1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_MUTEX(regulator_list_mutex); 53 static LIST_HEAD(regulator_list); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 int gpio; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static void _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 112 static const char *rdev_get_name(struct regulator_dev *rdev) 113 { 114 if (rdev->constraints && rdev->constraints->name) 115 return rdev->constraints->name; 116 else if (rdev->desc->name) 117 return rdev->desc->name; 118 else 119 return ""; 120 } 121 122 static bool have_full_constraints(void) 123 { 124 return has_full_constraints || of_have_populated_dt(); 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 static DEVICE_ATTR_RO(name); 334 335 static ssize_t regulator_print_opmode(char *buf, int mode) 336 { 337 switch (mode) { 338 case REGULATOR_MODE_FAST: 339 return sprintf(buf, "fast\n"); 340 case REGULATOR_MODE_NORMAL: 341 return sprintf(buf, "normal\n"); 342 case REGULATOR_MODE_IDLE: 343 return sprintf(buf, "idle\n"); 344 case REGULATOR_MODE_STANDBY: 345 return sprintf(buf, "standby\n"); 346 } 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_opmode_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 356 } 357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 358 359 static ssize_t regulator_print_state(char *buf, int state) 360 { 361 if (state > 0) 362 return sprintf(buf, "enabled\n"); 363 else if (state == 0) 364 return sprintf(buf, "disabled\n"); 365 else 366 return sprintf(buf, "unknown\n"); 367 } 368 369 static ssize_t regulator_state_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct regulator_dev *rdev = dev_get_drvdata(dev); 373 ssize_t ret; 374 375 mutex_lock(&rdev->mutex); 376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 377 mutex_unlock(&rdev->mutex); 378 379 return ret; 380 } 381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 382 383 static ssize_t regulator_status_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 int status; 388 char *label; 389 390 status = rdev->desc->ops->get_status(rdev); 391 if (status < 0) 392 return status; 393 394 switch (status) { 395 case REGULATOR_STATUS_OFF: 396 label = "off"; 397 break; 398 case REGULATOR_STATUS_ON: 399 label = "on"; 400 break; 401 case REGULATOR_STATUS_ERROR: 402 label = "error"; 403 break; 404 case REGULATOR_STATUS_FAST: 405 label = "fast"; 406 break; 407 case REGULATOR_STATUS_NORMAL: 408 label = "normal"; 409 break; 410 case REGULATOR_STATUS_IDLE: 411 label = "idle"; 412 break; 413 case REGULATOR_STATUS_STANDBY: 414 label = "standby"; 415 break; 416 case REGULATOR_STATUS_BYPASS: 417 label = "bypass"; 418 break; 419 case REGULATOR_STATUS_UNDEFINED: 420 label = "undefined"; 421 break; 422 default: 423 return -ERANGE; 424 } 425 426 return sprintf(buf, "%s\n", label); 427 } 428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 429 430 static ssize_t regulator_min_uA_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 if (!rdev->constraints) 436 return sprintf(buf, "constraint not defined\n"); 437 438 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 439 } 440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 441 442 static ssize_t regulator_max_uA_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct regulator_dev *rdev = dev_get_drvdata(dev); 446 447 if (!rdev->constraints) 448 return sprintf(buf, "constraint not defined\n"); 449 450 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 451 } 452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 453 454 static ssize_t regulator_min_uV_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 463 } 464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 465 466 static ssize_t regulator_max_uV_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 475 } 476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 477 478 static ssize_t regulator_total_uA_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 struct regulator *regulator; 483 int uA = 0; 484 485 mutex_lock(&rdev->mutex); 486 list_for_each_entry(regulator, &rdev->consumer_list, list) 487 uA += regulator->uA_load; 488 mutex_unlock(&rdev->mutex); 489 return sprintf(buf, "%d\n", uA); 490 } 491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 492 493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 494 char *buf) 495 { 496 struct regulator_dev *rdev = dev_get_drvdata(dev); 497 return sprintf(buf, "%d\n", rdev->use_count); 498 } 499 static DEVICE_ATTR_RO(num_users); 500 501 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 506 switch (rdev->desc->type) { 507 case REGULATOR_VOLTAGE: 508 return sprintf(buf, "voltage\n"); 509 case REGULATOR_CURRENT: 510 return sprintf(buf, "current\n"); 511 } 512 return sprintf(buf, "unknown\n"); 513 } 514 static DEVICE_ATTR_RO(type); 515 516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 522 } 523 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 524 regulator_suspend_mem_uV_show, NULL); 525 526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 532 } 533 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 534 regulator_suspend_disk_uV_show, NULL); 535 536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 542 } 543 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 544 regulator_suspend_standby_uV_show, NULL); 545 546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct regulator_dev *rdev = dev_get_drvdata(dev); 550 551 return regulator_print_opmode(buf, 552 rdev->constraints->state_mem.mode); 553 } 554 static DEVICE_ATTR(suspend_mem_mode, 0444, 555 regulator_suspend_mem_mode_show, NULL); 556 557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct regulator_dev *rdev = dev_get_drvdata(dev); 561 562 return regulator_print_opmode(buf, 563 rdev->constraints->state_disk.mode); 564 } 565 static DEVICE_ATTR(suspend_disk_mode, 0444, 566 regulator_suspend_disk_mode_show, NULL); 567 568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 569 struct device_attribute *attr, char *buf) 570 { 571 struct regulator_dev *rdev = dev_get_drvdata(dev); 572 573 return regulator_print_opmode(buf, 574 rdev->constraints->state_standby.mode); 575 } 576 static DEVICE_ATTR(suspend_standby_mode, 0444, 577 regulator_suspend_standby_mode_show, NULL); 578 579 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct regulator_dev *rdev = dev_get_drvdata(dev); 583 584 return regulator_print_state(buf, 585 rdev->constraints->state_mem.enabled); 586 } 587 static DEVICE_ATTR(suspend_mem_state, 0444, 588 regulator_suspend_mem_state_show, NULL); 589 590 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_state(buf, 596 rdev->constraints->state_disk.enabled); 597 } 598 static DEVICE_ATTR(suspend_disk_state, 0444, 599 regulator_suspend_disk_state_show, NULL); 600 601 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_state(buf, 607 rdev->constraints->state_standby.enabled); 608 } 609 static DEVICE_ATTR(suspend_standby_state, 0444, 610 regulator_suspend_standby_state_show, NULL); 611 612 static ssize_t regulator_bypass_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 const char *report; 617 bool bypass; 618 int ret; 619 620 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 621 622 if (ret != 0) 623 report = "unknown"; 624 else if (bypass) 625 report = "enabled"; 626 else 627 report = "disabled"; 628 629 return sprintf(buf, "%s\n", report); 630 } 631 static DEVICE_ATTR(bypass, 0444, 632 regulator_bypass_show, NULL); 633 634 /* 635 * These are the only attributes are present for all regulators. 636 * Other attributes are a function of regulator functionality. 637 */ 638 static struct attribute *regulator_dev_attrs[] = { 639 &dev_attr_name.attr, 640 &dev_attr_num_users.attr, 641 &dev_attr_type.attr, 642 NULL, 643 }; 644 ATTRIBUTE_GROUPS(regulator_dev); 645 646 static void regulator_dev_release(struct device *dev) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 kfree(rdev); 650 } 651 652 static struct class regulator_class = { 653 .name = "regulator", 654 .dev_release = regulator_dev_release, 655 .dev_groups = regulator_dev_groups, 656 }; 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static void drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 err = regulator_check_drms(rdev); 667 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 668 (!rdev->desc->ops->get_voltage && 669 !rdev->desc->ops->get_voltage_sel) || 670 !rdev->desc->ops->set_mode) 671 return; 672 673 /* get output voltage */ 674 output_uV = _regulator_get_voltage(rdev); 675 if (output_uV <= 0) 676 return; 677 678 /* get input voltage */ 679 input_uV = 0; 680 if (rdev->supply) 681 input_uV = regulator_get_voltage(rdev->supply); 682 if (input_uV <= 0) 683 input_uV = rdev->constraints->input_uV; 684 if (input_uV <= 0) 685 return; 686 687 /* calc total requested load */ 688 list_for_each_entry(sibling, &rdev->consumer_list, list) 689 current_uA += sibling->uA_load; 690 691 /* now get the optimum mode for our new total regulator load */ 692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 693 output_uV, current_uA); 694 695 /* check the new mode is allowed */ 696 err = regulator_mode_constrain(rdev, &mode); 697 if (err == 0) 698 rdev->desc->ops->set_mode(rdev, mode); 699 } 700 701 static int suspend_set_state(struct regulator_dev *rdev, 702 struct regulator_state *rstate) 703 { 704 int ret = 0; 705 706 /* If we have no suspend mode configration don't set anything; 707 * only warn if the driver implements set_suspend_voltage or 708 * set_suspend_mode callback. 709 */ 710 if (!rstate->enabled && !rstate->disabled) { 711 if (rdev->desc->ops->set_suspend_voltage || 712 rdev->desc->ops->set_suspend_mode) 713 rdev_warn(rdev, "No configuration\n"); 714 return 0; 715 } 716 717 if (rstate->enabled && rstate->disabled) { 718 rdev_err(rdev, "invalid configuration\n"); 719 return -EINVAL; 720 } 721 722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 723 ret = rdev->desc->ops->set_suspend_enable(rdev); 724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 725 ret = rdev->desc->ops->set_suspend_disable(rdev); 726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 727 ret = 0; 728 729 if (ret < 0) { 730 rdev_err(rdev, "failed to enabled/disable\n"); 731 return ret; 732 } 733 734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 736 if (ret < 0) { 737 rdev_err(rdev, "failed to set voltage\n"); 738 return ret; 739 } 740 } 741 742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set mode\n"); 746 return ret; 747 } 748 } 749 return ret; 750 } 751 752 /* locks held by caller */ 753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 754 { 755 if (!rdev->constraints) 756 return -EINVAL; 757 758 switch (state) { 759 case PM_SUSPEND_STANDBY: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_standby); 762 case PM_SUSPEND_MEM: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_mem); 765 case PM_SUSPEND_MAX: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_disk); 768 default: 769 return -EINVAL; 770 } 771 } 772 773 static void print_constraints(struct regulator_dev *rdev) 774 { 775 struct regulation_constraints *constraints = rdev->constraints; 776 char buf[80] = ""; 777 int count = 0; 778 int ret; 779 780 if (constraints->min_uV && constraints->max_uV) { 781 if (constraints->min_uV == constraints->max_uV) 782 count += sprintf(buf + count, "%d mV ", 783 constraints->min_uV / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mV ", 786 constraints->min_uV / 1000, 787 constraints->max_uV / 1000); 788 } 789 790 if (!constraints->min_uV || 791 constraints->min_uV != constraints->max_uV) { 792 ret = _regulator_get_voltage(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mV ", ret / 1000); 795 } 796 797 if (constraints->uV_offset) 798 count += sprintf(buf, "%dmV offset ", 799 constraints->uV_offset / 1000); 800 801 if (constraints->min_uA && constraints->max_uA) { 802 if (constraints->min_uA == constraints->max_uA) 803 count += sprintf(buf + count, "%d mA ", 804 constraints->min_uA / 1000); 805 else 806 count += sprintf(buf + count, "%d <--> %d mA ", 807 constraints->min_uA / 1000, 808 constraints->max_uA / 1000); 809 } 810 811 if (!constraints->min_uA || 812 constraints->min_uA != constraints->max_uA) { 813 ret = _regulator_get_current_limit(rdev); 814 if (ret > 0) 815 count += sprintf(buf + count, "at %d mA ", ret / 1000); 816 } 817 818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 819 count += sprintf(buf + count, "fast "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 821 count += sprintf(buf + count, "normal "); 822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 823 count += sprintf(buf + count, "idle "); 824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 825 count += sprintf(buf + count, "standby"); 826 827 if (!count) 828 sprintf(buf, "no parameters"); 829 830 rdev_info(rdev, "%s\n", buf); 831 832 if ((constraints->min_uV != constraints->max_uV) && 833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 834 rdev_warn(rdev, 835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 836 } 837 838 static int machine_constraints_voltage(struct regulator_dev *rdev, 839 struct regulation_constraints *constraints) 840 { 841 struct regulator_ops *ops = rdev->desc->ops; 842 int ret; 843 844 /* do we need to apply the constraint voltage */ 845 if (rdev->constraints->apply_uV && 846 rdev->constraints->min_uV == rdev->constraints->max_uV) { 847 ret = _regulator_do_set_voltage(rdev, 848 rdev->constraints->min_uV, 849 rdev->constraints->max_uV); 850 if (ret < 0) { 851 rdev_err(rdev, "failed to apply %duV constraint\n", 852 rdev->constraints->min_uV); 853 return ret; 854 } 855 } 856 857 /* constrain machine-level voltage specs to fit 858 * the actual range supported by this regulator. 859 */ 860 if (ops->list_voltage && rdev->desc->n_voltages) { 861 int count = rdev->desc->n_voltages; 862 int i; 863 int min_uV = INT_MAX; 864 int max_uV = INT_MIN; 865 int cmin = constraints->min_uV; 866 int cmax = constraints->max_uV; 867 868 /* it's safe to autoconfigure fixed-voltage supplies 869 and the constraints are used by list_voltage. */ 870 if (count == 1 && !cmin) { 871 cmin = 1; 872 cmax = INT_MAX; 873 constraints->min_uV = cmin; 874 constraints->max_uV = cmax; 875 } 876 877 /* voltage constraints are optional */ 878 if ((cmin == 0) && (cmax == 0)) 879 return 0; 880 881 /* else require explicit machine-level constraints */ 882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 883 rdev_err(rdev, "invalid voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 888 for (i = 0; i < count; i++) { 889 int value; 890 891 value = ops->list_voltage(rdev, i); 892 if (value <= 0) 893 continue; 894 895 /* maybe adjust [min_uV..max_uV] */ 896 if (value >= cmin && value < min_uV) 897 min_uV = value; 898 if (value <= cmax && value > max_uV) 899 max_uV = value; 900 } 901 902 /* final: [min_uV..max_uV] valid iff constraints valid */ 903 if (max_uV < min_uV) { 904 rdev_err(rdev, 905 "unsupportable voltage constraints %u-%uuV\n", 906 min_uV, max_uV); 907 return -EINVAL; 908 } 909 910 /* use regulator's subset of machine constraints */ 911 if (constraints->min_uV < min_uV) { 912 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 913 constraints->min_uV, min_uV); 914 constraints->min_uV = min_uV; 915 } 916 if (constraints->max_uV > max_uV) { 917 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 918 constraints->max_uV, max_uV); 919 constraints->max_uV = max_uV; 920 } 921 } 922 923 return 0; 924 } 925 926 static int machine_constraints_current(struct regulator_dev *rdev, 927 struct regulation_constraints *constraints) 928 { 929 struct regulator_ops *ops = rdev->desc->ops; 930 int ret; 931 932 if (!constraints->min_uA && !constraints->max_uA) 933 return 0; 934 935 if (constraints->min_uA > constraints->max_uA) { 936 rdev_err(rdev, "Invalid current constraints\n"); 937 return -EINVAL; 938 } 939 940 if (!ops->set_current_limit || !ops->get_current_limit) { 941 rdev_warn(rdev, "Operation of current configuration missing\n"); 942 return 0; 943 } 944 945 /* Set regulator current in constraints range */ 946 ret = ops->set_current_limit(rdev, constraints->min_uA, 947 constraints->max_uA); 948 if (ret < 0) { 949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 950 return ret; 951 } 952 953 return 0; 954 } 955 956 static int _regulator_do_enable(struct regulator_dev *rdev); 957 958 /** 959 * set_machine_constraints - sets regulator constraints 960 * @rdev: regulator source 961 * @constraints: constraints to apply 962 * 963 * Allows platform initialisation code to define and constrain 964 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 965 * Constraints *must* be set by platform code in order for some 966 * regulator operations to proceed i.e. set_voltage, set_current_limit, 967 * set_mode. 968 */ 969 static int set_machine_constraints(struct regulator_dev *rdev, 970 const struct regulation_constraints *constraints) 971 { 972 int ret = 0; 973 struct regulator_ops *ops = rdev->desc->ops; 974 975 if (constraints) 976 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 977 GFP_KERNEL); 978 else 979 rdev->constraints = kzalloc(sizeof(*constraints), 980 GFP_KERNEL); 981 if (!rdev->constraints) 982 return -ENOMEM; 983 984 ret = machine_constraints_voltage(rdev, rdev->constraints); 985 if (ret != 0) 986 goto out; 987 988 ret = machine_constraints_current(rdev, rdev->constraints); 989 if (ret != 0) 990 goto out; 991 992 /* do we need to setup our suspend state */ 993 if (rdev->constraints->initial_state) { 994 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 995 if (ret < 0) { 996 rdev_err(rdev, "failed to set suspend state\n"); 997 goto out; 998 } 999 } 1000 1001 if (rdev->constraints->initial_mode) { 1002 if (!ops->set_mode) { 1003 rdev_err(rdev, "no set_mode operation\n"); 1004 ret = -EINVAL; 1005 goto out; 1006 } 1007 1008 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1009 if (ret < 0) { 1010 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1011 goto out; 1012 } 1013 } 1014 1015 /* If the constraints say the regulator should be on at this point 1016 * and we have control then make sure it is enabled. 1017 */ 1018 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1019 ret = _regulator_do_enable(rdev); 1020 if (ret < 0 && ret != -EINVAL) { 1021 rdev_err(rdev, "failed to enable\n"); 1022 goto out; 1023 } 1024 } 1025 1026 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1027 && ops->set_ramp_delay) { 1028 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1029 if (ret < 0) { 1030 rdev_err(rdev, "failed to set ramp_delay\n"); 1031 goto out; 1032 } 1033 } 1034 1035 print_constraints(rdev); 1036 return 0; 1037 out: 1038 kfree(rdev->constraints); 1039 rdev->constraints = NULL; 1040 return ret; 1041 } 1042 1043 /** 1044 * set_supply - set regulator supply regulator 1045 * @rdev: regulator name 1046 * @supply_rdev: supply regulator name 1047 * 1048 * Called by platform initialisation code to set the supply regulator for this 1049 * regulator. This ensures that a regulators supply will also be enabled by the 1050 * core if it's child is enabled. 1051 */ 1052 static int set_supply(struct regulator_dev *rdev, 1053 struct regulator_dev *supply_rdev) 1054 { 1055 int err; 1056 1057 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1058 1059 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1060 if (rdev->supply == NULL) { 1061 err = -ENOMEM; 1062 return err; 1063 } 1064 supply_rdev->open_count++; 1065 1066 return 0; 1067 } 1068 1069 /** 1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1071 * @rdev: regulator source 1072 * @consumer_dev_name: dev_name() string for device supply applies to 1073 * @supply: symbolic name for supply 1074 * 1075 * Allows platform initialisation code to map physical regulator 1076 * sources to symbolic names for supplies for use by devices. Devices 1077 * should use these symbolic names to request regulators, avoiding the 1078 * need to provide board-specific regulator names as platform data. 1079 */ 1080 static int set_consumer_device_supply(struct regulator_dev *rdev, 1081 const char *consumer_dev_name, 1082 const char *supply) 1083 { 1084 struct regulator_map *node; 1085 int has_dev; 1086 1087 if (supply == NULL) 1088 return -EINVAL; 1089 1090 if (consumer_dev_name != NULL) 1091 has_dev = 1; 1092 else 1093 has_dev = 0; 1094 1095 list_for_each_entry(node, ®ulator_map_list, list) { 1096 if (node->dev_name && consumer_dev_name) { 1097 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1098 continue; 1099 } else if (node->dev_name || consumer_dev_name) { 1100 continue; 1101 } 1102 1103 if (strcmp(node->supply, supply) != 0) 1104 continue; 1105 1106 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1107 consumer_dev_name, 1108 dev_name(&node->regulator->dev), 1109 node->regulator->desc->name, 1110 supply, 1111 dev_name(&rdev->dev), rdev_get_name(rdev)); 1112 return -EBUSY; 1113 } 1114 1115 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1116 if (node == NULL) 1117 return -ENOMEM; 1118 1119 node->regulator = rdev; 1120 node->supply = supply; 1121 1122 if (has_dev) { 1123 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1124 if (node->dev_name == NULL) { 1125 kfree(node); 1126 return -ENOMEM; 1127 } 1128 } 1129 1130 list_add(&node->list, ®ulator_map_list); 1131 return 0; 1132 } 1133 1134 static void unset_regulator_supplies(struct regulator_dev *rdev) 1135 { 1136 struct regulator_map *node, *n; 1137 1138 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1139 if (rdev == node->regulator) { 1140 list_del(&node->list); 1141 kfree(node->dev_name); 1142 kfree(node); 1143 } 1144 } 1145 } 1146 1147 #define REG_STR_SIZE 64 1148 1149 static struct regulator *create_regulator(struct regulator_dev *rdev, 1150 struct device *dev, 1151 const char *supply_name) 1152 { 1153 struct regulator *regulator; 1154 char buf[REG_STR_SIZE]; 1155 int err, size; 1156 1157 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1158 if (regulator == NULL) 1159 return NULL; 1160 1161 mutex_lock(&rdev->mutex); 1162 regulator->rdev = rdev; 1163 list_add(®ulator->list, &rdev->consumer_list); 1164 1165 if (dev) { 1166 regulator->dev = dev; 1167 1168 /* Add a link to the device sysfs entry */ 1169 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1170 dev->kobj.name, supply_name); 1171 if (size >= REG_STR_SIZE) 1172 goto overflow_err; 1173 1174 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1175 if (regulator->supply_name == NULL) 1176 goto overflow_err; 1177 1178 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1179 buf); 1180 if (err) { 1181 rdev_warn(rdev, "could not add device link %s err %d\n", 1182 dev->kobj.name, err); 1183 /* non-fatal */ 1184 } 1185 } else { 1186 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1187 if (regulator->supply_name == NULL) 1188 goto overflow_err; 1189 } 1190 1191 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1192 rdev->debugfs); 1193 if (!regulator->debugfs) { 1194 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1195 } else { 1196 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1197 ®ulator->uA_load); 1198 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1199 ®ulator->min_uV); 1200 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1201 ®ulator->max_uV); 1202 } 1203 1204 /* 1205 * Check now if the regulator is an always on regulator - if 1206 * it is then we don't need to do nearly so much work for 1207 * enable/disable calls. 1208 */ 1209 if (!_regulator_can_change_status(rdev) && 1210 _regulator_is_enabled(rdev)) 1211 regulator->always_on = true; 1212 1213 mutex_unlock(&rdev->mutex); 1214 return regulator; 1215 overflow_err: 1216 list_del(®ulator->list); 1217 kfree(regulator); 1218 mutex_unlock(&rdev->mutex); 1219 return NULL; 1220 } 1221 1222 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1223 { 1224 if (rdev->constraints && rdev->constraints->enable_time) 1225 return rdev->constraints->enable_time; 1226 if (!rdev->desc->ops->enable_time) 1227 return rdev->desc->enable_time; 1228 return rdev->desc->ops->enable_time(rdev); 1229 } 1230 1231 static struct regulator_supply_alias *regulator_find_supply_alias( 1232 struct device *dev, const char *supply) 1233 { 1234 struct regulator_supply_alias *map; 1235 1236 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1237 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1238 return map; 1239 1240 return NULL; 1241 } 1242 1243 static void regulator_supply_alias(struct device **dev, const char **supply) 1244 { 1245 struct regulator_supply_alias *map; 1246 1247 map = regulator_find_supply_alias(*dev, *supply); 1248 if (map) { 1249 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1250 *supply, map->alias_supply, 1251 dev_name(map->alias_dev)); 1252 *dev = map->alias_dev; 1253 *supply = map->alias_supply; 1254 } 1255 } 1256 1257 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1258 const char *supply, 1259 int *ret) 1260 { 1261 struct regulator_dev *r; 1262 struct device_node *node; 1263 struct regulator_map *map; 1264 const char *devname = NULL; 1265 1266 regulator_supply_alias(&dev, &supply); 1267 1268 /* first do a dt based lookup */ 1269 if (dev && dev->of_node) { 1270 node = of_get_regulator(dev, supply); 1271 if (node) { 1272 list_for_each_entry(r, ®ulator_list, list) 1273 if (r->dev.parent && 1274 node == r->dev.of_node) 1275 return r; 1276 *ret = -EPROBE_DEFER; 1277 return NULL; 1278 } else { 1279 /* 1280 * If we couldn't even get the node then it's 1281 * not just that the device didn't register 1282 * yet, there's no node and we'll never 1283 * succeed. 1284 */ 1285 *ret = -ENODEV; 1286 } 1287 } 1288 1289 /* if not found, try doing it non-dt way */ 1290 if (dev) 1291 devname = dev_name(dev); 1292 1293 list_for_each_entry(r, ®ulator_list, list) 1294 if (strcmp(rdev_get_name(r), supply) == 0) 1295 return r; 1296 1297 list_for_each_entry(map, ®ulator_map_list, list) { 1298 /* If the mapping has a device set up it must match */ 1299 if (map->dev_name && 1300 (!devname || strcmp(map->dev_name, devname))) 1301 continue; 1302 1303 if (strcmp(map->supply, supply) == 0) 1304 return map->regulator; 1305 } 1306 1307 1308 return NULL; 1309 } 1310 1311 /* Internal regulator request function */ 1312 static struct regulator *_regulator_get(struct device *dev, const char *id, 1313 bool exclusive, bool allow_dummy) 1314 { 1315 struct regulator_dev *rdev; 1316 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1317 const char *devname = NULL; 1318 int ret; 1319 1320 if (id == NULL) { 1321 pr_err("get() with no identifier\n"); 1322 return ERR_PTR(-EINVAL); 1323 } 1324 1325 if (dev) 1326 devname = dev_name(dev); 1327 1328 if (have_full_constraints()) 1329 ret = -ENODEV; 1330 else 1331 ret = -EPROBE_DEFER; 1332 1333 mutex_lock(®ulator_list_mutex); 1334 1335 rdev = regulator_dev_lookup(dev, id, &ret); 1336 if (rdev) 1337 goto found; 1338 1339 regulator = ERR_PTR(ret); 1340 1341 /* 1342 * If we have return value from dev_lookup fail, we do not expect to 1343 * succeed, so, quit with appropriate error value 1344 */ 1345 if (ret && ret != -ENODEV) 1346 goto out; 1347 1348 if (!devname) 1349 devname = "deviceless"; 1350 1351 /* 1352 * Assume that a regulator is physically present and enabled 1353 * even if it isn't hooked up and just provide a dummy. 1354 */ 1355 if (have_full_constraints() && allow_dummy) { 1356 pr_warn("%s supply %s not found, using dummy regulator\n", 1357 devname, id); 1358 1359 rdev = dummy_regulator_rdev; 1360 goto found; 1361 /* Don't log an error when called from regulator_get_optional() */ 1362 } else if (!have_full_constraints() || exclusive) { 1363 dev_warn(dev, "dummy supplies not allowed\n"); 1364 } 1365 1366 mutex_unlock(®ulator_list_mutex); 1367 return regulator; 1368 1369 found: 1370 if (rdev->exclusive) { 1371 regulator = ERR_PTR(-EPERM); 1372 goto out; 1373 } 1374 1375 if (exclusive && rdev->open_count) { 1376 regulator = ERR_PTR(-EBUSY); 1377 goto out; 1378 } 1379 1380 if (!try_module_get(rdev->owner)) 1381 goto out; 1382 1383 regulator = create_regulator(rdev, dev, id); 1384 if (regulator == NULL) { 1385 regulator = ERR_PTR(-ENOMEM); 1386 module_put(rdev->owner); 1387 goto out; 1388 } 1389 1390 rdev->open_count++; 1391 if (exclusive) { 1392 rdev->exclusive = 1; 1393 1394 ret = _regulator_is_enabled(rdev); 1395 if (ret > 0) 1396 rdev->use_count = 1; 1397 else 1398 rdev->use_count = 0; 1399 } 1400 1401 out: 1402 mutex_unlock(®ulator_list_mutex); 1403 1404 return regulator; 1405 } 1406 1407 /** 1408 * regulator_get - lookup and obtain a reference to a regulator. 1409 * @dev: device for regulator "consumer" 1410 * @id: Supply name or regulator ID. 1411 * 1412 * Returns a struct regulator corresponding to the regulator producer, 1413 * or IS_ERR() condition containing errno. 1414 * 1415 * Use of supply names configured via regulator_set_device_supply() is 1416 * strongly encouraged. It is recommended that the supply name used 1417 * should match the name used for the supply and/or the relevant 1418 * device pins in the datasheet. 1419 */ 1420 struct regulator *regulator_get(struct device *dev, const char *id) 1421 { 1422 return _regulator_get(dev, id, false, true); 1423 } 1424 EXPORT_SYMBOL_GPL(regulator_get); 1425 1426 /** 1427 * regulator_get_exclusive - obtain exclusive access to a regulator. 1428 * @dev: device for regulator "consumer" 1429 * @id: Supply name or regulator ID. 1430 * 1431 * Returns a struct regulator corresponding to the regulator producer, 1432 * or IS_ERR() condition containing errno. Other consumers will be 1433 * unable to obtain this reference is held and the use count for the 1434 * regulator will be initialised to reflect the current state of the 1435 * regulator. 1436 * 1437 * This is intended for use by consumers which cannot tolerate shared 1438 * use of the regulator such as those which need to force the 1439 * regulator off for correct operation of the hardware they are 1440 * controlling. 1441 * 1442 * Use of supply names configured via regulator_set_device_supply() is 1443 * strongly encouraged. It is recommended that the supply name used 1444 * should match the name used for the supply and/or the relevant 1445 * device pins in the datasheet. 1446 */ 1447 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1448 { 1449 return _regulator_get(dev, id, true, false); 1450 } 1451 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1452 1453 /** 1454 * regulator_get_optional - obtain optional access to a regulator. 1455 * @dev: device for regulator "consumer" 1456 * @id: Supply name or regulator ID. 1457 * 1458 * Returns a struct regulator corresponding to the regulator producer, 1459 * or IS_ERR() condition containing errno. Other consumers will be 1460 * unable to obtain this reference is held and the use count for the 1461 * regulator will be initialised to reflect the current state of the 1462 * regulator. 1463 * 1464 * This is intended for use by consumers for devices which can have 1465 * some supplies unconnected in normal use, such as some MMC devices. 1466 * It can allow the regulator core to provide stub supplies for other 1467 * supplies requested using normal regulator_get() calls without 1468 * disrupting the operation of drivers that can handle absent 1469 * supplies. 1470 * 1471 * Use of supply names configured via regulator_set_device_supply() is 1472 * strongly encouraged. It is recommended that the supply name used 1473 * should match the name used for the supply and/or the relevant 1474 * device pins in the datasheet. 1475 */ 1476 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1477 { 1478 return _regulator_get(dev, id, false, false); 1479 } 1480 EXPORT_SYMBOL_GPL(regulator_get_optional); 1481 1482 /* Locks held by regulator_put() */ 1483 static void _regulator_put(struct regulator *regulator) 1484 { 1485 struct regulator_dev *rdev; 1486 1487 if (regulator == NULL || IS_ERR(regulator)) 1488 return; 1489 1490 rdev = regulator->rdev; 1491 1492 debugfs_remove_recursive(regulator->debugfs); 1493 1494 /* remove any sysfs entries */ 1495 if (regulator->dev) 1496 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1497 kfree(regulator->supply_name); 1498 list_del(®ulator->list); 1499 kfree(regulator); 1500 1501 rdev->open_count--; 1502 rdev->exclusive = 0; 1503 1504 module_put(rdev->owner); 1505 } 1506 1507 /** 1508 * regulator_put - "free" the regulator source 1509 * @regulator: regulator source 1510 * 1511 * Note: drivers must ensure that all regulator_enable calls made on this 1512 * regulator source are balanced by regulator_disable calls prior to calling 1513 * this function. 1514 */ 1515 void regulator_put(struct regulator *regulator) 1516 { 1517 mutex_lock(®ulator_list_mutex); 1518 _regulator_put(regulator); 1519 mutex_unlock(®ulator_list_mutex); 1520 } 1521 EXPORT_SYMBOL_GPL(regulator_put); 1522 1523 /** 1524 * regulator_register_supply_alias - Provide device alias for supply lookup 1525 * 1526 * @dev: device that will be given as the regulator "consumer" 1527 * @id: Supply name or regulator ID 1528 * @alias_dev: device that should be used to lookup the supply 1529 * @alias_id: Supply name or regulator ID that should be used to lookup the 1530 * supply 1531 * 1532 * All lookups for id on dev will instead be conducted for alias_id on 1533 * alias_dev. 1534 */ 1535 int regulator_register_supply_alias(struct device *dev, const char *id, 1536 struct device *alias_dev, 1537 const char *alias_id) 1538 { 1539 struct regulator_supply_alias *map; 1540 1541 map = regulator_find_supply_alias(dev, id); 1542 if (map) 1543 return -EEXIST; 1544 1545 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1546 if (!map) 1547 return -ENOMEM; 1548 1549 map->src_dev = dev; 1550 map->src_supply = id; 1551 map->alias_dev = alias_dev; 1552 map->alias_supply = alias_id; 1553 1554 list_add(&map->list, ®ulator_supply_alias_list); 1555 1556 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1557 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1558 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1562 1563 /** 1564 * regulator_unregister_supply_alias - Remove device alias 1565 * 1566 * @dev: device that will be given as the regulator "consumer" 1567 * @id: Supply name or regulator ID 1568 * 1569 * Remove a lookup alias if one exists for id on dev. 1570 */ 1571 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1572 { 1573 struct regulator_supply_alias *map; 1574 1575 map = regulator_find_supply_alias(dev, id); 1576 if (map) { 1577 list_del(&map->list); 1578 kfree(map); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1582 1583 /** 1584 * regulator_bulk_register_supply_alias - register multiple aliases 1585 * 1586 * @dev: device that will be given as the regulator "consumer" 1587 * @id: List of supply names or regulator IDs 1588 * @alias_dev: device that should be used to lookup the supply 1589 * @alias_id: List of supply names or regulator IDs that should be used to 1590 * lookup the supply 1591 * @num_id: Number of aliases to register 1592 * 1593 * @return 0 on success, an errno on failure. 1594 * 1595 * This helper function allows drivers to register several supply 1596 * aliases in one operation. If any of the aliases cannot be 1597 * registered any aliases that were registered will be removed 1598 * before returning to the caller. 1599 */ 1600 int regulator_bulk_register_supply_alias(struct device *dev, const char **id, 1601 struct device *alias_dev, 1602 const char **alias_id, 1603 int num_id) 1604 { 1605 int i; 1606 int ret; 1607 1608 for (i = 0; i < num_id; ++i) { 1609 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1610 alias_id[i]); 1611 if (ret < 0) 1612 goto err; 1613 } 1614 1615 return 0; 1616 1617 err: 1618 dev_err(dev, 1619 "Failed to create supply alias %s,%s -> %s,%s\n", 1620 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1621 1622 while (--i >= 0) 1623 regulator_unregister_supply_alias(dev, id[i]); 1624 1625 return ret; 1626 } 1627 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1628 1629 /** 1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1631 * 1632 * @dev: device that will be given as the regulator "consumer" 1633 * @id: List of supply names or regulator IDs 1634 * @num_id: Number of aliases to unregister 1635 * 1636 * This helper function allows drivers to unregister several supply 1637 * aliases in one operation. 1638 */ 1639 void regulator_bulk_unregister_supply_alias(struct device *dev, 1640 const char **id, 1641 int num_id) 1642 { 1643 int i; 1644 1645 for (i = 0; i < num_id; ++i) 1646 regulator_unregister_supply_alias(dev, id[i]); 1647 } 1648 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1649 1650 1651 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1652 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1653 const struct regulator_config *config) 1654 { 1655 struct regulator_enable_gpio *pin; 1656 int ret; 1657 1658 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1659 if (pin->gpio == config->ena_gpio) { 1660 rdev_dbg(rdev, "GPIO %d is already used\n", 1661 config->ena_gpio); 1662 goto update_ena_gpio_to_rdev; 1663 } 1664 } 1665 1666 ret = gpio_request_one(config->ena_gpio, 1667 GPIOF_DIR_OUT | config->ena_gpio_flags, 1668 rdev_get_name(rdev)); 1669 if (ret) 1670 return ret; 1671 1672 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1673 if (pin == NULL) { 1674 gpio_free(config->ena_gpio); 1675 return -ENOMEM; 1676 } 1677 1678 pin->gpio = config->ena_gpio; 1679 pin->ena_gpio_invert = config->ena_gpio_invert; 1680 list_add(&pin->list, ®ulator_ena_gpio_list); 1681 1682 update_ena_gpio_to_rdev: 1683 pin->request_count++; 1684 rdev->ena_pin = pin; 1685 return 0; 1686 } 1687 1688 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1689 { 1690 struct regulator_enable_gpio *pin, *n; 1691 1692 if (!rdev->ena_pin) 1693 return; 1694 1695 /* Free the GPIO only in case of no use */ 1696 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1697 if (pin->gpio == rdev->ena_pin->gpio) { 1698 if (pin->request_count <= 1) { 1699 pin->request_count = 0; 1700 gpio_free(pin->gpio); 1701 list_del(&pin->list); 1702 kfree(pin); 1703 } else { 1704 pin->request_count--; 1705 } 1706 } 1707 } 1708 } 1709 1710 /** 1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1712 * @rdev: regulator_dev structure 1713 * @enable: enable GPIO at initial use? 1714 * 1715 * GPIO is enabled in case of initial use. (enable_count is 0) 1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1717 */ 1718 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1719 { 1720 struct regulator_enable_gpio *pin = rdev->ena_pin; 1721 1722 if (!pin) 1723 return -EINVAL; 1724 1725 if (enable) { 1726 /* Enable GPIO at initial use */ 1727 if (pin->enable_count == 0) 1728 gpio_set_value_cansleep(pin->gpio, 1729 !pin->ena_gpio_invert); 1730 1731 pin->enable_count++; 1732 } else { 1733 if (pin->enable_count > 1) { 1734 pin->enable_count--; 1735 return 0; 1736 } 1737 1738 /* Disable GPIO if not used */ 1739 if (pin->enable_count <= 1) { 1740 gpio_set_value_cansleep(pin->gpio, 1741 pin->ena_gpio_invert); 1742 pin->enable_count = 0; 1743 } 1744 } 1745 1746 return 0; 1747 } 1748 1749 static int _regulator_do_enable(struct regulator_dev *rdev) 1750 { 1751 int ret, delay; 1752 1753 /* Query before enabling in case configuration dependent. */ 1754 ret = _regulator_get_enable_time(rdev); 1755 if (ret >= 0) { 1756 delay = ret; 1757 } else { 1758 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1759 delay = 0; 1760 } 1761 1762 trace_regulator_enable(rdev_get_name(rdev)); 1763 1764 if (rdev->ena_pin) { 1765 ret = regulator_ena_gpio_ctrl(rdev, true); 1766 if (ret < 0) 1767 return ret; 1768 rdev->ena_gpio_state = 1; 1769 } else if (rdev->desc->ops->enable) { 1770 ret = rdev->desc->ops->enable(rdev); 1771 if (ret < 0) 1772 return ret; 1773 } else { 1774 return -EINVAL; 1775 } 1776 1777 /* Allow the regulator to ramp; it would be useful to extend 1778 * this for bulk operations so that the regulators can ramp 1779 * together. */ 1780 trace_regulator_enable_delay(rdev_get_name(rdev)); 1781 1782 /* 1783 * Delay for the requested amount of time as per the guidelines in: 1784 * 1785 * Documentation/timers/timers-howto.txt 1786 * 1787 * The assumption here is that regulators will never be enabled in 1788 * atomic context and therefore sleeping functions can be used. 1789 */ 1790 if (delay) { 1791 unsigned int ms = delay / 1000; 1792 unsigned int us = delay % 1000; 1793 1794 if (ms > 0) { 1795 /* 1796 * For small enough values, handle super-millisecond 1797 * delays in the usleep_range() call below. 1798 */ 1799 if (ms < 20) 1800 us += ms * 1000; 1801 else 1802 msleep(ms); 1803 } 1804 1805 /* 1806 * Give the scheduler some room to coalesce with any other 1807 * wakeup sources. For delays shorter than 10 us, don't even 1808 * bother setting up high-resolution timers and just busy- 1809 * loop. 1810 */ 1811 if (us >= 10) 1812 usleep_range(us, us + 100); 1813 else 1814 udelay(us); 1815 } 1816 1817 trace_regulator_enable_complete(rdev_get_name(rdev)); 1818 1819 return 0; 1820 } 1821 1822 /* locks held by regulator_enable() */ 1823 static int _regulator_enable(struct regulator_dev *rdev) 1824 { 1825 int ret; 1826 1827 /* check voltage and requested load before enabling */ 1828 if (rdev->constraints && 1829 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1830 drms_uA_update(rdev); 1831 1832 if (rdev->use_count == 0) { 1833 /* The regulator may on if it's not switchable or left on */ 1834 ret = _regulator_is_enabled(rdev); 1835 if (ret == -EINVAL || ret == 0) { 1836 if (!_regulator_can_change_status(rdev)) 1837 return -EPERM; 1838 1839 ret = _regulator_do_enable(rdev); 1840 if (ret < 0) 1841 return ret; 1842 1843 } else if (ret < 0) { 1844 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1845 return ret; 1846 } 1847 /* Fallthrough on positive return values - already enabled */ 1848 } 1849 1850 rdev->use_count++; 1851 1852 return 0; 1853 } 1854 1855 /** 1856 * regulator_enable - enable regulator output 1857 * @regulator: regulator source 1858 * 1859 * Request that the regulator be enabled with the regulator output at 1860 * the predefined voltage or current value. Calls to regulator_enable() 1861 * must be balanced with calls to regulator_disable(). 1862 * 1863 * NOTE: the output value can be set by other drivers, boot loader or may be 1864 * hardwired in the regulator. 1865 */ 1866 int regulator_enable(struct regulator *regulator) 1867 { 1868 struct regulator_dev *rdev = regulator->rdev; 1869 int ret = 0; 1870 1871 if (regulator->always_on) 1872 return 0; 1873 1874 if (rdev->supply) { 1875 ret = regulator_enable(rdev->supply); 1876 if (ret != 0) 1877 return ret; 1878 } 1879 1880 mutex_lock(&rdev->mutex); 1881 ret = _regulator_enable(rdev); 1882 mutex_unlock(&rdev->mutex); 1883 1884 if (ret != 0 && rdev->supply) 1885 regulator_disable(rdev->supply); 1886 1887 return ret; 1888 } 1889 EXPORT_SYMBOL_GPL(regulator_enable); 1890 1891 static int _regulator_do_disable(struct regulator_dev *rdev) 1892 { 1893 int ret; 1894 1895 trace_regulator_disable(rdev_get_name(rdev)); 1896 1897 if (rdev->ena_pin) { 1898 ret = regulator_ena_gpio_ctrl(rdev, false); 1899 if (ret < 0) 1900 return ret; 1901 rdev->ena_gpio_state = 0; 1902 1903 } else if (rdev->desc->ops->disable) { 1904 ret = rdev->desc->ops->disable(rdev); 1905 if (ret != 0) 1906 return ret; 1907 } 1908 1909 trace_regulator_disable_complete(rdev_get_name(rdev)); 1910 1911 return 0; 1912 } 1913 1914 /* locks held by regulator_disable() */ 1915 static int _regulator_disable(struct regulator_dev *rdev) 1916 { 1917 int ret = 0; 1918 1919 if (WARN(rdev->use_count <= 0, 1920 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1921 return -EIO; 1922 1923 /* are we the last user and permitted to disable ? */ 1924 if (rdev->use_count == 1 && 1925 (rdev->constraints && !rdev->constraints->always_on)) { 1926 1927 /* we are last user */ 1928 if (_regulator_can_change_status(rdev)) { 1929 ret = _regulator_do_disable(rdev); 1930 if (ret < 0) { 1931 rdev_err(rdev, "failed to disable\n"); 1932 return ret; 1933 } 1934 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1935 NULL); 1936 } 1937 1938 rdev->use_count = 0; 1939 } else if (rdev->use_count > 1) { 1940 1941 if (rdev->constraints && 1942 (rdev->constraints->valid_ops_mask & 1943 REGULATOR_CHANGE_DRMS)) 1944 drms_uA_update(rdev); 1945 1946 rdev->use_count--; 1947 } 1948 1949 return ret; 1950 } 1951 1952 /** 1953 * regulator_disable - disable regulator output 1954 * @regulator: regulator source 1955 * 1956 * Disable the regulator output voltage or current. Calls to 1957 * regulator_enable() must be balanced with calls to 1958 * regulator_disable(). 1959 * 1960 * NOTE: this will only disable the regulator output if no other consumer 1961 * devices have it enabled, the regulator device supports disabling and 1962 * machine constraints permit this operation. 1963 */ 1964 int regulator_disable(struct regulator *regulator) 1965 { 1966 struct regulator_dev *rdev = regulator->rdev; 1967 int ret = 0; 1968 1969 if (regulator->always_on) 1970 return 0; 1971 1972 mutex_lock(&rdev->mutex); 1973 ret = _regulator_disable(rdev); 1974 mutex_unlock(&rdev->mutex); 1975 1976 if (ret == 0 && rdev->supply) 1977 regulator_disable(rdev->supply); 1978 1979 return ret; 1980 } 1981 EXPORT_SYMBOL_GPL(regulator_disable); 1982 1983 /* locks held by regulator_force_disable() */ 1984 static int _regulator_force_disable(struct regulator_dev *rdev) 1985 { 1986 int ret = 0; 1987 1988 ret = _regulator_do_disable(rdev); 1989 if (ret < 0) { 1990 rdev_err(rdev, "failed to force disable\n"); 1991 return ret; 1992 } 1993 1994 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1995 REGULATOR_EVENT_DISABLE, NULL); 1996 1997 return 0; 1998 } 1999 2000 /** 2001 * regulator_force_disable - force disable regulator output 2002 * @regulator: regulator source 2003 * 2004 * Forcibly disable the regulator output voltage or current. 2005 * NOTE: this *will* disable the regulator output even if other consumer 2006 * devices have it enabled. This should be used for situations when device 2007 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2008 */ 2009 int regulator_force_disable(struct regulator *regulator) 2010 { 2011 struct regulator_dev *rdev = regulator->rdev; 2012 int ret; 2013 2014 mutex_lock(&rdev->mutex); 2015 regulator->uA_load = 0; 2016 ret = _regulator_force_disable(regulator->rdev); 2017 mutex_unlock(&rdev->mutex); 2018 2019 if (rdev->supply) 2020 while (rdev->open_count--) 2021 regulator_disable(rdev->supply); 2022 2023 return ret; 2024 } 2025 EXPORT_SYMBOL_GPL(regulator_force_disable); 2026 2027 static void regulator_disable_work(struct work_struct *work) 2028 { 2029 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2030 disable_work.work); 2031 int count, i, ret; 2032 2033 mutex_lock(&rdev->mutex); 2034 2035 BUG_ON(!rdev->deferred_disables); 2036 2037 count = rdev->deferred_disables; 2038 rdev->deferred_disables = 0; 2039 2040 for (i = 0; i < count; i++) { 2041 ret = _regulator_disable(rdev); 2042 if (ret != 0) 2043 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2044 } 2045 2046 mutex_unlock(&rdev->mutex); 2047 2048 if (rdev->supply) { 2049 for (i = 0; i < count; i++) { 2050 ret = regulator_disable(rdev->supply); 2051 if (ret != 0) { 2052 rdev_err(rdev, 2053 "Supply disable failed: %d\n", ret); 2054 } 2055 } 2056 } 2057 } 2058 2059 /** 2060 * regulator_disable_deferred - disable regulator output with delay 2061 * @regulator: regulator source 2062 * @ms: miliseconds until the regulator is disabled 2063 * 2064 * Execute regulator_disable() on the regulator after a delay. This 2065 * is intended for use with devices that require some time to quiesce. 2066 * 2067 * NOTE: this will only disable the regulator output if no other consumer 2068 * devices have it enabled, the regulator device supports disabling and 2069 * machine constraints permit this operation. 2070 */ 2071 int regulator_disable_deferred(struct regulator *regulator, int ms) 2072 { 2073 struct regulator_dev *rdev = regulator->rdev; 2074 int ret; 2075 2076 if (regulator->always_on) 2077 return 0; 2078 2079 if (!ms) 2080 return regulator_disable(regulator); 2081 2082 mutex_lock(&rdev->mutex); 2083 rdev->deferred_disables++; 2084 mutex_unlock(&rdev->mutex); 2085 2086 ret = queue_delayed_work(system_power_efficient_wq, 2087 &rdev->disable_work, 2088 msecs_to_jiffies(ms)); 2089 if (ret < 0) 2090 return ret; 2091 else 2092 return 0; 2093 } 2094 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2095 2096 static int _regulator_is_enabled(struct regulator_dev *rdev) 2097 { 2098 /* A GPIO control always takes precedence */ 2099 if (rdev->ena_pin) 2100 return rdev->ena_gpio_state; 2101 2102 /* If we don't know then assume that the regulator is always on */ 2103 if (!rdev->desc->ops->is_enabled) 2104 return 1; 2105 2106 return rdev->desc->ops->is_enabled(rdev); 2107 } 2108 2109 /** 2110 * regulator_is_enabled - is the regulator output enabled 2111 * @regulator: regulator source 2112 * 2113 * Returns positive if the regulator driver backing the source/client 2114 * has requested that the device be enabled, zero if it hasn't, else a 2115 * negative errno code. 2116 * 2117 * Note that the device backing this regulator handle can have multiple 2118 * users, so it might be enabled even if regulator_enable() was never 2119 * called for this particular source. 2120 */ 2121 int regulator_is_enabled(struct regulator *regulator) 2122 { 2123 int ret; 2124 2125 if (regulator->always_on) 2126 return 1; 2127 2128 mutex_lock(®ulator->rdev->mutex); 2129 ret = _regulator_is_enabled(regulator->rdev); 2130 mutex_unlock(®ulator->rdev->mutex); 2131 2132 return ret; 2133 } 2134 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2135 2136 /** 2137 * regulator_can_change_voltage - check if regulator can change voltage 2138 * @regulator: regulator source 2139 * 2140 * Returns positive if the regulator driver backing the source/client 2141 * can change its voltage, false otherwise. Useful for detecting fixed 2142 * or dummy regulators and disabling voltage change logic in the client 2143 * driver. 2144 */ 2145 int regulator_can_change_voltage(struct regulator *regulator) 2146 { 2147 struct regulator_dev *rdev = regulator->rdev; 2148 2149 if (rdev->constraints && 2150 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2151 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2152 return 1; 2153 2154 if (rdev->desc->continuous_voltage_range && 2155 rdev->constraints->min_uV && rdev->constraints->max_uV && 2156 rdev->constraints->min_uV != rdev->constraints->max_uV) 2157 return 1; 2158 } 2159 2160 return 0; 2161 } 2162 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2163 2164 /** 2165 * regulator_count_voltages - count regulator_list_voltage() selectors 2166 * @regulator: regulator source 2167 * 2168 * Returns number of selectors, or negative errno. Selectors are 2169 * numbered starting at zero, and typically correspond to bitfields 2170 * in hardware registers. 2171 */ 2172 int regulator_count_voltages(struct regulator *regulator) 2173 { 2174 struct regulator_dev *rdev = regulator->rdev; 2175 2176 return rdev->desc->n_voltages ? : -EINVAL; 2177 } 2178 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2179 2180 /** 2181 * regulator_list_voltage - enumerate supported voltages 2182 * @regulator: regulator source 2183 * @selector: identify voltage to list 2184 * Context: can sleep 2185 * 2186 * Returns a voltage that can be passed to @regulator_set_voltage(), 2187 * zero if this selector code can't be used on this system, or a 2188 * negative errno. 2189 */ 2190 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2191 { 2192 struct regulator_dev *rdev = regulator->rdev; 2193 struct regulator_ops *ops = rdev->desc->ops; 2194 int ret; 2195 2196 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2197 return rdev->desc->fixed_uV; 2198 2199 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2200 return -EINVAL; 2201 2202 mutex_lock(&rdev->mutex); 2203 ret = ops->list_voltage(rdev, selector); 2204 mutex_unlock(&rdev->mutex); 2205 2206 if (ret > 0) { 2207 if (ret < rdev->constraints->min_uV) 2208 ret = 0; 2209 else if (ret > rdev->constraints->max_uV) 2210 ret = 0; 2211 } 2212 2213 return ret; 2214 } 2215 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2216 2217 /** 2218 * regulator_get_linear_step - return the voltage step size between VSEL values 2219 * @regulator: regulator source 2220 * 2221 * Returns the voltage step size between VSEL values for linear 2222 * regulators, or return 0 if the regulator isn't a linear regulator. 2223 */ 2224 unsigned int regulator_get_linear_step(struct regulator *regulator) 2225 { 2226 struct regulator_dev *rdev = regulator->rdev; 2227 2228 return rdev->desc->uV_step; 2229 } 2230 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2231 2232 /** 2233 * regulator_is_supported_voltage - check if a voltage range can be supported 2234 * 2235 * @regulator: Regulator to check. 2236 * @min_uV: Minimum required voltage in uV. 2237 * @max_uV: Maximum required voltage in uV. 2238 * 2239 * Returns a boolean or a negative error code. 2240 */ 2241 int regulator_is_supported_voltage(struct regulator *regulator, 2242 int min_uV, int max_uV) 2243 { 2244 struct regulator_dev *rdev = regulator->rdev; 2245 int i, voltages, ret; 2246 2247 /* If we can't change voltage check the current voltage */ 2248 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2249 ret = regulator_get_voltage(regulator); 2250 if (ret >= 0) 2251 return min_uV <= ret && ret <= max_uV; 2252 else 2253 return ret; 2254 } 2255 2256 /* Any voltage within constrains range is fine? */ 2257 if (rdev->desc->continuous_voltage_range) 2258 return min_uV >= rdev->constraints->min_uV && 2259 max_uV <= rdev->constraints->max_uV; 2260 2261 ret = regulator_count_voltages(regulator); 2262 if (ret < 0) 2263 return ret; 2264 voltages = ret; 2265 2266 for (i = 0; i < voltages; i++) { 2267 ret = regulator_list_voltage(regulator, i); 2268 2269 if (ret >= min_uV && ret <= max_uV) 2270 return 1; 2271 } 2272 2273 return 0; 2274 } 2275 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2276 2277 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2278 int min_uV, int max_uV) 2279 { 2280 int ret; 2281 int delay = 0; 2282 int best_val = 0; 2283 unsigned int selector; 2284 int old_selector = -1; 2285 2286 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2287 2288 min_uV += rdev->constraints->uV_offset; 2289 max_uV += rdev->constraints->uV_offset; 2290 2291 /* 2292 * If we can't obtain the old selector there is not enough 2293 * info to call set_voltage_time_sel(). 2294 */ 2295 if (_regulator_is_enabled(rdev) && 2296 rdev->desc->ops->set_voltage_time_sel && 2297 rdev->desc->ops->get_voltage_sel) { 2298 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2299 if (old_selector < 0) 2300 return old_selector; 2301 } 2302 2303 if (rdev->desc->ops->set_voltage) { 2304 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2305 &selector); 2306 2307 if (ret >= 0) { 2308 if (rdev->desc->ops->list_voltage) 2309 best_val = rdev->desc->ops->list_voltage(rdev, 2310 selector); 2311 else 2312 best_val = _regulator_get_voltage(rdev); 2313 } 2314 2315 } else if (rdev->desc->ops->set_voltage_sel) { 2316 if (rdev->desc->ops->map_voltage) { 2317 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2318 max_uV); 2319 } else { 2320 if (rdev->desc->ops->list_voltage == 2321 regulator_list_voltage_linear) 2322 ret = regulator_map_voltage_linear(rdev, 2323 min_uV, max_uV); 2324 else 2325 ret = regulator_map_voltage_iterate(rdev, 2326 min_uV, max_uV); 2327 } 2328 2329 if (ret >= 0) { 2330 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2331 if (min_uV <= best_val && max_uV >= best_val) { 2332 selector = ret; 2333 if (old_selector == selector) 2334 ret = 0; 2335 else 2336 ret = rdev->desc->ops->set_voltage_sel( 2337 rdev, ret); 2338 } else { 2339 ret = -EINVAL; 2340 } 2341 } 2342 } else { 2343 ret = -EINVAL; 2344 } 2345 2346 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2347 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2348 && old_selector != selector) { 2349 2350 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2351 old_selector, selector); 2352 if (delay < 0) { 2353 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2354 delay); 2355 delay = 0; 2356 } 2357 2358 /* Insert any necessary delays */ 2359 if (delay >= 1000) { 2360 mdelay(delay / 1000); 2361 udelay(delay % 1000); 2362 } else if (delay) { 2363 udelay(delay); 2364 } 2365 } 2366 2367 if (ret == 0 && best_val >= 0) { 2368 unsigned long data = best_val; 2369 2370 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2371 (void *)data); 2372 } 2373 2374 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2375 2376 return ret; 2377 } 2378 2379 /** 2380 * regulator_set_voltage - set regulator output voltage 2381 * @regulator: regulator source 2382 * @min_uV: Minimum required voltage in uV 2383 * @max_uV: Maximum acceptable voltage in uV 2384 * 2385 * Sets a voltage regulator to the desired output voltage. This can be set 2386 * during any regulator state. IOW, regulator can be disabled or enabled. 2387 * 2388 * If the regulator is enabled then the voltage will change to the new value 2389 * immediately otherwise if the regulator is disabled the regulator will 2390 * output at the new voltage when enabled. 2391 * 2392 * NOTE: If the regulator is shared between several devices then the lowest 2393 * request voltage that meets the system constraints will be used. 2394 * Regulator system constraints must be set for this regulator before 2395 * calling this function otherwise this call will fail. 2396 */ 2397 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2398 { 2399 struct regulator_dev *rdev = regulator->rdev; 2400 int ret = 0; 2401 int old_min_uV, old_max_uV; 2402 int current_uV; 2403 2404 mutex_lock(&rdev->mutex); 2405 2406 /* If we're setting the same range as last time the change 2407 * should be a noop (some cpufreq implementations use the same 2408 * voltage for multiple frequencies, for example). 2409 */ 2410 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2411 goto out; 2412 2413 /* If we're trying to set a range that overlaps the current voltage, 2414 * return succesfully even though the regulator does not support 2415 * changing the voltage. 2416 */ 2417 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2418 current_uV = _regulator_get_voltage(rdev); 2419 if (min_uV <= current_uV && current_uV <= max_uV) { 2420 regulator->min_uV = min_uV; 2421 regulator->max_uV = max_uV; 2422 goto out; 2423 } 2424 } 2425 2426 /* sanity check */ 2427 if (!rdev->desc->ops->set_voltage && 2428 !rdev->desc->ops->set_voltage_sel) { 2429 ret = -EINVAL; 2430 goto out; 2431 } 2432 2433 /* constraints check */ 2434 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2435 if (ret < 0) 2436 goto out; 2437 2438 /* restore original values in case of error */ 2439 old_min_uV = regulator->min_uV; 2440 old_max_uV = regulator->max_uV; 2441 regulator->min_uV = min_uV; 2442 regulator->max_uV = max_uV; 2443 2444 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2445 if (ret < 0) 2446 goto out2; 2447 2448 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2449 if (ret < 0) 2450 goto out2; 2451 2452 out: 2453 mutex_unlock(&rdev->mutex); 2454 return ret; 2455 out2: 2456 regulator->min_uV = old_min_uV; 2457 regulator->max_uV = old_max_uV; 2458 mutex_unlock(&rdev->mutex); 2459 return ret; 2460 } 2461 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2462 2463 /** 2464 * regulator_set_voltage_time - get raise/fall time 2465 * @regulator: regulator source 2466 * @old_uV: starting voltage in microvolts 2467 * @new_uV: target voltage in microvolts 2468 * 2469 * Provided with the starting and ending voltage, this function attempts to 2470 * calculate the time in microseconds required to rise or fall to this new 2471 * voltage. 2472 */ 2473 int regulator_set_voltage_time(struct regulator *regulator, 2474 int old_uV, int new_uV) 2475 { 2476 struct regulator_dev *rdev = regulator->rdev; 2477 struct regulator_ops *ops = rdev->desc->ops; 2478 int old_sel = -1; 2479 int new_sel = -1; 2480 int voltage; 2481 int i; 2482 2483 /* Currently requires operations to do this */ 2484 if (!ops->list_voltage || !ops->set_voltage_time_sel 2485 || !rdev->desc->n_voltages) 2486 return -EINVAL; 2487 2488 for (i = 0; i < rdev->desc->n_voltages; i++) { 2489 /* We only look for exact voltage matches here */ 2490 voltage = regulator_list_voltage(regulator, i); 2491 if (voltage < 0) 2492 return -EINVAL; 2493 if (voltage == 0) 2494 continue; 2495 if (voltage == old_uV) 2496 old_sel = i; 2497 if (voltage == new_uV) 2498 new_sel = i; 2499 } 2500 2501 if (old_sel < 0 || new_sel < 0) 2502 return -EINVAL; 2503 2504 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2505 } 2506 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2507 2508 /** 2509 * regulator_set_voltage_time_sel - get raise/fall time 2510 * @rdev: regulator source device 2511 * @old_selector: selector for starting voltage 2512 * @new_selector: selector for target voltage 2513 * 2514 * Provided with the starting and target voltage selectors, this function 2515 * returns time in microseconds required to rise or fall to this new voltage 2516 * 2517 * Drivers providing ramp_delay in regulation_constraints can use this as their 2518 * set_voltage_time_sel() operation. 2519 */ 2520 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2521 unsigned int old_selector, 2522 unsigned int new_selector) 2523 { 2524 unsigned int ramp_delay = 0; 2525 int old_volt, new_volt; 2526 2527 if (rdev->constraints->ramp_delay) 2528 ramp_delay = rdev->constraints->ramp_delay; 2529 else if (rdev->desc->ramp_delay) 2530 ramp_delay = rdev->desc->ramp_delay; 2531 2532 if (ramp_delay == 0) { 2533 rdev_warn(rdev, "ramp_delay not set\n"); 2534 return 0; 2535 } 2536 2537 /* sanity check */ 2538 if (!rdev->desc->ops->list_voltage) 2539 return -EINVAL; 2540 2541 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2542 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2543 2544 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2545 } 2546 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2547 2548 /** 2549 * regulator_sync_voltage - re-apply last regulator output voltage 2550 * @regulator: regulator source 2551 * 2552 * Re-apply the last configured voltage. This is intended to be used 2553 * where some external control source the consumer is cooperating with 2554 * has caused the configured voltage to change. 2555 */ 2556 int regulator_sync_voltage(struct regulator *regulator) 2557 { 2558 struct regulator_dev *rdev = regulator->rdev; 2559 int ret, min_uV, max_uV; 2560 2561 mutex_lock(&rdev->mutex); 2562 2563 if (!rdev->desc->ops->set_voltage && 2564 !rdev->desc->ops->set_voltage_sel) { 2565 ret = -EINVAL; 2566 goto out; 2567 } 2568 2569 /* This is only going to work if we've had a voltage configured. */ 2570 if (!regulator->min_uV && !regulator->max_uV) { 2571 ret = -EINVAL; 2572 goto out; 2573 } 2574 2575 min_uV = regulator->min_uV; 2576 max_uV = regulator->max_uV; 2577 2578 /* This should be a paranoia check... */ 2579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2580 if (ret < 0) 2581 goto out; 2582 2583 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2584 if (ret < 0) 2585 goto out; 2586 2587 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2588 2589 out: 2590 mutex_unlock(&rdev->mutex); 2591 return ret; 2592 } 2593 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2594 2595 static int _regulator_get_voltage(struct regulator_dev *rdev) 2596 { 2597 int sel, ret; 2598 2599 if (rdev->desc->ops->get_voltage_sel) { 2600 sel = rdev->desc->ops->get_voltage_sel(rdev); 2601 if (sel < 0) 2602 return sel; 2603 ret = rdev->desc->ops->list_voltage(rdev, sel); 2604 } else if (rdev->desc->ops->get_voltage) { 2605 ret = rdev->desc->ops->get_voltage(rdev); 2606 } else if (rdev->desc->ops->list_voltage) { 2607 ret = rdev->desc->ops->list_voltage(rdev, 0); 2608 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2609 ret = rdev->desc->fixed_uV; 2610 } else { 2611 return -EINVAL; 2612 } 2613 2614 if (ret < 0) 2615 return ret; 2616 return ret - rdev->constraints->uV_offset; 2617 } 2618 2619 /** 2620 * regulator_get_voltage - get regulator output voltage 2621 * @regulator: regulator source 2622 * 2623 * This returns the current regulator voltage in uV. 2624 * 2625 * NOTE: If the regulator is disabled it will return the voltage value. This 2626 * function should not be used to determine regulator state. 2627 */ 2628 int regulator_get_voltage(struct regulator *regulator) 2629 { 2630 int ret; 2631 2632 mutex_lock(®ulator->rdev->mutex); 2633 2634 ret = _regulator_get_voltage(regulator->rdev); 2635 2636 mutex_unlock(®ulator->rdev->mutex); 2637 2638 return ret; 2639 } 2640 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2641 2642 /** 2643 * regulator_set_current_limit - set regulator output current limit 2644 * @regulator: regulator source 2645 * @min_uA: Minimum supported current in uA 2646 * @max_uA: Maximum supported current in uA 2647 * 2648 * Sets current sink to the desired output current. This can be set during 2649 * any regulator state. IOW, regulator can be disabled or enabled. 2650 * 2651 * If the regulator is enabled then the current will change to the new value 2652 * immediately otherwise if the regulator is disabled the regulator will 2653 * output at the new current when enabled. 2654 * 2655 * NOTE: Regulator system constraints must be set for this regulator before 2656 * calling this function otherwise this call will fail. 2657 */ 2658 int regulator_set_current_limit(struct regulator *regulator, 2659 int min_uA, int max_uA) 2660 { 2661 struct regulator_dev *rdev = regulator->rdev; 2662 int ret; 2663 2664 mutex_lock(&rdev->mutex); 2665 2666 /* sanity check */ 2667 if (!rdev->desc->ops->set_current_limit) { 2668 ret = -EINVAL; 2669 goto out; 2670 } 2671 2672 /* constraints check */ 2673 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2674 if (ret < 0) 2675 goto out; 2676 2677 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2678 out: 2679 mutex_unlock(&rdev->mutex); 2680 return ret; 2681 } 2682 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2683 2684 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2685 { 2686 int ret; 2687 2688 mutex_lock(&rdev->mutex); 2689 2690 /* sanity check */ 2691 if (!rdev->desc->ops->get_current_limit) { 2692 ret = -EINVAL; 2693 goto out; 2694 } 2695 2696 ret = rdev->desc->ops->get_current_limit(rdev); 2697 out: 2698 mutex_unlock(&rdev->mutex); 2699 return ret; 2700 } 2701 2702 /** 2703 * regulator_get_current_limit - get regulator output current 2704 * @regulator: regulator source 2705 * 2706 * This returns the current supplied by the specified current sink in uA. 2707 * 2708 * NOTE: If the regulator is disabled it will return the current value. This 2709 * function should not be used to determine regulator state. 2710 */ 2711 int regulator_get_current_limit(struct regulator *regulator) 2712 { 2713 return _regulator_get_current_limit(regulator->rdev); 2714 } 2715 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2716 2717 /** 2718 * regulator_set_mode - set regulator operating mode 2719 * @regulator: regulator source 2720 * @mode: operating mode - one of the REGULATOR_MODE constants 2721 * 2722 * Set regulator operating mode to increase regulator efficiency or improve 2723 * regulation performance. 2724 * 2725 * NOTE: Regulator system constraints must be set for this regulator before 2726 * calling this function otherwise this call will fail. 2727 */ 2728 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2729 { 2730 struct regulator_dev *rdev = regulator->rdev; 2731 int ret; 2732 int regulator_curr_mode; 2733 2734 mutex_lock(&rdev->mutex); 2735 2736 /* sanity check */ 2737 if (!rdev->desc->ops->set_mode) { 2738 ret = -EINVAL; 2739 goto out; 2740 } 2741 2742 /* return if the same mode is requested */ 2743 if (rdev->desc->ops->get_mode) { 2744 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2745 if (regulator_curr_mode == mode) { 2746 ret = 0; 2747 goto out; 2748 } 2749 } 2750 2751 /* constraints check */ 2752 ret = regulator_mode_constrain(rdev, &mode); 2753 if (ret < 0) 2754 goto out; 2755 2756 ret = rdev->desc->ops->set_mode(rdev, mode); 2757 out: 2758 mutex_unlock(&rdev->mutex); 2759 return ret; 2760 } 2761 EXPORT_SYMBOL_GPL(regulator_set_mode); 2762 2763 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2764 { 2765 int ret; 2766 2767 mutex_lock(&rdev->mutex); 2768 2769 /* sanity check */ 2770 if (!rdev->desc->ops->get_mode) { 2771 ret = -EINVAL; 2772 goto out; 2773 } 2774 2775 ret = rdev->desc->ops->get_mode(rdev); 2776 out: 2777 mutex_unlock(&rdev->mutex); 2778 return ret; 2779 } 2780 2781 /** 2782 * regulator_get_mode - get regulator operating mode 2783 * @regulator: regulator source 2784 * 2785 * Get the current regulator operating mode. 2786 */ 2787 unsigned int regulator_get_mode(struct regulator *regulator) 2788 { 2789 return _regulator_get_mode(regulator->rdev); 2790 } 2791 EXPORT_SYMBOL_GPL(regulator_get_mode); 2792 2793 /** 2794 * regulator_set_optimum_mode - set regulator optimum operating mode 2795 * @regulator: regulator source 2796 * @uA_load: load current 2797 * 2798 * Notifies the regulator core of a new device load. This is then used by 2799 * DRMS (if enabled by constraints) to set the most efficient regulator 2800 * operating mode for the new regulator loading. 2801 * 2802 * Consumer devices notify their supply regulator of the maximum power 2803 * they will require (can be taken from device datasheet in the power 2804 * consumption tables) when they change operational status and hence power 2805 * state. Examples of operational state changes that can affect power 2806 * consumption are :- 2807 * 2808 * o Device is opened / closed. 2809 * o Device I/O is about to begin or has just finished. 2810 * o Device is idling in between work. 2811 * 2812 * This information is also exported via sysfs to userspace. 2813 * 2814 * DRMS will sum the total requested load on the regulator and change 2815 * to the most efficient operating mode if platform constraints allow. 2816 * 2817 * Returns the new regulator mode or error. 2818 */ 2819 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2820 { 2821 struct regulator_dev *rdev = regulator->rdev; 2822 struct regulator *consumer; 2823 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2824 unsigned int mode; 2825 2826 if (rdev->supply) 2827 input_uV = regulator_get_voltage(rdev->supply); 2828 2829 mutex_lock(&rdev->mutex); 2830 2831 /* 2832 * first check to see if we can set modes at all, otherwise just 2833 * tell the consumer everything is OK. 2834 */ 2835 regulator->uA_load = uA_load; 2836 ret = regulator_check_drms(rdev); 2837 if (ret < 0) { 2838 ret = 0; 2839 goto out; 2840 } 2841 2842 if (!rdev->desc->ops->get_optimum_mode) 2843 goto out; 2844 2845 /* 2846 * we can actually do this so any errors are indicators of 2847 * potential real failure. 2848 */ 2849 ret = -EINVAL; 2850 2851 if (!rdev->desc->ops->set_mode) 2852 goto out; 2853 2854 /* get output voltage */ 2855 output_uV = _regulator_get_voltage(rdev); 2856 if (output_uV <= 0) { 2857 rdev_err(rdev, "invalid output voltage found\n"); 2858 goto out; 2859 } 2860 2861 /* No supply? Use constraint voltage */ 2862 if (input_uV <= 0) 2863 input_uV = rdev->constraints->input_uV; 2864 if (input_uV <= 0) { 2865 rdev_err(rdev, "invalid input voltage found\n"); 2866 goto out; 2867 } 2868 2869 /* calc total requested load for this regulator */ 2870 list_for_each_entry(consumer, &rdev->consumer_list, list) 2871 total_uA_load += consumer->uA_load; 2872 2873 mode = rdev->desc->ops->get_optimum_mode(rdev, 2874 input_uV, output_uV, 2875 total_uA_load); 2876 ret = regulator_mode_constrain(rdev, &mode); 2877 if (ret < 0) { 2878 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2879 total_uA_load, input_uV, output_uV); 2880 goto out; 2881 } 2882 2883 ret = rdev->desc->ops->set_mode(rdev, mode); 2884 if (ret < 0) { 2885 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2886 goto out; 2887 } 2888 ret = mode; 2889 out: 2890 mutex_unlock(&rdev->mutex); 2891 return ret; 2892 } 2893 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2894 2895 /** 2896 * regulator_allow_bypass - allow the regulator to go into bypass mode 2897 * 2898 * @regulator: Regulator to configure 2899 * @enable: enable or disable bypass mode 2900 * 2901 * Allow the regulator to go into bypass mode if all other consumers 2902 * for the regulator also enable bypass mode and the machine 2903 * constraints allow this. Bypass mode means that the regulator is 2904 * simply passing the input directly to the output with no regulation. 2905 */ 2906 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2907 { 2908 struct regulator_dev *rdev = regulator->rdev; 2909 int ret = 0; 2910 2911 if (!rdev->desc->ops->set_bypass) 2912 return 0; 2913 2914 if (rdev->constraints && 2915 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2916 return 0; 2917 2918 mutex_lock(&rdev->mutex); 2919 2920 if (enable && !regulator->bypass) { 2921 rdev->bypass_count++; 2922 2923 if (rdev->bypass_count == rdev->open_count) { 2924 ret = rdev->desc->ops->set_bypass(rdev, enable); 2925 if (ret != 0) 2926 rdev->bypass_count--; 2927 } 2928 2929 } else if (!enable && regulator->bypass) { 2930 rdev->bypass_count--; 2931 2932 if (rdev->bypass_count != rdev->open_count) { 2933 ret = rdev->desc->ops->set_bypass(rdev, enable); 2934 if (ret != 0) 2935 rdev->bypass_count++; 2936 } 2937 } 2938 2939 if (ret == 0) 2940 regulator->bypass = enable; 2941 2942 mutex_unlock(&rdev->mutex); 2943 2944 return ret; 2945 } 2946 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2947 2948 /** 2949 * regulator_register_notifier - register regulator event notifier 2950 * @regulator: regulator source 2951 * @nb: notifier block 2952 * 2953 * Register notifier block to receive regulator events. 2954 */ 2955 int regulator_register_notifier(struct regulator *regulator, 2956 struct notifier_block *nb) 2957 { 2958 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2959 nb); 2960 } 2961 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2962 2963 /** 2964 * regulator_unregister_notifier - unregister regulator event notifier 2965 * @regulator: regulator source 2966 * @nb: notifier block 2967 * 2968 * Unregister regulator event notifier block. 2969 */ 2970 int regulator_unregister_notifier(struct regulator *regulator, 2971 struct notifier_block *nb) 2972 { 2973 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2974 nb); 2975 } 2976 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2977 2978 /* notify regulator consumers and downstream regulator consumers. 2979 * Note mutex must be held by caller. 2980 */ 2981 static void _notifier_call_chain(struct regulator_dev *rdev, 2982 unsigned long event, void *data) 2983 { 2984 /* call rdev chain first */ 2985 blocking_notifier_call_chain(&rdev->notifier, event, data); 2986 } 2987 2988 /** 2989 * regulator_bulk_get - get multiple regulator consumers 2990 * 2991 * @dev: Device to supply 2992 * @num_consumers: Number of consumers to register 2993 * @consumers: Configuration of consumers; clients are stored here. 2994 * 2995 * @return 0 on success, an errno on failure. 2996 * 2997 * This helper function allows drivers to get several regulator 2998 * consumers in one operation. If any of the regulators cannot be 2999 * acquired then any regulators that were allocated will be freed 3000 * before returning to the caller. 3001 */ 3002 int regulator_bulk_get(struct device *dev, int num_consumers, 3003 struct regulator_bulk_data *consumers) 3004 { 3005 int i; 3006 int ret; 3007 3008 for (i = 0; i < num_consumers; i++) 3009 consumers[i].consumer = NULL; 3010 3011 for (i = 0; i < num_consumers; i++) { 3012 consumers[i].consumer = regulator_get(dev, 3013 consumers[i].supply); 3014 if (IS_ERR(consumers[i].consumer)) { 3015 ret = PTR_ERR(consumers[i].consumer); 3016 dev_err(dev, "Failed to get supply '%s': %d\n", 3017 consumers[i].supply, ret); 3018 consumers[i].consumer = NULL; 3019 goto err; 3020 } 3021 } 3022 3023 return 0; 3024 3025 err: 3026 while (--i >= 0) 3027 regulator_put(consumers[i].consumer); 3028 3029 return ret; 3030 } 3031 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3032 3033 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3034 { 3035 struct regulator_bulk_data *bulk = data; 3036 3037 bulk->ret = regulator_enable(bulk->consumer); 3038 } 3039 3040 /** 3041 * regulator_bulk_enable - enable multiple regulator consumers 3042 * 3043 * @num_consumers: Number of consumers 3044 * @consumers: Consumer data; clients are stored here. 3045 * @return 0 on success, an errno on failure 3046 * 3047 * This convenience API allows consumers to enable multiple regulator 3048 * clients in a single API call. If any consumers cannot be enabled 3049 * then any others that were enabled will be disabled again prior to 3050 * return. 3051 */ 3052 int regulator_bulk_enable(int num_consumers, 3053 struct regulator_bulk_data *consumers) 3054 { 3055 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3056 int i; 3057 int ret = 0; 3058 3059 for (i = 0; i < num_consumers; i++) { 3060 if (consumers[i].consumer->always_on) 3061 consumers[i].ret = 0; 3062 else 3063 async_schedule_domain(regulator_bulk_enable_async, 3064 &consumers[i], &async_domain); 3065 } 3066 3067 async_synchronize_full_domain(&async_domain); 3068 3069 /* If any consumer failed we need to unwind any that succeeded */ 3070 for (i = 0; i < num_consumers; i++) { 3071 if (consumers[i].ret != 0) { 3072 ret = consumers[i].ret; 3073 goto err; 3074 } 3075 } 3076 3077 return 0; 3078 3079 err: 3080 for (i = 0; i < num_consumers; i++) { 3081 if (consumers[i].ret < 0) 3082 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3083 consumers[i].ret); 3084 else 3085 regulator_disable(consumers[i].consumer); 3086 } 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3091 3092 /** 3093 * regulator_bulk_disable - disable multiple regulator consumers 3094 * 3095 * @num_consumers: Number of consumers 3096 * @consumers: Consumer data; clients are stored here. 3097 * @return 0 on success, an errno on failure 3098 * 3099 * This convenience API allows consumers to disable multiple regulator 3100 * clients in a single API call. If any consumers cannot be disabled 3101 * then any others that were disabled will be enabled again prior to 3102 * return. 3103 */ 3104 int regulator_bulk_disable(int num_consumers, 3105 struct regulator_bulk_data *consumers) 3106 { 3107 int i; 3108 int ret, r; 3109 3110 for (i = num_consumers - 1; i >= 0; --i) { 3111 ret = regulator_disable(consumers[i].consumer); 3112 if (ret != 0) 3113 goto err; 3114 } 3115 3116 return 0; 3117 3118 err: 3119 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3120 for (++i; i < num_consumers; ++i) { 3121 r = regulator_enable(consumers[i].consumer); 3122 if (r != 0) 3123 pr_err("Failed to reename %s: %d\n", 3124 consumers[i].supply, r); 3125 } 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3130 3131 /** 3132 * regulator_bulk_force_disable - force disable multiple regulator consumers 3133 * 3134 * @num_consumers: Number of consumers 3135 * @consumers: Consumer data; clients are stored here. 3136 * @return 0 on success, an errno on failure 3137 * 3138 * This convenience API allows consumers to forcibly disable multiple regulator 3139 * clients in a single API call. 3140 * NOTE: This should be used for situations when device damage will 3141 * likely occur if the regulators are not disabled (e.g. over temp). 3142 * Although regulator_force_disable function call for some consumers can 3143 * return error numbers, the function is called for all consumers. 3144 */ 3145 int regulator_bulk_force_disable(int num_consumers, 3146 struct regulator_bulk_data *consumers) 3147 { 3148 int i; 3149 int ret; 3150 3151 for (i = 0; i < num_consumers; i++) 3152 consumers[i].ret = 3153 regulator_force_disable(consumers[i].consumer); 3154 3155 for (i = 0; i < num_consumers; i++) { 3156 if (consumers[i].ret != 0) { 3157 ret = consumers[i].ret; 3158 goto out; 3159 } 3160 } 3161 3162 return 0; 3163 out: 3164 return ret; 3165 } 3166 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3167 3168 /** 3169 * regulator_bulk_free - free multiple regulator consumers 3170 * 3171 * @num_consumers: Number of consumers 3172 * @consumers: Consumer data; clients are stored here. 3173 * 3174 * This convenience API allows consumers to free multiple regulator 3175 * clients in a single API call. 3176 */ 3177 void regulator_bulk_free(int num_consumers, 3178 struct regulator_bulk_data *consumers) 3179 { 3180 int i; 3181 3182 for (i = 0; i < num_consumers; i++) { 3183 regulator_put(consumers[i].consumer); 3184 consumers[i].consumer = NULL; 3185 } 3186 } 3187 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3188 3189 /** 3190 * regulator_notifier_call_chain - call regulator event notifier 3191 * @rdev: regulator source 3192 * @event: notifier block 3193 * @data: callback-specific data. 3194 * 3195 * Called by regulator drivers to notify clients a regulator event has 3196 * occurred. We also notify regulator clients downstream. 3197 * Note lock must be held by caller. 3198 */ 3199 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3200 unsigned long event, void *data) 3201 { 3202 _notifier_call_chain(rdev, event, data); 3203 return NOTIFY_DONE; 3204 3205 } 3206 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3207 3208 /** 3209 * regulator_mode_to_status - convert a regulator mode into a status 3210 * 3211 * @mode: Mode to convert 3212 * 3213 * Convert a regulator mode into a status. 3214 */ 3215 int regulator_mode_to_status(unsigned int mode) 3216 { 3217 switch (mode) { 3218 case REGULATOR_MODE_FAST: 3219 return REGULATOR_STATUS_FAST; 3220 case REGULATOR_MODE_NORMAL: 3221 return REGULATOR_STATUS_NORMAL; 3222 case REGULATOR_MODE_IDLE: 3223 return REGULATOR_STATUS_IDLE; 3224 case REGULATOR_MODE_STANDBY: 3225 return REGULATOR_STATUS_STANDBY; 3226 default: 3227 return REGULATOR_STATUS_UNDEFINED; 3228 } 3229 } 3230 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3231 3232 /* 3233 * To avoid cluttering sysfs (and memory) with useless state, only 3234 * create attributes that can be meaningfully displayed. 3235 */ 3236 static int add_regulator_attributes(struct regulator_dev *rdev) 3237 { 3238 struct device *dev = &rdev->dev; 3239 struct regulator_ops *ops = rdev->desc->ops; 3240 int status = 0; 3241 3242 /* some attributes need specific methods to be displayed */ 3243 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3244 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3245 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3246 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) { 3247 status = device_create_file(dev, &dev_attr_microvolts); 3248 if (status < 0) 3249 return status; 3250 } 3251 if (ops->get_current_limit) { 3252 status = device_create_file(dev, &dev_attr_microamps); 3253 if (status < 0) 3254 return status; 3255 } 3256 if (ops->get_mode) { 3257 status = device_create_file(dev, &dev_attr_opmode); 3258 if (status < 0) 3259 return status; 3260 } 3261 if (rdev->ena_pin || ops->is_enabled) { 3262 status = device_create_file(dev, &dev_attr_state); 3263 if (status < 0) 3264 return status; 3265 } 3266 if (ops->get_status) { 3267 status = device_create_file(dev, &dev_attr_status); 3268 if (status < 0) 3269 return status; 3270 } 3271 if (ops->get_bypass) { 3272 status = device_create_file(dev, &dev_attr_bypass); 3273 if (status < 0) 3274 return status; 3275 } 3276 3277 /* some attributes are type-specific */ 3278 if (rdev->desc->type == REGULATOR_CURRENT) { 3279 status = device_create_file(dev, &dev_attr_requested_microamps); 3280 if (status < 0) 3281 return status; 3282 } 3283 3284 /* all the other attributes exist to support constraints; 3285 * don't show them if there are no constraints, or if the 3286 * relevant supporting methods are missing. 3287 */ 3288 if (!rdev->constraints) 3289 return status; 3290 3291 /* constraints need specific supporting methods */ 3292 if (ops->set_voltage || ops->set_voltage_sel) { 3293 status = device_create_file(dev, &dev_attr_min_microvolts); 3294 if (status < 0) 3295 return status; 3296 status = device_create_file(dev, &dev_attr_max_microvolts); 3297 if (status < 0) 3298 return status; 3299 } 3300 if (ops->set_current_limit) { 3301 status = device_create_file(dev, &dev_attr_min_microamps); 3302 if (status < 0) 3303 return status; 3304 status = device_create_file(dev, &dev_attr_max_microamps); 3305 if (status < 0) 3306 return status; 3307 } 3308 3309 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3310 if (status < 0) 3311 return status; 3312 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3313 if (status < 0) 3314 return status; 3315 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3316 if (status < 0) 3317 return status; 3318 3319 if (ops->set_suspend_voltage) { 3320 status = device_create_file(dev, 3321 &dev_attr_suspend_standby_microvolts); 3322 if (status < 0) 3323 return status; 3324 status = device_create_file(dev, 3325 &dev_attr_suspend_mem_microvolts); 3326 if (status < 0) 3327 return status; 3328 status = device_create_file(dev, 3329 &dev_attr_suspend_disk_microvolts); 3330 if (status < 0) 3331 return status; 3332 } 3333 3334 if (ops->set_suspend_mode) { 3335 status = device_create_file(dev, 3336 &dev_attr_suspend_standby_mode); 3337 if (status < 0) 3338 return status; 3339 status = device_create_file(dev, 3340 &dev_attr_suspend_mem_mode); 3341 if (status < 0) 3342 return status; 3343 status = device_create_file(dev, 3344 &dev_attr_suspend_disk_mode); 3345 if (status < 0) 3346 return status; 3347 } 3348 3349 return status; 3350 } 3351 3352 static void rdev_init_debugfs(struct regulator_dev *rdev) 3353 { 3354 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3355 if (!rdev->debugfs) { 3356 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3357 return; 3358 } 3359 3360 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3361 &rdev->use_count); 3362 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3363 &rdev->open_count); 3364 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3365 &rdev->bypass_count); 3366 } 3367 3368 /** 3369 * regulator_register - register regulator 3370 * @regulator_desc: regulator to register 3371 * @config: runtime configuration for regulator 3372 * 3373 * Called by regulator drivers to register a regulator. 3374 * Returns a valid pointer to struct regulator_dev on success 3375 * or an ERR_PTR() on error. 3376 */ 3377 struct regulator_dev * 3378 regulator_register(const struct regulator_desc *regulator_desc, 3379 const struct regulator_config *config) 3380 { 3381 const struct regulation_constraints *constraints = NULL; 3382 const struct regulator_init_data *init_data; 3383 static atomic_t regulator_no = ATOMIC_INIT(0); 3384 struct regulator_dev *rdev; 3385 struct device *dev; 3386 int ret, i; 3387 const char *supply = NULL; 3388 3389 if (regulator_desc == NULL || config == NULL) 3390 return ERR_PTR(-EINVAL); 3391 3392 dev = config->dev; 3393 WARN_ON(!dev); 3394 3395 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3396 return ERR_PTR(-EINVAL); 3397 3398 if (regulator_desc->type != REGULATOR_VOLTAGE && 3399 regulator_desc->type != REGULATOR_CURRENT) 3400 return ERR_PTR(-EINVAL); 3401 3402 /* Only one of each should be implemented */ 3403 WARN_ON(regulator_desc->ops->get_voltage && 3404 regulator_desc->ops->get_voltage_sel); 3405 WARN_ON(regulator_desc->ops->set_voltage && 3406 regulator_desc->ops->set_voltage_sel); 3407 3408 /* If we're using selectors we must implement list_voltage. */ 3409 if (regulator_desc->ops->get_voltage_sel && 3410 !regulator_desc->ops->list_voltage) { 3411 return ERR_PTR(-EINVAL); 3412 } 3413 if (regulator_desc->ops->set_voltage_sel && 3414 !regulator_desc->ops->list_voltage) { 3415 return ERR_PTR(-EINVAL); 3416 } 3417 3418 init_data = config->init_data; 3419 3420 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3421 if (rdev == NULL) 3422 return ERR_PTR(-ENOMEM); 3423 3424 mutex_lock(®ulator_list_mutex); 3425 3426 mutex_init(&rdev->mutex); 3427 rdev->reg_data = config->driver_data; 3428 rdev->owner = regulator_desc->owner; 3429 rdev->desc = regulator_desc; 3430 if (config->regmap) 3431 rdev->regmap = config->regmap; 3432 else if (dev_get_regmap(dev, NULL)) 3433 rdev->regmap = dev_get_regmap(dev, NULL); 3434 else if (dev->parent) 3435 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3436 INIT_LIST_HEAD(&rdev->consumer_list); 3437 INIT_LIST_HEAD(&rdev->list); 3438 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3439 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3440 3441 /* preform any regulator specific init */ 3442 if (init_data && init_data->regulator_init) { 3443 ret = init_data->regulator_init(rdev->reg_data); 3444 if (ret < 0) 3445 goto clean; 3446 } 3447 3448 /* register with sysfs */ 3449 rdev->dev.class = ®ulator_class; 3450 rdev->dev.of_node = config->of_node; 3451 rdev->dev.parent = dev; 3452 dev_set_name(&rdev->dev, "regulator.%d", 3453 atomic_inc_return(®ulator_no) - 1); 3454 ret = device_register(&rdev->dev); 3455 if (ret != 0) { 3456 put_device(&rdev->dev); 3457 goto clean; 3458 } 3459 3460 dev_set_drvdata(&rdev->dev, rdev); 3461 3462 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3463 ret = regulator_ena_gpio_request(rdev, config); 3464 if (ret != 0) { 3465 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3466 config->ena_gpio, ret); 3467 goto wash; 3468 } 3469 3470 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3471 rdev->ena_gpio_state = 1; 3472 3473 if (config->ena_gpio_invert) 3474 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3475 } 3476 3477 /* set regulator constraints */ 3478 if (init_data) 3479 constraints = &init_data->constraints; 3480 3481 ret = set_machine_constraints(rdev, constraints); 3482 if (ret < 0) 3483 goto scrub; 3484 3485 /* add attributes supported by this regulator */ 3486 ret = add_regulator_attributes(rdev); 3487 if (ret < 0) 3488 goto scrub; 3489 3490 if (init_data && init_data->supply_regulator) 3491 supply = init_data->supply_regulator; 3492 else if (regulator_desc->supply_name) 3493 supply = regulator_desc->supply_name; 3494 3495 if (supply) { 3496 struct regulator_dev *r; 3497 3498 r = regulator_dev_lookup(dev, supply, &ret); 3499 3500 if (ret == -ENODEV) { 3501 /* 3502 * No supply was specified for this regulator and 3503 * there will never be one. 3504 */ 3505 ret = 0; 3506 goto add_dev; 3507 } else if (!r) { 3508 dev_err(dev, "Failed to find supply %s\n", supply); 3509 ret = -EPROBE_DEFER; 3510 goto scrub; 3511 } 3512 3513 ret = set_supply(rdev, r); 3514 if (ret < 0) 3515 goto scrub; 3516 3517 /* Enable supply if rail is enabled */ 3518 if (_regulator_is_enabled(rdev)) { 3519 ret = regulator_enable(rdev->supply); 3520 if (ret < 0) 3521 goto scrub; 3522 } 3523 } 3524 3525 add_dev: 3526 /* add consumers devices */ 3527 if (init_data) { 3528 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3529 ret = set_consumer_device_supply(rdev, 3530 init_data->consumer_supplies[i].dev_name, 3531 init_data->consumer_supplies[i].supply); 3532 if (ret < 0) { 3533 dev_err(dev, "Failed to set supply %s\n", 3534 init_data->consumer_supplies[i].supply); 3535 goto unset_supplies; 3536 } 3537 } 3538 } 3539 3540 list_add(&rdev->list, ®ulator_list); 3541 3542 rdev_init_debugfs(rdev); 3543 out: 3544 mutex_unlock(®ulator_list_mutex); 3545 return rdev; 3546 3547 unset_supplies: 3548 unset_regulator_supplies(rdev); 3549 3550 scrub: 3551 if (rdev->supply) 3552 _regulator_put(rdev->supply); 3553 regulator_ena_gpio_free(rdev); 3554 kfree(rdev->constraints); 3555 wash: 3556 device_unregister(&rdev->dev); 3557 /* device core frees rdev */ 3558 rdev = ERR_PTR(ret); 3559 goto out; 3560 3561 clean: 3562 kfree(rdev); 3563 rdev = ERR_PTR(ret); 3564 goto out; 3565 } 3566 EXPORT_SYMBOL_GPL(regulator_register); 3567 3568 /** 3569 * regulator_unregister - unregister regulator 3570 * @rdev: regulator to unregister 3571 * 3572 * Called by regulator drivers to unregister a regulator. 3573 */ 3574 void regulator_unregister(struct regulator_dev *rdev) 3575 { 3576 if (rdev == NULL) 3577 return; 3578 3579 if (rdev->supply) { 3580 while (rdev->use_count--) 3581 regulator_disable(rdev->supply); 3582 regulator_put(rdev->supply); 3583 } 3584 mutex_lock(®ulator_list_mutex); 3585 debugfs_remove_recursive(rdev->debugfs); 3586 flush_work(&rdev->disable_work.work); 3587 WARN_ON(rdev->open_count); 3588 unset_regulator_supplies(rdev); 3589 list_del(&rdev->list); 3590 kfree(rdev->constraints); 3591 regulator_ena_gpio_free(rdev); 3592 device_unregister(&rdev->dev); 3593 mutex_unlock(®ulator_list_mutex); 3594 } 3595 EXPORT_SYMBOL_GPL(regulator_unregister); 3596 3597 /** 3598 * regulator_suspend_prepare - prepare regulators for system wide suspend 3599 * @state: system suspend state 3600 * 3601 * Configure each regulator with it's suspend operating parameters for state. 3602 * This will usually be called by machine suspend code prior to supending. 3603 */ 3604 int regulator_suspend_prepare(suspend_state_t state) 3605 { 3606 struct regulator_dev *rdev; 3607 int ret = 0; 3608 3609 /* ON is handled by regulator active state */ 3610 if (state == PM_SUSPEND_ON) 3611 return -EINVAL; 3612 3613 mutex_lock(®ulator_list_mutex); 3614 list_for_each_entry(rdev, ®ulator_list, list) { 3615 3616 mutex_lock(&rdev->mutex); 3617 ret = suspend_prepare(rdev, state); 3618 mutex_unlock(&rdev->mutex); 3619 3620 if (ret < 0) { 3621 rdev_err(rdev, "failed to prepare\n"); 3622 goto out; 3623 } 3624 } 3625 out: 3626 mutex_unlock(®ulator_list_mutex); 3627 return ret; 3628 } 3629 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3630 3631 /** 3632 * regulator_suspend_finish - resume regulators from system wide suspend 3633 * 3634 * Turn on regulators that might be turned off by regulator_suspend_prepare 3635 * and that should be turned on according to the regulators properties. 3636 */ 3637 int regulator_suspend_finish(void) 3638 { 3639 struct regulator_dev *rdev; 3640 int ret = 0, error; 3641 3642 mutex_lock(®ulator_list_mutex); 3643 list_for_each_entry(rdev, ®ulator_list, list) { 3644 mutex_lock(&rdev->mutex); 3645 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3646 error = _regulator_do_enable(rdev); 3647 if (error) 3648 ret = error; 3649 } else { 3650 if (!have_full_constraints()) 3651 goto unlock; 3652 if (!_regulator_is_enabled(rdev)) 3653 goto unlock; 3654 3655 error = _regulator_do_disable(rdev); 3656 if (error) 3657 ret = error; 3658 } 3659 unlock: 3660 mutex_unlock(&rdev->mutex); 3661 } 3662 mutex_unlock(®ulator_list_mutex); 3663 return ret; 3664 } 3665 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3666 3667 /** 3668 * regulator_has_full_constraints - the system has fully specified constraints 3669 * 3670 * Calling this function will cause the regulator API to disable all 3671 * regulators which have a zero use count and don't have an always_on 3672 * constraint in a late_initcall. 3673 * 3674 * The intention is that this will become the default behaviour in a 3675 * future kernel release so users are encouraged to use this facility 3676 * now. 3677 */ 3678 void regulator_has_full_constraints(void) 3679 { 3680 has_full_constraints = 1; 3681 } 3682 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3683 3684 /** 3685 * rdev_get_drvdata - get rdev regulator driver data 3686 * @rdev: regulator 3687 * 3688 * Get rdev regulator driver private data. This call can be used in the 3689 * regulator driver context. 3690 */ 3691 void *rdev_get_drvdata(struct regulator_dev *rdev) 3692 { 3693 return rdev->reg_data; 3694 } 3695 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3696 3697 /** 3698 * regulator_get_drvdata - get regulator driver data 3699 * @regulator: regulator 3700 * 3701 * Get regulator driver private data. This call can be used in the consumer 3702 * driver context when non API regulator specific functions need to be called. 3703 */ 3704 void *regulator_get_drvdata(struct regulator *regulator) 3705 { 3706 return regulator->rdev->reg_data; 3707 } 3708 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3709 3710 /** 3711 * regulator_set_drvdata - set regulator driver data 3712 * @regulator: regulator 3713 * @data: data 3714 */ 3715 void regulator_set_drvdata(struct regulator *regulator, void *data) 3716 { 3717 regulator->rdev->reg_data = data; 3718 } 3719 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3720 3721 /** 3722 * regulator_get_id - get regulator ID 3723 * @rdev: regulator 3724 */ 3725 int rdev_get_id(struct regulator_dev *rdev) 3726 { 3727 return rdev->desc->id; 3728 } 3729 EXPORT_SYMBOL_GPL(rdev_get_id); 3730 3731 struct device *rdev_get_dev(struct regulator_dev *rdev) 3732 { 3733 return &rdev->dev; 3734 } 3735 EXPORT_SYMBOL_GPL(rdev_get_dev); 3736 3737 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3738 { 3739 return reg_init_data->driver_data; 3740 } 3741 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3742 3743 #ifdef CONFIG_DEBUG_FS 3744 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3745 size_t count, loff_t *ppos) 3746 { 3747 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3748 ssize_t len, ret = 0; 3749 struct regulator_map *map; 3750 3751 if (!buf) 3752 return -ENOMEM; 3753 3754 list_for_each_entry(map, ®ulator_map_list, list) { 3755 len = snprintf(buf + ret, PAGE_SIZE - ret, 3756 "%s -> %s.%s\n", 3757 rdev_get_name(map->regulator), map->dev_name, 3758 map->supply); 3759 if (len >= 0) 3760 ret += len; 3761 if (ret > PAGE_SIZE) { 3762 ret = PAGE_SIZE; 3763 break; 3764 } 3765 } 3766 3767 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3768 3769 kfree(buf); 3770 3771 return ret; 3772 } 3773 #endif 3774 3775 static const struct file_operations supply_map_fops = { 3776 #ifdef CONFIG_DEBUG_FS 3777 .read = supply_map_read_file, 3778 .llseek = default_llseek, 3779 #endif 3780 }; 3781 3782 static int __init regulator_init(void) 3783 { 3784 int ret; 3785 3786 ret = class_register(®ulator_class); 3787 3788 debugfs_root = debugfs_create_dir("regulator", NULL); 3789 if (!debugfs_root) 3790 pr_warn("regulator: Failed to create debugfs directory\n"); 3791 3792 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3793 &supply_map_fops); 3794 3795 regulator_dummy_init(); 3796 3797 return ret; 3798 } 3799 3800 /* init early to allow our consumers to complete system booting */ 3801 core_initcall(regulator_init); 3802 3803 static int __init regulator_init_complete(void) 3804 { 3805 struct regulator_dev *rdev; 3806 struct regulator_ops *ops; 3807 struct regulation_constraints *c; 3808 int enabled, ret; 3809 3810 /* 3811 * Since DT doesn't provide an idiomatic mechanism for 3812 * enabling full constraints and since it's much more natural 3813 * with DT to provide them just assume that a DT enabled 3814 * system has full constraints. 3815 */ 3816 if (of_have_populated_dt()) 3817 has_full_constraints = true; 3818 3819 mutex_lock(®ulator_list_mutex); 3820 3821 /* If we have a full configuration then disable any regulators 3822 * which are not in use or always_on. This will become the 3823 * default behaviour in the future. 3824 */ 3825 list_for_each_entry(rdev, ®ulator_list, list) { 3826 ops = rdev->desc->ops; 3827 c = rdev->constraints; 3828 3829 if (c && c->always_on) 3830 continue; 3831 3832 mutex_lock(&rdev->mutex); 3833 3834 if (rdev->use_count) 3835 goto unlock; 3836 3837 /* If we can't read the status assume it's on. */ 3838 if (ops->is_enabled) 3839 enabled = ops->is_enabled(rdev); 3840 else 3841 enabled = 1; 3842 3843 if (!enabled) 3844 goto unlock; 3845 3846 if (have_full_constraints()) { 3847 /* We log since this may kill the system if it 3848 * goes wrong. */ 3849 rdev_info(rdev, "disabling\n"); 3850 ret = _regulator_do_disable(rdev); 3851 if (ret != 0) 3852 rdev_err(rdev, "couldn't disable: %d\n", ret); 3853 } else { 3854 /* The intention is that in future we will 3855 * assume that full constraints are provided 3856 * so warn even if we aren't going to do 3857 * anything here. 3858 */ 3859 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3860 } 3861 3862 unlock: 3863 mutex_unlock(&rdev->mutex); 3864 } 3865 3866 mutex_unlock(®ulator_list_mutex); 3867 3868 return 0; 3869 } 3870 late_initcall(regulator_init_complete); 3871