xref: /openbmc/linux/drivers/regulator/core.c (revision b627b4ed)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32 
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39 	struct list_head list;
40 	struct device *dev;
41 	const char *supply;
42 	struct regulator_dev *regulator;
43 };
44 
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51 	struct device *dev;
52 	struct list_head list;
53 	int uA_load;
54 	int min_uV;
55 	int max_uV;
56 	char *supply_name;
57 	struct device_attribute dev_attr;
58 	struct regulator_dev *rdev;
59 };
60 
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 				  unsigned long event, void *data);
68 
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 	struct regulator *regulator = NULL;
73 	struct regulator_dev *rdev;
74 
75 	mutex_lock(&regulator_list_mutex);
76 	list_for_each_entry(rdev, &regulator_list, list) {
77 		mutex_lock(&rdev->mutex);
78 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 			if (regulator->dev == dev) {
80 				mutex_unlock(&rdev->mutex);
81 				mutex_unlock(&regulator_list_mutex);
82 				return regulator;
83 			}
84 		}
85 		mutex_unlock(&rdev->mutex);
86 	}
87 	mutex_unlock(&regulator_list_mutex);
88 	return NULL;
89 }
90 
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 				   int *min_uV, int *max_uV)
94 {
95 	BUG_ON(*min_uV > *max_uV);
96 
97 	if (!rdev->constraints) {
98 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 		       rdev->desc->name);
100 		return -ENODEV;
101 	}
102 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 		printk(KERN_ERR "%s: operation not allowed for %s\n",
104 		       __func__, rdev->desc->name);
105 		return -EPERM;
106 	}
107 
108 	if (*max_uV > rdev->constraints->max_uV)
109 		*max_uV = rdev->constraints->max_uV;
110 	if (*min_uV < rdev->constraints->min_uV)
111 		*min_uV = rdev->constraints->min_uV;
112 
113 	if (*min_uV > *max_uV)
114 		return -EINVAL;
115 
116 	return 0;
117 }
118 
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 					int *min_uA, int *max_uA)
122 {
123 	BUG_ON(*min_uA > *max_uA);
124 
125 	if (!rdev->constraints) {
126 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 		       rdev->desc->name);
128 		return -ENODEV;
129 	}
130 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 		printk(KERN_ERR "%s: operation not allowed for %s\n",
132 		       __func__, rdev->desc->name);
133 		return -EPERM;
134 	}
135 
136 	if (*max_uA > rdev->constraints->max_uA)
137 		*max_uA = rdev->constraints->max_uA;
138 	if (*min_uA < rdev->constraints->min_uA)
139 		*min_uA = rdev->constraints->min_uA;
140 
141 	if (*min_uA > *max_uA)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 	switch (mode) {
151 	case REGULATOR_MODE_FAST:
152 	case REGULATOR_MODE_NORMAL:
153 	case REGULATOR_MODE_IDLE:
154 	case REGULATOR_MODE_STANDBY:
155 		break;
156 	default:
157 		return -EINVAL;
158 	}
159 
160 	if (!rdev->constraints) {
161 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 		       rdev->desc->name);
163 		return -ENODEV;
164 	}
165 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 		printk(KERN_ERR "%s: operation not allowed for %s\n",
167 		       __func__, rdev->desc->name);
168 		return -EPERM;
169 	}
170 	if (!(rdev->constraints->valid_modes_mask & mode)) {
171 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 		       __func__, mode, rdev->desc->name);
173 		return -EINVAL;
174 	}
175 	return 0;
176 }
177 
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 	if (!rdev->constraints) {
182 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 		       rdev->desc->name);
184 		return -ENODEV;
185 	}
186 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 		printk(KERN_ERR "%s: operation not allowed for %s\n",
188 		       __func__, rdev->desc->name);
189 		return -EPERM;
190 	}
191 	return 0;
192 }
193 
194 static ssize_t device_requested_uA_show(struct device *dev,
195 			     struct device_attribute *attr, char *buf)
196 {
197 	struct regulator *regulator;
198 
199 	regulator = get_device_regulator(dev);
200 	if (regulator == NULL)
201 		return 0;
202 
203 	return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205 
206 static ssize_t regulator_uV_show(struct device *dev,
207 				struct device_attribute *attr, char *buf)
208 {
209 	struct regulator_dev *rdev = dev_get_drvdata(dev);
210 	ssize_t ret;
211 
212 	mutex_lock(&rdev->mutex);
213 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 	mutex_unlock(&rdev->mutex);
215 
216 	return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219 
220 static ssize_t regulator_uA_show(struct device *dev,
221 				struct device_attribute *attr, char *buf)
222 {
223 	struct regulator_dev *rdev = dev_get_drvdata(dev);
224 
225 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228 
229 static ssize_t regulator_name_show(struct device *dev,
230 			     struct device_attribute *attr, char *buf)
231 {
232 	struct regulator_dev *rdev = dev_get_drvdata(dev);
233 	const char *name;
234 
235 	if (rdev->constraints->name)
236 		name = rdev->constraints->name;
237 	else if (rdev->desc->name)
238 		name = rdev->desc->name;
239 	else
240 		name = "";
241 
242 	return sprintf(buf, "%s\n", name);
243 }
244 
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 	switch (mode) {
248 	case REGULATOR_MODE_FAST:
249 		return sprintf(buf, "fast\n");
250 	case REGULATOR_MODE_NORMAL:
251 		return sprintf(buf, "normal\n");
252 	case REGULATOR_MODE_IDLE:
253 		return sprintf(buf, "idle\n");
254 	case REGULATOR_MODE_STANDBY:
255 		return sprintf(buf, "standby\n");
256 	}
257 	return sprintf(buf, "unknown\n");
258 }
259 
260 static ssize_t regulator_opmode_show(struct device *dev,
261 				    struct device_attribute *attr, char *buf)
262 {
263 	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 
265 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268 
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 	if (state > 0)
272 		return sprintf(buf, "enabled\n");
273 	else if (state == 0)
274 		return sprintf(buf, "disabled\n");
275 	else
276 		return sprintf(buf, "unknown\n");
277 }
278 
279 static ssize_t regulator_state_show(struct device *dev,
280 				   struct device_attribute *attr, char *buf)
281 {
282 	struct regulator_dev *rdev = dev_get_drvdata(dev);
283 
284 	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287 
288 static ssize_t regulator_status_show(struct device *dev,
289 				   struct device_attribute *attr, char *buf)
290 {
291 	struct regulator_dev *rdev = dev_get_drvdata(dev);
292 	int status;
293 	char *label;
294 
295 	status = rdev->desc->ops->get_status(rdev);
296 	if (status < 0)
297 		return status;
298 
299 	switch (status) {
300 	case REGULATOR_STATUS_OFF:
301 		label = "off";
302 		break;
303 	case REGULATOR_STATUS_ON:
304 		label = "on";
305 		break;
306 	case REGULATOR_STATUS_ERROR:
307 		label = "error";
308 		break;
309 	case REGULATOR_STATUS_FAST:
310 		label = "fast";
311 		break;
312 	case REGULATOR_STATUS_NORMAL:
313 		label = "normal";
314 		break;
315 	case REGULATOR_STATUS_IDLE:
316 		label = "idle";
317 		break;
318 	case REGULATOR_STATUS_STANDBY:
319 		label = "standby";
320 		break;
321 	default:
322 		return -ERANGE;
323 	}
324 
325 	return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328 
329 static ssize_t regulator_min_uA_show(struct device *dev,
330 				    struct device_attribute *attr, char *buf)
331 {
332 	struct regulator_dev *rdev = dev_get_drvdata(dev);
333 
334 	if (!rdev->constraints)
335 		return sprintf(buf, "constraint not defined\n");
336 
337 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340 
341 static ssize_t regulator_max_uA_show(struct device *dev,
342 				    struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	if (!rdev->constraints)
347 		return sprintf(buf, "constraint not defined\n");
348 
349 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352 
353 static ssize_t regulator_min_uV_show(struct device *dev,
354 				    struct device_attribute *attr, char *buf)
355 {
356 	struct regulator_dev *rdev = dev_get_drvdata(dev);
357 
358 	if (!rdev->constraints)
359 		return sprintf(buf, "constraint not defined\n");
360 
361 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364 
365 static ssize_t regulator_max_uV_show(struct device *dev,
366 				    struct device_attribute *attr, char *buf)
367 {
368 	struct regulator_dev *rdev = dev_get_drvdata(dev);
369 
370 	if (!rdev->constraints)
371 		return sprintf(buf, "constraint not defined\n");
372 
373 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376 
377 static ssize_t regulator_total_uA_show(struct device *dev,
378 				      struct device_attribute *attr, char *buf)
379 {
380 	struct regulator_dev *rdev = dev_get_drvdata(dev);
381 	struct regulator *regulator;
382 	int uA = 0;
383 
384 	mutex_lock(&rdev->mutex);
385 	list_for_each_entry(regulator, &rdev->consumer_list, list)
386 	    uA += regulator->uA_load;
387 	mutex_unlock(&rdev->mutex);
388 	return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391 
392 static ssize_t regulator_num_users_show(struct device *dev,
393 				      struct device_attribute *attr, char *buf)
394 {
395 	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 	return sprintf(buf, "%d\n", rdev->use_count);
397 }
398 
399 static ssize_t regulator_type_show(struct device *dev,
400 				  struct device_attribute *attr, char *buf)
401 {
402 	struct regulator_dev *rdev = dev_get_drvdata(dev);
403 
404 	switch (rdev->desc->type) {
405 	case REGULATOR_VOLTAGE:
406 		return sprintf(buf, "voltage\n");
407 	case REGULATOR_CURRENT:
408 		return sprintf(buf, "current\n");
409 	}
410 	return sprintf(buf, "unknown\n");
411 }
412 
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414 				struct device_attribute *attr, char *buf)
415 {
416 	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 
418 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421 		regulator_suspend_mem_uV_show, NULL);
422 
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424 				struct device_attribute *attr, char *buf)
425 {
426 	struct regulator_dev *rdev = dev_get_drvdata(dev);
427 
428 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431 		regulator_suspend_disk_uV_show, NULL);
432 
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434 				struct device_attribute *attr, char *buf)
435 {
436 	struct regulator_dev *rdev = dev_get_drvdata(dev);
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441 		regulator_suspend_standby_uV_show, NULL);
442 
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444 				struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	return regulator_print_opmode(buf,
449 		rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452 		regulator_suspend_mem_mode_show, NULL);
453 
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455 				struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	return regulator_print_opmode(buf,
460 		rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463 		regulator_suspend_disk_mode_show, NULL);
464 
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	return regulator_print_opmode(buf,
471 		rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474 		regulator_suspend_standby_mode_show, NULL);
475 
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477 				   struct device_attribute *attr, char *buf)
478 {
479 	struct regulator_dev *rdev = dev_get_drvdata(dev);
480 
481 	return regulator_print_state(buf,
482 			rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485 		regulator_suspend_mem_state_show, NULL);
486 
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488 				   struct device_attribute *attr, char *buf)
489 {
490 	struct regulator_dev *rdev = dev_get_drvdata(dev);
491 
492 	return regulator_print_state(buf,
493 			rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496 		regulator_suspend_disk_state_show, NULL);
497 
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499 				   struct device_attribute *attr, char *buf)
500 {
501 	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 
503 	return regulator_print_state(buf,
504 			rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507 		regulator_suspend_standby_state_show, NULL);
508 
509 
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515 	__ATTR(name, 0444, regulator_name_show, NULL),
516 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517 	__ATTR(type, 0444, regulator_type_show, NULL),
518 	__ATTR_NULL,
519 };
520 
521 static void regulator_dev_release(struct device *dev)
522 {
523 	struct regulator_dev *rdev = dev_get_drvdata(dev);
524 	kfree(rdev);
525 }
526 
527 static struct class regulator_class = {
528 	.name = "regulator",
529 	.dev_release = regulator_dev_release,
530 	.dev_attrs = regulator_dev_attrs,
531 };
532 
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537 	struct regulator *sibling;
538 	int current_uA = 0, output_uV, input_uV, err;
539 	unsigned int mode;
540 
541 	err = regulator_check_drms(rdev);
542 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544 	return;
545 
546 	/* get output voltage */
547 	output_uV = rdev->desc->ops->get_voltage(rdev);
548 	if (output_uV <= 0)
549 		return;
550 
551 	/* get input voltage */
552 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554 	else
555 		input_uV = rdev->constraints->input_uV;
556 	if (input_uV <= 0)
557 		return;
558 
559 	/* calc total requested load */
560 	list_for_each_entry(sibling, &rdev->consumer_list, list)
561 	    current_uA += sibling->uA_load;
562 
563 	/* now get the optimum mode for our new total regulator load */
564 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565 						  output_uV, current_uA);
566 
567 	/* check the new mode is allowed */
568 	err = regulator_check_mode(rdev, mode);
569 	if (err == 0)
570 		rdev->desc->ops->set_mode(rdev, mode);
571 }
572 
573 static int suspend_set_state(struct regulator_dev *rdev,
574 	struct regulator_state *rstate)
575 {
576 	int ret = 0;
577 
578 	/* enable & disable are mandatory for suspend control */
579 	if (!rdev->desc->ops->set_suspend_enable ||
580 		!rdev->desc->ops->set_suspend_disable) {
581 		printk(KERN_ERR "%s: no way to set suspend state\n",
582 			__func__);
583 		return -EINVAL;
584 	}
585 
586 	if (rstate->enabled)
587 		ret = rdev->desc->ops->set_suspend_enable(rdev);
588 	else
589 		ret = rdev->desc->ops->set_suspend_disable(rdev);
590 	if (ret < 0) {
591 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592 		return ret;
593 	}
594 
595 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597 		if (ret < 0) {
598 			printk(KERN_ERR "%s: failed to set voltage\n",
599 				__func__);
600 			return ret;
601 		}
602 	}
603 
604 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606 		if (ret < 0) {
607 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608 			return ret;
609 		}
610 	}
611 	return ret;
612 }
613 
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617 	if (!rdev->constraints)
618 		return -EINVAL;
619 
620 	switch (state) {
621 	case PM_SUSPEND_STANDBY:
622 		return suspend_set_state(rdev,
623 			&rdev->constraints->state_standby);
624 	case PM_SUSPEND_MEM:
625 		return suspend_set_state(rdev,
626 			&rdev->constraints->state_mem);
627 	case PM_SUSPEND_MAX:
628 		return suspend_set_state(rdev,
629 			&rdev->constraints->state_disk);
630 	default:
631 		return -EINVAL;
632 	}
633 }
634 
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637 	struct regulation_constraints *constraints = rdev->constraints;
638 	char buf[80];
639 	int count;
640 
641 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642 		if (constraints->min_uV == constraints->max_uV)
643 			count = sprintf(buf, "%d mV ",
644 					constraints->min_uV / 1000);
645 		else
646 			count = sprintf(buf, "%d <--> %d mV ",
647 					constraints->min_uV / 1000,
648 					constraints->max_uV / 1000);
649 	} else {
650 		if (constraints->min_uA == constraints->max_uA)
651 			count = sprintf(buf, "%d mA ",
652 					constraints->min_uA / 1000);
653 		else
654 			count = sprintf(buf, "%d <--> %d mA ",
655 					constraints->min_uA / 1000,
656 					constraints->max_uA / 1000);
657 	}
658 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659 		count += sprintf(buf + count, "fast ");
660 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661 		count += sprintf(buf + count, "normal ");
662 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663 		count += sprintf(buf + count, "idle ");
664 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665 		count += sprintf(buf + count, "standby");
666 
667 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669 
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682 	struct regulation_constraints *constraints)
683 {
684 	int ret = 0;
685 	const char *name;
686 	struct regulator_ops *ops = rdev->desc->ops;
687 
688 	if (constraints->name)
689 		name = constraints->name;
690 	else if (rdev->desc->name)
691 		name = rdev->desc->name;
692 	else
693 		name = "regulator";
694 
695 	/* constrain machine-level voltage specs to fit
696 	 * the actual range supported by this regulator.
697 	 */
698 	if (ops->list_voltage && rdev->desc->n_voltages) {
699 		int	count = rdev->desc->n_voltages;
700 		int	i;
701 		int	min_uV = INT_MAX;
702 		int	max_uV = INT_MIN;
703 		int	cmin = constraints->min_uV;
704 		int	cmax = constraints->max_uV;
705 
706 		/* it's safe to autoconfigure fixed-voltage supplies */
707 		if (count == 1 && !cmin) {
708 			cmin = INT_MIN;
709 			cmax = INT_MAX;
710 		}
711 
712 		/* voltage constraints are optional */
713 		if ((cmin == 0) && (cmax == 0))
714 			goto out;
715 
716 		/* else require explicit machine-level constraints */
717 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
718 			pr_err("%s: %s '%s' voltage constraints\n",
719 				       __func__, "invalid", name);
720 			ret = -EINVAL;
721 			goto out;
722 		}
723 
724 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725 		for (i = 0; i < count; i++) {
726 			int	value;
727 
728 			value = ops->list_voltage(rdev, i);
729 			if (value <= 0)
730 				continue;
731 
732 			/* maybe adjust [min_uV..max_uV] */
733 			if (value >= cmin && value < min_uV)
734 				min_uV = value;
735 			if (value <= cmax && value > max_uV)
736 				max_uV = value;
737 		}
738 
739 		/* final: [min_uV..max_uV] valid iff constraints valid */
740 		if (max_uV < min_uV) {
741 			pr_err("%s: %s '%s' voltage constraints\n",
742 				       __func__, "unsupportable", name);
743 			ret = -EINVAL;
744 			goto out;
745 		}
746 
747 		/* use regulator's subset of machine constraints */
748 		if (constraints->min_uV < min_uV) {
749 			pr_debug("%s: override '%s' %s, %d -> %d\n",
750 				       __func__, name, "min_uV",
751 					constraints->min_uV, min_uV);
752 			constraints->min_uV = min_uV;
753 		}
754 		if (constraints->max_uV > max_uV) {
755 			pr_debug("%s: override '%s' %s, %d -> %d\n",
756 				       __func__, name, "max_uV",
757 					constraints->max_uV, max_uV);
758 			constraints->max_uV = max_uV;
759 		}
760 	}
761 
762 	rdev->constraints = constraints;
763 
764 	/* do we need to apply the constraint voltage */
765 	if (rdev->constraints->apply_uV &&
766 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
767 		ops->set_voltage) {
768 		ret = ops->set_voltage(rdev,
769 			rdev->constraints->min_uV, rdev->constraints->max_uV);
770 			if (ret < 0) {
771 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
772 				       __func__,
773 				       rdev->constraints->min_uV, name);
774 				rdev->constraints = NULL;
775 				goto out;
776 			}
777 	}
778 
779 	/* do we need to setup our suspend state */
780 	if (constraints->initial_state) {
781 		ret = suspend_prepare(rdev, constraints->initial_state);
782 		if (ret < 0) {
783 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
784 			       __func__, name);
785 			rdev->constraints = NULL;
786 			goto out;
787 		}
788 	}
789 
790 	if (constraints->initial_mode) {
791 		if (!ops->set_mode) {
792 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
793 			       __func__, name);
794 			ret = -EINVAL;
795 			goto out;
796 		}
797 
798 		ret = ops->set_mode(rdev, constraints->initial_mode);
799 		if (ret < 0) {
800 			printk(KERN_ERR
801 			       "%s: failed to set initial mode for %s: %d\n",
802 			       __func__, name, ret);
803 			goto out;
804 		}
805 	}
806 
807 	/* If the constraints say the regulator should be on at this point
808 	 * and we have control then make sure it is enabled.
809 	 */
810 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
811 		ret = ops->enable(rdev);
812 		if (ret < 0) {
813 			printk(KERN_ERR "%s: failed to enable %s\n",
814 			       __func__, name);
815 			rdev->constraints = NULL;
816 			goto out;
817 		}
818 	}
819 
820 	print_constraints(rdev);
821 out:
822 	return ret;
823 }
824 
825 /**
826  * set_supply - set regulator supply regulator
827  * @rdev: regulator name
828  * @supply_rdev: supply regulator name
829  *
830  * Called by platform initialisation code to set the supply regulator for this
831  * regulator. This ensures that a regulators supply will also be enabled by the
832  * core if it's child is enabled.
833  */
834 static int set_supply(struct regulator_dev *rdev,
835 	struct regulator_dev *supply_rdev)
836 {
837 	int err;
838 
839 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
840 				"supply");
841 	if (err) {
842 		printk(KERN_ERR
843 		       "%s: could not add device link %s err %d\n",
844 		       __func__, supply_rdev->dev.kobj.name, err);
845 		       goto out;
846 	}
847 	rdev->supply = supply_rdev;
848 	list_add(&rdev->slist, &supply_rdev->supply_list);
849 out:
850 	return err;
851 }
852 
853 /**
854  * set_consumer_device_supply: Bind a regulator to a symbolic supply
855  * @rdev:         regulator source
856  * @consumer_dev: device the supply applies to
857  * @supply:       symbolic name for supply
858  *
859  * Allows platform initialisation code to map physical regulator
860  * sources to symbolic names for supplies for use by devices.  Devices
861  * should use these symbolic names to request regulators, avoiding the
862  * need to provide board-specific regulator names as platform data.
863  */
864 static int set_consumer_device_supply(struct regulator_dev *rdev,
865 	struct device *consumer_dev, const char *supply)
866 {
867 	struct regulator_map *node;
868 
869 	if (supply == NULL)
870 		return -EINVAL;
871 
872 	list_for_each_entry(node, &regulator_map_list, list) {
873 		if (consumer_dev != node->dev)
874 			continue;
875 		if (strcmp(node->supply, supply) != 0)
876 			continue;
877 
878 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
879 				dev_name(&node->regulator->dev),
880 				node->regulator->desc->name,
881 				supply,
882 				dev_name(&rdev->dev), rdev->desc->name);
883 		return -EBUSY;
884 	}
885 
886 	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
887 	if (node == NULL)
888 		return -ENOMEM;
889 
890 	node->regulator = rdev;
891 	node->dev = consumer_dev;
892 	node->supply = supply;
893 
894 	list_add(&node->list, &regulator_map_list);
895 	return 0;
896 }
897 
898 static void unset_consumer_device_supply(struct regulator_dev *rdev,
899 	struct device *consumer_dev)
900 {
901 	struct regulator_map *node, *n;
902 
903 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
904 		if (rdev == node->regulator &&
905 			consumer_dev == node->dev) {
906 			list_del(&node->list);
907 			kfree(node);
908 			return;
909 		}
910 	}
911 }
912 
913 static void unset_regulator_supplies(struct regulator_dev *rdev)
914 {
915 	struct regulator_map *node, *n;
916 
917 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
918 		if (rdev == node->regulator) {
919 			list_del(&node->list);
920 			kfree(node);
921 			return;
922 		}
923 	}
924 }
925 
926 #define REG_STR_SIZE	32
927 
928 static struct regulator *create_regulator(struct regulator_dev *rdev,
929 					  struct device *dev,
930 					  const char *supply_name)
931 {
932 	struct regulator *regulator;
933 	char buf[REG_STR_SIZE];
934 	int err, size;
935 
936 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
937 	if (regulator == NULL)
938 		return NULL;
939 
940 	mutex_lock(&rdev->mutex);
941 	regulator->rdev = rdev;
942 	list_add(&regulator->list, &rdev->consumer_list);
943 
944 	if (dev) {
945 		/* create a 'requested_microamps_name' sysfs entry */
946 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
947 			supply_name);
948 		if (size >= REG_STR_SIZE)
949 			goto overflow_err;
950 
951 		regulator->dev = dev;
952 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
953 		if (regulator->dev_attr.attr.name == NULL)
954 			goto attr_name_err;
955 
956 		regulator->dev_attr.attr.owner = THIS_MODULE;
957 		regulator->dev_attr.attr.mode = 0444;
958 		regulator->dev_attr.show = device_requested_uA_show;
959 		err = device_create_file(dev, &regulator->dev_attr);
960 		if (err < 0) {
961 			printk(KERN_WARNING "%s: could not add regulator_dev"
962 				" load sysfs\n", __func__);
963 			goto attr_name_err;
964 		}
965 
966 		/* also add a link to the device sysfs entry */
967 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
968 				 dev->kobj.name, supply_name);
969 		if (size >= REG_STR_SIZE)
970 			goto attr_err;
971 
972 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
973 		if (regulator->supply_name == NULL)
974 			goto attr_err;
975 
976 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
977 					buf);
978 		if (err) {
979 			printk(KERN_WARNING
980 			       "%s: could not add device link %s err %d\n",
981 			       __func__, dev->kobj.name, err);
982 			device_remove_file(dev, &regulator->dev_attr);
983 			goto link_name_err;
984 		}
985 	}
986 	mutex_unlock(&rdev->mutex);
987 	return regulator;
988 link_name_err:
989 	kfree(regulator->supply_name);
990 attr_err:
991 	device_remove_file(regulator->dev, &regulator->dev_attr);
992 attr_name_err:
993 	kfree(regulator->dev_attr.attr.name);
994 overflow_err:
995 	list_del(&regulator->list);
996 	kfree(regulator);
997 	mutex_unlock(&rdev->mutex);
998 	return NULL;
999 }
1000 
1001 /**
1002  * regulator_get - lookup and obtain a reference to a regulator.
1003  * @dev: device for regulator "consumer"
1004  * @id: Supply name or regulator ID.
1005  *
1006  * Returns a struct regulator corresponding to the regulator producer,
1007  * or IS_ERR() condition containing errno.
1008  *
1009  * Use of supply names configured via regulator_set_device_supply() is
1010  * strongly encouraged.  It is recommended that the supply name used
1011  * should match the name used for the supply and/or the relevant
1012  * device pins in the datasheet.
1013  */
1014 struct regulator *regulator_get(struct device *dev, const char *id)
1015 {
1016 	struct regulator_dev *rdev;
1017 	struct regulator_map *map;
1018 	struct regulator *regulator = ERR_PTR(-ENODEV);
1019 
1020 	if (id == NULL) {
1021 		printk(KERN_ERR "regulator: get() with no identifier\n");
1022 		return regulator;
1023 	}
1024 
1025 	mutex_lock(&regulator_list_mutex);
1026 
1027 	list_for_each_entry(map, &regulator_map_list, list) {
1028 		if (dev == map->dev &&
1029 		    strcmp(map->supply, id) == 0) {
1030 			rdev = map->regulator;
1031 			goto found;
1032 		}
1033 	}
1034 	mutex_unlock(&regulator_list_mutex);
1035 	return regulator;
1036 
1037 found:
1038 	if (!try_module_get(rdev->owner))
1039 		goto out;
1040 
1041 	regulator = create_regulator(rdev, dev, id);
1042 	if (regulator == NULL) {
1043 		regulator = ERR_PTR(-ENOMEM);
1044 		module_put(rdev->owner);
1045 	}
1046 
1047 out:
1048 	mutex_unlock(&regulator_list_mutex);
1049 	return regulator;
1050 }
1051 EXPORT_SYMBOL_GPL(regulator_get);
1052 
1053 /**
1054  * regulator_put - "free" the regulator source
1055  * @regulator: regulator source
1056  *
1057  * Note: drivers must ensure that all regulator_enable calls made on this
1058  * regulator source are balanced by regulator_disable calls prior to calling
1059  * this function.
1060  */
1061 void regulator_put(struct regulator *regulator)
1062 {
1063 	struct regulator_dev *rdev;
1064 
1065 	if (regulator == NULL || IS_ERR(regulator))
1066 		return;
1067 
1068 	mutex_lock(&regulator_list_mutex);
1069 	rdev = regulator->rdev;
1070 
1071 	/* remove any sysfs entries */
1072 	if (regulator->dev) {
1073 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1074 		kfree(regulator->supply_name);
1075 		device_remove_file(regulator->dev, &regulator->dev_attr);
1076 		kfree(regulator->dev_attr.attr.name);
1077 	}
1078 	list_del(&regulator->list);
1079 	kfree(regulator);
1080 
1081 	module_put(rdev->owner);
1082 	mutex_unlock(&regulator_list_mutex);
1083 }
1084 EXPORT_SYMBOL_GPL(regulator_put);
1085 
1086 /* locks held by regulator_enable() */
1087 static int _regulator_enable(struct regulator_dev *rdev)
1088 {
1089 	int ret = -EINVAL;
1090 
1091 	if (!rdev->constraints) {
1092 		printk(KERN_ERR "%s: %s has no constraints\n",
1093 		       __func__, rdev->desc->name);
1094 		return ret;
1095 	}
1096 
1097 	/* do we need to enable the supply regulator first */
1098 	if (rdev->supply) {
1099 		ret = _regulator_enable(rdev->supply);
1100 		if (ret < 0) {
1101 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1102 			       __func__, rdev->desc->name, ret);
1103 			return ret;
1104 		}
1105 	}
1106 
1107 	/* check voltage and requested load before enabling */
1108 	if (rdev->desc->ops->enable) {
1109 
1110 		if (rdev->constraints &&
1111 			(rdev->constraints->valid_ops_mask &
1112 			REGULATOR_CHANGE_DRMS))
1113 			drms_uA_update(rdev);
1114 
1115 		ret = rdev->desc->ops->enable(rdev);
1116 		if (ret < 0) {
1117 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1118 			       __func__, rdev->desc->name, ret);
1119 			return ret;
1120 		}
1121 		rdev->use_count++;
1122 		return ret;
1123 	}
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * regulator_enable - enable regulator output
1130  * @regulator: regulator source
1131  *
1132  * Request that the regulator be enabled with the regulator output at
1133  * the predefined voltage or current value.  Calls to regulator_enable()
1134  * must be balanced with calls to regulator_disable().
1135  *
1136  * NOTE: the output value can be set by other drivers, boot loader or may be
1137  * hardwired in the regulator.
1138  */
1139 int regulator_enable(struct regulator *regulator)
1140 {
1141 	struct regulator_dev *rdev = regulator->rdev;
1142 	int ret = 0;
1143 
1144 	mutex_lock(&rdev->mutex);
1145 	ret = _regulator_enable(rdev);
1146 	mutex_unlock(&rdev->mutex);
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(regulator_enable);
1150 
1151 /* locks held by regulator_disable() */
1152 static int _regulator_disable(struct regulator_dev *rdev)
1153 {
1154 	int ret = 0;
1155 
1156 	if (WARN(rdev->use_count <= 0,
1157 			"unbalanced disables for %s\n",
1158 			rdev->desc->name))
1159 		return -EIO;
1160 
1161 	/* are we the last user and permitted to disable ? */
1162 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1163 
1164 		/* we are last user */
1165 		if (rdev->desc->ops->disable) {
1166 			ret = rdev->desc->ops->disable(rdev);
1167 			if (ret < 0) {
1168 				printk(KERN_ERR "%s: failed to disable %s\n",
1169 				       __func__, rdev->desc->name);
1170 				return ret;
1171 			}
1172 		}
1173 
1174 		/* decrease our supplies ref count and disable if required */
1175 		if (rdev->supply)
1176 			_regulator_disable(rdev->supply);
1177 
1178 		rdev->use_count = 0;
1179 	} else if (rdev->use_count > 1) {
1180 
1181 		if (rdev->constraints &&
1182 			(rdev->constraints->valid_ops_mask &
1183 			REGULATOR_CHANGE_DRMS))
1184 			drms_uA_update(rdev);
1185 
1186 		rdev->use_count--;
1187 	}
1188 	return ret;
1189 }
1190 
1191 /**
1192  * regulator_disable - disable regulator output
1193  * @regulator: regulator source
1194  *
1195  * Disable the regulator output voltage or current.  Calls to
1196  * regulator_enable() must be balanced with calls to
1197  * regulator_disable().
1198  *
1199  * NOTE: this will only disable the regulator output if no other consumer
1200  * devices have it enabled, the regulator device supports disabling and
1201  * machine constraints permit this operation.
1202  */
1203 int regulator_disable(struct regulator *regulator)
1204 {
1205 	struct regulator_dev *rdev = regulator->rdev;
1206 	int ret = 0;
1207 
1208 	mutex_lock(&rdev->mutex);
1209 	ret = _regulator_disable(rdev);
1210 	mutex_unlock(&rdev->mutex);
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL_GPL(regulator_disable);
1214 
1215 /* locks held by regulator_force_disable() */
1216 static int _regulator_force_disable(struct regulator_dev *rdev)
1217 {
1218 	int ret = 0;
1219 
1220 	/* force disable */
1221 	if (rdev->desc->ops->disable) {
1222 		/* ah well, who wants to live forever... */
1223 		ret = rdev->desc->ops->disable(rdev);
1224 		if (ret < 0) {
1225 			printk(KERN_ERR "%s: failed to force disable %s\n",
1226 			       __func__, rdev->desc->name);
1227 			return ret;
1228 		}
1229 		/* notify other consumers that power has been forced off */
1230 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1231 			NULL);
1232 	}
1233 
1234 	/* decrease our supplies ref count and disable if required */
1235 	if (rdev->supply)
1236 		_regulator_disable(rdev->supply);
1237 
1238 	rdev->use_count = 0;
1239 	return ret;
1240 }
1241 
1242 /**
1243  * regulator_force_disable - force disable regulator output
1244  * @regulator: regulator source
1245  *
1246  * Forcibly disable the regulator output voltage or current.
1247  * NOTE: this *will* disable the regulator output even if other consumer
1248  * devices have it enabled. This should be used for situations when device
1249  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1250  */
1251 int regulator_force_disable(struct regulator *regulator)
1252 {
1253 	int ret;
1254 
1255 	mutex_lock(&regulator->rdev->mutex);
1256 	regulator->uA_load = 0;
1257 	ret = _regulator_force_disable(regulator->rdev);
1258 	mutex_unlock(&regulator->rdev->mutex);
1259 	return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(regulator_force_disable);
1262 
1263 static int _regulator_is_enabled(struct regulator_dev *rdev)
1264 {
1265 	int ret;
1266 
1267 	mutex_lock(&rdev->mutex);
1268 
1269 	/* sanity check */
1270 	if (!rdev->desc->ops->is_enabled) {
1271 		ret = -EINVAL;
1272 		goto out;
1273 	}
1274 
1275 	ret = rdev->desc->ops->is_enabled(rdev);
1276 out:
1277 	mutex_unlock(&rdev->mutex);
1278 	return ret;
1279 }
1280 
1281 /**
1282  * regulator_is_enabled - is the regulator output enabled
1283  * @regulator: regulator source
1284  *
1285  * Returns positive if the regulator driver backing the source/client
1286  * has requested that the device be enabled, zero if it hasn't, else a
1287  * negative errno code.
1288  *
1289  * Note that the device backing this regulator handle can have multiple
1290  * users, so it might be enabled even if regulator_enable() was never
1291  * called for this particular source.
1292  */
1293 int regulator_is_enabled(struct regulator *regulator)
1294 {
1295 	return _regulator_is_enabled(regulator->rdev);
1296 }
1297 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1298 
1299 /**
1300  * regulator_count_voltages - count regulator_list_voltage() selectors
1301  * @regulator: regulator source
1302  *
1303  * Returns number of selectors, or negative errno.  Selectors are
1304  * numbered starting at zero, and typically correspond to bitfields
1305  * in hardware registers.
1306  */
1307 int regulator_count_voltages(struct regulator *regulator)
1308 {
1309 	struct regulator_dev	*rdev = regulator->rdev;
1310 
1311 	return rdev->desc->n_voltages ? : -EINVAL;
1312 }
1313 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1314 
1315 /**
1316  * regulator_list_voltage - enumerate supported voltages
1317  * @regulator: regulator source
1318  * @selector: identify voltage to list
1319  * Context: can sleep
1320  *
1321  * Returns a voltage that can be passed to @regulator_set_voltage(),
1322  * zero if this selector code can't be used on this sytem, or a
1323  * negative errno.
1324  */
1325 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1326 {
1327 	struct regulator_dev	*rdev = regulator->rdev;
1328 	struct regulator_ops	*ops = rdev->desc->ops;
1329 	int			ret;
1330 
1331 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1332 		return -EINVAL;
1333 
1334 	mutex_lock(&rdev->mutex);
1335 	ret = ops->list_voltage(rdev, selector);
1336 	mutex_unlock(&rdev->mutex);
1337 
1338 	if (ret > 0) {
1339 		if (ret < rdev->constraints->min_uV)
1340 			ret = 0;
1341 		else if (ret > rdev->constraints->max_uV)
1342 			ret = 0;
1343 	}
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1348 
1349 /**
1350  * regulator_set_voltage - set regulator output voltage
1351  * @regulator: regulator source
1352  * @min_uV: Minimum required voltage in uV
1353  * @max_uV: Maximum acceptable voltage in uV
1354  *
1355  * Sets a voltage regulator to the desired output voltage. This can be set
1356  * during any regulator state. IOW, regulator can be disabled or enabled.
1357  *
1358  * If the regulator is enabled then the voltage will change to the new value
1359  * immediately otherwise if the regulator is disabled the regulator will
1360  * output at the new voltage when enabled.
1361  *
1362  * NOTE: If the regulator is shared between several devices then the lowest
1363  * request voltage that meets the system constraints will be used.
1364  * Regulator system constraints must be set for this regulator before
1365  * calling this function otherwise this call will fail.
1366  */
1367 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1368 {
1369 	struct regulator_dev *rdev = regulator->rdev;
1370 	int ret;
1371 
1372 	mutex_lock(&rdev->mutex);
1373 
1374 	/* sanity check */
1375 	if (!rdev->desc->ops->set_voltage) {
1376 		ret = -EINVAL;
1377 		goto out;
1378 	}
1379 
1380 	/* constraints check */
1381 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1382 	if (ret < 0)
1383 		goto out;
1384 	regulator->min_uV = min_uV;
1385 	regulator->max_uV = max_uV;
1386 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1387 
1388 out:
1389 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1390 	mutex_unlock(&rdev->mutex);
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1394 
1395 static int _regulator_get_voltage(struct regulator_dev *rdev)
1396 {
1397 	/* sanity check */
1398 	if (rdev->desc->ops->get_voltage)
1399 		return rdev->desc->ops->get_voltage(rdev);
1400 	else
1401 		return -EINVAL;
1402 }
1403 
1404 /**
1405  * regulator_get_voltage - get regulator output voltage
1406  * @regulator: regulator source
1407  *
1408  * This returns the current regulator voltage in uV.
1409  *
1410  * NOTE: If the regulator is disabled it will return the voltage value. This
1411  * function should not be used to determine regulator state.
1412  */
1413 int regulator_get_voltage(struct regulator *regulator)
1414 {
1415 	int ret;
1416 
1417 	mutex_lock(&regulator->rdev->mutex);
1418 
1419 	ret = _regulator_get_voltage(regulator->rdev);
1420 
1421 	mutex_unlock(&regulator->rdev->mutex);
1422 
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1426 
1427 /**
1428  * regulator_set_current_limit - set regulator output current limit
1429  * @regulator: regulator source
1430  * @min_uA: Minimuum supported current in uA
1431  * @max_uA: Maximum supported current in uA
1432  *
1433  * Sets current sink to the desired output current. This can be set during
1434  * any regulator state. IOW, regulator can be disabled or enabled.
1435  *
1436  * If the regulator is enabled then the current will change to the new value
1437  * immediately otherwise if the regulator is disabled the regulator will
1438  * output at the new current when enabled.
1439  *
1440  * NOTE: Regulator system constraints must be set for this regulator before
1441  * calling this function otherwise this call will fail.
1442  */
1443 int regulator_set_current_limit(struct regulator *regulator,
1444 			       int min_uA, int max_uA)
1445 {
1446 	struct regulator_dev *rdev = regulator->rdev;
1447 	int ret;
1448 
1449 	mutex_lock(&rdev->mutex);
1450 
1451 	/* sanity check */
1452 	if (!rdev->desc->ops->set_current_limit) {
1453 		ret = -EINVAL;
1454 		goto out;
1455 	}
1456 
1457 	/* constraints check */
1458 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1459 	if (ret < 0)
1460 		goto out;
1461 
1462 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1463 out:
1464 	mutex_unlock(&rdev->mutex);
1465 	return ret;
1466 }
1467 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1468 
1469 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1470 {
1471 	int ret;
1472 
1473 	mutex_lock(&rdev->mutex);
1474 
1475 	/* sanity check */
1476 	if (!rdev->desc->ops->get_current_limit) {
1477 		ret = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	ret = rdev->desc->ops->get_current_limit(rdev);
1482 out:
1483 	mutex_unlock(&rdev->mutex);
1484 	return ret;
1485 }
1486 
1487 /**
1488  * regulator_get_current_limit - get regulator output current
1489  * @regulator: regulator source
1490  *
1491  * This returns the current supplied by the specified current sink in uA.
1492  *
1493  * NOTE: If the regulator is disabled it will return the current value. This
1494  * function should not be used to determine regulator state.
1495  */
1496 int regulator_get_current_limit(struct regulator *regulator)
1497 {
1498 	return _regulator_get_current_limit(regulator->rdev);
1499 }
1500 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1501 
1502 /**
1503  * regulator_set_mode - set regulator operating mode
1504  * @regulator: regulator source
1505  * @mode: operating mode - one of the REGULATOR_MODE constants
1506  *
1507  * Set regulator operating mode to increase regulator efficiency or improve
1508  * regulation performance.
1509  *
1510  * NOTE: Regulator system constraints must be set for this regulator before
1511  * calling this function otherwise this call will fail.
1512  */
1513 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1514 {
1515 	struct regulator_dev *rdev = regulator->rdev;
1516 	int ret;
1517 
1518 	mutex_lock(&rdev->mutex);
1519 
1520 	/* sanity check */
1521 	if (!rdev->desc->ops->set_mode) {
1522 		ret = -EINVAL;
1523 		goto out;
1524 	}
1525 
1526 	/* constraints check */
1527 	ret = regulator_check_mode(rdev, mode);
1528 	if (ret < 0)
1529 		goto out;
1530 
1531 	ret = rdev->desc->ops->set_mode(rdev, mode);
1532 out:
1533 	mutex_unlock(&rdev->mutex);
1534 	return ret;
1535 }
1536 EXPORT_SYMBOL_GPL(regulator_set_mode);
1537 
1538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1539 {
1540 	int ret;
1541 
1542 	mutex_lock(&rdev->mutex);
1543 
1544 	/* sanity check */
1545 	if (!rdev->desc->ops->get_mode) {
1546 		ret = -EINVAL;
1547 		goto out;
1548 	}
1549 
1550 	ret = rdev->desc->ops->get_mode(rdev);
1551 out:
1552 	mutex_unlock(&rdev->mutex);
1553 	return ret;
1554 }
1555 
1556 /**
1557  * regulator_get_mode - get regulator operating mode
1558  * @regulator: regulator source
1559  *
1560  * Get the current regulator operating mode.
1561  */
1562 unsigned int regulator_get_mode(struct regulator *regulator)
1563 {
1564 	return _regulator_get_mode(regulator->rdev);
1565 }
1566 EXPORT_SYMBOL_GPL(regulator_get_mode);
1567 
1568 /**
1569  * regulator_set_optimum_mode - set regulator optimum operating mode
1570  * @regulator: regulator source
1571  * @uA_load: load current
1572  *
1573  * Notifies the regulator core of a new device load. This is then used by
1574  * DRMS (if enabled by constraints) to set the most efficient regulator
1575  * operating mode for the new regulator loading.
1576  *
1577  * Consumer devices notify their supply regulator of the maximum power
1578  * they will require (can be taken from device datasheet in the power
1579  * consumption tables) when they change operational status and hence power
1580  * state. Examples of operational state changes that can affect power
1581  * consumption are :-
1582  *
1583  *    o Device is opened / closed.
1584  *    o Device I/O is about to begin or has just finished.
1585  *    o Device is idling in between work.
1586  *
1587  * This information is also exported via sysfs to userspace.
1588  *
1589  * DRMS will sum the total requested load on the regulator and change
1590  * to the most efficient operating mode if platform constraints allow.
1591  *
1592  * Returns the new regulator mode or error.
1593  */
1594 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1595 {
1596 	struct regulator_dev *rdev = regulator->rdev;
1597 	struct regulator *consumer;
1598 	int ret, output_uV, input_uV, total_uA_load = 0;
1599 	unsigned int mode;
1600 
1601 	mutex_lock(&rdev->mutex);
1602 
1603 	regulator->uA_load = uA_load;
1604 	ret = regulator_check_drms(rdev);
1605 	if (ret < 0)
1606 		goto out;
1607 	ret = -EINVAL;
1608 
1609 	/* sanity check */
1610 	if (!rdev->desc->ops->get_optimum_mode)
1611 		goto out;
1612 
1613 	/* get output voltage */
1614 	output_uV = rdev->desc->ops->get_voltage(rdev);
1615 	if (output_uV <= 0) {
1616 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1617 			__func__, rdev->desc->name);
1618 		goto out;
1619 	}
1620 
1621 	/* get input voltage */
1622 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1623 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1624 	else
1625 		input_uV = rdev->constraints->input_uV;
1626 	if (input_uV <= 0) {
1627 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1628 			__func__, rdev->desc->name);
1629 		goto out;
1630 	}
1631 
1632 	/* calc total requested load for this regulator */
1633 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1634 	    total_uA_load += consumer->uA_load;
1635 
1636 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1637 						 input_uV, output_uV,
1638 						 total_uA_load);
1639 	ret = regulator_check_mode(rdev, mode);
1640 	if (ret < 0) {
1641 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1642 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1643 			total_uA_load, input_uV, output_uV);
1644 		goto out;
1645 	}
1646 
1647 	ret = rdev->desc->ops->set_mode(rdev, mode);
1648 	if (ret < 0) {
1649 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1650 			__func__, mode, rdev->desc->name);
1651 		goto out;
1652 	}
1653 	ret = mode;
1654 out:
1655 	mutex_unlock(&rdev->mutex);
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1659 
1660 /**
1661  * regulator_register_notifier - register regulator event notifier
1662  * @regulator: regulator source
1663  * @nb: notifier block
1664  *
1665  * Register notifier block to receive regulator events.
1666  */
1667 int regulator_register_notifier(struct regulator *regulator,
1668 			      struct notifier_block *nb)
1669 {
1670 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1671 						nb);
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1674 
1675 /**
1676  * regulator_unregister_notifier - unregister regulator event notifier
1677  * @regulator: regulator source
1678  * @nb: notifier block
1679  *
1680  * Unregister regulator event notifier block.
1681  */
1682 int regulator_unregister_notifier(struct regulator *regulator,
1683 				struct notifier_block *nb)
1684 {
1685 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1686 						  nb);
1687 }
1688 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1689 
1690 /* notify regulator consumers and downstream regulator consumers.
1691  * Note mutex must be held by caller.
1692  */
1693 static void _notifier_call_chain(struct regulator_dev *rdev,
1694 				  unsigned long event, void *data)
1695 {
1696 	struct regulator_dev *_rdev;
1697 
1698 	/* call rdev chain first */
1699 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1700 
1701 	/* now notify regulator we supply */
1702 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1703 	  mutex_lock(&_rdev->mutex);
1704 	  _notifier_call_chain(_rdev, event, data);
1705 	  mutex_unlock(&_rdev->mutex);
1706 	}
1707 }
1708 
1709 /**
1710  * regulator_bulk_get - get multiple regulator consumers
1711  *
1712  * @dev:           Device to supply
1713  * @num_consumers: Number of consumers to register
1714  * @consumers:     Configuration of consumers; clients are stored here.
1715  *
1716  * @return 0 on success, an errno on failure.
1717  *
1718  * This helper function allows drivers to get several regulator
1719  * consumers in one operation.  If any of the regulators cannot be
1720  * acquired then any regulators that were allocated will be freed
1721  * before returning to the caller.
1722  */
1723 int regulator_bulk_get(struct device *dev, int num_consumers,
1724 		       struct regulator_bulk_data *consumers)
1725 {
1726 	int i;
1727 	int ret;
1728 
1729 	for (i = 0; i < num_consumers; i++)
1730 		consumers[i].consumer = NULL;
1731 
1732 	for (i = 0; i < num_consumers; i++) {
1733 		consumers[i].consumer = regulator_get(dev,
1734 						      consumers[i].supply);
1735 		if (IS_ERR(consumers[i].consumer)) {
1736 			dev_err(dev, "Failed to get supply '%s'\n",
1737 				consumers[i].supply);
1738 			ret = PTR_ERR(consumers[i].consumer);
1739 			consumers[i].consumer = NULL;
1740 			goto err;
1741 		}
1742 	}
1743 
1744 	return 0;
1745 
1746 err:
1747 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1748 		regulator_put(consumers[i].consumer);
1749 
1750 	return ret;
1751 }
1752 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1753 
1754 /**
1755  * regulator_bulk_enable - enable multiple regulator consumers
1756  *
1757  * @num_consumers: Number of consumers
1758  * @consumers:     Consumer data; clients are stored here.
1759  * @return         0 on success, an errno on failure
1760  *
1761  * This convenience API allows consumers to enable multiple regulator
1762  * clients in a single API call.  If any consumers cannot be enabled
1763  * then any others that were enabled will be disabled again prior to
1764  * return.
1765  */
1766 int regulator_bulk_enable(int num_consumers,
1767 			  struct regulator_bulk_data *consumers)
1768 {
1769 	int i;
1770 	int ret;
1771 
1772 	for (i = 0; i < num_consumers; i++) {
1773 		ret = regulator_enable(consumers[i].consumer);
1774 		if (ret != 0)
1775 			goto err;
1776 	}
1777 
1778 	return 0;
1779 
1780 err:
1781 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1782 	for (i = 0; i < num_consumers; i++)
1783 		regulator_disable(consumers[i].consumer);
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1788 
1789 /**
1790  * regulator_bulk_disable - disable multiple regulator consumers
1791  *
1792  * @num_consumers: Number of consumers
1793  * @consumers:     Consumer data; clients are stored here.
1794  * @return         0 on success, an errno on failure
1795  *
1796  * This convenience API allows consumers to disable multiple regulator
1797  * clients in a single API call.  If any consumers cannot be enabled
1798  * then any others that were disabled will be disabled again prior to
1799  * return.
1800  */
1801 int regulator_bulk_disable(int num_consumers,
1802 			   struct regulator_bulk_data *consumers)
1803 {
1804 	int i;
1805 	int ret;
1806 
1807 	for (i = 0; i < num_consumers; i++) {
1808 		ret = regulator_disable(consumers[i].consumer);
1809 		if (ret != 0)
1810 			goto err;
1811 	}
1812 
1813 	return 0;
1814 
1815 err:
1816 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1817 	for (i = 0; i < num_consumers; i++)
1818 		regulator_enable(consumers[i].consumer);
1819 
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1823 
1824 /**
1825  * regulator_bulk_free - free multiple regulator consumers
1826  *
1827  * @num_consumers: Number of consumers
1828  * @consumers:     Consumer data; clients are stored here.
1829  *
1830  * This convenience API allows consumers to free multiple regulator
1831  * clients in a single API call.
1832  */
1833 void regulator_bulk_free(int num_consumers,
1834 			 struct regulator_bulk_data *consumers)
1835 {
1836 	int i;
1837 
1838 	for (i = 0; i < num_consumers; i++) {
1839 		regulator_put(consumers[i].consumer);
1840 		consumers[i].consumer = NULL;
1841 	}
1842 }
1843 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1844 
1845 /**
1846  * regulator_notifier_call_chain - call regulator event notifier
1847  * @rdev: regulator source
1848  * @event: notifier block
1849  * @data: callback-specific data.
1850  *
1851  * Called by regulator drivers to notify clients a regulator event has
1852  * occurred. We also notify regulator clients downstream.
1853  * Note lock must be held by caller.
1854  */
1855 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1856 				  unsigned long event, void *data)
1857 {
1858 	_notifier_call_chain(rdev, event, data);
1859 	return NOTIFY_DONE;
1860 
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1863 
1864 /*
1865  * To avoid cluttering sysfs (and memory) with useless state, only
1866  * create attributes that can be meaningfully displayed.
1867  */
1868 static int add_regulator_attributes(struct regulator_dev *rdev)
1869 {
1870 	struct device		*dev = &rdev->dev;
1871 	struct regulator_ops	*ops = rdev->desc->ops;
1872 	int			status = 0;
1873 
1874 	/* some attributes need specific methods to be displayed */
1875 	if (ops->get_voltage) {
1876 		status = device_create_file(dev, &dev_attr_microvolts);
1877 		if (status < 0)
1878 			return status;
1879 	}
1880 	if (ops->get_current_limit) {
1881 		status = device_create_file(dev, &dev_attr_microamps);
1882 		if (status < 0)
1883 			return status;
1884 	}
1885 	if (ops->get_mode) {
1886 		status = device_create_file(dev, &dev_attr_opmode);
1887 		if (status < 0)
1888 			return status;
1889 	}
1890 	if (ops->is_enabled) {
1891 		status = device_create_file(dev, &dev_attr_state);
1892 		if (status < 0)
1893 			return status;
1894 	}
1895 	if (ops->get_status) {
1896 		status = device_create_file(dev, &dev_attr_status);
1897 		if (status < 0)
1898 			return status;
1899 	}
1900 
1901 	/* some attributes are type-specific */
1902 	if (rdev->desc->type == REGULATOR_CURRENT) {
1903 		status = device_create_file(dev, &dev_attr_requested_microamps);
1904 		if (status < 0)
1905 			return status;
1906 	}
1907 
1908 	/* all the other attributes exist to support constraints;
1909 	 * don't show them if there are no constraints, or if the
1910 	 * relevant supporting methods are missing.
1911 	 */
1912 	if (!rdev->constraints)
1913 		return status;
1914 
1915 	/* constraints need specific supporting methods */
1916 	if (ops->set_voltage) {
1917 		status = device_create_file(dev, &dev_attr_min_microvolts);
1918 		if (status < 0)
1919 			return status;
1920 		status = device_create_file(dev, &dev_attr_max_microvolts);
1921 		if (status < 0)
1922 			return status;
1923 	}
1924 	if (ops->set_current_limit) {
1925 		status = device_create_file(dev, &dev_attr_min_microamps);
1926 		if (status < 0)
1927 			return status;
1928 		status = device_create_file(dev, &dev_attr_max_microamps);
1929 		if (status < 0)
1930 			return status;
1931 	}
1932 
1933 	/* suspend mode constraints need multiple supporting methods */
1934 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1935 		return status;
1936 
1937 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1938 	if (status < 0)
1939 		return status;
1940 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1941 	if (status < 0)
1942 		return status;
1943 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1944 	if (status < 0)
1945 		return status;
1946 
1947 	if (ops->set_suspend_voltage) {
1948 		status = device_create_file(dev,
1949 				&dev_attr_suspend_standby_microvolts);
1950 		if (status < 0)
1951 			return status;
1952 		status = device_create_file(dev,
1953 				&dev_attr_suspend_mem_microvolts);
1954 		if (status < 0)
1955 			return status;
1956 		status = device_create_file(dev,
1957 				&dev_attr_suspend_disk_microvolts);
1958 		if (status < 0)
1959 			return status;
1960 	}
1961 
1962 	if (ops->set_suspend_mode) {
1963 		status = device_create_file(dev,
1964 				&dev_attr_suspend_standby_mode);
1965 		if (status < 0)
1966 			return status;
1967 		status = device_create_file(dev,
1968 				&dev_attr_suspend_mem_mode);
1969 		if (status < 0)
1970 			return status;
1971 		status = device_create_file(dev,
1972 				&dev_attr_suspend_disk_mode);
1973 		if (status < 0)
1974 			return status;
1975 	}
1976 
1977 	return status;
1978 }
1979 
1980 /**
1981  * regulator_register - register regulator
1982  * @regulator_desc: regulator to register
1983  * @dev: struct device for the regulator
1984  * @init_data: platform provided init data, passed through by driver
1985  * @driver_data: private regulator data
1986  *
1987  * Called by regulator drivers to register a regulator.
1988  * Returns 0 on success.
1989  */
1990 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1991 	struct device *dev, struct regulator_init_data *init_data,
1992 	void *driver_data)
1993 {
1994 	static atomic_t regulator_no = ATOMIC_INIT(0);
1995 	struct regulator_dev *rdev;
1996 	int ret, i;
1997 
1998 	if (regulator_desc == NULL)
1999 		return ERR_PTR(-EINVAL);
2000 
2001 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2002 		return ERR_PTR(-EINVAL);
2003 
2004 	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2005 	    !regulator_desc->type == REGULATOR_CURRENT)
2006 		return ERR_PTR(-EINVAL);
2007 
2008 	if (!init_data)
2009 		return ERR_PTR(-EINVAL);
2010 
2011 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2012 	if (rdev == NULL)
2013 		return ERR_PTR(-ENOMEM);
2014 
2015 	mutex_lock(&regulator_list_mutex);
2016 
2017 	mutex_init(&rdev->mutex);
2018 	rdev->reg_data = driver_data;
2019 	rdev->owner = regulator_desc->owner;
2020 	rdev->desc = regulator_desc;
2021 	INIT_LIST_HEAD(&rdev->consumer_list);
2022 	INIT_LIST_HEAD(&rdev->supply_list);
2023 	INIT_LIST_HEAD(&rdev->list);
2024 	INIT_LIST_HEAD(&rdev->slist);
2025 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2026 
2027 	/* preform any regulator specific init */
2028 	if (init_data->regulator_init) {
2029 		ret = init_data->regulator_init(rdev->reg_data);
2030 		if (ret < 0)
2031 			goto clean;
2032 	}
2033 
2034 	/* register with sysfs */
2035 	rdev->dev.class = &regulator_class;
2036 	rdev->dev.parent = dev;
2037 	dev_set_name(&rdev->dev, "regulator.%d",
2038 		     atomic_inc_return(&regulator_no) - 1);
2039 	ret = device_register(&rdev->dev);
2040 	if (ret != 0)
2041 		goto clean;
2042 
2043 	dev_set_drvdata(&rdev->dev, rdev);
2044 
2045 	/* set regulator constraints */
2046 	ret = set_machine_constraints(rdev, &init_data->constraints);
2047 	if (ret < 0)
2048 		goto scrub;
2049 
2050 	/* add attributes supported by this regulator */
2051 	ret = add_regulator_attributes(rdev);
2052 	if (ret < 0)
2053 		goto scrub;
2054 
2055 	/* set supply regulator if it exists */
2056 	if (init_data->supply_regulator_dev) {
2057 		ret = set_supply(rdev,
2058 			dev_get_drvdata(init_data->supply_regulator_dev));
2059 		if (ret < 0)
2060 			goto scrub;
2061 	}
2062 
2063 	/* add consumers devices */
2064 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2065 		ret = set_consumer_device_supply(rdev,
2066 			init_data->consumer_supplies[i].dev,
2067 			init_data->consumer_supplies[i].supply);
2068 		if (ret < 0) {
2069 			for (--i; i >= 0; i--)
2070 				unset_consumer_device_supply(rdev,
2071 					init_data->consumer_supplies[i].dev);
2072 			goto scrub;
2073 		}
2074 	}
2075 
2076 	list_add(&rdev->list, &regulator_list);
2077 out:
2078 	mutex_unlock(&regulator_list_mutex);
2079 	return rdev;
2080 
2081 scrub:
2082 	device_unregister(&rdev->dev);
2083 clean:
2084 	kfree(rdev);
2085 	rdev = ERR_PTR(ret);
2086 	goto out;
2087 }
2088 EXPORT_SYMBOL_GPL(regulator_register);
2089 
2090 /**
2091  * regulator_unregister - unregister regulator
2092  * @rdev: regulator to unregister
2093  *
2094  * Called by regulator drivers to unregister a regulator.
2095  */
2096 void regulator_unregister(struct regulator_dev *rdev)
2097 {
2098 	if (rdev == NULL)
2099 		return;
2100 
2101 	mutex_lock(&regulator_list_mutex);
2102 	unset_regulator_supplies(rdev);
2103 	list_del(&rdev->list);
2104 	if (rdev->supply)
2105 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2106 	device_unregister(&rdev->dev);
2107 	mutex_unlock(&regulator_list_mutex);
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_unregister);
2110 
2111 /**
2112  * regulator_suspend_prepare - prepare regulators for system wide suspend
2113  * @state: system suspend state
2114  *
2115  * Configure each regulator with it's suspend operating parameters for state.
2116  * This will usually be called by machine suspend code prior to supending.
2117  */
2118 int regulator_suspend_prepare(suspend_state_t state)
2119 {
2120 	struct regulator_dev *rdev;
2121 	int ret = 0;
2122 
2123 	/* ON is handled by regulator active state */
2124 	if (state == PM_SUSPEND_ON)
2125 		return -EINVAL;
2126 
2127 	mutex_lock(&regulator_list_mutex);
2128 	list_for_each_entry(rdev, &regulator_list, list) {
2129 
2130 		mutex_lock(&rdev->mutex);
2131 		ret = suspend_prepare(rdev, state);
2132 		mutex_unlock(&rdev->mutex);
2133 
2134 		if (ret < 0) {
2135 			printk(KERN_ERR "%s: failed to prepare %s\n",
2136 				__func__, rdev->desc->name);
2137 			goto out;
2138 		}
2139 	}
2140 out:
2141 	mutex_unlock(&regulator_list_mutex);
2142 	return ret;
2143 }
2144 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2145 
2146 /**
2147  * regulator_has_full_constraints - the system has fully specified constraints
2148  *
2149  * Calling this function will cause the regulator API to disable all
2150  * regulators which have a zero use count and don't have an always_on
2151  * constraint in a late_initcall.
2152  *
2153  * The intention is that this will become the default behaviour in a
2154  * future kernel release so users are encouraged to use this facility
2155  * now.
2156  */
2157 void regulator_has_full_constraints(void)
2158 {
2159 	has_full_constraints = 1;
2160 }
2161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2162 
2163 /**
2164  * rdev_get_drvdata - get rdev regulator driver data
2165  * @rdev: regulator
2166  *
2167  * Get rdev regulator driver private data. This call can be used in the
2168  * regulator driver context.
2169  */
2170 void *rdev_get_drvdata(struct regulator_dev *rdev)
2171 {
2172 	return rdev->reg_data;
2173 }
2174 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2175 
2176 /**
2177  * regulator_get_drvdata - get regulator driver data
2178  * @regulator: regulator
2179  *
2180  * Get regulator driver private data. This call can be used in the consumer
2181  * driver context when non API regulator specific functions need to be called.
2182  */
2183 void *regulator_get_drvdata(struct regulator *regulator)
2184 {
2185 	return regulator->rdev->reg_data;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2188 
2189 /**
2190  * regulator_set_drvdata - set regulator driver data
2191  * @regulator: regulator
2192  * @data: data
2193  */
2194 void regulator_set_drvdata(struct regulator *regulator, void *data)
2195 {
2196 	regulator->rdev->reg_data = data;
2197 }
2198 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2199 
2200 /**
2201  * regulator_get_id - get regulator ID
2202  * @rdev: regulator
2203  */
2204 int rdev_get_id(struct regulator_dev *rdev)
2205 {
2206 	return rdev->desc->id;
2207 }
2208 EXPORT_SYMBOL_GPL(rdev_get_id);
2209 
2210 struct device *rdev_get_dev(struct regulator_dev *rdev)
2211 {
2212 	return &rdev->dev;
2213 }
2214 EXPORT_SYMBOL_GPL(rdev_get_dev);
2215 
2216 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2217 {
2218 	return reg_init_data->driver_data;
2219 }
2220 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2221 
2222 static int __init regulator_init(void)
2223 {
2224 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2225 	return class_register(&regulator_class);
2226 }
2227 
2228 /* init early to allow our consumers to complete system booting */
2229 core_initcall(regulator_init);
2230 
2231 static int __init regulator_init_complete(void)
2232 {
2233 	struct regulator_dev *rdev;
2234 	struct regulator_ops *ops;
2235 	struct regulation_constraints *c;
2236 	int enabled, ret;
2237 	const char *name;
2238 
2239 	mutex_lock(&regulator_list_mutex);
2240 
2241 	/* If we have a full configuration then disable any regulators
2242 	 * which are not in use or always_on.  This will become the
2243 	 * default behaviour in the future.
2244 	 */
2245 	list_for_each_entry(rdev, &regulator_list, list) {
2246 		ops = rdev->desc->ops;
2247 		c = rdev->constraints;
2248 
2249 		if (c->name)
2250 			name = c->name;
2251 		else if (rdev->desc->name)
2252 			name = rdev->desc->name;
2253 		else
2254 			name = "regulator";
2255 
2256 		if (!ops->disable || c->always_on)
2257 			continue;
2258 
2259 		mutex_lock(&rdev->mutex);
2260 
2261 		if (rdev->use_count)
2262 			goto unlock;
2263 
2264 		/* If we can't read the status assume it's on. */
2265 		if (ops->is_enabled)
2266 			enabled = ops->is_enabled(rdev);
2267 		else
2268 			enabled = 1;
2269 
2270 		if (!enabled)
2271 			goto unlock;
2272 
2273 		if (has_full_constraints) {
2274 			/* We log since this may kill the system if it
2275 			 * goes wrong. */
2276 			printk(KERN_INFO "%s: disabling %s\n",
2277 			       __func__, name);
2278 			ret = ops->disable(rdev);
2279 			if (ret != 0) {
2280 				printk(KERN_ERR
2281 				       "%s: couldn't disable %s: %d\n",
2282 				       __func__, name, ret);
2283 			}
2284 		} else {
2285 			/* The intention is that in future we will
2286 			 * assume that full constraints are provided
2287 			 * so warn even if we aren't going to do
2288 			 * anything here.
2289 			 */
2290 			printk(KERN_WARNING
2291 			       "%s: incomplete constraints, leaving %s on\n",
2292 			       __func__, name);
2293 		}
2294 
2295 unlock:
2296 		mutex_unlock(&rdev->mutex);
2297 	}
2298 
2299 	mutex_unlock(&regulator_list_mutex);
2300 
2301 	return 0;
2302 }
2303 late_initcall(regulator_init_complete);
2304