1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/mutex.h> 21 #include <linux/suspend.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/regulator/driver.h> 24 #include <linux/regulator/machine.h> 25 26 #define REGULATOR_VERSION "0.5" 27 28 static DEFINE_MUTEX(regulator_list_mutex); 29 static LIST_HEAD(regulator_list); 30 static LIST_HEAD(regulator_map_list); 31 static int has_full_constraints; 32 33 /* 34 * struct regulator_map 35 * 36 * Used to provide symbolic supply names to devices. 37 */ 38 struct regulator_map { 39 struct list_head list; 40 struct device *dev; 41 const char *supply; 42 struct regulator_dev *regulator; 43 }; 44 45 /* 46 * struct regulator 47 * 48 * One for each consumer device. 49 */ 50 struct regulator { 51 struct device *dev; 52 struct list_head list; 53 int uA_load; 54 int min_uV; 55 int max_uV; 56 char *supply_name; 57 struct device_attribute dev_attr; 58 struct regulator_dev *rdev; 59 }; 60 61 static int _regulator_is_enabled(struct regulator_dev *rdev); 62 static int _regulator_disable(struct regulator_dev *rdev); 63 static int _regulator_get_voltage(struct regulator_dev *rdev); 64 static int _regulator_get_current_limit(struct regulator_dev *rdev); 65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 66 static void _notifier_call_chain(struct regulator_dev *rdev, 67 unsigned long event, void *data); 68 69 /* gets the regulator for a given consumer device */ 70 static struct regulator *get_device_regulator(struct device *dev) 71 { 72 struct regulator *regulator = NULL; 73 struct regulator_dev *rdev; 74 75 mutex_lock(®ulator_list_mutex); 76 list_for_each_entry(rdev, ®ulator_list, list) { 77 mutex_lock(&rdev->mutex); 78 list_for_each_entry(regulator, &rdev->consumer_list, list) { 79 if (regulator->dev == dev) { 80 mutex_unlock(&rdev->mutex); 81 mutex_unlock(®ulator_list_mutex); 82 return regulator; 83 } 84 } 85 mutex_unlock(&rdev->mutex); 86 } 87 mutex_unlock(®ulator_list_mutex); 88 return NULL; 89 } 90 91 /* Platform voltage constraint check */ 92 static int regulator_check_voltage(struct regulator_dev *rdev, 93 int *min_uV, int *max_uV) 94 { 95 BUG_ON(*min_uV > *max_uV); 96 97 if (!rdev->constraints) { 98 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 99 rdev->desc->name); 100 return -ENODEV; 101 } 102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 103 printk(KERN_ERR "%s: operation not allowed for %s\n", 104 __func__, rdev->desc->name); 105 return -EPERM; 106 } 107 108 if (*max_uV > rdev->constraints->max_uV) 109 *max_uV = rdev->constraints->max_uV; 110 if (*min_uV < rdev->constraints->min_uV) 111 *min_uV = rdev->constraints->min_uV; 112 113 if (*min_uV > *max_uV) 114 return -EINVAL; 115 116 return 0; 117 } 118 119 /* current constraint check */ 120 static int regulator_check_current_limit(struct regulator_dev *rdev, 121 int *min_uA, int *max_uA) 122 { 123 BUG_ON(*min_uA > *max_uA); 124 125 if (!rdev->constraints) { 126 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 127 rdev->desc->name); 128 return -ENODEV; 129 } 130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 131 printk(KERN_ERR "%s: operation not allowed for %s\n", 132 __func__, rdev->desc->name); 133 return -EPERM; 134 } 135 136 if (*max_uA > rdev->constraints->max_uA) 137 *max_uA = rdev->constraints->max_uA; 138 if (*min_uA < rdev->constraints->min_uA) 139 *min_uA = rdev->constraints->min_uA; 140 141 if (*min_uA > *max_uA) 142 return -EINVAL; 143 144 return 0; 145 } 146 147 /* operating mode constraint check */ 148 static int regulator_check_mode(struct regulator_dev *rdev, int mode) 149 { 150 switch (mode) { 151 case REGULATOR_MODE_FAST: 152 case REGULATOR_MODE_NORMAL: 153 case REGULATOR_MODE_IDLE: 154 case REGULATOR_MODE_STANDBY: 155 break; 156 default: 157 return -EINVAL; 158 } 159 160 if (!rdev->constraints) { 161 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 162 rdev->desc->name); 163 return -ENODEV; 164 } 165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 166 printk(KERN_ERR "%s: operation not allowed for %s\n", 167 __func__, rdev->desc->name); 168 return -EPERM; 169 } 170 if (!(rdev->constraints->valid_modes_mask & mode)) { 171 printk(KERN_ERR "%s: invalid mode %x for %s\n", 172 __func__, mode, rdev->desc->name); 173 return -EINVAL; 174 } 175 return 0; 176 } 177 178 /* dynamic regulator mode switching constraint check */ 179 static int regulator_check_drms(struct regulator_dev *rdev) 180 { 181 if (!rdev->constraints) { 182 printk(KERN_ERR "%s: no constraints for %s\n", __func__, 183 rdev->desc->name); 184 return -ENODEV; 185 } 186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 187 printk(KERN_ERR "%s: operation not allowed for %s\n", 188 __func__, rdev->desc->name); 189 return -EPERM; 190 } 191 return 0; 192 } 193 194 static ssize_t device_requested_uA_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct regulator *regulator; 198 199 regulator = get_device_regulator(dev); 200 if (regulator == NULL) 201 return 0; 202 203 return sprintf(buf, "%d\n", regulator->uA_load); 204 } 205 206 static ssize_t regulator_uV_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct regulator_dev *rdev = dev_get_drvdata(dev); 210 ssize_t ret; 211 212 mutex_lock(&rdev->mutex); 213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 214 mutex_unlock(&rdev->mutex); 215 216 return ret; 217 } 218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 219 220 static ssize_t regulator_uA_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct regulator_dev *rdev = dev_get_drvdata(dev); 224 225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 226 } 227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 228 229 static ssize_t regulator_name_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct regulator_dev *rdev = dev_get_drvdata(dev); 233 const char *name; 234 235 if (rdev->constraints->name) 236 name = rdev->constraints->name; 237 else if (rdev->desc->name) 238 name = rdev->desc->name; 239 else 240 name = ""; 241 242 return sprintf(buf, "%s\n", name); 243 } 244 245 static ssize_t regulator_print_opmode(char *buf, int mode) 246 { 247 switch (mode) { 248 case REGULATOR_MODE_FAST: 249 return sprintf(buf, "fast\n"); 250 case REGULATOR_MODE_NORMAL: 251 return sprintf(buf, "normal\n"); 252 case REGULATOR_MODE_IDLE: 253 return sprintf(buf, "idle\n"); 254 case REGULATOR_MODE_STANDBY: 255 return sprintf(buf, "standby\n"); 256 } 257 return sprintf(buf, "unknown\n"); 258 } 259 260 static ssize_t regulator_opmode_show(struct device *dev, 261 struct device_attribute *attr, char *buf) 262 { 263 struct regulator_dev *rdev = dev_get_drvdata(dev); 264 265 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 266 } 267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 268 269 static ssize_t regulator_print_state(char *buf, int state) 270 { 271 if (state > 0) 272 return sprintf(buf, "enabled\n"); 273 else if (state == 0) 274 return sprintf(buf, "disabled\n"); 275 else 276 return sprintf(buf, "unknown\n"); 277 } 278 279 static ssize_t regulator_state_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct regulator_dev *rdev = dev_get_drvdata(dev); 283 284 return regulator_print_state(buf, _regulator_is_enabled(rdev)); 285 } 286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 287 288 static ssize_t regulator_status_show(struct device *dev, 289 struct device_attribute *attr, char *buf) 290 { 291 struct regulator_dev *rdev = dev_get_drvdata(dev); 292 int status; 293 char *label; 294 295 status = rdev->desc->ops->get_status(rdev); 296 if (status < 0) 297 return status; 298 299 switch (status) { 300 case REGULATOR_STATUS_OFF: 301 label = "off"; 302 break; 303 case REGULATOR_STATUS_ON: 304 label = "on"; 305 break; 306 case REGULATOR_STATUS_ERROR: 307 label = "error"; 308 break; 309 case REGULATOR_STATUS_FAST: 310 label = "fast"; 311 break; 312 case REGULATOR_STATUS_NORMAL: 313 label = "normal"; 314 break; 315 case REGULATOR_STATUS_IDLE: 316 label = "idle"; 317 break; 318 case REGULATOR_STATUS_STANDBY: 319 label = "standby"; 320 break; 321 default: 322 return -ERANGE; 323 } 324 325 return sprintf(buf, "%s\n", label); 326 } 327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 328 329 static ssize_t regulator_min_uA_show(struct device *dev, 330 struct device_attribute *attr, char *buf) 331 { 332 struct regulator_dev *rdev = dev_get_drvdata(dev); 333 334 if (!rdev->constraints) 335 return sprintf(buf, "constraint not defined\n"); 336 337 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 338 } 339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 340 341 static ssize_t regulator_max_uA_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 if (!rdev->constraints) 347 return sprintf(buf, "constraint not defined\n"); 348 349 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 350 } 351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 352 353 static ssize_t regulator_min_uV_show(struct device *dev, 354 struct device_attribute *attr, char *buf) 355 { 356 struct regulator_dev *rdev = dev_get_drvdata(dev); 357 358 if (!rdev->constraints) 359 return sprintf(buf, "constraint not defined\n"); 360 361 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 362 } 363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 364 365 static ssize_t regulator_max_uV_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 struct regulator_dev *rdev = dev_get_drvdata(dev); 369 370 if (!rdev->constraints) 371 return sprintf(buf, "constraint not defined\n"); 372 373 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 374 } 375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 376 377 static ssize_t regulator_total_uA_show(struct device *dev, 378 struct device_attribute *attr, char *buf) 379 { 380 struct regulator_dev *rdev = dev_get_drvdata(dev); 381 struct regulator *regulator; 382 int uA = 0; 383 384 mutex_lock(&rdev->mutex); 385 list_for_each_entry(regulator, &rdev->consumer_list, list) 386 uA += regulator->uA_load; 387 mutex_unlock(&rdev->mutex); 388 return sprintf(buf, "%d\n", uA); 389 } 390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 391 392 static ssize_t regulator_num_users_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct regulator_dev *rdev = dev_get_drvdata(dev); 396 return sprintf(buf, "%d\n", rdev->use_count); 397 } 398 399 static ssize_t regulator_type_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 struct regulator_dev *rdev = dev_get_drvdata(dev); 403 404 switch (rdev->desc->type) { 405 case REGULATOR_VOLTAGE: 406 return sprintf(buf, "voltage\n"); 407 case REGULATOR_CURRENT: 408 return sprintf(buf, "current\n"); 409 } 410 return sprintf(buf, "unknown\n"); 411 } 412 413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct regulator_dev *rdev = dev_get_drvdata(dev); 417 418 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 419 } 420 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 421 regulator_suspend_mem_uV_show, NULL); 422 423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 struct regulator_dev *rdev = dev_get_drvdata(dev); 427 428 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 429 } 430 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 431 regulator_suspend_disk_uV_show, NULL); 432 433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 434 struct device_attribute *attr, char *buf) 435 { 436 struct regulator_dev *rdev = dev_get_drvdata(dev); 437 438 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 439 } 440 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 441 regulator_suspend_standby_uV_show, NULL); 442 443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct regulator_dev *rdev = dev_get_drvdata(dev); 447 448 return regulator_print_opmode(buf, 449 rdev->constraints->state_mem.mode); 450 } 451 static DEVICE_ATTR(suspend_mem_mode, 0444, 452 regulator_suspend_mem_mode_show, NULL); 453 454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 return regulator_print_opmode(buf, 460 rdev->constraints->state_disk.mode); 461 } 462 static DEVICE_ATTR(suspend_disk_mode, 0444, 463 regulator_suspend_disk_mode_show, NULL); 464 465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 return regulator_print_opmode(buf, 471 rdev->constraints->state_standby.mode); 472 } 473 static DEVICE_ATTR(suspend_standby_mode, 0444, 474 regulator_suspend_standby_mode_show, NULL); 475 476 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 477 struct device_attribute *attr, char *buf) 478 { 479 struct regulator_dev *rdev = dev_get_drvdata(dev); 480 481 return regulator_print_state(buf, 482 rdev->constraints->state_mem.enabled); 483 } 484 static DEVICE_ATTR(suspend_mem_state, 0444, 485 regulator_suspend_mem_state_show, NULL); 486 487 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 488 struct device_attribute *attr, char *buf) 489 { 490 struct regulator_dev *rdev = dev_get_drvdata(dev); 491 492 return regulator_print_state(buf, 493 rdev->constraints->state_disk.enabled); 494 } 495 static DEVICE_ATTR(suspend_disk_state, 0444, 496 regulator_suspend_disk_state_show, NULL); 497 498 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct regulator_dev *rdev = dev_get_drvdata(dev); 502 503 return regulator_print_state(buf, 504 rdev->constraints->state_standby.enabled); 505 } 506 static DEVICE_ATTR(suspend_standby_state, 0444, 507 regulator_suspend_standby_state_show, NULL); 508 509 510 /* 511 * These are the only attributes are present for all regulators. 512 * Other attributes are a function of regulator functionality. 513 */ 514 static struct device_attribute regulator_dev_attrs[] = { 515 __ATTR(name, 0444, regulator_name_show, NULL), 516 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 517 __ATTR(type, 0444, regulator_type_show, NULL), 518 __ATTR_NULL, 519 }; 520 521 static void regulator_dev_release(struct device *dev) 522 { 523 struct regulator_dev *rdev = dev_get_drvdata(dev); 524 kfree(rdev); 525 } 526 527 static struct class regulator_class = { 528 .name = "regulator", 529 .dev_release = regulator_dev_release, 530 .dev_attrs = regulator_dev_attrs, 531 }; 532 533 /* Calculate the new optimum regulator operating mode based on the new total 534 * consumer load. All locks held by caller */ 535 static void drms_uA_update(struct regulator_dev *rdev) 536 { 537 struct regulator *sibling; 538 int current_uA = 0, output_uV, input_uV, err; 539 unsigned int mode; 540 541 err = regulator_check_drms(rdev); 542 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 543 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode) 544 return; 545 546 /* get output voltage */ 547 output_uV = rdev->desc->ops->get_voltage(rdev); 548 if (output_uV <= 0) 549 return; 550 551 /* get input voltage */ 552 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 553 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 554 else 555 input_uV = rdev->constraints->input_uV; 556 if (input_uV <= 0) 557 return; 558 559 /* calc total requested load */ 560 list_for_each_entry(sibling, &rdev->consumer_list, list) 561 current_uA += sibling->uA_load; 562 563 /* now get the optimum mode for our new total regulator load */ 564 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 565 output_uV, current_uA); 566 567 /* check the new mode is allowed */ 568 err = regulator_check_mode(rdev, mode); 569 if (err == 0) 570 rdev->desc->ops->set_mode(rdev, mode); 571 } 572 573 static int suspend_set_state(struct regulator_dev *rdev, 574 struct regulator_state *rstate) 575 { 576 int ret = 0; 577 578 /* enable & disable are mandatory for suspend control */ 579 if (!rdev->desc->ops->set_suspend_enable || 580 !rdev->desc->ops->set_suspend_disable) { 581 printk(KERN_ERR "%s: no way to set suspend state\n", 582 __func__); 583 return -EINVAL; 584 } 585 586 if (rstate->enabled) 587 ret = rdev->desc->ops->set_suspend_enable(rdev); 588 else 589 ret = rdev->desc->ops->set_suspend_disable(rdev); 590 if (ret < 0) { 591 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); 592 return ret; 593 } 594 595 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 596 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 597 if (ret < 0) { 598 printk(KERN_ERR "%s: failed to set voltage\n", 599 __func__); 600 return ret; 601 } 602 } 603 604 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 605 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 606 if (ret < 0) { 607 printk(KERN_ERR "%s: failed to set mode\n", __func__); 608 return ret; 609 } 610 } 611 return ret; 612 } 613 614 /* locks held by caller */ 615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 616 { 617 if (!rdev->constraints) 618 return -EINVAL; 619 620 switch (state) { 621 case PM_SUSPEND_STANDBY: 622 return suspend_set_state(rdev, 623 &rdev->constraints->state_standby); 624 case PM_SUSPEND_MEM: 625 return suspend_set_state(rdev, 626 &rdev->constraints->state_mem); 627 case PM_SUSPEND_MAX: 628 return suspend_set_state(rdev, 629 &rdev->constraints->state_disk); 630 default: 631 return -EINVAL; 632 } 633 } 634 635 static void print_constraints(struct regulator_dev *rdev) 636 { 637 struct regulation_constraints *constraints = rdev->constraints; 638 char buf[80]; 639 int count; 640 641 if (rdev->desc->type == REGULATOR_VOLTAGE) { 642 if (constraints->min_uV == constraints->max_uV) 643 count = sprintf(buf, "%d mV ", 644 constraints->min_uV / 1000); 645 else 646 count = sprintf(buf, "%d <--> %d mV ", 647 constraints->min_uV / 1000, 648 constraints->max_uV / 1000); 649 } else { 650 if (constraints->min_uA == constraints->max_uA) 651 count = sprintf(buf, "%d mA ", 652 constraints->min_uA / 1000); 653 else 654 count = sprintf(buf, "%d <--> %d mA ", 655 constraints->min_uA / 1000, 656 constraints->max_uA / 1000); 657 } 658 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 659 count += sprintf(buf + count, "fast "); 660 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 661 count += sprintf(buf + count, "normal "); 662 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 663 count += sprintf(buf + count, "idle "); 664 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 665 count += sprintf(buf + count, "standby"); 666 667 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf); 668 } 669 670 /** 671 * set_machine_constraints - sets regulator constraints 672 * @rdev: regulator source 673 * @constraints: constraints to apply 674 * 675 * Allows platform initialisation code to define and constrain 676 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 677 * Constraints *must* be set by platform code in order for some 678 * regulator operations to proceed i.e. set_voltage, set_current_limit, 679 * set_mode. 680 */ 681 static int set_machine_constraints(struct regulator_dev *rdev, 682 struct regulation_constraints *constraints) 683 { 684 int ret = 0; 685 const char *name; 686 struct regulator_ops *ops = rdev->desc->ops; 687 688 if (constraints->name) 689 name = constraints->name; 690 else if (rdev->desc->name) 691 name = rdev->desc->name; 692 else 693 name = "regulator"; 694 695 /* constrain machine-level voltage specs to fit 696 * the actual range supported by this regulator. 697 */ 698 if (ops->list_voltage && rdev->desc->n_voltages) { 699 int count = rdev->desc->n_voltages; 700 int i; 701 int min_uV = INT_MAX; 702 int max_uV = INT_MIN; 703 int cmin = constraints->min_uV; 704 int cmax = constraints->max_uV; 705 706 /* it's safe to autoconfigure fixed-voltage supplies 707 and the constraints are used by list_voltage. */ 708 if (count == 1 && !cmin) { 709 cmin = 1; 710 cmax = INT_MAX; 711 constraints->min_uV = cmin; 712 constraints->max_uV = cmax; 713 } 714 715 /* voltage constraints are optional */ 716 if ((cmin == 0) && (cmax == 0)) 717 goto out; 718 719 /* else require explicit machine-level constraints */ 720 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 721 pr_err("%s: %s '%s' voltage constraints\n", 722 __func__, "invalid", name); 723 ret = -EINVAL; 724 goto out; 725 } 726 727 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 728 for (i = 0; i < count; i++) { 729 int value; 730 731 value = ops->list_voltage(rdev, i); 732 if (value <= 0) 733 continue; 734 735 /* maybe adjust [min_uV..max_uV] */ 736 if (value >= cmin && value < min_uV) 737 min_uV = value; 738 if (value <= cmax && value > max_uV) 739 max_uV = value; 740 } 741 742 /* final: [min_uV..max_uV] valid iff constraints valid */ 743 if (max_uV < min_uV) { 744 pr_err("%s: %s '%s' voltage constraints\n", 745 __func__, "unsupportable", name); 746 ret = -EINVAL; 747 goto out; 748 } 749 750 /* use regulator's subset of machine constraints */ 751 if (constraints->min_uV < min_uV) { 752 pr_debug("%s: override '%s' %s, %d -> %d\n", 753 __func__, name, "min_uV", 754 constraints->min_uV, min_uV); 755 constraints->min_uV = min_uV; 756 } 757 if (constraints->max_uV > max_uV) { 758 pr_debug("%s: override '%s' %s, %d -> %d\n", 759 __func__, name, "max_uV", 760 constraints->max_uV, max_uV); 761 constraints->max_uV = max_uV; 762 } 763 } 764 765 rdev->constraints = constraints; 766 767 /* do we need to apply the constraint voltage */ 768 if (rdev->constraints->apply_uV && 769 rdev->constraints->min_uV == rdev->constraints->max_uV && 770 ops->set_voltage) { 771 ret = ops->set_voltage(rdev, 772 rdev->constraints->min_uV, rdev->constraints->max_uV); 773 if (ret < 0) { 774 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", 775 __func__, 776 rdev->constraints->min_uV, name); 777 rdev->constraints = NULL; 778 goto out; 779 } 780 } 781 782 /* do we need to setup our suspend state */ 783 if (constraints->initial_state) { 784 ret = suspend_prepare(rdev, constraints->initial_state); 785 if (ret < 0) { 786 printk(KERN_ERR "%s: failed to set suspend state for %s\n", 787 __func__, name); 788 rdev->constraints = NULL; 789 goto out; 790 } 791 } 792 793 if (constraints->initial_mode) { 794 if (!ops->set_mode) { 795 printk(KERN_ERR "%s: no set_mode operation for %s\n", 796 __func__, name); 797 ret = -EINVAL; 798 goto out; 799 } 800 801 ret = ops->set_mode(rdev, constraints->initial_mode); 802 if (ret < 0) { 803 printk(KERN_ERR 804 "%s: failed to set initial mode for %s: %d\n", 805 __func__, name, ret); 806 goto out; 807 } 808 } 809 810 /* If the constraints say the regulator should be on at this point 811 * and we have control then make sure it is enabled. 812 */ 813 if ((constraints->always_on || constraints->boot_on) && ops->enable) { 814 ret = ops->enable(rdev); 815 if (ret < 0) { 816 printk(KERN_ERR "%s: failed to enable %s\n", 817 __func__, name); 818 rdev->constraints = NULL; 819 goto out; 820 } 821 } 822 823 print_constraints(rdev); 824 out: 825 return ret; 826 } 827 828 /** 829 * set_supply - set regulator supply regulator 830 * @rdev: regulator name 831 * @supply_rdev: supply regulator name 832 * 833 * Called by platform initialisation code to set the supply regulator for this 834 * regulator. This ensures that a regulators supply will also be enabled by the 835 * core if it's child is enabled. 836 */ 837 static int set_supply(struct regulator_dev *rdev, 838 struct regulator_dev *supply_rdev) 839 { 840 int err; 841 842 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, 843 "supply"); 844 if (err) { 845 printk(KERN_ERR 846 "%s: could not add device link %s err %d\n", 847 __func__, supply_rdev->dev.kobj.name, err); 848 goto out; 849 } 850 rdev->supply = supply_rdev; 851 list_add(&rdev->slist, &supply_rdev->supply_list); 852 out: 853 return err; 854 } 855 856 /** 857 * set_consumer_device_supply: Bind a regulator to a symbolic supply 858 * @rdev: regulator source 859 * @consumer_dev: device the supply applies to 860 * @supply: symbolic name for supply 861 * 862 * Allows platform initialisation code to map physical regulator 863 * sources to symbolic names for supplies for use by devices. Devices 864 * should use these symbolic names to request regulators, avoiding the 865 * need to provide board-specific regulator names as platform data. 866 */ 867 static int set_consumer_device_supply(struct regulator_dev *rdev, 868 struct device *consumer_dev, const char *supply) 869 { 870 struct regulator_map *node; 871 872 if (supply == NULL) 873 return -EINVAL; 874 875 list_for_each_entry(node, ®ulator_map_list, list) { 876 if (consumer_dev != node->dev) 877 continue; 878 if (strcmp(node->supply, supply) != 0) 879 continue; 880 881 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", 882 dev_name(&node->regulator->dev), 883 node->regulator->desc->name, 884 supply, 885 dev_name(&rdev->dev), rdev->desc->name); 886 return -EBUSY; 887 } 888 889 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL); 890 if (node == NULL) 891 return -ENOMEM; 892 893 node->regulator = rdev; 894 node->dev = consumer_dev; 895 node->supply = supply; 896 897 list_add(&node->list, ®ulator_map_list); 898 return 0; 899 } 900 901 static void unset_consumer_device_supply(struct regulator_dev *rdev, 902 struct device *consumer_dev) 903 { 904 struct regulator_map *node, *n; 905 906 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 907 if (rdev == node->regulator && 908 consumer_dev == node->dev) { 909 list_del(&node->list); 910 kfree(node); 911 return; 912 } 913 } 914 } 915 916 static void unset_regulator_supplies(struct regulator_dev *rdev) 917 { 918 struct regulator_map *node, *n; 919 920 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 921 if (rdev == node->regulator) { 922 list_del(&node->list); 923 kfree(node); 924 return; 925 } 926 } 927 } 928 929 #define REG_STR_SIZE 32 930 931 static struct regulator *create_regulator(struct regulator_dev *rdev, 932 struct device *dev, 933 const char *supply_name) 934 { 935 struct regulator *regulator; 936 char buf[REG_STR_SIZE]; 937 int err, size; 938 939 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 940 if (regulator == NULL) 941 return NULL; 942 943 mutex_lock(&rdev->mutex); 944 regulator->rdev = rdev; 945 list_add(®ulator->list, &rdev->consumer_list); 946 947 if (dev) { 948 /* create a 'requested_microamps_name' sysfs entry */ 949 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", 950 supply_name); 951 if (size >= REG_STR_SIZE) 952 goto overflow_err; 953 954 regulator->dev = dev; 955 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 956 if (regulator->dev_attr.attr.name == NULL) 957 goto attr_name_err; 958 959 regulator->dev_attr.attr.owner = THIS_MODULE; 960 regulator->dev_attr.attr.mode = 0444; 961 regulator->dev_attr.show = device_requested_uA_show; 962 err = device_create_file(dev, ®ulator->dev_attr); 963 if (err < 0) { 964 printk(KERN_WARNING "%s: could not add regulator_dev" 965 " load sysfs\n", __func__); 966 goto attr_name_err; 967 } 968 969 /* also add a link to the device sysfs entry */ 970 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 971 dev->kobj.name, supply_name); 972 if (size >= REG_STR_SIZE) 973 goto attr_err; 974 975 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 976 if (regulator->supply_name == NULL) 977 goto attr_err; 978 979 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 980 buf); 981 if (err) { 982 printk(KERN_WARNING 983 "%s: could not add device link %s err %d\n", 984 __func__, dev->kobj.name, err); 985 device_remove_file(dev, ®ulator->dev_attr); 986 goto link_name_err; 987 } 988 } 989 mutex_unlock(&rdev->mutex); 990 return regulator; 991 link_name_err: 992 kfree(regulator->supply_name); 993 attr_err: 994 device_remove_file(regulator->dev, ®ulator->dev_attr); 995 attr_name_err: 996 kfree(regulator->dev_attr.attr.name); 997 overflow_err: 998 list_del(®ulator->list); 999 kfree(regulator); 1000 mutex_unlock(&rdev->mutex); 1001 return NULL; 1002 } 1003 1004 /** 1005 * regulator_get - lookup and obtain a reference to a regulator. 1006 * @dev: device for regulator "consumer" 1007 * @id: Supply name or regulator ID. 1008 * 1009 * Returns a struct regulator corresponding to the regulator producer, 1010 * or IS_ERR() condition containing errno. 1011 * 1012 * Use of supply names configured via regulator_set_device_supply() is 1013 * strongly encouraged. It is recommended that the supply name used 1014 * should match the name used for the supply and/or the relevant 1015 * device pins in the datasheet. 1016 */ 1017 struct regulator *regulator_get(struct device *dev, const char *id) 1018 { 1019 struct regulator_dev *rdev; 1020 struct regulator_map *map; 1021 struct regulator *regulator = ERR_PTR(-ENODEV); 1022 1023 if (id == NULL) { 1024 printk(KERN_ERR "regulator: get() with no identifier\n"); 1025 return regulator; 1026 } 1027 1028 mutex_lock(®ulator_list_mutex); 1029 1030 list_for_each_entry(map, ®ulator_map_list, list) { 1031 if (dev == map->dev && 1032 strcmp(map->supply, id) == 0) { 1033 rdev = map->regulator; 1034 goto found; 1035 } 1036 } 1037 mutex_unlock(®ulator_list_mutex); 1038 return regulator; 1039 1040 found: 1041 if (!try_module_get(rdev->owner)) 1042 goto out; 1043 1044 regulator = create_regulator(rdev, dev, id); 1045 if (regulator == NULL) { 1046 regulator = ERR_PTR(-ENOMEM); 1047 module_put(rdev->owner); 1048 } 1049 1050 out: 1051 mutex_unlock(®ulator_list_mutex); 1052 return regulator; 1053 } 1054 EXPORT_SYMBOL_GPL(regulator_get); 1055 1056 /** 1057 * regulator_put - "free" the regulator source 1058 * @regulator: regulator source 1059 * 1060 * Note: drivers must ensure that all regulator_enable calls made on this 1061 * regulator source are balanced by regulator_disable calls prior to calling 1062 * this function. 1063 */ 1064 void regulator_put(struct regulator *regulator) 1065 { 1066 struct regulator_dev *rdev; 1067 1068 if (regulator == NULL || IS_ERR(regulator)) 1069 return; 1070 1071 mutex_lock(®ulator_list_mutex); 1072 rdev = regulator->rdev; 1073 1074 /* remove any sysfs entries */ 1075 if (regulator->dev) { 1076 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1077 kfree(regulator->supply_name); 1078 device_remove_file(regulator->dev, ®ulator->dev_attr); 1079 kfree(regulator->dev_attr.attr.name); 1080 } 1081 list_del(®ulator->list); 1082 kfree(regulator); 1083 1084 module_put(rdev->owner); 1085 mutex_unlock(®ulator_list_mutex); 1086 } 1087 EXPORT_SYMBOL_GPL(regulator_put); 1088 1089 /* locks held by regulator_enable() */ 1090 static int _regulator_enable(struct regulator_dev *rdev) 1091 { 1092 int ret = -EINVAL; 1093 1094 if (!rdev->constraints) { 1095 printk(KERN_ERR "%s: %s has no constraints\n", 1096 __func__, rdev->desc->name); 1097 return ret; 1098 } 1099 1100 /* do we need to enable the supply regulator first */ 1101 if (rdev->supply) { 1102 ret = _regulator_enable(rdev->supply); 1103 if (ret < 0) { 1104 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1105 __func__, rdev->desc->name, ret); 1106 return ret; 1107 } 1108 } 1109 1110 /* check voltage and requested load before enabling */ 1111 if (rdev->desc->ops->enable) { 1112 1113 if (rdev->constraints && 1114 (rdev->constraints->valid_ops_mask & 1115 REGULATOR_CHANGE_DRMS)) 1116 drms_uA_update(rdev); 1117 1118 ret = rdev->desc->ops->enable(rdev); 1119 if (ret < 0) { 1120 printk(KERN_ERR "%s: failed to enable %s: %d\n", 1121 __func__, rdev->desc->name, ret); 1122 return ret; 1123 } 1124 rdev->use_count++; 1125 return ret; 1126 } 1127 1128 return ret; 1129 } 1130 1131 /** 1132 * regulator_enable - enable regulator output 1133 * @regulator: regulator source 1134 * 1135 * Request that the regulator be enabled with the regulator output at 1136 * the predefined voltage or current value. Calls to regulator_enable() 1137 * must be balanced with calls to regulator_disable(). 1138 * 1139 * NOTE: the output value can be set by other drivers, boot loader or may be 1140 * hardwired in the regulator. 1141 */ 1142 int regulator_enable(struct regulator *regulator) 1143 { 1144 struct regulator_dev *rdev = regulator->rdev; 1145 int ret = 0; 1146 1147 mutex_lock(&rdev->mutex); 1148 ret = _regulator_enable(rdev); 1149 mutex_unlock(&rdev->mutex); 1150 return ret; 1151 } 1152 EXPORT_SYMBOL_GPL(regulator_enable); 1153 1154 /* locks held by regulator_disable() */ 1155 static int _regulator_disable(struct regulator_dev *rdev) 1156 { 1157 int ret = 0; 1158 1159 if (WARN(rdev->use_count <= 0, 1160 "unbalanced disables for %s\n", 1161 rdev->desc->name)) 1162 return -EIO; 1163 1164 /* are we the last user and permitted to disable ? */ 1165 if (rdev->use_count == 1 && !rdev->constraints->always_on) { 1166 1167 /* we are last user */ 1168 if (rdev->desc->ops->disable) { 1169 ret = rdev->desc->ops->disable(rdev); 1170 if (ret < 0) { 1171 printk(KERN_ERR "%s: failed to disable %s\n", 1172 __func__, rdev->desc->name); 1173 return ret; 1174 } 1175 } 1176 1177 /* decrease our supplies ref count and disable if required */ 1178 if (rdev->supply) 1179 _regulator_disable(rdev->supply); 1180 1181 rdev->use_count = 0; 1182 } else if (rdev->use_count > 1) { 1183 1184 if (rdev->constraints && 1185 (rdev->constraints->valid_ops_mask & 1186 REGULATOR_CHANGE_DRMS)) 1187 drms_uA_update(rdev); 1188 1189 rdev->use_count--; 1190 } 1191 return ret; 1192 } 1193 1194 /** 1195 * regulator_disable - disable regulator output 1196 * @regulator: regulator source 1197 * 1198 * Disable the regulator output voltage or current. Calls to 1199 * regulator_enable() must be balanced with calls to 1200 * regulator_disable(). 1201 * 1202 * NOTE: this will only disable the regulator output if no other consumer 1203 * devices have it enabled, the regulator device supports disabling and 1204 * machine constraints permit this operation. 1205 */ 1206 int regulator_disable(struct regulator *regulator) 1207 { 1208 struct regulator_dev *rdev = regulator->rdev; 1209 int ret = 0; 1210 1211 mutex_lock(&rdev->mutex); 1212 ret = _regulator_disable(rdev); 1213 mutex_unlock(&rdev->mutex); 1214 return ret; 1215 } 1216 EXPORT_SYMBOL_GPL(regulator_disable); 1217 1218 /* locks held by regulator_force_disable() */ 1219 static int _regulator_force_disable(struct regulator_dev *rdev) 1220 { 1221 int ret = 0; 1222 1223 /* force disable */ 1224 if (rdev->desc->ops->disable) { 1225 /* ah well, who wants to live forever... */ 1226 ret = rdev->desc->ops->disable(rdev); 1227 if (ret < 0) { 1228 printk(KERN_ERR "%s: failed to force disable %s\n", 1229 __func__, rdev->desc->name); 1230 return ret; 1231 } 1232 /* notify other consumers that power has been forced off */ 1233 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, 1234 NULL); 1235 } 1236 1237 /* decrease our supplies ref count and disable if required */ 1238 if (rdev->supply) 1239 _regulator_disable(rdev->supply); 1240 1241 rdev->use_count = 0; 1242 return ret; 1243 } 1244 1245 /** 1246 * regulator_force_disable - force disable regulator output 1247 * @regulator: regulator source 1248 * 1249 * Forcibly disable the regulator output voltage or current. 1250 * NOTE: this *will* disable the regulator output even if other consumer 1251 * devices have it enabled. This should be used for situations when device 1252 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1253 */ 1254 int regulator_force_disable(struct regulator *regulator) 1255 { 1256 int ret; 1257 1258 mutex_lock(®ulator->rdev->mutex); 1259 regulator->uA_load = 0; 1260 ret = _regulator_force_disable(regulator->rdev); 1261 mutex_unlock(®ulator->rdev->mutex); 1262 return ret; 1263 } 1264 EXPORT_SYMBOL_GPL(regulator_force_disable); 1265 1266 static int _regulator_is_enabled(struct regulator_dev *rdev) 1267 { 1268 int ret; 1269 1270 mutex_lock(&rdev->mutex); 1271 1272 /* sanity check */ 1273 if (!rdev->desc->ops->is_enabled) { 1274 ret = -EINVAL; 1275 goto out; 1276 } 1277 1278 ret = rdev->desc->ops->is_enabled(rdev); 1279 out: 1280 mutex_unlock(&rdev->mutex); 1281 return ret; 1282 } 1283 1284 /** 1285 * regulator_is_enabled - is the regulator output enabled 1286 * @regulator: regulator source 1287 * 1288 * Returns positive if the regulator driver backing the source/client 1289 * has requested that the device be enabled, zero if it hasn't, else a 1290 * negative errno code. 1291 * 1292 * Note that the device backing this regulator handle can have multiple 1293 * users, so it might be enabled even if regulator_enable() was never 1294 * called for this particular source. 1295 */ 1296 int regulator_is_enabled(struct regulator *regulator) 1297 { 1298 return _regulator_is_enabled(regulator->rdev); 1299 } 1300 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1301 1302 /** 1303 * regulator_count_voltages - count regulator_list_voltage() selectors 1304 * @regulator: regulator source 1305 * 1306 * Returns number of selectors, or negative errno. Selectors are 1307 * numbered starting at zero, and typically correspond to bitfields 1308 * in hardware registers. 1309 */ 1310 int regulator_count_voltages(struct regulator *regulator) 1311 { 1312 struct regulator_dev *rdev = regulator->rdev; 1313 1314 return rdev->desc->n_voltages ? : -EINVAL; 1315 } 1316 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1317 1318 /** 1319 * regulator_list_voltage - enumerate supported voltages 1320 * @regulator: regulator source 1321 * @selector: identify voltage to list 1322 * Context: can sleep 1323 * 1324 * Returns a voltage that can be passed to @regulator_set_voltage(), 1325 * zero if this selector code can't be used on this sytem, or a 1326 * negative errno. 1327 */ 1328 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1329 { 1330 struct regulator_dev *rdev = regulator->rdev; 1331 struct regulator_ops *ops = rdev->desc->ops; 1332 int ret; 1333 1334 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1335 return -EINVAL; 1336 1337 mutex_lock(&rdev->mutex); 1338 ret = ops->list_voltage(rdev, selector); 1339 mutex_unlock(&rdev->mutex); 1340 1341 if (ret > 0) { 1342 if (ret < rdev->constraints->min_uV) 1343 ret = 0; 1344 else if (ret > rdev->constraints->max_uV) 1345 ret = 0; 1346 } 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1351 1352 /** 1353 * regulator_set_voltage - set regulator output voltage 1354 * @regulator: regulator source 1355 * @min_uV: Minimum required voltage in uV 1356 * @max_uV: Maximum acceptable voltage in uV 1357 * 1358 * Sets a voltage regulator to the desired output voltage. This can be set 1359 * during any regulator state. IOW, regulator can be disabled or enabled. 1360 * 1361 * If the regulator is enabled then the voltage will change to the new value 1362 * immediately otherwise if the regulator is disabled the regulator will 1363 * output at the new voltage when enabled. 1364 * 1365 * NOTE: If the regulator is shared between several devices then the lowest 1366 * request voltage that meets the system constraints will be used. 1367 * Regulator system constraints must be set for this regulator before 1368 * calling this function otherwise this call will fail. 1369 */ 1370 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 1371 { 1372 struct regulator_dev *rdev = regulator->rdev; 1373 int ret; 1374 1375 mutex_lock(&rdev->mutex); 1376 1377 /* sanity check */ 1378 if (!rdev->desc->ops->set_voltage) { 1379 ret = -EINVAL; 1380 goto out; 1381 } 1382 1383 /* constraints check */ 1384 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 1385 if (ret < 0) 1386 goto out; 1387 regulator->min_uV = min_uV; 1388 regulator->max_uV = max_uV; 1389 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); 1390 1391 out: 1392 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); 1393 mutex_unlock(&rdev->mutex); 1394 return ret; 1395 } 1396 EXPORT_SYMBOL_GPL(regulator_set_voltage); 1397 1398 static int _regulator_get_voltage(struct regulator_dev *rdev) 1399 { 1400 /* sanity check */ 1401 if (rdev->desc->ops->get_voltage) 1402 return rdev->desc->ops->get_voltage(rdev); 1403 else 1404 return -EINVAL; 1405 } 1406 1407 /** 1408 * regulator_get_voltage - get regulator output voltage 1409 * @regulator: regulator source 1410 * 1411 * This returns the current regulator voltage in uV. 1412 * 1413 * NOTE: If the regulator is disabled it will return the voltage value. This 1414 * function should not be used to determine regulator state. 1415 */ 1416 int regulator_get_voltage(struct regulator *regulator) 1417 { 1418 int ret; 1419 1420 mutex_lock(®ulator->rdev->mutex); 1421 1422 ret = _regulator_get_voltage(regulator->rdev); 1423 1424 mutex_unlock(®ulator->rdev->mutex); 1425 1426 return ret; 1427 } 1428 EXPORT_SYMBOL_GPL(regulator_get_voltage); 1429 1430 /** 1431 * regulator_set_current_limit - set regulator output current limit 1432 * @regulator: regulator source 1433 * @min_uA: Minimuum supported current in uA 1434 * @max_uA: Maximum supported current in uA 1435 * 1436 * Sets current sink to the desired output current. This can be set during 1437 * any regulator state. IOW, regulator can be disabled or enabled. 1438 * 1439 * If the regulator is enabled then the current will change to the new value 1440 * immediately otherwise if the regulator is disabled the regulator will 1441 * output at the new current when enabled. 1442 * 1443 * NOTE: Regulator system constraints must be set for this regulator before 1444 * calling this function otherwise this call will fail. 1445 */ 1446 int regulator_set_current_limit(struct regulator *regulator, 1447 int min_uA, int max_uA) 1448 { 1449 struct regulator_dev *rdev = regulator->rdev; 1450 int ret; 1451 1452 mutex_lock(&rdev->mutex); 1453 1454 /* sanity check */ 1455 if (!rdev->desc->ops->set_current_limit) { 1456 ret = -EINVAL; 1457 goto out; 1458 } 1459 1460 /* constraints check */ 1461 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 1462 if (ret < 0) 1463 goto out; 1464 1465 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 1466 out: 1467 mutex_unlock(&rdev->mutex); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 1471 1472 static int _regulator_get_current_limit(struct regulator_dev *rdev) 1473 { 1474 int ret; 1475 1476 mutex_lock(&rdev->mutex); 1477 1478 /* sanity check */ 1479 if (!rdev->desc->ops->get_current_limit) { 1480 ret = -EINVAL; 1481 goto out; 1482 } 1483 1484 ret = rdev->desc->ops->get_current_limit(rdev); 1485 out: 1486 mutex_unlock(&rdev->mutex); 1487 return ret; 1488 } 1489 1490 /** 1491 * regulator_get_current_limit - get regulator output current 1492 * @regulator: regulator source 1493 * 1494 * This returns the current supplied by the specified current sink in uA. 1495 * 1496 * NOTE: If the regulator is disabled it will return the current value. This 1497 * function should not be used to determine regulator state. 1498 */ 1499 int regulator_get_current_limit(struct regulator *regulator) 1500 { 1501 return _regulator_get_current_limit(regulator->rdev); 1502 } 1503 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 1504 1505 /** 1506 * regulator_set_mode - set regulator operating mode 1507 * @regulator: regulator source 1508 * @mode: operating mode - one of the REGULATOR_MODE constants 1509 * 1510 * Set regulator operating mode to increase regulator efficiency or improve 1511 * regulation performance. 1512 * 1513 * NOTE: Regulator system constraints must be set for this regulator before 1514 * calling this function otherwise this call will fail. 1515 */ 1516 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 1517 { 1518 struct regulator_dev *rdev = regulator->rdev; 1519 int ret; 1520 1521 mutex_lock(&rdev->mutex); 1522 1523 /* sanity check */ 1524 if (!rdev->desc->ops->set_mode) { 1525 ret = -EINVAL; 1526 goto out; 1527 } 1528 1529 /* constraints check */ 1530 ret = regulator_check_mode(rdev, mode); 1531 if (ret < 0) 1532 goto out; 1533 1534 ret = rdev->desc->ops->set_mode(rdev, mode); 1535 out: 1536 mutex_unlock(&rdev->mutex); 1537 return ret; 1538 } 1539 EXPORT_SYMBOL_GPL(regulator_set_mode); 1540 1541 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 1542 { 1543 int ret; 1544 1545 mutex_lock(&rdev->mutex); 1546 1547 /* sanity check */ 1548 if (!rdev->desc->ops->get_mode) { 1549 ret = -EINVAL; 1550 goto out; 1551 } 1552 1553 ret = rdev->desc->ops->get_mode(rdev); 1554 out: 1555 mutex_unlock(&rdev->mutex); 1556 return ret; 1557 } 1558 1559 /** 1560 * regulator_get_mode - get regulator operating mode 1561 * @regulator: regulator source 1562 * 1563 * Get the current regulator operating mode. 1564 */ 1565 unsigned int regulator_get_mode(struct regulator *regulator) 1566 { 1567 return _regulator_get_mode(regulator->rdev); 1568 } 1569 EXPORT_SYMBOL_GPL(regulator_get_mode); 1570 1571 /** 1572 * regulator_set_optimum_mode - set regulator optimum operating mode 1573 * @regulator: regulator source 1574 * @uA_load: load current 1575 * 1576 * Notifies the regulator core of a new device load. This is then used by 1577 * DRMS (if enabled by constraints) to set the most efficient regulator 1578 * operating mode for the new regulator loading. 1579 * 1580 * Consumer devices notify their supply regulator of the maximum power 1581 * they will require (can be taken from device datasheet in the power 1582 * consumption tables) when they change operational status and hence power 1583 * state. Examples of operational state changes that can affect power 1584 * consumption are :- 1585 * 1586 * o Device is opened / closed. 1587 * o Device I/O is about to begin or has just finished. 1588 * o Device is idling in between work. 1589 * 1590 * This information is also exported via sysfs to userspace. 1591 * 1592 * DRMS will sum the total requested load on the regulator and change 1593 * to the most efficient operating mode if platform constraints allow. 1594 * 1595 * Returns the new regulator mode or error. 1596 */ 1597 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 1598 { 1599 struct regulator_dev *rdev = regulator->rdev; 1600 struct regulator *consumer; 1601 int ret, output_uV, input_uV, total_uA_load = 0; 1602 unsigned int mode; 1603 1604 mutex_lock(&rdev->mutex); 1605 1606 regulator->uA_load = uA_load; 1607 ret = regulator_check_drms(rdev); 1608 if (ret < 0) 1609 goto out; 1610 ret = -EINVAL; 1611 1612 /* sanity check */ 1613 if (!rdev->desc->ops->get_optimum_mode) 1614 goto out; 1615 1616 /* get output voltage */ 1617 output_uV = rdev->desc->ops->get_voltage(rdev); 1618 if (output_uV <= 0) { 1619 printk(KERN_ERR "%s: invalid output voltage found for %s\n", 1620 __func__, rdev->desc->name); 1621 goto out; 1622 } 1623 1624 /* get input voltage */ 1625 if (rdev->supply && rdev->supply->desc->ops->get_voltage) 1626 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); 1627 else 1628 input_uV = rdev->constraints->input_uV; 1629 if (input_uV <= 0) { 1630 printk(KERN_ERR "%s: invalid input voltage found for %s\n", 1631 __func__, rdev->desc->name); 1632 goto out; 1633 } 1634 1635 /* calc total requested load for this regulator */ 1636 list_for_each_entry(consumer, &rdev->consumer_list, list) 1637 total_uA_load += consumer->uA_load; 1638 1639 mode = rdev->desc->ops->get_optimum_mode(rdev, 1640 input_uV, output_uV, 1641 total_uA_load); 1642 ret = regulator_check_mode(rdev, mode); 1643 if (ret < 0) { 1644 printk(KERN_ERR "%s: failed to get optimum mode for %s @" 1645 " %d uA %d -> %d uV\n", __func__, rdev->desc->name, 1646 total_uA_load, input_uV, output_uV); 1647 goto out; 1648 } 1649 1650 ret = rdev->desc->ops->set_mode(rdev, mode); 1651 if (ret < 0) { 1652 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", 1653 __func__, mode, rdev->desc->name); 1654 goto out; 1655 } 1656 ret = mode; 1657 out: 1658 mutex_unlock(&rdev->mutex); 1659 return ret; 1660 } 1661 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 1662 1663 /** 1664 * regulator_register_notifier - register regulator event notifier 1665 * @regulator: regulator source 1666 * @nb: notifier block 1667 * 1668 * Register notifier block to receive regulator events. 1669 */ 1670 int regulator_register_notifier(struct regulator *regulator, 1671 struct notifier_block *nb) 1672 { 1673 return blocking_notifier_chain_register(®ulator->rdev->notifier, 1674 nb); 1675 } 1676 EXPORT_SYMBOL_GPL(regulator_register_notifier); 1677 1678 /** 1679 * regulator_unregister_notifier - unregister regulator event notifier 1680 * @regulator: regulator source 1681 * @nb: notifier block 1682 * 1683 * Unregister regulator event notifier block. 1684 */ 1685 int regulator_unregister_notifier(struct regulator *regulator, 1686 struct notifier_block *nb) 1687 { 1688 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 1689 nb); 1690 } 1691 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 1692 1693 /* notify regulator consumers and downstream regulator consumers. 1694 * Note mutex must be held by caller. 1695 */ 1696 static void _notifier_call_chain(struct regulator_dev *rdev, 1697 unsigned long event, void *data) 1698 { 1699 struct regulator_dev *_rdev; 1700 1701 /* call rdev chain first */ 1702 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 1703 1704 /* now notify regulator we supply */ 1705 list_for_each_entry(_rdev, &rdev->supply_list, slist) { 1706 mutex_lock(&_rdev->mutex); 1707 _notifier_call_chain(_rdev, event, data); 1708 mutex_unlock(&_rdev->mutex); 1709 } 1710 } 1711 1712 /** 1713 * regulator_bulk_get - get multiple regulator consumers 1714 * 1715 * @dev: Device to supply 1716 * @num_consumers: Number of consumers to register 1717 * @consumers: Configuration of consumers; clients are stored here. 1718 * 1719 * @return 0 on success, an errno on failure. 1720 * 1721 * This helper function allows drivers to get several regulator 1722 * consumers in one operation. If any of the regulators cannot be 1723 * acquired then any regulators that were allocated will be freed 1724 * before returning to the caller. 1725 */ 1726 int regulator_bulk_get(struct device *dev, int num_consumers, 1727 struct regulator_bulk_data *consumers) 1728 { 1729 int i; 1730 int ret; 1731 1732 for (i = 0; i < num_consumers; i++) 1733 consumers[i].consumer = NULL; 1734 1735 for (i = 0; i < num_consumers; i++) { 1736 consumers[i].consumer = regulator_get(dev, 1737 consumers[i].supply); 1738 if (IS_ERR(consumers[i].consumer)) { 1739 dev_err(dev, "Failed to get supply '%s'\n", 1740 consumers[i].supply); 1741 ret = PTR_ERR(consumers[i].consumer); 1742 consumers[i].consumer = NULL; 1743 goto err; 1744 } 1745 } 1746 1747 return 0; 1748 1749 err: 1750 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 1751 regulator_put(consumers[i].consumer); 1752 1753 return ret; 1754 } 1755 EXPORT_SYMBOL_GPL(regulator_bulk_get); 1756 1757 /** 1758 * regulator_bulk_enable - enable multiple regulator consumers 1759 * 1760 * @num_consumers: Number of consumers 1761 * @consumers: Consumer data; clients are stored here. 1762 * @return 0 on success, an errno on failure 1763 * 1764 * This convenience API allows consumers to enable multiple regulator 1765 * clients in a single API call. If any consumers cannot be enabled 1766 * then any others that were enabled will be disabled again prior to 1767 * return. 1768 */ 1769 int regulator_bulk_enable(int num_consumers, 1770 struct regulator_bulk_data *consumers) 1771 { 1772 int i; 1773 int ret; 1774 1775 for (i = 0; i < num_consumers; i++) { 1776 ret = regulator_enable(consumers[i].consumer); 1777 if (ret != 0) 1778 goto err; 1779 } 1780 1781 return 0; 1782 1783 err: 1784 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply); 1785 for (i = 0; i < num_consumers; i++) 1786 regulator_disable(consumers[i].consumer); 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 1791 1792 /** 1793 * regulator_bulk_disable - disable multiple regulator consumers 1794 * 1795 * @num_consumers: Number of consumers 1796 * @consumers: Consumer data; clients are stored here. 1797 * @return 0 on success, an errno on failure 1798 * 1799 * This convenience API allows consumers to disable multiple regulator 1800 * clients in a single API call. If any consumers cannot be enabled 1801 * then any others that were disabled will be disabled again prior to 1802 * return. 1803 */ 1804 int regulator_bulk_disable(int num_consumers, 1805 struct regulator_bulk_data *consumers) 1806 { 1807 int i; 1808 int ret; 1809 1810 for (i = 0; i < num_consumers; i++) { 1811 ret = regulator_disable(consumers[i].consumer); 1812 if (ret != 0) 1813 goto err; 1814 } 1815 1816 return 0; 1817 1818 err: 1819 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply); 1820 for (i = 0; i < num_consumers; i++) 1821 regulator_enable(consumers[i].consumer); 1822 1823 return ret; 1824 } 1825 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 1826 1827 /** 1828 * regulator_bulk_free - free multiple regulator consumers 1829 * 1830 * @num_consumers: Number of consumers 1831 * @consumers: Consumer data; clients are stored here. 1832 * 1833 * This convenience API allows consumers to free multiple regulator 1834 * clients in a single API call. 1835 */ 1836 void regulator_bulk_free(int num_consumers, 1837 struct regulator_bulk_data *consumers) 1838 { 1839 int i; 1840 1841 for (i = 0; i < num_consumers; i++) { 1842 regulator_put(consumers[i].consumer); 1843 consumers[i].consumer = NULL; 1844 } 1845 } 1846 EXPORT_SYMBOL_GPL(regulator_bulk_free); 1847 1848 /** 1849 * regulator_notifier_call_chain - call regulator event notifier 1850 * @rdev: regulator source 1851 * @event: notifier block 1852 * @data: callback-specific data. 1853 * 1854 * Called by regulator drivers to notify clients a regulator event has 1855 * occurred. We also notify regulator clients downstream. 1856 * Note lock must be held by caller. 1857 */ 1858 int regulator_notifier_call_chain(struct regulator_dev *rdev, 1859 unsigned long event, void *data) 1860 { 1861 _notifier_call_chain(rdev, event, data); 1862 return NOTIFY_DONE; 1863 1864 } 1865 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 1866 1867 /* 1868 * To avoid cluttering sysfs (and memory) with useless state, only 1869 * create attributes that can be meaningfully displayed. 1870 */ 1871 static int add_regulator_attributes(struct regulator_dev *rdev) 1872 { 1873 struct device *dev = &rdev->dev; 1874 struct regulator_ops *ops = rdev->desc->ops; 1875 int status = 0; 1876 1877 /* some attributes need specific methods to be displayed */ 1878 if (ops->get_voltage) { 1879 status = device_create_file(dev, &dev_attr_microvolts); 1880 if (status < 0) 1881 return status; 1882 } 1883 if (ops->get_current_limit) { 1884 status = device_create_file(dev, &dev_attr_microamps); 1885 if (status < 0) 1886 return status; 1887 } 1888 if (ops->get_mode) { 1889 status = device_create_file(dev, &dev_attr_opmode); 1890 if (status < 0) 1891 return status; 1892 } 1893 if (ops->is_enabled) { 1894 status = device_create_file(dev, &dev_attr_state); 1895 if (status < 0) 1896 return status; 1897 } 1898 if (ops->get_status) { 1899 status = device_create_file(dev, &dev_attr_status); 1900 if (status < 0) 1901 return status; 1902 } 1903 1904 /* some attributes are type-specific */ 1905 if (rdev->desc->type == REGULATOR_CURRENT) { 1906 status = device_create_file(dev, &dev_attr_requested_microamps); 1907 if (status < 0) 1908 return status; 1909 } 1910 1911 /* all the other attributes exist to support constraints; 1912 * don't show them if there are no constraints, or if the 1913 * relevant supporting methods are missing. 1914 */ 1915 if (!rdev->constraints) 1916 return status; 1917 1918 /* constraints need specific supporting methods */ 1919 if (ops->set_voltage) { 1920 status = device_create_file(dev, &dev_attr_min_microvolts); 1921 if (status < 0) 1922 return status; 1923 status = device_create_file(dev, &dev_attr_max_microvolts); 1924 if (status < 0) 1925 return status; 1926 } 1927 if (ops->set_current_limit) { 1928 status = device_create_file(dev, &dev_attr_min_microamps); 1929 if (status < 0) 1930 return status; 1931 status = device_create_file(dev, &dev_attr_max_microamps); 1932 if (status < 0) 1933 return status; 1934 } 1935 1936 /* suspend mode constraints need multiple supporting methods */ 1937 if (!(ops->set_suspend_enable && ops->set_suspend_disable)) 1938 return status; 1939 1940 status = device_create_file(dev, &dev_attr_suspend_standby_state); 1941 if (status < 0) 1942 return status; 1943 status = device_create_file(dev, &dev_attr_suspend_mem_state); 1944 if (status < 0) 1945 return status; 1946 status = device_create_file(dev, &dev_attr_suspend_disk_state); 1947 if (status < 0) 1948 return status; 1949 1950 if (ops->set_suspend_voltage) { 1951 status = device_create_file(dev, 1952 &dev_attr_suspend_standby_microvolts); 1953 if (status < 0) 1954 return status; 1955 status = device_create_file(dev, 1956 &dev_attr_suspend_mem_microvolts); 1957 if (status < 0) 1958 return status; 1959 status = device_create_file(dev, 1960 &dev_attr_suspend_disk_microvolts); 1961 if (status < 0) 1962 return status; 1963 } 1964 1965 if (ops->set_suspend_mode) { 1966 status = device_create_file(dev, 1967 &dev_attr_suspend_standby_mode); 1968 if (status < 0) 1969 return status; 1970 status = device_create_file(dev, 1971 &dev_attr_suspend_mem_mode); 1972 if (status < 0) 1973 return status; 1974 status = device_create_file(dev, 1975 &dev_attr_suspend_disk_mode); 1976 if (status < 0) 1977 return status; 1978 } 1979 1980 return status; 1981 } 1982 1983 /** 1984 * regulator_register - register regulator 1985 * @regulator_desc: regulator to register 1986 * @dev: struct device for the regulator 1987 * @init_data: platform provided init data, passed through by driver 1988 * @driver_data: private regulator data 1989 * 1990 * Called by regulator drivers to register a regulator. 1991 * Returns 0 on success. 1992 */ 1993 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, 1994 struct device *dev, struct regulator_init_data *init_data, 1995 void *driver_data) 1996 { 1997 static atomic_t regulator_no = ATOMIC_INIT(0); 1998 struct regulator_dev *rdev; 1999 int ret, i; 2000 2001 if (regulator_desc == NULL) 2002 return ERR_PTR(-EINVAL); 2003 2004 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 2005 return ERR_PTR(-EINVAL); 2006 2007 if (regulator_desc->type != REGULATOR_VOLTAGE && 2008 regulator_desc->type != REGULATOR_CURRENT) 2009 return ERR_PTR(-EINVAL); 2010 2011 if (!init_data) 2012 return ERR_PTR(-EINVAL); 2013 2014 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 2015 if (rdev == NULL) 2016 return ERR_PTR(-ENOMEM); 2017 2018 mutex_lock(®ulator_list_mutex); 2019 2020 mutex_init(&rdev->mutex); 2021 rdev->reg_data = driver_data; 2022 rdev->owner = regulator_desc->owner; 2023 rdev->desc = regulator_desc; 2024 INIT_LIST_HEAD(&rdev->consumer_list); 2025 INIT_LIST_HEAD(&rdev->supply_list); 2026 INIT_LIST_HEAD(&rdev->list); 2027 INIT_LIST_HEAD(&rdev->slist); 2028 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 2029 2030 /* preform any regulator specific init */ 2031 if (init_data->regulator_init) { 2032 ret = init_data->regulator_init(rdev->reg_data); 2033 if (ret < 0) 2034 goto clean; 2035 } 2036 2037 /* register with sysfs */ 2038 rdev->dev.class = ®ulator_class; 2039 rdev->dev.parent = dev; 2040 dev_set_name(&rdev->dev, "regulator.%d", 2041 atomic_inc_return(®ulator_no) - 1); 2042 ret = device_register(&rdev->dev); 2043 if (ret != 0) 2044 goto clean; 2045 2046 dev_set_drvdata(&rdev->dev, rdev); 2047 2048 /* set regulator constraints */ 2049 ret = set_machine_constraints(rdev, &init_data->constraints); 2050 if (ret < 0) 2051 goto scrub; 2052 2053 /* add attributes supported by this regulator */ 2054 ret = add_regulator_attributes(rdev); 2055 if (ret < 0) 2056 goto scrub; 2057 2058 /* set supply regulator if it exists */ 2059 if (init_data->supply_regulator_dev) { 2060 ret = set_supply(rdev, 2061 dev_get_drvdata(init_data->supply_regulator_dev)); 2062 if (ret < 0) 2063 goto scrub; 2064 } 2065 2066 /* add consumers devices */ 2067 for (i = 0; i < init_data->num_consumer_supplies; i++) { 2068 ret = set_consumer_device_supply(rdev, 2069 init_data->consumer_supplies[i].dev, 2070 init_data->consumer_supplies[i].supply); 2071 if (ret < 0) { 2072 for (--i; i >= 0; i--) 2073 unset_consumer_device_supply(rdev, 2074 init_data->consumer_supplies[i].dev); 2075 goto scrub; 2076 } 2077 } 2078 2079 list_add(&rdev->list, ®ulator_list); 2080 out: 2081 mutex_unlock(®ulator_list_mutex); 2082 return rdev; 2083 2084 scrub: 2085 device_unregister(&rdev->dev); 2086 /* device core frees rdev */ 2087 rdev = ERR_PTR(ret); 2088 goto out; 2089 2090 clean: 2091 kfree(rdev); 2092 rdev = ERR_PTR(ret); 2093 goto out; 2094 } 2095 EXPORT_SYMBOL_GPL(regulator_register); 2096 2097 /** 2098 * regulator_unregister - unregister regulator 2099 * @rdev: regulator to unregister 2100 * 2101 * Called by regulator drivers to unregister a regulator. 2102 */ 2103 void regulator_unregister(struct regulator_dev *rdev) 2104 { 2105 if (rdev == NULL) 2106 return; 2107 2108 mutex_lock(®ulator_list_mutex); 2109 unset_regulator_supplies(rdev); 2110 list_del(&rdev->list); 2111 if (rdev->supply) 2112 sysfs_remove_link(&rdev->dev.kobj, "supply"); 2113 device_unregister(&rdev->dev); 2114 mutex_unlock(®ulator_list_mutex); 2115 } 2116 EXPORT_SYMBOL_GPL(regulator_unregister); 2117 2118 /** 2119 * regulator_suspend_prepare - prepare regulators for system wide suspend 2120 * @state: system suspend state 2121 * 2122 * Configure each regulator with it's suspend operating parameters for state. 2123 * This will usually be called by machine suspend code prior to supending. 2124 */ 2125 int regulator_suspend_prepare(suspend_state_t state) 2126 { 2127 struct regulator_dev *rdev; 2128 int ret = 0; 2129 2130 /* ON is handled by regulator active state */ 2131 if (state == PM_SUSPEND_ON) 2132 return -EINVAL; 2133 2134 mutex_lock(®ulator_list_mutex); 2135 list_for_each_entry(rdev, ®ulator_list, list) { 2136 2137 mutex_lock(&rdev->mutex); 2138 ret = suspend_prepare(rdev, state); 2139 mutex_unlock(&rdev->mutex); 2140 2141 if (ret < 0) { 2142 printk(KERN_ERR "%s: failed to prepare %s\n", 2143 __func__, rdev->desc->name); 2144 goto out; 2145 } 2146 } 2147 out: 2148 mutex_unlock(®ulator_list_mutex); 2149 return ret; 2150 } 2151 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 2152 2153 /** 2154 * regulator_has_full_constraints - the system has fully specified constraints 2155 * 2156 * Calling this function will cause the regulator API to disable all 2157 * regulators which have a zero use count and don't have an always_on 2158 * constraint in a late_initcall. 2159 * 2160 * The intention is that this will become the default behaviour in a 2161 * future kernel release so users are encouraged to use this facility 2162 * now. 2163 */ 2164 void regulator_has_full_constraints(void) 2165 { 2166 has_full_constraints = 1; 2167 } 2168 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 2169 2170 /** 2171 * rdev_get_drvdata - get rdev regulator driver data 2172 * @rdev: regulator 2173 * 2174 * Get rdev regulator driver private data. This call can be used in the 2175 * regulator driver context. 2176 */ 2177 void *rdev_get_drvdata(struct regulator_dev *rdev) 2178 { 2179 return rdev->reg_data; 2180 } 2181 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 2182 2183 /** 2184 * regulator_get_drvdata - get regulator driver data 2185 * @regulator: regulator 2186 * 2187 * Get regulator driver private data. This call can be used in the consumer 2188 * driver context when non API regulator specific functions need to be called. 2189 */ 2190 void *regulator_get_drvdata(struct regulator *regulator) 2191 { 2192 return regulator->rdev->reg_data; 2193 } 2194 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 2195 2196 /** 2197 * regulator_set_drvdata - set regulator driver data 2198 * @regulator: regulator 2199 * @data: data 2200 */ 2201 void regulator_set_drvdata(struct regulator *regulator, void *data) 2202 { 2203 regulator->rdev->reg_data = data; 2204 } 2205 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 2206 2207 /** 2208 * regulator_get_id - get regulator ID 2209 * @rdev: regulator 2210 */ 2211 int rdev_get_id(struct regulator_dev *rdev) 2212 { 2213 return rdev->desc->id; 2214 } 2215 EXPORT_SYMBOL_GPL(rdev_get_id); 2216 2217 struct device *rdev_get_dev(struct regulator_dev *rdev) 2218 { 2219 return &rdev->dev; 2220 } 2221 EXPORT_SYMBOL_GPL(rdev_get_dev); 2222 2223 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 2224 { 2225 return reg_init_data->driver_data; 2226 } 2227 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 2228 2229 static int __init regulator_init(void) 2230 { 2231 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); 2232 return class_register(®ulator_class); 2233 } 2234 2235 /* init early to allow our consumers to complete system booting */ 2236 core_initcall(regulator_init); 2237 2238 static int __init regulator_init_complete(void) 2239 { 2240 struct regulator_dev *rdev; 2241 struct regulator_ops *ops; 2242 struct regulation_constraints *c; 2243 int enabled, ret; 2244 const char *name; 2245 2246 mutex_lock(®ulator_list_mutex); 2247 2248 /* If we have a full configuration then disable any regulators 2249 * which are not in use or always_on. This will become the 2250 * default behaviour in the future. 2251 */ 2252 list_for_each_entry(rdev, ®ulator_list, list) { 2253 ops = rdev->desc->ops; 2254 c = rdev->constraints; 2255 2256 if (c->name) 2257 name = c->name; 2258 else if (rdev->desc->name) 2259 name = rdev->desc->name; 2260 else 2261 name = "regulator"; 2262 2263 if (!ops->disable || c->always_on) 2264 continue; 2265 2266 mutex_lock(&rdev->mutex); 2267 2268 if (rdev->use_count) 2269 goto unlock; 2270 2271 /* If we can't read the status assume it's on. */ 2272 if (ops->is_enabled) 2273 enabled = ops->is_enabled(rdev); 2274 else 2275 enabled = 1; 2276 2277 if (!enabled) 2278 goto unlock; 2279 2280 if (has_full_constraints) { 2281 /* We log since this may kill the system if it 2282 * goes wrong. */ 2283 printk(KERN_INFO "%s: disabling %s\n", 2284 __func__, name); 2285 ret = ops->disable(rdev); 2286 if (ret != 0) { 2287 printk(KERN_ERR 2288 "%s: couldn't disable %s: %d\n", 2289 __func__, name, ret); 2290 } 2291 } else { 2292 /* The intention is that in future we will 2293 * assume that full constraints are provided 2294 * so warn even if we aren't going to do 2295 * anything here. 2296 */ 2297 printk(KERN_WARNING 2298 "%s: incomplete constraints, leaving %s on\n", 2299 __func__, name); 2300 } 2301 2302 unlock: 2303 mutex_unlock(&rdev->mutex); 2304 } 2305 2306 mutex_unlock(®ulator_list_mutex); 2307 2308 return 0; 2309 } 2310 late_initcall(regulator_init_complete); 2311