xref: /openbmc/linux/drivers/regulator/core.c (revision afc98d90)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	int gpio;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 	if (rdev->constraints && rdev->constraints->name)
115 		return rdev->constraints->name;
116 	else if (rdev->desc->name)
117 		return rdev->desc->name;
118 	else
119 		return "";
120 }
121 
122 static bool have_full_constraints(void)
123 {
124 	return has_full_constraints || of_have_populated_dt();
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 			 char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334 
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 	switch (mode) {
338 	case REGULATOR_MODE_FAST:
339 		return sprintf(buf, "fast\n");
340 	case REGULATOR_MODE_NORMAL:
341 		return sprintf(buf, "normal\n");
342 	case REGULATOR_MODE_IDLE:
343 		return sprintf(buf, "idle\n");
344 	case REGULATOR_MODE_STANDBY:
345 		return sprintf(buf, "standby\n");
346 	}
347 	return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_opmode_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 	if (state > 0)
362 		return sprintf(buf, "enabled\n");
363 	else if (state == 0)
364 		return sprintf(buf, "disabled\n");
365 	else
366 		return sprintf(buf, "unknown\n");
367 }
368 
369 static ssize_t regulator_state_show(struct device *dev,
370 				   struct device_attribute *attr, char *buf)
371 {
372 	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 	ssize_t ret;
374 
375 	mutex_lock(&rdev->mutex);
376 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 	mutex_unlock(&rdev->mutex);
378 
379 	return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 
383 static ssize_t regulator_status_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	int status;
388 	char *label;
389 
390 	status = rdev->desc->ops->get_status(rdev);
391 	if (status < 0)
392 		return status;
393 
394 	switch (status) {
395 	case REGULATOR_STATUS_OFF:
396 		label = "off";
397 		break;
398 	case REGULATOR_STATUS_ON:
399 		label = "on";
400 		break;
401 	case REGULATOR_STATUS_ERROR:
402 		label = "error";
403 		break;
404 	case REGULATOR_STATUS_FAST:
405 		label = "fast";
406 		break;
407 	case REGULATOR_STATUS_NORMAL:
408 		label = "normal";
409 		break;
410 	case REGULATOR_STATUS_IDLE:
411 		label = "idle";
412 		break;
413 	case REGULATOR_STATUS_STANDBY:
414 		label = "standby";
415 		break;
416 	case REGULATOR_STATUS_BYPASS:
417 		label = "bypass";
418 		break;
419 	case REGULATOR_STATUS_UNDEFINED:
420 		label = "undefined";
421 		break;
422 	default:
423 		return -ERANGE;
424 	}
425 
426 	return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 				    struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	if (!rdev->constraints)
436 		return sprintf(buf, "constraint not defined\n");
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 				    struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 
447 	if (!rdev->constraints)
448 		return sprintf(buf, "constraint not defined\n");
449 
450 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	struct regulator *regulator;
483 	int uA = 0;
484 
485 	mutex_lock(&rdev->mutex);
486 	list_for_each_entry(regulator, &rdev->consumer_list, list)
487 		uA += regulator->uA_load;
488 	mutex_unlock(&rdev->mutex);
489 	return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 			      char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 	return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500 
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 			 char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515 
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 		regulator_suspend_mem_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 		regulator_suspend_disk_uV_show, NULL);
535 
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 				struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 		regulator_suspend_standby_uV_show, NULL);
545 
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 				struct device_attribute *attr, char *buf)
548 {
549 	struct regulator_dev *rdev = dev_get_drvdata(dev);
550 
551 	return regulator_print_opmode(buf,
552 		rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 		regulator_suspend_mem_mode_show, NULL);
556 
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 				struct device_attribute *attr, char *buf)
559 {
560 	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 
562 	return regulator_print_opmode(buf,
563 		rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 		regulator_suspend_disk_mode_show, NULL);
567 
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 
573 	return regulator_print_opmode(buf,
574 		rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 		regulator_suspend_standby_mode_show, NULL);
578 
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 				   struct device_attribute *attr, char *buf)
581 {
582 	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 
584 	return regulator_print_state(buf,
585 			rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 		regulator_suspend_mem_state_show, NULL);
589 
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 				   struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_state(buf,
596 			rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 		regulator_suspend_disk_state_show, NULL);
600 
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 				   struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_state(buf,
607 			rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 		regulator_suspend_standby_state_show, NULL);
611 
612 static ssize_t regulator_bypass_show(struct device *dev,
613 				     struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 	const char *report;
617 	bool bypass;
618 	int ret;
619 
620 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621 
622 	if (ret != 0)
623 		report = "unknown";
624 	else if (bypass)
625 		report = "enabled";
626 	else
627 		report = "disabled";
628 
629 	return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 		   regulator_bypass_show, NULL);
633 
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639 	&dev_attr_name.attr,
640 	&dev_attr_num_users.attr,
641 	&dev_attr_type.attr,
642 	NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645 
646 static void regulator_dev_release(struct device *dev)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 	kfree(rdev);
650 }
651 
652 static struct class regulator_class = {
653 	.name = "regulator",
654 	.dev_release = regulator_dev_release,
655 	.dev_groups = regulator_dev_groups,
656 };
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	err = regulator_check_drms(rdev);
667 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 	    (!rdev->desc->ops->get_voltage &&
669 	     !rdev->desc->ops->get_voltage_sel) ||
670 	    !rdev->desc->ops->set_mode)
671 		return;
672 
673 	/* get output voltage */
674 	output_uV = _regulator_get_voltage(rdev);
675 	if (output_uV <= 0)
676 		return;
677 
678 	/* get input voltage */
679 	input_uV = 0;
680 	if (rdev->supply)
681 		input_uV = regulator_get_voltage(rdev->supply);
682 	if (input_uV <= 0)
683 		input_uV = rdev->constraints->input_uV;
684 	if (input_uV <= 0)
685 		return;
686 
687 	/* calc total requested load */
688 	list_for_each_entry(sibling, &rdev->consumer_list, list)
689 		current_uA += sibling->uA_load;
690 
691 	/* now get the optimum mode for our new total regulator load */
692 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 						  output_uV, current_uA);
694 
695 	/* check the new mode is allowed */
696 	err = regulator_mode_constrain(rdev, &mode);
697 	if (err == 0)
698 		rdev->desc->ops->set_mode(rdev, mode);
699 }
700 
701 static int suspend_set_state(struct regulator_dev *rdev,
702 	struct regulator_state *rstate)
703 {
704 	int ret = 0;
705 
706 	/* If we have no suspend mode configration don't set anything;
707 	 * only warn if the driver implements set_suspend_voltage or
708 	 * set_suspend_mode callback.
709 	 */
710 	if (!rstate->enabled && !rstate->disabled) {
711 		if (rdev->desc->ops->set_suspend_voltage ||
712 		    rdev->desc->ops->set_suspend_mode)
713 			rdev_warn(rdev, "No configuration\n");
714 		return 0;
715 	}
716 
717 	if (rstate->enabled && rstate->disabled) {
718 		rdev_err(rdev, "invalid configuration\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 		ret = rdev->desc->ops->set_suspend_enable(rdev);
724 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 		ret = 0;
728 
729 	if (ret < 0) {
730 		rdev_err(rdev, "failed to enabled/disable\n");
731 		return ret;
732 	}
733 
734 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 		if (ret < 0) {
737 			rdev_err(rdev, "failed to set voltage\n");
738 			return ret;
739 		}
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set mode\n");
746 			return ret;
747 		}
748 	}
749 	return ret;
750 }
751 
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 	if (!rdev->constraints)
756 		return -EINVAL;
757 
758 	switch (state) {
759 	case PM_SUSPEND_STANDBY:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_standby);
762 	case PM_SUSPEND_MEM:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_mem);
765 	case PM_SUSPEND_MAX:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_disk);
768 	default:
769 		return -EINVAL;
770 	}
771 }
772 
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 	struct regulation_constraints *constraints = rdev->constraints;
776 	char buf[80] = "";
777 	int count = 0;
778 	int ret;
779 
780 	if (constraints->min_uV && constraints->max_uV) {
781 		if (constraints->min_uV == constraints->max_uV)
782 			count += sprintf(buf + count, "%d mV ",
783 					 constraints->min_uV / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mV ",
786 					 constraints->min_uV / 1000,
787 					 constraints->max_uV / 1000);
788 	}
789 
790 	if (!constraints->min_uV ||
791 	    constraints->min_uV != constraints->max_uV) {
792 		ret = _regulator_get_voltage(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 	}
796 
797 	if (constraints->uV_offset)
798 		count += sprintf(buf, "%dmV offset ",
799 				 constraints->uV_offset / 1000);
800 
801 	if (constraints->min_uA && constraints->max_uA) {
802 		if (constraints->min_uA == constraints->max_uA)
803 			count += sprintf(buf + count, "%d mA ",
804 					 constraints->min_uA / 1000);
805 		else
806 			count += sprintf(buf + count, "%d <--> %d mA ",
807 					 constraints->min_uA / 1000,
808 					 constraints->max_uA / 1000);
809 	}
810 
811 	if (!constraints->min_uA ||
812 	    constraints->min_uA != constraints->max_uA) {
813 		ret = _regulator_get_current_limit(rdev);
814 		if (ret > 0)
815 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 	}
817 
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 		count += sprintf(buf + count, "fast ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 		count += sprintf(buf + count, "normal ");
822 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 		count += sprintf(buf + count, "idle ");
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 		count += sprintf(buf + count, "standby");
826 
827 	if (!count)
828 		sprintf(buf, "no parameters");
829 
830 	rdev_info(rdev, "%s\n", buf);
831 
832 	if ((constraints->min_uV != constraints->max_uV) &&
833 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 		rdev_warn(rdev,
835 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837 
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 	struct regulation_constraints *constraints)
840 {
841 	struct regulator_ops *ops = rdev->desc->ops;
842 	int ret;
843 
844 	/* do we need to apply the constraint voltage */
845 	if (rdev->constraints->apply_uV &&
846 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 		ret = _regulator_do_set_voltage(rdev,
848 						rdev->constraints->min_uV,
849 						rdev->constraints->max_uV);
850 		if (ret < 0) {
851 			rdev_err(rdev, "failed to apply %duV constraint\n",
852 				 rdev->constraints->min_uV);
853 			return ret;
854 		}
855 	}
856 
857 	/* constrain machine-level voltage specs to fit
858 	 * the actual range supported by this regulator.
859 	 */
860 	if (ops->list_voltage && rdev->desc->n_voltages) {
861 		int	count = rdev->desc->n_voltages;
862 		int	i;
863 		int	min_uV = INT_MAX;
864 		int	max_uV = INT_MIN;
865 		int	cmin = constraints->min_uV;
866 		int	cmax = constraints->max_uV;
867 
868 		/* it's safe to autoconfigure fixed-voltage supplies
869 		   and the constraints are used by list_voltage. */
870 		if (count == 1 && !cmin) {
871 			cmin = 1;
872 			cmax = INT_MAX;
873 			constraints->min_uV = cmin;
874 			constraints->max_uV = cmax;
875 		}
876 
877 		/* voltage constraints are optional */
878 		if ((cmin == 0) && (cmax == 0))
879 			return 0;
880 
881 		/* else require explicit machine-level constraints */
882 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 			rdev_err(rdev, "invalid voltage constraints\n");
884 			return -EINVAL;
885 		}
886 
887 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 		for (i = 0; i < count; i++) {
889 			int	value;
890 
891 			value = ops->list_voltage(rdev, i);
892 			if (value <= 0)
893 				continue;
894 
895 			/* maybe adjust [min_uV..max_uV] */
896 			if (value >= cmin && value < min_uV)
897 				min_uV = value;
898 			if (value <= cmax && value > max_uV)
899 				max_uV = value;
900 		}
901 
902 		/* final: [min_uV..max_uV] valid iff constraints valid */
903 		if (max_uV < min_uV) {
904 			rdev_err(rdev,
905 				 "unsupportable voltage constraints %u-%uuV\n",
906 				 min_uV, max_uV);
907 			return -EINVAL;
908 		}
909 
910 		/* use regulator's subset of machine constraints */
911 		if (constraints->min_uV < min_uV) {
912 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 				 constraints->min_uV, min_uV);
914 			constraints->min_uV = min_uV;
915 		}
916 		if (constraints->max_uV > max_uV) {
917 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 				 constraints->max_uV, max_uV);
919 			constraints->max_uV = max_uV;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 	struct regulation_constraints *constraints)
928 {
929 	struct regulator_ops *ops = rdev->desc->ops;
930 	int ret;
931 
932 	if (!constraints->min_uA && !constraints->max_uA)
933 		return 0;
934 
935 	if (constraints->min_uA > constraints->max_uA) {
936 		rdev_err(rdev, "Invalid current constraints\n");
937 		return -EINVAL;
938 	}
939 
940 	if (!ops->set_current_limit || !ops->get_current_limit) {
941 		rdev_warn(rdev, "Operation of current configuration missing\n");
942 		return 0;
943 	}
944 
945 	/* Set regulator current in constraints range */
946 	ret = ops->set_current_limit(rdev, constraints->min_uA,
947 			constraints->max_uA);
948 	if (ret < 0) {
949 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 		return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 /**
957  * set_machine_constraints - sets regulator constraints
958  * @rdev: regulator source
959  * @constraints: constraints to apply
960  *
961  * Allows platform initialisation code to define and constrain
962  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963  * Constraints *must* be set by platform code in order for some
964  * regulator operations to proceed i.e. set_voltage, set_current_limit,
965  * set_mode.
966  */
967 static int set_machine_constraints(struct regulator_dev *rdev,
968 	const struct regulation_constraints *constraints)
969 {
970 	int ret = 0;
971 	struct regulator_ops *ops = rdev->desc->ops;
972 
973 	if (constraints)
974 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975 					    GFP_KERNEL);
976 	else
977 		rdev->constraints = kzalloc(sizeof(*constraints),
978 					    GFP_KERNEL);
979 	if (!rdev->constraints)
980 		return -ENOMEM;
981 
982 	ret = machine_constraints_voltage(rdev, rdev->constraints);
983 	if (ret != 0)
984 		goto out;
985 
986 	ret = machine_constraints_current(rdev, rdev->constraints);
987 	if (ret != 0)
988 		goto out;
989 
990 	/* do we need to setup our suspend state */
991 	if (rdev->constraints->initial_state) {
992 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993 		if (ret < 0) {
994 			rdev_err(rdev, "failed to set suspend state\n");
995 			goto out;
996 		}
997 	}
998 
999 	if (rdev->constraints->initial_mode) {
1000 		if (!ops->set_mode) {
1001 			rdev_err(rdev, "no set_mode operation\n");
1002 			ret = -EINVAL;
1003 			goto out;
1004 		}
1005 
1006 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007 		if (ret < 0) {
1008 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	/* If the constraints say the regulator should be on at this point
1014 	 * and we have control then make sure it is enabled.
1015 	 */
1016 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017 	    ops->enable) {
1018 		ret = ops->enable(rdev);
1019 		if (ret < 0) {
1020 			rdev_err(rdev, "failed to enable\n");
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026 		&& ops->set_ramp_delay) {
1027 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028 		if (ret < 0) {
1029 			rdev_err(rdev, "failed to set ramp_delay\n");
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	print_constraints(rdev);
1035 	return 0;
1036 out:
1037 	kfree(rdev->constraints);
1038 	rdev->constraints = NULL;
1039 	return ret;
1040 }
1041 
1042 /**
1043  * set_supply - set regulator supply regulator
1044  * @rdev: regulator name
1045  * @supply_rdev: supply regulator name
1046  *
1047  * Called by platform initialisation code to set the supply regulator for this
1048  * regulator. This ensures that a regulators supply will also be enabled by the
1049  * core if it's child is enabled.
1050  */
1051 static int set_supply(struct regulator_dev *rdev,
1052 		      struct regulator_dev *supply_rdev)
1053 {
1054 	int err;
1055 
1056 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057 
1058 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059 	if (rdev->supply == NULL) {
1060 		err = -ENOMEM;
1061 		return err;
1062 	}
1063 	supply_rdev->open_count++;
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070  * @rdev:         regulator source
1071  * @consumer_dev_name: dev_name() string for device supply applies to
1072  * @supply:       symbolic name for supply
1073  *
1074  * Allows platform initialisation code to map physical regulator
1075  * sources to symbolic names for supplies for use by devices.  Devices
1076  * should use these symbolic names to request regulators, avoiding the
1077  * need to provide board-specific regulator names as platform data.
1078  */
1079 static int set_consumer_device_supply(struct regulator_dev *rdev,
1080 				      const char *consumer_dev_name,
1081 				      const char *supply)
1082 {
1083 	struct regulator_map *node;
1084 	int has_dev;
1085 
1086 	if (supply == NULL)
1087 		return -EINVAL;
1088 
1089 	if (consumer_dev_name != NULL)
1090 		has_dev = 1;
1091 	else
1092 		has_dev = 0;
1093 
1094 	list_for_each_entry(node, &regulator_map_list, list) {
1095 		if (node->dev_name && consumer_dev_name) {
1096 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097 				continue;
1098 		} else if (node->dev_name || consumer_dev_name) {
1099 			continue;
1100 		}
1101 
1102 		if (strcmp(node->supply, supply) != 0)
1103 			continue;
1104 
1105 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106 			 consumer_dev_name,
1107 			 dev_name(&node->regulator->dev),
1108 			 node->regulator->desc->name,
1109 			 supply,
1110 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1111 		return -EBUSY;
1112 	}
1113 
1114 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115 	if (node == NULL)
1116 		return -ENOMEM;
1117 
1118 	node->regulator = rdev;
1119 	node->supply = supply;
1120 
1121 	if (has_dev) {
1122 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123 		if (node->dev_name == NULL) {
1124 			kfree(node);
1125 			return -ENOMEM;
1126 		}
1127 	}
1128 
1129 	list_add(&node->list, &regulator_map_list);
1130 	return 0;
1131 }
1132 
1133 static void unset_regulator_supplies(struct regulator_dev *rdev)
1134 {
1135 	struct regulator_map *node, *n;
1136 
1137 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138 		if (rdev == node->regulator) {
1139 			list_del(&node->list);
1140 			kfree(node->dev_name);
1141 			kfree(node);
1142 		}
1143 	}
1144 }
1145 
1146 #define REG_STR_SIZE	64
1147 
1148 static struct regulator *create_regulator(struct regulator_dev *rdev,
1149 					  struct device *dev,
1150 					  const char *supply_name)
1151 {
1152 	struct regulator *regulator;
1153 	char buf[REG_STR_SIZE];
1154 	int err, size;
1155 
1156 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157 	if (regulator == NULL)
1158 		return NULL;
1159 
1160 	mutex_lock(&rdev->mutex);
1161 	regulator->rdev = rdev;
1162 	list_add(&regulator->list, &rdev->consumer_list);
1163 
1164 	if (dev) {
1165 		regulator->dev = dev;
1166 
1167 		/* Add a link to the device sysfs entry */
1168 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169 				 dev->kobj.name, supply_name);
1170 		if (size >= REG_STR_SIZE)
1171 			goto overflow_err;
1172 
1173 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174 		if (regulator->supply_name == NULL)
1175 			goto overflow_err;
1176 
1177 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178 					buf);
1179 		if (err) {
1180 			rdev_warn(rdev, "could not add device link %s err %d\n",
1181 				  dev->kobj.name, err);
1182 			/* non-fatal */
1183 		}
1184 	} else {
1185 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186 		if (regulator->supply_name == NULL)
1187 			goto overflow_err;
1188 	}
1189 
1190 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191 						rdev->debugfs);
1192 	if (!regulator->debugfs) {
1193 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1194 	} else {
1195 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196 				   &regulator->uA_load);
1197 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198 				   &regulator->min_uV);
1199 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200 				   &regulator->max_uV);
1201 	}
1202 
1203 	/*
1204 	 * Check now if the regulator is an always on regulator - if
1205 	 * it is then we don't need to do nearly so much work for
1206 	 * enable/disable calls.
1207 	 */
1208 	if (!_regulator_can_change_status(rdev) &&
1209 	    _regulator_is_enabled(rdev))
1210 		regulator->always_on = true;
1211 
1212 	mutex_unlock(&rdev->mutex);
1213 	return regulator;
1214 overflow_err:
1215 	list_del(&regulator->list);
1216 	kfree(regulator);
1217 	mutex_unlock(&rdev->mutex);
1218 	return NULL;
1219 }
1220 
1221 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222 {
1223 	if (rdev->constraints && rdev->constraints->enable_time)
1224 		return rdev->constraints->enable_time;
1225 	if (!rdev->desc->ops->enable_time)
1226 		return rdev->desc->enable_time;
1227 	return rdev->desc->ops->enable_time(rdev);
1228 }
1229 
1230 static struct regulator_supply_alias *regulator_find_supply_alias(
1231 		struct device *dev, const char *supply)
1232 {
1233 	struct regulator_supply_alias *map;
1234 
1235 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1236 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237 			return map;
1238 
1239 	return NULL;
1240 }
1241 
1242 static void regulator_supply_alias(struct device **dev, const char **supply)
1243 {
1244 	struct regulator_supply_alias *map;
1245 
1246 	map = regulator_find_supply_alias(*dev, *supply);
1247 	if (map) {
1248 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249 				*supply, map->alias_supply,
1250 				dev_name(map->alias_dev));
1251 		*dev = map->alias_dev;
1252 		*supply = map->alias_supply;
1253 	}
1254 }
1255 
1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257 						  const char *supply,
1258 						  int *ret)
1259 {
1260 	struct regulator_dev *r;
1261 	struct device_node *node;
1262 	struct regulator_map *map;
1263 	const char *devname = NULL;
1264 
1265 	regulator_supply_alias(&dev, &supply);
1266 
1267 	/* first do a dt based lookup */
1268 	if (dev && dev->of_node) {
1269 		node = of_get_regulator(dev, supply);
1270 		if (node) {
1271 			list_for_each_entry(r, &regulator_list, list)
1272 				if (r->dev.parent &&
1273 					node == r->dev.of_node)
1274 					return r;
1275 			*ret = -EPROBE_DEFER;
1276 			return NULL;
1277 		} else {
1278 			/*
1279 			 * If we couldn't even get the node then it's
1280 			 * not just that the device didn't register
1281 			 * yet, there's no node and we'll never
1282 			 * succeed.
1283 			 */
1284 			*ret = -ENODEV;
1285 		}
1286 	}
1287 
1288 	/* if not found, try doing it non-dt way */
1289 	if (dev)
1290 		devname = dev_name(dev);
1291 
1292 	list_for_each_entry(r, &regulator_list, list)
1293 		if (strcmp(rdev_get_name(r), supply) == 0)
1294 			return r;
1295 
1296 	list_for_each_entry(map, &regulator_map_list, list) {
1297 		/* If the mapping has a device set up it must match */
1298 		if (map->dev_name &&
1299 		    (!devname || strcmp(map->dev_name, devname)))
1300 			continue;
1301 
1302 		if (strcmp(map->supply, supply) == 0)
1303 			return map->regulator;
1304 	}
1305 
1306 
1307 	return NULL;
1308 }
1309 
1310 /* Internal regulator request function */
1311 static struct regulator *_regulator_get(struct device *dev, const char *id,
1312 					bool exclusive, bool allow_dummy)
1313 {
1314 	struct regulator_dev *rdev;
1315 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1316 	const char *devname = NULL;
1317 	int ret;
1318 
1319 	if (id == NULL) {
1320 		pr_err("get() with no identifier\n");
1321 		return ERR_PTR(-EINVAL);
1322 	}
1323 
1324 	if (dev)
1325 		devname = dev_name(dev);
1326 
1327 	if (have_full_constraints())
1328 		ret = -ENODEV;
1329 	else
1330 		ret = -EPROBE_DEFER;
1331 
1332 	mutex_lock(&regulator_list_mutex);
1333 
1334 	rdev = regulator_dev_lookup(dev, id, &ret);
1335 	if (rdev)
1336 		goto found;
1337 
1338 	regulator = ERR_PTR(ret);
1339 
1340 	/*
1341 	 * If we have return value from dev_lookup fail, we do not expect to
1342 	 * succeed, so, quit with appropriate error value
1343 	 */
1344 	if (ret && ret != -ENODEV)
1345 		goto out;
1346 
1347 	if (!devname)
1348 		devname = "deviceless";
1349 
1350 	/*
1351 	 * Assume that a regulator is physically present and enabled
1352 	 * even if it isn't hooked up and just provide a dummy.
1353 	 */
1354 	if (have_full_constraints() && allow_dummy) {
1355 		pr_warn("%s supply %s not found, using dummy regulator\n",
1356 			devname, id);
1357 
1358 		rdev = dummy_regulator_rdev;
1359 		goto found;
1360 	/* Don't log an error when called from regulator_get_optional() */
1361 	} else if (!have_full_constraints() || exclusive) {
1362 		dev_err(dev, "dummy supplies not allowed\n");
1363 	}
1364 
1365 	mutex_unlock(&regulator_list_mutex);
1366 	return regulator;
1367 
1368 found:
1369 	if (rdev->exclusive) {
1370 		regulator = ERR_PTR(-EPERM);
1371 		goto out;
1372 	}
1373 
1374 	if (exclusive && rdev->open_count) {
1375 		regulator = ERR_PTR(-EBUSY);
1376 		goto out;
1377 	}
1378 
1379 	if (!try_module_get(rdev->owner))
1380 		goto out;
1381 
1382 	regulator = create_regulator(rdev, dev, id);
1383 	if (regulator == NULL) {
1384 		regulator = ERR_PTR(-ENOMEM);
1385 		module_put(rdev->owner);
1386 		goto out;
1387 	}
1388 
1389 	rdev->open_count++;
1390 	if (exclusive) {
1391 		rdev->exclusive = 1;
1392 
1393 		ret = _regulator_is_enabled(rdev);
1394 		if (ret > 0)
1395 			rdev->use_count = 1;
1396 		else
1397 			rdev->use_count = 0;
1398 	}
1399 
1400 out:
1401 	mutex_unlock(&regulator_list_mutex);
1402 
1403 	return regulator;
1404 }
1405 
1406 /**
1407  * regulator_get - lookup and obtain a reference to a regulator.
1408  * @dev: device for regulator "consumer"
1409  * @id: Supply name or regulator ID.
1410  *
1411  * Returns a struct regulator corresponding to the regulator producer,
1412  * or IS_ERR() condition containing errno.
1413  *
1414  * Use of supply names configured via regulator_set_device_supply() is
1415  * strongly encouraged.  It is recommended that the supply name used
1416  * should match the name used for the supply and/or the relevant
1417  * device pins in the datasheet.
1418  */
1419 struct regulator *regulator_get(struct device *dev, const char *id)
1420 {
1421 	return _regulator_get(dev, id, false, true);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_get);
1424 
1425 /**
1426  * regulator_get_exclusive - obtain exclusive access to a regulator.
1427  * @dev: device for regulator "consumer"
1428  * @id: Supply name or regulator ID.
1429  *
1430  * Returns a struct regulator corresponding to the regulator producer,
1431  * or IS_ERR() condition containing errno.  Other consumers will be
1432  * unable to obtain this reference is held and the use count for the
1433  * regulator will be initialised to reflect the current state of the
1434  * regulator.
1435  *
1436  * This is intended for use by consumers which cannot tolerate shared
1437  * use of the regulator such as those which need to force the
1438  * regulator off for correct operation of the hardware they are
1439  * controlling.
1440  *
1441  * Use of supply names configured via regulator_set_device_supply() is
1442  * strongly encouraged.  It is recommended that the supply name used
1443  * should match the name used for the supply and/or the relevant
1444  * device pins in the datasheet.
1445  */
1446 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1447 {
1448 	return _regulator_get(dev, id, true, false);
1449 }
1450 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1451 
1452 /**
1453  * regulator_get_optional - obtain optional access to a regulator.
1454  * @dev: device for regulator "consumer"
1455  * @id: Supply name or regulator ID.
1456  *
1457  * Returns a struct regulator corresponding to the regulator producer,
1458  * or IS_ERR() condition containing errno.  Other consumers will be
1459  * unable to obtain this reference is held and the use count for the
1460  * regulator will be initialised to reflect the current state of the
1461  * regulator.
1462  *
1463  * This is intended for use by consumers for devices which can have
1464  * some supplies unconnected in normal use, such as some MMC devices.
1465  * It can allow the regulator core to provide stub supplies for other
1466  * supplies requested using normal regulator_get() calls without
1467  * disrupting the operation of drivers that can handle absent
1468  * supplies.
1469  *
1470  * Use of supply names configured via regulator_set_device_supply() is
1471  * strongly encouraged.  It is recommended that the supply name used
1472  * should match the name used for the supply and/or the relevant
1473  * device pins in the datasheet.
1474  */
1475 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1476 {
1477 	return _regulator_get(dev, id, false, false);
1478 }
1479 EXPORT_SYMBOL_GPL(regulator_get_optional);
1480 
1481 /* Locks held by regulator_put() */
1482 static void _regulator_put(struct regulator *regulator)
1483 {
1484 	struct regulator_dev *rdev;
1485 
1486 	if (regulator == NULL || IS_ERR(regulator))
1487 		return;
1488 
1489 	rdev = regulator->rdev;
1490 
1491 	debugfs_remove_recursive(regulator->debugfs);
1492 
1493 	/* remove any sysfs entries */
1494 	if (regulator->dev)
1495 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1496 	kfree(regulator->supply_name);
1497 	list_del(&regulator->list);
1498 	kfree(regulator);
1499 
1500 	rdev->open_count--;
1501 	rdev->exclusive = 0;
1502 
1503 	module_put(rdev->owner);
1504 }
1505 
1506 /**
1507  * regulator_put - "free" the regulator source
1508  * @regulator: regulator source
1509  *
1510  * Note: drivers must ensure that all regulator_enable calls made on this
1511  * regulator source are balanced by regulator_disable calls prior to calling
1512  * this function.
1513  */
1514 void regulator_put(struct regulator *regulator)
1515 {
1516 	mutex_lock(&regulator_list_mutex);
1517 	_regulator_put(regulator);
1518 	mutex_unlock(&regulator_list_mutex);
1519 }
1520 EXPORT_SYMBOL_GPL(regulator_put);
1521 
1522 /**
1523  * regulator_register_supply_alias - Provide device alias for supply lookup
1524  *
1525  * @dev: device that will be given as the regulator "consumer"
1526  * @id: Supply name or regulator ID
1527  * @alias_dev: device that should be used to lookup the supply
1528  * @alias_id: Supply name or regulator ID that should be used to lookup the
1529  * supply
1530  *
1531  * All lookups for id on dev will instead be conducted for alias_id on
1532  * alias_dev.
1533  */
1534 int regulator_register_supply_alias(struct device *dev, const char *id,
1535 				    struct device *alias_dev,
1536 				    const char *alias_id)
1537 {
1538 	struct regulator_supply_alias *map;
1539 
1540 	map = regulator_find_supply_alias(dev, id);
1541 	if (map)
1542 		return -EEXIST;
1543 
1544 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1545 	if (!map)
1546 		return -ENOMEM;
1547 
1548 	map->src_dev = dev;
1549 	map->src_supply = id;
1550 	map->alias_dev = alias_dev;
1551 	map->alias_supply = alias_id;
1552 
1553 	list_add(&map->list, &regulator_supply_alias_list);
1554 
1555 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1556 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1557 
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1561 
1562 /**
1563  * regulator_unregister_supply_alias - Remove device alias
1564  *
1565  * @dev: device that will be given as the regulator "consumer"
1566  * @id: Supply name or regulator ID
1567  *
1568  * Remove a lookup alias if one exists for id on dev.
1569  */
1570 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1571 {
1572 	struct regulator_supply_alias *map;
1573 
1574 	map = regulator_find_supply_alias(dev, id);
1575 	if (map) {
1576 		list_del(&map->list);
1577 		kfree(map);
1578 	}
1579 }
1580 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1581 
1582 /**
1583  * regulator_bulk_register_supply_alias - register multiple aliases
1584  *
1585  * @dev: device that will be given as the regulator "consumer"
1586  * @id: List of supply names or regulator IDs
1587  * @alias_dev: device that should be used to lookup the supply
1588  * @alias_id: List of supply names or regulator IDs that should be used to
1589  * lookup the supply
1590  * @num_id: Number of aliases to register
1591  *
1592  * @return 0 on success, an errno on failure.
1593  *
1594  * This helper function allows drivers to register several supply
1595  * aliases in one operation.  If any of the aliases cannot be
1596  * registered any aliases that were registered will be removed
1597  * before returning to the caller.
1598  */
1599 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1600 					 struct device *alias_dev,
1601 					 const char **alias_id,
1602 					 int num_id)
1603 {
1604 	int i;
1605 	int ret;
1606 
1607 	for (i = 0; i < num_id; ++i) {
1608 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1609 						      alias_id[i]);
1610 		if (ret < 0)
1611 			goto err;
1612 	}
1613 
1614 	return 0;
1615 
1616 err:
1617 	dev_err(dev,
1618 		"Failed to create supply alias %s,%s -> %s,%s\n",
1619 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1620 
1621 	while (--i >= 0)
1622 		regulator_unregister_supply_alias(dev, id[i]);
1623 
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1627 
1628 /**
1629  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1630  *
1631  * @dev: device that will be given as the regulator "consumer"
1632  * @id: List of supply names or regulator IDs
1633  * @num_id: Number of aliases to unregister
1634  *
1635  * This helper function allows drivers to unregister several supply
1636  * aliases in one operation.
1637  */
1638 void regulator_bulk_unregister_supply_alias(struct device *dev,
1639 					    const char **id,
1640 					    int num_id)
1641 {
1642 	int i;
1643 
1644 	for (i = 0; i < num_id; ++i)
1645 		regulator_unregister_supply_alias(dev, id[i]);
1646 }
1647 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1648 
1649 
1650 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1651 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1652 				const struct regulator_config *config)
1653 {
1654 	struct regulator_enable_gpio *pin;
1655 	int ret;
1656 
1657 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1658 		if (pin->gpio == config->ena_gpio) {
1659 			rdev_dbg(rdev, "GPIO %d is already used\n",
1660 				config->ena_gpio);
1661 			goto update_ena_gpio_to_rdev;
1662 		}
1663 	}
1664 
1665 	ret = gpio_request_one(config->ena_gpio,
1666 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1667 				rdev_get_name(rdev));
1668 	if (ret)
1669 		return ret;
1670 
1671 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1672 	if (pin == NULL) {
1673 		gpio_free(config->ena_gpio);
1674 		return -ENOMEM;
1675 	}
1676 
1677 	pin->gpio = config->ena_gpio;
1678 	pin->ena_gpio_invert = config->ena_gpio_invert;
1679 	list_add(&pin->list, &regulator_ena_gpio_list);
1680 
1681 update_ena_gpio_to_rdev:
1682 	pin->request_count++;
1683 	rdev->ena_pin = pin;
1684 	return 0;
1685 }
1686 
1687 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1688 {
1689 	struct regulator_enable_gpio *pin, *n;
1690 
1691 	if (!rdev->ena_pin)
1692 		return;
1693 
1694 	/* Free the GPIO only in case of no use */
1695 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1696 		if (pin->gpio == rdev->ena_pin->gpio) {
1697 			if (pin->request_count <= 1) {
1698 				pin->request_count = 0;
1699 				gpio_free(pin->gpio);
1700 				list_del(&pin->list);
1701 				kfree(pin);
1702 			} else {
1703 				pin->request_count--;
1704 			}
1705 		}
1706 	}
1707 }
1708 
1709 /**
1710  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1711  * @rdev: regulator_dev structure
1712  * @enable: enable GPIO at initial use?
1713  *
1714  * GPIO is enabled in case of initial use. (enable_count is 0)
1715  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1716  */
1717 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1718 {
1719 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1720 
1721 	if (!pin)
1722 		return -EINVAL;
1723 
1724 	if (enable) {
1725 		/* Enable GPIO at initial use */
1726 		if (pin->enable_count == 0)
1727 			gpio_set_value_cansleep(pin->gpio,
1728 						!pin->ena_gpio_invert);
1729 
1730 		pin->enable_count++;
1731 	} else {
1732 		if (pin->enable_count > 1) {
1733 			pin->enable_count--;
1734 			return 0;
1735 		}
1736 
1737 		/* Disable GPIO if not used */
1738 		if (pin->enable_count <= 1) {
1739 			gpio_set_value_cansleep(pin->gpio,
1740 						pin->ena_gpio_invert);
1741 			pin->enable_count = 0;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int _regulator_do_enable(struct regulator_dev *rdev)
1749 {
1750 	int ret, delay;
1751 
1752 	/* Query before enabling in case configuration dependent.  */
1753 	ret = _regulator_get_enable_time(rdev);
1754 	if (ret >= 0) {
1755 		delay = ret;
1756 	} else {
1757 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1758 		delay = 0;
1759 	}
1760 
1761 	trace_regulator_enable(rdev_get_name(rdev));
1762 
1763 	if (rdev->ena_pin) {
1764 		ret = regulator_ena_gpio_ctrl(rdev, true);
1765 		if (ret < 0)
1766 			return ret;
1767 		rdev->ena_gpio_state = 1;
1768 	} else if (rdev->desc->ops->enable) {
1769 		ret = rdev->desc->ops->enable(rdev);
1770 		if (ret < 0)
1771 			return ret;
1772 	} else {
1773 		return -EINVAL;
1774 	}
1775 
1776 	/* Allow the regulator to ramp; it would be useful to extend
1777 	 * this for bulk operations so that the regulators can ramp
1778 	 * together.  */
1779 	trace_regulator_enable_delay(rdev_get_name(rdev));
1780 
1781 	/*
1782 	 * Delay for the requested amount of time as per the guidelines in:
1783 	 *
1784 	 *     Documentation/timers/timers-howto.txt
1785 	 *
1786 	 * The assumption here is that regulators will never be enabled in
1787 	 * atomic context and therefore sleeping functions can be used.
1788 	 */
1789 	if (delay) {
1790 		unsigned int ms = delay / 1000;
1791 		unsigned int us = delay % 1000;
1792 
1793 		if (ms > 0) {
1794 			/*
1795 			 * For small enough values, handle super-millisecond
1796 			 * delays in the usleep_range() call below.
1797 			 */
1798 			if (ms < 20)
1799 				us += ms * 1000;
1800 			else
1801 				msleep(ms);
1802 		}
1803 
1804 		/*
1805 		 * Give the scheduler some room to coalesce with any other
1806 		 * wakeup sources. For delays shorter than 10 us, don't even
1807 		 * bother setting up high-resolution timers and just busy-
1808 		 * loop.
1809 		 */
1810 		if (us >= 10)
1811 			usleep_range(us, us + 100);
1812 		else
1813 			udelay(us);
1814 	}
1815 
1816 	trace_regulator_enable_complete(rdev_get_name(rdev));
1817 
1818 	return 0;
1819 }
1820 
1821 /* locks held by regulator_enable() */
1822 static int _regulator_enable(struct regulator_dev *rdev)
1823 {
1824 	int ret;
1825 
1826 	/* check voltage and requested load before enabling */
1827 	if (rdev->constraints &&
1828 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1829 		drms_uA_update(rdev);
1830 
1831 	if (rdev->use_count == 0) {
1832 		/* The regulator may on if it's not switchable or left on */
1833 		ret = _regulator_is_enabled(rdev);
1834 		if (ret == -EINVAL || ret == 0) {
1835 			if (!_regulator_can_change_status(rdev))
1836 				return -EPERM;
1837 
1838 			ret = _regulator_do_enable(rdev);
1839 			if (ret < 0)
1840 				return ret;
1841 
1842 		} else if (ret < 0) {
1843 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1844 			return ret;
1845 		}
1846 		/* Fallthrough on positive return values - already enabled */
1847 	}
1848 
1849 	rdev->use_count++;
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * regulator_enable - enable regulator output
1856  * @regulator: regulator source
1857  *
1858  * Request that the regulator be enabled with the regulator output at
1859  * the predefined voltage or current value.  Calls to regulator_enable()
1860  * must be balanced with calls to regulator_disable().
1861  *
1862  * NOTE: the output value can be set by other drivers, boot loader or may be
1863  * hardwired in the regulator.
1864  */
1865 int regulator_enable(struct regulator *regulator)
1866 {
1867 	struct regulator_dev *rdev = regulator->rdev;
1868 	int ret = 0;
1869 
1870 	if (regulator->always_on)
1871 		return 0;
1872 
1873 	if (rdev->supply) {
1874 		ret = regulator_enable(rdev->supply);
1875 		if (ret != 0)
1876 			return ret;
1877 	}
1878 
1879 	mutex_lock(&rdev->mutex);
1880 	ret = _regulator_enable(rdev);
1881 	mutex_unlock(&rdev->mutex);
1882 
1883 	if (ret != 0 && rdev->supply)
1884 		regulator_disable(rdev->supply);
1885 
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(regulator_enable);
1889 
1890 static int _regulator_do_disable(struct regulator_dev *rdev)
1891 {
1892 	int ret;
1893 
1894 	trace_regulator_disable(rdev_get_name(rdev));
1895 
1896 	if (rdev->ena_pin) {
1897 		ret = regulator_ena_gpio_ctrl(rdev, false);
1898 		if (ret < 0)
1899 			return ret;
1900 		rdev->ena_gpio_state = 0;
1901 
1902 	} else if (rdev->desc->ops->disable) {
1903 		ret = rdev->desc->ops->disable(rdev);
1904 		if (ret != 0)
1905 			return ret;
1906 	}
1907 
1908 	trace_regulator_disable_complete(rdev_get_name(rdev));
1909 
1910 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1911 			     NULL);
1912 	return 0;
1913 }
1914 
1915 /* locks held by regulator_disable() */
1916 static int _regulator_disable(struct regulator_dev *rdev)
1917 {
1918 	int ret = 0;
1919 
1920 	if (WARN(rdev->use_count <= 0,
1921 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1922 		return -EIO;
1923 
1924 	/* are we the last user and permitted to disable ? */
1925 	if (rdev->use_count == 1 &&
1926 	    (rdev->constraints && !rdev->constraints->always_on)) {
1927 
1928 		/* we are last user */
1929 		if (_regulator_can_change_status(rdev)) {
1930 			ret = _regulator_do_disable(rdev);
1931 			if (ret < 0) {
1932 				rdev_err(rdev, "failed to disable\n");
1933 				return ret;
1934 			}
1935 		}
1936 
1937 		rdev->use_count = 0;
1938 	} else if (rdev->use_count > 1) {
1939 
1940 		if (rdev->constraints &&
1941 			(rdev->constraints->valid_ops_mask &
1942 			REGULATOR_CHANGE_DRMS))
1943 			drms_uA_update(rdev);
1944 
1945 		rdev->use_count--;
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 /**
1952  * regulator_disable - disable regulator output
1953  * @regulator: regulator source
1954  *
1955  * Disable the regulator output voltage or current.  Calls to
1956  * regulator_enable() must be balanced with calls to
1957  * regulator_disable().
1958  *
1959  * NOTE: this will only disable the regulator output if no other consumer
1960  * devices have it enabled, the regulator device supports disabling and
1961  * machine constraints permit this operation.
1962  */
1963 int regulator_disable(struct regulator *regulator)
1964 {
1965 	struct regulator_dev *rdev = regulator->rdev;
1966 	int ret = 0;
1967 
1968 	if (regulator->always_on)
1969 		return 0;
1970 
1971 	mutex_lock(&rdev->mutex);
1972 	ret = _regulator_disable(rdev);
1973 	mutex_unlock(&rdev->mutex);
1974 
1975 	if (ret == 0 && rdev->supply)
1976 		regulator_disable(rdev->supply);
1977 
1978 	return ret;
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_disable);
1981 
1982 /* locks held by regulator_force_disable() */
1983 static int _regulator_force_disable(struct regulator_dev *rdev)
1984 {
1985 	int ret = 0;
1986 
1987 	/* force disable */
1988 	if (rdev->desc->ops->disable) {
1989 		/* ah well, who wants to live forever... */
1990 		ret = rdev->desc->ops->disable(rdev);
1991 		if (ret < 0) {
1992 			rdev_err(rdev, "failed to force disable\n");
1993 			return ret;
1994 		}
1995 		/* notify other consumers that power has been forced off */
1996 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1997 			REGULATOR_EVENT_DISABLE, NULL);
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 /**
2004  * regulator_force_disable - force disable regulator output
2005  * @regulator: regulator source
2006  *
2007  * Forcibly disable the regulator output voltage or current.
2008  * NOTE: this *will* disable the regulator output even if other consumer
2009  * devices have it enabled. This should be used for situations when device
2010  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2011  */
2012 int regulator_force_disable(struct regulator *regulator)
2013 {
2014 	struct regulator_dev *rdev = regulator->rdev;
2015 	int ret;
2016 
2017 	mutex_lock(&rdev->mutex);
2018 	regulator->uA_load = 0;
2019 	ret = _regulator_force_disable(regulator->rdev);
2020 	mutex_unlock(&rdev->mutex);
2021 
2022 	if (rdev->supply)
2023 		while (rdev->open_count--)
2024 			regulator_disable(rdev->supply);
2025 
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(regulator_force_disable);
2029 
2030 static void regulator_disable_work(struct work_struct *work)
2031 {
2032 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2033 						  disable_work.work);
2034 	int count, i, ret;
2035 
2036 	mutex_lock(&rdev->mutex);
2037 
2038 	BUG_ON(!rdev->deferred_disables);
2039 
2040 	count = rdev->deferred_disables;
2041 	rdev->deferred_disables = 0;
2042 
2043 	for (i = 0; i < count; i++) {
2044 		ret = _regulator_disable(rdev);
2045 		if (ret != 0)
2046 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2047 	}
2048 
2049 	mutex_unlock(&rdev->mutex);
2050 
2051 	if (rdev->supply) {
2052 		for (i = 0; i < count; i++) {
2053 			ret = regulator_disable(rdev->supply);
2054 			if (ret != 0) {
2055 				rdev_err(rdev,
2056 					 "Supply disable failed: %d\n", ret);
2057 			}
2058 		}
2059 	}
2060 }
2061 
2062 /**
2063  * regulator_disable_deferred - disable regulator output with delay
2064  * @regulator: regulator source
2065  * @ms: miliseconds until the regulator is disabled
2066  *
2067  * Execute regulator_disable() on the regulator after a delay.  This
2068  * is intended for use with devices that require some time to quiesce.
2069  *
2070  * NOTE: this will only disable the regulator output if no other consumer
2071  * devices have it enabled, the regulator device supports disabling and
2072  * machine constraints permit this operation.
2073  */
2074 int regulator_disable_deferred(struct regulator *regulator, int ms)
2075 {
2076 	struct regulator_dev *rdev = regulator->rdev;
2077 	int ret;
2078 
2079 	if (regulator->always_on)
2080 		return 0;
2081 
2082 	if (!ms)
2083 		return regulator_disable(regulator);
2084 
2085 	mutex_lock(&rdev->mutex);
2086 	rdev->deferred_disables++;
2087 	mutex_unlock(&rdev->mutex);
2088 
2089 	ret = queue_delayed_work(system_power_efficient_wq,
2090 				 &rdev->disable_work,
2091 				 msecs_to_jiffies(ms));
2092 	if (ret < 0)
2093 		return ret;
2094 	else
2095 		return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2098 
2099 static int _regulator_is_enabled(struct regulator_dev *rdev)
2100 {
2101 	/* A GPIO control always takes precedence */
2102 	if (rdev->ena_pin)
2103 		return rdev->ena_gpio_state;
2104 
2105 	/* If we don't know then assume that the regulator is always on */
2106 	if (!rdev->desc->ops->is_enabled)
2107 		return 1;
2108 
2109 	return rdev->desc->ops->is_enabled(rdev);
2110 }
2111 
2112 /**
2113  * regulator_is_enabled - is the regulator output enabled
2114  * @regulator: regulator source
2115  *
2116  * Returns positive if the regulator driver backing the source/client
2117  * has requested that the device be enabled, zero if it hasn't, else a
2118  * negative errno code.
2119  *
2120  * Note that the device backing this regulator handle can have multiple
2121  * users, so it might be enabled even if regulator_enable() was never
2122  * called for this particular source.
2123  */
2124 int regulator_is_enabled(struct regulator *regulator)
2125 {
2126 	int ret;
2127 
2128 	if (regulator->always_on)
2129 		return 1;
2130 
2131 	mutex_lock(&regulator->rdev->mutex);
2132 	ret = _regulator_is_enabled(regulator->rdev);
2133 	mutex_unlock(&regulator->rdev->mutex);
2134 
2135 	return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2138 
2139 /**
2140  * regulator_can_change_voltage - check if regulator can change voltage
2141  * @regulator: regulator source
2142  *
2143  * Returns positive if the regulator driver backing the source/client
2144  * can change its voltage, false otherwise. Usefull for detecting fixed
2145  * or dummy regulators and disabling voltage change logic in the client
2146  * driver.
2147  */
2148 int regulator_can_change_voltage(struct regulator *regulator)
2149 {
2150 	struct regulator_dev	*rdev = regulator->rdev;
2151 
2152 	if (rdev->constraints &&
2153 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2155 			return 1;
2156 
2157 		if (rdev->desc->continuous_voltage_range &&
2158 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2159 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2160 			return 1;
2161 	}
2162 
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2166 
2167 /**
2168  * regulator_count_voltages - count regulator_list_voltage() selectors
2169  * @regulator: regulator source
2170  *
2171  * Returns number of selectors, or negative errno.  Selectors are
2172  * numbered starting at zero, and typically correspond to bitfields
2173  * in hardware registers.
2174  */
2175 int regulator_count_voltages(struct regulator *regulator)
2176 {
2177 	struct regulator_dev	*rdev = regulator->rdev;
2178 
2179 	return rdev->desc->n_voltages ? : -EINVAL;
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2182 
2183 /**
2184  * regulator_list_voltage - enumerate supported voltages
2185  * @regulator: regulator source
2186  * @selector: identify voltage to list
2187  * Context: can sleep
2188  *
2189  * Returns a voltage that can be passed to @regulator_set_voltage(),
2190  * zero if this selector code can't be used on this system, or a
2191  * negative errno.
2192  */
2193 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2194 {
2195 	struct regulator_dev	*rdev = regulator->rdev;
2196 	struct regulator_ops	*ops = rdev->desc->ops;
2197 	int			ret;
2198 
2199 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2200 		return rdev->desc->fixed_uV;
2201 
2202 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2203 		return -EINVAL;
2204 
2205 	mutex_lock(&rdev->mutex);
2206 	ret = ops->list_voltage(rdev, selector);
2207 	mutex_unlock(&rdev->mutex);
2208 
2209 	if (ret > 0) {
2210 		if (ret < rdev->constraints->min_uV)
2211 			ret = 0;
2212 		else if (ret > rdev->constraints->max_uV)
2213 			ret = 0;
2214 	}
2215 
2216 	return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2219 
2220 /**
2221  * regulator_get_linear_step - return the voltage step size between VSEL values
2222  * @regulator: regulator source
2223  *
2224  * Returns the voltage step size between VSEL values for linear
2225  * regulators, or return 0 if the regulator isn't a linear regulator.
2226  */
2227 unsigned int regulator_get_linear_step(struct regulator *regulator)
2228 {
2229 	struct regulator_dev *rdev = regulator->rdev;
2230 
2231 	return rdev->desc->uV_step;
2232 }
2233 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2234 
2235 /**
2236  * regulator_is_supported_voltage - check if a voltage range can be supported
2237  *
2238  * @regulator: Regulator to check.
2239  * @min_uV: Minimum required voltage in uV.
2240  * @max_uV: Maximum required voltage in uV.
2241  *
2242  * Returns a boolean or a negative error code.
2243  */
2244 int regulator_is_supported_voltage(struct regulator *regulator,
2245 				   int min_uV, int max_uV)
2246 {
2247 	struct regulator_dev *rdev = regulator->rdev;
2248 	int i, voltages, ret;
2249 
2250 	/* If we can't change voltage check the current voltage */
2251 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2252 		ret = regulator_get_voltage(regulator);
2253 		if (ret >= 0)
2254 			return min_uV <= ret && ret <= max_uV;
2255 		else
2256 			return ret;
2257 	}
2258 
2259 	/* Any voltage within constrains range is fine? */
2260 	if (rdev->desc->continuous_voltage_range)
2261 		return min_uV >= rdev->constraints->min_uV &&
2262 				max_uV <= rdev->constraints->max_uV;
2263 
2264 	ret = regulator_count_voltages(regulator);
2265 	if (ret < 0)
2266 		return ret;
2267 	voltages = ret;
2268 
2269 	for (i = 0; i < voltages; i++) {
2270 		ret = regulator_list_voltage(regulator, i);
2271 
2272 		if (ret >= min_uV && ret <= max_uV)
2273 			return 1;
2274 	}
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2279 
2280 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2281 				     int min_uV, int max_uV)
2282 {
2283 	int ret;
2284 	int delay = 0;
2285 	int best_val = 0;
2286 	unsigned int selector;
2287 	int old_selector = -1;
2288 
2289 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2290 
2291 	min_uV += rdev->constraints->uV_offset;
2292 	max_uV += rdev->constraints->uV_offset;
2293 
2294 	/*
2295 	 * If we can't obtain the old selector there is not enough
2296 	 * info to call set_voltage_time_sel().
2297 	 */
2298 	if (_regulator_is_enabled(rdev) &&
2299 	    rdev->desc->ops->set_voltage_time_sel &&
2300 	    rdev->desc->ops->get_voltage_sel) {
2301 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2302 		if (old_selector < 0)
2303 			return old_selector;
2304 	}
2305 
2306 	if (rdev->desc->ops->set_voltage) {
2307 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2308 						   &selector);
2309 
2310 		if (ret >= 0) {
2311 			if (rdev->desc->ops->list_voltage)
2312 				best_val = rdev->desc->ops->list_voltage(rdev,
2313 									 selector);
2314 			else
2315 				best_val = _regulator_get_voltage(rdev);
2316 		}
2317 
2318 	} else if (rdev->desc->ops->set_voltage_sel) {
2319 		if (rdev->desc->ops->map_voltage) {
2320 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2321 							   max_uV);
2322 		} else {
2323 			if (rdev->desc->ops->list_voltage ==
2324 			    regulator_list_voltage_linear)
2325 				ret = regulator_map_voltage_linear(rdev,
2326 								min_uV, max_uV);
2327 			else
2328 				ret = regulator_map_voltage_iterate(rdev,
2329 								min_uV, max_uV);
2330 		}
2331 
2332 		if (ret >= 0) {
2333 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2334 			if (min_uV <= best_val && max_uV >= best_val) {
2335 				selector = ret;
2336 				if (old_selector == selector)
2337 					ret = 0;
2338 				else
2339 					ret = rdev->desc->ops->set_voltage_sel(
2340 								rdev, ret);
2341 			} else {
2342 				ret = -EINVAL;
2343 			}
2344 		}
2345 	} else {
2346 		ret = -EINVAL;
2347 	}
2348 
2349 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2350 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2351 		&& old_selector != selector) {
2352 
2353 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2354 						old_selector, selector);
2355 		if (delay < 0) {
2356 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2357 				  delay);
2358 			delay = 0;
2359 		}
2360 
2361 		/* Insert any necessary delays */
2362 		if (delay >= 1000) {
2363 			mdelay(delay / 1000);
2364 			udelay(delay % 1000);
2365 		} else if (delay) {
2366 			udelay(delay);
2367 		}
2368 	}
2369 
2370 	if (ret == 0 && best_val >= 0) {
2371 		unsigned long data = best_val;
2372 
2373 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2374 				     (void *)data);
2375 	}
2376 
2377 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2378 
2379 	return ret;
2380 }
2381 
2382 /**
2383  * regulator_set_voltage - set regulator output voltage
2384  * @regulator: regulator source
2385  * @min_uV: Minimum required voltage in uV
2386  * @max_uV: Maximum acceptable voltage in uV
2387  *
2388  * Sets a voltage regulator to the desired output voltage. This can be set
2389  * during any regulator state. IOW, regulator can be disabled or enabled.
2390  *
2391  * If the regulator is enabled then the voltage will change to the new value
2392  * immediately otherwise if the regulator is disabled the regulator will
2393  * output at the new voltage when enabled.
2394  *
2395  * NOTE: If the regulator is shared between several devices then the lowest
2396  * request voltage that meets the system constraints will be used.
2397  * Regulator system constraints must be set for this regulator before
2398  * calling this function otherwise this call will fail.
2399  */
2400 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2401 {
2402 	struct regulator_dev *rdev = regulator->rdev;
2403 	int ret = 0;
2404 	int old_min_uV, old_max_uV;
2405 
2406 	mutex_lock(&rdev->mutex);
2407 
2408 	/* If we're setting the same range as last time the change
2409 	 * should be a noop (some cpufreq implementations use the same
2410 	 * voltage for multiple frequencies, for example).
2411 	 */
2412 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2413 		goto out;
2414 
2415 	/* sanity check */
2416 	if (!rdev->desc->ops->set_voltage &&
2417 	    !rdev->desc->ops->set_voltage_sel) {
2418 		ret = -EINVAL;
2419 		goto out;
2420 	}
2421 
2422 	/* constraints check */
2423 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2424 	if (ret < 0)
2425 		goto out;
2426 
2427 	/* restore original values in case of error */
2428 	old_min_uV = regulator->min_uV;
2429 	old_max_uV = regulator->max_uV;
2430 	regulator->min_uV = min_uV;
2431 	regulator->max_uV = max_uV;
2432 
2433 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2434 	if (ret < 0)
2435 		goto out2;
2436 
2437 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2438 	if (ret < 0)
2439 		goto out2;
2440 
2441 out:
2442 	mutex_unlock(&rdev->mutex);
2443 	return ret;
2444 out2:
2445 	regulator->min_uV = old_min_uV;
2446 	regulator->max_uV = old_max_uV;
2447 	mutex_unlock(&rdev->mutex);
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2451 
2452 /**
2453  * regulator_set_voltage_time - get raise/fall time
2454  * @regulator: regulator source
2455  * @old_uV: starting voltage in microvolts
2456  * @new_uV: target voltage in microvolts
2457  *
2458  * Provided with the starting and ending voltage, this function attempts to
2459  * calculate the time in microseconds required to rise or fall to this new
2460  * voltage.
2461  */
2462 int regulator_set_voltage_time(struct regulator *regulator,
2463 			       int old_uV, int new_uV)
2464 {
2465 	struct regulator_dev	*rdev = regulator->rdev;
2466 	struct regulator_ops	*ops = rdev->desc->ops;
2467 	int old_sel = -1;
2468 	int new_sel = -1;
2469 	int voltage;
2470 	int i;
2471 
2472 	/* Currently requires operations to do this */
2473 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2474 	    || !rdev->desc->n_voltages)
2475 		return -EINVAL;
2476 
2477 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2478 		/* We only look for exact voltage matches here */
2479 		voltage = regulator_list_voltage(regulator, i);
2480 		if (voltage < 0)
2481 			return -EINVAL;
2482 		if (voltage == 0)
2483 			continue;
2484 		if (voltage == old_uV)
2485 			old_sel = i;
2486 		if (voltage == new_uV)
2487 			new_sel = i;
2488 	}
2489 
2490 	if (old_sel < 0 || new_sel < 0)
2491 		return -EINVAL;
2492 
2493 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2496 
2497 /**
2498  * regulator_set_voltage_time_sel - get raise/fall time
2499  * @rdev: regulator source device
2500  * @old_selector: selector for starting voltage
2501  * @new_selector: selector for target voltage
2502  *
2503  * Provided with the starting and target voltage selectors, this function
2504  * returns time in microseconds required to rise or fall to this new voltage
2505  *
2506  * Drivers providing ramp_delay in regulation_constraints can use this as their
2507  * set_voltage_time_sel() operation.
2508  */
2509 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2510 				   unsigned int old_selector,
2511 				   unsigned int new_selector)
2512 {
2513 	unsigned int ramp_delay = 0;
2514 	int old_volt, new_volt;
2515 
2516 	if (rdev->constraints->ramp_delay)
2517 		ramp_delay = rdev->constraints->ramp_delay;
2518 	else if (rdev->desc->ramp_delay)
2519 		ramp_delay = rdev->desc->ramp_delay;
2520 
2521 	if (ramp_delay == 0) {
2522 		rdev_warn(rdev, "ramp_delay not set\n");
2523 		return 0;
2524 	}
2525 
2526 	/* sanity check */
2527 	if (!rdev->desc->ops->list_voltage)
2528 		return -EINVAL;
2529 
2530 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2531 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2532 
2533 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2534 }
2535 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2536 
2537 /**
2538  * regulator_sync_voltage - re-apply last regulator output voltage
2539  * @regulator: regulator source
2540  *
2541  * Re-apply the last configured voltage.  This is intended to be used
2542  * where some external control source the consumer is cooperating with
2543  * has caused the configured voltage to change.
2544  */
2545 int regulator_sync_voltage(struct regulator *regulator)
2546 {
2547 	struct regulator_dev *rdev = regulator->rdev;
2548 	int ret, min_uV, max_uV;
2549 
2550 	mutex_lock(&rdev->mutex);
2551 
2552 	if (!rdev->desc->ops->set_voltage &&
2553 	    !rdev->desc->ops->set_voltage_sel) {
2554 		ret = -EINVAL;
2555 		goto out;
2556 	}
2557 
2558 	/* This is only going to work if we've had a voltage configured. */
2559 	if (!regulator->min_uV && !regulator->max_uV) {
2560 		ret = -EINVAL;
2561 		goto out;
2562 	}
2563 
2564 	min_uV = regulator->min_uV;
2565 	max_uV = regulator->max_uV;
2566 
2567 	/* This should be a paranoia check... */
2568 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2569 	if (ret < 0)
2570 		goto out;
2571 
2572 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2573 	if (ret < 0)
2574 		goto out;
2575 
2576 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2577 
2578 out:
2579 	mutex_unlock(&rdev->mutex);
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2583 
2584 static int _regulator_get_voltage(struct regulator_dev *rdev)
2585 {
2586 	int sel, ret;
2587 
2588 	if (rdev->desc->ops->get_voltage_sel) {
2589 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2590 		if (sel < 0)
2591 			return sel;
2592 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2593 	} else if (rdev->desc->ops->get_voltage) {
2594 		ret = rdev->desc->ops->get_voltage(rdev);
2595 	} else if (rdev->desc->ops->list_voltage) {
2596 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2597 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2598 		ret = rdev->desc->fixed_uV;
2599 	} else {
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (ret < 0)
2604 		return ret;
2605 	return ret - rdev->constraints->uV_offset;
2606 }
2607 
2608 /**
2609  * regulator_get_voltage - get regulator output voltage
2610  * @regulator: regulator source
2611  *
2612  * This returns the current regulator voltage in uV.
2613  *
2614  * NOTE: If the regulator is disabled it will return the voltage value. This
2615  * function should not be used to determine regulator state.
2616  */
2617 int regulator_get_voltage(struct regulator *regulator)
2618 {
2619 	int ret;
2620 
2621 	mutex_lock(&regulator->rdev->mutex);
2622 
2623 	ret = _regulator_get_voltage(regulator->rdev);
2624 
2625 	mutex_unlock(&regulator->rdev->mutex);
2626 
2627 	return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2630 
2631 /**
2632  * regulator_set_current_limit - set regulator output current limit
2633  * @regulator: regulator source
2634  * @min_uA: Minimum supported current in uA
2635  * @max_uA: Maximum supported current in uA
2636  *
2637  * Sets current sink to the desired output current. This can be set during
2638  * any regulator state. IOW, regulator can be disabled or enabled.
2639  *
2640  * If the regulator is enabled then the current will change to the new value
2641  * immediately otherwise if the regulator is disabled the regulator will
2642  * output at the new current when enabled.
2643  *
2644  * NOTE: Regulator system constraints must be set for this regulator before
2645  * calling this function otherwise this call will fail.
2646  */
2647 int regulator_set_current_limit(struct regulator *regulator,
2648 			       int min_uA, int max_uA)
2649 {
2650 	struct regulator_dev *rdev = regulator->rdev;
2651 	int ret;
2652 
2653 	mutex_lock(&rdev->mutex);
2654 
2655 	/* sanity check */
2656 	if (!rdev->desc->ops->set_current_limit) {
2657 		ret = -EINVAL;
2658 		goto out;
2659 	}
2660 
2661 	/* constraints check */
2662 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2663 	if (ret < 0)
2664 		goto out;
2665 
2666 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2667 out:
2668 	mutex_unlock(&rdev->mutex);
2669 	return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2672 
2673 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2674 {
2675 	int ret;
2676 
2677 	mutex_lock(&rdev->mutex);
2678 
2679 	/* sanity check */
2680 	if (!rdev->desc->ops->get_current_limit) {
2681 		ret = -EINVAL;
2682 		goto out;
2683 	}
2684 
2685 	ret = rdev->desc->ops->get_current_limit(rdev);
2686 out:
2687 	mutex_unlock(&rdev->mutex);
2688 	return ret;
2689 }
2690 
2691 /**
2692  * regulator_get_current_limit - get regulator output current
2693  * @regulator: regulator source
2694  *
2695  * This returns the current supplied by the specified current sink in uA.
2696  *
2697  * NOTE: If the regulator is disabled it will return the current value. This
2698  * function should not be used to determine regulator state.
2699  */
2700 int regulator_get_current_limit(struct regulator *regulator)
2701 {
2702 	return _regulator_get_current_limit(regulator->rdev);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2705 
2706 /**
2707  * regulator_set_mode - set regulator operating mode
2708  * @regulator: regulator source
2709  * @mode: operating mode - one of the REGULATOR_MODE constants
2710  *
2711  * Set regulator operating mode to increase regulator efficiency or improve
2712  * regulation performance.
2713  *
2714  * NOTE: Regulator system constraints must be set for this regulator before
2715  * calling this function otherwise this call will fail.
2716  */
2717 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2718 {
2719 	struct regulator_dev *rdev = regulator->rdev;
2720 	int ret;
2721 	int regulator_curr_mode;
2722 
2723 	mutex_lock(&rdev->mutex);
2724 
2725 	/* sanity check */
2726 	if (!rdev->desc->ops->set_mode) {
2727 		ret = -EINVAL;
2728 		goto out;
2729 	}
2730 
2731 	/* return if the same mode is requested */
2732 	if (rdev->desc->ops->get_mode) {
2733 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2734 		if (regulator_curr_mode == mode) {
2735 			ret = 0;
2736 			goto out;
2737 		}
2738 	}
2739 
2740 	/* constraints check */
2741 	ret = regulator_mode_constrain(rdev, &mode);
2742 	if (ret < 0)
2743 		goto out;
2744 
2745 	ret = rdev->desc->ops->set_mode(rdev, mode);
2746 out:
2747 	mutex_unlock(&rdev->mutex);
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL_GPL(regulator_set_mode);
2751 
2752 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2753 {
2754 	int ret;
2755 
2756 	mutex_lock(&rdev->mutex);
2757 
2758 	/* sanity check */
2759 	if (!rdev->desc->ops->get_mode) {
2760 		ret = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	ret = rdev->desc->ops->get_mode(rdev);
2765 out:
2766 	mutex_unlock(&rdev->mutex);
2767 	return ret;
2768 }
2769 
2770 /**
2771  * regulator_get_mode - get regulator operating mode
2772  * @regulator: regulator source
2773  *
2774  * Get the current regulator operating mode.
2775  */
2776 unsigned int regulator_get_mode(struct regulator *regulator)
2777 {
2778 	return _regulator_get_mode(regulator->rdev);
2779 }
2780 EXPORT_SYMBOL_GPL(regulator_get_mode);
2781 
2782 /**
2783  * regulator_set_optimum_mode - set regulator optimum operating mode
2784  * @regulator: regulator source
2785  * @uA_load: load current
2786  *
2787  * Notifies the regulator core of a new device load. This is then used by
2788  * DRMS (if enabled by constraints) to set the most efficient regulator
2789  * operating mode for the new regulator loading.
2790  *
2791  * Consumer devices notify their supply regulator of the maximum power
2792  * they will require (can be taken from device datasheet in the power
2793  * consumption tables) when they change operational status and hence power
2794  * state. Examples of operational state changes that can affect power
2795  * consumption are :-
2796  *
2797  *    o Device is opened / closed.
2798  *    o Device I/O is about to begin or has just finished.
2799  *    o Device is idling in between work.
2800  *
2801  * This information is also exported via sysfs to userspace.
2802  *
2803  * DRMS will sum the total requested load on the regulator and change
2804  * to the most efficient operating mode if platform constraints allow.
2805  *
2806  * Returns the new regulator mode or error.
2807  */
2808 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2809 {
2810 	struct regulator_dev *rdev = regulator->rdev;
2811 	struct regulator *consumer;
2812 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2813 	unsigned int mode;
2814 
2815 	if (rdev->supply)
2816 		input_uV = regulator_get_voltage(rdev->supply);
2817 
2818 	mutex_lock(&rdev->mutex);
2819 
2820 	/*
2821 	 * first check to see if we can set modes at all, otherwise just
2822 	 * tell the consumer everything is OK.
2823 	 */
2824 	regulator->uA_load = uA_load;
2825 	ret = regulator_check_drms(rdev);
2826 	if (ret < 0) {
2827 		ret = 0;
2828 		goto out;
2829 	}
2830 
2831 	if (!rdev->desc->ops->get_optimum_mode)
2832 		goto out;
2833 
2834 	/*
2835 	 * we can actually do this so any errors are indicators of
2836 	 * potential real failure.
2837 	 */
2838 	ret = -EINVAL;
2839 
2840 	if (!rdev->desc->ops->set_mode)
2841 		goto out;
2842 
2843 	/* get output voltage */
2844 	output_uV = _regulator_get_voltage(rdev);
2845 	if (output_uV <= 0) {
2846 		rdev_err(rdev, "invalid output voltage found\n");
2847 		goto out;
2848 	}
2849 
2850 	/* No supply? Use constraint voltage */
2851 	if (input_uV <= 0)
2852 		input_uV = rdev->constraints->input_uV;
2853 	if (input_uV <= 0) {
2854 		rdev_err(rdev, "invalid input voltage found\n");
2855 		goto out;
2856 	}
2857 
2858 	/* calc total requested load for this regulator */
2859 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2860 		total_uA_load += consumer->uA_load;
2861 
2862 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2863 						 input_uV, output_uV,
2864 						 total_uA_load);
2865 	ret = regulator_mode_constrain(rdev, &mode);
2866 	if (ret < 0) {
2867 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2868 			 total_uA_load, input_uV, output_uV);
2869 		goto out;
2870 	}
2871 
2872 	ret = rdev->desc->ops->set_mode(rdev, mode);
2873 	if (ret < 0) {
2874 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2875 		goto out;
2876 	}
2877 	ret = mode;
2878 out:
2879 	mutex_unlock(&rdev->mutex);
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2883 
2884 /**
2885  * regulator_allow_bypass - allow the regulator to go into bypass mode
2886  *
2887  * @regulator: Regulator to configure
2888  * @enable: enable or disable bypass mode
2889  *
2890  * Allow the regulator to go into bypass mode if all other consumers
2891  * for the regulator also enable bypass mode and the machine
2892  * constraints allow this.  Bypass mode means that the regulator is
2893  * simply passing the input directly to the output with no regulation.
2894  */
2895 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2896 {
2897 	struct regulator_dev *rdev = regulator->rdev;
2898 	int ret = 0;
2899 
2900 	if (!rdev->desc->ops->set_bypass)
2901 		return 0;
2902 
2903 	if (rdev->constraints &&
2904 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2905 		return 0;
2906 
2907 	mutex_lock(&rdev->mutex);
2908 
2909 	if (enable && !regulator->bypass) {
2910 		rdev->bypass_count++;
2911 
2912 		if (rdev->bypass_count == rdev->open_count) {
2913 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2914 			if (ret != 0)
2915 				rdev->bypass_count--;
2916 		}
2917 
2918 	} else if (!enable && regulator->bypass) {
2919 		rdev->bypass_count--;
2920 
2921 		if (rdev->bypass_count != rdev->open_count) {
2922 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2923 			if (ret != 0)
2924 				rdev->bypass_count++;
2925 		}
2926 	}
2927 
2928 	if (ret == 0)
2929 		regulator->bypass = enable;
2930 
2931 	mutex_unlock(&rdev->mutex);
2932 
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2936 
2937 /**
2938  * regulator_register_notifier - register regulator event notifier
2939  * @regulator: regulator source
2940  * @nb: notifier block
2941  *
2942  * Register notifier block to receive regulator events.
2943  */
2944 int regulator_register_notifier(struct regulator *regulator,
2945 			      struct notifier_block *nb)
2946 {
2947 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2948 						nb);
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2951 
2952 /**
2953  * regulator_unregister_notifier - unregister regulator event notifier
2954  * @regulator: regulator source
2955  * @nb: notifier block
2956  *
2957  * Unregister regulator event notifier block.
2958  */
2959 int regulator_unregister_notifier(struct regulator *regulator,
2960 				struct notifier_block *nb)
2961 {
2962 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2963 						  nb);
2964 }
2965 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2966 
2967 /* notify regulator consumers and downstream regulator consumers.
2968  * Note mutex must be held by caller.
2969  */
2970 static void _notifier_call_chain(struct regulator_dev *rdev,
2971 				  unsigned long event, void *data)
2972 {
2973 	/* call rdev chain first */
2974 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2975 }
2976 
2977 /**
2978  * regulator_bulk_get - get multiple regulator consumers
2979  *
2980  * @dev:           Device to supply
2981  * @num_consumers: Number of consumers to register
2982  * @consumers:     Configuration of consumers; clients are stored here.
2983  *
2984  * @return 0 on success, an errno on failure.
2985  *
2986  * This helper function allows drivers to get several regulator
2987  * consumers in one operation.  If any of the regulators cannot be
2988  * acquired then any regulators that were allocated will be freed
2989  * before returning to the caller.
2990  */
2991 int regulator_bulk_get(struct device *dev, int num_consumers,
2992 		       struct regulator_bulk_data *consumers)
2993 {
2994 	int i;
2995 	int ret;
2996 
2997 	for (i = 0; i < num_consumers; i++)
2998 		consumers[i].consumer = NULL;
2999 
3000 	for (i = 0; i < num_consumers; i++) {
3001 		consumers[i].consumer = regulator_get(dev,
3002 						      consumers[i].supply);
3003 		if (IS_ERR(consumers[i].consumer)) {
3004 			ret = PTR_ERR(consumers[i].consumer);
3005 			dev_err(dev, "Failed to get supply '%s': %d\n",
3006 				consumers[i].supply, ret);
3007 			consumers[i].consumer = NULL;
3008 			goto err;
3009 		}
3010 	}
3011 
3012 	return 0;
3013 
3014 err:
3015 	while (--i >= 0)
3016 		regulator_put(consumers[i].consumer);
3017 
3018 	return ret;
3019 }
3020 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3021 
3022 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3023 {
3024 	struct regulator_bulk_data *bulk = data;
3025 
3026 	bulk->ret = regulator_enable(bulk->consumer);
3027 }
3028 
3029 /**
3030  * regulator_bulk_enable - enable multiple regulator consumers
3031  *
3032  * @num_consumers: Number of consumers
3033  * @consumers:     Consumer data; clients are stored here.
3034  * @return         0 on success, an errno on failure
3035  *
3036  * This convenience API allows consumers to enable multiple regulator
3037  * clients in a single API call.  If any consumers cannot be enabled
3038  * then any others that were enabled will be disabled again prior to
3039  * return.
3040  */
3041 int regulator_bulk_enable(int num_consumers,
3042 			  struct regulator_bulk_data *consumers)
3043 {
3044 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3045 	int i;
3046 	int ret = 0;
3047 
3048 	for (i = 0; i < num_consumers; i++) {
3049 		if (consumers[i].consumer->always_on)
3050 			consumers[i].ret = 0;
3051 		else
3052 			async_schedule_domain(regulator_bulk_enable_async,
3053 					      &consumers[i], &async_domain);
3054 	}
3055 
3056 	async_synchronize_full_domain(&async_domain);
3057 
3058 	/* If any consumer failed we need to unwind any that succeeded */
3059 	for (i = 0; i < num_consumers; i++) {
3060 		if (consumers[i].ret != 0) {
3061 			ret = consumers[i].ret;
3062 			goto err;
3063 		}
3064 	}
3065 
3066 	return 0;
3067 
3068 err:
3069 	for (i = 0; i < num_consumers; i++) {
3070 		if (consumers[i].ret < 0)
3071 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3072 			       consumers[i].ret);
3073 		else
3074 			regulator_disable(consumers[i].consumer);
3075 	}
3076 
3077 	return ret;
3078 }
3079 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3080 
3081 /**
3082  * regulator_bulk_disable - disable multiple regulator consumers
3083  *
3084  * @num_consumers: Number of consumers
3085  * @consumers:     Consumer data; clients are stored here.
3086  * @return         0 on success, an errno on failure
3087  *
3088  * This convenience API allows consumers to disable multiple regulator
3089  * clients in a single API call.  If any consumers cannot be disabled
3090  * then any others that were disabled will be enabled again prior to
3091  * return.
3092  */
3093 int regulator_bulk_disable(int num_consumers,
3094 			   struct regulator_bulk_data *consumers)
3095 {
3096 	int i;
3097 	int ret, r;
3098 
3099 	for (i = num_consumers - 1; i >= 0; --i) {
3100 		ret = regulator_disable(consumers[i].consumer);
3101 		if (ret != 0)
3102 			goto err;
3103 	}
3104 
3105 	return 0;
3106 
3107 err:
3108 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3109 	for (++i; i < num_consumers; ++i) {
3110 		r = regulator_enable(consumers[i].consumer);
3111 		if (r != 0)
3112 			pr_err("Failed to reename %s: %d\n",
3113 			       consumers[i].supply, r);
3114 	}
3115 
3116 	return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3119 
3120 /**
3121  * regulator_bulk_force_disable - force disable multiple regulator consumers
3122  *
3123  * @num_consumers: Number of consumers
3124  * @consumers:     Consumer data; clients are stored here.
3125  * @return         0 on success, an errno on failure
3126  *
3127  * This convenience API allows consumers to forcibly disable multiple regulator
3128  * clients in a single API call.
3129  * NOTE: This should be used for situations when device damage will
3130  * likely occur if the regulators are not disabled (e.g. over temp).
3131  * Although regulator_force_disable function call for some consumers can
3132  * return error numbers, the function is called for all consumers.
3133  */
3134 int regulator_bulk_force_disable(int num_consumers,
3135 			   struct regulator_bulk_data *consumers)
3136 {
3137 	int i;
3138 	int ret;
3139 
3140 	for (i = 0; i < num_consumers; i++)
3141 		consumers[i].ret =
3142 			    regulator_force_disable(consumers[i].consumer);
3143 
3144 	for (i = 0; i < num_consumers; i++) {
3145 		if (consumers[i].ret != 0) {
3146 			ret = consumers[i].ret;
3147 			goto out;
3148 		}
3149 	}
3150 
3151 	return 0;
3152 out:
3153 	return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3156 
3157 /**
3158  * regulator_bulk_free - free multiple regulator consumers
3159  *
3160  * @num_consumers: Number of consumers
3161  * @consumers:     Consumer data; clients are stored here.
3162  *
3163  * This convenience API allows consumers to free multiple regulator
3164  * clients in a single API call.
3165  */
3166 void regulator_bulk_free(int num_consumers,
3167 			 struct regulator_bulk_data *consumers)
3168 {
3169 	int i;
3170 
3171 	for (i = 0; i < num_consumers; i++) {
3172 		regulator_put(consumers[i].consumer);
3173 		consumers[i].consumer = NULL;
3174 	}
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3177 
3178 /**
3179  * regulator_notifier_call_chain - call regulator event notifier
3180  * @rdev: regulator source
3181  * @event: notifier block
3182  * @data: callback-specific data.
3183  *
3184  * Called by regulator drivers to notify clients a regulator event has
3185  * occurred. We also notify regulator clients downstream.
3186  * Note lock must be held by caller.
3187  */
3188 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3189 				  unsigned long event, void *data)
3190 {
3191 	_notifier_call_chain(rdev, event, data);
3192 	return NOTIFY_DONE;
3193 
3194 }
3195 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3196 
3197 /**
3198  * regulator_mode_to_status - convert a regulator mode into a status
3199  *
3200  * @mode: Mode to convert
3201  *
3202  * Convert a regulator mode into a status.
3203  */
3204 int regulator_mode_to_status(unsigned int mode)
3205 {
3206 	switch (mode) {
3207 	case REGULATOR_MODE_FAST:
3208 		return REGULATOR_STATUS_FAST;
3209 	case REGULATOR_MODE_NORMAL:
3210 		return REGULATOR_STATUS_NORMAL;
3211 	case REGULATOR_MODE_IDLE:
3212 		return REGULATOR_STATUS_IDLE;
3213 	case REGULATOR_MODE_STANDBY:
3214 		return REGULATOR_STATUS_STANDBY;
3215 	default:
3216 		return REGULATOR_STATUS_UNDEFINED;
3217 	}
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3220 
3221 /*
3222  * To avoid cluttering sysfs (and memory) with useless state, only
3223  * create attributes that can be meaningfully displayed.
3224  */
3225 static int add_regulator_attributes(struct regulator_dev *rdev)
3226 {
3227 	struct device		*dev = &rdev->dev;
3228 	struct regulator_ops	*ops = rdev->desc->ops;
3229 	int			status = 0;
3230 
3231 	/* some attributes need specific methods to be displayed */
3232 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3233 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3234 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3235 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3236 		status = device_create_file(dev, &dev_attr_microvolts);
3237 		if (status < 0)
3238 			return status;
3239 	}
3240 	if (ops->get_current_limit) {
3241 		status = device_create_file(dev, &dev_attr_microamps);
3242 		if (status < 0)
3243 			return status;
3244 	}
3245 	if (ops->get_mode) {
3246 		status = device_create_file(dev, &dev_attr_opmode);
3247 		if (status < 0)
3248 			return status;
3249 	}
3250 	if (rdev->ena_pin || ops->is_enabled) {
3251 		status = device_create_file(dev, &dev_attr_state);
3252 		if (status < 0)
3253 			return status;
3254 	}
3255 	if (ops->get_status) {
3256 		status = device_create_file(dev, &dev_attr_status);
3257 		if (status < 0)
3258 			return status;
3259 	}
3260 	if (ops->get_bypass) {
3261 		status = device_create_file(dev, &dev_attr_bypass);
3262 		if (status < 0)
3263 			return status;
3264 	}
3265 
3266 	/* some attributes are type-specific */
3267 	if (rdev->desc->type == REGULATOR_CURRENT) {
3268 		status = device_create_file(dev, &dev_attr_requested_microamps);
3269 		if (status < 0)
3270 			return status;
3271 	}
3272 
3273 	/* all the other attributes exist to support constraints;
3274 	 * don't show them if there are no constraints, or if the
3275 	 * relevant supporting methods are missing.
3276 	 */
3277 	if (!rdev->constraints)
3278 		return status;
3279 
3280 	/* constraints need specific supporting methods */
3281 	if (ops->set_voltage || ops->set_voltage_sel) {
3282 		status = device_create_file(dev, &dev_attr_min_microvolts);
3283 		if (status < 0)
3284 			return status;
3285 		status = device_create_file(dev, &dev_attr_max_microvolts);
3286 		if (status < 0)
3287 			return status;
3288 	}
3289 	if (ops->set_current_limit) {
3290 		status = device_create_file(dev, &dev_attr_min_microamps);
3291 		if (status < 0)
3292 			return status;
3293 		status = device_create_file(dev, &dev_attr_max_microamps);
3294 		if (status < 0)
3295 			return status;
3296 	}
3297 
3298 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3299 	if (status < 0)
3300 		return status;
3301 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3302 	if (status < 0)
3303 		return status;
3304 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3305 	if (status < 0)
3306 		return status;
3307 
3308 	if (ops->set_suspend_voltage) {
3309 		status = device_create_file(dev,
3310 				&dev_attr_suspend_standby_microvolts);
3311 		if (status < 0)
3312 			return status;
3313 		status = device_create_file(dev,
3314 				&dev_attr_suspend_mem_microvolts);
3315 		if (status < 0)
3316 			return status;
3317 		status = device_create_file(dev,
3318 				&dev_attr_suspend_disk_microvolts);
3319 		if (status < 0)
3320 			return status;
3321 	}
3322 
3323 	if (ops->set_suspend_mode) {
3324 		status = device_create_file(dev,
3325 				&dev_attr_suspend_standby_mode);
3326 		if (status < 0)
3327 			return status;
3328 		status = device_create_file(dev,
3329 				&dev_attr_suspend_mem_mode);
3330 		if (status < 0)
3331 			return status;
3332 		status = device_create_file(dev,
3333 				&dev_attr_suspend_disk_mode);
3334 		if (status < 0)
3335 			return status;
3336 	}
3337 
3338 	return status;
3339 }
3340 
3341 static void rdev_init_debugfs(struct regulator_dev *rdev)
3342 {
3343 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3344 	if (!rdev->debugfs) {
3345 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3346 		return;
3347 	}
3348 
3349 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3350 			   &rdev->use_count);
3351 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3352 			   &rdev->open_count);
3353 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3354 			   &rdev->bypass_count);
3355 }
3356 
3357 /**
3358  * regulator_register - register regulator
3359  * @regulator_desc: regulator to register
3360  * @config: runtime configuration for regulator
3361  *
3362  * Called by regulator drivers to register a regulator.
3363  * Returns a valid pointer to struct regulator_dev on success
3364  * or an ERR_PTR() on error.
3365  */
3366 struct regulator_dev *
3367 regulator_register(const struct regulator_desc *regulator_desc,
3368 		   const struct regulator_config *config)
3369 {
3370 	const struct regulation_constraints *constraints = NULL;
3371 	const struct regulator_init_data *init_data;
3372 	static atomic_t regulator_no = ATOMIC_INIT(0);
3373 	struct regulator_dev *rdev;
3374 	struct device *dev;
3375 	int ret, i;
3376 	const char *supply = NULL;
3377 
3378 	if (regulator_desc == NULL || config == NULL)
3379 		return ERR_PTR(-EINVAL);
3380 
3381 	dev = config->dev;
3382 	WARN_ON(!dev);
3383 
3384 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3385 		return ERR_PTR(-EINVAL);
3386 
3387 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3388 	    regulator_desc->type != REGULATOR_CURRENT)
3389 		return ERR_PTR(-EINVAL);
3390 
3391 	/* Only one of each should be implemented */
3392 	WARN_ON(regulator_desc->ops->get_voltage &&
3393 		regulator_desc->ops->get_voltage_sel);
3394 	WARN_ON(regulator_desc->ops->set_voltage &&
3395 		regulator_desc->ops->set_voltage_sel);
3396 
3397 	/* If we're using selectors we must implement list_voltage. */
3398 	if (regulator_desc->ops->get_voltage_sel &&
3399 	    !regulator_desc->ops->list_voltage) {
3400 		return ERR_PTR(-EINVAL);
3401 	}
3402 	if (regulator_desc->ops->set_voltage_sel &&
3403 	    !regulator_desc->ops->list_voltage) {
3404 		return ERR_PTR(-EINVAL);
3405 	}
3406 
3407 	init_data = config->init_data;
3408 
3409 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3410 	if (rdev == NULL)
3411 		return ERR_PTR(-ENOMEM);
3412 
3413 	mutex_lock(&regulator_list_mutex);
3414 
3415 	mutex_init(&rdev->mutex);
3416 	rdev->reg_data = config->driver_data;
3417 	rdev->owner = regulator_desc->owner;
3418 	rdev->desc = regulator_desc;
3419 	if (config->regmap)
3420 		rdev->regmap = config->regmap;
3421 	else if (dev_get_regmap(dev, NULL))
3422 		rdev->regmap = dev_get_regmap(dev, NULL);
3423 	else if (dev->parent)
3424 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3425 	INIT_LIST_HEAD(&rdev->consumer_list);
3426 	INIT_LIST_HEAD(&rdev->list);
3427 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3428 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3429 
3430 	/* preform any regulator specific init */
3431 	if (init_data && init_data->regulator_init) {
3432 		ret = init_data->regulator_init(rdev->reg_data);
3433 		if (ret < 0)
3434 			goto clean;
3435 	}
3436 
3437 	/* register with sysfs */
3438 	rdev->dev.class = &regulator_class;
3439 	rdev->dev.of_node = config->of_node;
3440 	rdev->dev.parent = dev;
3441 	dev_set_name(&rdev->dev, "regulator.%d",
3442 		     atomic_inc_return(&regulator_no) - 1);
3443 	ret = device_register(&rdev->dev);
3444 	if (ret != 0) {
3445 		put_device(&rdev->dev);
3446 		goto clean;
3447 	}
3448 
3449 	dev_set_drvdata(&rdev->dev, rdev);
3450 
3451 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3452 		ret = regulator_ena_gpio_request(rdev, config);
3453 		if (ret != 0) {
3454 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3455 				 config->ena_gpio, ret);
3456 			goto wash;
3457 		}
3458 
3459 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3460 			rdev->ena_gpio_state = 1;
3461 
3462 		if (config->ena_gpio_invert)
3463 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3464 	}
3465 
3466 	/* set regulator constraints */
3467 	if (init_data)
3468 		constraints = &init_data->constraints;
3469 
3470 	ret = set_machine_constraints(rdev, constraints);
3471 	if (ret < 0)
3472 		goto scrub;
3473 
3474 	/* add attributes supported by this regulator */
3475 	ret = add_regulator_attributes(rdev);
3476 	if (ret < 0)
3477 		goto scrub;
3478 
3479 	if (init_data && init_data->supply_regulator)
3480 		supply = init_data->supply_regulator;
3481 	else if (regulator_desc->supply_name)
3482 		supply = regulator_desc->supply_name;
3483 
3484 	if (supply) {
3485 		struct regulator_dev *r;
3486 
3487 		r = regulator_dev_lookup(dev, supply, &ret);
3488 
3489 		if (ret == -ENODEV) {
3490 			/*
3491 			 * No supply was specified for this regulator and
3492 			 * there will never be one.
3493 			 */
3494 			ret = 0;
3495 			goto add_dev;
3496 		} else if (!r) {
3497 			dev_err(dev, "Failed to find supply %s\n", supply);
3498 			ret = -EPROBE_DEFER;
3499 			goto scrub;
3500 		}
3501 
3502 		ret = set_supply(rdev, r);
3503 		if (ret < 0)
3504 			goto scrub;
3505 
3506 		/* Enable supply if rail is enabled */
3507 		if (_regulator_is_enabled(rdev)) {
3508 			ret = regulator_enable(rdev->supply);
3509 			if (ret < 0)
3510 				goto scrub;
3511 		}
3512 	}
3513 
3514 add_dev:
3515 	/* add consumers devices */
3516 	if (init_data) {
3517 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3518 			ret = set_consumer_device_supply(rdev,
3519 				init_data->consumer_supplies[i].dev_name,
3520 				init_data->consumer_supplies[i].supply);
3521 			if (ret < 0) {
3522 				dev_err(dev, "Failed to set supply %s\n",
3523 					init_data->consumer_supplies[i].supply);
3524 				goto unset_supplies;
3525 			}
3526 		}
3527 	}
3528 
3529 	list_add(&rdev->list, &regulator_list);
3530 
3531 	rdev_init_debugfs(rdev);
3532 out:
3533 	mutex_unlock(&regulator_list_mutex);
3534 	return rdev;
3535 
3536 unset_supplies:
3537 	unset_regulator_supplies(rdev);
3538 
3539 scrub:
3540 	if (rdev->supply)
3541 		_regulator_put(rdev->supply);
3542 	regulator_ena_gpio_free(rdev);
3543 	kfree(rdev->constraints);
3544 wash:
3545 	device_unregister(&rdev->dev);
3546 	/* device core frees rdev */
3547 	rdev = ERR_PTR(ret);
3548 	goto out;
3549 
3550 clean:
3551 	kfree(rdev);
3552 	rdev = ERR_PTR(ret);
3553 	goto out;
3554 }
3555 EXPORT_SYMBOL_GPL(regulator_register);
3556 
3557 /**
3558  * regulator_unregister - unregister regulator
3559  * @rdev: regulator to unregister
3560  *
3561  * Called by regulator drivers to unregister a regulator.
3562  */
3563 void regulator_unregister(struct regulator_dev *rdev)
3564 {
3565 	if (rdev == NULL)
3566 		return;
3567 
3568 	if (rdev->supply) {
3569 		while (rdev->use_count--)
3570 			regulator_disable(rdev->supply);
3571 		regulator_put(rdev->supply);
3572 	}
3573 	mutex_lock(&regulator_list_mutex);
3574 	debugfs_remove_recursive(rdev->debugfs);
3575 	flush_work(&rdev->disable_work.work);
3576 	WARN_ON(rdev->open_count);
3577 	unset_regulator_supplies(rdev);
3578 	list_del(&rdev->list);
3579 	kfree(rdev->constraints);
3580 	regulator_ena_gpio_free(rdev);
3581 	device_unregister(&rdev->dev);
3582 	mutex_unlock(&regulator_list_mutex);
3583 }
3584 EXPORT_SYMBOL_GPL(regulator_unregister);
3585 
3586 /**
3587  * regulator_suspend_prepare - prepare regulators for system wide suspend
3588  * @state: system suspend state
3589  *
3590  * Configure each regulator with it's suspend operating parameters for state.
3591  * This will usually be called by machine suspend code prior to supending.
3592  */
3593 int regulator_suspend_prepare(suspend_state_t state)
3594 {
3595 	struct regulator_dev *rdev;
3596 	int ret = 0;
3597 
3598 	/* ON is handled by regulator active state */
3599 	if (state == PM_SUSPEND_ON)
3600 		return -EINVAL;
3601 
3602 	mutex_lock(&regulator_list_mutex);
3603 	list_for_each_entry(rdev, &regulator_list, list) {
3604 
3605 		mutex_lock(&rdev->mutex);
3606 		ret = suspend_prepare(rdev, state);
3607 		mutex_unlock(&rdev->mutex);
3608 
3609 		if (ret < 0) {
3610 			rdev_err(rdev, "failed to prepare\n");
3611 			goto out;
3612 		}
3613 	}
3614 out:
3615 	mutex_unlock(&regulator_list_mutex);
3616 	return ret;
3617 }
3618 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3619 
3620 /**
3621  * regulator_suspend_finish - resume regulators from system wide suspend
3622  *
3623  * Turn on regulators that might be turned off by regulator_suspend_prepare
3624  * and that should be turned on according to the regulators properties.
3625  */
3626 int regulator_suspend_finish(void)
3627 {
3628 	struct regulator_dev *rdev;
3629 	int ret = 0, error;
3630 
3631 	mutex_lock(&regulator_list_mutex);
3632 	list_for_each_entry(rdev, &regulator_list, list) {
3633 		struct regulator_ops *ops = rdev->desc->ops;
3634 
3635 		mutex_lock(&rdev->mutex);
3636 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3637 				ops->enable) {
3638 			error = ops->enable(rdev);
3639 			if (error)
3640 				ret = error;
3641 		} else {
3642 			if (!have_full_constraints())
3643 				goto unlock;
3644 			if (!ops->disable)
3645 				goto unlock;
3646 			if (!_regulator_is_enabled(rdev))
3647 				goto unlock;
3648 
3649 			error = ops->disable(rdev);
3650 			if (error)
3651 				ret = error;
3652 		}
3653 unlock:
3654 		mutex_unlock(&rdev->mutex);
3655 	}
3656 	mutex_unlock(&regulator_list_mutex);
3657 	return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3660 
3661 /**
3662  * regulator_has_full_constraints - the system has fully specified constraints
3663  *
3664  * Calling this function will cause the regulator API to disable all
3665  * regulators which have a zero use count and don't have an always_on
3666  * constraint in a late_initcall.
3667  *
3668  * The intention is that this will become the default behaviour in a
3669  * future kernel release so users are encouraged to use this facility
3670  * now.
3671  */
3672 void regulator_has_full_constraints(void)
3673 {
3674 	has_full_constraints = 1;
3675 }
3676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3677 
3678 /**
3679  * rdev_get_drvdata - get rdev regulator driver data
3680  * @rdev: regulator
3681  *
3682  * Get rdev regulator driver private data. This call can be used in the
3683  * regulator driver context.
3684  */
3685 void *rdev_get_drvdata(struct regulator_dev *rdev)
3686 {
3687 	return rdev->reg_data;
3688 }
3689 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3690 
3691 /**
3692  * regulator_get_drvdata - get regulator driver data
3693  * @regulator: regulator
3694  *
3695  * Get regulator driver private data. This call can be used in the consumer
3696  * driver context when non API regulator specific functions need to be called.
3697  */
3698 void *regulator_get_drvdata(struct regulator *regulator)
3699 {
3700 	return regulator->rdev->reg_data;
3701 }
3702 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3703 
3704 /**
3705  * regulator_set_drvdata - set regulator driver data
3706  * @regulator: regulator
3707  * @data: data
3708  */
3709 void regulator_set_drvdata(struct regulator *regulator, void *data)
3710 {
3711 	regulator->rdev->reg_data = data;
3712 }
3713 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3714 
3715 /**
3716  * regulator_get_id - get regulator ID
3717  * @rdev: regulator
3718  */
3719 int rdev_get_id(struct regulator_dev *rdev)
3720 {
3721 	return rdev->desc->id;
3722 }
3723 EXPORT_SYMBOL_GPL(rdev_get_id);
3724 
3725 struct device *rdev_get_dev(struct regulator_dev *rdev)
3726 {
3727 	return &rdev->dev;
3728 }
3729 EXPORT_SYMBOL_GPL(rdev_get_dev);
3730 
3731 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3732 {
3733 	return reg_init_data->driver_data;
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3736 
3737 #ifdef CONFIG_DEBUG_FS
3738 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3739 				    size_t count, loff_t *ppos)
3740 {
3741 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3742 	ssize_t len, ret = 0;
3743 	struct regulator_map *map;
3744 
3745 	if (!buf)
3746 		return -ENOMEM;
3747 
3748 	list_for_each_entry(map, &regulator_map_list, list) {
3749 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3750 			       "%s -> %s.%s\n",
3751 			       rdev_get_name(map->regulator), map->dev_name,
3752 			       map->supply);
3753 		if (len >= 0)
3754 			ret += len;
3755 		if (ret > PAGE_SIZE) {
3756 			ret = PAGE_SIZE;
3757 			break;
3758 		}
3759 	}
3760 
3761 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3762 
3763 	kfree(buf);
3764 
3765 	return ret;
3766 }
3767 #endif
3768 
3769 static const struct file_operations supply_map_fops = {
3770 #ifdef CONFIG_DEBUG_FS
3771 	.read = supply_map_read_file,
3772 	.llseek = default_llseek,
3773 #endif
3774 };
3775 
3776 static int __init regulator_init(void)
3777 {
3778 	int ret;
3779 
3780 	ret = class_register(&regulator_class);
3781 
3782 	debugfs_root = debugfs_create_dir("regulator", NULL);
3783 	if (!debugfs_root)
3784 		pr_warn("regulator: Failed to create debugfs directory\n");
3785 
3786 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3787 			    &supply_map_fops);
3788 
3789 	regulator_dummy_init();
3790 
3791 	return ret;
3792 }
3793 
3794 /* init early to allow our consumers to complete system booting */
3795 core_initcall(regulator_init);
3796 
3797 static int __init regulator_init_complete(void)
3798 {
3799 	struct regulator_dev *rdev;
3800 	struct regulator_ops *ops;
3801 	struct regulation_constraints *c;
3802 	int enabled, ret;
3803 
3804 	/*
3805 	 * Since DT doesn't provide an idiomatic mechanism for
3806 	 * enabling full constraints and since it's much more natural
3807 	 * with DT to provide them just assume that a DT enabled
3808 	 * system has full constraints.
3809 	 */
3810 	if (of_have_populated_dt())
3811 		has_full_constraints = true;
3812 
3813 	mutex_lock(&regulator_list_mutex);
3814 
3815 	/* If we have a full configuration then disable any regulators
3816 	 * which are not in use or always_on.  This will become the
3817 	 * default behaviour in the future.
3818 	 */
3819 	list_for_each_entry(rdev, &regulator_list, list) {
3820 		ops = rdev->desc->ops;
3821 		c = rdev->constraints;
3822 
3823 		if (!ops->disable || (c && c->always_on))
3824 			continue;
3825 
3826 		mutex_lock(&rdev->mutex);
3827 
3828 		if (rdev->use_count)
3829 			goto unlock;
3830 
3831 		/* If we can't read the status assume it's on. */
3832 		if (ops->is_enabled)
3833 			enabled = ops->is_enabled(rdev);
3834 		else
3835 			enabled = 1;
3836 
3837 		if (!enabled)
3838 			goto unlock;
3839 
3840 		if (have_full_constraints()) {
3841 			/* We log since this may kill the system if it
3842 			 * goes wrong. */
3843 			rdev_info(rdev, "disabling\n");
3844 			ret = ops->disable(rdev);
3845 			if (ret != 0)
3846 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3847 		} else {
3848 			/* The intention is that in future we will
3849 			 * assume that full constraints are provided
3850 			 * so warn even if we aren't going to do
3851 			 * anything here.
3852 			 */
3853 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3854 		}
3855 
3856 unlock:
3857 		mutex_unlock(&rdev->mutex);
3858 	}
3859 
3860 	mutex_unlock(&regulator_list_mutex);
3861 
3862 	return 0;
3863 }
3864 late_initcall(regulator_init_complete);
3865