1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/mutex.h> 21 #include <linux/suspend.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/regulator/driver.h> 24 #include <linux/regulator/machine.h> 25 26 #define REGULATOR_VERSION "0.5" 27 28 static DEFINE_MUTEX(regulator_list_mutex); 29 static LIST_HEAD(regulator_list); 30 static LIST_HEAD(regulator_map_list); 31 static int has_full_constraints; 32 33 /* 34 * struct regulator_map 35 * 36 * Used to provide symbolic supply names to devices. 37 */ 38 struct regulator_map { 39 struct list_head list; 40 struct device *dev; 41 const char *supply; 42 struct regulator_dev *regulator; 43 }; 44 45 /* 46 * struct regulator 47 * 48 * One for each consumer device. 49 */ 50 struct regulator { 51 struct device *dev; 52 struct list_head list; 53 int uA_load; 54 int min_uV; 55 int max_uV; 56 char *supply_name; 57 struct device_attribute dev_attr; 58 struct regulator_dev *rdev; 59 }; 60 61 static int _regulator_is_enabled(struct regulator_dev *rdev); 62 static int _regulator_disable(struct regulator_dev *rdev); 63 static int _regulator_get_voltage(struct regulator_dev *rdev); 64 static int _regulator_get_current_limit(struct regulator_dev *rdev); 65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 66 static void _notifier_call_chain(struct regulator_dev *rdev, 67 unsigned long event, void *data); 68 69 /* gets the regulator for a given consumer device */ 70 static struct regulator *get_device_regulator(struct device *dev) 71 { 72 struct regulator *regulator = NULL; 73 struct regulator_dev *rdev; 74 75 mutex_lock(®ulator_list_mutex); 76 list_for_each_entry(rdev, ®ulator_list, list) { 77 mutex_lock(&rdev->mutex); 78 list_for_each_entry(regulator, &rdev->consumer_list, list) { 79 if (regulator->dev == dev) { 80 mutex_unlock(&rdev->mutex); 81 mutex_unlock(®ulator_list_mutex); 82 return regulator; 83 } 84 } 85 mutex_unlock(&rdev->mutex); 86 } 87 mutex_unlock(®ulator_list_mutex); 88 return NULL; 89 } 90 91 /* Platform voltage constraint check */ 92 static int regulator_check_voltage(struct regulator_dev *rdev, 93 int *min_uV, int *max_uV) 94 { 95 BUG_ON(*min_uV > *max_uV); 96 97 if (!rdev->constraints) { 98 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 99 rdev->desc->name); 100 return -ENODEV; 101 } 102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 103 printk(KERN_ERR "%s: operation not allowed for %s\n", 104 __func__, rdev->desc->name); 105 return -EPERM; 106 } 107 108 if (*max_uV > rdev->constraints->max_uV) 109 *max_uV = rdev->constraints->max_uV; 110 if (*min_uV < rdev->constraints->min_uV) 111 *min_uV = rdev->constraints->min_uV; 112 113 if (*min_uV > *max_uV) 114 return -EINVAL; 115 116 return 0; 117 } 118 119 /* current constraint check */ 120 static int regulator_check_current_limit(struct regulator_dev *rdev, 121 int *min_uA, int *max_uA) 122 { 123 BUG_ON(*min_uA > *max_uA); 124 125 if (!rdev->constraints) { 126 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 127 rdev->desc->name); 128 return -ENODEV; 129 } 130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 131 printk(KERN_ERR "%s: operation not allowed for %s\n", 132 __func__, rdev->desc->name); 133 return -EPERM; 134 } 135 136 if (*max_uA > rdev->constraints->max_uA) 137 *max_uA = rdev->constraints->max_uA; 138 if (*min_uA < rdev->constraints->min_uA) 139 *min_uA = rdev->constraints->min_uA; 140 141 if (*min_uA > *max_uA) 142 return -EINVAL; 143 144 return 0; 145 } 146 147 /* operating mode constraint check */ 148 static int regulator_check_mode(struct regulator_dev *rdev, int mode) 149 { 150 switch (mode) { 151 case REGULATOR_MODE_FAST: 152 case REGULATOR_MODE_NORMAL: 153 case REGULATOR_MODE_IDLE: 154 case REGULATOR_MODE_STANDBY: 155 break; 156 default: 157 return -EINVAL; 158 } 159 160 if (!rdev->constraints) { 161 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 162 rdev->desc->name); 163 return -ENODEV; 164 } 165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 166 printk(KERN_ERR "%s: operation not allowed for %s\n", 167 __func__, rdev->desc->name); 168 return -EPERM; 169 } 170 if (!(rdev->constraints->valid_modes_mask & mode)) { 171 printk(KERN_ERR "%s: invalid mode %x for %s\n", 172 __func__, mode, rdev->desc->name); 173 return -EINVAL; 174 } 175 return 0; 176 } 177 178 /* dynamic regulator mode switching constraint check */ 179 static int regulator_check_drms(struct regulator_dev *rdev) 180 { 181 if (!rdev->constraints) { 182 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 183 rdev->desc->name); 184 return -ENODEV; 185 } 186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 187 printk(KERN_ERR "%s: operation not allowed for %s\n", 188 __func__, rdev->desc->name); 189 return -EPERM; 190 } 191 return 0; 192 } 193 194 static ssize_t device_requested_uA_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct regulator *regulator; 198 199 regulator = get_device_regulator(dev); 200 if (regulator == NULL) 201 return 0; 202 203 return sprintf(buf, "%d\n", regulator->uA_load); 204 } 205 206 static ssize_t regulator_uV_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct regulator_dev *rdev = dev_get_drvdata(dev); 210 ssize_t ret; 211 212 mutex_lock(&rdev->mutex); 213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 214 mutex_unlock(&rdev->mutex); 215 216 return ret; 217 } 218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 219 220 static ssize_t regulator_uA_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct regulator_dev *rdev = dev_get_drvdata(dev); 224 225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 226 } 227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 228 229 static ssize_t regulator_name_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct regulator_dev *rdev = dev_get_drvdata(dev); 233 const char *name; 234 235 if (rdev->constraints->name) 236 name = rdev->constraints->name; 237 else if (rdev->desc->name) 238 name = rdev->desc->name; 239 else 240 name = ""; 241 242 return sprintf(buf, "%s\n", name); 243 } 244 245 static ssize_t regulator_print_opmode(char *buf, int mode) 246 { 247 switch (mode) { 248 case REGULATOR_MODE_FAST: 249 return sprintf(buf, "fast\n"); 250 case REGULATOR_MODE_NORMAL: 251 return sprintf(buf, "normal\n"); 252 case REGULATOR_MODE_IDLE: 253 return sprintf(buf, "idle\n"); 254 case REGULATOR_MODE_STANDBY: 255 return sprintf(buf, "standby\n"); 256 } 257 return sprintf(buf, "unknown\n"); 258 } 259 260 static ssize_t regulator_opmode_show(struct device *dev, 261 struct device_attribute *attr, char *buf) 262 { 263 struct regulator_dev *rdev = dev_get_drvdata(dev); 264 265 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 266 } 267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 268 269 static ssize_t regulator_print_state(char *buf, int state) 270 { 271 if (state > 0) 272 return sprintf(buf, "enabled\n"); 273 else if (state == 0) 274 return sprintf(buf, "disabled\n"); 275 else 276 return sprintf(buf, "unknown\n"); 277 } 278 279 static ssize_t regulator_state_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct regulator_dev *rdev = dev_get_drvdata(dev); 283 284 return regulator_print_state(buf, _regulator_is_enabled(rdev)); 285 } 286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 287 288 static ssize_t regulator_status_show(struct device *dev, 289 struct device_attribute *attr, char *buf) 290 { 291 struct regulator_dev *rdev = dev_get_drvdata(dev); 292 int status; 293 char *label; 294 295 status = rdev->desc->ops->get_status(rdev); 296 if (status < 0) 297 return status; 298 299 switch (status) { 300 case REGULATOR_STATUS_OFF: 301 label = "off"; 302 break; 303 case REGULATOR_STATUS_ON: 304 label = "on"; 305 break; 306 case REGULATOR_STATUS_ERROR: 307 label = "error"; 308 break; 309 case REGULATOR_STATUS_FAST: 310 label = "fast"; 311 break; 312 case REGULATOR_STATUS_NORMAL: 313 label = "normal"; 314 break; 315 case REGULATOR_STATUS_IDLE: 316 label = "idle"; 317 break; 318 case REGULATOR_STATUS_STANDBY: 319 label = "standby"; 320 break; 321 default: 322 return -ERANGE; 323 } 324 325 return sprintf(buf, "%s\n", label); 326 } 327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 328 329 static ssize_t regulator_min_uA_show(struct device *dev, 330 struct device_attribute *attr, char *buf) 331 { 332 struct regulator_dev *rdev = dev_get_drvdata(dev); 333 334 if (!rdev->constraints) 335 return sprintf(buf, "constraint not defined\n"); 336 337 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 338 } 339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 340 341 static ssize_t regulator_max_uA_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 if (!rdev->constraints) 347 return sprintf(buf, "constraint not defined\n"); 348 349 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 350 } 351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 352 353 static ssize_t regulator_min_uV_show(struct device *dev, 354 struct device_attribute *attr, char *buf) 355 { 356 struct regulator_dev *rdev = dev_get_drvdata(dev); 357 358 if (!rdev->constraints) 359 return sprintf(buf, "constraint not defined\n"); 360 361 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 362 } 363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 364 365 static ssize_t regulator_max_uV_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 struct regulator_dev *rdev = dev_get_drvdata(dev); 369 370 if (!rdev->constraints) 371 return sprintf(buf, "constraint not defined\n"); 372 373 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 374 } 375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 376 377 static ssize_t regulator_total_uA_show(struct device *dev, 378 struct device_attribute *attr, char *buf) 379 { 380 struct regulator_dev *rdev = dev_get_drvdata(dev); 381 struct regulator *regulator; 382 int uA = 0; 383 384 mutex_lock(&rdev->mutex); 385 list_for_each_entry(regulator, &rdev->consumer_list, list) 386 uA += regulator->uA_load; 387 mutex_unlock(&rdev->mutex); 388 return sprintf(buf, "%d\n", uA); 389 } 390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 391 392 static ssize_t regulator_num_users_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct regulator_dev *rdev = dev_get_drvdata(dev); 396 return sprintf(buf, "%d\n", rdev->use_count); 397 } 398 399 static ssize_t regulator_type_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 struct regulator_dev *rdev = dev_get_drvdata(dev); 403 404 switch (rdev->desc->type) { 405 case REGULATOR_VOLTAGE: 406 return sprintf(buf, "voltage\n"); 407 case REGULATOR_CURRENT: 408 return sprintf(buf, "current\n"); 409 } 410 return sprintf(buf, "unknown\n"); 411 } 412 413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct regulator_dev *rdev = dev_get_drvdata(dev); 417 418 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 419 } 420 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 421 regulator_suspend_mem_uV_show, NULL); 422 423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 struct regulator_dev *rdev = dev_get_drvdata(dev); 427 428 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 429 } 430 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 431 regulator_suspend_disk_uV_show, NULL); 432 433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 434 struct device_attribute *attr, char *buf) 435 { 436 struct regulator_dev *rdev = dev_get_drvdata(dev); 437 438 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 439 } 440 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 441 regulator_suspend_standby_uV_show, NULL); 442 443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct regulator_dev *rdev = dev_get_drvdata(dev); 447 448 return regulator_print_opmode(buf, 449 rdev->constraints->state_mem.mode); 450 } 451 static DEVICE_ATTR(suspend_mem_mode, 0444, 452 regulator_suspend_mem_mode_show, NULL); 453 454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 return regulator_print_opmode(buf, 460 rdev->constraints->state_disk.mode); 461 } 462 static DEVICE_ATTR(suspend_disk_mode, 0444, 463 regulator_suspend_disk_mode_show, NULL); 464 465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 return regulator_print_opmode(buf, 471 rdev->constraints->state_standby.mode); 472 } 473 static DEVICE_ATTR(suspend_standby_mode, 0444, 474 regulator_suspend_standby_mode_show, NULL); 475 476 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 477 struct device_attribute *attr, char *buf) 478 { 479 struct regulator_dev *rdev = dev_get_drvdata(dev); 480 481 return regulator_print_state(buf, 482 rdev->constraints->state_mem.enabled); 483 } 484 static DEVICE_ATTR(suspend_mem_state, 0444, 485 regulator_suspend_mem_state_show, NULL); 486 487 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 488 struct device_attribute *attr, char *buf) 489 { 490 struct regulator_dev *rdev = dev_get_drvdata(dev); 491 492 return regulator_print_state(buf, 493 rdev->constraints->state_disk.enabled); 494 } 495 static DEVICE_ATTR(suspend_disk_state, 0444, 496 regulator_suspend_disk_state_show, NULL); 497 498 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct regulator_dev *rdev = dev_get_drvdata(dev); 502 503 return regulator_print_state(buf, 504 rdev->constraints->state_standby.enabled); 505 } 506 static DEVICE_ATTR(suspend_standby_state, 0444, 507 regulator_suspend_standby_state_show, NULL); 508 509 510 /* 511 * These are the only attributes are present for all regulators. 512 * Other attributes are a function of regulator functionality. 513 */ 514 static struct device_attribute regulator_dev_attrs[] = { 515 __ATTR(name, 0444, regulator_name_show, NULL), 516 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 517 __ATTR(type, 0444, regulator_type_show, NULL), 518 __ATTR_NULL, 519 }; 520 521 static void regulator_dev_release(struct device *dev) 522 { 523 struct regulator_dev *rdev = dev_get_drvdata(dev); 524 kfree(rdev); 525 } 526 527 static struct class regulator_class = { 528 .name = "regulator", 529 .dev_release = regulator_dev_release, 530 .dev_attrs = regulator_dev_attrs, 531 }; 532 533 /* Calculate the new optimum regulator operating mode based on the new total 534 * consumer load. All locks held by caller */ 535 static void drms_uA_update(struct regulator_dev *rdev) 536 { 537 struct regulator *sibling; 538 int current_uA = 0, output_uV, input_uV, err; 539 unsigned int mode; 540 541 err = regulator_check_drms(rdev); 542 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 543 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode); 544 return; 545 546 /* get output voltage */ 547 output_uV = rdev->desc->ops->get_voltage(rdev); 548 if (output_uV <= 0) 549 return; 550 551 /* get input voltage */ 552 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 553 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 554 else 555 input_uV = rdev->constraints->input_uV; 556 if (input_uV <= 0) 557 return; 558 559 /* calc total requested load */ 560 list_for_each_entry(sibling, &rdev->consumer_list, list) 561 current_uA += sibling->uA_load; 562 563 /* now get the optimum mode for our new total regulator load */ 564 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 565 output_uV, current_uA); 566 567 /* check the new mode is allowed */ 568 err = regulator_check_mode(rdev, mode); 569 if (err == 0) 570 rdev->desc->ops->set_mode(rdev, mode); 571 } 572 573 static int suspend_set_state(struct regulator_dev *rdev, 574 struct regulator_state *rstate) 575 { 576 int ret = 0; 577 578 /* enable & disable are mandatory for suspend control */ 579 if (!rdev->desc->ops->set_suspend_enable || 580 !rdev->desc->ops->set_suspend_disable) { 581 printk(KERN_ERR "%s: no way to set suspend state\n", 582 __func__); 583 return -EINVAL; 584 } 585 586 if (rstate->enabled) 587 ret = rdev->desc->ops->set_suspend_enable(rdev); 588 else 589 ret = rdev->desc->ops->set_suspend_disable(rdev); 590 if (ret < 0) { 591 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); 592 return ret; 593 } 594 595 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 596 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 597 if (ret < 0) { 598 printk(KERN_ERR "%s: failed to set voltage\n", 599 __func__); 600 return ret; 601 } 602 } 603 604 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 605 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 606 if (ret < 0) { 607 printk(KERN_ERR "%s: failed to set mode\n", __func__); 608 return ret; 609 } 610 } 611 return ret; 612 } 613 614 /* locks held by caller */ 615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 616 { 617 if (!rdev->constraints) 618 return -EINVAL; 619 620 switch (state) { 621 case PM_SUSPEND_STANDBY: 622 return suspend_set_state(rdev, 623 &rdev->constraints->state_standby); 624 case PM_SUSPEND_MEM: 625 return suspend_set_state(rdev, 626 &rdev->constraints->state_mem); 627 case PM_SUSPEND_MAX: 628 return suspend_set_state(rdev, 629 &rdev->constraints->state_disk); 630 default: 631 return -EINVAL; 632 } 633 } 634 635 static void print_constraints(struct regulator_dev *rdev) 636 { 637 struct regulation_constraints *constraints = rdev->constraints; 638 char buf[80]; 639 int count; 640 641 if (rdev->desc->type == REGULATOR_VOLTAGE) { 642 if (constraints->min_uV == constraints->max_uV) 643 count = sprintf(buf, "%d mV ", 644 constraints->min_uV / 1000); 645 else 646 count = sprintf(buf, "%d <--> %d mV ", 647 constraints->min_uV / 1000, 648 constraints->max_uV / 1000); 649 } else { 650 if (constraints->min_uA == constraints->max_uA) 651 count = sprintf(buf, "%d mA ", 652 constraints->min_uA / 1000); 653 else 654 count = sprintf(buf, "%d <--> %d mA ", 655 constraints->min_uA / 1000, 656 constraints->max_uA / 1000); 657 } 658 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 659 count += sprintf(buf + count, "fast "); 660 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 661 count += sprintf(buf + count, "normal "); 662 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 663 count += sprintf(buf + count, "idle "); 664 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 665 count += sprintf(buf + count, "standby"); 666 667 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf); 668 } 669 670 /** 671 * set_machine_constraints - sets regulator constraints 672 * @rdev: regulator source 673 * @constraints: constraints to apply 674 * 675 * Allows platform initialisation code to define and constrain 676 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 677 * Constraints *must* be set by platform code in order for some 678 * regulator operations to proceed i.e. set_voltage, set_current_limit, 679 * set_mode. 680 */ 681 static int set_machine_constraints(struct regulator_dev *rdev, 682 struct regulation_constraints *constraints) 683 { 684 int ret = 0; 685 const char *name; 686 struct regulator_ops *ops = rdev->desc->ops; 687 688 if (constraints->name) 689 name = constraints->name; 690 else if (rdev->desc->name) 691 name = rdev->desc->name; 692 else 693 name = "regulator"; 694 695 /* constrain machine-level voltage specs to fit 696 * the actual range supported by this regulator. 697 */ 698 if (ops->list_voltage && rdev->desc->n_voltages) { 699 int count = rdev->desc->n_voltages; 700 int i; 701 int min_uV = INT_MAX; 702 int max_uV = INT_MIN; 703 int cmin = constraints->min_uV; 704 int cmax = constraints->max_uV; 705 706 /* it's safe to autoconfigure fixed-voltage supplies */ 707 if (count == 1 && !cmin) { 708 cmin = INT_MIN; 709 cmax = INT_MAX; 710 } 711 712 /* voltage constraints are optional */ 713 if ((cmin == 0) && (cmax == 0)) 714 goto out; 715 716 /* else require explicit machine-level constraints */ 717 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 718 pr_err("%s: %s '%s' voltage constraints\n", 719 __func__, "invalid", name); 720 ret = -EINVAL; 721 goto out; 722 } 723 724 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 725 for (i = 0; i < count; i++) { 726 int value; 727 728 value = ops->list_voltage(rdev, i); 729 if (value <= 0) 730 continue; 731 732 /* maybe adjust [min_uV..max_uV] */ 733 if (value >= cmin && value < min_uV) 734 min_uV = value; 735 if (value <= cmax && value > max_uV) 736 max_uV = value; 737 } 738 739 /* final: [min_uV..max_uV] valid iff constraints valid */ 740 if (max_uV < min_uV) { 741 pr_err("%s: %s '%s' voltage constraints\n", 742 __func__, "unsupportable", name); 743 ret = -EINVAL; 744 goto out; 745 } 746 747 /* use regulator's subset of machine constraints */ 748 if (constraints->min_uV < min_uV) { 749 pr_debug("%s: override '%s' %s, %d -> %d\n", 750 __func__, name, "min_uV", 751 constraints->min_uV, min_uV); 752 constraints->min_uV = min_uV; 753 } 754 if (constraints->max_uV > max_uV) { 755 pr_debug("%s: override '%s' %s, %d -> %d\n", 756 __func__, name, "max_uV", 757 constraints->max_uV, max_uV); 758 constraints->max_uV = max_uV; 759 } 760 } 761 762 rdev->constraints = constraints; 763 764 /* do we need to apply the constraint voltage */ 765 if (rdev->constraints->apply_uV && 766 rdev->constraints->min_uV == rdev->constraints->max_uV && 767 ops->set_voltage) { 768 ret = ops->set_voltage(rdev, 769 rdev->constraints->min_uV, rdev->constraints->max_uV); 770 if (ret < 0) { 771 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", 772 __func__, 773 rdev->constraints->min_uV, name); 774 rdev->constraints = NULL; 775 goto out; 776 } 777 } 778 779 /* do we need to setup our suspend state */ 780 if (constraints->initial_state) { 781 ret = suspend_prepare(rdev, constraints->initial_state); 782 if (ret < 0) { 783 printk(KERN_ERR "%s: failed to set suspend state for %s\n", 784 __func__, name); 785 rdev->constraints = NULL; 786 goto out; 787 } 788 } 789 790 if (constraints->initial_mode) { 791 if (!ops->set_mode) { 792 printk(KERN_ERR "%s: no set_mode operation for %s\n", 793 __func__, name); 794 ret = -EINVAL; 795 goto out; 796 } 797 798 ret = ops->set_mode(rdev, constraints->initial_mode); 799 if (ret < 0) { 800 printk(KERN_ERR 801 "%s: failed to set initial mode for %s: %d\n", 802 __func__, name, ret); 803 goto out; 804 } 805 } 806 807 /* If the constraints say the regulator should be on at this point 808 * and we have control then make sure it is enabled. 809 */ 810 if ((constraints->always_on || constraints->boot_on) && ops->enable) { 811 ret = ops->enable(rdev); 812 if (ret < 0) { 813 printk(KERN_ERR "%s: failed to enable %s\n", 814 __func__, name); 815 rdev->constraints = NULL; 816 goto out; 817 } 818 } 819 820 print_constraints(rdev); 821 out: 822 return ret; 823 } 824 825 /** 826 * set_supply - set regulator supply regulator 827 * @rdev: regulator name 828 * @supply_rdev: supply regulator name 829 * 830 * Called by platform initialisation code to set the supply regulator for this 831 * regulator. This ensures that a regulators supply will also be enabled by the 832 * core if it's child is enabled. 833 */ 834 static int set_supply(struct regulator_dev *rdev, 835 struct regulator_dev *supply_rdev) 836 { 837 int err; 838 839 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, 840 "supply"); 841 if (err) { 842 printk(KERN_ERR 843 "%s: could not add device link %s err %d\n", 844 __func__, supply_rdev->dev.kobj.name, err); 845 goto out; 846 } 847 rdev->supply = supply_rdev; 848 list_add(&rdev->slist, &supply_rdev->supply_list); 849 out: 850 return err; 851 } 852 853 /** 854 * set_consumer_device_supply: Bind a regulator to a symbolic supply 855 * @rdev: regulator source 856 * @consumer_dev: device the supply applies to 857 * @supply: symbolic name for supply 858 * 859 * Allows platform initialisation code to map physical regulator 860 * sources to symbolic names for supplies for use by devices. Devices 861 * should use these symbolic names to request regulators, avoiding the 862 * need to provide board-specific regulator names as platform data. 863 */ 864 static int set_consumer_device_supply(struct regulator_dev *rdev, 865 struct device *consumer_dev, const char *supply) 866 { 867 struct regulator_map *node; 868 869 if (supply == NULL) 870 return -EINVAL; 871 872 list_for_each_entry(node, ®ulator_map_list, list) { 873 if (consumer_dev != node->dev) 874 continue; 875 if (strcmp(node->supply, supply) != 0) 876 continue; 877 878 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", 879 dev_name(&node->regulator->dev), 880 node->regulator->desc->name, 881 supply, 882 dev_name(&rdev->dev), rdev->desc->name); 883 return -EBUSY; 884 } 885 886 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL); 887 if (node == NULL) 888 return -ENOMEM; 889 890 node->regulator = rdev; 891 node->dev = consumer_dev; 892 node->supply = supply; 893 894 list_add(&node->list, ®ulator_map_list); 895 return 0; 896 } 897 898 static void unset_consumer_device_supply(struct regulator_dev *rdev, 899 struct device *consumer_dev) 900 { 901 struct regulator_map *node, *n; 902 903 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 904 if (rdev == node->regulator && 905 consumer_dev == node->dev) { 906 list_del(&node->list); 907 kfree(node); 908 return; 909 } 910 } 911 } 912 913 static void unset_regulator_supplies(struct regulator_dev *rdev) 914 { 915 struct regulator_map *node, *n; 916 917 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 918 if (rdev == node->regulator) { 919 list_del(&node->list); 920 kfree(node); 921 return; 922 } 923 } 924 } 925 926 #define REG_STR_SIZE 32 927 928 static struct regulator *create_regulator(struct regulator_dev *rdev, 929 struct device *dev, 930 const char *supply_name) 931 { 932 struct regulator *regulator; 933 char buf[REG_STR_SIZE]; 934 int err, size; 935 936 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 937 if (regulator == NULL) 938 return NULL; 939 940 mutex_lock(&rdev->mutex); 941 regulator->rdev = rdev; 942 list_add(®ulator->list, &rdev->consumer_list); 943 944 if (dev) { 945 /* create a 'requested_microamps_name' sysfs entry */ 946 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", 947 supply_name); 948 if (size >= REG_STR_SIZE) 949 goto overflow_err; 950 951 regulator->dev = dev; 952 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 953 if (regulator->dev_attr.attr.name == NULL) 954 goto attr_name_err; 955 956 regulator->dev_attr.attr.owner = THIS_MODULE; 957 regulator->dev_attr.attr.mode = 0444; 958 regulator->dev_attr.show = device_requested_uA_show; 959 err = device_create_file(dev, ®ulator->dev_attr); 960 if (err < 0) { 961 printk(KERN_WARNING "%s: could not add regulator_dev" 962 " load sysfs\n", __func__); 963 goto attr_name_err; 964 } 965 966 /* also add a link to the device sysfs entry */ 967 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 968 dev->kobj.name, supply_name); 969 if (size >= REG_STR_SIZE) 970 goto attr_err; 971 972 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 973 if (regulator->supply_name == NULL) 974 goto attr_err; 975 976 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 977 buf); 978 if (err) { 979 printk(KERN_WARNING 980 "%s: could not add device link %s err %d\n", 981 __func__, dev->kobj.name, err); 982 device_remove_file(dev, ®ulator->dev_attr); 983 goto link_name_err; 984 } 985 } 986 mutex_unlock(&rdev->mutex); 987 return regulator; 988 link_name_err: 989 kfree(regulator->supply_name); 990 attr_err: 991 device_remove_file(regulator->dev, ®ulator->dev_attr); 992 attr_name_err: 993 kfree(regulator->dev_attr.attr.name); 994 overflow_err: 995 list_del(®ulator->list); 996 kfree(regulator); 997 mutex_unlock(&rdev->mutex); 998 return NULL; 999 } 1000 1001 /** 1002 * regulator_get - lookup and obtain a reference to a regulator. 1003 * @dev: device for regulator "consumer" 1004 * @id: Supply name or regulator ID. 1005 * 1006 * Returns a struct regulator corresponding to the regulator producer, 1007 * or IS_ERR() condition containing errno. 1008 * 1009 * Use of supply names configured via regulator_set_device_supply() is 1010 * strongly encouraged. It is recommended that the supply name used 1011 * should match the name used for the supply and/or the relevant 1012 * device pins in the datasheet. 1013 */ 1014 struct regulator *regulator_get(struct device *dev, const char *id) 1015 { 1016 struct regulator_dev *rdev; 1017 struct regulator_map *map; 1018 struct regulator *regulator = ERR_PTR(-ENODEV); 1019 1020 if (id == NULL) { 1021 printk(KERN_ERR "regulator: get() with no identifier\n"); 1022 return regulator; 1023 } 1024 1025 mutex_lock(®ulator_list_mutex); 1026 1027 list_for_each_entry(map, ®ulator_map_list, list) { 1028 if (dev == map->dev && 1029 strcmp(map->supply, id) == 0) { 1030 rdev = map->regulator; 1031 goto found; 1032 } 1033 } 1034 mutex_unlock(®ulator_list_mutex); 1035 return regulator; 1036 1037 found: 1038 if (!try_module_get(rdev->owner)) 1039 goto out; 1040 1041 regulator = create_regulator(rdev, dev, id); 1042 if (regulator == NULL) { 1043 regulator = ERR_PTR(-ENOMEM); 1044 module_put(rdev->owner); 1045 } 1046 1047 out: 1048 mutex_unlock(®ulator_list_mutex); 1049 return regulator; 1050 } 1051 EXPORT_SYMBOL_GPL(regulator_get); 1052 1053 /** 1054 * regulator_put - "free" the regulator source 1055 * @regulator: regulator source 1056 * 1057 * Note: drivers must ensure that all regulator_enable calls made on this 1058 * regulator source are balanced by regulator_disable calls prior to calling 1059 * this function. 1060 */ 1061 void regulator_put(struct regulator *regulator) 1062 { 1063 struct regulator_dev *rdev; 1064 1065 if (regulator == NULL || IS_ERR(regulator)) 1066 return; 1067 1068 mutex_lock(®ulator_list_mutex); 1069 rdev = regulator->rdev; 1070 1071 /* remove any sysfs entries */ 1072 if (regulator->dev) { 1073 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1074 kfree(regulator->supply_name); 1075 device_remove_file(regulator->dev, ®ulator->dev_attr); 1076 kfree(regulator->dev_attr.attr.name); 1077 } 1078 list_del(®ulator->list); 1079 kfree(regulator); 1080 1081 module_put(rdev->owner); 1082 mutex_unlock(®ulator_list_mutex); 1083 } 1084 EXPORT_SYMBOL_GPL(regulator_put); 1085 1086 /* locks held by regulator_enable() */ 1087 static int _regulator_enable(struct regulator_dev *rdev) 1088 { 1089 int ret = -EINVAL; 1090 1091 if (!rdev->constraints) { 1092 printk(KERN_ERR "%s: %s has no constraints\n", 1093 __func__, rdev->desc->name); 1094 return ret; 1095 } 1096 1097 /* do we need to enable the supply regulator first */ 1098 if (rdev->supply) { 1099 ret = _regulator_enable(rdev->supply); 1100 if (ret < 0) { 1101 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1102 __func__, rdev->desc->name, ret); 1103 return ret; 1104 } 1105 } 1106 1107 /* check voltage and requested load before enabling */ 1108 if (rdev->desc->ops->enable) { 1109 1110 if (rdev->constraints && 1111 (rdev->constraints->valid_ops_mask & 1112 REGULATOR_CHANGE_DRMS)) 1113 drms_uA_update(rdev); 1114 1115 ret = rdev->desc->ops->enable(rdev); 1116 if (ret < 0) { 1117 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1118 __func__, rdev->desc->name, ret); 1119 return ret; 1120 } 1121 rdev->use_count++; 1122 return ret; 1123 } 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * regulator_enable - enable regulator output 1130 * @regulator: regulator source 1131 * 1132 * Request that the regulator be enabled with the regulator output at 1133 * the predefined voltage or current value. Calls to regulator_enable() 1134 * must be balanced with calls to regulator_disable(). 1135 * 1136 * NOTE: the output value can be set by other drivers, boot loader or may be 1137 * hardwired in the regulator. 1138 */ 1139 int regulator_enable(struct regulator *regulator) 1140 { 1141 struct regulator_dev *rdev = regulator->rdev; 1142 int ret = 0; 1143 1144 mutex_lock(&rdev->mutex); 1145 ret = _regulator_enable(rdev); 1146 mutex_unlock(&rdev->mutex); 1147 return ret; 1148 } 1149 EXPORT_SYMBOL_GPL(regulator_enable); 1150 1151 /* locks held by regulator_disable() */ 1152 static int _regulator_disable(struct regulator_dev *rdev) 1153 { 1154 int ret = 0; 1155 1156 if (WARN(rdev->use_count <= 0, 1157 "unbalanced disables for %s\n", 1158 rdev->desc->name)) 1159 return -EIO; 1160 1161 /* are we the last user and permitted to disable ? */ 1162 if (rdev->use_count == 1 && !rdev->constraints->always_on) { 1163 1164 /* we are last user */ 1165 if (rdev->desc->ops->disable) { 1166 ret = rdev->desc->ops->disable(rdev); 1167 if (ret < 0) { 1168 printk(KERN_ERR "%s: failed to disable %s\n", 1169 __func__, rdev->desc->name); 1170 return ret; 1171 } 1172 } 1173 1174 /* decrease our supplies ref count and disable if required */ 1175 if (rdev->supply) 1176 _regulator_disable(rdev->supply); 1177 1178 rdev->use_count = 0; 1179 } else if (rdev->use_count > 1) { 1180 1181 if (rdev->constraints && 1182 (rdev->constraints->valid_ops_mask & 1183 REGULATOR_CHANGE_DRMS)) 1184 drms_uA_update(rdev); 1185 1186 rdev->use_count--; 1187 } 1188 return ret; 1189 } 1190 1191 /** 1192 * regulator_disable - disable regulator output 1193 * @regulator: regulator source 1194 * 1195 * Disable the regulator output voltage or current. Calls to 1196 * regulator_enable() must be balanced with calls to 1197 * regulator_disable(). 1198 * 1199 * NOTE: this will only disable the regulator output if no other consumer 1200 * devices have it enabled, the regulator device supports disabling and 1201 * machine constraints permit this operation. 1202 */ 1203 int regulator_disable(struct regulator *regulator) 1204 { 1205 struct regulator_dev *rdev = regulator->rdev; 1206 int ret = 0; 1207 1208 mutex_lock(&rdev->mutex); 1209 ret = _regulator_disable(rdev); 1210 mutex_unlock(&rdev->mutex); 1211 return ret; 1212 } 1213 EXPORT_SYMBOL_GPL(regulator_disable); 1214 1215 /* locks held by regulator_force_disable() */ 1216 static int _regulator_force_disable(struct regulator_dev *rdev) 1217 { 1218 int ret = 0; 1219 1220 /* force disable */ 1221 if (rdev->desc->ops->disable) { 1222 /* ah well, who wants to live forever... */ 1223 ret = rdev->desc->ops->disable(rdev); 1224 if (ret < 0) { 1225 printk(KERN_ERR "%s: failed to force disable %s\n", 1226 __func__, rdev->desc->name); 1227 return ret; 1228 } 1229 /* notify other consumers that power has been forced off */ 1230 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, 1231 NULL); 1232 } 1233 1234 /* decrease our supplies ref count and disable if required */ 1235 if (rdev->supply) 1236 _regulator_disable(rdev->supply); 1237 1238 rdev->use_count = 0; 1239 return ret; 1240 } 1241 1242 /** 1243 * regulator_force_disable - force disable regulator output 1244 * @regulator: regulator source 1245 * 1246 * Forcibly disable the regulator output voltage or current. 1247 * NOTE: this *will* disable the regulator output even if other consumer 1248 * devices have it enabled. This should be used for situations when device 1249 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1250 */ 1251 int regulator_force_disable(struct regulator *regulator) 1252 { 1253 int ret; 1254 1255 mutex_lock(®ulator->rdev->mutex); 1256 regulator->uA_load = 0; 1257 ret = _regulator_force_disable(regulator->rdev); 1258 mutex_unlock(®ulator->rdev->mutex); 1259 return ret; 1260 } 1261 EXPORT_SYMBOL_GPL(regulator_force_disable); 1262 1263 static int _regulator_is_enabled(struct regulator_dev *rdev) 1264 { 1265 int ret; 1266 1267 mutex_lock(&rdev->mutex); 1268 1269 /* sanity check */ 1270 if (!rdev->desc->ops->is_enabled) { 1271 ret = -EINVAL; 1272 goto out; 1273 } 1274 1275 ret = rdev->desc->ops->is_enabled(rdev); 1276 out: 1277 mutex_unlock(&rdev->mutex); 1278 return ret; 1279 } 1280 1281 /** 1282 * regulator_is_enabled - is the regulator output enabled 1283 * @regulator: regulator source 1284 * 1285 * Returns positive if the regulator driver backing the source/client 1286 * has requested that the device be enabled, zero if it hasn't, else a 1287 * negative errno code. 1288 * 1289 * Note that the device backing this regulator handle can have multiple 1290 * users, so it might be enabled even if regulator_enable() was never 1291 * called for this particular source. 1292 */ 1293 int regulator_is_enabled(struct regulator *regulator) 1294 { 1295 return _regulator_is_enabled(regulator->rdev); 1296 } 1297 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1298 1299 /** 1300 * regulator_count_voltages - count regulator_list_voltage() selectors 1301 * @regulator: regulator source 1302 * 1303 * Returns number of selectors, or negative errno. Selectors are 1304 * numbered starting at zero, and typically correspond to bitfields 1305 * in hardware registers. 1306 */ 1307 int regulator_count_voltages(struct regulator *regulator) 1308 { 1309 struct regulator_dev *rdev = regulator->rdev; 1310 1311 return rdev->desc->n_voltages ? : -EINVAL; 1312 } 1313 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1314 1315 /** 1316 * regulator_list_voltage - enumerate supported voltages 1317 * @regulator: regulator source 1318 * @selector: identify voltage to list 1319 * Context: can sleep 1320 * 1321 * Returns a voltage that can be passed to @regulator_set_voltage(), 1322 * zero if this selector code can't be used on this sytem, or a 1323 * negative errno. 1324 */ 1325 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1326 { 1327 struct regulator_dev *rdev = regulator->rdev; 1328 struct regulator_ops *ops = rdev->desc->ops; 1329 int ret; 1330 1331 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1332 return -EINVAL; 1333 1334 mutex_lock(&rdev->mutex); 1335 ret = ops->list_voltage(rdev, selector); 1336 mutex_unlock(&rdev->mutex); 1337 1338 if (ret > 0) { 1339 if (ret < rdev->constraints->min_uV) 1340 ret = 0; 1341 else if (ret > rdev->constraints->max_uV) 1342 ret = 0; 1343 } 1344 1345 return ret; 1346 } 1347 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1348 1349 /** 1350 * regulator_set_voltage - set regulator output voltage 1351 * @regulator: regulator source 1352 * @min_uV: Minimum required voltage in uV 1353 * @max_uV: Maximum acceptable voltage in uV 1354 * 1355 * Sets a voltage regulator to the desired output voltage. This can be set 1356 * during any regulator state. IOW, regulator can be disabled or enabled. 1357 * 1358 * If the regulator is enabled then the voltage will change to the new value 1359 * immediately otherwise if the regulator is disabled the regulator will 1360 * output at the new voltage when enabled. 1361 * 1362 * NOTE: If the regulator is shared between several devices then the lowest 1363 * request voltage that meets the system constraints will be used. 1364 * Regulator system constraints must be set for this regulator before 1365 * calling this function otherwise this call will fail. 1366 */ 1367 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1368 { 1369 struct regulator_dev *rdev = regulator->rdev; 1370 int ret; 1371 1372 mutex_lock(&rdev->mutex); 1373 1374 /* sanity check */ 1375 if (!rdev->desc->ops->set_voltage) { 1376 ret = -EINVAL; 1377 goto out; 1378 } 1379 1380 /* constraints check */ 1381 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1382 if (ret < 0) 1383 goto out; 1384 regulator->min_uV = min_uV; 1385 regulator->max_uV = max_uV; 1386 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); 1387 1388 out: 1389 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); 1390 mutex_unlock(&rdev->mutex); 1391 return ret; 1392 } 1393 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1394 1395 static int _regulator_get_voltage(struct regulator_dev *rdev) 1396 { 1397 /* sanity check */ 1398 if (rdev->desc->ops->get_voltage) 1399 return rdev->desc->ops->get_voltage(rdev); 1400 else 1401 return -EINVAL; 1402 } 1403 1404 /** 1405 * regulator_get_voltage - get regulator output voltage 1406 * @regulator: regulator source 1407 * 1408 * This returns the current regulator voltage in uV. 1409 * 1410 * NOTE: If the regulator is disabled it will return the voltage value. This 1411 * function should not be used to determine regulator state. 1412 */ 1413 int regulator_get_voltage(struct regulator *regulator) 1414 { 1415 int ret; 1416 1417 mutex_lock(®ulator->rdev->mutex); 1418 1419 ret = _regulator_get_voltage(regulator->rdev); 1420 1421 mutex_unlock(®ulator->rdev->mutex); 1422 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(regulator_get_voltage); 1426 1427 /** 1428 * regulator_set_current_limit - set regulator output current limit 1429 * @regulator: regulator source 1430 * @min_uA: Minimuum supported current in uA 1431 * @max_uA: Maximum supported current in uA 1432 * 1433 * Sets current sink to the desired output current. This can be set during 1434 * any regulator state. IOW, regulator can be disabled or enabled. 1435 * 1436 * If the regulator is enabled then the current will change to the new value 1437 * immediately otherwise if the regulator is disabled the regulator will 1438 * output at the new current when enabled. 1439 * 1440 * NOTE: Regulator system constraints must be set for this regulator before 1441 * calling this function otherwise this call will fail. 1442 */ 1443 int regulator_set_current_limit(struct regulator *regulator, 1444 int min_uA, int max_uA) 1445 { 1446 struct regulator_dev *rdev = regulator->rdev; 1447 int ret; 1448 1449 mutex_lock(&rdev->mutex); 1450 1451 /* sanity check */ 1452 if (!rdev->desc->ops->set_current_limit) { 1453 ret = -EINVAL; 1454 goto out; 1455 } 1456 1457 /* constraints check */ 1458 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 1459 if (ret < 0) 1460 goto out; 1461 1462 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 1463 out: 1464 mutex_unlock(&rdev->mutex); 1465 return ret; 1466 } 1467 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 1468 1469 static int _regulator_get_current_limit(struct regulator_dev *rdev) 1470 { 1471 int ret; 1472 1473 mutex_lock(&rdev->mutex); 1474 1475 /* sanity check */ 1476 if (!rdev->desc->ops->get_current_limit) { 1477 ret = -EINVAL; 1478 goto out; 1479 } 1480 1481 ret = rdev->desc->ops->get_current_limit(rdev); 1482 out: 1483 mutex_unlock(&rdev->mutex); 1484 return ret; 1485 } 1486 1487 /** 1488 * regulator_get_current_limit - get regulator output current 1489 * @regulator: regulator source 1490 * 1491 * This returns the current supplied by the specified current sink in uA. 1492 * 1493 * NOTE: If the regulator is disabled it will return the current value. This 1494 * function should not be used to determine regulator state. 1495 */ 1496 int regulator_get_current_limit(struct regulator *regulator) 1497 { 1498 return _regulator_get_current_limit(regulator->rdev); 1499 } 1500 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 1501 1502 /** 1503 * regulator_set_mode - set regulator operating mode 1504 * @regulator: regulator source 1505 * @mode: operating mode - one of the REGULATOR_MODE constants 1506 * 1507 * Set regulator operating mode to increase regulator efficiency or improve 1508 * regulation performance. 1509 * 1510 * NOTE: Regulator system constraints must be set for this regulator before 1511 * calling this function otherwise this call will fail. 1512 */ 1513 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 1514 { 1515 struct regulator_dev *rdev = regulator->rdev; 1516 int ret; 1517 1518 mutex_lock(&rdev->mutex); 1519 1520 /* sanity check */ 1521 if (!rdev->desc->ops->set_mode) { 1522 ret = -EINVAL; 1523 goto out; 1524 } 1525 1526 /* constraints check */ 1527 ret = regulator_check_mode(rdev, mode); 1528 if (ret < 0) 1529 goto out; 1530 1531 ret = rdev->desc->ops->set_mode(rdev, mode); 1532 out: 1533 mutex_unlock(&rdev->mutex); 1534 return ret; 1535 } 1536 EXPORT_SYMBOL_GPL(regulator_set_mode); 1537 1538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 1539 { 1540 int ret; 1541 1542 mutex_lock(&rdev->mutex); 1543 1544 /* sanity check */ 1545 if (!rdev->desc->ops->get_mode) { 1546 ret = -EINVAL; 1547 goto out; 1548 } 1549 1550 ret = rdev->desc->ops->get_mode(rdev); 1551 out: 1552 mutex_unlock(&rdev->mutex); 1553 return ret; 1554 } 1555 1556 /** 1557 * regulator_get_mode - get regulator operating mode 1558 * @regulator: regulator source 1559 * 1560 * Get the current regulator operating mode. 1561 */ 1562 unsigned int regulator_get_mode(struct regulator *regulator) 1563 { 1564 return _regulator_get_mode(regulator->rdev); 1565 } 1566 EXPORT_SYMBOL_GPL(regulator_get_mode); 1567 1568 /** 1569 * regulator_set_optimum_mode - set regulator optimum operating mode 1570 * @regulator: regulator source 1571 * @uA_load: load current 1572 * 1573 * Notifies the regulator core of a new device load. This is then used by 1574 * DRMS (if enabled by constraints) to set the most efficient regulator 1575 * operating mode for the new regulator loading. 1576 * 1577 * Consumer devices notify their supply regulator of the maximum power 1578 * they will require (can be taken from device datasheet in the power 1579 * consumption tables) when they change operational status and hence power 1580 * state. Examples of operational state changes that can affect power 1581 * consumption are :- 1582 * 1583 * o Device is opened / closed. 1584 * o Device I/O is about to begin or has just finished. 1585 * o Device is idling in between work. 1586 * 1587 * This information is also exported via sysfs to userspace. 1588 * 1589 * DRMS will sum the total requested load on the regulator and change 1590 * to the most efficient operating mode if platform constraints allow. 1591 * 1592 * Returns the new regulator mode or error. 1593 */ 1594 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 1595 { 1596 struct regulator_dev *rdev = regulator->rdev; 1597 struct regulator *consumer; 1598 int ret, output_uV, input_uV, total_uA_load = 0; 1599 unsigned int mode; 1600 1601 mutex_lock(&rdev->mutex); 1602 1603 regulator->uA_load = uA_load; 1604 ret = regulator_check_drms(rdev); 1605 if (ret < 0) 1606 goto out; 1607 ret = -EINVAL; 1608 1609 /* sanity check */ 1610 if (!rdev->desc->ops->get_optimum_mode) 1611 goto out; 1612 1613 /* get output voltage */ 1614 output_uV = rdev->desc->ops->get_voltage(rdev); 1615 if (output_uV <= 0) { 1616 printk(KERN_ERR "%s: invalid output voltage found for %s\n", 1617 __func__, rdev->desc->name); 1618 goto out; 1619 } 1620 1621 /* get input voltage */ 1622 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 1623 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 1624 else 1625 input_uV = rdev->constraints->input_uV; 1626 if (input_uV <= 0) { 1627 printk(KERN_ERR "%s: invalid input voltage found for %s\n", 1628 __func__, rdev->desc->name); 1629 goto out; 1630 } 1631 1632 /* calc total requested load for this regulator */ 1633 list_for_each_entry(consumer, &rdev->consumer_list, list) 1634 total_uA_load += consumer->uA_load; 1635 1636 mode = rdev->desc->ops->get_optimum_mode(rdev, 1637 input_uV, output_uV, 1638 total_uA_load); 1639 ret = regulator_check_mode(rdev, mode); 1640 if (ret < 0) { 1641 printk(KERN_ERR "%s: failed to get optimum mode for %s @" 1642 " %d uA %d -> %d uV\n", __func__, rdev->desc->name, 1643 total_uA_load, input_uV, output_uV); 1644 goto out; 1645 } 1646 1647 ret = rdev->desc->ops->set_mode(rdev, mode); 1648 if (ret < 0) { 1649 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", 1650 __func__, mode, rdev->desc->name); 1651 goto out; 1652 } 1653 ret = mode; 1654 out: 1655 mutex_unlock(&rdev->mutex); 1656 return ret; 1657 } 1658 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 1659 1660 /** 1661 * regulator_register_notifier - register regulator event notifier 1662 * @regulator: regulator source 1663 * @nb: notifier block 1664 * 1665 * Register notifier block to receive regulator events. 1666 */ 1667 int regulator_register_notifier(struct regulator *regulator, 1668 struct notifier_block *nb) 1669 { 1670 return blocking_notifier_chain_register(®ulator->rdev->notifier, 1671 nb); 1672 } 1673 EXPORT_SYMBOL_GPL(regulator_register_notifier); 1674 1675 /** 1676 * regulator_unregister_notifier - unregister regulator event notifier 1677 * @regulator: regulator source 1678 * @nb: notifier block 1679 * 1680 * Unregister regulator event notifier block. 1681 */ 1682 int regulator_unregister_notifier(struct regulator *regulator, 1683 struct notifier_block *nb) 1684 { 1685 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 1686 nb); 1687 } 1688 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 1689 1690 /* notify regulator consumers and downstream regulator consumers. 1691 * Note mutex must be held by caller. 1692 */ 1693 static void _notifier_call_chain(struct regulator_dev *rdev, 1694 unsigned long event, void *data) 1695 { 1696 struct regulator_dev *_rdev; 1697 1698 /* call rdev chain first */ 1699 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 1700 1701 /* now notify regulator we supply */ 1702 list_for_each_entry(_rdev, &rdev->supply_list, slist) { 1703 mutex_lock(&_rdev->mutex); 1704 _notifier_call_chain(_rdev, event, data); 1705 mutex_unlock(&_rdev->mutex); 1706 } 1707 } 1708 1709 /** 1710 * regulator_bulk_get - get multiple regulator consumers 1711 * 1712 * @dev: Device to supply 1713 * @num_consumers: Number of consumers to register 1714 * @consumers: Configuration of consumers; clients are stored here. 1715 * 1716 * @return 0 on success, an errno on failure. 1717 * 1718 * This helper function allows drivers to get several regulator 1719 * consumers in one operation. If any of the regulators cannot be 1720 * acquired then any regulators that were allocated will be freed 1721 * before returning to the caller. 1722 */ 1723 int regulator_bulk_get(struct device *dev, int num_consumers, 1724 struct regulator_bulk_data *consumers) 1725 { 1726 int i; 1727 int ret; 1728 1729 for (i = 0; i < num_consumers; i++) 1730 consumers[i].consumer = NULL; 1731 1732 for (i = 0; i < num_consumers; i++) { 1733 consumers[i].consumer = regulator_get(dev, 1734 consumers[i].supply); 1735 if (IS_ERR(consumers[i].consumer)) { 1736 dev_err(dev, "Failed to get supply '%s'\n", 1737 consumers[i].supply); 1738 ret = PTR_ERR(consumers[i].consumer); 1739 consumers[i].consumer = NULL; 1740 goto err; 1741 } 1742 } 1743 1744 return 0; 1745 1746 err: 1747 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 1748 regulator_put(consumers[i].consumer); 1749 1750 return ret; 1751 } 1752 EXPORT_SYMBOL_GPL(regulator_bulk_get); 1753 1754 /** 1755 * regulator_bulk_enable - enable multiple regulator consumers 1756 * 1757 * @num_consumers: Number of consumers 1758 * @consumers: Consumer data; clients are stored here. 1759 * @return 0 on success, an errno on failure 1760 * 1761 * This convenience API allows consumers to enable multiple regulator 1762 * clients in a single API call. If any consumers cannot be enabled 1763 * then any others that were enabled will be disabled again prior to 1764 * return. 1765 */ 1766 int regulator_bulk_enable(int num_consumers, 1767 struct regulator_bulk_data *consumers) 1768 { 1769 int i; 1770 int ret; 1771 1772 for (i = 0; i < num_consumers; i++) { 1773 ret = regulator_enable(consumers[i].consumer); 1774 if (ret != 0) 1775 goto err; 1776 } 1777 1778 return 0; 1779 1780 err: 1781 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply); 1782 for (i = 0; i < num_consumers; i++) 1783 regulator_disable(consumers[i].consumer); 1784 1785 return ret; 1786 } 1787 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 1788 1789 /** 1790 * regulator_bulk_disable - disable multiple regulator consumers 1791 * 1792 * @num_consumers: Number of consumers 1793 * @consumers: Consumer data; clients are stored here. 1794 * @return 0 on success, an errno on failure 1795 * 1796 * This convenience API allows consumers to disable multiple regulator 1797 * clients in a single API call. If any consumers cannot be enabled 1798 * then any others that were disabled will be disabled again prior to 1799 * return. 1800 */ 1801 int regulator_bulk_disable(int num_consumers, 1802 struct regulator_bulk_data *consumers) 1803 { 1804 int i; 1805 int ret; 1806 1807 for (i = 0; i < num_consumers; i++) { 1808 ret = regulator_disable(consumers[i].consumer); 1809 if (ret != 0) 1810 goto err; 1811 } 1812 1813 return 0; 1814 1815 err: 1816 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply); 1817 for (i = 0; i < num_consumers; i++) 1818 regulator_enable(consumers[i].consumer); 1819 1820 return ret; 1821 } 1822 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 1823 1824 /** 1825 * regulator_bulk_free - free multiple regulator consumers 1826 * 1827 * @num_consumers: Number of consumers 1828 * @consumers: Consumer data; clients are stored here. 1829 * 1830 * This convenience API allows consumers to free multiple regulator 1831 * clients in a single API call. 1832 */ 1833 void regulator_bulk_free(int num_consumers, 1834 struct regulator_bulk_data *consumers) 1835 { 1836 int i; 1837 1838 for (i = 0; i < num_consumers; i++) { 1839 regulator_put(consumers[i].consumer); 1840 consumers[i].consumer = NULL; 1841 } 1842 } 1843 EXPORT_SYMBOL_GPL(regulator_bulk_free); 1844 1845 /** 1846 * regulator_notifier_call_chain - call regulator event notifier 1847 * @rdev: regulator source 1848 * @event: notifier block 1849 * @data: callback-specific data. 1850 * 1851 * Called by regulator drivers to notify clients a regulator event has 1852 * occurred. We also notify regulator clients downstream. 1853 * Note lock must be held by caller. 1854 */ 1855 int regulator_notifier_call_chain(struct regulator_dev *rdev, 1856 unsigned long event, void *data) 1857 { 1858 _notifier_call_chain(rdev, event, data); 1859 return NOTIFY_DONE; 1860 1861 } 1862 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 1863 1864 /* 1865 * To avoid cluttering sysfs (and memory) with useless state, only 1866 * create attributes that can be meaningfully displayed. 1867 */ 1868 static int add_regulator_attributes(struct regulator_dev *rdev) 1869 { 1870 struct device *dev = &rdev->dev; 1871 struct regulator_ops *ops = rdev->desc->ops; 1872 int status = 0; 1873 1874 /* some attributes need specific methods to be displayed */ 1875 if (ops->get_voltage) { 1876 status = device_create_file(dev, &dev_attr_microvolts); 1877 if (status < 0) 1878 return status; 1879 } 1880 if (ops->get_current_limit) { 1881 status = device_create_file(dev, &dev_attr_microamps); 1882 if (status < 0) 1883 return status; 1884 } 1885 if (ops->get_mode) { 1886 status = device_create_file(dev, &dev_attr_opmode); 1887 if (status < 0) 1888 return status; 1889 } 1890 if (ops->is_enabled) { 1891 status = device_create_file(dev, &dev_attr_state); 1892 if (status < 0) 1893 return status; 1894 } 1895 if (ops->get_status) { 1896 status = device_create_file(dev, &dev_attr_status); 1897 if (status < 0) 1898 return status; 1899 } 1900 1901 /* some attributes are type-specific */ 1902 if (rdev->desc->type == REGULATOR_CURRENT) { 1903 status = device_create_file(dev, &dev_attr_requested_microamps); 1904 if (status < 0) 1905 return status; 1906 } 1907 1908 /* all the other attributes exist to support constraints; 1909 * don't show them if there are no constraints, or if the 1910 * relevant supporting methods are missing. 1911 */ 1912 if (!rdev->constraints) 1913 return status; 1914 1915 /* constraints need specific supporting methods */ 1916 if (ops->set_voltage) { 1917 status = device_create_file(dev, &dev_attr_min_microvolts); 1918 if (status < 0) 1919 return status; 1920 status = device_create_file(dev, &dev_attr_max_microvolts); 1921 if (status < 0) 1922 return status; 1923 } 1924 if (ops->set_current_limit) { 1925 status = device_create_file(dev, &dev_attr_min_microamps); 1926 if (status < 0) 1927 return status; 1928 status = device_create_file(dev, &dev_attr_max_microamps); 1929 if (status < 0) 1930 return status; 1931 } 1932 1933 /* suspend mode constraints need multiple supporting methods */ 1934 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 1935 return status; 1936 1937 status = device_create_file(dev, &dev_attr_suspend_standby_state); 1938 if (status < 0) 1939 return status; 1940 status = device_create_file(dev, &dev_attr_suspend_mem_state); 1941 if (status < 0) 1942 return status; 1943 status = device_create_file(dev, &dev_attr_suspend_disk_state); 1944 if (status < 0) 1945 return status; 1946 1947 if (ops->set_suspend_voltage) { 1948 status = device_create_file(dev, 1949 &dev_attr_suspend_standby_microvolts); 1950 if (status < 0) 1951 return status; 1952 status = device_create_file(dev, 1953 &dev_attr_suspend_mem_microvolts); 1954 if (status < 0) 1955 return status; 1956 status = device_create_file(dev, 1957 &dev_attr_suspend_disk_microvolts); 1958 if (status < 0) 1959 return status; 1960 } 1961 1962 if (ops->set_suspend_mode) { 1963 status = device_create_file(dev, 1964 &dev_attr_suspend_standby_mode); 1965 if (status < 0) 1966 return status; 1967 status = device_create_file(dev, 1968 &dev_attr_suspend_mem_mode); 1969 if (status < 0) 1970 return status; 1971 status = device_create_file(dev, 1972 &dev_attr_suspend_disk_mode); 1973 if (status < 0) 1974 return status; 1975 } 1976 1977 return status; 1978 } 1979 1980 /** 1981 * regulator_register - register regulator 1982 * @regulator_desc: regulator to register 1983 * @dev: struct device for the regulator 1984 * @init_data: platform provided init data, passed through by driver 1985 * @driver_data: private regulator data 1986 * 1987 * Called by regulator drivers to register a regulator. 1988 * Returns 0 on success. 1989 */ 1990 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 1991 struct device *dev, struct regulator_init_data *init_data, 1992 void *driver_data) 1993 { 1994 static atomic_t regulator_no = ATOMIC_INIT(0); 1995 struct regulator_dev *rdev; 1996 int ret, i; 1997 1998 if (regulator_desc == NULL) 1999 return ERR_PTR(-EINVAL); 2000 2001 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2002 return ERR_PTR(-EINVAL); 2003 2004 if (!regulator_desc->type == REGULATOR_VOLTAGE && 2005 !regulator_desc->type == REGULATOR_CURRENT) 2006 return ERR_PTR(-EINVAL); 2007 2008 if (!init_data) 2009 return ERR_PTR(-EINVAL); 2010 2011 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2012 if (rdev == NULL) 2013 return ERR_PTR(-ENOMEM); 2014 2015 mutex_lock(®ulator_list_mutex); 2016 2017 mutex_init(&rdev->mutex); 2018 rdev->reg_data = driver_data; 2019 rdev->owner = regulator_desc->owner; 2020 rdev->desc = regulator_desc; 2021 INIT_LIST_HEAD(&rdev->consumer_list); 2022 INIT_LIST_HEAD(&rdev->supply_list); 2023 INIT_LIST_HEAD(&rdev->list); 2024 INIT_LIST_HEAD(&rdev->slist); 2025 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2026 2027 /* preform any regulator specific init */ 2028 if (init_data->regulator_init) { 2029 ret = init_data->regulator_init(rdev->reg_data); 2030 if (ret < 0) 2031 goto clean; 2032 } 2033 2034 /* register with sysfs */ 2035 rdev->dev.class = ®ulator_class; 2036 rdev->dev.parent = dev; 2037 dev_set_name(&rdev->dev, "regulator.%d", 2038 atomic_inc_return(®ulator_no) - 1); 2039 ret = device_register(&rdev->dev); 2040 if (ret != 0) 2041 goto clean; 2042 2043 dev_set_drvdata(&rdev->dev, rdev); 2044 2045 /* set regulator constraints */ 2046 ret = set_machine_constraints(rdev, &init_data->constraints); 2047 if (ret < 0) 2048 goto scrub; 2049 2050 /* add attributes supported by this regulator */ 2051 ret = add_regulator_attributes(rdev); 2052 if (ret < 0) 2053 goto scrub; 2054 2055 /* set supply regulator if it exists */ 2056 if (init_data->supply_regulator_dev) { 2057 ret = set_supply(rdev, 2058 dev_get_drvdata(init_data->supply_regulator_dev)); 2059 if (ret < 0) 2060 goto scrub; 2061 } 2062 2063 /* add consumers devices */ 2064 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2065 ret = set_consumer_device_supply(rdev, 2066 init_data->consumer_supplies[i].dev, 2067 init_data->consumer_supplies[i].supply); 2068 if (ret < 0) { 2069 for (--i; i >= 0; i--) 2070 unset_consumer_device_supply(rdev, 2071 init_data->consumer_supplies[i].dev); 2072 goto scrub; 2073 } 2074 } 2075 2076 list_add(&rdev->list, ®ulator_list); 2077 out: 2078 mutex_unlock(®ulator_list_mutex); 2079 return rdev; 2080 2081 scrub: 2082 device_unregister(&rdev->dev); 2083 clean: 2084 kfree(rdev); 2085 rdev = ERR_PTR(ret); 2086 goto out; 2087 } 2088 EXPORT_SYMBOL_GPL(regulator_register); 2089 2090 /** 2091 * regulator_unregister - unregister regulator 2092 * @rdev: regulator to unregister 2093 * 2094 * Called by regulator drivers to unregister a regulator. 2095 */ 2096 void regulator_unregister(struct regulator_dev *rdev) 2097 { 2098 if (rdev == NULL) 2099 return; 2100 2101 mutex_lock(®ulator_list_mutex); 2102 unset_regulator_supplies(rdev); 2103 list_del(&rdev->list); 2104 if (rdev->supply) 2105 sysfs_remove_link(&rdev->dev.kobj, "supply"); 2106 device_unregister(&rdev->dev); 2107 mutex_unlock(®ulator_list_mutex); 2108 } 2109 EXPORT_SYMBOL_GPL(regulator_unregister); 2110 2111 /** 2112 * regulator_suspend_prepare - prepare regulators for system wide suspend 2113 * @state: system suspend state 2114 * 2115 * Configure each regulator with it's suspend operating parameters for state. 2116 * This will usually be called by machine suspend code prior to supending. 2117 */ 2118 int regulator_suspend_prepare(suspend_state_t state) 2119 { 2120 struct regulator_dev *rdev; 2121 int ret = 0; 2122 2123 /* ON is handled by regulator active state */ 2124 if (state == PM_SUSPEND_ON) 2125 return -EINVAL; 2126 2127 mutex_lock(®ulator_list_mutex); 2128 list_for_each_entry(rdev, ®ulator_list, list) { 2129 2130 mutex_lock(&rdev->mutex); 2131 ret = suspend_prepare(rdev, state); 2132 mutex_unlock(&rdev->mutex); 2133 2134 if (ret < 0) { 2135 printk(KERN_ERR "%s: failed to prepare %s\n", 2136 __func__, rdev->desc->name); 2137 goto out; 2138 } 2139 } 2140 out: 2141 mutex_unlock(®ulator_list_mutex); 2142 return ret; 2143 } 2144 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 2145 2146 /** 2147 * regulator_has_full_constraints - the system has fully specified constraints 2148 * 2149 * Calling this function will cause the regulator API to disable all 2150 * regulators which have a zero use count and don't have an always_on 2151 * constraint in a late_initcall. 2152 * 2153 * The intention is that this will become the default behaviour in a 2154 * future kernel release so users are encouraged to use this facility 2155 * now. 2156 */ 2157 void regulator_has_full_constraints(void) 2158 { 2159 has_full_constraints = 1; 2160 } 2161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 2162 2163 /** 2164 * rdev_get_drvdata - get rdev regulator driver data 2165 * @rdev: regulator 2166 * 2167 * Get rdev regulator driver private data. This call can be used in the 2168 * regulator driver context. 2169 */ 2170 void *rdev_get_drvdata(struct regulator_dev *rdev) 2171 { 2172 return rdev->reg_data; 2173 } 2174 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 2175 2176 /** 2177 * regulator_get_drvdata - get regulator driver data 2178 * @regulator: regulator 2179 * 2180 * Get regulator driver private data. This call can be used in the consumer 2181 * driver context when non API regulator specific functions need to be called. 2182 */ 2183 void *regulator_get_drvdata(struct regulator *regulator) 2184 { 2185 return regulator->rdev->reg_data; 2186 } 2187 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 2188 2189 /** 2190 * regulator_set_drvdata - set regulator driver data 2191 * @regulator: regulator 2192 * @data: data 2193 */ 2194 void regulator_set_drvdata(struct regulator *regulator, void *data) 2195 { 2196 regulator->rdev->reg_data = data; 2197 } 2198 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 2199 2200 /** 2201 * regulator_get_id - get regulator ID 2202 * @rdev: regulator 2203 */ 2204 int rdev_get_id(struct regulator_dev *rdev) 2205 { 2206 return rdev->desc->id; 2207 } 2208 EXPORT_SYMBOL_GPL(rdev_get_id); 2209 2210 struct device *rdev_get_dev(struct regulator_dev *rdev) 2211 { 2212 return &rdev->dev; 2213 } 2214 EXPORT_SYMBOL_GPL(rdev_get_dev); 2215 2216 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 2217 { 2218 return reg_init_data->driver_data; 2219 } 2220 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 2221 2222 static int __init regulator_init(void) 2223 { 2224 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); 2225 return class_register(®ulator_class); 2226 } 2227 2228 /* init early to allow our consumers to complete system booting */ 2229 core_initcall(regulator_init); 2230 2231 static int __init regulator_init_complete(void) 2232 { 2233 struct regulator_dev *rdev; 2234 struct regulator_ops *ops; 2235 struct regulation_constraints *c; 2236 int enabled, ret; 2237 const char *name; 2238 2239 mutex_lock(®ulator_list_mutex); 2240 2241 /* If we have a full configuration then disable any regulators 2242 * which are not in use or always_on. This will become the 2243 * default behaviour in the future. 2244 */ 2245 list_for_each_entry(rdev, ®ulator_list, list) { 2246 ops = rdev->desc->ops; 2247 c = rdev->constraints; 2248 2249 if (c->name) 2250 name = c->name; 2251 else if (rdev->desc->name) 2252 name = rdev->desc->name; 2253 else 2254 name = "regulator"; 2255 2256 if (!ops->disable || c->always_on) 2257 continue; 2258 2259 mutex_lock(&rdev->mutex); 2260 2261 if (rdev->use_count) 2262 goto unlock; 2263 2264 /* If we can't read the status assume it's on. */ 2265 if (ops->is_enabled) 2266 enabled = ops->is_enabled(rdev); 2267 else 2268 enabled = 1; 2269 2270 if (!enabled) 2271 goto unlock; 2272 2273 if (has_full_constraints) { 2274 /* We log since this may kill the system if it 2275 * goes wrong. */ 2276 printk(KERN_INFO "%s: disabling %s\n", 2277 __func__, name); 2278 ret = ops->disable(rdev); 2279 if (ret != 0) { 2280 printk(KERN_ERR 2281 "%s: couldn't disable %s: %d\n", 2282 __func__, name, ret); 2283 } 2284 } else { 2285 /* The intention is that in future we will 2286 * assume that full constraints are provided 2287 * so warn even if we aren't going to do 2288 * anything here. 2289 */ 2290 printk(KERN_WARNING 2291 "%s: incomplete constraints, leaving %s on\n", 2292 __func__, name); 2293 } 2294 2295 unlock: 2296 mutex_unlock(&rdev->mutex); 2297 } 2298 2299 mutex_unlock(®ulator_list_mutex); 2300 2301 return 0; 2302 } 2303 late_initcall(regulator_init_complete); 2304