xref: /openbmc/linux/drivers/regulator/core.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 	struct regulator_dev *c_rdev;
222 	int i;
223 
224 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226 
227 		if (rdev->supply->rdev == c_rdev)
228 			return true;
229 	}
230 
231 	return false;
232 }
233 
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 				       unsigned int n_coupled)
236 {
237 	struct regulator_dev *c_rdev, *supply_rdev;
238 	int i, supply_n_coupled;
239 
240 	for (i = n_coupled; i > 0; i--) {
241 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 
243 		if (!c_rdev)
244 			continue;
245 
246 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 			supply_rdev = c_rdev->supply->rdev;
248 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249 
250 			regulator_unlock_recursive(supply_rdev,
251 						   supply_n_coupled);
252 		}
253 
254 		regulator_unlock(c_rdev);
255 	}
256 }
257 
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 				    struct regulator_dev **new_contended_rdev,
260 				    struct regulator_dev **old_contended_rdev,
261 				    struct ww_acquire_ctx *ww_ctx)
262 {
263 	struct regulator_dev *c_rdev;
264 	int i, err;
265 
266 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268 
269 		if (!c_rdev)
270 			continue;
271 
272 		if (c_rdev != *old_contended_rdev) {
273 			err = regulator_lock_nested(c_rdev, ww_ctx);
274 			if (err) {
275 				if (err == -EDEADLK) {
276 					*new_contended_rdev = c_rdev;
277 					goto err_unlock;
278 				}
279 
280 				/* shouldn't happen */
281 				WARN_ON_ONCE(err != -EALREADY);
282 			}
283 		} else {
284 			*old_contended_rdev = NULL;
285 		}
286 
287 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 			err = regulator_lock_recursive(c_rdev->supply->rdev,
289 						       new_contended_rdev,
290 						       old_contended_rdev,
291 						       ww_ctx);
292 			if (err) {
293 				regulator_unlock(c_rdev);
294 				goto err_unlock;
295 			}
296 		}
297 	}
298 
299 	return 0;
300 
301 err_unlock:
302 	regulator_unlock_recursive(rdev, i);
303 
304 	return err;
305 }
306 
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *				regulators
310  * @rdev:			regulator source
311  * @ww_ctx:			w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 				       struct ww_acquire_ctx *ww_ctx)
317 {
318 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 	ww_acquire_fini(ww_ctx);
320 }
321 
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:			regulator source
325  * @ww_ctx:			w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 				     struct ww_acquire_ctx *ww_ctx)
332 {
333 	struct regulator_dev *new_contended_rdev = NULL;
334 	struct regulator_dev *old_contended_rdev = NULL;
335 	int err;
336 
337 	mutex_lock(&regulator_list_mutex);
338 
339 	ww_acquire_init(ww_ctx, &regulator_ww_class);
340 
341 	do {
342 		if (new_contended_rdev) {
343 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 			old_contended_rdev = new_contended_rdev;
345 			old_contended_rdev->ref_cnt++;
346 		}
347 
348 		err = regulator_lock_recursive(rdev,
349 					       &new_contended_rdev,
350 					       &old_contended_rdev,
351 					       ww_ctx);
352 
353 		if (old_contended_rdev)
354 			regulator_unlock(old_contended_rdev);
355 
356 	} while (err == -EDEADLK);
357 
358 	ww_acquire_done(ww_ctx);
359 
360 	mutex_unlock(&regulator_list_mutex);
361 }
362 
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 						  const char *prop_name)
376 {
377 	struct device_node *regnode = NULL;
378 	struct device_node *child = NULL;
379 
380 	for_each_child_of_node(parent, child) {
381 		regnode = of_parse_phandle(child, prop_name, 0);
382 
383 		if (!regnode) {
384 			regnode = of_get_child_regulator(child, prop_name);
385 			if (regnode)
386 				goto err_node_put;
387 		} else {
388 			goto err_node_put;
389 		}
390 	}
391 	return NULL;
392 
393 err_node_put:
394 	of_node_put(child);
395 	return regnode;
396 }
397 
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 	struct device_node *regnode = NULL;
410 	char prop_name[64]; /* 64 is max size of property name */
411 
412 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413 
414 	snprintf(prop_name, 64, "%s-supply", supply);
415 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416 
417 	if (!regnode) {
418 		regnode = of_get_child_regulator(dev->of_node, prop_name);
419 		if (regnode)
420 			return regnode;
421 
422 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 				prop_name, dev->of_node);
424 		return NULL;
425 	}
426 	return regnode;
427 }
428 
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 			    int *min_uV, int *max_uV)
432 {
433 	BUG_ON(*min_uV > *max_uV);
434 
435 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 		rdev_err(rdev, "voltage operation not allowed\n");
437 		return -EPERM;
438 	}
439 
440 	if (*max_uV > rdev->constraints->max_uV)
441 		*max_uV = rdev->constraints->max_uV;
442 	if (*min_uV < rdev->constraints->min_uV)
443 		*min_uV = rdev->constraints->min_uV;
444 
445 	if (*min_uV > *max_uV) {
446 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 			 *min_uV, *max_uV);
448 		return -EINVAL;
449 	}
450 
451 	return 0;
452 }
453 
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459 
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 			      int *min_uV, int *max_uV,
465 			      suspend_state_t state)
466 {
467 	struct regulator *regulator;
468 	struct regulator_voltage *voltage;
469 
470 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 		voltage = &regulator->voltage[state];
472 		/*
473 		 * Assume consumers that didn't say anything are OK
474 		 * with anything in the constraint range.
475 		 */
476 		if (!voltage->min_uV && !voltage->max_uV)
477 			continue;
478 
479 		if (*max_uV > voltage->max_uV)
480 			*max_uV = voltage->max_uV;
481 		if (*min_uV < voltage->min_uV)
482 			*min_uV = voltage->min_uV;
483 	}
484 
485 	if (*min_uV > *max_uV) {
486 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 			*min_uV, *max_uV);
488 		return -EINVAL;
489 	}
490 
491 	return 0;
492 }
493 
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 					int *min_uA, int *max_uA)
497 {
498 	BUG_ON(*min_uA > *max_uA);
499 
500 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 		rdev_err(rdev, "current operation not allowed\n");
502 		return -EPERM;
503 	}
504 
505 	if (*max_uA > rdev->constraints->max_uA)
506 		*max_uA = rdev->constraints->max_uA;
507 	if (*min_uA < rdev->constraints->min_uA)
508 		*min_uA = rdev->constraints->min_uA;
509 
510 	if (*min_uA > *max_uA) {
511 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 			 *min_uA, *max_uA);
513 		return -EINVAL;
514 	}
515 
516 	return 0;
517 }
518 
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 				    unsigned int *mode)
522 {
523 	switch (*mode) {
524 	case REGULATOR_MODE_FAST:
525 	case REGULATOR_MODE_NORMAL:
526 	case REGULATOR_MODE_IDLE:
527 	case REGULATOR_MODE_STANDBY:
528 		break;
529 	default:
530 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 		return -EINVAL;
532 	}
533 
534 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 		rdev_err(rdev, "mode operation not allowed\n");
536 		return -EPERM;
537 	}
538 
539 	/* The modes are bitmasks, the most power hungry modes having
540 	 * the lowest values. If the requested mode isn't supported
541 	 * try higher modes. */
542 	while (*mode) {
543 		if (rdev->constraints->valid_modes_mask & *mode)
544 			return 0;
545 		*mode /= 2;
546 	}
547 
548 	return -EINVAL;
549 }
550 
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 	if (rdev->constraints == NULL)
555 		return NULL;
556 
557 	switch (state) {
558 	case PM_SUSPEND_STANDBY:
559 		return &rdev->constraints->state_standby;
560 	case PM_SUSPEND_MEM:
561 		return &rdev->constraints->state_mem;
562 	case PM_SUSPEND_MAX:
563 		return &rdev->constraints->state_disk;
564 	default:
565 		return NULL;
566 	}
567 }
568 
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 	const struct regulator_state *rstate;
573 
574 	rstate = regulator_get_suspend_state(rdev, state);
575 	if (rstate == NULL)
576 		return NULL;
577 
578 	/* If we have no suspend mode configuration don't set anything;
579 	 * only warn if the driver implements set_suspend_voltage or
580 	 * set_suspend_mode callback.
581 	 */
582 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 	    rstate->enabled != DISABLE_IN_SUSPEND) {
584 		if (rdev->desc->ops->set_suspend_voltage ||
585 		    rdev->desc->ops->set_suspend_mode)
586 			rdev_warn(rdev, "No configuration\n");
587 		return NULL;
588 	}
589 
590 	return rstate;
591 }
592 
593 static ssize_t regulator_uV_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 	int uV;
598 
599 	regulator_lock(rdev);
600 	uV = regulator_get_voltage_rdev(rdev);
601 	regulator_unlock(rdev);
602 
603 	if (uV < 0)
604 		return uV;
605 	return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 
609 static ssize_t regulator_uA_show(struct device *dev,
610 				struct device_attribute *attr, char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 
614 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617 
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 			 char *buf)
620 {
621 	struct regulator_dev *rdev = dev_get_drvdata(dev);
622 
623 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626 
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 	switch (mode) {
630 	case REGULATOR_MODE_FAST:
631 		return "fast";
632 	case REGULATOR_MODE_NORMAL:
633 		return "normal";
634 	case REGULATOR_MODE_IDLE:
635 		return "idle";
636 	case REGULATOR_MODE_STANDBY:
637 		return "standby";
638 	}
639 	return "unknown";
640 }
641 
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646 
647 static ssize_t regulator_opmode_show(struct device *dev,
648 				    struct device_attribute *attr, char *buf)
649 {
650 	struct regulator_dev *rdev = dev_get_drvdata(dev);
651 
652 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655 
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 	if (state > 0)
659 		return sprintf(buf, "enabled\n");
660 	else if (state == 0)
661 		return sprintf(buf, "disabled\n");
662 	else
663 		return sprintf(buf, "unknown\n");
664 }
665 
666 static ssize_t regulator_state_show(struct device *dev,
667 				   struct device_attribute *attr, char *buf)
668 {
669 	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 	ssize_t ret;
671 
672 	regulator_lock(rdev);
673 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 	regulator_unlock(rdev);
675 
676 	return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679 
680 static ssize_t regulator_status_show(struct device *dev,
681 				   struct device_attribute *attr, char *buf)
682 {
683 	struct regulator_dev *rdev = dev_get_drvdata(dev);
684 	int status;
685 	char *label;
686 
687 	status = rdev->desc->ops->get_status(rdev);
688 	if (status < 0)
689 		return status;
690 
691 	switch (status) {
692 	case REGULATOR_STATUS_OFF:
693 		label = "off";
694 		break;
695 	case REGULATOR_STATUS_ON:
696 		label = "on";
697 		break;
698 	case REGULATOR_STATUS_ERROR:
699 		label = "error";
700 		break;
701 	case REGULATOR_STATUS_FAST:
702 		label = "fast";
703 		break;
704 	case REGULATOR_STATUS_NORMAL:
705 		label = "normal";
706 		break;
707 	case REGULATOR_STATUS_IDLE:
708 		label = "idle";
709 		break;
710 	case REGULATOR_STATUS_STANDBY:
711 		label = "standby";
712 		break;
713 	case REGULATOR_STATUS_BYPASS:
714 		label = "bypass";
715 		break;
716 	case REGULATOR_STATUS_UNDEFINED:
717 		label = "undefined";
718 		break;
719 	default:
720 		return -ERANGE;
721 	}
722 
723 	return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726 
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 				    struct device_attribute *attr, char *buf)
729 {
730 	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 
732 	if (!rdev->constraints)
733 		return sprintf(buf, "constraint not defined\n");
734 
735 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 				    struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 
744 	if (!rdev->constraints)
745 		return sprintf(buf, "constraint not defined\n");
746 
747 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 				    struct device_attribute *attr, char *buf)
753 {
754 	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 
756 	if (!rdev->constraints)
757 		return sprintf(buf, "constraint not defined\n");
758 
759 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 				    struct device_attribute *attr, char *buf)
765 {
766 	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 
768 	if (!rdev->constraints)
769 		return sprintf(buf, "constraint not defined\n");
770 
771 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 				      struct device_attribute *attr, char *buf)
777 {
778 	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 	struct regulator *regulator;
780 	int uA = 0;
781 
782 	regulator_lock(rdev);
783 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 		if (regulator->enable_count)
785 			uA += regulator->uA_load;
786 	}
787 	regulator_unlock(rdev);
788 	return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791 
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 			      char *buf)
794 {
795 	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 	return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799 
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 			 char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	switch (rdev->desc->type) {
806 	case REGULATOR_VOLTAGE:
807 		return sprintf(buf, "voltage\n");
808 	case REGULATOR_CURRENT:
809 		return sprintf(buf, "current\n");
810 	}
811 	return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814 
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 				struct device_attribute *attr, char *buf)
817 {
818 	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 		regulator_suspend_mem_uV_show, NULL);
824 
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 				struct device_attribute *attr, char *buf)
827 {
828 	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 
830 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 		regulator_suspend_disk_uV_show, NULL);
834 
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 				struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 
840 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 		regulator_suspend_standby_uV_show, NULL);
844 
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 				struct device_attribute *attr, char *buf)
847 {
848 	struct regulator_dev *rdev = dev_get_drvdata(dev);
849 
850 	return regulator_print_opmode(buf,
851 		rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 		regulator_suspend_mem_mode_show, NULL);
855 
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 				struct device_attribute *attr, char *buf)
858 {
859 	struct regulator_dev *rdev = dev_get_drvdata(dev);
860 
861 	return regulator_print_opmode(buf,
862 		rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 		regulator_suspend_disk_mode_show, NULL);
866 
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 				struct device_attribute *attr, char *buf)
869 {
870 	struct regulator_dev *rdev = dev_get_drvdata(dev);
871 
872 	return regulator_print_opmode(buf,
873 		rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 		regulator_suspend_standby_mode_show, NULL);
877 
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 				   struct device_attribute *attr, char *buf)
880 {
881 	struct regulator_dev *rdev = dev_get_drvdata(dev);
882 
883 	return regulator_print_state(buf,
884 			rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 		regulator_suspend_mem_state_show, NULL);
888 
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 				   struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 
894 	return regulator_print_state(buf,
895 			rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 		regulator_suspend_disk_state_show, NULL);
899 
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 				   struct device_attribute *attr, char *buf)
902 {
903 	struct regulator_dev *rdev = dev_get_drvdata(dev);
904 
905 	return regulator_print_state(buf,
906 			rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 		regulator_suspend_standby_state_show, NULL);
910 
911 static ssize_t regulator_bypass_show(struct device *dev,
912 				     struct device_attribute *attr, char *buf)
913 {
914 	struct regulator_dev *rdev = dev_get_drvdata(dev);
915 	const char *report;
916 	bool bypass;
917 	int ret;
918 
919 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920 
921 	if (ret != 0)
922 		report = "unknown";
923 	else if (bypass)
924 		report = "enabled";
925 	else
926 		report = "disabled";
927 
928 	return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 		   regulator_bypass_show, NULL);
932 
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 	struct regulator *sibling;
938 	int current_uA = 0, output_uV, input_uV, err;
939 	unsigned int mode;
940 
941 	/*
942 	 * first check to see if we can set modes at all, otherwise just
943 	 * tell the consumer everything is OK.
944 	 */
945 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 		rdev_dbg(rdev, "DRMS operation not allowed\n");
947 		return 0;
948 	}
949 
950 	if (!rdev->desc->ops->get_optimum_mode &&
951 	    !rdev->desc->ops->set_load)
952 		return 0;
953 
954 	if (!rdev->desc->ops->set_mode &&
955 	    !rdev->desc->ops->set_load)
956 		return -EINVAL;
957 
958 	/* calc total requested load */
959 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 		if (sibling->enable_count)
961 			current_uA += sibling->uA_load;
962 	}
963 
964 	current_uA += rdev->constraints->system_load;
965 
966 	if (rdev->desc->ops->set_load) {
967 		/* set the optimum mode for our new total regulator load */
968 		err = rdev->desc->ops->set_load(rdev, current_uA);
969 		if (err < 0)
970 			rdev_err(rdev, "failed to set load %d: %pe\n",
971 				 current_uA, ERR_PTR(err));
972 	} else {
973 		/* get output voltage */
974 		output_uV = regulator_get_voltage_rdev(rdev);
975 		if (output_uV <= 0) {
976 			rdev_err(rdev, "invalid output voltage found\n");
977 			return -EINVAL;
978 		}
979 
980 		/* get input voltage */
981 		input_uV = 0;
982 		if (rdev->supply)
983 			input_uV = regulator_get_voltage(rdev->supply);
984 		if (input_uV <= 0)
985 			input_uV = rdev->constraints->input_uV;
986 		if (input_uV <= 0) {
987 			rdev_err(rdev, "invalid input voltage found\n");
988 			return -EINVAL;
989 		}
990 
991 		/* now get the optimum mode for our new total regulator load */
992 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 							 output_uV, current_uA);
994 
995 		/* check the new mode is allowed */
996 		err = regulator_mode_constrain(rdev, &mode);
997 		if (err < 0) {
998 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 			return err;
1001 		}
1002 
1003 		err = rdev->desc->ops->set_mode(rdev, mode);
1004 		if (err < 0)
1005 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 				 mode, ERR_PTR(err));
1007 	}
1008 
1009 	return err;
1010 }
1011 
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 			       const struct regulator_state *rstate)
1014 {
1015 	int ret = 0;
1016 
1017 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 		rdev->desc->ops->set_suspend_enable)
1019 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 		rdev->desc->ops->set_suspend_disable)
1022 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 		ret = 0;
1025 
1026 	if (ret < 0) {
1027 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 		return ret;
1029 	}
1030 
1031 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 		if (ret < 0) {
1034 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 			return ret;
1036 		}
1037 	}
1038 
1039 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 		if (ret < 0) {
1042 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 			return ret;
1044 		}
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 	const struct regulator_state *rstate;
1053 
1054 	rstate = regulator_get_suspend_state_check(rdev,
1055 			rdev->constraints->initial_state);
1056 	if (!rstate)
1057 		return 0;
1058 
1059 	return __suspend_set_state(rdev, rstate);
1060 }
1061 
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 	struct regulation_constraints *constraints = rdev->constraints;
1066 	char buf[160] = "";
1067 	size_t len = sizeof(buf) - 1;
1068 	int count = 0;
1069 	int ret;
1070 
1071 	if (constraints->min_uV && constraints->max_uV) {
1072 		if (constraints->min_uV == constraints->max_uV)
1073 			count += scnprintf(buf + count, len - count, "%d mV ",
1074 					   constraints->min_uV / 1000);
1075 		else
1076 			count += scnprintf(buf + count, len - count,
1077 					   "%d <--> %d mV ",
1078 					   constraints->min_uV / 1000,
1079 					   constraints->max_uV / 1000);
1080 	}
1081 
1082 	if (!constraints->min_uV ||
1083 	    constraints->min_uV != constraints->max_uV) {
1084 		ret = regulator_get_voltage_rdev(rdev);
1085 		if (ret > 0)
1086 			count += scnprintf(buf + count, len - count,
1087 					   "at %d mV ", ret / 1000);
1088 	}
1089 
1090 	if (constraints->uV_offset)
1091 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 				   constraints->uV_offset / 1000);
1093 
1094 	if (constraints->min_uA && constraints->max_uA) {
1095 		if (constraints->min_uA == constraints->max_uA)
1096 			count += scnprintf(buf + count, len - count, "%d mA ",
1097 					   constraints->min_uA / 1000);
1098 		else
1099 			count += scnprintf(buf + count, len - count,
1100 					   "%d <--> %d mA ",
1101 					   constraints->min_uA / 1000,
1102 					   constraints->max_uA / 1000);
1103 	}
1104 
1105 	if (!constraints->min_uA ||
1106 	    constraints->min_uA != constraints->max_uA) {
1107 		ret = _regulator_get_current_limit(rdev);
1108 		if (ret > 0)
1109 			count += scnprintf(buf + count, len - count,
1110 					   "at %d mA ", ret / 1000);
1111 	}
1112 
1113 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 		count += scnprintf(buf + count, len - count, "fast ");
1115 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 		count += scnprintf(buf + count, len - count, "normal ");
1117 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 		count += scnprintf(buf + count, len - count, "idle ");
1119 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 		count += scnprintf(buf + count, len - count, "standby ");
1121 
1122 	if (!count)
1123 		count = scnprintf(buf, len, "no parameters");
1124 	else
1125 		--count;
1126 
1127 	count += scnprintf(buf + count, len - count, ", %s",
1128 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129 
1130 	rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 	struct regulation_constraints *constraints = rdev->constraints;
1139 
1140 	print_constraints_debug(rdev);
1141 
1142 	if ((constraints->min_uV != constraints->max_uV) &&
1143 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 		rdev_warn(rdev,
1145 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147 
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 	struct regulation_constraints *constraints)
1150 {
1151 	const struct regulator_ops *ops = rdev->desc->ops;
1152 	int ret;
1153 
1154 	/* do we need to apply the constraint voltage */
1155 	if (rdev->constraints->apply_uV &&
1156 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 		int target_min, target_max;
1158 		int current_uV = regulator_get_voltage_rdev(rdev);
1159 
1160 		if (current_uV == -ENOTRECOVERABLE) {
1161 			/* This regulator can't be read and must be initialized */
1162 			rdev_info(rdev, "Setting %d-%duV\n",
1163 				  rdev->constraints->min_uV,
1164 				  rdev->constraints->max_uV);
1165 			_regulator_do_set_voltage(rdev,
1166 						  rdev->constraints->min_uV,
1167 						  rdev->constraints->max_uV);
1168 			current_uV = regulator_get_voltage_rdev(rdev);
1169 		}
1170 
1171 		if (current_uV < 0) {
1172 			rdev_err(rdev,
1173 				 "failed to get the current voltage: %pe\n",
1174 				 ERR_PTR(current_uV));
1175 			return current_uV;
1176 		}
1177 
1178 		/*
1179 		 * If we're below the minimum voltage move up to the
1180 		 * minimum voltage, if we're above the maximum voltage
1181 		 * then move down to the maximum.
1182 		 */
1183 		target_min = current_uV;
1184 		target_max = current_uV;
1185 
1186 		if (current_uV < rdev->constraints->min_uV) {
1187 			target_min = rdev->constraints->min_uV;
1188 			target_max = rdev->constraints->min_uV;
1189 		}
1190 
1191 		if (current_uV > rdev->constraints->max_uV) {
1192 			target_min = rdev->constraints->max_uV;
1193 			target_max = rdev->constraints->max_uV;
1194 		}
1195 
1196 		if (target_min != current_uV || target_max != current_uV) {
1197 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 				  current_uV, target_min, target_max);
1199 			ret = _regulator_do_set_voltage(
1200 				rdev, target_min, target_max);
1201 			if (ret < 0) {
1202 				rdev_err(rdev,
1203 					"failed to apply %d-%duV constraint: %pe\n",
1204 					target_min, target_max, ERR_PTR(ret));
1205 				return ret;
1206 			}
1207 		}
1208 	}
1209 
1210 	/* constrain machine-level voltage specs to fit
1211 	 * the actual range supported by this regulator.
1212 	 */
1213 	if (ops->list_voltage && rdev->desc->n_voltages) {
1214 		int	count = rdev->desc->n_voltages;
1215 		int	i;
1216 		int	min_uV = INT_MAX;
1217 		int	max_uV = INT_MIN;
1218 		int	cmin = constraints->min_uV;
1219 		int	cmax = constraints->max_uV;
1220 
1221 		/* it's safe to autoconfigure fixed-voltage supplies
1222 		   and the constraints are used by list_voltage. */
1223 		if (count == 1 && !cmin) {
1224 			cmin = 1;
1225 			cmax = INT_MAX;
1226 			constraints->min_uV = cmin;
1227 			constraints->max_uV = cmax;
1228 		}
1229 
1230 		/* voltage constraints are optional */
1231 		if ((cmin == 0) && (cmax == 0))
1232 			return 0;
1233 
1234 		/* else require explicit machine-level constraints */
1235 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 			rdev_err(rdev, "invalid voltage constraints\n");
1237 			return -EINVAL;
1238 		}
1239 
1240 		/* no need to loop voltages if range is continuous */
1241 		if (rdev->desc->continuous_voltage_range)
1242 			return 0;
1243 
1244 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 		for (i = 0; i < count; i++) {
1246 			int	value;
1247 
1248 			value = ops->list_voltage(rdev, i);
1249 			if (value <= 0)
1250 				continue;
1251 
1252 			/* maybe adjust [min_uV..max_uV] */
1253 			if (value >= cmin && value < min_uV)
1254 				min_uV = value;
1255 			if (value <= cmax && value > max_uV)
1256 				max_uV = value;
1257 		}
1258 
1259 		/* final: [min_uV..max_uV] valid iff constraints valid */
1260 		if (max_uV < min_uV) {
1261 			rdev_err(rdev,
1262 				 "unsupportable voltage constraints %u-%uuV\n",
1263 				 min_uV, max_uV);
1264 			return -EINVAL;
1265 		}
1266 
1267 		/* use regulator's subset of machine constraints */
1268 		if (constraints->min_uV < min_uV) {
1269 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 				 constraints->min_uV, min_uV);
1271 			constraints->min_uV = min_uV;
1272 		}
1273 		if (constraints->max_uV > max_uV) {
1274 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 				 constraints->max_uV, max_uV);
1276 			constraints->max_uV = max_uV;
1277 		}
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 	struct regulation_constraints *constraints)
1285 {
1286 	const struct regulator_ops *ops = rdev->desc->ops;
1287 	int ret;
1288 
1289 	if (!constraints->min_uA && !constraints->max_uA)
1290 		return 0;
1291 
1292 	if (constraints->min_uA > constraints->max_uA) {
1293 		rdev_err(rdev, "Invalid current constraints\n");
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (!ops->set_current_limit || !ops->get_current_limit) {
1298 		rdev_warn(rdev, "Operation of current configuration missing\n");
1299 		return 0;
1300 	}
1301 
1302 	/* Set regulator current in constraints range */
1303 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 			constraints->max_uA);
1305 	if (ret < 0) {
1306 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314 
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  *
1319  * Allows platform initialisation code to define and constrain
1320  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1321  * Constraints *must* be set by platform code in order for some
1322  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323  * set_mode.
1324  */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 	int ret = 0;
1328 	const struct regulator_ops *ops = rdev->desc->ops;
1329 
1330 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 	if (ret != 0)
1332 		return ret;
1333 
1334 	ret = machine_constraints_current(rdev, rdev->constraints);
1335 	if (ret != 0)
1336 		return ret;
1337 
1338 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 		ret = ops->set_input_current_limit(rdev,
1340 						   rdev->constraints->ilim_uA);
1341 		if (ret < 0) {
1342 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 			return ret;
1344 		}
1345 	}
1346 
1347 	/* do we need to setup our suspend state */
1348 	if (rdev->constraints->initial_state) {
1349 		ret = suspend_set_initial_state(rdev);
1350 		if (ret < 0) {
1351 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 			return ret;
1353 		}
1354 	}
1355 
1356 	if (rdev->constraints->initial_mode) {
1357 		if (!ops->set_mode) {
1358 			rdev_err(rdev, "no set_mode operation\n");
1359 			return -EINVAL;
1360 		}
1361 
1362 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 		if (ret < 0) {
1364 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 			return ret;
1366 		}
1367 	} else if (rdev->constraints->system_load) {
1368 		/*
1369 		 * We'll only apply the initial system load if an
1370 		 * initial mode wasn't specified.
1371 		 */
1372 		drms_uA_update(rdev);
1373 	}
1374 
1375 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 		&& ops->set_ramp_delay) {
1377 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 		if (ret < 0) {
1379 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 			return ret;
1381 		}
1382 	}
1383 
1384 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 		ret = ops->set_pull_down(rdev);
1386 		if (ret < 0) {
1387 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 			return ret;
1389 		}
1390 	}
1391 
1392 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 		ret = ops->set_soft_start(rdev);
1394 		if (ret < 0) {
1395 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 			return ret;
1397 		}
1398 	}
1399 
1400 	if (rdev->constraints->over_current_protection
1401 		&& ops->set_over_current_protection) {
1402 		ret = ops->set_over_current_protection(rdev);
1403 		if (ret < 0) {
1404 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 				 ERR_PTR(ret));
1406 			return ret;
1407 		}
1408 	}
1409 
1410 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 		bool ad_state = (rdev->constraints->active_discharge ==
1412 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413 
1414 		ret = ops->set_active_discharge(rdev, ad_state);
1415 		if (ret < 0) {
1416 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 			return ret;
1418 		}
1419 	}
1420 
1421 	/* If the constraints say the regulator should be on at this point
1422 	 * and we have control then make sure it is enabled.
1423 	 */
1424 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 		if (rdev->supply) {
1426 			ret = regulator_enable(rdev->supply);
1427 			if (ret < 0) {
1428 				_regulator_put(rdev->supply);
1429 				rdev->supply = NULL;
1430 				return ret;
1431 			}
1432 		}
1433 
1434 		ret = _regulator_do_enable(rdev);
1435 		if (ret < 0 && ret != -EINVAL) {
1436 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 			return ret;
1438 		}
1439 
1440 		if (rdev->constraints->always_on)
1441 			rdev->use_count++;
1442 	}
1443 
1444 	print_constraints(rdev);
1445 	return 0;
1446 }
1447 
1448 /**
1449  * set_supply - set regulator supply regulator
1450  * @rdev: regulator name
1451  * @supply_rdev: supply regulator name
1452  *
1453  * Called by platform initialisation code to set the supply regulator for this
1454  * regulator. This ensures that a regulators supply will also be enabled by the
1455  * core if it's child is enabled.
1456  */
1457 static int set_supply(struct regulator_dev *rdev,
1458 		      struct regulator_dev *supply_rdev)
1459 {
1460 	int err;
1461 
1462 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463 
1464 	if (!try_module_get(supply_rdev->owner))
1465 		return -ENODEV;
1466 
1467 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 	if (rdev->supply == NULL) {
1469 		err = -ENOMEM;
1470 		return err;
1471 	}
1472 	supply_rdev->open_count++;
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479  * @rdev:         regulator source
1480  * @consumer_dev_name: dev_name() string for device supply applies to
1481  * @supply:       symbolic name for supply
1482  *
1483  * Allows platform initialisation code to map physical regulator
1484  * sources to symbolic names for supplies for use by devices.  Devices
1485  * should use these symbolic names to request regulators, avoiding the
1486  * need to provide board-specific regulator names as platform data.
1487  */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 				      const char *consumer_dev_name,
1490 				      const char *supply)
1491 {
1492 	struct regulator_map *node, *new_node;
1493 	int has_dev;
1494 
1495 	if (supply == NULL)
1496 		return -EINVAL;
1497 
1498 	if (consumer_dev_name != NULL)
1499 		has_dev = 1;
1500 	else
1501 		has_dev = 0;
1502 
1503 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 	if (new_node == NULL)
1505 		return -ENOMEM;
1506 
1507 	new_node->regulator = rdev;
1508 	new_node->supply = supply;
1509 
1510 	if (has_dev) {
1511 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 		if (new_node->dev_name == NULL) {
1513 			kfree(new_node);
1514 			return -ENOMEM;
1515 		}
1516 	}
1517 
1518 	mutex_lock(&regulator_list_mutex);
1519 	list_for_each_entry(node, &regulator_map_list, list) {
1520 		if (node->dev_name && consumer_dev_name) {
1521 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522 				continue;
1523 		} else if (node->dev_name || consumer_dev_name) {
1524 			continue;
1525 		}
1526 
1527 		if (strcmp(node->supply, supply) != 0)
1528 			continue;
1529 
1530 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531 			 consumer_dev_name,
1532 			 dev_name(&node->regulator->dev),
1533 			 node->regulator->desc->name,
1534 			 supply,
1535 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1536 		goto fail;
1537 	}
1538 
1539 	list_add(&new_node->list, &regulator_map_list);
1540 	mutex_unlock(&regulator_list_mutex);
1541 
1542 	return 0;
1543 
1544 fail:
1545 	mutex_unlock(&regulator_list_mutex);
1546 	kfree(new_node->dev_name);
1547 	kfree(new_node);
1548 	return -EBUSY;
1549 }
1550 
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553 	struct regulator_map *node, *n;
1554 
1555 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556 		if (rdev == node->regulator) {
1557 			list_del(&node->list);
1558 			kfree(node->dev_name);
1559 			kfree(node);
1560 		}
1561 	}
1562 }
1563 
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 					  char __user *user_buf,
1567 					  size_t count, loff_t *ppos)
1568 {
1569 	const struct regulator *regulator = file->private_data;
1570 	const struct regulation_constraints *c = regulator->rdev->constraints;
1571 	char *buf;
1572 	ssize_t ret;
1573 
1574 	if (!c)
1575 		return 0;
1576 
1577 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578 	if (!buf)
1579 		return -ENOMEM;
1580 
1581 	ret = snprintf(buf, PAGE_SIZE,
1582 			"always_on: %u\n"
1583 			"boot_on: %u\n"
1584 			"apply_uV: %u\n"
1585 			"ramp_disable: %u\n"
1586 			"soft_start: %u\n"
1587 			"pull_down: %u\n"
1588 			"over_current_protection: %u\n",
1589 			c->always_on,
1590 			c->boot_on,
1591 			c->apply_uV,
1592 			c->ramp_disable,
1593 			c->soft_start,
1594 			c->pull_down,
1595 			c->over_current_protection);
1596 
1597 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598 	kfree(buf);
1599 
1600 	return ret;
1601 }
1602 
1603 #endif
1604 
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 	.open = simple_open,
1608 	.read = constraint_flags_read_file,
1609 	.llseek = default_llseek,
1610 #endif
1611 };
1612 
1613 #define REG_STR_SIZE	64
1614 
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616 					  struct device *dev,
1617 					  const char *supply_name)
1618 {
1619 	struct regulator *regulator;
1620 	int err = 0;
1621 
1622 	if (dev) {
1623 		char buf[REG_STR_SIZE];
1624 		int size;
1625 
1626 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 				dev->kobj.name, supply_name);
1628 		if (size >= REG_STR_SIZE)
1629 			return NULL;
1630 
1631 		supply_name = kstrdup(buf, GFP_KERNEL);
1632 		if (supply_name == NULL)
1633 			return NULL;
1634 	} else {
1635 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 		if (supply_name == NULL)
1637 			return NULL;
1638 	}
1639 
1640 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 	if (regulator == NULL) {
1642 		kfree(supply_name);
1643 		return NULL;
1644 	}
1645 
1646 	regulator->rdev = rdev;
1647 	regulator->supply_name = supply_name;
1648 
1649 	regulator_lock(rdev);
1650 	list_add(&regulator->list, &rdev->consumer_list);
1651 	regulator_unlock(rdev);
1652 
1653 	if (dev) {
1654 		regulator->dev = dev;
1655 
1656 		/* Add a link to the device sysfs entry */
1657 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658 					       supply_name);
1659 		if (err) {
1660 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 				  dev->kobj.name, ERR_PTR(err));
1662 			/* non-fatal */
1663 		}
1664 	}
1665 
1666 	if (err != -EEXIST)
1667 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1668 	if (!regulator->debugfs) {
1669 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 	} else {
1671 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 				   &regulator->uA_load);
1673 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 		debugfs_create_file("constraint_flags", 0444,
1678 				    regulator->debugfs, regulator,
1679 				    &constraint_flags_fops);
1680 	}
1681 
1682 	/*
1683 	 * Check now if the regulator is an always on regulator - if
1684 	 * it is then we don't need to do nearly so much work for
1685 	 * enable/disable calls.
1686 	 */
1687 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 	    _regulator_is_enabled(rdev))
1689 		regulator->always_on = true;
1690 
1691 	return regulator;
1692 }
1693 
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696 	if (rdev->constraints && rdev->constraints->enable_time)
1697 		return rdev->constraints->enable_time;
1698 	if (rdev->desc->ops->enable_time)
1699 		return rdev->desc->ops->enable_time(rdev);
1700 	return rdev->desc->enable_time;
1701 }
1702 
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 		struct device *dev, const char *supply)
1705 {
1706 	struct regulator_supply_alias *map;
1707 
1708 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1709 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710 			return map;
1711 
1712 	return NULL;
1713 }
1714 
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717 	struct regulator_supply_alias *map;
1718 
1719 	map = regulator_find_supply_alias(*dev, *supply);
1720 	if (map) {
1721 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 				*supply, map->alias_supply,
1723 				dev_name(map->alias_dev));
1724 		*dev = map->alias_dev;
1725 		*supply = map->alias_supply;
1726 	}
1727 }
1728 
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731 	struct regulator_dev *r = dev_to_rdev(dev);
1732 
1733 	return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735 
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738 	struct device *dev;
1739 
1740 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741 
1742 	return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744 
1745 /**
1746  * regulator_dev_lookup - lookup a regulator device.
1747  * @dev: device for regulator "consumer".
1748  * @supply: Supply name or regulator ID.
1749  *
1750  * If successful, returns a struct regulator_dev that corresponds to the name
1751  * @supply and with the embedded struct device refcount incremented by one.
1752  * The refcount must be dropped by calling put_device().
1753  * On failure one of the following ERR-PTR-encoded values is returned:
1754  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755  * in the future.
1756  */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758 						  const char *supply)
1759 {
1760 	struct regulator_dev *r = NULL;
1761 	struct device_node *node;
1762 	struct regulator_map *map;
1763 	const char *devname = NULL;
1764 
1765 	regulator_supply_alias(&dev, &supply);
1766 
1767 	/* first do a dt based lookup */
1768 	if (dev && dev->of_node) {
1769 		node = of_get_regulator(dev, supply);
1770 		if (node) {
1771 			r = of_find_regulator_by_node(node);
1772 			if (r)
1773 				return r;
1774 
1775 			/*
1776 			 * We have a node, but there is no device.
1777 			 * assume it has not registered yet.
1778 			 */
1779 			return ERR_PTR(-EPROBE_DEFER);
1780 		}
1781 	}
1782 
1783 	/* if not found, try doing it non-dt way */
1784 	if (dev)
1785 		devname = dev_name(dev);
1786 
1787 	mutex_lock(&regulator_list_mutex);
1788 	list_for_each_entry(map, &regulator_map_list, list) {
1789 		/* If the mapping has a device set up it must match */
1790 		if (map->dev_name &&
1791 		    (!devname || strcmp(map->dev_name, devname)))
1792 			continue;
1793 
1794 		if (strcmp(map->supply, supply) == 0 &&
1795 		    get_device(&map->regulator->dev)) {
1796 			r = map->regulator;
1797 			break;
1798 		}
1799 	}
1800 	mutex_unlock(&regulator_list_mutex);
1801 
1802 	if (r)
1803 		return r;
1804 
1805 	r = regulator_lookup_by_name(supply);
1806 	if (r)
1807 		return r;
1808 
1809 	return ERR_PTR(-ENODEV);
1810 }
1811 
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814 	struct regulator_dev *r;
1815 	struct device *dev = rdev->dev.parent;
1816 	int ret = 0;
1817 
1818 	/* No supply to resolve? */
1819 	if (!rdev->supply_name)
1820 		return 0;
1821 
1822 	/* Supply already resolved? (fast-path without locking contention) */
1823 	if (rdev->supply)
1824 		return 0;
1825 
1826 	r = regulator_dev_lookup(dev, rdev->supply_name);
1827 	if (IS_ERR(r)) {
1828 		ret = PTR_ERR(r);
1829 
1830 		/* Did the lookup explicitly defer for us? */
1831 		if (ret == -EPROBE_DEFER)
1832 			goto out;
1833 
1834 		if (have_full_constraints()) {
1835 			r = dummy_regulator_rdev;
1836 			get_device(&r->dev);
1837 		} else {
1838 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 				rdev->supply_name, rdev->desc->name);
1840 			ret = -EPROBE_DEFER;
1841 			goto out;
1842 		}
1843 	}
1844 
1845 	if (r == rdev) {
1846 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1847 			rdev->desc->name, rdev->supply_name);
1848 		if (!have_full_constraints()) {
1849 			ret = -EINVAL;
1850 			goto out;
1851 		}
1852 		r = dummy_regulator_rdev;
1853 		get_device(&r->dev);
1854 	}
1855 
1856 	/*
1857 	 * If the supply's parent device is not the same as the
1858 	 * regulator's parent device, then ensure the parent device
1859 	 * is bound before we resolve the supply, in case the parent
1860 	 * device get probe deferred and unregisters the supply.
1861 	 */
1862 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1863 		if (!device_is_bound(r->dev.parent)) {
1864 			put_device(&r->dev);
1865 			ret = -EPROBE_DEFER;
1866 			goto out;
1867 		}
1868 	}
1869 
1870 	/* Recursively resolve the supply of the supply */
1871 	ret = regulator_resolve_supply(r);
1872 	if (ret < 0) {
1873 		put_device(&r->dev);
1874 		goto out;
1875 	}
1876 
1877 	/*
1878 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1879 	 * between rdev->supply null check and setting rdev->supply in
1880 	 * set_supply() from concurrent tasks.
1881 	 */
1882 	regulator_lock(rdev);
1883 
1884 	/* Supply just resolved by a concurrent task? */
1885 	if (rdev->supply) {
1886 		regulator_unlock(rdev);
1887 		put_device(&r->dev);
1888 		goto out;
1889 	}
1890 
1891 	ret = set_supply(rdev, r);
1892 	if (ret < 0) {
1893 		regulator_unlock(rdev);
1894 		put_device(&r->dev);
1895 		goto out;
1896 	}
1897 
1898 	regulator_unlock(rdev);
1899 
1900 	/*
1901 	 * In set_machine_constraints() we may have turned this regulator on
1902 	 * but we couldn't propagate to the supply if it hadn't been resolved
1903 	 * yet.  Do it now.
1904 	 */
1905 	if (rdev->use_count) {
1906 		ret = regulator_enable(rdev->supply);
1907 		if (ret < 0) {
1908 			_regulator_put(rdev->supply);
1909 			rdev->supply = NULL;
1910 			goto out;
1911 		}
1912 	}
1913 
1914 out:
1915 	return ret;
1916 }
1917 
1918 /* Internal regulator request function */
1919 struct regulator *_regulator_get(struct device *dev, const char *id,
1920 				 enum regulator_get_type get_type)
1921 {
1922 	struct regulator_dev *rdev;
1923 	struct regulator *regulator;
1924 	struct device_link *link;
1925 	int ret;
1926 
1927 	if (get_type >= MAX_GET_TYPE) {
1928 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1929 		return ERR_PTR(-EINVAL);
1930 	}
1931 
1932 	if (id == NULL) {
1933 		pr_err("get() with no identifier\n");
1934 		return ERR_PTR(-EINVAL);
1935 	}
1936 
1937 	rdev = regulator_dev_lookup(dev, id);
1938 	if (IS_ERR(rdev)) {
1939 		ret = PTR_ERR(rdev);
1940 
1941 		/*
1942 		 * If regulator_dev_lookup() fails with error other
1943 		 * than -ENODEV our job here is done, we simply return it.
1944 		 */
1945 		if (ret != -ENODEV)
1946 			return ERR_PTR(ret);
1947 
1948 		if (!have_full_constraints()) {
1949 			dev_warn(dev,
1950 				 "incomplete constraints, dummy supplies not allowed\n");
1951 			return ERR_PTR(-ENODEV);
1952 		}
1953 
1954 		switch (get_type) {
1955 		case NORMAL_GET:
1956 			/*
1957 			 * Assume that a regulator is physically present and
1958 			 * enabled, even if it isn't hooked up, and just
1959 			 * provide a dummy.
1960 			 */
1961 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1962 			rdev = dummy_regulator_rdev;
1963 			get_device(&rdev->dev);
1964 			break;
1965 
1966 		case EXCLUSIVE_GET:
1967 			dev_warn(dev,
1968 				 "dummy supplies not allowed for exclusive requests\n");
1969 			fallthrough;
1970 
1971 		default:
1972 			return ERR_PTR(-ENODEV);
1973 		}
1974 	}
1975 
1976 	if (rdev->exclusive) {
1977 		regulator = ERR_PTR(-EPERM);
1978 		put_device(&rdev->dev);
1979 		return regulator;
1980 	}
1981 
1982 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1983 		regulator = ERR_PTR(-EBUSY);
1984 		put_device(&rdev->dev);
1985 		return regulator;
1986 	}
1987 
1988 	mutex_lock(&regulator_list_mutex);
1989 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1990 	mutex_unlock(&regulator_list_mutex);
1991 
1992 	if (ret != 0) {
1993 		regulator = ERR_PTR(-EPROBE_DEFER);
1994 		put_device(&rdev->dev);
1995 		return regulator;
1996 	}
1997 
1998 	ret = regulator_resolve_supply(rdev);
1999 	if (ret < 0) {
2000 		regulator = ERR_PTR(ret);
2001 		put_device(&rdev->dev);
2002 		return regulator;
2003 	}
2004 
2005 	if (!try_module_get(rdev->owner)) {
2006 		regulator = ERR_PTR(-EPROBE_DEFER);
2007 		put_device(&rdev->dev);
2008 		return regulator;
2009 	}
2010 
2011 	regulator = create_regulator(rdev, dev, id);
2012 	if (regulator == NULL) {
2013 		regulator = ERR_PTR(-ENOMEM);
2014 		module_put(rdev->owner);
2015 		put_device(&rdev->dev);
2016 		return regulator;
2017 	}
2018 
2019 	rdev->open_count++;
2020 	if (get_type == EXCLUSIVE_GET) {
2021 		rdev->exclusive = 1;
2022 
2023 		ret = _regulator_is_enabled(rdev);
2024 		if (ret > 0)
2025 			rdev->use_count = 1;
2026 		else
2027 			rdev->use_count = 0;
2028 	}
2029 
2030 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2031 	if (!IS_ERR_OR_NULL(link))
2032 		regulator->device_link = true;
2033 
2034 	return regulator;
2035 }
2036 
2037 /**
2038  * regulator_get - lookup and obtain a reference to a regulator.
2039  * @dev: device for regulator "consumer"
2040  * @id: Supply name or regulator ID.
2041  *
2042  * Returns a struct regulator corresponding to the regulator producer,
2043  * or IS_ERR() condition containing errno.
2044  *
2045  * Use of supply names configured via set_consumer_device_supply() is
2046  * strongly encouraged.  It is recommended that the supply name used
2047  * should match the name used for the supply and/or the relevant
2048  * device pins in the datasheet.
2049  */
2050 struct regulator *regulator_get(struct device *dev, const char *id)
2051 {
2052 	return _regulator_get(dev, id, NORMAL_GET);
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get);
2055 
2056 /**
2057  * regulator_get_exclusive - obtain exclusive access to a regulator.
2058  * @dev: device for regulator "consumer"
2059  * @id: Supply name or regulator ID.
2060  *
2061  * Returns a struct regulator corresponding to the regulator producer,
2062  * or IS_ERR() condition containing errno.  Other consumers will be
2063  * unable to obtain this regulator while this reference is held and the
2064  * use count for the regulator will be initialised to reflect the current
2065  * state of the regulator.
2066  *
2067  * This is intended for use by consumers which cannot tolerate shared
2068  * use of the regulator such as those which need to force the
2069  * regulator off for correct operation of the hardware they are
2070  * controlling.
2071  *
2072  * Use of supply names configured via set_consumer_device_supply() is
2073  * strongly encouraged.  It is recommended that the supply name used
2074  * should match the name used for the supply and/or the relevant
2075  * device pins in the datasheet.
2076  */
2077 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2078 {
2079 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2082 
2083 /**
2084  * regulator_get_optional - obtain optional access to a regulator.
2085  * @dev: device for regulator "consumer"
2086  * @id: Supply name or regulator ID.
2087  *
2088  * Returns a struct regulator corresponding to the regulator producer,
2089  * or IS_ERR() condition containing errno.
2090  *
2091  * This is intended for use by consumers for devices which can have
2092  * some supplies unconnected in normal use, such as some MMC devices.
2093  * It can allow the regulator core to provide stub supplies for other
2094  * supplies requested using normal regulator_get() calls without
2095  * disrupting the operation of drivers that can handle absent
2096  * supplies.
2097  *
2098  * Use of supply names configured via set_consumer_device_supply() is
2099  * strongly encouraged.  It is recommended that the supply name used
2100  * should match the name used for the supply and/or the relevant
2101  * device pins in the datasheet.
2102  */
2103 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2104 {
2105 	return _regulator_get(dev, id, OPTIONAL_GET);
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_get_optional);
2108 
2109 static void destroy_regulator(struct regulator *regulator)
2110 {
2111 	struct regulator_dev *rdev = regulator->rdev;
2112 
2113 	debugfs_remove_recursive(regulator->debugfs);
2114 
2115 	if (regulator->dev) {
2116 		if (regulator->device_link)
2117 			device_link_remove(regulator->dev, &rdev->dev);
2118 
2119 		/* remove any sysfs entries */
2120 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2121 	}
2122 
2123 	regulator_lock(rdev);
2124 	list_del(&regulator->list);
2125 
2126 	rdev->open_count--;
2127 	rdev->exclusive = 0;
2128 	regulator_unlock(rdev);
2129 
2130 	kfree_const(regulator->supply_name);
2131 	kfree(regulator);
2132 }
2133 
2134 /* regulator_list_mutex lock held by regulator_put() */
2135 static void _regulator_put(struct regulator *regulator)
2136 {
2137 	struct regulator_dev *rdev;
2138 
2139 	if (IS_ERR_OR_NULL(regulator))
2140 		return;
2141 
2142 	lockdep_assert_held_once(&regulator_list_mutex);
2143 
2144 	/* Docs say you must disable before calling regulator_put() */
2145 	WARN_ON(regulator->enable_count);
2146 
2147 	rdev = regulator->rdev;
2148 
2149 	destroy_regulator(regulator);
2150 
2151 	module_put(rdev->owner);
2152 	put_device(&rdev->dev);
2153 }
2154 
2155 /**
2156  * regulator_put - "free" the regulator source
2157  * @regulator: regulator source
2158  *
2159  * Note: drivers must ensure that all regulator_enable calls made on this
2160  * regulator source are balanced by regulator_disable calls prior to calling
2161  * this function.
2162  */
2163 void regulator_put(struct regulator *regulator)
2164 {
2165 	mutex_lock(&regulator_list_mutex);
2166 	_regulator_put(regulator);
2167 	mutex_unlock(&regulator_list_mutex);
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_put);
2170 
2171 /**
2172  * regulator_register_supply_alias - Provide device alias for supply lookup
2173  *
2174  * @dev: device that will be given as the regulator "consumer"
2175  * @id: Supply name or regulator ID
2176  * @alias_dev: device that should be used to lookup the supply
2177  * @alias_id: Supply name or regulator ID that should be used to lookup the
2178  * supply
2179  *
2180  * All lookups for id on dev will instead be conducted for alias_id on
2181  * alias_dev.
2182  */
2183 int regulator_register_supply_alias(struct device *dev, const char *id,
2184 				    struct device *alias_dev,
2185 				    const char *alias_id)
2186 {
2187 	struct regulator_supply_alias *map;
2188 
2189 	map = regulator_find_supply_alias(dev, id);
2190 	if (map)
2191 		return -EEXIST;
2192 
2193 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2194 	if (!map)
2195 		return -ENOMEM;
2196 
2197 	map->src_dev = dev;
2198 	map->src_supply = id;
2199 	map->alias_dev = alias_dev;
2200 	map->alias_supply = alias_id;
2201 
2202 	list_add(&map->list, &regulator_supply_alias_list);
2203 
2204 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2205 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2206 
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2210 
2211 /**
2212  * regulator_unregister_supply_alias - Remove device alias
2213  *
2214  * @dev: device that will be given as the regulator "consumer"
2215  * @id: Supply name or regulator ID
2216  *
2217  * Remove a lookup alias if one exists for id on dev.
2218  */
2219 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2220 {
2221 	struct regulator_supply_alias *map;
2222 
2223 	map = regulator_find_supply_alias(dev, id);
2224 	if (map) {
2225 		list_del(&map->list);
2226 		kfree(map);
2227 	}
2228 }
2229 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2230 
2231 /**
2232  * regulator_bulk_register_supply_alias - register multiple aliases
2233  *
2234  * @dev: device that will be given as the regulator "consumer"
2235  * @id: List of supply names or regulator IDs
2236  * @alias_dev: device that should be used to lookup the supply
2237  * @alias_id: List of supply names or regulator IDs that should be used to
2238  * lookup the supply
2239  * @num_id: Number of aliases to register
2240  *
2241  * @return 0 on success, an errno on failure.
2242  *
2243  * This helper function allows drivers to register several supply
2244  * aliases in one operation.  If any of the aliases cannot be
2245  * registered any aliases that were registered will be removed
2246  * before returning to the caller.
2247  */
2248 int regulator_bulk_register_supply_alias(struct device *dev,
2249 					 const char *const *id,
2250 					 struct device *alias_dev,
2251 					 const char *const *alias_id,
2252 					 int num_id)
2253 {
2254 	int i;
2255 	int ret;
2256 
2257 	for (i = 0; i < num_id; ++i) {
2258 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2259 						      alias_id[i]);
2260 		if (ret < 0)
2261 			goto err;
2262 	}
2263 
2264 	return 0;
2265 
2266 err:
2267 	dev_err(dev,
2268 		"Failed to create supply alias %s,%s -> %s,%s\n",
2269 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2270 
2271 	while (--i >= 0)
2272 		regulator_unregister_supply_alias(dev, id[i]);
2273 
2274 	return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2277 
2278 /**
2279  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2280  *
2281  * @dev: device that will be given as the regulator "consumer"
2282  * @id: List of supply names or regulator IDs
2283  * @num_id: Number of aliases to unregister
2284  *
2285  * This helper function allows drivers to unregister several supply
2286  * aliases in one operation.
2287  */
2288 void regulator_bulk_unregister_supply_alias(struct device *dev,
2289 					    const char *const *id,
2290 					    int num_id)
2291 {
2292 	int i;
2293 
2294 	for (i = 0; i < num_id; ++i)
2295 		regulator_unregister_supply_alias(dev, id[i]);
2296 }
2297 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2298 
2299 
2300 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2301 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2302 				const struct regulator_config *config)
2303 {
2304 	struct regulator_enable_gpio *pin, *new_pin;
2305 	struct gpio_desc *gpiod;
2306 
2307 	gpiod = config->ena_gpiod;
2308 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2309 
2310 	mutex_lock(&regulator_list_mutex);
2311 
2312 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2313 		if (pin->gpiod == gpiod) {
2314 			rdev_dbg(rdev, "GPIO is already used\n");
2315 			goto update_ena_gpio_to_rdev;
2316 		}
2317 	}
2318 
2319 	if (new_pin == NULL) {
2320 		mutex_unlock(&regulator_list_mutex);
2321 		return -ENOMEM;
2322 	}
2323 
2324 	pin = new_pin;
2325 	new_pin = NULL;
2326 
2327 	pin->gpiod = gpiod;
2328 	list_add(&pin->list, &regulator_ena_gpio_list);
2329 
2330 update_ena_gpio_to_rdev:
2331 	pin->request_count++;
2332 	rdev->ena_pin = pin;
2333 
2334 	mutex_unlock(&regulator_list_mutex);
2335 	kfree(new_pin);
2336 
2337 	return 0;
2338 }
2339 
2340 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2341 {
2342 	struct regulator_enable_gpio *pin, *n;
2343 
2344 	if (!rdev->ena_pin)
2345 		return;
2346 
2347 	/* Free the GPIO only in case of no use */
2348 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2349 		if (pin != rdev->ena_pin)
2350 			continue;
2351 
2352 		if (--pin->request_count)
2353 			break;
2354 
2355 		gpiod_put(pin->gpiod);
2356 		list_del(&pin->list);
2357 		kfree(pin);
2358 		break;
2359 	}
2360 
2361 	rdev->ena_pin = NULL;
2362 }
2363 
2364 /**
2365  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2366  * @rdev: regulator_dev structure
2367  * @enable: enable GPIO at initial use?
2368  *
2369  * GPIO is enabled in case of initial use. (enable_count is 0)
2370  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2371  */
2372 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2373 {
2374 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2375 
2376 	if (!pin)
2377 		return -EINVAL;
2378 
2379 	if (enable) {
2380 		/* Enable GPIO at initial use */
2381 		if (pin->enable_count == 0)
2382 			gpiod_set_value_cansleep(pin->gpiod, 1);
2383 
2384 		pin->enable_count++;
2385 	} else {
2386 		if (pin->enable_count > 1) {
2387 			pin->enable_count--;
2388 			return 0;
2389 		}
2390 
2391 		/* Disable GPIO if not used */
2392 		if (pin->enable_count <= 1) {
2393 			gpiod_set_value_cansleep(pin->gpiod, 0);
2394 			pin->enable_count = 0;
2395 		}
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 /**
2402  * _regulator_enable_delay - a delay helper function
2403  * @delay: time to delay in microseconds
2404  *
2405  * Delay for the requested amount of time as per the guidelines in:
2406  *
2407  *     Documentation/timers/timers-howto.rst
2408  *
2409  * The assumption here is that regulators will never be enabled in
2410  * atomic context and therefore sleeping functions can be used.
2411  */
2412 static void _regulator_enable_delay(unsigned int delay)
2413 {
2414 	unsigned int ms = delay / 1000;
2415 	unsigned int us = delay % 1000;
2416 
2417 	if (ms > 0) {
2418 		/*
2419 		 * For small enough values, handle super-millisecond
2420 		 * delays in the usleep_range() call below.
2421 		 */
2422 		if (ms < 20)
2423 			us += ms * 1000;
2424 		else
2425 			msleep(ms);
2426 	}
2427 
2428 	/*
2429 	 * Give the scheduler some room to coalesce with any other
2430 	 * wakeup sources. For delays shorter than 10 us, don't even
2431 	 * bother setting up high-resolution timers and just busy-
2432 	 * loop.
2433 	 */
2434 	if (us >= 10)
2435 		usleep_range(us, us + 100);
2436 	else
2437 		udelay(us);
2438 }
2439 
2440 /**
2441  * _regulator_check_status_enabled
2442  *
2443  * A helper function to check if the regulator status can be interpreted
2444  * as 'regulator is enabled'.
2445  * @rdev: the regulator device to check
2446  *
2447  * Return:
2448  * * 1			- if status shows regulator is in enabled state
2449  * * 0			- if not enabled state
2450  * * Error Value	- as received from ops->get_status()
2451  */
2452 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2453 {
2454 	int ret = rdev->desc->ops->get_status(rdev);
2455 
2456 	if (ret < 0) {
2457 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2458 		return ret;
2459 	}
2460 
2461 	switch (ret) {
2462 	case REGULATOR_STATUS_OFF:
2463 	case REGULATOR_STATUS_ERROR:
2464 	case REGULATOR_STATUS_UNDEFINED:
2465 		return 0;
2466 	default:
2467 		return 1;
2468 	}
2469 }
2470 
2471 static int _regulator_do_enable(struct regulator_dev *rdev)
2472 {
2473 	int ret, delay;
2474 
2475 	/* Query before enabling in case configuration dependent.  */
2476 	ret = _regulator_get_enable_time(rdev);
2477 	if (ret >= 0) {
2478 		delay = ret;
2479 	} else {
2480 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2481 		delay = 0;
2482 	}
2483 
2484 	trace_regulator_enable(rdev_get_name(rdev));
2485 
2486 	if (rdev->desc->off_on_delay) {
2487 		/* if needed, keep a distance of off_on_delay from last time
2488 		 * this regulator was disabled.
2489 		 */
2490 		unsigned long start_jiffy = jiffies;
2491 		unsigned long intended, max_delay, remaining;
2492 
2493 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2494 		intended = rdev->last_off_jiffy + max_delay;
2495 
2496 		if (time_before(start_jiffy, intended)) {
2497 			/* calc remaining jiffies to deal with one-time
2498 			 * timer wrapping.
2499 			 * in case of multiple timer wrapping, either it can be
2500 			 * detected by out-of-range remaining, or it cannot be
2501 			 * detected and we get a penalty of
2502 			 * _regulator_enable_delay().
2503 			 */
2504 			remaining = intended - start_jiffy;
2505 			if (remaining <= max_delay)
2506 				_regulator_enable_delay(
2507 						jiffies_to_usecs(remaining));
2508 		}
2509 	}
2510 
2511 	if (rdev->ena_pin) {
2512 		if (!rdev->ena_gpio_state) {
2513 			ret = regulator_ena_gpio_ctrl(rdev, true);
2514 			if (ret < 0)
2515 				return ret;
2516 			rdev->ena_gpio_state = 1;
2517 		}
2518 	} else if (rdev->desc->ops->enable) {
2519 		ret = rdev->desc->ops->enable(rdev);
2520 		if (ret < 0)
2521 			return ret;
2522 	} else {
2523 		return -EINVAL;
2524 	}
2525 
2526 	/* Allow the regulator to ramp; it would be useful to extend
2527 	 * this for bulk operations so that the regulators can ramp
2528 	 * together.  */
2529 	trace_regulator_enable_delay(rdev_get_name(rdev));
2530 
2531 	/* If poll_enabled_time is set, poll upto the delay calculated
2532 	 * above, delaying poll_enabled_time uS to check if the regulator
2533 	 * actually got enabled.
2534 	 * If the regulator isn't enabled after enable_delay has
2535 	 * expired, return -ETIMEDOUT.
2536 	 */
2537 	if (rdev->desc->poll_enabled_time) {
2538 		unsigned int time_remaining = delay;
2539 
2540 		while (time_remaining > 0) {
2541 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2542 
2543 			if (rdev->desc->ops->get_status) {
2544 				ret = _regulator_check_status_enabled(rdev);
2545 				if (ret < 0)
2546 					return ret;
2547 				else if (ret)
2548 					break;
2549 			} else if (rdev->desc->ops->is_enabled(rdev))
2550 				break;
2551 
2552 			time_remaining -= rdev->desc->poll_enabled_time;
2553 		}
2554 
2555 		if (time_remaining <= 0) {
2556 			rdev_err(rdev, "Enabled check timed out\n");
2557 			return -ETIMEDOUT;
2558 		}
2559 	} else {
2560 		_regulator_enable_delay(delay);
2561 	}
2562 
2563 	trace_regulator_enable_complete(rdev_get_name(rdev));
2564 
2565 	return 0;
2566 }
2567 
2568 /**
2569  * _regulator_handle_consumer_enable - handle that a consumer enabled
2570  * @regulator: regulator source
2571  *
2572  * Some things on a regulator consumer (like the contribution towards total
2573  * load on the regulator) only have an effect when the consumer wants the
2574  * regulator enabled.  Explained in example with two consumers of the same
2575  * regulator:
2576  *   consumer A: set_load(100);       => total load = 0
2577  *   consumer A: regulator_enable();  => total load = 100
2578  *   consumer B: set_load(1000);      => total load = 100
2579  *   consumer B: regulator_enable();  => total load = 1100
2580  *   consumer A: regulator_disable(); => total_load = 1000
2581  *
2582  * This function (together with _regulator_handle_consumer_disable) is
2583  * responsible for keeping track of the refcount for a given regulator consumer
2584  * and applying / unapplying these things.
2585  *
2586  * Returns 0 upon no error; -error upon error.
2587  */
2588 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2589 {
2590 	struct regulator_dev *rdev = regulator->rdev;
2591 
2592 	lockdep_assert_held_once(&rdev->mutex.base);
2593 
2594 	regulator->enable_count++;
2595 	if (regulator->uA_load && regulator->enable_count == 1)
2596 		return drms_uA_update(rdev);
2597 
2598 	return 0;
2599 }
2600 
2601 /**
2602  * _regulator_handle_consumer_disable - handle that a consumer disabled
2603  * @regulator: regulator source
2604  *
2605  * The opposite of _regulator_handle_consumer_enable().
2606  *
2607  * Returns 0 upon no error; -error upon error.
2608  */
2609 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2610 {
2611 	struct regulator_dev *rdev = regulator->rdev;
2612 
2613 	lockdep_assert_held_once(&rdev->mutex.base);
2614 
2615 	if (!regulator->enable_count) {
2616 		rdev_err(rdev, "Underflow of regulator enable count\n");
2617 		return -EINVAL;
2618 	}
2619 
2620 	regulator->enable_count--;
2621 	if (regulator->uA_load && regulator->enable_count == 0)
2622 		return drms_uA_update(rdev);
2623 
2624 	return 0;
2625 }
2626 
2627 /* locks held by regulator_enable() */
2628 static int _regulator_enable(struct regulator *regulator)
2629 {
2630 	struct regulator_dev *rdev = regulator->rdev;
2631 	int ret;
2632 
2633 	lockdep_assert_held_once(&rdev->mutex.base);
2634 
2635 	if (rdev->use_count == 0 && rdev->supply) {
2636 		ret = _regulator_enable(rdev->supply);
2637 		if (ret < 0)
2638 			return ret;
2639 	}
2640 
2641 	/* balance only if there are regulators coupled */
2642 	if (rdev->coupling_desc.n_coupled > 1) {
2643 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2644 		if (ret < 0)
2645 			goto err_disable_supply;
2646 	}
2647 
2648 	ret = _regulator_handle_consumer_enable(regulator);
2649 	if (ret < 0)
2650 		goto err_disable_supply;
2651 
2652 	if (rdev->use_count == 0) {
2653 		/* The regulator may on if it's not switchable or left on */
2654 		ret = _regulator_is_enabled(rdev);
2655 		if (ret == -EINVAL || ret == 0) {
2656 			if (!regulator_ops_is_valid(rdev,
2657 					REGULATOR_CHANGE_STATUS)) {
2658 				ret = -EPERM;
2659 				goto err_consumer_disable;
2660 			}
2661 
2662 			ret = _regulator_do_enable(rdev);
2663 			if (ret < 0)
2664 				goto err_consumer_disable;
2665 
2666 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2667 					     NULL);
2668 		} else if (ret < 0) {
2669 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2670 			goto err_consumer_disable;
2671 		}
2672 		/* Fallthrough on positive return values - already enabled */
2673 	}
2674 
2675 	rdev->use_count++;
2676 
2677 	return 0;
2678 
2679 err_consumer_disable:
2680 	_regulator_handle_consumer_disable(regulator);
2681 
2682 err_disable_supply:
2683 	if (rdev->use_count == 0 && rdev->supply)
2684 		_regulator_disable(rdev->supply);
2685 
2686 	return ret;
2687 }
2688 
2689 /**
2690  * regulator_enable - enable regulator output
2691  * @regulator: regulator source
2692  *
2693  * Request that the regulator be enabled with the regulator output at
2694  * the predefined voltage or current value.  Calls to regulator_enable()
2695  * must be balanced with calls to regulator_disable().
2696  *
2697  * NOTE: the output value can be set by other drivers, boot loader or may be
2698  * hardwired in the regulator.
2699  */
2700 int regulator_enable(struct regulator *regulator)
2701 {
2702 	struct regulator_dev *rdev = regulator->rdev;
2703 	struct ww_acquire_ctx ww_ctx;
2704 	int ret;
2705 
2706 	regulator_lock_dependent(rdev, &ww_ctx);
2707 	ret = _regulator_enable(regulator);
2708 	regulator_unlock_dependent(rdev, &ww_ctx);
2709 
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_enable);
2713 
2714 static int _regulator_do_disable(struct regulator_dev *rdev)
2715 {
2716 	int ret;
2717 
2718 	trace_regulator_disable(rdev_get_name(rdev));
2719 
2720 	if (rdev->ena_pin) {
2721 		if (rdev->ena_gpio_state) {
2722 			ret = regulator_ena_gpio_ctrl(rdev, false);
2723 			if (ret < 0)
2724 				return ret;
2725 			rdev->ena_gpio_state = 0;
2726 		}
2727 
2728 	} else if (rdev->desc->ops->disable) {
2729 		ret = rdev->desc->ops->disable(rdev);
2730 		if (ret != 0)
2731 			return ret;
2732 	}
2733 
2734 	/* cares about last_off_jiffy only if off_on_delay is required by
2735 	 * device.
2736 	 */
2737 	if (rdev->desc->off_on_delay)
2738 		rdev->last_off_jiffy = jiffies;
2739 
2740 	trace_regulator_disable_complete(rdev_get_name(rdev));
2741 
2742 	return 0;
2743 }
2744 
2745 /* locks held by regulator_disable() */
2746 static int _regulator_disable(struct regulator *regulator)
2747 {
2748 	struct regulator_dev *rdev = regulator->rdev;
2749 	int ret = 0;
2750 
2751 	lockdep_assert_held_once(&rdev->mutex.base);
2752 
2753 	if (WARN(rdev->use_count <= 0,
2754 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2755 		return -EIO;
2756 
2757 	/* are we the last user and permitted to disable ? */
2758 	if (rdev->use_count == 1 &&
2759 	    (rdev->constraints && !rdev->constraints->always_on)) {
2760 
2761 		/* we are last user */
2762 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2763 			ret = _notifier_call_chain(rdev,
2764 						   REGULATOR_EVENT_PRE_DISABLE,
2765 						   NULL);
2766 			if (ret & NOTIFY_STOP_MASK)
2767 				return -EINVAL;
2768 
2769 			ret = _regulator_do_disable(rdev);
2770 			if (ret < 0) {
2771 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2772 				_notifier_call_chain(rdev,
2773 						REGULATOR_EVENT_ABORT_DISABLE,
2774 						NULL);
2775 				return ret;
2776 			}
2777 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2778 					NULL);
2779 		}
2780 
2781 		rdev->use_count = 0;
2782 	} else if (rdev->use_count > 1) {
2783 		rdev->use_count--;
2784 	}
2785 
2786 	if (ret == 0)
2787 		ret = _regulator_handle_consumer_disable(regulator);
2788 
2789 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2790 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2791 
2792 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2793 		ret = _regulator_disable(rdev->supply);
2794 
2795 	return ret;
2796 }
2797 
2798 /**
2799  * regulator_disable - disable regulator output
2800  * @regulator: regulator source
2801  *
2802  * Disable the regulator output voltage or current.  Calls to
2803  * regulator_enable() must be balanced with calls to
2804  * regulator_disable().
2805  *
2806  * NOTE: this will only disable the regulator output if no other consumer
2807  * devices have it enabled, the regulator device supports disabling and
2808  * machine constraints permit this operation.
2809  */
2810 int regulator_disable(struct regulator *regulator)
2811 {
2812 	struct regulator_dev *rdev = regulator->rdev;
2813 	struct ww_acquire_ctx ww_ctx;
2814 	int ret;
2815 
2816 	regulator_lock_dependent(rdev, &ww_ctx);
2817 	ret = _regulator_disable(regulator);
2818 	regulator_unlock_dependent(rdev, &ww_ctx);
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(regulator_disable);
2823 
2824 /* locks held by regulator_force_disable() */
2825 static int _regulator_force_disable(struct regulator_dev *rdev)
2826 {
2827 	int ret = 0;
2828 
2829 	lockdep_assert_held_once(&rdev->mutex.base);
2830 
2831 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2832 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2833 	if (ret & NOTIFY_STOP_MASK)
2834 		return -EINVAL;
2835 
2836 	ret = _regulator_do_disable(rdev);
2837 	if (ret < 0) {
2838 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2839 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2840 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2841 		return ret;
2842 	}
2843 
2844 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2845 			REGULATOR_EVENT_DISABLE, NULL);
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  * regulator_force_disable - force disable regulator output
2852  * @regulator: regulator source
2853  *
2854  * Forcibly disable the regulator output voltage or current.
2855  * NOTE: this *will* disable the regulator output even if other consumer
2856  * devices have it enabled. This should be used for situations when device
2857  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2858  */
2859 int regulator_force_disable(struct regulator *regulator)
2860 {
2861 	struct regulator_dev *rdev = regulator->rdev;
2862 	struct ww_acquire_ctx ww_ctx;
2863 	int ret;
2864 
2865 	regulator_lock_dependent(rdev, &ww_ctx);
2866 
2867 	ret = _regulator_force_disable(regulator->rdev);
2868 
2869 	if (rdev->coupling_desc.n_coupled > 1)
2870 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2871 
2872 	if (regulator->uA_load) {
2873 		regulator->uA_load = 0;
2874 		ret = drms_uA_update(rdev);
2875 	}
2876 
2877 	if (rdev->use_count != 0 && rdev->supply)
2878 		_regulator_disable(rdev->supply);
2879 
2880 	regulator_unlock_dependent(rdev, &ww_ctx);
2881 
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_force_disable);
2885 
2886 static void regulator_disable_work(struct work_struct *work)
2887 {
2888 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2889 						  disable_work.work);
2890 	struct ww_acquire_ctx ww_ctx;
2891 	int count, i, ret;
2892 	struct regulator *regulator;
2893 	int total_count = 0;
2894 
2895 	regulator_lock_dependent(rdev, &ww_ctx);
2896 
2897 	/*
2898 	 * Workqueue functions queue the new work instance while the previous
2899 	 * work instance is being processed. Cancel the queued work instance
2900 	 * as the work instance under processing does the job of the queued
2901 	 * work instance.
2902 	 */
2903 	cancel_delayed_work(&rdev->disable_work);
2904 
2905 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2906 		count = regulator->deferred_disables;
2907 
2908 		if (!count)
2909 			continue;
2910 
2911 		total_count += count;
2912 		regulator->deferred_disables = 0;
2913 
2914 		for (i = 0; i < count; i++) {
2915 			ret = _regulator_disable(regulator);
2916 			if (ret != 0)
2917 				rdev_err(rdev, "Deferred disable failed: %pe\n",
2918 					 ERR_PTR(ret));
2919 		}
2920 	}
2921 	WARN_ON(!total_count);
2922 
2923 	if (rdev->coupling_desc.n_coupled > 1)
2924 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2925 
2926 	regulator_unlock_dependent(rdev, &ww_ctx);
2927 }
2928 
2929 /**
2930  * regulator_disable_deferred - disable regulator output with delay
2931  * @regulator: regulator source
2932  * @ms: milliseconds until the regulator is disabled
2933  *
2934  * Execute regulator_disable() on the regulator after a delay.  This
2935  * is intended for use with devices that require some time to quiesce.
2936  *
2937  * NOTE: this will only disable the regulator output if no other consumer
2938  * devices have it enabled, the regulator device supports disabling and
2939  * machine constraints permit this operation.
2940  */
2941 int regulator_disable_deferred(struct regulator *regulator, int ms)
2942 {
2943 	struct regulator_dev *rdev = regulator->rdev;
2944 
2945 	if (!ms)
2946 		return regulator_disable(regulator);
2947 
2948 	regulator_lock(rdev);
2949 	regulator->deferred_disables++;
2950 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2951 			 msecs_to_jiffies(ms));
2952 	regulator_unlock(rdev);
2953 
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2957 
2958 static int _regulator_is_enabled(struct regulator_dev *rdev)
2959 {
2960 	/* A GPIO control always takes precedence */
2961 	if (rdev->ena_pin)
2962 		return rdev->ena_gpio_state;
2963 
2964 	/* If we don't know then assume that the regulator is always on */
2965 	if (!rdev->desc->ops->is_enabled)
2966 		return 1;
2967 
2968 	return rdev->desc->ops->is_enabled(rdev);
2969 }
2970 
2971 static int _regulator_list_voltage(struct regulator_dev *rdev,
2972 				   unsigned selector, int lock)
2973 {
2974 	const struct regulator_ops *ops = rdev->desc->ops;
2975 	int ret;
2976 
2977 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2978 		return rdev->desc->fixed_uV;
2979 
2980 	if (ops->list_voltage) {
2981 		if (selector >= rdev->desc->n_voltages)
2982 			return -EINVAL;
2983 		if (selector < rdev->desc->linear_min_sel)
2984 			return 0;
2985 		if (lock)
2986 			regulator_lock(rdev);
2987 		ret = ops->list_voltage(rdev, selector);
2988 		if (lock)
2989 			regulator_unlock(rdev);
2990 	} else if (rdev->is_switch && rdev->supply) {
2991 		ret = _regulator_list_voltage(rdev->supply->rdev,
2992 					      selector, lock);
2993 	} else {
2994 		return -EINVAL;
2995 	}
2996 
2997 	if (ret > 0) {
2998 		if (ret < rdev->constraints->min_uV)
2999 			ret = 0;
3000 		else if (ret > rdev->constraints->max_uV)
3001 			ret = 0;
3002 	}
3003 
3004 	return ret;
3005 }
3006 
3007 /**
3008  * regulator_is_enabled - is the regulator output enabled
3009  * @regulator: regulator source
3010  *
3011  * Returns positive if the regulator driver backing the source/client
3012  * has requested that the device be enabled, zero if it hasn't, else a
3013  * negative errno code.
3014  *
3015  * Note that the device backing this regulator handle can have multiple
3016  * users, so it might be enabled even if regulator_enable() was never
3017  * called for this particular source.
3018  */
3019 int regulator_is_enabled(struct regulator *regulator)
3020 {
3021 	int ret;
3022 
3023 	if (regulator->always_on)
3024 		return 1;
3025 
3026 	regulator_lock(regulator->rdev);
3027 	ret = _regulator_is_enabled(regulator->rdev);
3028 	regulator_unlock(regulator->rdev);
3029 
3030 	return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3033 
3034 /**
3035  * regulator_count_voltages - count regulator_list_voltage() selectors
3036  * @regulator: regulator source
3037  *
3038  * Returns number of selectors, or negative errno.  Selectors are
3039  * numbered starting at zero, and typically correspond to bitfields
3040  * in hardware registers.
3041  */
3042 int regulator_count_voltages(struct regulator *regulator)
3043 {
3044 	struct regulator_dev	*rdev = regulator->rdev;
3045 
3046 	if (rdev->desc->n_voltages)
3047 		return rdev->desc->n_voltages;
3048 
3049 	if (!rdev->is_switch || !rdev->supply)
3050 		return -EINVAL;
3051 
3052 	return regulator_count_voltages(rdev->supply);
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3055 
3056 /**
3057  * regulator_list_voltage - enumerate supported voltages
3058  * @regulator: regulator source
3059  * @selector: identify voltage to list
3060  * Context: can sleep
3061  *
3062  * Returns a voltage that can be passed to @regulator_set_voltage(),
3063  * zero if this selector code can't be used on this system, or a
3064  * negative errno.
3065  */
3066 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3067 {
3068 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3071 
3072 /**
3073  * regulator_get_regmap - get the regulator's register map
3074  * @regulator: regulator source
3075  *
3076  * Returns the register map for the given regulator, or an ERR_PTR value
3077  * if the regulator doesn't use regmap.
3078  */
3079 struct regmap *regulator_get_regmap(struct regulator *regulator)
3080 {
3081 	struct regmap *map = regulator->rdev->regmap;
3082 
3083 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3084 }
3085 
3086 /**
3087  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3088  * @regulator: regulator source
3089  * @vsel_reg: voltage selector register, output parameter
3090  * @vsel_mask: mask for voltage selector bitfield, output parameter
3091  *
3092  * Returns the hardware register offset and bitmask used for setting the
3093  * regulator voltage. This might be useful when configuring voltage-scaling
3094  * hardware or firmware that can make I2C requests behind the kernel's back,
3095  * for example.
3096  *
3097  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3098  * and 0 is returned, otherwise a negative errno is returned.
3099  */
3100 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3101 					 unsigned *vsel_reg,
3102 					 unsigned *vsel_mask)
3103 {
3104 	struct regulator_dev *rdev = regulator->rdev;
3105 	const struct regulator_ops *ops = rdev->desc->ops;
3106 
3107 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3108 		return -EOPNOTSUPP;
3109 
3110 	*vsel_reg = rdev->desc->vsel_reg;
3111 	*vsel_mask = rdev->desc->vsel_mask;
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3116 
3117 /**
3118  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3119  * @regulator: regulator source
3120  * @selector: identify voltage to list
3121  *
3122  * Converts the selector to a hardware-specific voltage selector that can be
3123  * directly written to the regulator registers. The address of the voltage
3124  * register can be determined by calling @regulator_get_hardware_vsel_register.
3125  *
3126  * On error a negative errno is returned.
3127  */
3128 int regulator_list_hardware_vsel(struct regulator *regulator,
3129 				 unsigned selector)
3130 {
3131 	struct regulator_dev *rdev = regulator->rdev;
3132 	const struct regulator_ops *ops = rdev->desc->ops;
3133 
3134 	if (selector >= rdev->desc->n_voltages)
3135 		return -EINVAL;
3136 	if (selector < rdev->desc->linear_min_sel)
3137 		return 0;
3138 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3139 		return -EOPNOTSUPP;
3140 
3141 	return selector;
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3144 
3145 /**
3146  * regulator_get_linear_step - return the voltage step size between VSEL values
3147  * @regulator: regulator source
3148  *
3149  * Returns the voltage step size between VSEL values for linear
3150  * regulators, or return 0 if the regulator isn't a linear regulator.
3151  */
3152 unsigned int regulator_get_linear_step(struct regulator *regulator)
3153 {
3154 	struct regulator_dev *rdev = regulator->rdev;
3155 
3156 	return rdev->desc->uV_step;
3157 }
3158 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3159 
3160 /**
3161  * regulator_is_supported_voltage - check if a voltage range can be supported
3162  *
3163  * @regulator: Regulator to check.
3164  * @min_uV: Minimum required voltage in uV.
3165  * @max_uV: Maximum required voltage in uV.
3166  *
3167  * Returns a boolean.
3168  */
3169 int regulator_is_supported_voltage(struct regulator *regulator,
3170 				   int min_uV, int max_uV)
3171 {
3172 	struct regulator_dev *rdev = regulator->rdev;
3173 	int i, voltages, ret;
3174 
3175 	/* If we can't change voltage check the current voltage */
3176 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3177 		ret = regulator_get_voltage(regulator);
3178 		if (ret >= 0)
3179 			return min_uV <= ret && ret <= max_uV;
3180 		else
3181 			return ret;
3182 	}
3183 
3184 	/* Any voltage within constrains range is fine? */
3185 	if (rdev->desc->continuous_voltage_range)
3186 		return min_uV >= rdev->constraints->min_uV &&
3187 				max_uV <= rdev->constraints->max_uV;
3188 
3189 	ret = regulator_count_voltages(regulator);
3190 	if (ret < 0)
3191 		return 0;
3192 	voltages = ret;
3193 
3194 	for (i = 0; i < voltages; i++) {
3195 		ret = regulator_list_voltage(regulator, i);
3196 
3197 		if (ret >= min_uV && ret <= max_uV)
3198 			return 1;
3199 	}
3200 
3201 	return 0;
3202 }
3203 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3204 
3205 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3206 				 int max_uV)
3207 {
3208 	const struct regulator_desc *desc = rdev->desc;
3209 
3210 	if (desc->ops->map_voltage)
3211 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3212 
3213 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3214 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3215 
3216 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3217 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3218 
3219 	if (desc->ops->list_voltage ==
3220 		regulator_list_voltage_pickable_linear_range)
3221 		return regulator_map_voltage_pickable_linear_range(rdev,
3222 							min_uV, max_uV);
3223 
3224 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3225 }
3226 
3227 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3228 				       int min_uV, int max_uV,
3229 				       unsigned *selector)
3230 {
3231 	struct pre_voltage_change_data data;
3232 	int ret;
3233 
3234 	data.old_uV = regulator_get_voltage_rdev(rdev);
3235 	data.min_uV = min_uV;
3236 	data.max_uV = max_uV;
3237 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238 				   &data);
3239 	if (ret & NOTIFY_STOP_MASK)
3240 		return -EINVAL;
3241 
3242 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3243 	if (ret >= 0)
3244 		return ret;
3245 
3246 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247 			     (void *)data.old_uV);
3248 
3249 	return ret;
3250 }
3251 
3252 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3253 					   int uV, unsigned selector)
3254 {
3255 	struct pre_voltage_change_data data;
3256 	int ret;
3257 
3258 	data.old_uV = regulator_get_voltage_rdev(rdev);
3259 	data.min_uV = uV;
3260 	data.max_uV = uV;
3261 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3262 				   &data);
3263 	if (ret & NOTIFY_STOP_MASK)
3264 		return -EINVAL;
3265 
3266 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3267 	if (ret >= 0)
3268 		return ret;
3269 
3270 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3271 			     (void *)data.old_uV);
3272 
3273 	return ret;
3274 }
3275 
3276 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3277 					   int uV, int new_selector)
3278 {
3279 	const struct regulator_ops *ops = rdev->desc->ops;
3280 	int diff, old_sel, curr_sel, ret;
3281 
3282 	/* Stepping is only needed if the regulator is enabled. */
3283 	if (!_regulator_is_enabled(rdev))
3284 		goto final_set;
3285 
3286 	if (!ops->get_voltage_sel)
3287 		return -EINVAL;
3288 
3289 	old_sel = ops->get_voltage_sel(rdev);
3290 	if (old_sel < 0)
3291 		return old_sel;
3292 
3293 	diff = new_selector - old_sel;
3294 	if (diff == 0)
3295 		return 0; /* No change needed. */
3296 
3297 	if (diff > 0) {
3298 		/* Stepping up. */
3299 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3300 		     curr_sel < new_selector;
3301 		     curr_sel += rdev->desc->vsel_step) {
3302 			/*
3303 			 * Call the callback directly instead of using
3304 			 * _regulator_call_set_voltage_sel() as we don't
3305 			 * want to notify anyone yet. Same in the branch
3306 			 * below.
3307 			 */
3308 			ret = ops->set_voltage_sel(rdev, curr_sel);
3309 			if (ret)
3310 				goto try_revert;
3311 		}
3312 	} else {
3313 		/* Stepping down. */
3314 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3315 		     curr_sel > new_selector;
3316 		     curr_sel -= rdev->desc->vsel_step) {
3317 			ret = ops->set_voltage_sel(rdev, curr_sel);
3318 			if (ret)
3319 				goto try_revert;
3320 		}
3321 	}
3322 
3323 final_set:
3324 	/* The final selector will trigger the notifiers. */
3325 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3326 
3327 try_revert:
3328 	/*
3329 	 * At least try to return to the previous voltage if setting a new
3330 	 * one failed.
3331 	 */
3332 	(void)ops->set_voltage_sel(rdev, old_sel);
3333 	return ret;
3334 }
3335 
3336 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3337 				       int old_uV, int new_uV)
3338 {
3339 	unsigned int ramp_delay = 0;
3340 
3341 	if (rdev->constraints->ramp_delay)
3342 		ramp_delay = rdev->constraints->ramp_delay;
3343 	else if (rdev->desc->ramp_delay)
3344 		ramp_delay = rdev->desc->ramp_delay;
3345 	else if (rdev->constraints->settling_time)
3346 		return rdev->constraints->settling_time;
3347 	else if (rdev->constraints->settling_time_up &&
3348 		 (new_uV > old_uV))
3349 		return rdev->constraints->settling_time_up;
3350 	else if (rdev->constraints->settling_time_down &&
3351 		 (new_uV < old_uV))
3352 		return rdev->constraints->settling_time_down;
3353 
3354 	if (ramp_delay == 0) {
3355 		rdev_dbg(rdev, "ramp_delay not set\n");
3356 		return 0;
3357 	}
3358 
3359 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3360 }
3361 
3362 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3363 				     int min_uV, int max_uV)
3364 {
3365 	int ret;
3366 	int delay = 0;
3367 	int best_val = 0;
3368 	unsigned int selector;
3369 	int old_selector = -1;
3370 	const struct regulator_ops *ops = rdev->desc->ops;
3371 	int old_uV = regulator_get_voltage_rdev(rdev);
3372 
3373 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3374 
3375 	min_uV += rdev->constraints->uV_offset;
3376 	max_uV += rdev->constraints->uV_offset;
3377 
3378 	/*
3379 	 * If we can't obtain the old selector there is not enough
3380 	 * info to call set_voltage_time_sel().
3381 	 */
3382 	if (_regulator_is_enabled(rdev) &&
3383 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3384 		old_selector = ops->get_voltage_sel(rdev);
3385 		if (old_selector < 0)
3386 			return old_selector;
3387 	}
3388 
3389 	if (ops->set_voltage) {
3390 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3391 						  &selector);
3392 
3393 		if (ret >= 0) {
3394 			if (ops->list_voltage)
3395 				best_val = ops->list_voltage(rdev,
3396 							     selector);
3397 			else
3398 				best_val = regulator_get_voltage_rdev(rdev);
3399 		}
3400 
3401 	} else if (ops->set_voltage_sel) {
3402 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3403 		if (ret >= 0) {
3404 			best_val = ops->list_voltage(rdev, ret);
3405 			if (min_uV <= best_val && max_uV >= best_val) {
3406 				selector = ret;
3407 				if (old_selector == selector)
3408 					ret = 0;
3409 				else if (rdev->desc->vsel_step)
3410 					ret = _regulator_set_voltage_sel_step(
3411 						rdev, best_val, selector);
3412 				else
3413 					ret = _regulator_call_set_voltage_sel(
3414 						rdev, best_val, selector);
3415 			} else {
3416 				ret = -EINVAL;
3417 			}
3418 		}
3419 	} else {
3420 		ret = -EINVAL;
3421 	}
3422 
3423 	if (ret)
3424 		goto out;
3425 
3426 	if (ops->set_voltage_time_sel) {
3427 		/*
3428 		 * Call set_voltage_time_sel if successfully obtained
3429 		 * old_selector
3430 		 */
3431 		if (old_selector >= 0 && old_selector != selector)
3432 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3433 							  selector);
3434 	} else {
3435 		if (old_uV != best_val) {
3436 			if (ops->set_voltage_time)
3437 				delay = ops->set_voltage_time(rdev, old_uV,
3438 							      best_val);
3439 			else
3440 				delay = _regulator_set_voltage_time(rdev,
3441 								    old_uV,
3442 								    best_val);
3443 		}
3444 	}
3445 
3446 	if (delay < 0) {
3447 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3448 		delay = 0;
3449 	}
3450 
3451 	/* Insert any necessary delays */
3452 	if (delay >= 1000) {
3453 		mdelay(delay / 1000);
3454 		udelay(delay % 1000);
3455 	} else if (delay) {
3456 		udelay(delay);
3457 	}
3458 
3459 	if (best_val >= 0) {
3460 		unsigned long data = best_val;
3461 
3462 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3463 				     (void *)data);
3464 	}
3465 
3466 out:
3467 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3468 
3469 	return ret;
3470 }
3471 
3472 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3473 				  int min_uV, int max_uV, suspend_state_t state)
3474 {
3475 	struct regulator_state *rstate;
3476 	int uV, sel;
3477 
3478 	rstate = regulator_get_suspend_state(rdev, state);
3479 	if (rstate == NULL)
3480 		return -EINVAL;
3481 
3482 	if (min_uV < rstate->min_uV)
3483 		min_uV = rstate->min_uV;
3484 	if (max_uV > rstate->max_uV)
3485 		max_uV = rstate->max_uV;
3486 
3487 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3488 	if (sel < 0)
3489 		return sel;
3490 
3491 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3492 	if (uV >= min_uV && uV <= max_uV)
3493 		rstate->uV = uV;
3494 
3495 	return 0;
3496 }
3497 
3498 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3499 					  int min_uV, int max_uV,
3500 					  suspend_state_t state)
3501 {
3502 	struct regulator_dev *rdev = regulator->rdev;
3503 	struct regulator_voltage *voltage = &regulator->voltage[state];
3504 	int ret = 0;
3505 	int old_min_uV, old_max_uV;
3506 	int current_uV;
3507 
3508 	/* If we're setting the same range as last time the change
3509 	 * should be a noop (some cpufreq implementations use the same
3510 	 * voltage for multiple frequencies, for example).
3511 	 */
3512 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3513 		goto out;
3514 
3515 	/* If we're trying to set a range that overlaps the current voltage,
3516 	 * return successfully even though the regulator does not support
3517 	 * changing the voltage.
3518 	 */
3519 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3520 		current_uV = regulator_get_voltage_rdev(rdev);
3521 		if (min_uV <= current_uV && current_uV <= max_uV) {
3522 			voltage->min_uV = min_uV;
3523 			voltage->max_uV = max_uV;
3524 			goto out;
3525 		}
3526 	}
3527 
3528 	/* sanity check */
3529 	if (!rdev->desc->ops->set_voltage &&
3530 	    !rdev->desc->ops->set_voltage_sel) {
3531 		ret = -EINVAL;
3532 		goto out;
3533 	}
3534 
3535 	/* constraints check */
3536 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3537 	if (ret < 0)
3538 		goto out;
3539 
3540 	/* restore original values in case of error */
3541 	old_min_uV = voltage->min_uV;
3542 	old_max_uV = voltage->max_uV;
3543 	voltage->min_uV = min_uV;
3544 	voltage->max_uV = max_uV;
3545 
3546 	/* for not coupled regulators this will just set the voltage */
3547 	ret = regulator_balance_voltage(rdev, state);
3548 	if (ret < 0) {
3549 		voltage->min_uV = old_min_uV;
3550 		voltage->max_uV = old_max_uV;
3551 	}
3552 
3553 out:
3554 	return ret;
3555 }
3556 
3557 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3558 			       int max_uV, suspend_state_t state)
3559 {
3560 	int best_supply_uV = 0;
3561 	int supply_change_uV = 0;
3562 	int ret;
3563 
3564 	if (rdev->supply &&
3565 	    regulator_ops_is_valid(rdev->supply->rdev,
3566 				   REGULATOR_CHANGE_VOLTAGE) &&
3567 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3568 					   rdev->desc->ops->get_voltage_sel))) {
3569 		int current_supply_uV;
3570 		int selector;
3571 
3572 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3573 		if (selector < 0) {
3574 			ret = selector;
3575 			goto out;
3576 		}
3577 
3578 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3579 		if (best_supply_uV < 0) {
3580 			ret = best_supply_uV;
3581 			goto out;
3582 		}
3583 
3584 		best_supply_uV += rdev->desc->min_dropout_uV;
3585 
3586 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3587 		if (current_supply_uV < 0) {
3588 			ret = current_supply_uV;
3589 			goto out;
3590 		}
3591 
3592 		supply_change_uV = best_supply_uV - current_supply_uV;
3593 	}
3594 
3595 	if (supply_change_uV > 0) {
3596 		ret = regulator_set_voltage_unlocked(rdev->supply,
3597 				best_supply_uV, INT_MAX, state);
3598 		if (ret) {
3599 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3600 				ERR_PTR(ret));
3601 			goto out;
3602 		}
3603 	}
3604 
3605 	if (state == PM_SUSPEND_ON)
3606 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3607 	else
3608 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3609 							max_uV, state);
3610 	if (ret < 0)
3611 		goto out;
3612 
3613 	if (supply_change_uV < 0) {
3614 		ret = regulator_set_voltage_unlocked(rdev->supply,
3615 				best_supply_uV, INT_MAX, state);
3616 		if (ret)
3617 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3618 				 ERR_PTR(ret));
3619 		/* No need to fail here */
3620 		ret = 0;
3621 	}
3622 
3623 out:
3624 	return ret;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3627 
3628 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3629 					int *current_uV, int *min_uV)
3630 {
3631 	struct regulation_constraints *constraints = rdev->constraints;
3632 
3633 	/* Limit voltage change only if necessary */
3634 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3635 		return 1;
3636 
3637 	if (*current_uV < 0) {
3638 		*current_uV = regulator_get_voltage_rdev(rdev);
3639 
3640 		if (*current_uV < 0)
3641 			return *current_uV;
3642 	}
3643 
3644 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3645 		return 1;
3646 
3647 	/* Clamp target voltage within the given step */
3648 	if (*current_uV < *min_uV)
3649 		*min_uV = min(*current_uV + constraints->max_uV_step,
3650 			      *min_uV);
3651 	else
3652 		*min_uV = max(*current_uV - constraints->max_uV_step,
3653 			      *min_uV);
3654 
3655 	return 0;
3656 }
3657 
3658 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3659 					 int *current_uV,
3660 					 int *min_uV, int *max_uV,
3661 					 suspend_state_t state,
3662 					 int n_coupled)
3663 {
3664 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3665 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3666 	struct regulation_constraints *constraints = rdev->constraints;
3667 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3668 	int max_current_uV = 0, min_current_uV = INT_MAX;
3669 	int highest_min_uV = 0, target_uV, possible_uV;
3670 	int i, ret, max_spread;
3671 	bool done;
3672 
3673 	*current_uV = -1;
3674 
3675 	/*
3676 	 * If there are no coupled regulators, simply set the voltage
3677 	 * demanded by consumers.
3678 	 */
3679 	if (n_coupled == 1) {
3680 		/*
3681 		 * If consumers don't provide any demands, set voltage
3682 		 * to min_uV
3683 		 */
3684 		desired_min_uV = constraints->min_uV;
3685 		desired_max_uV = constraints->max_uV;
3686 
3687 		ret = regulator_check_consumers(rdev,
3688 						&desired_min_uV,
3689 						&desired_max_uV, state);
3690 		if (ret < 0)
3691 			return ret;
3692 
3693 		possible_uV = desired_min_uV;
3694 		done = true;
3695 
3696 		goto finish;
3697 	}
3698 
3699 	/* Find highest min desired voltage */
3700 	for (i = 0; i < n_coupled; i++) {
3701 		int tmp_min = 0;
3702 		int tmp_max = INT_MAX;
3703 
3704 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3705 
3706 		ret = regulator_check_consumers(c_rdevs[i],
3707 						&tmp_min,
3708 						&tmp_max, state);
3709 		if (ret < 0)
3710 			return ret;
3711 
3712 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3713 		if (ret < 0)
3714 			return ret;
3715 
3716 		highest_min_uV = max(highest_min_uV, tmp_min);
3717 
3718 		if (i == 0) {
3719 			desired_min_uV = tmp_min;
3720 			desired_max_uV = tmp_max;
3721 		}
3722 	}
3723 
3724 	max_spread = constraints->max_spread[0];
3725 
3726 	/*
3727 	 * Let target_uV be equal to the desired one if possible.
3728 	 * If not, set it to minimum voltage, allowed by other coupled
3729 	 * regulators.
3730 	 */
3731 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3732 
3733 	/*
3734 	 * Find min and max voltages, which currently aren't violating
3735 	 * max_spread.
3736 	 */
3737 	for (i = 1; i < n_coupled; i++) {
3738 		int tmp_act;
3739 
3740 		if (!_regulator_is_enabled(c_rdevs[i]))
3741 			continue;
3742 
3743 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3744 		if (tmp_act < 0)
3745 			return tmp_act;
3746 
3747 		min_current_uV = min(tmp_act, min_current_uV);
3748 		max_current_uV = max(tmp_act, max_current_uV);
3749 	}
3750 
3751 	/* There aren't any other regulators enabled */
3752 	if (max_current_uV == 0) {
3753 		possible_uV = target_uV;
3754 	} else {
3755 		/*
3756 		 * Correct target voltage, so as it currently isn't
3757 		 * violating max_spread
3758 		 */
3759 		possible_uV = max(target_uV, max_current_uV - max_spread);
3760 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3761 	}
3762 
3763 	if (possible_uV > desired_max_uV)
3764 		return -EINVAL;
3765 
3766 	done = (possible_uV == target_uV);
3767 	desired_min_uV = possible_uV;
3768 
3769 finish:
3770 	/* Apply max_uV_step constraint if necessary */
3771 	if (state == PM_SUSPEND_ON) {
3772 		ret = regulator_limit_voltage_step(rdev, current_uV,
3773 						   &desired_min_uV);
3774 		if (ret < 0)
3775 			return ret;
3776 
3777 		if (ret == 0)
3778 			done = false;
3779 	}
3780 
3781 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3782 	if (n_coupled > 1 && *current_uV == -1) {
3783 
3784 		if (_regulator_is_enabled(rdev)) {
3785 			ret = regulator_get_voltage_rdev(rdev);
3786 			if (ret < 0)
3787 				return ret;
3788 
3789 			*current_uV = ret;
3790 		} else {
3791 			*current_uV = desired_min_uV;
3792 		}
3793 	}
3794 
3795 	*min_uV = desired_min_uV;
3796 	*max_uV = desired_max_uV;
3797 
3798 	return done;
3799 }
3800 
3801 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3802 				 suspend_state_t state, bool skip_coupled)
3803 {
3804 	struct regulator_dev **c_rdevs;
3805 	struct regulator_dev *best_rdev;
3806 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3807 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3808 	unsigned int delta, best_delta;
3809 	unsigned long c_rdev_done = 0;
3810 	bool best_c_rdev_done;
3811 
3812 	c_rdevs = c_desc->coupled_rdevs;
3813 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3814 
3815 	/*
3816 	 * Find the best possible voltage change on each loop. Leave the loop
3817 	 * if there isn't any possible change.
3818 	 */
3819 	do {
3820 		best_c_rdev_done = false;
3821 		best_delta = 0;
3822 		best_min_uV = 0;
3823 		best_max_uV = 0;
3824 		best_c_rdev = 0;
3825 		best_rdev = NULL;
3826 
3827 		/*
3828 		 * Find highest difference between optimal voltage
3829 		 * and current voltage.
3830 		 */
3831 		for (i = 0; i < n_coupled; i++) {
3832 			/*
3833 			 * optimal_uV is the best voltage that can be set for
3834 			 * i-th regulator at the moment without violating
3835 			 * max_spread constraint in order to balance
3836 			 * the coupled voltages.
3837 			 */
3838 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3839 
3840 			if (test_bit(i, &c_rdev_done))
3841 				continue;
3842 
3843 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3844 							    &current_uV,
3845 							    &optimal_uV,
3846 							    &optimal_max_uV,
3847 							    state, n_coupled);
3848 			if (ret < 0)
3849 				goto out;
3850 
3851 			delta = abs(optimal_uV - current_uV);
3852 
3853 			if (delta && best_delta <= delta) {
3854 				best_c_rdev_done = ret;
3855 				best_delta = delta;
3856 				best_rdev = c_rdevs[i];
3857 				best_min_uV = optimal_uV;
3858 				best_max_uV = optimal_max_uV;
3859 				best_c_rdev = i;
3860 			}
3861 		}
3862 
3863 		/* Nothing to change, return successfully */
3864 		if (!best_rdev) {
3865 			ret = 0;
3866 			goto out;
3867 		}
3868 
3869 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3870 						 best_max_uV, state);
3871 
3872 		if (ret < 0)
3873 			goto out;
3874 
3875 		if (best_c_rdev_done)
3876 			set_bit(best_c_rdev, &c_rdev_done);
3877 
3878 	} while (n_coupled > 1);
3879 
3880 out:
3881 	return ret;
3882 }
3883 
3884 static int regulator_balance_voltage(struct regulator_dev *rdev,
3885 				     suspend_state_t state)
3886 {
3887 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3888 	struct regulator_coupler *coupler = c_desc->coupler;
3889 	bool skip_coupled = false;
3890 
3891 	/*
3892 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3893 	 * other coupled regulators.
3894 	 */
3895 	if (state != PM_SUSPEND_ON)
3896 		skip_coupled = true;
3897 
3898 	if (c_desc->n_resolved < c_desc->n_coupled) {
3899 		rdev_err(rdev, "Not all coupled regulators registered\n");
3900 		return -EPERM;
3901 	}
3902 
3903 	/* Invoke custom balancer for customized couplers */
3904 	if (coupler && coupler->balance_voltage)
3905 		return coupler->balance_voltage(coupler, rdev, state);
3906 
3907 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3908 }
3909 
3910 /**
3911  * regulator_set_voltage - set regulator output voltage
3912  * @regulator: regulator source
3913  * @min_uV: Minimum required voltage in uV
3914  * @max_uV: Maximum acceptable voltage in uV
3915  *
3916  * Sets a voltage regulator to the desired output voltage. This can be set
3917  * during any regulator state. IOW, regulator can be disabled or enabled.
3918  *
3919  * If the regulator is enabled then the voltage will change to the new value
3920  * immediately otherwise if the regulator is disabled the regulator will
3921  * output at the new voltage when enabled.
3922  *
3923  * NOTE: If the regulator is shared between several devices then the lowest
3924  * request voltage that meets the system constraints will be used.
3925  * Regulator system constraints must be set for this regulator before
3926  * calling this function otherwise this call will fail.
3927  */
3928 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3929 {
3930 	struct ww_acquire_ctx ww_ctx;
3931 	int ret;
3932 
3933 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3934 
3935 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3936 					     PM_SUSPEND_ON);
3937 
3938 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3939 
3940 	return ret;
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3943 
3944 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3945 					   suspend_state_t state, bool en)
3946 {
3947 	struct regulator_state *rstate;
3948 
3949 	rstate = regulator_get_suspend_state(rdev, state);
3950 	if (rstate == NULL)
3951 		return -EINVAL;
3952 
3953 	if (!rstate->changeable)
3954 		return -EPERM;
3955 
3956 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3957 
3958 	return 0;
3959 }
3960 
3961 int regulator_suspend_enable(struct regulator_dev *rdev,
3962 				    suspend_state_t state)
3963 {
3964 	return regulator_suspend_toggle(rdev, state, true);
3965 }
3966 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3967 
3968 int regulator_suspend_disable(struct regulator_dev *rdev,
3969 				     suspend_state_t state)
3970 {
3971 	struct regulator *regulator;
3972 	struct regulator_voltage *voltage;
3973 
3974 	/*
3975 	 * if any consumer wants this regulator device keeping on in
3976 	 * suspend states, don't set it as disabled.
3977 	 */
3978 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3979 		voltage = &regulator->voltage[state];
3980 		if (voltage->min_uV || voltage->max_uV)
3981 			return 0;
3982 	}
3983 
3984 	return regulator_suspend_toggle(rdev, state, false);
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3987 
3988 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3989 					  int min_uV, int max_uV,
3990 					  suspend_state_t state)
3991 {
3992 	struct regulator_dev *rdev = regulator->rdev;
3993 	struct regulator_state *rstate;
3994 
3995 	rstate = regulator_get_suspend_state(rdev, state);
3996 	if (rstate == NULL)
3997 		return -EINVAL;
3998 
3999 	if (rstate->min_uV == rstate->max_uV) {
4000 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4001 		return -EPERM;
4002 	}
4003 
4004 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4005 }
4006 
4007 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4008 				  int max_uV, suspend_state_t state)
4009 {
4010 	struct ww_acquire_ctx ww_ctx;
4011 	int ret;
4012 
4013 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4014 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4015 		return -EINVAL;
4016 
4017 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4018 
4019 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4020 					     max_uV, state);
4021 
4022 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4023 
4024 	return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4027 
4028 /**
4029  * regulator_set_voltage_time - get raise/fall time
4030  * @regulator: regulator source
4031  * @old_uV: starting voltage in microvolts
4032  * @new_uV: target voltage in microvolts
4033  *
4034  * Provided with the starting and ending voltage, this function attempts to
4035  * calculate the time in microseconds required to rise or fall to this new
4036  * voltage.
4037  */
4038 int regulator_set_voltage_time(struct regulator *regulator,
4039 			       int old_uV, int new_uV)
4040 {
4041 	struct regulator_dev *rdev = regulator->rdev;
4042 	const struct regulator_ops *ops = rdev->desc->ops;
4043 	int old_sel = -1;
4044 	int new_sel = -1;
4045 	int voltage;
4046 	int i;
4047 
4048 	if (ops->set_voltage_time)
4049 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4050 	else if (!ops->set_voltage_time_sel)
4051 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4052 
4053 	/* Currently requires operations to do this */
4054 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4055 		return -EINVAL;
4056 
4057 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4058 		/* We only look for exact voltage matches here */
4059 		if (i < rdev->desc->linear_min_sel)
4060 			continue;
4061 
4062 		if (old_sel >= 0 && new_sel >= 0)
4063 			break;
4064 
4065 		voltage = regulator_list_voltage(regulator, i);
4066 		if (voltage < 0)
4067 			return -EINVAL;
4068 		if (voltage == 0)
4069 			continue;
4070 		if (voltage == old_uV)
4071 			old_sel = i;
4072 		if (voltage == new_uV)
4073 			new_sel = i;
4074 	}
4075 
4076 	if (old_sel < 0 || new_sel < 0)
4077 		return -EINVAL;
4078 
4079 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4080 }
4081 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4082 
4083 /**
4084  * regulator_set_voltage_time_sel - get raise/fall time
4085  * @rdev: regulator source device
4086  * @old_selector: selector for starting voltage
4087  * @new_selector: selector for target voltage
4088  *
4089  * Provided with the starting and target voltage selectors, this function
4090  * returns time in microseconds required to rise or fall to this new voltage
4091  *
4092  * Drivers providing ramp_delay in regulation_constraints can use this as their
4093  * set_voltage_time_sel() operation.
4094  */
4095 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4096 				   unsigned int old_selector,
4097 				   unsigned int new_selector)
4098 {
4099 	int old_volt, new_volt;
4100 
4101 	/* sanity check */
4102 	if (!rdev->desc->ops->list_voltage)
4103 		return -EINVAL;
4104 
4105 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4106 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4107 
4108 	if (rdev->desc->ops->set_voltage_time)
4109 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4110 							 new_volt);
4111 	else
4112 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4115 
4116 /**
4117  * regulator_sync_voltage - re-apply last regulator output voltage
4118  * @regulator: regulator source
4119  *
4120  * Re-apply the last configured voltage.  This is intended to be used
4121  * where some external control source the consumer is cooperating with
4122  * has caused the configured voltage to change.
4123  */
4124 int regulator_sync_voltage(struct regulator *regulator)
4125 {
4126 	struct regulator_dev *rdev = regulator->rdev;
4127 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4128 	int ret, min_uV, max_uV;
4129 
4130 	regulator_lock(rdev);
4131 
4132 	if (!rdev->desc->ops->set_voltage &&
4133 	    !rdev->desc->ops->set_voltage_sel) {
4134 		ret = -EINVAL;
4135 		goto out;
4136 	}
4137 
4138 	/* This is only going to work if we've had a voltage configured. */
4139 	if (!voltage->min_uV && !voltage->max_uV) {
4140 		ret = -EINVAL;
4141 		goto out;
4142 	}
4143 
4144 	min_uV = voltage->min_uV;
4145 	max_uV = voltage->max_uV;
4146 
4147 	/* This should be a paranoia check... */
4148 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4149 	if (ret < 0)
4150 		goto out;
4151 
4152 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4153 	if (ret < 0)
4154 		goto out;
4155 
4156 	/* balance only, if regulator is coupled */
4157 	if (rdev->coupling_desc.n_coupled > 1)
4158 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4159 	else
4160 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4161 
4162 out:
4163 	regulator_unlock(rdev);
4164 	return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4167 
4168 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4169 {
4170 	int sel, ret;
4171 	bool bypassed;
4172 
4173 	if (rdev->desc->ops->get_bypass) {
4174 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4175 		if (ret < 0)
4176 			return ret;
4177 		if (bypassed) {
4178 			/* if bypassed the regulator must have a supply */
4179 			if (!rdev->supply) {
4180 				rdev_err(rdev,
4181 					 "bypassed regulator has no supply!\n");
4182 				return -EPROBE_DEFER;
4183 			}
4184 
4185 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4186 		}
4187 	}
4188 
4189 	if (rdev->desc->ops->get_voltage_sel) {
4190 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4191 		if (sel < 0)
4192 			return sel;
4193 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4194 	} else if (rdev->desc->ops->get_voltage) {
4195 		ret = rdev->desc->ops->get_voltage(rdev);
4196 	} else if (rdev->desc->ops->list_voltage) {
4197 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4198 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4199 		ret = rdev->desc->fixed_uV;
4200 	} else if (rdev->supply) {
4201 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4202 	} else if (rdev->supply_name) {
4203 		return -EPROBE_DEFER;
4204 	} else {
4205 		return -EINVAL;
4206 	}
4207 
4208 	if (ret < 0)
4209 		return ret;
4210 	return ret - rdev->constraints->uV_offset;
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4213 
4214 /**
4215  * regulator_get_voltage - get regulator output voltage
4216  * @regulator: regulator source
4217  *
4218  * This returns the current regulator voltage in uV.
4219  *
4220  * NOTE: If the regulator is disabled it will return the voltage value. This
4221  * function should not be used to determine regulator state.
4222  */
4223 int regulator_get_voltage(struct regulator *regulator)
4224 {
4225 	struct ww_acquire_ctx ww_ctx;
4226 	int ret;
4227 
4228 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4229 	ret = regulator_get_voltage_rdev(regulator->rdev);
4230 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4231 
4232 	return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4235 
4236 /**
4237  * regulator_set_current_limit - set regulator output current limit
4238  * @regulator: regulator source
4239  * @min_uA: Minimum supported current in uA
4240  * @max_uA: Maximum supported current in uA
4241  *
4242  * Sets current sink to the desired output current. This can be set during
4243  * any regulator state. IOW, regulator can be disabled or enabled.
4244  *
4245  * If the regulator is enabled then the current will change to the new value
4246  * immediately otherwise if the regulator is disabled the regulator will
4247  * output at the new current when enabled.
4248  *
4249  * NOTE: Regulator system constraints must be set for this regulator before
4250  * calling this function otherwise this call will fail.
4251  */
4252 int regulator_set_current_limit(struct regulator *regulator,
4253 			       int min_uA, int max_uA)
4254 {
4255 	struct regulator_dev *rdev = regulator->rdev;
4256 	int ret;
4257 
4258 	regulator_lock(rdev);
4259 
4260 	/* sanity check */
4261 	if (!rdev->desc->ops->set_current_limit) {
4262 		ret = -EINVAL;
4263 		goto out;
4264 	}
4265 
4266 	/* constraints check */
4267 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4268 	if (ret < 0)
4269 		goto out;
4270 
4271 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4272 out:
4273 	regulator_unlock(rdev);
4274 	return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4277 
4278 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4279 {
4280 	/* sanity check */
4281 	if (!rdev->desc->ops->get_current_limit)
4282 		return -EINVAL;
4283 
4284 	return rdev->desc->ops->get_current_limit(rdev);
4285 }
4286 
4287 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4288 {
4289 	int ret;
4290 
4291 	regulator_lock(rdev);
4292 	ret = _regulator_get_current_limit_unlocked(rdev);
4293 	regulator_unlock(rdev);
4294 
4295 	return ret;
4296 }
4297 
4298 /**
4299  * regulator_get_current_limit - get regulator output current
4300  * @regulator: regulator source
4301  *
4302  * This returns the current supplied by the specified current sink in uA.
4303  *
4304  * NOTE: If the regulator is disabled it will return the current value. This
4305  * function should not be used to determine regulator state.
4306  */
4307 int regulator_get_current_limit(struct regulator *regulator)
4308 {
4309 	return _regulator_get_current_limit(regulator->rdev);
4310 }
4311 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4312 
4313 /**
4314  * regulator_set_mode - set regulator operating mode
4315  * @regulator: regulator source
4316  * @mode: operating mode - one of the REGULATOR_MODE constants
4317  *
4318  * Set regulator operating mode to increase regulator efficiency or improve
4319  * regulation performance.
4320  *
4321  * NOTE: Regulator system constraints must be set for this regulator before
4322  * calling this function otherwise this call will fail.
4323  */
4324 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4325 {
4326 	struct regulator_dev *rdev = regulator->rdev;
4327 	int ret;
4328 	int regulator_curr_mode;
4329 
4330 	regulator_lock(rdev);
4331 
4332 	/* sanity check */
4333 	if (!rdev->desc->ops->set_mode) {
4334 		ret = -EINVAL;
4335 		goto out;
4336 	}
4337 
4338 	/* return if the same mode is requested */
4339 	if (rdev->desc->ops->get_mode) {
4340 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4341 		if (regulator_curr_mode == mode) {
4342 			ret = 0;
4343 			goto out;
4344 		}
4345 	}
4346 
4347 	/* constraints check */
4348 	ret = regulator_mode_constrain(rdev, &mode);
4349 	if (ret < 0)
4350 		goto out;
4351 
4352 	ret = rdev->desc->ops->set_mode(rdev, mode);
4353 out:
4354 	regulator_unlock(rdev);
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(regulator_set_mode);
4358 
4359 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4360 {
4361 	/* sanity check */
4362 	if (!rdev->desc->ops->get_mode)
4363 		return -EINVAL;
4364 
4365 	return rdev->desc->ops->get_mode(rdev);
4366 }
4367 
4368 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4369 {
4370 	int ret;
4371 
4372 	regulator_lock(rdev);
4373 	ret = _regulator_get_mode_unlocked(rdev);
4374 	regulator_unlock(rdev);
4375 
4376 	return ret;
4377 }
4378 
4379 /**
4380  * regulator_get_mode - get regulator operating mode
4381  * @regulator: regulator source
4382  *
4383  * Get the current regulator operating mode.
4384  */
4385 unsigned int regulator_get_mode(struct regulator *regulator)
4386 {
4387 	return _regulator_get_mode(regulator->rdev);
4388 }
4389 EXPORT_SYMBOL_GPL(regulator_get_mode);
4390 
4391 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4392 					unsigned int *flags)
4393 {
4394 	int ret;
4395 
4396 	regulator_lock(rdev);
4397 
4398 	/* sanity check */
4399 	if (!rdev->desc->ops->get_error_flags) {
4400 		ret = -EINVAL;
4401 		goto out;
4402 	}
4403 
4404 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4405 out:
4406 	regulator_unlock(rdev);
4407 	return ret;
4408 }
4409 
4410 /**
4411  * regulator_get_error_flags - get regulator error information
4412  * @regulator: regulator source
4413  * @flags: pointer to store error flags
4414  *
4415  * Get the current regulator error information.
4416  */
4417 int regulator_get_error_flags(struct regulator *regulator,
4418 				unsigned int *flags)
4419 {
4420 	return _regulator_get_error_flags(regulator->rdev, flags);
4421 }
4422 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4423 
4424 /**
4425  * regulator_set_load - set regulator load
4426  * @regulator: regulator source
4427  * @uA_load: load current
4428  *
4429  * Notifies the regulator core of a new device load. This is then used by
4430  * DRMS (if enabled by constraints) to set the most efficient regulator
4431  * operating mode for the new regulator loading.
4432  *
4433  * Consumer devices notify their supply regulator of the maximum power
4434  * they will require (can be taken from device datasheet in the power
4435  * consumption tables) when they change operational status and hence power
4436  * state. Examples of operational state changes that can affect power
4437  * consumption are :-
4438  *
4439  *    o Device is opened / closed.
4440  *    o Device I/O is about to begin or has just finished.
4441  *    o Device is idling in between work.
4442  *
4443  * This information is also exported via sysfs to userspace.
4444  *
4445  * DRMS will sum the total requested load on the regulator and change
4446  * to the most efficient operating mode if platform constraints allow.
4447  *
4448  * NOTE: when a regulator consumer requests to have a regulator
4449  * disabled then any load that consumer requested no longer counts
4450  * toward the total requested load.  If the regulator is re-enabled
4451  * then the previously requested load will start counting again.
4452  *
4453  * If a regulator is an always-on regulator then an individual consumer's
4454  * load will still be removed if that consumer is fully disabled.
4455  *
4456  * On error a negative errno is returned.
4457  */
4458 int regulator_set_load(struct regulator *regulator, int uA_load)
4459 {
4460 	struct regulator_dev *rdev = regulator->rdev;
4461 	int old_uA_load;
4462 	int ret = 0;
4463 
4464 	regulator_lock(rdev);
4465 	old_uA_load = regulator->uA_load;
4466 	regulator->uA_load = uA_load;
4467 	if (regulator->enable_count && old_uA_load != uA_load) {
4468 		ret = drms_uA_update(rdev);
4469 		if (ret < 0)
4470 			regulator->uA_load = old_uA_load;
4471 	}
4472 	regulator_unlock(rdev);
4473 
4474 	return ret;
4475 }
4476 EXPORT_SYMBOL_GPL(regulator_set_load);
4477 
4478 /**
4479  * regulator_allow_bypass - allow the regulator to go into bypass mode
4480  *
4481  * @regulator: Regulator to configure
4482  * @enable: enable or disable bypass mode
4483  *
4484  * Allow the regulator to go into bypass mode if all other consumers
4485  * for the regulator also enable bypass mode and the machine
4486  * constraints allow this.  Bypass mode means that the regulator is
4487  * simply passing the input directly to the output with no regulation.
4488  */
4489 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4490 {
4491 	struct regulator_dev *rdev = regulator->rdev;
4492 	const char *name = rdev_get_name(rdev);
4493 	int ret = 0;
4494 
4495 	if (!rdev->desc->ops->set_bypass)
4496 		return 0;
4497 
4498 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4499 		return 0;
4500 
4501 	regulator_lock(rdev);
4502 
4503 	if (enable && !regulator->bypass) {
4504 		rdev->bypass_count++;
4505 
4506 		if (rdev->bypass_count == rdev->open_count) {
4507 			trace_regulator_bypass_enable(name);
4508 
4509 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4510 			if (ret != 0)
4511 				rdev->bypass_count--;
4512 			else
4513 				trace_regulator_bypass_enable_complete(name);
4514 		}
4515 
4516 	} else if (!enable && regulator->bypass) {
4517 		rdev->bypass_count--;
4518 
4519 		if (rdev->bypass_count != rdev->open_count) {
4520 			trace_regulator_bypass_disable(name);
4521 
4522 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4523 			if (ret != 0)
4524 				rdev->bypass_count++;
4525 			else
4526 				trace_regulator_bypass_disable_complete(name);
4527 		}
4528 	}
4529 
4530 	if (ret == 0)
4531 		regulator->bypass = enable;
4532 
4533 	regulator_unlock(rdev);
4534 
4535 	return ret;
4536 }
4537 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4538 
4539 /**
4540  * regulator_register_notifier - register regulator event notifier
4541  * @regulator: regulator source
4542  * @nb: notifier block
4543  *
4544  * Register notifier block to receive regulator events.
4545  */
4546 int regulator_register_notifier(struct regulator *regulator,
4547 			      struct notifier_block *nb)
4548 {
4549 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4550 						nb);
4551 }
4552 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4553 
4554 /**
4555  * regulator_unregister_notifier - unregister regulator event notifier
4556  * @regulator: regulator source
4557  * @nb: notifier block
4558  *
4559  * Unregister regulator event notifier block.
4560  */
4561 int regulator_unregister_notifier(struct regulator *regulator,
4562 				struct notifier_block *nb)
4563 {
4564 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4565 						  nb);
4566 }
4567 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4568 
4569 /* notify regulator consumers and downstream regulator consumers.
4570  * Note mutex must be held by caller.
4571  */
4572 static int _notifier_call_chain(struct regulator_dev *rdev,
4573 				  unsigned long event, void *data)
4574 {
4575 	/* call rdev chain first */
4576 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4577 }
4578 
4579 /**
4580  * regulator_bulk_get - get multiple regulator consumers
4581  *
4582  * @dev:           Device to supply
4583  * @num_consumers: Number of consumers to register
4584  * @consumers:     Configuration of consumers; clients are stored here.
4585  *
4586  * @return 0 on success, an errno on failure.
4587  *
4588  * This helper function allows drivers to get several regulator
4589  * consumers in one operation.  If any of the regulators cannot be
4590  * acquired then any regulators that were allocated will be freed
4591  * before returning to the caller.
4592  */
4593 int regulator_bulk_get(struct device *dev, int num_consumers,
4594 		       struct regulator_bulk_data *consumers)
4595 {
4596 	int i;
4597 	int ret;
4598 
4599 	for (i = 0; i < num_consumers; i++)
4600 		consumers[i].consumer = NULL;
4601 
4602 	for (i = 0; i < num_consumers; i++) {
4603 		consumers[i].consumer = regulator_get(dev,
4604 						      consumers[i].supply);
4605 		if (IS_ERR(consumers[i].consumer)) {
4606 			ret = PTR_ERR(consumers[i].consumer);
4607 			consumers[i].consumer = NULL;
4608 			goto err;
4609 		}
4610 	}
4611 
4612 	return 0;
4613 
4614 err:
4615 	if (ret != -EPROBE_DEFER)
4616 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4617 			consumers[i].supply, ERR_PTR(ret));
4618 	else
4619 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4620 			consumers[i].supply);
4621 
4622 	while (--i >= 0)
4623 		regulator_put(consumers[i].consumer);
4624 
4625 	return ret;
4626 }
4627 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4628 
4629 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4630 {
4631 	struct regulator_bulk_data *bulk = data;
4632 
4633 	bulk->ret = regulator_enable(bulk->consumer);
4634 }
4635 
4636 /**
4637  * regulator_bulk_enable - enable multiple regulator consumers
4638  *
4639  * @num_consumers: Number of consumers
4640  * @consumers:     Consumer data; clients are stored here.
4641  * @return         0 on success, an errno on failure
4642  *
4643  * This convenience API allows consumers to enable multiple regulator
4644  * clients in a single API call.  If any consumers cannot be enabled
4645  * then any others that were enabled will be disabled again prior to
4646  * return.
4647  */
4648 int regulator_bulk_enable(int num_consumers,
4649 			  struct regulator_bulk_data *consumers)
4650 {
4651 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4652 	int i;
4653 	int ret = 0;
4654 
4655 	for (i = 0; i < num_consumers; i++) {
4656 		async_schedule_domain(regulator_bulk_enable_async,
4657 				      &consumers[i], &async_domain);
4658 	}
4659 
4660 	async_synchronize_full_domain(&async_domain);
4661 
4662 	/* If any consumer failed we need to unwind any that succeeded */
4663 	for (i = 0; i < num_consumers; i++) {
4664 		if (consumers[i].ret != 0) {
4665 			ret = consumers[i].ret;
4666 			goto err;
4667 		}
4668 	}
4669 
4670 	return 0;
4671 
4672 err:
4673 	for (i = 0; i < num_consumers; i++) {
4674 		if (consumers[i].ret < 0)
4675 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4676 			       ERR_PTR(consumers[i].ret));
4677 		else
4678 			regulator_disable(consumers[i].consumer);
4679 	}
4680 
4681 	return ret;
4682 }
4683 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4684 
4685 /**
4686  * regulator_bulk_disable - disable multiple regulator consumers
4687  *
4688  * @num_consumers: Number of consumers
4689  * @consumers:     Consumer data; clients are stored here.
4690  * @return         0 on success, an errno on failure
4691  *
4692  * This convenience API allows consumers to disable multiple regulator
4693  * clients in a single API call.  If any consumers cannot be disabled
4694  * then any others that were disabled will be enabled again prior to
4695  * return.
4696  */
4697 int regulator_bulk_disable(int num_consumers,
4698 			   struct regulator_bulk_data *consumers)
4699 {
4700 	int i;
4701 	int ret, r;
4702 
4703 	for (i = num_consumers - 1; i >= 0; --i) {
4704 		ret = regulator_disable(consumers[i].consumer);
4705 		if (ret != 0)
4706 			goto err;
4707 	}
4708 
4709 	return 0;
4710 
4711 err:
4712 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4713 	for (++i; i < num_consumers; ++i) {
4714 		r = regulator_enable(consumers[i].consumer);
4715 		if (r != 0)
4716 			pr_err("Failed to re-enable %s: %pe\n",
4717 			       consumers[i].supply, ERR_PTR(r));
4718 	}
4719 
4720 	return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4723 
4724 /**
4725  * regulator_bulk_force_disable - force disable multiple regulator consumers
4726  *
4727  * @num_consumers: Number of consumers
4728  * @consumers:     Consumer data; clients are stored here.
4729  * @return         0 on success, an errno on failure
4730  *
4731  * This convenience API allows consumers to forcibly disable multiple regulator
4732  * clients in a single API call.
4733  * NOTE: This should be used for situations when device damage will
4734  * likely occur if the regulators are not disabled (e.g. over temp).
4735  * Although regulator_force_disable function call for some consumers can
4736  * return error numbers, the function is called for all consumers.
4737  */
4738 int regulator_bulk_force_disable(int num_consumers,
4739 			   struct regulator_bulk_data *consumers)
4740 {
4741 	int i;
4742 	int ret = 0;
4743 
4744 	for (i = 0; i < num_consumers; i++) {
4745 		consumers[i].ret =
4746 			    regulator_force_disable(consumers[i].consumer);
4747 
4748 		/* Store first error for reporting */
4749 		if (consumers[i].ret && !ret)
4750 			ret = consumers[i].ret;
4751 	}
4752 
4753 	return ret;
4754 }
4755 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4756 
4757 /**
4758  * regulator_bulk_free - free multiple regulator consumers
4759  *
4760  * @num_consumers: Number of consumers
4761  * @consumers:     Consumer data; clients are stored here.
4762  *
4763  * This convenience API allows consumers to free multiple regulator
4764  * clients in a single API call.
4765  */
4766 void regulator_bulk_free(int num_consumers,
4767 			 struct regulator_bulk_data *consumers)
4768 {
4769 	int i;
4770 
4771 	for (i = 0; i < num_consumers; i++) {
4772 		regulator_put(consumers[i].consumer);
4773 		consumers[i].consumer = NULL;
4774 	}
4775 }
4776 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4777 
4778 /**
4779  * regulator_notifier_call_chain - call regulator event notifier
4780  * @rdev: regulator source
4781  * @event: notifier block
4782  * @data: callback-specific data.
4783  *
4784  * Called by regulator drivers to notify clients a regulator event has
4785  * occurred.
4786  */
4787 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4788 				  unsigned long event, void *data)
4789 {
4790 	_notifier_call_chain(rdev, event, data);
4791 	return NOTIFY_DONE;
4792 
4793 }
4794 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4795 
4796 /**
4797  * regulator_mode_to_status - convert a regulator mode into a status
4798  *
4799  * @mode: Mode to convert
4800  *
4801  * Convert a regulator mode into a status.
4802  */
4803 int regulator_mode_to_status(unsigned int mode)
4804 {
4805 	switch (mode) {
4806 	case REGULATOR_MODE_FAST:
4807 		return REGULATOR_STATUS_FAST;
4808 	case REGULATOR_MODE_NORMAL:
4809 		return REGULATOR_STATUS_NORMAL;
4810 	case REGULATOR_MODE_IDLE:
4811 		return REGULATOR_STATUS_IDLE;
4812 	case REGULATOR_MODE_STANDBY:
4813 		return REGULATOR_STATUS_STANDBY;
4814 	default:
4815 		return REGULATOR_STATUS_UNDEFINED;
4816 	}
4817 }
4818 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4819 
4820 static struct attribute *regulator_dev_attrs[] = {
4821 	&dev_attr_name.attr,
4822 	&dev_attr_num_users.attr,
4823 	&dev_attr_type.attr,
4824 	&dev_attr_microvolts.attr,
4825 	&dev_attr_microamps.attr,
4826 	&dev_attr_opmode.attr,
4827 	&dev_attr_state.attr,
4828 	&dev_attr_status.attr,
4829 	&dev_attr_bypass.attr,
4830 	&dev_attr_requested_microamps.attr,
4831 	&dev_attr_min_microvolts.attr,
4832 	&dev_attr_max_microvolts.attr,
4833 	&dev_attr_min_microamps.attr,
4834 	&dev_attr_max_microamps.attr,
4835 	&dev_attr_suspend_standby_state.attr,
4836 	&dev_attr_suspend_mem_state.attr,
4837 	&dev_attr_suspend_disk_state.attr,
4838 	&dev_attr_suspend_standby_microvolts.attr,
4839 	&dev_attr_suspend_mem_microvolts.attr,
4840 	&dev_attr_suspend_disk_microvolts.attr,
4841 	&dev_attr_suspend_standby_mode.attr,
4842 	&dev_attr_suspend_mem_mode.attr,
4843 	&dev_attr_suspend_disk_mode.attr,
4844 	NULL
4845 };
4846 
4847 /*
4848  * To avoid cluttering sysfs (and memory) with useless state, only
4849  * create attributes that can be meaningfully displayed.
4850  */
4851 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4852 					 struct attribute *attr, int idx)
4853 {
4854 	struct device *dev = kobj_to_dev(kobj);
4855 	struct regulator_dev *rdev = dev_to_rdev(dev);
4856 	const struct regulator_ops *ops = rdev->desc->ops;
4857 	umode_t mode = attr->mode;
4858 
4859 	/* these three are always present */
4860 	if (attr == &dev_attr_name.attr ||
4861 	    attr == &dev_attr_num_users.attr ||
4862 	    attr == &dev_attr_type.attr)
4863 		return mode;
4864 
4865 	/* some attributes need specific methods to be displayed */
4866 	if (attr == &dev_attr_microvolts.attr) {
4867 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4868 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4869 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4870 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4871 			return mode;
4872 		return 0;
4873 	}
4874 
4875 	if (attr == &dev_attr_microamps.attr)
4876 		return ops->get_current_limit ? mode : 0;
4877 
4878 	if (attr == &dev_attr_opmode.attr)
4879 		return ops->get_mode ? mode : 0;
4880 
4881 	if (attr == &dev_attr_state.attr)
4882 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4883 
4884 	if (attr == &dev_attr_status.attr)
4885 		return ops->get_status ? mode : 0;
4886 
4887 	if (attr == &dev_attr_bypass.attr)
4888 		return ops->get_bypass ? mode : 0;
4889 
4890 	/* constraints need specific supporting methods */
4891 	if (attr == &dev_attr_min_microvolts.attr ||
4892 	    attr == &dev_attr_max_microvolts.attr)
4893 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4894 
4895 	if (attr == &dev_attr_min_microamps.attr ||
4896 	    attr == &dev_attr_max_microamps.attr)
4897 		return ops->set_current_limit ? mode : 0;
4898 
4899 	if (attr == &dev_attr_suspend_standby_state.attr ||
4900 	    attr == &dev_attr_suspend_mem_state.attr ||
4901 	    attr == &dev_attr_suspend_disk_state.attr)
4902 		return mode;
4903 
4904 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4905 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4906 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4907 		return ops->set_suspend_voltage ? mode : 0;
4908 
4909 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4910 	    attr == &dev_attr_suspend_mem_mode.attr ||
4911 	    attr == &dev_attr_suspend_disk_mode.attr)
4912 		return ops->set_suspend_mode ? mode : 0;
4913 
4914 	return mode;
4915 }
4916 
4917 static const struct attribute_group regulator_dev_group = {
4918 	.attrs = regulator_dev_attrs,
4919 	.is_visible = regulator_attr_is_visible,
4920 };
4921 
4922 static const struct attribute_group *regulator_dev_groups[] = {
4923 	&regulator_dev_group,
4924 	NULL
4925 };
4926 
4927 static void regulator_dev_release(struct device *dev)
4928 {
4929 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4930 
4931 	kfree(rdev->constraints);
4932 	of_node_put(rdev->dev.of_node);
4933 	kfree(rdev);
4934 }
4935 
4936 static void rdev_init_debugfs(struct regulator_dev *rdev)
4937 {
4938 	struct device *parent = rdev->dev.parent;
4939 	const char *rname = rdev_get_name(rdev);
4940 	char name[NAME_MAX];
4941 
4942 	/* Avoid duplicate debugfs directory names */
4943 	if (parent && rname == rdev->desc->name) {
4944 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4945 			 rname);
4946 		rname = name;
4947 	}
4948 
4949 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4950 	if (!rdev->debugfs) {
4951 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4952 		return;
4953 	}
4954 
4955 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4956 			   &rdev->use_count);
4957 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4958 			   &rdev->open_count);
4959 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4960 			   &rdev->bypass_count);
4961 }
4962 
4963 static int regulator_register_resolve_supply(struct device *dev, void *data)
4964 {
4965 	struct regulator_dev *rdev = dev_to_rdev(dev);
4966 
4967 	if (regulator_resolve_supply(rdev))
4968 		rdev_dbg(rdev, "unable to resolve supply\n");
4969 
4970 	return 0;
4971 }
4972 
4973 int regulator_coupler_register(struct regulator_coupler *coupler)
4974 {
4975 	mutex_lock(&regulator_list_mutex);
4976 	list_add_tail(&coupler->list, &regulator_coupler_list);
4977 	mutex_unlock(&regulator_list_mutex);
4978 
4979 	return 0;
4980 }
4981 
4982 static struct regulator_coupler *
4983 regulator_find_coupler(struct regulator_dev *rdev)
4984 {
4985 	struct regulator_coupler *coupler;
4986 	int err;
4987 
4988 	/*
4989 	 * Note that regulators are appended to the list and the generic
4990 	 * coupler is registered first, hence it will be attached at last
4991 	 * if nobody cared.
4992 	 */
4993 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4994 		err = coupler->attach_regulator(coupler, rdev);
4995 		if (!err) {
4996 			if (!coupler->balance_voltage &&
4997 			    rdev->coupling_desc.n_coupled > 2)
4998 				goto err_unsupported;
4999 
5000 			return coupler;
5001 		}
5002 
5003 		if (err < 0)
5004 			return ERR_PTR(err);
5005 
5006 		if (err == 1)
5007 			continue;
5008 
5009 		break;
5010 	}
5011 
5012 	return ERR_PTR(-EINVAL);
5013 
5014 err_unsupported:
5015 	if (coupler->detach_regulator)
5016 		coupler->detach_regulator(coupler, rdev);
5017 
5018 	rdev_err(rdev,
5019 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5020 
5021 	return ERR_PTR(-EPERM);
5022 }
5023 
5024 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5025 {
5026 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5027 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5028 	int n_coupled = c_desc->n_coupled;
5029 	struct regulator_dev *c_rdev;
5030 	int i;
5031 
5032 	for (i = 1; i < n_coupled; i++) {
5033 		/* already resolved */
5034 		if (c_desc->coupled_rdevs[i])
5035 			continue;
5036 
5037 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5038 
5039 		if (!c_rdev)
5040 			continue;
5041 
5042 		if (c_rdev->coupling_desc.coupler != coupler) {
5043 			rdev_err(rdev, "coupler mismatch with %s\n",
5044 				 rdev_get_name(c_rdev));
5045 			return;
5046 		}
5047 
5048 		c_desc->coupled_rdevs[i] = c_rdev;
5049 		c_desc->n_resolved++;
5050 
5051 		regulator_resolve_coupling(c_rdev);
5052 	}
5053 }
5054 
5055 static void regulator_remove_coupling(struct regulator_dev *rdev)
5056 {
5057 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5058 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5059 	struct regulator_dev *__c_rdev, *c_rdev;
5060 	unsigned int __n_coupled, n_coupled;
5061 	int i, k;
5062 	int err;
5063 
5064 	n_coupled = c_desc->n_coupled;
5065 
5066 	for (i = 1; i < n_coupled; i++) {
5067 		c_rdev = c_desc->coupled_rdevs[i];
5068 
5069 		if (!c_rdev)
5070 			continue;
5071 
5072 		regulator_lock(c_rdev);
5073 
5074 		__c_desc = &c_rdev->coupling_desc;
5075 		__n_coupled = __c_desc->n_coupled;
5076 
5077 		for (k = 1; k < __n_coupled; k++) {
5078 			__c_rdev = __c_desc->coupled_rdevs[k];
5079 
5080 			if (__c_rdev == rdev) {
5081 				__c_desc->coupled_rdevs[k] = NULL;
5082 				__c_desc->n_resolved--;
5083 				break;
5084 			}
5085 		}
5086 
5087 		regulator_unlock(c_rdev);
5088 
5089 		c_desc->coupled_rdevs[i] = NULL;
5090 		c_desc->n_resolved--;
5091 	}
5092 
5093 	if (coupler && coupler->detach_regulator) {
5094 		err = coupler->detach_regulator(coupler, rdev);
5095 		if (err)
5096 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5097 				 ERR_PTR(err));
5098 	}
5099 
5100 	kfree(rdev->coupling_desc.coupled_rdevs);
5101 	rdev->coupling_desc.coupled_rdevs = NULL;
5102 }
5103 
5104 static int regulator_init_coupling(struct regulator_dev *rdev)
5105 {
5106 	struct regulator_dev **coupled;
5107 	int err, n_phandles;
5108 
5109 	if (!IS_ENABLED(CONFIG_OF))
5110 		n_phandles = 0;
5111 	else
5112 		n_phandles = of_get_n_coupled(rdev);
5113 
5114 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5115 	if (!coupled)
5116 		return -ENOMEM;
5117 
5118 	rdev->coupling_desc.coupled_rdevs = coupled;
5119 
5120 	/*
5121 	 * Every regulator should always have coupling descriptor filled with
5122 	 * at least pointer to itself.
5123 	 */
5124 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5125 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5126 	rdev->coupling_desc.n_resolved++;
5127 
5128 	/* regulator isn't coupled */
5129 	if (n_phandles == 0)
5130 		return 0;
5131 
5132 	if (!of_check_coupling_data(rdev))
5133 		return -EPERM;
5134 
5135 	mutex_lock(&regulator_list_mutex);
5136 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5137 	mutex_unlock(&regulator_list_mutex);
5138 
5139 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5140 		err = PTR_ERR(rdev->coupling_desc.coupler);
5141 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5142 		return err;
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 static int generic_coupler_attach(struct regulator_coupler *coupler,
5149 				  struct regulator_dev *rdev)
5150 {
5151 	if (rdev->coupling_desc.n_coupled > 2) {
5152 		rdev_err(rdev,
5153 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5154 		return -EPERM;
5155 	}
5156 
5157 	if (!rdev->constraints->always_on) {
5158 		rdev_err(rdev,
5159 			 "Coupling of a non always-on regulator is unimplemented\n");
5160 		return -ENOTSUPP;
5161 	}
5162 
5163 	return 0;
5164 }
5165 
5166 static struct regulator_coupler generic_regulator_coupler = {
5167 	.attach_regulator = generic_coupler_attach,
5168 };
5169 
5170 /**
5171  * regulator_register - register regulator
5172  * @regulator_desc: regulator to register
5173  * @cfg: runtime configuration for regulator
5174  *
5175  * Called by regulator drivers to register a regulator.
5176  * Returns a valid pointer to struct regulator_dev on success
5177  * or an ERR_PTR() on error.
5178  */
5179 struct regulator_dev *
5180 regulator_register(const struct regulator_desc *regulator_desc,
5181 		   const struct regulator_config *cfg)
5182 {
5183 	const struct regulator_init_data *init_data;
5184 	struct regulator_config *config = NULL;
5185 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5186 	struct regulator_dev *rdev;
5187 	bool dangling_cfg_gpiod = false;
5188 	bool dangling_of_gpiod = false;
5189 	struct device *dev;
5190 	int ret, i;
5191 
5192 	if (cfg == NULL)
5193 		return ERR_PTR(-EINVAL);
5194 	if (cfg->ena_gpiod)
5195 		dangling_cfg_gpiod = true;
5196 	if (regulator_desc == NULL) {
5197 		ret = -EINVAL;
5198 		goto rinse;
5199 	}
5200 
5201 	dev = cfg->dev;
5202 	WARN_ON(!dev);
5203 
5204 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5205 		ret = -EINVAL;
5206 		goto rinse;
5207 	}
5208 
5209 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5210 	    regulator_desc->type != REGULATOR_CURRENT) {
5211 		ret = -EINVAL;
5212 		goto rinse;
5213 	}
5214 
5215 	/* Only one of each should be implemented */
5216 	WARN_ON(regulator_desc->ops->get_voltage &&
5217 		regulator_desc->ops->get_voltage_sel);
5218 	WARN_ON(regulator_desc->ops->set_voltage &&
5219 		regulator_desc->ops->set_voltage_sel);
5220 
5221 	/* If we're using selectors we must implement list_voltage. */
5222 	if (regulator_desc->ops->get_voltage_sel &&
5223 	    !regulator_desc->ops->list_voltage) {
5224 		ret = -EINVAL;
5225 		goto rinse;
5226 	}
5227 	if (regulator_desc->ops->set_voltage_sel &&
5228 	    !regulator_desc->ops->list_voltage) {
5229 		ret = -EINVAL;
5230 		goto rinse;
5231 	}
5232 
5233 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5234 	if (rdev == NULL) {
5235 		ret = -ENOMEM;
5236 		goto rinse;
5237 	}
5238 	device_initialize(&rdev->dev);
5239 
5240 	/*
5241 	 * Duplicate the config so the driver could override it after
5242 	 * parsing init data.
5243 	 */
5244 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5245 	if (config == NULL) {
5246 		ret = -ENOMEM;
5247 		goto clean;
5248 	}
5249 
5250 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5251 					       &rdev->dev.of_node);
5252 
5253 	/*
5254 	 * Sometimes not all resources are probed already so we need to take
5255 	 * that into account. This happens most the time if the ena_gpiod comes
5256 	 * from a gpio extender or something else.
5257 	 */
5258 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5259 		ret = -EPROBE_DEFER;
5260 		goto clean;
5261 	}
5262 
5263 	/*
5264 	 * We need to keep track of any GPIO descriptor coming from the
5265 	 * device tree until we have handled it over to the core. If the
5266 	 * config that was passed in to this function DOES NOT contain
5267 	 * a descriptor, and the config after this call DOES contain
5268 	 * a descriptor, we definitely got one from parsing the device
5269 	 * tree.
5270 	 */
5271 	if (!cfg->ena_gpiod && config->ena_gpiod)
5272 		dangling_of_gpiod = true;
5273 	if (!init_data) {
5274 		init_data = config->init_data;
5275 		rdev->dev.of_node = of_node_get(config->of_node);
5276 	}
5277 
5278 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5279 	rdev->reg_data = config->driver_data;
5280 	rdev->owner = regulator_desc->owner;
5281 	rdev->desc = regulator_desc;
5282 	if (config->regmap)
5283 		rdev->regmap = config->regmap;
5284 	else if (dev_get_regmap(dev, NULL))
5285 		rdev->regmap = dev_get_regmap(dev, NULL);
5286 	else if (dev->parent)
5287 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5288 	INIT_LIST_HEAD(&rdev->consumer_list);
5289 	INIT_LIST_HEAD(&rdev->list);
5290 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5291 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5292 
5293 	/* preform any regulator specific init */
5294 	if (init_data && init_data->regulator_init) {
5295 		ret = init_data->regulator_init(rdev->reg_data);
5296 		if (ret < 0)
5297 			goto clean;
5298 	}
5299 
5300 	if (config->ena_gpiod) {
5301 		ret = regulator_ena_gpio_request(rdev, config);
5302 		if (ret != 0) {
5303 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5304 				 ERR_PTR(ret));
5305 			goto clean;
5306 		}
5307 		/* The regulator core took over the GPIO descriptor */
5308 		dangling_cfg_gpiod = false;
5309 		dangling_of_gpiod = false;
5310 	}
5311 
5312 	/* register with sysfs */
5313 	rdev->dev.class = &regulator_class;
5314 	rdev->dev.parent = dev;
5315 	dev_set_name(&rdev->dev, "regulator.%lu",
5316 		    (unsigned long) atomic_inc_return(&regulator_no));
5317 	dev_set_drvdata(&rdev->dev, rdev);
5318 
5319 	/* set regulator constraints */
5320 	if (init_data)
5321 		rdev->constraints = kmemdup(&init_data->constraints,
5322 					    sizeof(*rdev->constraints),
5323 					    GFP_KERNEL);
5324 	else
5325 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5326 					    GFP_KERNEL);
5327 	if (!rdev->constraints) {
5328 		ret = -ENOMEM;
5329 		goto wash;
5330 	}
5331 
5332 	if (init_data && init_data->supply_regulator)
5333 		rdev->supply_name = init_data->supply_regulator;
5334 	else if (regulator_desc->supply_name)
5335 		rdev->supply_name = regulator_desc->supply_name;
5336 
5337 	ret = set_machine_constraints(rdev);
5338 	if (ret == -EPROBE_DEFER) {
5339 		/* Regulator might be in bypass mode and so needs its supply
5340 		 * to set the constraints */
5341 		/* FIXME: this currently triggers a chicken-and-egg problem
5342 		 * when creating -SUPPLY symlink in sysfs to a regulator
5343 		 * that is just being created */
5344 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5345 			 rdev->supply_name);
5346 		ret = regulator_resolve_supply(rdev);
5347 		if (!ret)
5348 			ret = set_machine_constraints(rdev);
5349 		else
5350 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5351 				 ERR_PTR(ret));
5352 	}
5353 	if (ret < 0)
5354 		goto wash;
5355 
5356 	ret = regulator_init_coupling(rdev);
5357 	if (ret < 0)
5358 		goto wash;
5359 
5360 	/* add consumers devices */
5361 	if (init_data) {
5362 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5363 			ret = set_consumer_device_supply(rdev,
5364 				init_data->consumer_supplies[i].dev_name,
5365 				init_data->consumer_supplies[i].supply);
5366 			if (ret < 0) {
5367 				dev_err(dev, "Failed to set supply %s\n",
5368 					init_data->consumer_supplies[i].supply);
5369 				goto unset_supplies;
5370 			}
5371 		}
5372 	}
5373 
5374 	if (!rdev->desc->ops->get_voltage &&
5375 	    !rdev->desc->ops->list_voltage &&
5376 	    !rdev->desc->fixed_uV)
5377 		rdev->is_switch = true;
5378 
5379 	ret = device_add(&rdev->dev);
5380 	if (ret != 0)
5381 		goto unset_supplies;
5382 
5383 	rdev_init_debugfs(rdev);
5384 
5385 	/* try to resolve regulators coupling since a new one was registered */
5386 	mutex_lock(&regulator_list_mutex);
5387 	regulator_resolve_coupling(rdev);
5388 	mutex_unlock(&regulator_list_mutex);
5389 
5390 	/* try to resolve regulators supply since a new one was registered */
5391 	class_for_each_device(&regulator_class, NULL, NULL,
5392 			      regulator_register_resolve_supply);
5393 	kfree(config);
5394 	return rdev;
5395 
5396 unset_supplies:
5397 	mutex_lock(&regulator_list_mutex);
5398 	unset_regulator_supplies(rdev);
5399 	regulator_remove_coupling(rdev);
5400 	mutex_unlock(&regulator_list_mutex);
5401 wash:
5402 	kfree(rdev->coupling_desc.coupled_rdevs);
5403 	mutex_lock(&regulator_list_mutex);
5404 	regulator_ena_gpio_free(rdev);
5405 	mutex_unlock(&regulator_list_mutex);
5406 clean:
5407 	if (dangling_of_gpiod)
5408 		gpiod_put(config->ena_gpiod);
5409 	kfree(config);
5410 	put_device(&rdev->dev);
5411 rinse:
5412 	if (dangling_cfg_gpiod)
5413 		gpiod_put(cfg->ena_gpiod);
5414 	return ERR_PTR(ret);
5415 }
5416 EXPORT_SYMBOL_GPL(regulator_register);
5417 
5418 /**
5419  * regulator_unregister - unregister regulator
5420  * @rdev: regulator to unregister
5421  *
5422  * Called by regulator drivers to unregister a regulator.
5423  */
5424 void regulator_unregister(struct regulator_dev *rdev)
5425 {
5426 	if (rdev == NULL)
5427 		return;
5428 
5429 	if (rdev->supply) {
5430 		while (rdev->use_count--)
5431 			regulator_disable(rdev->supply);
5432 		regulator_put(rdev->supply);
5433 	}
5434 
5435 	flush_work(&rdev->disable_work.work);
5436 
5437 	mutex_lock(&regulator_list_mutex);
5438 
5439 	debugfs_remove_recursive(rdev->debugfs);
5440 	WARN_ON(rdev->open_count);
5441 	regulator_remove_coupling(rdev);
5442 	unset_regulator_supplies(rdev);
5443 	list_del(&rdev->list);
5444 	regulator_ena_gpio_free(rdev);
5445 	device_unregister(&rdev->dev);
5446 
5447 	mutex_unlock(&regulator_list_mutex);
5448 }
5449 EXPORT_SYMBOL_GPL(regulator_unregister);
5450 
5451 #ifdef CONFIG_SUSPEND
5452 /**
5453  * regulator_suspend - prepare regulators for system wide suspend
5454  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5455  *
5456  * Configure each regulator with it's suspend operating parameters for state.
5457  */
5458 static int regulator_suspend(struct device *dev)
5459 {
5460 	struct regulator_dev *rdev = dev_to_rdev(dev);
5461 	suspend_state_t state = pm_suspend_target_state;
5462 	int ret;
5463 	const struct regulator_state *rstate;
5464 
5465 	rstate = regulator_get_suspend_state_check(rdev, state);
5466 	if (!rstate)
5467 		return 0;
5468 
5469 	regulator_lock(rdev);
5470 	ret = __suspend_set_state(rdev, rstate);
5471 	regulator_unlock(rdev);
5472 
5473 	return ret;
5474 }
5475 
5476 static int regulator_resume(struct device *dev)
5477 {
5478 	suspend_state_t state = pm_suspend_target_state;
5479 	struct regulator_dev *rdev = dev_to_rdev(dev);
5480 	struct regulator_state *rstate;
5481 	int ret = 0;
5482 
5483 	rstate = regulator_get_suspend_state(rdev, state);
5484 	if (rstate == NULL)
5485 		return 0;
5486 
5487 	/* Avoid grabbing the lock if we don't need to */
5488 	if (!rdev->desc->ops->resume)
5489 		return 0;
5490 
5491 	regulator_lock(rdev);
5492 
5493 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5494 	    rstate->enabled == DISABLE_IN_SUSPEND)
5495 		ret = rdev->desc->ops->resume(rdev);
5496 
5497 	regulator_unlock(rdev);
5498 
5499 	return ret;
5500 }
5501 #else /* !CONFIG_SUSPEND */
5502 
5503 #define regulator_suspend	NULL
5504 #define regulator_resume	NULL
5505 
5506 #endif /* !CONFIG_SUSPEND */
5507 
5508 #ifdef CONFIG_PM
5509 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510 	.suspend	= regulator_suspend,
5511 	.resume		= regulator_resume,
5512 };
5513 #endif
5514 
5515 struct class regulator_class = {
5516 	.name = "regulator",
5517 	.dev_release = regulator_dev_release,
5518 	.dev_groups = regulator_dev_groups,
5519 #ifdef CONFIG_PM
5520 	.pm = &regulator_pm_ops,
5521 #endif
5522 };
5523 /**
5524  * regulator_has_full_constraints - the system has fully specified constraints
5525  *
5526  * Calling this function will cause the regulator API to disable all
5527  * regulators which have a zero use count and don't have an always_on
5528  * constraint in a late_initcall.
5529  *
5530  * The intention is that this will become the default behaviour in a
5531  * future kernel release so users are encouraged to use this facility
5532  * now.
5533  */
5534 void regulator_has_full_constraints(void)
5535 {
5536 	has_full_constraints = 1;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5539 
5540 /**
5541  * rdev_get_drvdata - get rdev regulator driver data
5542  * @rdev: regulator
5543  *
5544  * Get rdev regulator driver private data. This call can be used in the
5545  * regulator driver context.
5546  */
5547 void *rdev_get_drvdata(struct regulator_dev *rdev)
5548 {
5549 	return rdev->reg_data;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5552 
5553 /**
5554  * regulator_get_drvdata - get regulator driver data
5555  * @regulator: regulator
5556  *
5557  * Get regulator driver private data. This call can be used in the consumer
5558  * driver context when non API regulator specific functions need to be called.
5559  */
5560 void *regulator_get_drvdata(struct regulator *regulator)
5561 {
5562 	return regulator->rdev->reg_data;
5563 }
5564 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5565 
5566 /**
5567  * regulator_set_drvdata - set regulator driver data
5568  * @regulator: regulator
5569  * @data: data
5570  */
5571 void regulator_set_drvdata(struct regulator *regulator, void *data)
5572 {
5573 	regulator->rdev->reg_data = data;
5574 }
5575 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5576 
5577 /**
5578  * rdev_get_id - get regulator ID
5579  * @rdev: regulator
5580  */
5581 int rdev_get_id(struct regulator_dev *rdev)
5582 {
5583 	return rdev->desc->id;
5584 }
5585 EXPORT_SYMBOL_GPL(rdev_get_id);
5586 
5587 struct device *rdev_get_dev(struct regulator_dev *rdev)
5588 {
5589 	return &rdev->dev;
5590 }
5591 EXPORT_SYMBOL_GPL(rdev_get_dev);
5592 
5593 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5594 {
5595 	return rdev->regmap;
5596 }
5597 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5598 
5599 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5600 {
5601 	return reg_init_data->driver_data;
5602 }
5603 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5604 
5605 #ifdef CONFIG_DEBUG_FS
5606 static int supply_map_show(struct seq_file *sf, void *data)
5607 {
5608 	struct regulator_map *map;
5609 
5610 	list_for_each_entry(map, &regulator_map_list, list) {
5611 		seq_printf(sf, "%s -> %s.%s\n",
5612 				rdev_get_name(map->regulator), map->dev_name,
5613 				map->supply);
5614 	}
5615 
5616 	return 0;
5617 }
5618 DEFINE_SHOW_ATTRIBUTE(supply_map);
5619 
5620 struct summary_data {
5621 	struct seq_file *s;
5622 	struct regulator_dev *parent;
5623 	int level;
5624 };
5625 
5626 static void regulator_summary_show_subtree(struct seq_file *s,
5627 					   struct regulator_dev *rdev,
5628 					   int level);
5629 
5630 static int regulator_summary_show_children(struct device *dev, void *data)
5631 {
5632 	struct regulator_dev *rdev = dev_to_rdev(dev);
5633 	struct summary_data *summary_data = data;
5634 
5635 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5636 		regulator_summary_show_subtree(summary_data->s, rdev,
5637 					       summary_data->level + 1);
5638 
5639 	return 0;
5640 }
5641 
5642 static void regulator_summary_show_subtree(struct seq_file *s,
5643 					   struct regulator_dev *rdev,
5644 					   int level)
5645 {
5646 	struct regulation_constraints *c;
5647 	struct regulator *consumer;
5648 	struct summary_data summary_data;
5649 	unsigned int opmode;
5650 
5651 	if (!rdev)
5652 		return;
5653 
5654 	opmode = _regulator_get_mode_unlocked(rdev);
5655 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5656 		   level * 3 + 1, "",
5657 		   30 - level * 3, rdev_get_name(rdev),
5658 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5659 		   regulator_opmode_to_str(opmode));
5660 
5661 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662 	seq_printf(s, "%5dmA ",
5663 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5664 
5665 	c = rdev->constraints;
5666 	if (c) {
5667 		switch (rdev->desc->type) {
5668 		case REGULATOR_VOLTAGE:
5669 			seq_printf(s, "%5dmV %5dmV ",
5670 				   c->min_uV / 1000, c->max_uV / 1000);
5671 			break;
5672 		case REGULATOR_CURRENT:
5673 			seq_printf(s, "%5dmA %5dmA ",
5674 				   c->min_uA / 1000, c->max_uA / 1000);
5675 			break;
5676 		}
5677 	}
5678 
5679 	seq_puts(s, "\n");
5680 
5681 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682 		if (consumer->dev && consumer->dev->class == &regulator_class)
5683 			continue;
5684 
5685 		seq_printf(s, "%*s%-*s ",
5686 			   (level + 1) * 3 + 1, "",
5687 			   30 - (level + 1) * 3,
5688 			   consumer->supply_name ? consumer->supply_name :
5689 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5690 
5691 		switch (rdev->desc->type) {
5692 		case REGULATOR_VOLTAGE:
5693 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5694 				   consumer->enable_count,
5695 				   consumer->uA_load / 1000,
5696 				   consumer->uA_load && !consumer->enable_count ?
5697 				   '*' : ' ',
5698 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5699 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5700 			break;
5701 		case REGULATOR_CURRENT:
5702 			break;
5703 		}
5704 
5705 		seq_puts(s, "\n");
5706 	}
5707 
5708 	summary_data.s = s;
5709 	summary_data.level = level;
5710 	summary_data.parent = rdev;
5711 
5712 	class_for_each_device(&regulator_class, NULL, &summary_data,
5713 			      regulator_summary_show_children);
5714 }
5715 
5716 struct summary_lock_data {
5717 	struct ww_acquire_ctx *ww_ctx;
5718 	struct regulator_dev **new_contended_rdev;
5719 	struct regulator_dev **old_contended_rdev;
5720 };
5721 
5722 static int regulator_summary_lock_one(struct device *dev, void *data)
5723 {
5724 	struct regulator_dev *rdev = dev_to_rdev(dev);
5725 	struct summary_lock_data *lock_data = data;
5726 	int ret = 0;
5727 
5728 	if (rdev != *lock_data->old_contended_rdev) {
5729 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5730 
5731 		if (ret == -EDEADLK)
5732 			*lock_data->new_contended_rdev = rdev;
5733 		else
5734 			WARN_ON_ONCE(ret);
5735 	} else {
5736 		*lock_data->old_contended_rdev = NULL;
5737 	}
5738 
5739 	return ret;
5740 }
5741 
5742 static int regulator_summary_unlock_one(struct device *dev, void *data)
5743 {
5744 	struct regulator_dev *rdev = dev_to_rdev(dev);
5745 	struct summary_lock_data *lock_data = data;
5746 
5747 	if (lock_data) {
5748 		if (rdev == *lock_data->new_contended_rdev)
5749 			return -EDEADLK;
5750 	}
5751 
5752 	regulator_unlock(rdev);
5753 
5754 	return 0;
5755 }
5756 
5757 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5758 				      struct regulator_dev **new_contended_rdev,
5759 				      struct regulator_dev **old_contended_rdev)
5760 {
5761 	struct summary_lock_data lock_data;
5762 	int ret;
5763 
5764 	lock_data.ww_ctx = ww_ctx;
5765 	lock_data.new_contended_rdev = new_contended_rdev;
5766 	lock_data.old_contended_rdev = old_contended_rdev;
5767 
5768 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5769 				    regulator_summary_lock_one);
5770 	if (ret)
5771 		class_for_each_device(&regulator_class, NULL, &lock_data,
5772 				      regulator_summary_unlock_one);
5773 
5774 	return ret;
5775 }
5776 
5777 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5778 {
5779 	struct regulator_dev *new_contended_rdev = NULL;
5780 	struct regulator_dev *old_contended_rdev = NULL;
5781 	int err;
5782 
5783 	mutex_lock(&regulator_list_mutex);
5784 
5785 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5786 
5787 	do {
5788 		if (new_contended_rdev) {
5789 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5790 			old_contended_rdev = new_contended_rdev;
5791 			old_contended_rdev->ref_cnt++;
5792 		}
5793 
5794 		err = regulator_summary_lock_all(ww_ctx,
5795 						 &new_contended_rdev,
5796 						 &old_contended_rdev);
5797 
5798 		if (old_contended_rdev)
5799 			regulator_unlock(old_contended_rdev);
5800 
5801 	} while (err == -EDEADLK);
5802 
5803 	ww_acquire_done(ww_ctx);
5804 }
5805 
5806 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5807 {
5808 	class_for_each_device(&regulator_class, NULL, NULL,
5809 			      regulator_summary_unlock_one);
5810 	ww_acquire_fini(ww_ctx);
5811 
5812 	mutex_unlock(&regulator_list_mutex);
5813 }
5814 
5815 static int regulator_summary_show_roots(struct device *dev, void *data)
5816 {
5817 	struct regulator_dev *rdev = dev_to_rdev(dev);
5818 	struct seq_file *s = data;
5819 
5820 	if (!rdev->supply)
5821 		regulator_summary_show_subtree(s, rdev, 0);
5822 
5823 	return 0;
5824 }
5825 
5826 static int regulator_summary_show(struct seq_file *s, void *data)
5827 {
5828 	struct ww_acquire_ctx ww_ctx;
5829 
5830 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5831 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5832 
5833 	regulator_summary_lock(&ww_ctx);
5834 
5835 	class_for_each_device(&regulator_class, NULL, s,
5836 			      regulator_summary_show_roots);
5837 
5838 	regulator_summary_unlock(&ww_ctx);
5839 
5840 	return 0;
5841 }
5842 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5843 #endif /* CONFIG_DEBUG_FS */
5844 
5845 static int __init regulator_init(void)
5846 {
5847 	int ret;
5848 
5849 	ret = class_register(&regulator_class);
5850 
5851 	debugfs_root = debugfs_create_dir("regulator", NULL);
5852 	if (!debugfs_root)
5853 		pr_warn("regulator: Failed to create debugfs directory\n");
5854 
5855 #ifdef CONFIG_DEBUG_FS
5856 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5857 			    &supply_map_fops);
5858 
5859 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860 			    NULL, &regulator_summary_fops);
5861 #endif
5862 	regulator_dummy_init();
5863 
5864 	regulator_coupler_register(&generic_regulator_coupler);
5865 
5866 	return ret;
5867 }
5868 
5869 /* init early to allow our consumers to complete system booting */
5870 core_initcall(regulator_init);
5871 
5872 static int regulator_late_cleanup(struct device *dev, void *data)
5873 {
5874 	struct regulator_dev *rdev = dev_to_rdev(dev);
5875 	const struct regulator_ops *ops = rdev->desc->ops;
5876 	struct regulation_constraints *c = rdev->constraints;
5877 	int enabled, ret;
5878 
5879 	if (c && c->always_on)
5880 		return 0;
5881 
5882 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5883 		return 0;
5884 
5885 	regulator_lock(rdev);
5886 
5887 	if (rdev->use_count)
5888 		goto unlock;
5889 
5890 	/* If we can't read the status assume it's always on. */
5891 	if (ops->is_enabled)
5892 		enabled = ops->is_enabled(rdev);
5893 	else
5894 		enabled = 1;
5895 
5896 	/* But if reading the status failed, assume that it's off. */
5897 	if (enabled <= 0)
5898 		goto unlock;
5899 
5900 	if (have_full_constraints()) {
5901 		/* We log since this may kill the system if it goes
5902 		 * wrong. */
5903 		rdev_info(rdev, "disabling\n");
5904 		ret = _regulator_do_disable(rdev);
5905 		if (ret != 0)
5906 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5907 	} else {
5908 		/* The intention is that in future we will
5909 		 * assume that full constraints are provided
5910 		 * so warn even if we aren't going to do
5911 		 * anything here.
5912 		 */
5913 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5914 	}
5915 
5916 unlock:
5917 	regulator_unlock(rdev);
5918 
5919 	return 0;
5920 }
5921 
5922 static void regulator_init_complete_work_function(struct work_struct *work)
5923 {
5924 	/*
5925 	 * Regulators may had failed to resolve their input supplies
5926 	 * when were registered, either because the input supply was
5927 	 * not registered yet or because its parent device was not
5928 	 * bound yet. So attempt to resolve the input supplies for
5929 	 * pending regulators before trying to disable unused ones.
5930 	 */
5931 	class_for_each_device(&regulator_class, NULL, NULL,
5932 			      regulator_register_resolve_supply);
5933 
5934 	/* If we have a full configuration then disable any regulators
5935 	 * we have permission to change the status for and which are
5936 	 * not in use or always_on.  This is effectively the default
5937 	 * for DT and ACPI as they have full constraints.
5938 	 */
5939 	class_for_each_device(&regulator_class, NULL, NULL,
5940 			      regulator_late_cleanup);
5941 }
5942 
5943 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5944 			    regulator_init_complete_work_function);
5945 
5946 static int __init regulator_init_complete(void)
5947 {
5948 	/*
5949 	 * Since DT doesn't provide an idiomatic mechanism for
5950 	 * enabling full constraints and since it's much more natural
5951 	 * with DT to provide them just assume that a DT enabled
5952 	 * system has full constraints.
5953 	 */
5954 	if (of_have_populated_dt())
5955 		has_full_constraints = true;
5956 
5957 	/*
5958 	 * We punt completion for an arbitrary amount of time since
5959 	 * systems like distros will load many drivers from userspace
5960 	 * so consumers might not always be ready yet, this is
5961 	 * particularly an issue with laptops where this might bounce
5962 	 * the display off then on.  Ideally we'd get a notification
5963 	 * from userspace when this happens but we don't so just wait
5964 	 * a bit and hope we waited long enough.  It'd be better if
5965 	 * we'd only do this on systems that need it, and a kernel
5966 	 * command line option might be useful.
5967 	 */
5968 	schedule_delayed_work(&regulator_init_complete_work,
5969 			      msecs_to_jiffies(30000));
5970 
5971 	return 0;
5972 }
5973 late_initcall_sync(regulator_init_complete);
5974