * NOTE: If the regulator is disabled it will return the voltage value. This
3969  * function should not be used to determine regulator state.
3970  */
3971 int regulator_get_voltage(struct regulator *regulator)
3972 {
3973 	struct ww_acquire_ctx ww_ctx;
3974 	int ret;
3975 
3976 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3977 	ret = _regulator_get_voltage(regulator->rdev);
3978 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3979 
3980 	return ret;
3981 }
3982 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3983 
3984 /**
3985  * regulator_set_current_limit - set regulator output current limit
3986  * @regulator: regulator source
3987  * @min_uA: Minimum supported current in uA
3988  * @max_uA: Maximum supported current in uA
3989  *
3990  * Sets current sink to the desired output current. This can be set during
3991  * any regulator state. IOW, regulator can be disabled or enabled.
3992  *
3993  * If the regulator is enabled then the current will change to the new value
3994  * immediately otherwise if the regulator is disabled the regulator will
3995  * output at the new current when enabled.
3996  *
3997  * NOTE: Regulator system constraints must be set for this regulator before
3998  * calling this function otherwise this call will fail.
3999  */
4000 int regulator_set_current_limit(struct regulator *regulator,
4001 			       int min_uA, int max_uA)
4002 {
4003 	struct regulator_dev *rdev = regulator->rdev;
4004 	int ret;
4005 
4006 	regulator_lock(rdev);
4007 
4008 	/* sanity check */
4009 	if (!rdev->desc->ops->set_current_limit) {
4010 		ret = -EINVAL;
4011 		goto out;
4012 	}
4013 
4014 	/* constraints check */
4015 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4016 	if (ret < 0)
4017 		goto out;
4018 
4019 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4020 out:
4021 	regulator_unlock(rdev);
4022 	return ret;
4023 }
4024 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4025 
4026 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4027 {
4028 	/* sanity check */
4029 	if (!rdev->desc->ops->get_current_limit)
4030 		return -EINVAL;
4031 
4032 	return rdev->desc->ops->get_current_limit(rdev);
4033 }
4034 
4035 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4036 {
4037 	int ret;
4038 
4039 	regulator_lock(rdev);
4040 	ret = _regulator_get_current_limit_unlocked(rdev);
4041 	regulator_unlock(rdev);
4042 
4043 	return ret;
4044 }
4045 
4046 /**
4047  * regulator_get_current_limit - get regulator output current
4048  * @regulator: regulator source
4049  *
4050  * This returns the current supplied by the specified current sink in uA.
4051  *
4052  * NOTE: If the regulator is disabled it will return the current value. This
4053  * function should not be used to determine regulator state.
4054  */
4055 int regulator_get_current_limit(struct regulator *regulator)
4056 {
4057 	return _regulator_get_current_limit(regulator->rdev);
4058 }
4059 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4060 
4061 /**
4062  * regulator_set_mode - set regulator operating mode
4063  * @regulator: regulator source
4064  * @mode: operating mode - one of the REGULATOR_MODE constants
4065  *
4066  * Set regulator operating mode to increase regulator efficiency or improve
4067  * regulation performance.
4068  *
4069  * NOTE: Regulator system constraints must be set for this regulator before
4070  * calling this function otherwise this call will fail.
4071  */
4072 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4073 {
4074 	struct regulator_dev *rdev = regulator->rdev;
4075 	int ret;
4076 	int regulator_curr_mode;
4077 
4078 	regulator_lock(rdev);
4079 
4080 	/* sanity check */
4081 	if (!rdev->desc->ops->set_mode) {
4082 		ret = -EINVAL;
4083 		goto out;
4084 	}
4085 
4086 	/* return if the same mode is requested */
4087 	if (rdev->desc->ops->get_mode) {
4088 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4089 		if (regulator_curr_mode == mode) {
4090 			ret = 0;
4091 			goto out;
4092 		}
4093 	}
4094 
4095 	/* constraints check */
4096 	ret = regulator_mode_constrain(rdev, &mode);
4097 	if (ret < 0)
4098 		goto out;
4099 
4100 	ret = rdev->desc->ops->set_mode(rdev, mode);
4101 out:
4102 	regulator_unlock(rdev);
4103 	return ret;
4104 }
4105 EXPORT_SYMBOL_GPL(regulator_set_mode);
4106 
4107 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4108 {
4109 	/* sanity check */
4110 	if (!rdev->desc->ops->get_mode)
4111 		return -EINVAL;
4112 
4113 	return rdev->desc->ops->get_mode(rdev);
4114 }
4115 
4116 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4117 {
4118 	int ret;
4119 
4120 	regulator_lock(rdev);
4121 	ret = _regulator_get_mode_unlocked(rdev);
4122 	regulator_unlock(rdev);
4123 
4124 	return ret;
4125 }
4126 
4127 /**
4128  * regulator_get_mode - get regulator operating mode
4129  * @regulator: regulator source
4130  *
4131  * Get the current regulator operating mode.
4132  */
4133 unsigned int regulator_get_mode(struct regulator *regulator)
4134 {
4135 	return _regulator_get_mode(regulator->rdev);
4136 }
4137 EXPORT_SYMBOL_GPL(regulator_get_mode);
4138 
4139 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4140 					unsigned int *flags)
4141 {
4142 	int ret;
4143 
4144 	regulator_lock(rdev);
4145 
4146 	/* sanity check */
4147 	if (!rdev->desc->ops->get_error_flags) {
4148 		ret = -EINVAL;
4149 		goto out;
4150 	}
4151 
4152 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4153 out:
4154 	regulator_unlock(rdev);
4155 	return ret;
4156 }
4157 
4158 /**
4159  * regulator_get_error_flags - get regulator error information
4160  * @regulator: regulator source
4161  * @flags: pointer to store error flags
4162  *
4163  * Get the current regulator error information.
4164  */
4165 int regulator_get_error_flags(struct regulator *regulator,
4166 				unsigned int *flags)
4167 {
4168 	return _regulator_get_error_flags(regulator->rdev, flags);
4169 }
4170 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4171 
4172 /**
4173  * regulator_set_load - set regulator load
4174  * @regulator: regulator source
4175  * @uA_load: load current
4176  *
4177  * Notifies the regulator core of a new device load. This is then used by
4178  * DRMS (if enabled by constraints) to set the most efficient regulator
4179  * operating mode for the new regulator loading.
4180  *
4181  * Consumer devices notify their supply regulator of the maximum power
4182  * they will require (can be taken from device datasheet in the power
4183  * consumption tables) when they change operational status and hence power
4184  * state. Examples of operational state changes that can affect power
4185  * consumption are :-
4186  *
4187  *    o Device is opened / closed.
4188  *    o Device I/O is about to begin or has just finished.
4189  *    o Device is idling in between work.
4190  *
4191  * This information is also exported via sysfs to userspace.
4192  *
4193  * DRMS will sum the total requested load on the regulator and change
4194  * to the most efficient operating mode if platform constraints allow.
4195  *
4196  * NOTE: when a regulator consumer requests to have a regulator
4197  * disabled then any load that consumer requested no longer counts
4198  * toward the total requested load.  If the regulator is re-enabled
4199  * then the previously requested load will start counting again.
4200  *
4201  * If a regulator is an always-on regulator then an individual consumer's
4202  * load will still be removed if that consumer is fully disabled.
4203  *
4204  * On error a negative errno is returned.
4205  */
4206 int regulator_set_load(struct regulator *regulator, int uA_load)
4207 {
4208 	struct regulator_dev *rdev = regulator->rdev;
4209 	int old_uA_load;
4210 	int ret = 0;
4211 
4212 	regulator_lock(rdev);
4213 	old_uA_load = regulator->uA_load;
4214 	regulator->uA_load = uA_load;
4215 	if (regulator->enable_count && old_uA_load != uA_load) {
4216 		ret = drms_uA_update(rdev);
4217 		if (ret < 0)
4218 			regulator->uA_load = old_uA_load;
4219 	}
4220 	regulator_unlock(rdev);
4221 
4222 	return ret;
4223 }
4224 EXPORT_SYMBOL_GPL(regulator_set_load);
4225 
4226 /**
4227  * regulator_allow_bypass - allow the regulator to go into bypass mode
4228  *
4229  * @regulator: Regulator to configure
4230  * @enable: enable or disable bypass mode
4231  *
4232  * Allow the regulator to go into bypass mode if all other consumers
4233  * for the regulator also enable bypass mode and the machine
4234  * constraints allow this.  Bypass mode means that the regulator is
4235  * simply passing the input directly to the output with no regulation.
4236  */
4237 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4238 {
4239 	struct regulator_dev *rdev = regulator->rdev;
4240 	int ret = 0;
4241 
4242 	if (!rdev->desc->ops->set_bypass)
4243 		return 0;
4244 
4245 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4246 		return 0;
4247 
4248 	regulator_lock(rdev);
4249 
4250 	if (enable && !regulator->bypass) {
4251 		rdev->bypass_count++;
4252 
4253 		if (rdev->bypass_count == rdev->open_count) {
4254 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4255 			if (ret != 0)
4256 				rdev->bypass_count--;
4257 		}
4258 
4259 	} else if (!enable && regulator->bypass) {
4260 		rdev->bypass_count--;
4261 
4262 		if (rdev->bypass_count != rdev->open_count) {
4263 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4264 			if (ret != 0)
4265 				rdev->bypass_count++;
4266 		}
4267 	}
4268 
4269 	if (ret == 0)
4270 		regulator->bypass = enable;
4271 
4272 	regulator_unlock(rdev);
4273 
4274 	return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4277 
4278 /**
4279  * regulator_register_notifier - register regulator event notifier
4280  * @regulator: regulator source
4281  * @nb: notifier block
4282  *
4283  * Register notifier block to receive regulator events.
4284  */
4285 int regulator_register_notifier(struct regulator *regulator,
4286 			      struct notifier_block *nb)
4287 {
4288 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4289 						nb);
4290 }
4291 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4292 
4293 /**
4294  * regulator_unregister_notifier - unregister regulator event notifier
4295  * @regulator: regulator source
4296  * @nb: notifier block
4297  *
4298  * Unregister regulator event notifier block.
4299  */
4300 int regulator_unregister_notifier(struct regulator *regulator,
4301 				struct notifier_block *nb)
4302 {
4303 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4304 						  nb);
4305 }
4306 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4307 
4308 /* notify regulator consumers and downstream regulator consumers.
4309  * Note mutex must be held by caller.
4310  */
4311 static int _notifier_call_chain(struct regulator_dev *rdev,
4312 				  unsigned long event, void *data)
4313 {
4314 	/* call rdev chain first */
4315 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4316 }
4317 
4318 /**
4319  * regulator_bulk_get - get multiple regulator consumers
4320  *
4321  * @dev:           Device to supply
4322  * @num_consumers: Number of consumers to register
4323  * @consumers:     Configuration of consumers; clients are stored here.
4324  *
4325  * @return 0 on success, an errno on failure.
4326  *
4327  * This helper function allows drivers to get several regulator
4328  * consumers in one operation.  If any of the regulators cannot be
4329  * acquired then any regulators that were allocated will be freed
4330  * before returning to the caller.
4331  */
4332 int regulator_bulk_get(struct device *dev, int num_consumers,
4333 		       struct regulator_bulk_data *consumers)
4334 {
4335 	int i;
4336 	int ret;
4337 
4338 	for (i = 0; i < num_consumers; i++)
4339 		consumers[i].consumer = NULL;
4340 
4341 	for (i = 0; i < num_consumers; i++) {
4342 		consumers[i].consumer = regulator_get(dev,
4343 						      consumers[i].supply);
4344 		if (IS_ERR(consumers[i].consumer)) {
4345 			ret = PTR_ERR(consumers[i].consumer);
4346 			consumers[i].consumer = NULL;
4347 			goto err;
4348 		}
4349 	}
4350 
4351 	return 0;
4352 
4353 err:
4354 	if (ret != -EPROBE_DEFER)
4355 		dev_err(dev, "Failed to get supply '%s': %d\n",
4356 			consumers[i].supply, ret);
4357 	else
4358 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4359 			consumers[i].supply);
4360 
4361 	while (--i >= 0)
4362 		regulator_put(consumers[i].consumer);
4363 
4364 	return ret;
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4367 
4368 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4369 {
4370 	struct regulator_bulk_data *bulk = data;
4371 
4372 	bulk->ret = regulator_enable(bulk->consumer);
4373 }
4374 
4375 /**
4376  * regulator_bulk_enable - enable multiple regulator consumers
4377  *
4378  * @num_consumers: Number of consumers
4379  * @consumers:     Consumer data; clients are stored here.
4380  * @return         0 on success, an errno on failure
4381  *
4382  * This convenience API allows consumers to enable multiple regulator
4383  * clients in a single API call.  If any consumers cannot be enabled
4384  * then any others that were enabled will be disabled again prior to
4385  * return.
4386  */
4387 int regulator_bulk_enable(int num_consumers,
4388 			  struct regulator_bulk_data *consumers)
4389 {
4390 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4391 	int i;
4392 	int ret = 0;
4393 
4394 	for (i = 0; i < num_consumers; i++) {
4395 		async_schedule_domain(regulator_bulk_enable_async,
4396 				      &consumers[i], &async_domain);
4397 	}
4398 
4399 	async_synchronize_full_domain(&async_domain);
4400 
4401 	/* If any consumer failed we need to unwind any that succeeded */
4402 	for (i = 0; i < num_consumers; i++) {
4403 		if (consumers[i].ret != 0) {
4404 			ret = consumers[i].ret;
4405 			goto err;
4406 		}
4407 	}
4408 
4409 	return 0;
4410 
4411 err:
4412 	for (i = 0; i < num_consumers; i++) {
4413 		if (consumers[i].ret < 0)
4414 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4415 			       consumers[i].ret);
4416 		else
4417 			regulator_disable(consumers[i].consumer);
4418 	}
4419 
4420 	return ret;
4421 }
4422 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4423 
4424 /**
4425  * regulator_bulk_disable - disable multiple regulator consumers
4426  *
4427  * @num_consumers: Number of consumers
4428  * @consumers:     Consumer data; clients are stored here.
4429  * @return         0 on success, an errno on failure
4430  *
4431  * This convenience API allows consumers to disable multiple regulator
4432  * clients in a single API call.  If any consumers cannot be disabled
4433  * then any others that were disabled will be enabled again prior to
4434  * return.
4435  */
4436 int regulator_bulk_disable(int num_consumers,
4437 			   struct regulator_bulk_data *consumers)
4438 {
4439 	int i;
4440 	int ret, r;
4441 
4442 	for (i = num_consumers - 1; i >= 0; --i) {
4443 		ret = regulator_disable(consumers[i].consumer);
4444 		if (ret != 0)
4445 			goto err;
4446 	}
4447 
4448 	return 0;
4449 
4450 err:
4451 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4452 	for (++i; i < num_consumers; ++i) {
4453 		r = regulator_enable(consumers[i].consumer);
4454 		if (r != 0)
4455 			pr_err("Failed to re-enable %s: %d\n",
4456 			       consumers[i].supply, r);
4457 	}
4458 
4459 	return ret;
4460 }
4461 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4462 
4463 /**
4464  * regulator_bulk_force_disable - force disable multiple regulator consumers
4465  *
4466  * @num_consumers: Number of consumers
4467  * @consumers:     Consumer data; clients are stored here.
4468  * @return         0 on success, an errno on failure
4469  *
4470  * This convenience API allows consumers to forcibly disable multiple regulator
4471  * clients in a single API call.
4472  * NOTE: This should be used for situations when device damage will
4473  * likely occur if the regulators are not disabled (e.g. over temp).
4474  * Although regulator_force_disable function call for some consumers can
4475  * return error numbers, the function is called for all consumers.
4476  */
4477 int regulator_bulk_force_disable(int num_consumers,
4478 			   struct regulator_bulk_data *consumers)
4479 {
4480 	int i;
4481 	int ret = 0;
4482 
4483 	for (i = 0; i < num_consumers; i++) {
4484 		consumers[i].ret =
4485 			    regulator_force_disable(consumers[i].consumer);
4486 
4487 		/* Store first error for reporting */
4488 		if (consumers[i].ret && !ret)
4489 			ret = consumers[i].ret;
4490 	}
4491 
4492 	return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4495 
4496 /**
4497  * regulator_bulk_free - free multiple regulator consumers
4498  *
4499  * @num_consumers: Number of consumers
4500  * @consumers:     Consumer data; clients are stored here.
4501  *
4502  * This convenience API allows consumers to free multiple regulator
4503  * clients in a single API call.
4504  */
4505 void regulator_bulk_free(int num_consumers,
4506 			 struct regulator_bulk_data *consumers)
4507 {
4508 	int i;
4509 
4510 	for (i = 0; i < num_consumers; i++) {
4511 		regulator_put(consumers[i].consumer);
4512 		consumers[i].consumer = NULL;
4513 	}
4514 }
4515 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4516 
4517 /**
4518  * regulator_notifier_call_chain - call regulator event notifier
4519  * @rdev: regulator source
4520  * @event: notifier block
4521  * @data: callback-specific data.
4522  *
4523  * Called by regulator drivers to notify clients a regulator event has
4524  * occurred. We also notify regulator clients downstream.
4525  * Note lock must be held by caller.
4526  */
4527 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4528 				  unsigned long event, void *data)
4529 {
4530 	lockdep_assert_held_once(&rdev->mutex.base);
4531 
4532 	_notifier_call_chain(rdev, event, data);
4533 	return NOTIFY_DONE;
4534 
4535 }
4536 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4537 
4538 /**
4539  * regulator_mode_to_status - convert a regulator mode into a status
4540  *
4541  * @mode: Mode to convert
4542  *
4543  * Convert a regulator mode into a status.
4544  */
4545 int regulator_mode_to_status(unsigned int mode)
4546 {
4547 	switch (mode) {
4548 	case REGULATOR_MODE_FAST:
4549 		return REGULATOR_STATUS_FAST;
4550 	case REGULATOR_MODE_NORMAL:
4551 		return REGULATOR_STATUS_NORMAL;
4552 	case REGULATOR_MODE_IDLE:
4553 		return REGULATOR_STATUS_IDLE;
4554 	case REGULATOR_MODE_STANDBY:
4555 		return REGULATOR_STATUS_STANDBY;
4556 	default:
4557 		return REGULATOR_STATUS_UNDEFINED;
4558 	}
4559 }
4560 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4561 
4562 static struct attribute *regulator_dev_attrs[] = {
4563 	&dev_attr_name.attr,
4564 	&dev_attr_num_users.attr,
4565 	&dev_attr_type.attr,
4566 	&dev_attr_microvolts.attr,
4567 	&dev_attr_microamps.attr,
4568 	&dev_attr_opmode.attr,
4569 	&dev_attr_state.attr,
4570 	&dev_attr_status.attr,
4571 	&dev_attr_bypass.attr,
4572 	&dev_attr_requested_microamps.attr,
4573 	&dev_attr_min_microvolts.attr,
4574 	&dev_attr_max_microvolts.attr,
4575 	&dev_attr_min_microamps.attr,
4576 	&dev_attr_max_microamps.attr,
4577 	&dev_attr_suspend_standby_state.attr,
4578 	&dev_attr_suspend_mem_state.attr,
4579 	&dev_attr_suspend_disk_state.attr,
4580 	&dev_attr_suspend_standby_microvolts.attr,
4581 	&dev_attr_suspend_mem_microvolts.attr,
4582 	&dev_attr_suspend_disk_microvolts.attr,
4583 	&dev_attr_suspend_standby_mode.attr,
4584 	&dev_attr_suspend_mem_mode.attr,
4585 	&dev_attr_suspend_disk_mode.attr,
4586 	NULL
4587 };
4588 
4589 /*
4590  * To avoid cluttering sysfs (and memory) with useless state, only
4591  * create attributes that can be meaningfully displayed.
4592  */
4593 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4594 					 struct attribute *attr, int idx)
4595 {
4596 	struct device *dev = kobj_to_dev(kobj);
4597 	struct regulator_dev *rdev = dev_to_rdev(dev);
4598 	const struct regulator_ops *ops = rdev->desc->ops;
4599 	umode_t mode = attr->mode;
4600 
4601 	/* these three are always present */
4602 	if (attr == &dev_attr_name.attr ||
4603 	    attr == &dev_attr_num_users.attr ||
4604 	    attr == &dev_attr_type.attr)
4605 		return mode;
4606 
4607 	/* some attributes need specific methods to be displayed */
4608 	if (attr == &dev_attr_microvolts.attr) {
4609 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4610 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4611 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4612 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4613 			return mode;
4614 		return 0;
4615 	}
4616 
4617 	if (attr == &dev_attr_microamps.attr)
4618 		return ops->get_current_limit ? mode : 0;
4619 
4620 	if (attr == &dev_attr_opmode.attr)
4621 		return ops->get_mode ? mode : 0;
4622 
4623 	if (attr == &dev_attr_state.attr)
4624 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4625 
4626 	if (attr == &dev_attr_status.attr)
4627 		return ops->get_status ? mode : 0;
4628 
4629 	if (attr == &dev_attr_bypass.attr)
4630 		return ops->get_bypass ? mode : 0;
4631 
4632 	/* constraints need specific supporting methods */
4633 	if (attr == &dev_attr_min_microvolts.attr ||
4634 	    attr == &dev_attr_max_microvolts.attr)
4635 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4636 
4637 	if (attr == &dev_attr_min_microamps.attr ||
4638 	    attr == &dev_attr_max_microamps.attr)
4639 		return ops->set_current_limit ? mode : 0;
4640 
4641 	if (attr == &dev_attr_suspend_standby_state.attr ||
4642 	    attr == &dev_attr_suspend_mem_state.attr ||
4643 	    attr == &dev_attr_suspend_disk_state.attr)
4644 		return mode;
4645 
4646 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4647 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4648 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4649 		return ops->set_suspend_voltage ? mode : 0;
4650 
4651 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4652 	    attr == &dev_attr_suspend_mem_mode.attr ||
4653 	    attr == &dev_attr_suspend_disk_mode.attr)
4654 		return ops->set_suspend_mode ? mode : 0;
4655 
4656 	return mode;
4657 }
4658 
4659 static const struct attribute_group regulator_dev_group = {
4660 	.attrs = regulator_dev_attrs,
4661 	.is_visible = regulator_attr_is_visible,
4662 };
4663 
4664 static const struct attribute_group *regulator_dev_groups[] = {
4665 	&regulator_dev_group,
4666 	NULL
4667 };
4668 
4669 static void regulator_dev_release(struct device *dev)
4670 {
4671 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4672 
4673 	kfree(rdev->constraints);
4674 	of_node_put(rdev->dev.of_node);
4675 	kfree(rdev);
4676 }
4677 
4678 static void rdev_init_debugfs(struct regulator_dev *rdev)
4679 {
4680 	struct device *parent = rdev->dev.parent;
4681 	const char *rname = rdev_get_name(rdev);
4682 	char name[NAME_MAX];
4683 
4684 	/* Avoid duplicate debugfs directory names */
4685 	if (parent && rname == rdev->desc->name) {
4686 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4687 			 rname);
4688 		rname = name;
4689 	}
4690 
4691 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4692 	if (!rdev->debugfs) {
4693 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4694 		return;
4695 	}
4696 
4697 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4698 			   &rdev->use_count);
4699 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4700 			   &rdev->open_count);
4701 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4702 			   &rdev->bypass_count);
4703 }
4704 
4705 static int regulator_register_resolve_supply(struct device *dev, void *data)
4706 {
4707 	struct regulator_dev *rdev = dev_to_rdev(dev);
4708 
4709 	if (regulator_resolve_supply(rdev))
4710 		rdev_dbg(rdev, "unable to resolve supply\n");
4711 
4712 	return 0;
4713 }
4714 
4715 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4716 {
4717 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4718 	int n_coupled = c_desc->n_coupled;
4719 	struct regulator_dev *c_rdev;
4720 	int i;
4721 
4722 	for (i = 1; i < n_coupled; i++) {
4723 		/* already resolved */
4724 		if (c_desc->coupled_rdevs[i])
4725 			continue;
4726 
4727 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4728 
4729 		if (!c_rdev)
4730 			continue;
4731 
4732 		regulator_lock(c_rdev);
4733 
4734 		c_desc->coupled_rdevs[i] = c_rdev;
4735 		c_desc->n_resolved++;
4736 
4737 		regulator_unlock(c_rdev);
4738 
4739 		regulator_resolve_coupling(c_rdev);
4740 	}
4741 }
4742 
4743 static void regulator_remove_coupling(struct regulator_dev *rdev)
4744 {
4745 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4746 	struct regulator_dev *__c_rdev, *c_rdev;
4747 	unsigned int __n_coupled, n_coupled;
4748 	int i, k;
4749 
4750 	n_coupled = c_desc->n_coupled;
4751 
4752 	for (i = 1; i < n_coupled; i++) {
4753 		c_rdev = c_desc->coupled_rdevs[i];
4754 
4755 		if (!c_rdev)
4756 			continue;
4757 
4758 		regulator_lock(c_rdev);
4759 
4760 		__c_desc = &c_rdev->coupling_desc;
4761 		__n_coupled = __c_desc->n_coupled;
4762 
4763 		for (k = 1; k < __n_coupled; k++) {
4764 			__c_rdev = __c_desc->coupled_rdevs[k];
4765 
4766 			if (__c_rdev == rdev) {
4767 				__c_desc->coupled_rdevs[k] = NULL;
4768 				__c_desc->n_resolved--;
4769 				break;
4770 			}
4771 		}
4772 
4773 		regulator_unlock(c_rdev);
4774 
4775 		c_desc->coupled_rdevs[i] = NULL;
4776 		c_desc->n_resolved--;
4777 	}
4778 }
4779 
4780 static int regulator_init_coupling(struct regulator_dev *rdev)
4781 {
4782 	int n_phandles;
4783 
4784 	if (!IS_ENABLED(CONFIG_OF))
4785 		n_phandles = 0;
4786 	else
4787 		n_phandles = of_get_n_coupled(rdev);
4788 
4789 	if (n_phandles + 1 > MAX_COUPLED) {
4790 		rdev_err(rdev, "too many regulators coupled\n");
4791 		return -EPERM;
4792 	}
4793 
4794 	/*
4795 	 * Every regulator should always have coupling descriptor filled with
4796 	 * at least pointer to itself.
4797 	 */
4798 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4799 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4800 	rdev->coupling_desc.n_resolved++;
4801 
4802 	/* regulator isn't coupled */
4803 	if (n_phandles == 0)
4804 		return 0;
4805 
4806 	/* regulator, which can't change its voltage, can't be coupled */
4807 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4808 		rdev_err(rdev, "voltage operation not allowed\n");
4809 		return -EPERM;
4810 	}
4811 
4812 	if (rdev->constraints->max_spread <= 0) {
4813 		rdev_err(rdev, "wrong max_spread value\n");
4814 		return -EPERM;
4815 	}
4816 
4817 	if (!of_check_coupling_data(rdev))
4818 		return -EPERM;
4819 
4820 	return 0;
4821 }
4822 
4823 /**
4824  * regulator_register - register regulator
4825  * @regulator_desc: regulator to register
4826  * @cfg: runtime configuration for regulator
4827  *
4828  * Called by regulator drivers to register a regulator.
4829  * Returns a valid pointer to struct regulator_dev on success
4830  * or an ERR_PTR() on error.
4831  */
4832 struct regulator_dev *
4833 regulator_register(const struct regulator_desc *regulator_desc,
4834 		   const struct regulator_config *cfg)
4835 {
4836 	const struct regulation_constraints *constraints = NULL;
4837 	const struct regulator_init_data *init_data;
4838 	struct regulator_config *config = NULL;
4839 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4840 	struct regulator_dev *rdev;
4841 	bool dangling_cfg_gpiod = false;
4842 	bool dangling_of_gpiod = false;
4843 	struct device *dev;
4844 	int ret, i;
4845 
4846 	if (cfg == NULL)
4847 		return ERR_PTR(-EINVAL);
4848 	if (cfg->ena_gpiod)
4849 		dangling_cfg_gpiod = true;
4850 	if (regulator_desc == NULL) {
4851 		ret = -EINVAL;
4852 		goto rinse;
4853 	}
4854 
4855 	dev = cfg->dev;
4856 	WARN_ON(!dev);
4857 
4858 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4859 		ret = -EINVAL;
4860 		goto rinse;
4861 	}
4862 
4863 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4864 	    regulator_desc->type != REGULATOR_CURRENT) {
4865 		ret = -EINVAL;
4866 		goto rinse;
4867 	}
4868 
4869 	/* Only one of each should be implemented */
4870 	WARN_ON(regulator_desc->ops->get_voltage &&
4871 		regulator_desc->ops->get_voltage_sel);
4872 	WARN_ON(regulator_desc->ops->set_voltage &&
4873 		regulator_desc->ops->set_voltage_sel);
4874 
4875 	/* If we're using selectors we must implement list_voltage. */
4876 	if (regulator_desc->ops->get_voltage_sel &&
4877 	    !regulator_desc->ops->list_voltage) {
4878 		ret = -EINVAL;
4879 		goto rinse;
4880 	}
4881 	if (regulator_desc->ops->set_voltage_sel &&
4882 	    !regulator_desc->ops->list_voltage) {
4883 		ret = -EINVAL;
4884 		goto rinse;
4885 	}
4886 
4887 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4888 	if (rdev == NULL) {
4889 		ret = -ENOMEM;
4890 		goto rinse;
4891 	}
4892 
4893 	/*
4894 	 * Duplicate the config so the driver could override it after
4895 	 * parsing init data.
4896 	 */
4897 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4898 	if (config == NULL) {
4899 		kfree(rdev);
4900 		ret = -ENOMEM;
4901 		goto rinse;
4902 	}
4903 
4904 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4905 					       &rdev->dev.of_node);
4906 	/*
4907 	 * We need to keep track of any GPIO descriptor coming from the
4908 	 * device tree until we have handled it over to the core. If the
4909 	 * config that was passed in to this function DOES NOT contain
4910 	 * a descriptor, and the config after this call DOES contain
4911 	 * a descriptor, we definitely got one from parsing the device
4912 	 * tree.
4913 	 */
4914 	if (!cfg->ena_gpiod && config->ena_gpiod)
4915 		dangling_of_gpiod = true;
4916 	if (!init_data) {
4917 		init_data = config->init_data;
4918 		rdev->dev.of_node = of_node_get(config->of_node);
4919 	}
4920 
4921 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4922 	rdev->reg_data = config->driver_data;
4923 	rdev->owner = regulator_desc->owner;
4924 	rdev->desc = regulator_desc;
4925 	if (config->regmap)
4926 		rdev->regmap = config->regmap;
4927 	else if (dev_get_regmap(dev, NULL))
4928 		rdev->regmap = dev_get_regmap(dev, NULL);
4929 	else if (dev->parent)
4930 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4931 	INIT_LIST_HEAD(&rdev->consumer_list);
4932 	INIT_LIST_HEAD(&rdev->list);
4933 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4934 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4935 
4936 	/* preform any regulator specific init */
4937 	if (init_data && init_data->regulator_init) {
4938 		ret = init_data->regulator_init(rdev->reg_data);
4939 		if (ret < 0)
4940 			goto clean;
4941 	}
4942 
4943 	if (config->ena_gpiod) {
4944 		mutex_lock(&regulator_list_mutex);
4945 		ret = regulator_ena_gpio_request(rdev, config);
4946 		mutex_unlock(&regulator_list_mutex);
4947 		if (ret != 0) {
4948 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
4949 				 ret);
4950 			goto clean;
4951 		}
4952 		/* The regulator core took over the GPIO descriptor */
4953 		dangling_cfg_gpiod = false;
4954 		dangling_of_gpiod = false;
4955 	}
4956 
4957 	/* register with sysfs */
4958 	rdev->dev.class = &regulator_class;
4959 	rdev->dev.parent = dev;
4960 	dev_set_name(&rdev->dev, "regulator.%lu",
4961 		    (unsigned long) atomic_inc_return(&regulator_no));
4962 
4963 	/* set regulator constraints */
4964 	if (init_data)
4965 		constraints = &init_data->constraints;
4966 
4967 	if (init_data && init_data->supply_regulator)
4968 		rdev->supply_name = init_data->supply_regulator;
4969 	else if (regulator_desc->supply_name)
4970 		rdev->supply_name = regulator_desc->supply_name;
4971 
4972 	/*
4973 	 * Attempt to resolve the regulator supply, if specified,
4974 	 * but don't return an error if we fail because we will try
4975 	 * to resolve it again later as more regulators are added.
4976 	 */
4977 	if (regulator_resolve_supply(rdev))
4978 		rdev_dbg(rdev, "unable to resolve supply\n");
4979 
4980 	ret = set_machine_constraints(rdev, constraints);
4981 	if (ret < 0)
4982 		goto wash;
4983 
4984 	ret = regulator_init_coupling(rdev);
4985 	if (ret < 0)
4986 		goto wash;
4987 
4988 	/* add consumers devices */
4989 	if (init_data) {
4990 		mutex_lock(&regulator_list_mutex);
4991 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4992 			ret = set_consumer_device_supply(rdev,
4993 				init_data->consumer_supplies[i].dev_name,
4994 				init_data->consumer_supplies[i].supply);
4995 			if (ret < 0) {
4996 				mutex_unlock(&regulator_list_mutex);
4997 				dev_err(dev, "Failed to set supply %s\n",
4998 					init_data->consumer_supplies[i].supply);
4999 				goto unset_supplies;
5000 			}
5001 		}
5002 		mutex_unlock(&regulator_list_mutex);
5003 	}
5004 
5005 	if (!rdev->desc->ops->get_voltage &&
5006 	    !rdev->desc->ops->list_voltage &&
5007 	    !rdev->desc->fixed_uV)
5008 		rdev->is_switch = true;
5009 
5010 	dev_set_drvdata(&rdev->dev, rdev);
5011 	ret = device_register(&rdev->dev);
5012 	if (ret != 0) {
5013 		put_device(&rdev->dev);
5014 		goto unset_supplies;
5015 	}
5016 
5017 	rdev_init_debugfs(rdev);
5018 
5019 	/* try to resolve regulators coupling since a new one was registered */
5020 	mutex_lock(&regulator_list_mutex);
5021 	regulator_resolve_coupling(rdev);
5022 	mutex_unlock(&regulator_list_mutex);
5023 
5024 	/* try to resolve regulators supply since a new one was registered */
5025 	class_for_each_device(&regulator_class, NULL, NULL,
5026 			      regulator_register_resolve_supply);
5027 	kfree(config);
5028 	return rdev;
5029 
5030 unset_supplies:
5031 	mutex_lock(&regulator_list_mutex);
5032 	unset_regulator_supplies(rdev);
5033 	mutex_unlock(&regulator_list_mutex);
5034 wash:
5035 	kfree(rdev->constraints);
5036 	mutex_lock(&regulator_list_mutex);
5037 	regulator_ena_gpio_free(rdev);
5038 	mutex_unlock(&regulator_list_mutex);
5039 clean:
5040 	if (dangling_of_gpiod)
5041 		gpiod_put(config->ena_gpiod);
5042 	kfree(rdev);
5043 	kfree(config);
5044 rinse:
5045 	if (dangling_cfg_gpiod)
5046 		gpiod_put(cfg->ena_gpiod);
5047 	return ERR_PTR(ret);
5048 }
5049 EXPORT_SYMBOL_GPL(regulator_register);
5050 
5051 /**
5052  * regulator_unregister - unregister regulator
5053  * @rdev: regulator to unregister
5054  *
5055  * Called by regulator drivers to unregister a regulator.
5056  */
5057 void regulator_unregister(struct regulator_dev *rdev)
5058 {
5059 	if (rdev == NULL)
5060 		return;
5061 
5062 	if (rdev->supply) {
5063 		while (rdev->use_count--)
5064 			regulator_disable(rdev->supply);
5065 		regulator_put(rdev->supply);
5066 	}
5067 
5068 	flush_work(&rdev->disable_work.work);
5069 
5070 	mutex_lock(&regulator_list_mutex);
5071 
5072 	debugfs_remove_recursive(rdev->debugfs);
5073 	WARN_ON(rdev->open_count);
5074 	regulator_remove_coupling(rdev);
5075 	unset_regulator_supplies(rdev);
5076 	list_del(&rdev->list);
5077 	regulator_ena_gpio_free(rdev);
5078 	device_unregister(&rdev->dev);
5079 
5080 	mutex_unlock(&regulator_list_mutex);
5081 }
5082 EXPORT_SYMBOL_GPL(regulator_unregister);
5083 
5084 #ifdef CONFIG_SUSPEND
5085 /**
5086  * regulator_suspend - prepare regulators for system wide suspend
5087  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5088  *
5089  * Configure each regulator with it's suspend operating parameters for state.
5090  */
5091 static int regulator_suspend(struct device *dev)
5092 {
5093 	struct regulator_dev *rdev = dev_to_rdev(dev);
5094 	suspend_state_t state = pm_suspend_target_state;
5095 	int ret;
5096 
5097 	regulator_lock(rdev);
5098 	ret = suspend_set_state(rdev, state);
5099 	regulator_unlock(rdev);
5100 
5101 	return ret;
5102 }
5103 
5104 static int regulator_resume(struct device *dev)
5105 {
5106 	suspend_state_t state = pm_suspend_target_state;
5107 	struct regulator_dev *rdev = dev_to_rdev(dev);
5108 	struct regulator_state *rstate;
5109 	int ret = 0;
5110 
5111 	rstate = regulator_get_suspend_state(rdev, state);
5112 	if (rstate == NULL)
5113 		return 0;
5114 
5115 	regulator_lock(rdev);
5116 
5117 	if (rdev->desc->ops->resume &&
5118 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5119 	     rstate->enabled == DISABLE_IN_SUSPEND))
5120 		ret = rdev->desc->ops->resume(rdev);
5121 
5122 	regulator_unlock(rdev);
5123 
5124 	return ret;
5125 }
5126 #else /* !CONFIG_SUSPEND */
5127 
5128 #define regulator_suspend	NULL
5129 #define regulator_resume	NULL
5130 
5131 #endif /* !CONFIG_SUSPEND */
5132 
5133 #ifdef CONFIG_PM
5134 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5135 	.suspend	= regulator_suspend,
5136 	.resume		= regulator_resume,
5137 };
5138 #endif
5139 
5140 struct class regulator_class = {
5141 	.name = "regulator",
5142 	.dev_release = regulator_dev_release,
5143 	.dev_groups = regulator_dev_groups,
5144 #ifdef CONFIG_PM
5145 	.pm = &regulator_pm_ops,
5146 #endif
5147 };
5148 /**
5149  * regulator_has_full_constraints - the system has fully specified constraints
5150  *
5151  * Calling this function will cause the regulator API to disable all
5152  * regulators which have a zero use count and don't have an always_on
5153  * constraint in a late_initcall.
5154  *
5155  * The intention is that this will become the default behaviour in a
5156  * future kernel release so users are encouraged to use this facility
5157  * now.
5158  */
5159 void regulator_has_full_constraints(void)
5160 {
5161 	has_full_constraints = 1;
5162 }
5163 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5164 
5165 /**
5166  * rdev_get_drvdata - get rdev regulator driver data
5167  * @rdev: regulator
5168  *
5169  * Get rdev regulator driver private data. This call can be used in the
5170  * regulator driver context.
5171  */
5172 void *rdev_get_drvdata(struct regulator_dev *rdev)
5173 {
5174 	return rdev->reg_data;
5175 }
5176 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5177 
5178 /**
5179  * regulator_get_drvdata - get regulator driver data
5180  * @regulator: regulator
5181  *
5182  * Get regulator driver private data. This call can be used in the consumer
5183  * driver context when non API regulator specific functions need to be called.
5184  */
5185 void *regulator_get_drvdata(struct regulator *regulator)
5186 {
5187 	return regulator->rdev->reg_data;
5188 }
5189 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5190 
5191 /**
5192  * regulator_set_drvdata - set regulator driver data
5193  * @regulator: regulator
5194  * @data: data
5195  */
5196 void regulator_set_drvdata(struct regulator *regulator, void *data)
5197 {
5198 	regulator->rdev->reg_data = data;
5199 }
5200 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5201 
5202 /**
5203  * regulator_get_id - get regulator ID
5204  * @rdev: regulator
5205  */
5206 int rdev_get_id(struct regulator_dev *rdev)
5207 {
5208 	return rdev->desc->id;
5209 }
5210 EXPORT_SYMBOL_GPL(rdev_get_id);
5211 
5212 struct device *rdev_get_dev(struct regulator_dev *rdev)
5213 {
5214 	return &rdev->dev;
5215 }
5216 EXPORT_SYMBOL_GPL(rdev_get_dev);
5217 
5218 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5219 {
5220 	return rdev->regmap;
5221 }
5222 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5223 
5224 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5225 {
5226 	return reg_init_data->driver_data;
5227 }
5228 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5229 
5230 #ifdef CONFIG_DEBUG_FS
5231 static int supply_map_show(struct seq_file *sf, void *data)
5232 {
5233 	struct regulator_map *map;
5234 
5235 	list_for_each_entry(map, &regulator_map_list, list) {
5236 		seq_printf(sf, "%s -> %s.%s\n",
5237 				rdev_get_name(map->regulator), map->dev_name,
5238 				map->supply);
5239 	}
5240 
5241 	return 0;
5242 }
5243 DEFINE_SHOW_ATTRIBUTE(supply_map);
5244 
5245 struct summary_data {
5246 	struct seq_file *s;
5247 	struct regulator_dev *parent;
5248 	int level;
5249 };
5250 
5251 static void regulator_summary_show_subtree(struct seq_file *s,
5252 					   struct regulator_dev *rdev,
5253 					   int level);
5254 
5255 static int regulator_summary_show_children(struct device *dev, void *data)
5256 {
5257 	struct regulator_dev *rdev = dev_to_rdev(dev);
5258 	struct summary_data *summary_data = data;
5259 
5260 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5261 		regulator_summary_show_subtree(summary_data->s, rdev,
5262 					       summary_data->level + 1);
5263 
5264 	return 0;
5265 }
5266 
5267 static void regulator_summary_show_subtree(struct seq_file *s,
5268 					   struct regulator_dev *rdev,
5269 					   int level)
5270 {
5271 	struct regulation_constraints *c;
5272 	struct regulator *consumer;
5273 	struct summary_data summary_data;
5274 	unsigned int opmode;
5275 
5276 	if (!rdev)
5277 		return;
5278 
5279 	opmode = _regulator_get_mode_unlocked(rdev);
5280 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5281 		   level * 3 + 1, "",
5282 		   30 - level * 3, rdev_get_name(rdev),
5283 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5284 		   regulator_opmode_to_str(opmode));
5285 
5286 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5287 	seq_printf(s, "%5dmA ",
5288 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5289 
5290 	c = rdev->constraints;
5291 	if (c) {
5292 		switch (rdev->desc->type) {
5293 		case REGULATOR_VOLTAGE:
5294 			seq_printf(s, "%5dmV %5dmV ",
5295 				   c->min_uV / 1000, c->max_uV / 1000);
5296 			break;
5297 		case REGULATOR_CURRENT:
5298 			seq_printf(s, "%5dmA %5dmA ",
5299 				   c->min_uA / 1000, c->max_uA / 1000);
5300 			break;
5301 		}
5302 	}
5303 
5304 	seq_puts(s, "\n");
5305 
5306 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5307 		if (consumer->dev && consumer->dev->class == &regulator_class)
5308 			continue;
5309 
5310 		seq_printf(s, "%*s%-*s ",
5311 			   (level + 1) * 3 + 1, "",
5312 			   30 - (level + 1) * 3,
5313 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5314 
5315 		switch (rdev->desc->type) {
5316 		case REGULATOR_VOLTAGE:
5317 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5318 				   consumer->enable_count,
5319 				   consumer->uA_load / 1000,
5320 				   consumer->uA_load && !consumer->enable_count ?
5321 				   '*' : ' ',
5322 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5323 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5324 			break;
5325 		case REGULATOR_CURRENT:
5326 			break;
5327 		}
5328 
5329 		seq_puts(s, "\n");
5330 	}
5331 
5332 	summary_data.s = s;
5333 	summary_data.level = level;
5334 	summary_data.parent = rdev;
5335 
5336 	class_for_each_device(&regulator_class, NULL, &summary_data,
5337 			      regulator_summary_show_children);
5338 }
5339 
5340 struct summary_lock_data {
5341 	struct ww_acquire_ctx *ww_ctx;
5342 	struct regulator_dev **new_contended_rdev;
5343 	struct regulator_dev **old_contended_rdev;
5344 };
5345 
5346 static int regulator_summary_lock_one(struct device *dev, void *data)
5347 {
5348 	struct regulator_dev *rdev = dev_to_rdev(dev);
5349 	struct summary_lock_data *lock_data = data;
5350 	int ret = 0;
5351 
5352 	if (rdev != *lock_data->old_contended_rdev) {
5353 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5354 
5355 		if (ret == -EDEADLK)
5356 			*lock_data->new_contended_rdev = rdev;
5357 		else
5358 			WARN_ON_ONCE(ret);
5359 	} else {
5360 		*lock_data->old_contended_rdev = NULL;
5361 	}
5362 
5363 	return ret;
5364 }
5365 
5366 static int regulator_summary_unlock_one(struct device *dev, void *data)
5367 {
5368 	struct regulator_dev *rdev = dev_to_rdev(dev);
5369 	struct summary_lock_data *lock_data = data;
5370 
5371 	if (lock_data) {
5372 		if (rdev == *lock_data->new_contended_rdev)
5373 			return -EDEADLK;
5374 	}
5375 
5376 	regulator_unlock(rdev);
5377 
5378 	return 0;
5379 }
5380 
5381 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5382 				      struct regulator_dev **new_contended_rdev,
5383 				      struct regulator_dev **old_contended_rdev)
5384 {
5385 	struct summary_lock_data lock_data;
5386 	int ret;
5387 
5388 	lock_data.ww_ctx = ww_ctx;
5389 	lock_data.new_contended_rdev = new_contended_rdev;
5390 	lock_data.old_contended_rdev = old_contended_rdev;
5391 
5392 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5393 				    regulator_summary_lock_one);
5394 	if (ret)
5395 		class_for_each_device(&regulator_class, NULL, &lock_data,
5396 				      regulator_summary_unlock_one);
5397 
5398 	return ret;
5399 }
5400 
5401 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5402 {
5403 	struct regulator_dev *new_contended_rdev = NULL;
5404 	struct regulator_dev *old_contended_rdev = NULL;
5405 	int err;
5406 
5407 	mutex_lock(&regulator_list_mutex);
5408 
5409 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5410 
5411 	do {
5412 		if (new_contended_rdev) {
5413 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5414 			old_contended_rdev = new_contended_rdev;
5415 			old_contended_rdev->ref_cnt++;
5416 		}
5417 
5418 		err = regulator_summary_lock_all(ww_ctx,
5419 						 &new_contended_rdev,
5420 						 &old_contended_rdev);
5421 
5422 		if (old_contended_rdev)
5423 			regulator_unlock(old_contended_rdev);
5424 
5425 	} while (err == -EDEADLK);
5426 
5427 	ww_acquire_done(ww_ctx);
5428 }
5429 
5430 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5431 {
5432 	class_for_each_device(&regulator_class, NULL, NULL,
5433 			      regulator_summary_unlock_one);
5434 	ww_acquire_fini(ww_ctx);
5435 
5436 	mutex_unlock(&regulator_list_mutex);
5437 }
5438 
5439 static int regulator_summary_show_roots(struct device *dev, void *data)
5440 {
5441 	struct regulator_dev *rdev = dev_to_rdev(dev);
5442 	struct seq_file *s = data;
5443 
5444 	if (!rdev->supply)
5445 		regulator_summary_show_subtree(s, rdev, 0);
5446 
5447 	return 0;
5448 }
5449 
5450 static int regulator_summary_show(struct seq_file *s, void *data)
5451 {
5452 	struct ww_acquire_ctx ww_ctx;
5453 
5454 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5455 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5456 
5457 	regulator_summary_lock(&ww_ctx);
5458 
5459 	class_for_each_device(&regulator_class, NULL, s,
5460 			      regulator_summary_show_roots);
5461 
5462 	regulator_summary_unlock(&ww_ctx);
5463 
5464 	return 0;
5465 }
5466 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5467 #endif /* CONFIG_DEBUG_FS */
5468 
5469 static int __init regulator_init(void)
5470 {
5471 	int ret;
5472 
5473 	ret = class_register(&regulator_class);
5474 
5475 	debugfs_root = debugfs_create_dir("regulator", NULL);
5476 	if (!debugfs_root)
5477 		pr_warn("regulator: Failed to create debugfs directory\n");
5478 
5479 #ifdef CONFIG_DEBUG_FS
5480 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5481 			    &supply_map_fops);
5482 
5483 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5484 			    NULL, &regulator_summary_fops);
5485 #endif
5486 	regulator_dummy_init();
5487 
5488 	return ret;
5489 }
5490 
5491 /* init early to allow our consumers to complete system booting */
5492 core_initcall(regulator_init);
5493 
5494 static int __init regulator_late_cleanup(struct device *dev, void *data)
5495 {
5496 	struct regulator_dev *rdev = dev_to_rdev(dev);
5497 	const struct regulator_ops *ops = rdev->desc->ops;
5498 	struct regulation_constraints *c = rdev->constraints;
5499 	int enabled, ret;
5500 
5501 	if (c && c->always_on)
5502 		return 0;
5503 
5504 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5505 		return 0;
5506 
5507 	regulator_lock(rdev);
5508 
5509 	if (rdev->use_count)
5510 		goto unlock;
5511 
5512 	/* If we can't read the status assume it's on. */
5513 	if (ops->is_enabled)
5514 		enabled = ops->is_enabled(rdev);
5515 	else
5516 		enabled = 1;
5517 
5518 	if (!enabled)
5519 		goto unlock;
5520 
5521 	if (have_full_constraints()) {
5522 		/* We log since this may kill the system if it goes
5523 		 * wrong. */
5524 		rdev_info(rdev, "disabling\n");
5525 		ret = _regulator_do_disable(rdev);
5526 		if (ret != 0)
5527 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5528 	} else {
5529 		/* The intention is that in future we will
5530 		 * assume that full constraints are provided
5531 		 * so warn even if we aren't going to do
5532 		 * anything here.
5533 		 */
5534 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5535 	}
5536 
5537 unlock:
5538 	regulator_unlock(rdev);
5539 
5540 	return 0;
5541 }
5542 
5543 static int __init regulator_init_complete(void)
5544 {
5545 	/*
5546 	 * Since DT doesn't provide an idiomatic mechanism for
5547 	 * enabling full constraints and since it's much more natural
5548 	 * with DT to provide them just assume that a DT enabled
5549 	 * system has full constraints.
5550 	 */
5551 	if (of_have_populated_dt())
5552 		has_full_constraints = true;
5553 
5554 	/*
5555 	 * Regulators may had failed to resolve their input supplies
5556 	 * when were registered, either because the input supply was
5557 	 * not registered yet or because its parent device was not
5558 	 * bound yet. So attempt to resolve the input supplies for
5559 	 * pending regulators before trying to disable unused ones.
5560 	 */
5561 	class_for_each_device(&regulator_class, NULL, NULL,
5562 			      regulator_register_resolve_supply);
5563 
5564 	/* If we have a full configuration then disable any regulators
5565 	 * we have permission to change the status for and which are
5566 	 * not in use or always_on.  This is effectively the default
5567 	 * for DT and ACPI as they have full constraints.
5568 	 */
5569 	class_for_each_device(&regulator_class, NULL, NULL,
5570 			      regulator_late_cleanup);
5571 
5572 	return 0;
5573 }
5574 late_initcall_sync(regulator_init_complete);
5575