1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_MUTEX(regulator_list_mutex); 53 static LIST_HEAD(regulator_list); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 int gpio; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static void _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 112 static const char *rdev_get_name(struct regulator_dev *rdev) 113 { 114 if (rdev->constraints && rdev->constraints->name) 115 return rdev->constraints->name; 116 else if (rdev->desc->name) 117 return rdev->desc->name; 118 else 119 return ""; 120 } 121 122 static bool have_full_constraints(void) 123 { 124 return has_full_constraints || of_have_populated_dt(); 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 static DEVICE_ATTR_RO(name); 334 335 static ssize_t regulator_print_opmode(char *buf, int mode) 336 { 337 switch (mode) { 338 case REGULATOR_MODE_FAST: 339 return sprintf(buf, "fast\n"); 340 case REGULATOR_MODE_NORMAL: 341 return sprintf(buf, "normal\n"); 342 case REGULATOR_MODE_IDLE: 343 return sprintf(buf, "idle\n"); 344 case REGULATOR_MODE_STANDBY: 345 return sprintf(buf, "standby\n"); 346 } 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_opmode_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 356 } 357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 358 359 static ssize_t regulator_print_state(char *buf, int state) 360 { 361 if (state > 0) 362 return sprintf(buf, "enabled\n"); 363 else if (state == 0) 364 return sprintf(buf, "disabled\n"); 365 else 366 return sprintf(buf, "unknown\n"); 367 } 368 369 static ssize_t regulator_state_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct regulator_dev *rdev = dev_get_drvdata(dev); 373 ssize_t ret; 374 375 mutex_lock(&rdev->mutex); 376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 377 mutex_unlock(&rdev->mutex); 378 379 return ret; 380 } 381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 382 383 static ssize_t regulator_status_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 int status; 388 char *label; 389 390 status = rdev->desc->ops->get_status(rdev); 391 if (status < 0) 392 return status; 393 394 switch (status) { 395 case REGULATOR_STATUS_OFF: 396 label = "off"; 397 break; 398 case REGULATOR_STATUS_ON: 399 label = "on"; 400 break; 401 case REGULATOR_STATUS_ERROR: 402 label = "error"; 403 break; 404 case REGULATOR_STATUS_FAST: 405 label = "fast"; 406 break; 407 case REGULATOR_STATUS_NORMAL: 408 label = "normal"; 409 break; 410 case REGULATOR_STATUS_IDLE: 411 label = "idle"; 412 break; 413 case REGULATOR_STATUS_STANDBY: 414 label = "standby"; 415 break; 416 case REGULATOR_STATUS_BYPASS: 417 label = "bypass"; 418 break; 419 case REGULATOR_STATUS_UNDEFINED: 420 label = "undefined"; 421 break; 422 default: 423 return -ERANGE; 424 } 425 426 return sprintf(buf, "%s\n", label); 427 } 428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 429 430 static ssize_t regulator_min_uA_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 if (!rdev->constraints) 436 return sprintf(buf, "constraint not defined\n"); 437 438 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 439 } 440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 441 442 static ssize_t regulator_max_uA_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct regulator_dev *rdev = dev_get_drvdata(dev); 446 447 if (!rdev->constraints) 448 return sprintf(buf, "constraint not defined\n"); 449 450 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 451 } 452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 453 454 static ssize_t regulator_min_uV_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 463 } 464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 465 466 static ssize_t regulator_max_uV_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 475 } 476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 477 478 static ssize_t regulator_total_uA_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 struct regulator *regulator; 483 int uA = 0; 484 485 mutex_lock(&rdev->mutex); 486 list_for_each_entry(regulator, &rdev->consumer_list, list) 487 uA += regulator->uA_load; 488 mutex_unlock(&rdev->mutex); 489 return sprintf(buf, "%d\n", uA); 490 } 491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 492 493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 494 char *buf) 495 { 496 struct regulator_dev *rdev = dev_get_drvdata(dev); 497 return sprintf(buf, "%d\n", rdev->use_count); 498 } 499 static DEVICE_ATTR_RO(num_users); 500 501 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 506 switch (rdev->desc->type) { 507 case REGULATOR_VOLTAGE: 508 return sprintf(buf, "voltage\n"); 509 case REGULATOR_CURRENT: 510 return sprintf(buf, "current\n"); 511 } 512 return sprintf(buf, "unknown\n"); 513 } 514 static DEVICE_ATTR_RO(type); 515 516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 522 } 523 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 524 regulator_suspend_mem_uV_show, NULL); 525 526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 532 } 533 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 534 regulator_suspend_disk_uV_show, NULL); 535 536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 542 } 543 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 544 regulator_suspend_standby_uV_show, NULL); 545 546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct regulator_dev *rdev = dev_get_drvdata(dev); 550 551 return regulator_print_opmode(buf, 552 rdev->constraints->state_mem.mode); 553 } 554 static DEVICE_ATTR(suspend_mem_mode, 0444, 555 regulator_suspend_mem_mode_show, NULL); 556 557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct regulator_dev *rdev = dev_get_drvdata(dev); 561 562 return regulator_print_opmode(buf, 563 rdev->constraints->state_disk.mode); 564 } 565 static DEVICE_ATTR(suspend_disk_mode, 0444, 566 regulator_suspend_disk_mode_show, NULL); 567 568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 569 struct device_attribute *attr, char *buf) 570 { 571 struct regulator_dev *rdev = dev_get_drvdata(dev); 572 573 return regulator_print_opmode(buf, 574 rdev->constraints->state_standby.mode); 575 } 576 static DEVICE_ATTR(suspend_standby_mode, 0444, 577 regulator_suspend_standby_mode_show, NULL); 578 579 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct regulator_dev *rdev = dev_get_drvdata(dev); 583 584 return regulator_print_state(buf, 585 rdev->constraints->state_mem.enabled); 586 } 587 static DEVICE_ATTR(suspend_mem_state, 0444, 588 regulator_suspend_mem_state_show, NULL); 589 590 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_state(buf, 596 rdev->constraints->state_disk.enabled); 597 } 598 static DEVICE_ATTR(suspend_disk_state, 0444, 599 regulator_suspend_disk_state_show, NULL); 600 601 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_state(buf, 607 rdev->constraints->state_standby.enabled); 608 } 609 static DEVICE_ATTR(suspend_standby_state, 0444, 610 regulator_suspend_standby_state_show, NULL); 611 612 static ssize_t regulator_bypass_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 const char *report; 617 bool bypass; 618 int ret; 619 620 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 621 622 if (ret != 0) 623 report = "unknown"; 624 else if (bypass) 625 report = "enabled"; 626 else 627 report = "disabled"; 628 629 return sprintf(buf, "%s\n", report); 630 } 631 static DEVICE_ATTR(bypass, 0444, 632 regulator_bypass_show, NULL); 633 634 /* 635 * These are the only attributes are present for all regulators. 636 * Other attributes are a function of regulator functionality. 637 */ 638 static struct attribute *regulator_dev_attrs[] = { 639 &dev_attr_name.attr, 640 &dev_attr_num_users.attr, 641 &dev_attr_type.attr, 642 NULL, 643 }; 644 ATTRIBUTE_GROUPS(regulator_dev); 645 646 static void regulator_dev_release(struct device *dev) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 kfree(rdev); 650 } 651 652 static struct class regulator_class = { 653 .name = "regulator", 654 .dev_release = regulator_dev_release, 655 .dev_groups = regulator_dev_groups, 656 }; 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static void drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 err = regulator_check_drms(rdev); 667 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 668 (!rdev->desc->ops->get_voltage && 669 !rdev->desc->ops->get_voltage_sel) || 670 !rdev->desc->ops->set_mode) 671 return; 672 673 /* get output voltage */ 674 output_uV = _regulator_get_voltage(rdev); 675 if (output_uV <= 0) 676 return; 677 678 /* get input voltage */ 679 input_uV = 0; 680 if (rdev->supply) 681 input_uV = regulator_get_voltage(rdev->supply); 682 if (input_uV <= 0) 683 input_uV = rdev->constraints->input_uV; 684 if (input_uV <= 0) 685 return; 686 687 /* calc total requested load */ 688 list_for_each_entry(sibling, &rdev->consumer_list, list) 689 current_uA += sibling->uA_load; 690 691 /* now get the optimum mode for our new total regulator load */ 692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 693 output_uV, current_uA); 694 695 /* check the new mode is allowed */ 696 err = regulator_mode_constrain(rdev, &mode); 697 if (err == 0) 698 rdev->desc->ops->set_mode(rdev, mode); 699 } 700 701 static int suspend_set_state(struct regulator_dev *rdev, 702 struct regulator_state *rstate) 703 { 704 int ret = 0; 705 706 /* If we have no suspend mode configration don't set anything; 707 * only warn if the driver implements set_suspend_voltage or 708 * set_suspend_mode callback. 709 */ 710 if (!rstate->enabled && !rstate->disabled) { 711 if (rdev->desc->ops->set_suspend_voltage || 712 rdev->desc->ops->set_suspend_mode) 713 rdev_warn(rdev, "No configuration\n"); 714 return 0; 715 } 716 717 if (rstate->enabled && rstate->disabled) { 718 rdev_err(rdev, "invalid configuration\n"); 719 return -EINVAL; 720 } 721 722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 723 ret = rdev->desc->ops->set_suspend_enable(rdev); 724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 725 ret = rdev->desc->ops->set_suspend_disable(rdev); 726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 727 ret = 0; 728 729 if (ret < 0) { 730 rdev_err(rdev, "failed to enabled/disable\n"); 731 return ret; 732 } 733 734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 736 if (ret < 0) { 737 rdev_err(rdev, "failed to set voltage\n"); 738 return ret; 739 } 740 } 741 742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set mode\n"); 746 return ret; 747 } 748 } 749 return ret; 750 } 751 752 /* locks held by caller */ 753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 754 { 755 if (!rdev->constraints) 756 return -EINVAL; 757 758 switch (state) { 759 case PM_SUSPEND_STANDBY: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_standby); 762 case PM_SUSPEND_MEM: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_mem); 765 case PM_SUSPEND_MAX: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_disk); 768 default: 769 return -EINVAL; 770 } 771 } 772 773 static void print_constraints(struct regulator_dev *rdev) 774 { 775 struct regulation_constraints *constraints = rdev->constraints; 776 char buf[80] = ""; 777 int count = 0; 778 int ret; 779 780 if (constraints->min_uV && constraints->max_uV) { 781 if (constraints->min_uV == constraints->max_uV) 782 count += sprintf(buf + count, "%d mV ", 783 constraints->min_uV / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mV ", 786 constraints->min_uV / 1000, 787 constraints->max_uV / 1000); 788 } 789 790 if (!constraints->min_uV || 791 constraints->min_uV != constraints->max_uV) { 792 ret = _regulator_get_voltage(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mV ", ret / 1000); 795 } 796 797 if (constraints->uV_offset) 798 count += sprintf(buf, "%dmV offset ", 799 constraints->uV_offset / 1000); 800 801 if (constraints->min_uA && constraints->max_uA) { 802 if (constraints->min_uA == constraints->max_uA) 803 count += sprintf(buf + count, "%d mA ", 804 constraints->min_uA / 1000); 805 else 806 count += sprintf(buf + count, "%d <--> %d mA ", 807 constraints->min_uA / 1000, 808 constraints->max_uA / 1000); 809 } 810 811 if (!constraints->min_uA || 812 constraints->min_uA != constraints->max_uA) { 813 ret = _regulator_get_current_limit(rdev); 814 if (ret > 0) 815 count += sprintf(buf + count, "at %d mA ", ret / 1000); 816 } 817 818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 819 count += sprintf(buf + count, "fast "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 821 count += sprintf(buf + count, "normal "); 822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 823 count += sprintf(buf + count, "idle "); 824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 825 count += sprintf(buf + count, "standby"); 826 827 if (!count) 828 sprintf(buf, "no parameters"); 829 830 rdev_info(rdev, "%s\n", buf); 831 832 if ((constraints->min_uV != constraints->max_uV) && 833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 834 rdev_warn(rdev, 835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 836 } 837 838 static int machine_constraints_voltage(struct regulator_dev *rdev, 839 struct regulation_constraints *constraints) 840 { 841 struct regulator_ops *ops = rdev->desc->ops; 842 int ret; 843 844 /* do we need to apply the constraint voltage */ 845 if (rdev->constraints->apply_uV && 846 rdev->constraints->min_uV == rdev->constraints->max_uV) { 847 ret = _regulator_do_set_voltage(rdev, 848 rdev->constraints->min_uV, 849 rdev->constraints->max_uV); 850 if (ret < 0) { 851 rdev_err(rdev, "failed to apply %duV constraint\n", 852 rdev->constraints->min_uV); 853 return ret; 854 } 855 } 856 857 /* constrain machine-level voltage specs to fit 858 * the actual range supported by this regulator. 859 */ 860 if (ops->list_voltage && rdev->desc->n_voltages) { 861 int count = rdev->desc->n_voltages; 862 int i; 863 int min_uV = INT_MAX; 864 int max_uV = INT_MIN; 865 int cmin = constraints->min_uV; 866 int cmax = constraints->max_uV; 867 868 /* it's safe to autoconfigure fixed-voltage supplies 869 and the constraints are used by list_voltage. */ 870 if (count == 1 && !cmin) { 871 cmin = 1; 872 cmax = INT_MAX; 873 constraints->min_uV = cmin; 874 constraints->max_uV = cmax; 875 } 876 877 /* voltage constraints are optional */ 878 if ((cmin == 0) && (cmax == 0)) 879 return 0; 880 881 /* else require explicit machine-level constraints */ 882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 883 rdev_err(rdev, "invalid voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 888 for (i = 0; i < count; i++) { 889 int value; 890 891 value = ops->list_voltage(rdev, i); 892 if (value <= 0) 893 continue; 894 895 /* maybe adjust [min_uV..max_uV] */ 896 if (value >= cmin && value < min_uV) 897 min_uV = value; 898 if (value <= cmax && value > max_uV) 899 max_uV = value; 900 } 901 902 /* final: [min_uV..max_uV] valid iff constraints valid */ 903 if (max_uV < min_uV) { 904 rdev_err(rdev, 905 "unsupportable voltage constraints %u-%uuV\n", 906 min_uV, max_uV); 907 return -EINVAL; 908 } 909 910 /* use regulator's subset of machine constraints */ 911 if (constraints->min_uV < min_uV) { 912 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 913 constraints->min_uV, min_uV); 914 constraints->min_uV = min_uV; 915 } 916 if (constraints->max_uV > max_uV) { 917 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 918 constraints->max_uV, max_uV); 919 constraints->max_uV = max_uV; 920 } 921 } 922 923 return 0; 924 } 925 926 static int machine_constraints_current(struct regulator_dev *rdev, 927 struct regulation_constraints *constraints) 928 { 929 struct regulator_ops *ops = rdev->desc->ops; 930 int ret; 931 932 if (!constraints->min_uA && !constraints->max_uA) 933 return 0; 934 935 if (constraints->min_uA > constraints->max_uA) { 936 rdev_err(rdev, "Invalid current constraints\n"); 937 return -EINVAL; 938 } 939 940 if (!ops->set_current_limit || !ops->get_current_limit) { 941 rdev_warn(rdev, "Operation of current configuration missing\n"); 942 return 0; 943 } 944 945 /* Set regulator current in constraints range */ 946 ret = ops->set_current_limit(rdev, constraints->min_uA, 947 constraints->max_uA); 948 if (ret < 0) { 949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 950 return ret; 951 } 952 953 return 0; 954 } 955 956 /** 957 * set_machine_constraints - sets regulator constraints 958 * @rdev: regulator source 959 * @constraints: constraints to apply 960 * 961 * Allows platform initialisation code to define and constrain 962 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 963 * Constraints *must* be set by platform code in order for some 964 * regulator operations to proceed i.e. set_voltage, set_current_limit, 965 * set_mode. 966 */ 967 static int set_machine_constraints(struct regulator_dev *rdev, 968 const struct regulation_constraints *constraints) 969 { 970 int ret = 0; 971 struct regulator_ops *ops = rdev->desc->ops; 972 973 if (constraints) 974 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 975 GFP_KERNEL); 976 else 977 rdev->constraints = kzalloc(sizeof(*constraints), 978 GFP_KERNEL); 979 if (!rdev->constraints) 980 return -ENOMEM; 981 982 ret = machine_constraints_voltage(rdev, rdev->constraints); 983 if (ret != 0) 984 goto out; 985 986 ret = machine_constraints_current(rdev, rdev->constraints); 987 if (ret != 0) 988 goto out; 989 990 /* do we need to setup our suspend state */ 991 if (rdev->constraints->initial_state) { 992 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 993 if (ret < 0) { 994 rdev_err(rdev, "failed to set suspend state\n"); 995 goto out; 996 } 997 } 998 999 if (rdev->constraints->initial_mode) { 1000 if (!ops->set_mode) { 1001 rdev_err(rdev, "no set_mode operation\n"); 1002 ret = -EINVAL; 1003 goto out; 1004 } 1005 1006 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1007 if (ret < 0) { 1008 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1009 goto out; 1010 } 1011 } 1012 1013 /* If the constraints say the regulator should be on at this point 1014 * and we have control then make sure it is enabled. 1015 */ 1016 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 1017 ops->enable) { 1018 ret = ops->enable(rdev); 1019 if (ret < 0) { 1020 rdev_err(rdev, "failed to enable\n"); 1021 goto out; 1022 } 1023 } 1024 1025 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1026 && ops->set_ramp_delay) { 1027 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1028 if (ret < 0) { 1029 rdev_err(rdev, "failed to set ramp_delay\n"); 1030 goto out; 1031 } 1032 } 1033 1034 print_constraints(rdev); 1035 return 0; 1036 out: 1037 kfree(rdev->constraints); 1038 rdev->constraints = NULL; 1039 return ret; 1040 } 1041 1042 /** 1043 * set_supply - set regulator supply regulator 1044 * @rdev: regulator name 1045 * @supply_rdev: supply regulator name 1046 * 1047 * Called by platform initialisation code to set the supply regulator for this 1048 * regulator. This ensures that a regulators supply will also be enabled by the 1049 * core if it's child is enabled. 1050 */ 1051 static int set_supply(struct regulator_dev *rdev, 1052 struct regulator_dev *supply_rdev) 1053 { 1054 int err; 1055 1056 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1057 1058 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1059 if (rdev->supply == NULL) { 1060 err = -ENOMEM; 1061 return err; 1062 } 1063 supply_rdev->open_count++; 1064 1065 return 0; 1066 } 1067 1068 /** 1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1070 * @rdev: regulator source 1071 * @consumer_dev_name: dev_name() string for device supply applies to 1072 * @supply: symbolic name for supply 1073 * 1074 * Allows platform initialisation code to map physical regulator 1075 * sources to symbolic names for supplies for use by devices. Devices 1076 * should use these symbolic names to request regulators, avoiding the 1077 * need to provide board-specific regulator names as platform data. 1078 */ 1079 static int set_consumer_device_supply(struct regulator_dev *rdev, 1080 const char *consumer_dev_name, 1081 const char *supply) 1082 { 1083 struct regulator_map *node; 1084 int has_dev; 1085 1086 if (supply == NULL) 1087 return -EINVAL; 1088 1089 if (consumer_dev_name != NULL) 1090 has_dev = 1; 1091 else 1092 has_dev = 0; 1093 1094 list_for_each_entry(node, ®ulator_map_list, list) { 1095 if (node->dev_name && consumer_dev_name) { 1096 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1097 continue; 1098 } else if (node->dev_name || consumer_dev_name) { 1099 continue; 1100 } 1101 1102 if (strcmp(node->supply, supply) != 0) 1103 continue; 1104 1105 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1106 consumer_dev_name, 1107 dev_name(&node->regulator->dev), 1108 node->regulator->desc->name, 1109 supply, 1110 dev_name(&rdev->dev), rdev_get_name(rdev)); 1111 return -EBUSY; 1112 } 1113 1114 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1115 if (node == NULL) 1116 return -ENOMEM; 1117 1118 node->regulator = rdev; 1119 node->supply = supply; 1120 1121 if (has_dev) { 1122 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1123 if (node->dev_name == NULL) { 1124 kfree(node); 1125 return -ENOMEM; 1126 } 1127 } 1128 1129 list_add(&node->list, ®ulator_map_list); 1130 return 0; 1131 } 1132 1133 static void unset_regulator_supplies(struct regulator_dev *rdev) 1134 { 1135 struct regulator_map *node, *n; 1136 1137 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1138 if (rdev == node->regulator) { 1139 list_del(&node->list); 1140 kfree(node->dev_name); 1141 kfree(node); 1142 } 1143 } 1144 } 1145 1146 #define REG_STR_SIZE 64 1147 1148 static struct regulator *create_regulator(struct regulator_dev *rdev, 1149 struct device *dev, 1150 const char *supply_name) 1151 { 1152 struct regulator *regulator; 1153 char buf[REG_STR_SIZE]; 1154 int err, size; 1155 1156 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1157 if (regulator == NULL) 1158 return NULL; 1159 1160 mutex_lock(&rdev->mutex); 1161 regulator->rdev = rdev; 1162 list_add(®ulator->list, &rdev->consumer_list); 1163 1164 if (dev) { 1165 regulator->dev = dev; 1166 1167 /* Add a link to the device sysfs entry */ 1168 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1169 dev->kobj.name, supply_name); 1170 if (size >= REG_STR_SIZE) 1171 goto overflow_err; 1172 1173 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1174 if (regulator->supply_name == NULL) 1175 goto overflow_err; 1176 1177 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1178 buf); 1179 if (err) { 1180 rdev_warn(rdev, "could not add device link %s err %d\n", 1181 dev->kobj.name, err); 1182 /* non-fatal */ 1183 } 1184 } else { 1185 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1186 if (regulator->supply_name == NULL) 1187 goto overflow_err; 1188 } 1189 1190 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1191 rdev->debugfs); 1192 if (!regulator->debugfs) { 1193 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1194 } else { 1195 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1196 ®ulator->uA_load); 1197 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1198 ®ulator->min_uV); 1199 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1200 ®ulator->max_uV); 1201 } 1202 1203 /* 1204 * Check now if the regulator is an always on regulator - if 1205 * it is then we don't need to do nearly so much work for 1206 * enable/disable calls. 1207 */ 1208 if (!_regulator_can_change_status(rdev) && 1209 _regulator_is_enabled(rdev)) 1210 regulator->always_on = true; 1211 1212 mutex_unlock(&rdev->mutex); 1213 return regulator; 1214 overflow_err: 1215 list_del(®ulator->list); 1216 kfree(regulator); 1217 mutex_unlock(&rdev->mutex); 1218 return NULL; 1219 } 1220 1221 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1222 { 1223 if (rdev->constraints && rdev->constraints->enable_time) 1224 return rdev->constraints->enable_time; 1225 if (!rdev->desc->ops->enable_time) 1226 return rdev->desc->enable_time; 1227 return rdev->desc->ops->enable_time(rdev); 1228 } 1229 1230 static struct regulator_supply_alias *regulator_find_supply_alias( 1231 struct device *dev, const char *supply) 1232 { 1233 struct regulator_supply_alias *map; 1234 1235 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1236 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1237 return map; 1238 1239 return NULL; 1240 } 1241 1242 static void regulator_supply_alias(struct device **dev, const char **supply) 1243 { 1244 struct regulator_supply_alias *map; 1245 1246 map = regulator_find_supply_alias(*dev, *supply); 1247 if (map) { 1248 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1249 *supply, map->alias_supply, 1250 dev_name(map->alias_dev)); 1251 *dev = map->alias_dev; 1252 *supply = map->alias_supply; 1253 } 1254 } 1255 1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1257 const char *supply, 1258 int *ret) 1259 { 1260 struct regulator_dev *r; 1261 struct device_node *node; 1262 struct regulator_map *map; 1263 const char *devname = NULL; 1264 1265 regulator_supply_alias(&dev, &supply); 1266 1267 /* first do a dt based lookup */ 1268 if (dev && dev->of_node) { 1269 node = of_get_regulator(dev, supply); 1270 if (node) { 1271 list_for_each_entry(r, ®ulator_list, list) 1272 if (r->dev.parent && 1273 node == r->dev.of_node) 1274 return r; 1275 *ret = -EPROBE_DEFER; 1276 return NULL; 1277 } else { 1278 /* 1279 * If we couldn't even get the node then it's 1280 * not just that the device didn't register 1281 * yet, there's no node and we'll never 1282 * succeed. 1283 */ 1284 *ret = -ENODEV; 1285 } 1286 } 1287 1288 /* if not found, try doing it non-dt way */ 1289 if (dev) 1290 devname = dev_name(dev); 1291 1292 list_for_each_entry(r, ®ulator_list, list) 1293 if (strcmp(rdev_get_name(r), supply) == 0) 1294 return r; 1295 1296 list_for_each_entry(map, ®ulator_map_list, list) { 1297 /* If the mapping has a device set up it must match */ 1298 if (map->dev_name && 1299 (!devname || strcmp(map->dev_name, devname))) 1300 continue; 1301 1302 if (strcmp(map->supply, supply) == 0) 1303 return map->regulator; 1304 } 1305 1306 1307 return NULL; 1308 } 1309 1310 /* Internal regulator request function */ 1311 static struct regulator *_regulator_get(struct device *dev, const char *id, 1312 bool exclusive, bool allow_dummy) 1313 { 1314 struct regulator_dev *rdev; 1315 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1316 const char *devname = NULL; 1317 int ret; 1318 1319 if (id == NULL) { 1320 pr_err("get() with no identifier\n"); 1321 return ERR_PTR(-EINVAL); 1322 } 1323 1324 if (dev) 1325 devname = dev_name(dev); 1326 1327 if (have_full_constraints()) 1328 ret = -ENODEV; 1329 else 1330 ret = -EPROBE_DEFER; 1331 1332 mutex_lock(®ulator_list_mutex); 1333 1334 rdev = regulator_dev_lookup(dev, id, &ret); 1335 if (rdev) 1336 goto found; 1337 1338 regulator = ERR_PTR(ret); 1339 1340 /* 1341 * If we have return value from dev_lookup fail, we do not expect to 1342 * succeed, so, quit with appropriate error value 1343 */ 1344 if (ret && ret != -ENODEV) 1345 goto out; 1346 1347 if (!devname) 1348 devname = "deviceless"; 1349 1350 /* 1351 * Assume that a regulator is physically present and enabled 1352 * even if it isn't hooked up and just provide a dummy. 1353 */ 1354 if (have_full_constraints() && allow_dummy) { 1355 pr_warn("%s supply %s not found, using dummy regulator\n", 1356 devname, id); 1357 1358 rdev = dummy_regulator_rdev; 1359 goto found; 1360 /* Don't log an error when called from regulator_get_optional() */ 1361 } else if (!have_full_constraints() || exclusive) { 1362 dev_err(dev, "dummy supplies not allowed\n"); 1363 } 1364 1365 mutex_unlock(®ulator_list_mutex); 1366 return regulator; 1367 1368 found: 1369 if (rdev->exclusive) { 1370 regulator = ERR_PTR(-EPERM); 1371 goto out; 1372 } 1373 1374 if (exclusive && rdev->open_count) { 1375 regulator = ERR_PTR(-EBUSY); 1376 goto out; 1377 } 1378 1379 if (!try_module_get(rdev->owner)) 1380 goto out; 1381 1382 regulator = create_regulator(rdev, dev, id); 1383 if (regulator == NULL) { 1384 regulator = ERR_PTR(-ENOMEM); 1385 module_put(rdev->owner); 1386 goto out; 1387 } 1388 1389 rdev->open_count++; 1390 if (exclusive) { 1391 rdev->exclusive = 1; 1392 1393 ret = _regulator_is_enabled(rdev); 1394 if (ret > 0) 1395 rdev->use_count = 1; 1396 else 1397 rdev->use_count = 0; 1398 } 1399 1400 out: 1401 mutex_unlock(®ulator_list_mutex); 1402 1403 return regulator; 1404 } 1405 1406 /** 1407 * regulator_get - lookup and obtain a reference to a regulator. 1408 * @dev: device for regulator "consumer" 1409 * @id: Supply name or regulator ID. 1410 * 1411 * Returns a struct regulator corresponding to the regulator producer, 1412 * or IS_ERR() condition containing errno. 1413 * 1414 * Use of supply names configured via regulator_set_device_supply() is 1415 * strongly encouraged. It is recommended that the supply name used 1416 * should match the name used for the supply and/or the relevant 1417 * device pins in the datasheet. 1418 */ 1419 struct regulator *regulator_get(struct device *dev, const char *id) 1420 { 1421 return _regulator_get(dev, id, false, true); 1422 } 1423 EXPORT_SYMBOL_GPL(regulator_get); 1424 1425 /** 1426 * regulator_get_exclusive - obtain exclusive access to a regulator. 1427 * @dev: device for regulator "consumer" 1428 * @id: Supply name or regulator ID. 1429 * 1430 * Returns a struct regulator corresponding to the regulator producer, 1431 * or IS_ERR() condition containing errno. Other consumers will be 1432 * unable to obtain this reference is held and the use count for the 1433 * regulator will be initialised to reflect the current state of the 1434 * regulator. 1435 * 1436 * This is intended for use by consumers which cannot tolerate shared 1437 * use of the regulator such as those which need to force the 1438 * regulator off for correct operation of the hardware they are 1439 * controlling. 1440 * 1441 * Use of supply names configured via regulator_set_device_supply() is 1442 * strongly encouraged. It is recommended that the supply name used 1443 * should match the name used for the supply and/or the relevant 1444 * device pins in the datasheet. 1445 */ 1446 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1447 { 1448 return _regulator_get(dev, id, true, false); 1449 } 1450 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1451 1452 /** 1453 * regulator_get_optional - obtain optional access to a regulator. 1454 * @dev: device for regulator "consumer" 1455 * @id: Supply name or regulator ID. 1456 * 1457 * Returns a struct regulator corresponding to the regulator producer, 1458 * or IS_ERR() condition containing errno. Other consumers will be 1459 * unable to obtain this reference is held and the use count for the 1460 * regulator will be initialised to reflect the current state of the 1461 * regulator. 1462 * 1463 * This is intended for use by consumers for devices which can have 1464 * some supplies unconnected in normal use, such as some MMC devices. 1465 * It can allow the regulator core to provide stub supplies for other 1466 * supplies requested using normal regulator_get() calls without 1467 * disrupting the operation of drivers that can handle absent 1468 * supplies. 1469 * 1470 * Use of supply names configured via regulator_set_device_supply() is 1471 * strongly encouraged. It is recommended that the supply name used 1472 * should match the name used for the supply and/or the relevant 1473 * device pins in the datasheet. 1474 */ 1475 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1476 { 1477 return _regulator_get(dev, id, false, false); 1478 } 1479 EXPORT_SYMBOL_GPL(regulator_get_optional); 1480 1481 /* Locks held by regulator_put() */ 1482 static void _regulator_put(struct regulator *regulator) 1483 { 1484 struct regulator_dev *rdev; 1485 1486 if (regulator == NULL || IS_ERR(regulator)) 1487 return; 1488 1489 rdev = regulator->rdev; 1490 1491 debugfs_remove_recursive(regulator->debugfs); 1492 1493 /* remove any sysfs entries */ 1494 if (regulator->dev) 1495 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1496 kfree(regulator->supply_name); 1497 list_del(®ulator->list); 1498 kfree(regulator); 1499 1500 rdev->open_count--; 1501 rdev->exclusive = 0; 1502 1503 module_put(rdev->owner); 1504 } 1505 1506 /** 1507 * regulator_put - "free" the regulator source 1508 * @regulator: regulator source 1509 * 1510 * Note: drivers must ensure that all regulator_enable calls made on this 1511 * regulator source are balanced by regulator_disable calls prior to calling 1512 * this function. 1513 */ 1514 void regulator_put(struct regulator *regulator) 1515 { 1516 mutex_lock(®ulator_list_mutex); 1517 _regulator_put(regulator); 1518 mutex_unlock(®ulator_list_mutex); 1519 } 1520 EXPORT_SYMBOL_GPL(regulator_put); 1521 1522 /** 1523 * regulator_register_supply_alias - Provide device alias for supply lookup 1524 * 1525 * @dev: device that will be given as the regulator "consumer" 1526 * @id: Supply name or regulator ID 1527 * @alias_dev: device that should be used to lookup the supply 1528 * @alias_id: Supply name or regulator ID that should be used to lookup the 1529 * supply 1530 * 1531 * All lookups for id on dev will instead be conducted for alias_id on 1532 * alias_dev. 1533 */ 1534 int regulator_register_supply_alias(struct device *dev, const char *id, 1535 struct device *alias_dev, 1536 const char *alias_id) 1537 { 1538 struct regulator_supply_alias *map; 1539 1540 map = regulator_find_supply_alias(dev, id); 1541 if (map) 1542 return -EEXIST; 1543 1544 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1545 if (!map) 1546 return -ENOMEM; 1547 1548 map->src_dev = dev; 1549 map->src_supply = id; 1550 map->alias_dev = alias_dev; 1551 map->alias_supply = alias_id; 1552 1553 list_add(&map->list, ®ulator_supply_alias_list); 1554 1555 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1556 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1557 1558 return 0; 1559 } 1560 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1561 1562 /** 1563 * regulator_unregister_supply_alias - Remove device alias 1564 * 1565 * @dev: device that will be given as the regulator "consumer" 1566 * @id: Supply name or regulator ID 1567 * 1568 * Remove a lookup alias if one exists for id on dev. 1569 */ 1570 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1571 { 1572 struct regulator_supply_alias *map; 1573 1574 map = regulator_find_supply_alias(dev, id); 1575 if (map) { 1576 list_del(&map->list); 1577 kfree(map); 1578 } 1579 } 1580 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1581 1582 /** 1583 * regulator_bulk_register_supply_alias - register multiple aliases 1584 * 1585 * @dev: device that will be given as the regulator "consumer" 1586 * @id: List of supply names or regulator IDs 1587 * @alias_dev: device that should be used to lookup the supply 1588 * @alias_id: List of supply names or regulator IDs that should be used to 1589 * lookup the supply 1590 * @num_id: Number of aliases to register 1591 * 1592 * @return 0 on success, an errno on failure. 1593 * 1594 * This helper function allows drivers to register several supply 1595 * aliases in one operation. If any of the aliases cannot be 1596 * registered any aliases that were registered will be removed 1597 * before returning to the caller. 1598 */ 1599 int regulator_bulk_register_supply_alias(struct device *dev, const char **id, 1600 struct device *alias_dev, 1601 const char **alias_id, 1602 int num_id) 1603 { 1604 int i; 1605 int ret; 1606 1607 for (i = 0; i < num_id; ++i) { 1608 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1609 alias_id[i]); 1610 if (ret < 0) 1611 goto err; 1612 } 1613 1614 return 0; 1615 1616 err: 1617 dev_err(dev, 1618 "Failed to create supply alias %s,%s -> %s,%s\n", 1619 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1620 1621 while (--i >= 0) 1622 regulator_unregister_supply_alias(dev, id[i]); 1623 1624 return ret; 1625 } 1626 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1627 1628 /** 1629 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1630 * 1631 * @dev: device that will be given as the regulator "consumer" 1632 * @id: List of supply names or regulator IDs 1633 * @num_id: Number of aliases to unregister 1634 * 1635 * This helper function allows drivers to unregister several supply 1636 * aliases in one operation. 1637 */ 1638 void regulator_bulk_unregister_supply_alias(struct device *dev, 1639 const char **id, 1640 int num_id) 1641 { 1642 int i; 1643 1644 for (i = 0; i < num_id; ++i) 1645 regulator_unregister_supply_alias(dev, id[i]); 1646 } 1647 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1648 1649 1650 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1651 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1652 const struct regulator_config *config) 1653 { 1654 struct regulator_enable_gpio *pin; 1655 int ret; 1656 1657 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1658 if (pin->gpio == config->ena_gpio) { 1659 rdev_dbg(rdev, "GPIO %d is already used\n", 1660 config->ena_gpio); 1661 goto update_ena_gpio_to_rdev; 1662 } 1663 } 1664 1665 ret = gpio_request_one(config->ena_gpio, 1666 GPIOF_DIR_OUT | config->ena_gpio_flags, 1667 rdev_get_name(rdev)); 1668 if (ret) 1669 return ret; 1670 1671 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1672 if (pin == NULL) { 1673 gpio_free(config->ena_gpio); 1674 return -ENOMEM; 1675 } 1676 1677 pin->gpio = config->ena_gpio; 1678 pin->ena_gpio_invert = config->ena_gpio_invert; 1679 list_add(&pin->list, ®ulator_ena_gpio_list); 1680 1681 update_ena_gpio_to_rdev: 1682 pin->request_count++; 1683 rdev->ena_pin = pin; 1684 return 0; 1685 } 1686 1687 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1688 { 1689 struct regulator_enable_gpio *pin, *n; 1690 1691 if (!rdev->ena_pin) 1692 return; 1693 1694 /* Free the GPIO only in case of no use */ 1695 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1696 if (pin->gpio == rdev->ena_pin->gpio) { 1697 if (pin->request_count <= 1) { 1698 pin->request_count = 0; 1699 gpio_free(pin->gpio); 1700 list_del(&pin->list); 1701 kfree(pin); 1702 } else { 1703 pin->request_count--; 1704 } 1705 } 1706 } 1707 } 1708 1709 /** 1710 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1711 * @rdev: regulator_dev structure 1712 * @enable: enable GPIO at initial use? 1713 * 1714 * GPIO is enabled in case of initial use. (enable_count is 0) 1715 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1716 */ 1717 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1718 { 1719 struct regulator_enable_gpio *pin = rdev->ena_pin; 1720 1721 if (!pin) 1722 return -EINVAL; 1723 1724 if (enable) { 1725 /* Enable GPIO at initial use */ 1726 if (pin->enable_count == 0) 1727 gpio_set_value_cansleep(pin->gpio, 1728 !pin->ena_gpio_invert); 1729 1730 pin->enable_count++; 1731 } else { 1732 if (pin->enable_count > 1) { 1733 pin->enable_count--; 1734 return 0; 1735 } 1736 1737 /* Disable GPIO if not used */ 1738 if (pin->enable_count <= 1) { 1739 gpio_set_value_cansleep(pin->gpio, 1740 pin->ena_gpio_invert); 1741 pin->enable_count = 0; 1742 } 1743 } 1744 1745 return 0; 1746 } 1747 1748 static int _regulator_do_enable(struct regulator_dev *rdev) 1749 { 1750 int ret, delay; 1751 1752 /* Query before enabling in case configuration dependent. */ 1753 ret = _regulator_get_enable_time(rdev); 1754 if (ret >= 0) { 1755 delay = ret; 1756 } else { 1757 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1758 delay = 0; 1759 } 1760 1761 trace_regulator_enable(rdev_get_name(rdev)); 1762 1763 if (rdev->ena_pin) { 1764 ret = regulator_ena_gpio_ctrl(rdev, true); 1765 if (ret < 0) 1766 return ret; 1767 rdev->ena_gpio_state = 1; 1768 } else if (rdev->desc->ops->enable) { 1769 ret = rdev->desc->ops->enable(rdev); 1770 if (ret < 0) 1771 return ret; 1772 } else { 1773 return -EINVAL; 1774 } 1775 1776 /* Allow the regulator to ramp; it would be useful to extend 1777 * this for bulk operations so that the regulators can ramp 1778 * together. */ 1779 trace_regulator_enable_delay(rdev_get_name(rdev)); 1780 1781 /* 1782 * Delay for the requested amount of time as per the guidelines in: 1783 * 1784 * Documentation/timers/timers-howto.txt 1785 * 1786 * The assumption here is that regulators will never be enabled in 1787 * atomic context and therefore sleeping functions can be used. 1788 */ 1789 if (delay) { 1790 unsigned int ms = delay / 1000; 1791 unsigned int us = delay % 1000; 1792 1793 if (ms > 0) { 1794 /* 1795 * For small enough values, handle super-millisecond 1796 * delays in the usleep_range() call below. 1797 */ 1798 if (ms < 20) 1799 us += ms * 1000; 1800 else 1801 msleep(ms); 1802 } 1803 1804 /* 1805 * Give the scheduler some room to coalesce with any other 1806 * wakeup sources. For delays shorter than 10 us, don't even 1807 * bother setting up high-resolution timers and just busy- 1808 * loop. 1809 */ 1810 if (us >= 10) 1811 usleep_range(us, us + 100); 1812 else 1813 udelay(us); 1814 } 1815 1816 trace_regulator_enable_complete(rdev_get_name(rdev)); 1817 1818 return 0; 1819 } 1820 1821 /* locks held by regulator_enable() */ 1822 static int _regulator_enable(struct regulator_dev *rdev) 1823 { 1824 int ret; 1825 1826 /* check voltage and requested load before enabling */ 1827 if (rdev->constraints && 1828 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1829 drms_uA_update(rdev); 1830 1831 if (rdev->use_count == 0) { 1832 /* The regulator may on if it's not switchable or left on */ 1833 ret = _regulator_is_enabled(rdev); 1834 if (ret == -EINVAL || ret == 0) { 1835 if (!_regulator_can_change_status(rdev)) 1836 return -EPERM; 1837 1838 ret = _regulator_do_enable(rdev); 1839 if (ret < 0) 1840 return ret; 1841 1842 } else if (ret < 0) { 1843 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1844 return ret; 1845 } 1846 /* Fallthrough on positive return values - already enabled */ 1847 } 1848 1849 rdev->use_count++; 1850 1851 return 0; 1852 } 1853 1854 /** 1855 * regulator_enable - enable regulator output 1856 * @regulator: regulator source 1857 * 1858 * Request that the regulator be enabled with the regulator output at 1859 * the predefined voltage or current value. Calls to regulator_enable() 1860 * must be balanced with calls to regulator_disable(). 1861 * 1862 * NOTE: the output value can be set by other drivers, boot loader or may be 1863 * hardwired in the regulator. 1864 */ 1865 int regulator_enable(struct regulator *regulator) 1866 { 1867 struct regulator_dev *rdev = regulator->rdev; 1868 int ret = 0; 1869 1870 if (regulator->always_on) 1871 return 0; 1872 1873 if (rdev->supply) { 1874 ret = regulator_enable(rdev->supply); 1875 if (ret != 0) 1876 return ret; 1877 } 1878 1879 mutex_lock(&rdev->mutex); 1880 ret = _regulator_enable(rdev); 1881 mutex_unlock(&rdev->mutex); 1882 1883 if (ret != 0 && rdev->supply) 1884 regulator_disable(rdev->supply); 1885 1886 return ret; 1887 } 1888 EXPORT_SYMBOL_GPL(regulator_enable); 1889 1890 static int _regulator_do_disable(struct regulator_dev *rdev) 1891 { 1892 int ret; 1893 1894 trace_regulator_disable(rdev_get_name(rdev)); 1895 1896 if (rdev->ena_pin) { 1897 ret = regulator_ena_gpio_ctrl(rdev, false); 1898 if (ret < 0) 1899 return ret; 1900 rdev->ena_gpio_state = 0; 1901 1902 } else if (rdev->desc->ops->disable) { 1903 ret = rdev->desc->ops->disable(rdev); 1904 if (ret != 0) 1905 return ret; 1906 } 1907 1908 trace_regulator_disable_complete(rdev_get_name(rdev)); 1909 1910 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1911 NULL); 1912 return 0; 1913 } 1914 1915 /* locks held by regulator_disable() */ 1916 static int _regulator_disable(struct regulator_dev *rdev) 1917 { 1918 int ret = 0; 1919 1920 if (WARN(rdev->use_count <= 0, 1921 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1922 return -EIO; 1923 1924 /* are we the last user and permitted to disable ? */ 1925 if (rdev->use_count == 1 && 1926 (rdev->constraints && !rdev->constraints->always_on)) { 1927 1928 /* we are last user */ 1929 if (_regulator_can_change_status(rdev)) { 1930 ret = _regulator_do_disable(rdev); 1931 if (ret < 0) { 1932 rdev_err(rdev, "failed to disable\n"); 1933 return ret; 1934 } 1935 } 1936 1937 rdev->use_count = 0; 1938 } else if (rdev->use_count > 1) { 1939 1940 if (rdev->constraints && 1941 (rdev->constraints->valid_ops_mask & 1942 REGULATOR_CHANGE_DRMS)) 1943 drms_uA_update(rdev); 1944 1945 rdev->use_count--; 1946 } 1947 1948 return ret; 1949 } 1950 1951 /** 1952 * regulator_disable - disable regulator output 1953 * @regulator: regulator source 1954 * 1955 * Disable the regulator output voltage or current. Calls to 1956 * regulator_enable() must be balanced with calls to 1957 * regulator_disable(). 1958 * 1959 * NOTE: this will only disable the regulator output if no other consumer 1960 * devices have it enabled, the regulator device supports disabling and 1961 * machine constraints permit this operation. 1962 */ 1963 int regulator_disable(struct regulator *regulator) 1964 { 1965 struct regulator_dev *rdev = regulator->rdev; 1966 int ret = 0; 1967 1968 if (regulator->always_on) 1969 return 0; 1970 1971 mutex_lock(&rdev->mutex); 1972 ret = _regulator_disable(rdev); 1973 mutex_unlock(&rdev->mutex); 1974 1975 if (ret == 0 && rdev->supply) 1976 regulator_disable(rdev->supply); 1977 1978 return ret; 1979 } 1980 EXPORT_SYMBOL_GPL(regulator_disable); 1981 1982 /* locks held by regulator_force_disable() */ 1983 static int _regulator_force_disable(struct regulator_dev *rdev) 1984 { 1985 int ret = 0; 1986 1987 /* force disable */ 1988 if (rdev->desc->ops->disable) { 1989 /* ah well, who wants to live forever... */ 1990 ret = rdev->desc->ops->disable(rdev); 1991 if (ret < 0) { 1992 rdev_err(rdev, "failed to force disable\n"); 1993 return ret; 1994 } 1995 /* notify other consumers that power has been forced off */ 1996 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1997 REGULATOR_EVENT_DISABLE, NULL); 1998 } 1999 2000 return ret; 2001 } 2002 2003 /** 2004 * regulator_force_disable - force disable regulator output 2005 * @regulator: regulator source 2006 * 2007 * Forcibly disable the regulator output voltage or current. 2008 * NOTE: this *will* disable the regulator output even if other consumer 2009 * devices have it enabled. This should be used for situations when device 2010 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2011 */ 2012 int regulator_force_disable(struct regulator *regulator) 2013 { 2014 struct regulator_dev *rdev = regulator->rdev; 2015 int ret; 2016 2017 mutex_lock(&rdev->mutex); 2018 regulator->uA_load = 0; 2019 ret = _regulator_force_disable(regulator->rdev); 2020 mutex_unlock(&rdev->mutex); 2021 2022 if (rdev->supply) 2023 while (rdev->open_count--) 2024 regulator_disable(rdev->supply); 2025 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(regulator_force_disable); 2029 2030 static void regulator_disable_work(struct work_struct *work) 2031 { 2032 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2033 disable_work.work); 2034 int count, i, ret; 2035 2036 mutex_lock(&rdev->mutex); 2037 2038 BUG_ON(!rdev->deferred_disables); 2039 2040 count = rdev->deferred_disables; 2041 rdev->deferred_disables = 0; 2042 2043 for (i = 0; i < count; i++) { 2044 ret = _regulator_disable(rdev); 2045 if (ret != 0) 2046 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2047 } 2048 2049 mutex_unlock(&rdev->mutex); 2050 2051 if (rdev->supply) { 2052 for (i = 0; i < count; i++) { 2053 ret = regulator_disable(rdev->supply); 2054 if (ret != 0) { 2055 rdev_err(rdev, 2056 "Supply disable failed: %d\n", ret); 2057 } 2058 } 2059 } 2060 } 2061 2062 /** 2063 * regulator_disable_deferred - disable regulator output with delay 2064 * @regulator: regulator source 2065 * @ms: miliseconds until the regulator is disabled 2066 * 2067 * Execute regulator_disable() on the regulator after a delay. This 2068 * is intended for use with devices that require some time to quiesce. 2069 * 2070 * NOTE: this will only disable the regulator output if no other consumer 2071 * devices have it enabled, the regulator device supports disabling and 2072 * machine constraints permit this operation. 2073 */ 2074 int regulator_disable_deferred(struct regulator *regulator, int ms) 2075 { 2076 struct regulator_dev *rdev = regulator->rdev; 2077 int ret; 2078 2079 if (regulator->always_on) 2080 return 0; 2081 2082 if (!ms) 2083 return regulator_disable(regulator); 2084 2085 mutex_lock(&rdev->mutex); 2086 rdev->deferred_disables++; 2087 mutex_unlock(&rdev->mutex); 2088 2089 ret = queue_delayed_work(system_power_efficient_wq, 2090 &rdev->disable_work, 2091 msecs_to_jiffies(ms)); 2092 if (ret < 0) 2093 return ret; 2094 else 2095 return 0; 2096 } 2097 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2098 2099 static int _regulator_is_enabled(struct regulator_dev *rdev) 2100 { 2101 /* A GPIO control always takes precedence */ 2102 if (rdev->ena_pin) 2103 return rdev->ena_gpio_state; 2104 2105 /* If we don't know then assume that the regulator is always on */ 2106 if (!rdev->desc->ops->is_enabled) 2107 return 1; 2108 2109 return rdev->desc->ops->is_enabled(rdev); 2110 } 2111 2112 /** 2113 * regulator_is_enabled - is the regulator output enabled 2114 * @regulator: regulator source 2115 * 2116 * Returns positive if the regulator driver backing the source/client 2117 * has requested that the device be enabled, zero if it hasn't, else a 2118 * negative errno code. 2119 * 2120 * Note that the device backing this regulator handle can have multiple 2121 * users, so it might be enabled even if regulator_enable() was never 2122 * called for this particular source. 2123 */ 2124 int regulator_is_enabled(struct regulator *regulator) 2125 { 2126 int ret; 2127 2128 if (regulator->always_on) 2129 return 1; 2130 2131 mutex_lock(®ulator->rdev->mutex); 2132 ret = _regulator_is_enabled(regulator->rdev); 2133 mutex_unlock(®ulator->rdev->mutex); 2134 2135 return ret; 2136 } 2137 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2138 2139 /** 2140 * regulator_can_change_voltage - check if regulator can change voltage 2141 * @regulator: regulator source 2142 * 2143 * Returns positive if the regulator driver backing the source/client 2144 * can change its voltage, false otherwise. Usefull for detecting fixed 2145 * or dummy regulators and disabling voltage change logic in the client 2146 * driver. 2147 */ 2148 int regulator_can_change_voltage(struct regulator *regulator) 2149 { 2150 struct regulator_dev *rdev = regulator->rdev; 2151 2152 if (rdev->constraints && 2153 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2154 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2155 return 1; 2156 2157 if (rdev->desc->continuous_voltage_range && 2158 rdev->constraints->min_uV && rdev->constraints->max_uV && 2159 rdev->constraints->min_uV != rdev->constraints->max_uV) 2160 return 1; 2161 } 2162 2163 return 0; 2164 } 2165 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2166 2167 /** 2168 * regulator_count_voltages - count regulator_list_voltage() selectors 2169 * @regulator: regulator source 2170 * 2171 * Returns number of selectors, or negative errno. Selectors are 2172 * numbered starting at zero, and typically correspond to bitfields 2173 * in hardware registers. 2174 */ 2175 int regulator_count_voltages(struct regulator *regulator) 2176 { 2177 struct regulator_dev *rdev = regulator->rdev; 2178 2179 return rdev->desc->n_voltages ? : -EINVAL; 2180 } 2181 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2182 2183 /** 2184 * regulator_list_voltage - enumerate supported voltages 2185 * @regulator: regulator source 2186 * @selector: identify voltage to list 2187 * Context: can sleep 2188 * 2189 * Returns a voltage that can be passed to @regulator_set_voltage(), 2190 * zero if this selector code can't be used on this system, or a 2191 * negative errno. 2192 */ 2193 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2194 { 2195 struct regulator_dev *rdev = regulator->rdev; 2196 struct regulator_ops *ops = rdev->desc->ops; 2197 int ret; 2198 2199 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2200 return rdev->desc->fixed_uV; 2201 2202 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2203 return -EINVAL; 2204 2205 mutex_lock(&rdev->mutex); 2206 ret = ops->list_voltage(rdev, selector); 2207 mutex_unlock(&rdev->mutex); 2208 2209 if (ret > 0) { 2210 if (ret < rdev->constraints->min_uV) 2211 ret = 0; 2212 else if (ret > rdev->constraints->max_uV) 2213 ret = 0; 2214 } 2215 2216 return ret; 2217 } 2218 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2219 2220 /** 2221 * regulator_get_linear_step - return the voltage step size between VSEL values 2222 * @regulator: regulator source 2223 * 2224 * Returns the voltage step size between VSEL values for linear 2225 * regulators, or return 0 if the regulator isn't a linear regulator. 2226 */ 2227 unsigned int regulator_get_linear_step(struct regulator *regulator) 2228 { 2229 struct regulator_dev *rdev = regulator->rdev; 2230 2231 return rdev->desc->uV_step; 2232 } 2233 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2234 2235 /** 2236 * regulator_is_supported_voltage - check if a voltage range can be supported 2237 * 2238 * @regulator: Regulator to check. 2239 * @min_uV: Minimum required voltage in uV. 2240 * @max_uV: Maximum required voltage in uV. 2241 * 2242 * Returns a boolean or a negative error code. 2243 */ 2244 int regulator_is_supported_voltage(struct regulator *regulator, 2245 int min_uV, int max_uV) 2246 { 2247 struct regulator_dev *rdev = regulator->rdev; 2248 int i, voltages, ret; 2249 2250 /* If we can't change voltage check the current voltage */ 2251 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2252 ret = regulator_get_voltage(regulator); 2253 if (ret >= 0) 2254 return min_uV <= ret && ret <= max_uV; 2255 else 2256 return ret; 2257 } 2258 2259 /* Any voltage within constrains range is fine? */ 2260 if (rdev->desc->continuous_voltage_range) 2261 return min_uV >= rdev->constraints->min_uV && 2262 max_uV <= rdev->constraints->max_uV; 2263 2264 ret = regulator_count_voltages(regulator); 2265 if (ret < 0) 2266 return ret; 2267 voltages = ret; 2268 2269 for (i = 0; i < voltages; i++) { 2270 ret = regulator_list_voltage(regulator, i); 2271 2272 if (ret >= min_uV && ret <= max_uV) 2273 return 1; 2274 } 2275 2276 return 0; 2277 } 2278 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2279 2280 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2281 int min_uV, int max_uV) 2282 { 2283 int ret; 2284 int delay = 0; 2285 int best_val = 0; 2286 unsigned int selector; 2287 int old_selector = -1; 2288 2289 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2290 2291 min_uV += rdev->constraints->uV_offset; 2292 max_uV += rdev->constraints->uV_offset; 2293 2294 /* 2295 * If we can't obtain the old selector there is not enough 2296 * info to call set_voltage_time_sel(). 2297 */ 2298 if (_regulator_is_enabled(rdev) && 2299 rdev->desc->ops->set_voltage_time_sel && 2300 rdev->desc->ops->get_voltage_sel) { 2301 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2302 if (old_selector < 0) 2303 return old_selector; 2304 } 2305 2306 if (rdev->desc->ops->set_voltage) { 2307 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2308 &selector); 2309 2310 if (ret >= 0) { 2311 if (rdev->desc->ops->list_voltage) 2312 best_val = rdev->desc->ops->list_voltage(rdev, 2313 selector); 2314 else 2315 best_val = _regulator_get_voltage(rdev); 2316 } 2317 2318 } else if (rdev->desc->ops->set_voltage_sel) { 2319 if (rdev->desc->ops->map_voltage) { 2320 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2321 max_uV); 2322 } else { 2323 if (rdev->desc->ops->list_voltage == 2324 regulator_list_voltage_linear) 2325 ret = regulator_map_voltage_linear(rdev, 2326 min_uV, max_uV); 2327 else 2328 ret = regulator_map_voltage_iterate(rdev, 2329 min_uV, max_uV); 2330 } 2331 2332 if (ret >= 0) { 2333 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2334 if (min_uV <= best_val && max_uV >= best_val) { 2335 selector = ret; 2336 if (old_selector == selector) 2337 ret = 0; 2338 else 2339 ret = rdev->desc->ops->set_voltage_sel( 2340 rdev, ret); 2341 } else { 2342 ret = -EINVAL; 2343 } 2344 } 2345 } else { 2346 ret = -EINVAL; 2347 } 2348 2349 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2350 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2351 && old_selector != selector) { 2352 2353 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2354 old_selector, selector); 2355 if (delay < 0) { 2356 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2357 delay); 2358 delay = 0; 2359 } 2360 2361 /* Insert any necessary delays */ 2362 if (delay >= 1000) { 2363 mdelay(delay / 1000); 2364 udelay(delay % 1000); 2365 } else if (delay) { 2366 udelay(delay); 2367 } 2368 } 2369 2370 if (ret == 0 && best_val >= 0) { 2371 unsigned long data = best_val; 2372 2373 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2374 (void *)data); 2375 } 2376 2377 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2378 2379 return ret; 2380 } 2381 2382 /** 2383 * regulator_set_voltage - set regulator output voltage 2384 * @regulator: regulator source 2385 * @min_uV: Minimum required voltage in uV 2386 * @max_uV: Maximum acceptable voltage in uV 2387 * 2388 * Sets a voltage regulator to the desired output voltage. This can be set 2389 * during any regulator state. IOW, regulator can be disabled or enabled. 2390 * 2391 * If the regulator is enabled then the voltage will change to the new value 2392 * immediately otherwise if the regulator is disabled the regulator will 2393 * output at the new voltage when enabled. 2394 * 2395 * NOTE: If the regulator is shared between several devices then the lowest 2396 * request voltage that meets the system constraints will be used. 2397 * Regulator system constraints must be set for this regulator before 2398 * calling this function otherwise this call will fail. 2399 */ 2400 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2401 { 2402 struct regulator_dev *rdev = regulator->rdev; 2403 int ret = 0; 2404 int old_min_uV, old_max_uV; 2405 2406 mutex_lock(&rdev->mutex); 2407 2408 /* If we're setting the same range as last time the change 2409 * should be a noop (some cpufreq implementations use the same 2410 * voltage for multiple frequencies, for example). 2411 */ 2412 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2413 goto out; 2414 2415 /* sanity check */ 2416 if (!rdev->desc->ops->set_voltage && 2417 !rdev->desc->ops->set_voltage_sel) { 2418 ret = -EINVAL; 2419 goto out; 2420 } 2421 2422 /* constraints check */ 2423 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2424 if (ret < 0) 2425 goto out; 2426 2427 /* restore original values in case of error */ 2428 old_min_uV = regulator->min_uV; 2429 old_max_uV = regulator->max_uV; 2430 regulator->min_uV = min_uV; 2431 regulator->max_uV = max_uV; 2432 2433 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2434 if (ret < 0) 2435 goto out2; 2436 2437 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2438 if (ret < 0) 2439 goto out2; 2440 2441 out: 2442 mutex_unlock(&rdev->mutex); 2443 return ret; 2444 out2: 2445 regulator->min_uV = old_min_uV; 2446 regulator->max_uV = old_max_uV; 2447 mutex_unlock(&rdev->mutex); 2448 return ret; 2449 } 2450 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2451 2452 /** 2453 * regulator_set_voltage_time - get raise/fall time 2454 * @regulator: regulator source 2455 * @old_uV: starting voltage in microvolts 2456 * @new_uV: target voltage in microvolts 2457 * 2458 * Provided with the starting and ending voltage, this function attempts to 2459 * calculate the time in microseconds required to rise or fall to this new 2460 * voltage. 2461 */ 2462 int regulator_set_voltage_time(struct regulator *regulator, 2463 int old_uV, int new_uV) 2464 { 2465 struct regulator_dev *rdev = regulator->rdev; 2466 struct regulator_ops *ops = rdev->desc->ops; 2467 int old_sel = -1; 2468 int new_sel = -1; 2469 int voltage; 2470 int i; 2471 2472 /* Currently requires operations to do this */ 2473 if (!ops->list_voltage || !ops->set_voltage_time_sel 2474 || !rdev->desc->n_voltages) 2475 return -EINVAL; 2476 2477 for (i = 0; i < rdev->desc->n_voltages; i++) { 2478 /* We only look for exact voltage matches here */ 2479 voltage = regulator_list_voltage(regulator, i); 2480 if (voltage < 0) 2481 return -EINVAL; 2482 if (voltage == 0) 2483 continue; 2484 if (voltage == old_uV) 2485 old_sel = i; 2486 if (voltage == new_uV) 2487 new_sel = i; 2488 } 2489 2490 if (old_sel < 0 || new_sel < 0) 2491 return -EINVAL; 2492 2493 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2494 } 2495 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2496 2497 /** 2498 * regulator_set_voltage_time_sel - get raise/fall time 2499 * @rdev: regulator source device 2500 * @old_selector: selector for starting voltage 2501 * @new_selector: selector for target voltage 2502 * 2503 * Provided with the starting and target voltage selectors, this function 2504 * returns time in microseconds required to rise or fall to this new voltage 2505 * 2506 * Drivers providing ramp_delay in regulation_constraints can use this as their 2507 * set_voltage_time_sel() operation. 2508 */ 2509 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2510 unsigned int old_selector, 2511 unsigned int new_selector) 2512 { 2513 unsigned int ramp_delay = 0; 2514 int old_volt, new_volt; 2515 2516 if (rdev->constraints->ramp_delay) 2517 ramp_delay = rdev->constraints->ramp_delay; 2518 else if (rdev->desc->ramp_delay) 2519 ramp_delay = rdev->desc->ramp_delay; 2520 2521 if (ramp_delay == 0) { 2522 rdev_warn(rdev, "ramp_delay not set\n"); 2523 return 0; 2524 } 2525 2526 /* sanity check */ 2527 if (!rdev->desc->ops->list_voltage) 2528 return -EINVAL; 2529 2530 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2531 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2532 2533 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2534 } 2535 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2536 2537 /** 2538 * regulator_sync_voltage - re-apply last regulator output voltage 2539 * @regulator: regulator source 2540 * 2541 * Re-apply the last configured voltage. This is intended to be used 2542 * where some external control source the consumer is cooperating with 2543 * has caused the configured voltage to change. 2544 */ 2545 int regulator_sync_voltage(struct regulator *regulator) 2546 { 2547 struct regulator_dev *rdev = regulator->rdev; 2548 int ret, min_uV, max_uV; 2549 2550 mutex_lock(&rdev->mutex); 2551 2552 if (!rdev->desc->ops->set_voltage && 2553 !rdev->desc->ops->set_voltage_sel) { 2554 ret = -EINVAL; 2555 goto out; 2556 } 2557 2558 /* This is only going to work if we've had a voltage configured. */ 2559 if (!regulator->min_uV && !regulator->max_uV) { 2560 ret = -EINVAL; 2561 goto out; 2562 } 2563 2564 min_uV = regulator->min_uV; 2565 max_uV = regulator->max_uV; 2566 2567 /* This should be a paranoia check... */ 2568 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2569 if (ret < 0) 2570 goto out; 2571 2572 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2573 if (ret < 0) 2574 goto out; 2575 2576 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2577 2578 out: 2579 mutex_unlock(&rdev->mutex); 2580 return ret; 2581 } 2582 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2583 2584 static int _regulator_get_voltage(struct regulator_dev *rdev) 2585 { 2586 int sel, ret; 2587 2588 if (rdev->desc->ops->get_voltage_sel) { 2589 sel = rdev->desc->ops->get_voltage_sel(rdev); 2590 if (sel < 0) 2591 return sel; 2592 ret = rdev->desc->ops->list_voltage(rdev, sel); 2593 } else if (rdev->desc->ops->get_voltage) { 2594 ret = rdev->desc->ops->get_voltage(rdev); 2595 } else if (rdev->desc->ops->list_voltage) { 2596 ret = rdev->desc->ops->list_voltage(rdev, 0); 2597 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2598 ret = rdev->desc->fixed_uV; 2599 } else { 2600 return -EINVAL; 2601 } 2602 2603 if (ret < 0) 2604 return ret; 2605 return ret - rdev->constraints->uV_offset; 2606 } 2607 2608 /** 2609 * regulator_get_voltage - get regulator output voltage 2610 * @regulator: regulator source 2611 * 2612 * This returns the current regulator voltage in uV. 2613 * 2614 * NOTE: If the regulator is disabled it will return the voltage value. This 2615 * function should not be used to determine regulator state. 2616 */ 2617 int regulator_get_voltage(struct regulator *regulator) 2618 { 2619 int ret; 2620 2621 mutex_lock(®ulator->rdev->mutex); 2622 2623 ret = _regulator_get_voltage(regulator->rdev); 2624 2625 mutex_unlock(®ulator->rdev->mutex); 2626 2627 return ret; 2628 } 2629 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2630 2631 /** 2632 * regulator_set_current_limit - set regulator output current limit 2633 * @regulator: regulator source 2634 * @min_uA: Minimum supported current in uA 2635 * @max_uA: Maximum supported current in uA 2636 * 2637 * Sets current sink to the desired output current. This can be set during 2638 * any regulator state. IOW, regulator can be disabled or enabled. 2639 * 2640 * If the regulator is enabled then the current will change to the new value 2641 * immediately otherwise if the regulator is disabled the regulator will 2642 * output at the new current when enabled. 2643 * 2644 * NOTE: Regulator system constraints must be set for this regulator before 2645 * calling this function otherwise this call will fail. 2646 */ 2647 int regulator_set_current_limit(struct regulator *regulator, 2648 int min_uA, int max_uA) 2649 { 2650 struct regulator_dev *rdev = regulator->rdev; 2651 int ret; 2652 2653 mutex_lock(&rdev->mutex); 2654 2655 /* sanity check */ 2656 if (!rdev->desc->ops->set_current_limit) { 2657 ret = -EINVAL; 2658 goto out; 2659 } 2660 2661 /* constraints check */ 2662 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2663 if (ret < 0) 2664 goto out; 2665 2666 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2667 out: 2668 mutex_unlock(&rdev->mutex); 2669 return ret; 2670 } 2671 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2672 2673 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2674 { 2675 int ret; 2676 2677 mutex_lock(&rdev->mutex); 2678 2679 /* sanity check */ 2680 if (!rdev->desc->ops->get_current_limit) { 2681 ret = -EINVAL; 2682 goto out; 2683 } 2684 2685 ret = rdev->desc->ops->get_current_limit(rdev); 2686 out: 2687 mutex_unlock(&rdev->mutex); 2688 return ret; 2689 } 2690 2691 /** 2692 * regulator_get_current_limit - get regulator output current 2693 * @regulator: regulator source 2694 * 2695 * This returns the current supplied by the specified current sink in uA. 2696 * 2697 * NOTE: If the regulator is disabled it will return the current value. This 2698 * function should not be used to determine regulator state. 2699 */ 2700 int regulator_get_current_limit(struct regulator *regulator) 2701 { 2702 return _regulator_get_current_limit(regulator->rdev); 2703 } 2704 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2705 2706 /** 2707 * regulator_set_mode - set regulator operating mode 2708 * @regulator: regulator source 2709 * @mode: operating mode - one of the REGULATOR_MODE constants 2710 * 2711 * Set regulator operating mode to increase regulator efficiency or improve 2712 * regulation performance. 2713 * 2714 * NOTE: Regulator system constraints must be set for this regulator before 2715 * calling this function otherwise this call will fail. 2716 */ 2717 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2718 { 2719 struct regulator_dev *rdev = regulator->rdev; 2720 int ret; 2721 int regulator_curr_mode; 2722 2723 mutex_lock(&rdev->mutex); 2724 2725 /* sanity check */ 2726 if (!rdev->desc->ops->set_mode) { 2727 ret = -EINVAL; 2728 goto out; 2729 } 2730 2731 /* return if the same mode is requested */ 2732 if (rdev->desc->ops->get_mode) { 2733 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2734 if (regulator_curr_mode == mode) { 2735 ret = 0; 2736 goto out; 2737 } 2738 } 2739 2740 /* constraints check */ 2741 ret = regulator_mode_constrain(rdev, &mode); 2742 if (ret < 0) 2743 goto out; 2744 2745 ret = rdev->desc->ops->set_mode(rdev, mode); 2746 out: 2747 mutex_unlock(&rdev->mutex); 2748 return ret; 2749 } 2750 EXPORT_SYMBOL_GPL(regulator_set_mode); 2751 2752 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2753 { 2754 int ret; 2755 2756 mutex_lock(&rdev->mutex); 2757 2758 /* sanity check */ 2759 if (!rdev->desc->ops->get_mode) { 2760 ret = -EINVAL; 2761 goto out; 2762 } 2763 2764 ret = rdev->desc->ops->get_mode(rdev); 2765 out: 2766 mutex_unlock(&rdev->mutex); 2767 return ret; 2768 } 2769 2770 /** 2771 * regulator_get_mode - get regulator operating mode 2772 * @regulator: regulator source 2773 * 2774 * Get the current regulator operating mode. 2775 */ 2776 unsigned int regulator_get_mode(struct regulator *regulator) 2777 { 2778 return _regulator_get_mode(regulator->rdev); 2779 } 2780 EXPORT_SYMBOL_GPL(regulator_get_mode); 2781 2782 /** 2783 * regulator_set_optimum_mode - set regulator optimum operating mode 2784 * @regulator: regulator source 2785 * @uA_load: load current 2786 * 2787 * Notifies the regulator core of a new device load. This is then used by 2788 * DRMS (if enabled by constraints) to set the most efficient regulator 2789 * operating mode for the new regulator loading. 2790 * 2791 * Consumer devices notify their supply regulator of the maximum power 2792 * they will require (can be taken from device datasheet in the power 2793 * consumption tables) when they change operational status and hence power 2794 * state. Examples of operational state changes that can affect power 2795 * consumption are :- 2796 * 2797 * o Device is opened / closed. 2798 * o Device I/O is about to begin or has just finished. 2799 * o Device is idling in between work. 2800 * 2801 * This information is also exported via sysfs to userspace. 2802 * 2803 * DRMS will sum the total requested load on the regulator and change 2804 * to the most efficient operating mode if platform constraints allow. 2805 * 2806 * Returns the new regulator mode or error. 2807 */ 2808 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2809 { 2810 struct regulator_dev *rdev = regulator->rdev; 2811 struct regulator *consumer; 2812 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2813 unsigned int mode; 2814 2815 if (rdev->supply) 2816 input_uV = regulator_get_voltage(rdev->supply); 2817 2818 mutex_lock(&rdev->mutex); 2819 2820 /* 2821 * first check to see if we can set modes at all, otherwise just 2822 * tell the consumer everything is OK. 2823 */ 2824 regulator->uA_load = uA_load; 2825 ret = regulator_check_drms(rdev); 2826 if (ret < 0) { 2827 ret = 0; 2828 goto out; 2829 } 2830 2831 if (!rdev->desc->ops->get_optimum_mode) 2832 goto out; 2833 2834 /* 2835 * we can actually do this so any errors are indicators of 2836 * potential real failure. 2837 */ 2838 ret = -EINVAL; 2839 2840 if (!rdev->desc->ops->set_mode) 2841 goto out; 2842 2843 /* get output voltage */ 2844 output_uV = _regulator_get_voltage(rdev); 2845 if (output_uV <= 0) { 2846 rdev_err(rdev, "invalid output voltage found\n"); 2847 goto out; 2848 } 2849 2850 /* No supply? Use constraint voltage */ 2851 if (input_uV <= 0) 2852 input_uV = rdev->constraints->input_uV; 2853 if (input_uV <= 0) { 2854 rdev_err(rdev, "invalid input voltage found\n"); 2855 goto out; 2856 } 2857 2858 /* calc total requested load for this regulator */ 2859 list_for_each_entry(consumer, &rdev->consumer_list, list) 2860 total_uA_load += consumer->uA_load; 2861 2862 mode = rdev->desc->ops->get_optimum_mode(rdev, 2863 input_uV, output_uV, 2864 total_uA_load); 2865 ret = regulator_mode_constrain(rdev, &mode); 2866 if (ret < 0) { 2867 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2868 total_uA_load, input_uV, output_uV); 2869 goto out; 2870 } 2871 2872 ret = rdev->desc->ops->set_mode(rdev, mode); 2873 if (ret < 0) { 2874 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2875 goto out; 2876 } 2877 ret = mode; 2878 out: 2879 mutex_unlock(&rdev->mutex); 2880 return ret; 2881 } 2882 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2883 2884 /** 2885 * regulator_allow_bypass - allow the regulator to go into bypass mode 2886 * 2887 * @regulator: Regulator to configure 2888 * @enable: enable or disable bypass mode 2889 * 2890 * Allow the regulator to go into bypass mode if all other consumers 2891 * for the regulator also enable bypass mode and the machine 2892 * constraints allow this. Bypass mode means that the regulator is 2893 * simply passing the input directly to the output with no regulation. 2894 */ 2895 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2896 { 2897 struct regulator_dev *rdev = regulator->rdev; 2898 int ret = 0; 2899 2900 if (!rdev->desc->ops->set_bypass) 2901 return 0; 2902 2903 if (rdev->constraints && 2904 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2905 return 0; 2906 2907 mutex_lock(&rdev->mutex); 2908 2909 if (enable && !regulator->bypass) { 2910 rdev->bypass_count++; 2911 2912 if (rdev->bypass_count == rdev->open_count) { 2913 ret = rdev->desc->ops->set_bypass(rdev, enable); 2914 if (ret != 0) 2915 rdev->bypass_count--; 2916 } 2917 2918 } else if (!enable && regulator->bypass) { 2919 rdev->bypass_count--; 2920 2921 if (rdev->bypass_count != rdev->open_count) { 2922 ret = rdev->desc->ops->set_bypass(rdev, enable); 2923 if (ret != 0) 2924 rdev->bypass_count++; 2925 } 2926 } 2927 2928 if (ret == 0) 2929 regulator->bypass = enable; 2930 2931 mutex_unlock(&rdev->mutex); 2932 2933 return ret; 2934 } 2935 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2936 2937 /** 2938 * regulator_register_notifier - register regulator event notifier 2939 * @regulator: regulator source 2940 * @nb: notifier block 2941 * 2942 * Register notifier block to receive regulator events. 2943 */ 2944 int regulator_register_notifier(struct regulator *regulator, 2945 struct notifier_block *nb) 2946 { 2947 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2948 nb); 2949 } 2950 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2951 2952 /** 2953 * regulator_unregister_notifier - unregister regulator event notifier 2954 * @regulator: regulator source 2955 * @nb: notifier block 2956 * 2957 * Unregister regulator event notifier block. 2958 */ 2959 int regulator_unregister_notifier(struct regulator *regulator, 2960 struct notifier_block *nb) 2961 { 2962 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2963 nb); 2964 } 2965 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2966 2967 /* notify regulator consumers and downstream regulator consumers. 2968 * Note mutex must be held by caller. 2969 */ 2970 static void _notifier_call_chain(struct regulator_dev *rdev, 2971 unsigned long event, void *data) 2972 { 2973 /* call rdev chain first */ 2974 blocking_notifier_call_chain(&rdev->notifier, event, data); 2975 } 2976 2977 /** 2978 * regulator_bulk_get - get multiple regulator consumers 2979 * 2980 * @dev: Device to supply 2981 * @num_consumers: Number of consumers to register 2982 * @consumers: Configuration of consumers; clients are stored here. 2983 * 2984 * @return 0 on success, an errno on failure. 2985 * 2986 * This helper function allows drivers to get several regulator 2987 * consumers in one operation. If any of the regulators cannot be 2988 * acquired then any regulators that were allocated will be freed 2989 * before returning to the caller. 2990 */ 2991 int regulator_bulk_get(struct device *dev, int num_consumers, 2992 struct regulator_bulk_data *consumers) 2993 { 2994 int i; 2995 int ret; 2996 2997 for (i = 0; i < num_consumers; i++) 2998 consumers[i].consumer = NULL; 2999 3000 for (i = 0; i < num_consumers; i++) { 3001 consumers[i].consumer = regulator_get(dev, 3002 consumers[i].supply); 3003 if (IS_ERR(consumers[i].consumer)) { 3004 ret = PTR_ERR(consumers[i].consumer); 3005 dev_err(dev, "Failed to get supply '%s': %d\n", 3006 consumers[i].supply, ret); 3007 consumers[i].consumer = NULL; 3008 goto err; 3009 } 3010 } 3011 3012 return 0; 3013 3014 err: 3015 while (--i >= 0) 3016 regulator_put(consumers[i].consumer); 3017 3018 return ret; 3019 } 3020 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3021 3022 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3023 { 3024 struct regulator_bulk_data *bulk = data; 3025 3026 bulk->ret = regulator_enable(bulk->consumer); 3027 } 3028 3029 /** 3030 * regulator_bulk_enable - enable multiple regulator consumers 3031 * 3032 * @num_consumers: Number of consumers 3033 * @consumers: Consumer data; clients are stored here. 3034 * @return 0 on success, an errno on failure 3035 * 3036 * This convenience API allows consumers to enable multiple regulator 3037 * clients in a single API call. If any consumers cannot be enabled 3038 * then any others that were enabled will be disabled again prior to 3039 * return. 3040 */ 3041 int regulator_bulk_enable(int num_consumers, 3042 struct regulator_bulk_data *consumers) 3043 { 3044 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3045 int i; 3046 int ret = 0; 3047 3048 for (i = 0; i < num_consumers; i++) { 3049 if (consumers[i].consumer->always_on) 3050 consumers[i].ret = 0; 3051 else 3052 async_schedule_domain(regulator_bulk_enable_async, 3053 &consumers[i], &async_domain); 3054 } 3055 3056 async_synchronize_full_domain(&async_domain); 3057 3058 /* If any consumer failed we need to unwind any that succeeded */ 3059 for (i = 0; i < num_consumers; i++) { 3060 if (consumers[i].ret != 0) { 3061 ret = consumers[i].ret; 3062 goto err; 3063 } 3064 } 3065 3066 return 0; 3067 3068 err: 3069 for (i = 0; i < num_consumers; i++) { 3070 if (consumers[i].ret < 0) 3071 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3072 consumers[i].ret); 3073 else 3074 regulator_disable(consumers[i].consumer); 3075 } 3076 3077 return ret; 3078 } 3079 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3080 3081 /** 3082 * regulator_bulk_disable - disable multiple regulator consumers 3083 * 3084 * @num_consumers: Number of consumers 3085 * @consumers: Consumer data; clients are stored here. 3086 * @return 0 on success, an errno on failure 3087 * 3088 * This convenience API allows consumers to disable multiple regulator 3089 * clients in a single API call. If any consumers cannot be disabled 3090 * then any others that were disabled will be enabled again prior to 3091 * return. 3092 */ 3093 int regulator_bulk_disable(int num_consumers, 3094 struct regulator_bulk_data *consumers) 3095 { 3096 int i; 3097 int ret, r; 3098 3099 for (i = num_consumers - 1; i >= 0; --i) { 3100 ret = regulator_disable(consumers[i].consumer); 3101 if (ret != 0) 3102 goto err; 3103 } 3104 3105 return 0; 3106 3107 err: 3108 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3109 for (++i; i < num_consumers; ++i) { 3110 r = regulator_enable(consumers[i].consumer); 3111 if (r != 0) 3112 pr_err("Failed to reename %s: %d\n", 3113 consumers[i].supply, r); 3114 } 3115 3116 return ret; 3117 } 3118 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3119 3120 /** 3121 * regulator_bulk_force_disable - force disable multiple regulator consumers 3122 * 3123 * @num_consumers: Number of consumers 3124 * @consumers: Consumer data; clients are stored here. 3125 * @return 0 on success, an errno on failure 3126 * 3127 * This convenience API allows consumers to forcibly disable multiple regulator 3128 * clients in a single API call. 3129 * NOTE: This should be used for situations when device damage will 3130 * likely occur if the regulators are not disabled (e.g. over temp). 3131 * Although regulator_force_disable function call for some consumers can 3132 * return error numbers, the function is called for all consumers. 3133 */ 3134 int regulator_bulk_force_disable(int num_consumers, 3135 struct regulator_bulk_data *consumers) 3136 { 3137 int i; 3138 int ret; 3139 3140 for (i = 0; i < num_consumers; i++) 3141 consumers[i].ret = 3142 regulator_force_disable(consumers[i].consumer); 3143 3144 for (i = 0; i < num_consumers; i++) { 3145 if (consumers[i].ret != 0) { 3146 ret = consumers[i].ret; 3147 goto out; 3148 } 3149 } 3150 3151 return 0; 3152 out: 3153 return ret; 3154 } 3155 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3156 3157 /** 3158 * regulator_bulk_free - free multiple regulator consumers 3159 * 3160 * @num_consumers: Number of consumers 3161 * @consumers: Consumer data; clients are stored here. 3162 * 3163 * This convenience API allows consumers to free multiple regulator 3164 * clients in a single API call. 3165 */ 3166 void regulator_bulk_free(int num_consumers, 3167 struct regulator_bulk_data *consumers) 3168 { 3169 int i; 3170 3171 for (i = 0; i < num_consumers; i++) { 3172 regulator_put(consumers[i].consumer); 3173 consumers[i].consumer = NULL; 3174 } 3175 } 3176 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3177 3178 /** 3179 * regulator_notifier_call_chain - call regulator event notifier 3180 * @rdev: regulator source 3181 * @event: notifier block 3182 * @data: callback-specific data. 3183 * 3184 * Called by regulator drivers to notify clients a regulator event has 3185 * occurred. We also notify regulator clients downstream. 3186 * Note lock must be held by caller. 3187 */ 3188 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3189 unsigned long event, void *data) 3190 { 3191 _notifier_call_chain(rdev, event, data); 3192 return NOTIFY_DONE; 3193 3194 } 3195 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3196 3197 /** 3198 * regulator_mode_to_status - convert a regulator mode into a status 3199 * 3200 * @mode: Mode to convert 3201 * 3202 * Convert a regulator mode into a status. 3203 */ 3204 int regulator_mode_to_status(unsigned int mode) 3205 { 3206 switch (mode) { 3207 case REGULATOR_MODE_FAST: 3208 return REGULATOR_STATUS_FAST; 3209 case REGULATOR_MODE_NORMAL: 3210 return REGULATOR_STATUS_NORMAL; 3211 case REGULATOR_MODE_IDLE: 3212 return REGULATOR_STATUS_IDLE; 3213 case REGULATOR_MODE_STANDBY: 3214 return REGULATOR_STATUS_STANDBY; 3215 default: 3216 return REGULATOR_STATUS_UNDEFINED; 3217 } 3218 } 3219 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3220 3221 /* 3222 * To avoid cluttering sysfs (and memory) with useless state, only 3223 * create attributes that can be meaningfully displayed. 3224 */ 3225 static int add_regulator_attributes(struct regulator_dev *rdev) 3226 { 3227 struct device *dev = &rdev->dev; 3228 struct regulator_ops *ops = rdev->desc->ops; 3229 int status = 0; 3230 3231 /* some attributes need specific methods to be displayed */ 3232 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3233 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3234 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3235 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) { 3236 status = device_create_file(dev, &dev_attr_microvolts); 3237 if (status < 0) 3238 return status; 3239 } 3240 if (ops->get_current_limit) { 3241 status = device_create_file(dev, &dev_attr_microamps); 3242 if (status < 0) 3243 return status; 3244 } 3245 if (ops->get_mode) { 3246 status = device_create_file(dev, &dev_attr_opmode); 3247 if (status < 0) 3248 return status; 3249 } 3250 if (rdev->ena_pin || ops->is_enabled) { 3251 status = device_create_file(dev, &dev_attr_state); 3252 if (status < 0) 3253 return status; 3254 } 3255 if (ops->get_status) { 3256 status = device_create_file(dev, &dev_attr_status); 3257 if (status < 0) 3258 return status; 3259 } 3260 if (ops->get_bypass) { 3261 status = device_create_file(dev, &dev_attr_bypass); 3262 if (status < 0) 3263 return status; 3264 } 3265 3266 /* some attributes are type-specific */ 3267 if (rdev->desc->type == REGULATOR_CURRENT) { 3268 status = device_create_file(dev, &dev_attr_requested_microamps); 3269 if (status < 0) 3270 return status; 3271 } 3272 3273 /* all the other attributes exist to support constraints; 3274 * don't show them if there are no constraints, or if the 3275 * relevant supporting methods are missing. 3276 */ 3277 if (!rdev->constraints) 3278 return status; 3279 3280 /* constraints need specific supporting methods */ 3281 if (ops->set_voltage || ops->set_voltage_sel) { 3282 status = device_create_file(dev, &dev_attr_min_microvolts); 3283 if (status < 0) 3284 return status; 3285 status = device_create_file(dev, &dev_attr_max_microvolts); 3286 if (status < 0) 3287 return status; 3288 } 3289 if (ops->set_current_limit) { 3290 status = device_create_file(dev, &dev_attr_min_microamps); 3291 if (status < 0) 3292 return status; 3293 status = device_create_file(dev, &dev_attr_max_microamps); 3294 if (status < 0) 3295 return status; 3296 } 3297 3298 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3299 if (status < 0) 3300 return status; 3301 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3302 if (status < 0) 3303 return status; 3304 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3305 if (status < 0) 3306 return status; 3307 3308 if (ops->set_suspend_voltage) { 3309 status = device_create_file(dev, 3310 &dev_attr_suspend_standby_microvolts); 3311 if (status < 0) 3312 return status; 3313 status = device_create_file(dev, 3314 &dev_attr_suspend_mem_microvolts); 3315 if (status < 0) 3316 return status; 3317 status = device_create_file(dev, 3318 &dev_attr_suspend_disk_microvolts); 3319 if (status < 0) 3320 return status; 3321 } 3322 3323 if (ops->set_suspend_mode) { 3324 status = device_create_file(dev, 3325 &dev_attr_suspend_standby_mode); 3326 if (status < 0) 3327 return status; 3328 status = device_create_file(dev, 3329 &dev_attr_suspend_mem_mode); 3330 if (status < 0) 3331 return status; 3332 status = device_create_file(dev, 3333 &dev_attr_suspend_disk_mode); 3334 if (status < 0) 3335 return status; 3336 } 3337 3338 return status; 3339 } 3340 3341 static void rdev_init_debugfs(struct regulator_dev *rdev) 3342 { 3343 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3344 if (!rdev->debugfs) { 3345 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3346 return; 3347 } 3348 3349 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3350 &rdev->use_count); 3351 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3352 &rdev->open_count); 3353 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3354 &rdev->bypass_count); 3355 } 3356 3357 /** 3358 * regulator_register - register regulator 3359 * @regulator_desc: regulator to register 3360 * @config: runtime configuration for regulator 3361 * 3362 * Called by regulator drivers to register a regulator. 3363 * Returns a valid pointer to struct regulator_dev on success 3364 * or an ERR_PTR() on error. 3365 */ 3366 struct regulator_dev * 3367 regulator_register(const struct regulator_desc *regulator_desc, 3368 const struct regulator_config *config) 3369 { 3370 const struct regulation_constraints *constraints = NULL; 3371 const struct regulator_init_data *init_data; 3372 static atomic_t regulator_no = ATOMIC_INIT(0); 3373 struct regulator_dev *rdev; 3374 struct device *dev; 3375 int ret, i; 3376 const char *supply = NULL; 3377 3378 if (regulator_desc == NULL || config == NULL) 3379 return ERR_PTR(-EINVAL); 3380 3381 dev = config->dev; 3382 WARN_ON(!dev); 3383 3384 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3385 return ERR_PTR(-EINVAL); 3386 3387 if (regulator_desc->type != REGULATOR_VOLTAGE && 3388 regulator_desc->type != REGULATOR_CURRENT) 3389 return ERR_PTR(-EINVAL); 3390 3391 /* Only one of each should be implemented */ 3392 WARN_ON(regulator_desc->ops->get_voltage && 3393 regulator_desc->ops->get_voltage_sel); 3394 WARN_ON(regulator_desc->ops->set_voltage && 3395 regulator_desc->ops->set_voltage_sel); 3396 3397 /* If we're using selectors we must implement list_voltage. */ 3398 if (regulator_desc->ops->get_voltage_sel && 3399 !regulator_desc->ops->list_voltage) { 3400 return ERR_PTR(-EINVAL); 3401 } 3402 if (regulator_desc->ops->set_voltage_sel && 3403 !regulator_desc->ops->list_voltage) { 3404 return ERR_PTR(-EINVAL); 3405 } 3406 3407 init_data = config->init_data; 3408 3409 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3410 if (rdev == NULL) 3411 return ERR_PTR(-ENOMEM); 3412 3413 mutex_lock(®ulator_list_mutex); 3414 3415 mutex_init(&rdev->mutex); 3416 rdev->reg_data = config->driver_data; 3417 rdev->owner = regulator_desc->owner; 3418 rdev->desc = regulator_desc; 3419 if (config->regmap) 3420 rdev->regmap = config->regmap; 3421 else if (dev_get_regmap(dev, NULL)) 3422 rdev->regmap = dev_get_regmap(dev, NULL); 3423 else if (dev->parent) 3424 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3425 INIT_LIST_HEAD(&rdev->consumer_list); 3426 INIT_LIST_HEAD(&rdev->list); 3427 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3428 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3429 3430 /* preform any regulator specific init */ 3431 if (init_data && init_data->regulator_init) { 3432 ret = init_data->regulator_init(rdev->reg_data); 3433 if (ret < 0) 3434 goto clean; 3435 } 3436 3437 /* register with sysfs */ 3438 rdev->dev.class = ®ulator_class; 3439 rdev->dev.of_node = config->of_node; 3440 rdev->dev.parent = dev; 3441 dev_set_name(&rdev->dev, "regulator.%d", 3442 atomic_inc_return(®ulator_no) - 1); 3443 ret = device_register(&rdev->dev); 3444 if (ret != 0) { 3445 put_device(&rdev->dev); 3446 goto clean; 3447 } 3448 3449 dev_set_drvdata(&rdev->dev, rdev); 3450 3451 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3452 ret = regulator_ena_gpio_request(rdev, config); 3453 if (ret != 0) { 3454 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3455 config->ena_gpio, ret); 3456 goto wash; 3457 } 3458 3459 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3460 rdev->ena_gpio_state = 1; 3461 3462 if (config->ena_gpio_invert) 3463 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3464 } 3465 3466 /* set regulator constraints */ 3467 if (init_data) 3468 constraints = &init_data->constraints; 3469 3470 ret = set_machine_constraints(rdev, constraints); 3471 if (ret < 0) 3472 goto scrub; 3473 3474 /* add attributes supported by this regulator */ 3475 ret = add_regulator_attributes(rdev); 3476 if (ret < 0) 3477 goto scrub; 3478 3479 if (init_data && init_data->supply_regulator) 3480 supply = init_data->supply_regulator; 3481 else if (regulator_desc->supply_name) 3482 supply = regulator_desc->supply_name; 3483 3484 if (supply) { 3485 struct regulator_dev *r; 3486 3487 r = regulator_dev_lookup(dev, supply, &ret); 3488 3489 if (ret == -ENODEV) { 3490 /* 3491 * No supply was specified for this regulator and 3492 * there will never be one. 3493 */ 3494 ret = 0; 3495 goto add_dev; 3496 } else if (!r) { 3497 dev_err(dev, "Failed to find supply %s\n", supply); 3498 ret = -EPROBE_DEFER; 3499 goto scrub; 3500 } 3501 3502 ret = set_supply(rdev, r); 3503 if (ret < 0) 3504 goto scrub; 3505 3506 /* Enable supply if rail is enabled */ 3507 if (_regulator_is_enabled(rdev)) { 3508 ret = regulator_enable(rdev->supply); 3509 if (ret < 0) 3510 goto scrub; 3511 } 3512 } 3513 3514 add_dev: 3515 /* add consumers devices */ 3516 if (init_data) { 3517 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3518 ret = set_consumer_device_supply(rdev, 3519 init_data->consumer_supplies[i].dev_name, 3520 init_data->consumer_supplies[i].supply); 3521 if (ret < 0) { 3522 dev_err(dev, "Failed to set supply %s\n", 3523 init_data->consumer_supplies[i].supply); 3524 goto unset_supplies; 3525 } 3526 } 3527 } 3528 3529 list_add(&rdev->list, ®ulator_list); 3530 3531 rdev_init_debugfs(rdev); 3532 out: 3533 mutex_unlock(®ulator_list_mutex); 3534 return rdev; 3535 3536 unset_supplies: 3537 unset_regulator_supplies(rdev); 3538 3539 scrub: 3540 if (rdev->supply) 3541 _regulator_put(rdev->supply); 3542 regulator_ena_gpio_free(rdev); 3543 kfree(rdev->constraints); 3544 wash: 3545 device_unregister(&rdev->dev); 3546 /* device core frees rdev */ 3547 rdev = ERR_PTR(ret); 3548 goto out; 3549 3550 clean: 3551 kfree(rdev); 3552 rdev = ERR_PTR(ret); 3553 goto out; 3554 } 3555 EXPORT_SYMBOL_GPL(regulator_register); 3556 3557 /** 3558 * regulator_unregister - unregister regulator 3559 * @rdev: regulator to unregister 3560 * 3561 * Called by regulator drivers to unregister a regulator. 3562 */ 3563 void regulator_unregister(struct regulator_dev *rdev) 3564 { 3565 if (rdev == NULL) 3566 return; 3567 3568 if (rdev->supply) { 3569 while (rdev->use_count--) 3570 regulator_disable(rdev->supply); 3571 regulator_put(rdev->supply); 3572 } 3573 mutex_lock(®ulator_list_mutex); 3574 debugfs_remove_recursive(rdev->debugfs); 3575 flush_work(&rdev->disable_work.work); 3576 WARN_ON(rdev->open_count); 3577 unset_regulator_supplies(rdev); 3578 list_del(&rdev->list); 3579 kfree(rdev->constraints); 3580 regulator_ena_gpio_free(rdev); 3581 device_unregister(&rdev->dev); 3582 mutex_unlock(®ulator_list_mutex); 3583 } 3584 EXPORT_SYMBOL_GPL(regulator_unregister); 3585 3586 /** 3587 * regulator_suspend_prepare - prepare regulators for system wide suspend 3588 * @state: system suspend state 3589 * 3590 * Configure each regulator with it's suspend operating parameters for state. 3591 * This will usually be called by machine suspend code prior to supending. 3592 */ 3593 int regulator_suspend_prepare(suspend_state_t state) 3594 { 3595 struct regulator_dev *rdev; 3596 int ret = 0; 3597 3598 /* ON is handled by regulator active state */ 3599 if (state == PM_SUSPEND_ON) 3600 return -EINVAL; 3601 3602 mutex_lock(®ulator_list_mutex); 3603 list_for_each_entry(rdev, ®ulator_list, list) { 3604 3605 mutex_lock(&rdev->mutex); 3606 ret = suspend_prepare(rdev, state); 3607 mutex_unlock(&rdev->mutex); 3608 3609 if (ret < 0) { 3610 rdev_err(rdev, "failed to prepare\n"); 3611 goto out; 3612 } 3613 } 3614 out: 3615 mutex_unlock(®ulator_list_mutex); 3616 return ret; 3617 } 3618 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3619 3620 /** 3621 * regulator_suspend_finish - resume regulators from system wide suspend 3622 * 3623 * Turn on regulators that might be turned off by regulator_suspend_prepare 3624 * and that should be turned on according to the regulators properties. 3625 */ 3626 int regulator_suspend_finish(void) 3627 { 3628 struct regulator_dev *rdev; 3629 int ret = 0, error; 3630 3631 mutex_lock(®ulator_list_mutex); 3632 list_for_each_entry(rdev, ®ulator_list, list) { 3633 struct regulator_ops *ops = rdev->desc->ops; 3634 3635 mutex_lock(&rdev->mutex); 3636 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3637 ops->enable) { 3638 error = ops->enable(rdev); 3639 if (error) 3640 ret = error; 3641 } else { 3642 if (!have_full_constraints()) 3643 goto unlock; 3644 if (!ops->disable) 3645 goto unlock; 3646 if (!_regulator_is_enabled(rdev)) 3647 goto unlock; 3648 3649 error = ops->disable(rdev); 3650 if (error) 3651 ret = error; 3652 } 3653 unlock: 3654 mutex_unlock(&rdev->mutex); 3655 } 3656 mutex_unlock(®ulator_list_mutex); 3657 return ret; 3658 } 3659 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3660 3661 /** 3662 * regulator_has_full_constraints - the system has fully specified constraints 3663 * 3664 * Calling this function will cause the regulator API to disable all 3665 * regulators which have a zero use count and don't have an always_on 3666 * constraint in a late_initcall. 3667 * 3668 * The intention is that this will become the default behaviour in a 3669 * future kernel release so users are encouraged to use this facility 3670 * now. 3671 */ 3672 void regulator_has_full_constraints(void) 3673 { 3674 has_full_constraints = 1; 3675 } 3676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3677 3678 /** 3679 * rdev_get_drvdata - get rdev regulator driver data 3680 * @rdev: regulator 3681 * 3682 * Get rdev regulator driver private data. This call can be used in the 3683 * regulator driver context. 3684 */ 3685 void *rdev_get_drvdata(struct regulator_dev *rdev) 3686 { 3687 return rdev->reg_data; 3688 } 3689 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3690 3691 /** 3692 * regulator_get_drvdata - get regulator driver data 3693 * @regulator: regulator 3694 * 3695 * Get regulator driver private data. This call can be used in the consumer 3696 * driver context when non API regulator specific functions need to be called. 3697 */ 3698 void *regulator_get_drvdata(struct regulator *regulator) 3699 { 3700 return regulator->rdev->reg_data; 3701 } 3702 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3703 3704 /** 3705 * regulator_set_drvdata - set regulator driver data 3706 * @regulator: regulator 3707 * @data: data 3708 */ 3709 void regulator_set_drvdata(struct regulator *regulator, void *data) 3710 { 3711 regulator->rdev->reg_data = data; 3712 } 3713 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3714 3715 /** 3716 * regulator_get_id - get regulator ID 3717 * @rdev: regulator 3718 */ 3719 int rdev_get_id(struct regulator_dev *rdev) 3720 { 3721 return rdev->desc->id; 3722 } 3723 EXPORT_SYMBOL_GPL(rdev_get_id); 3724 3725 struct device *rdev_get_dev(struct regulator_dev *rdev) 3726 { 3727 return &rdev->dev; 3728 } 3729 EXPORT_SYMBOL_GPL(rdev_get_dev); 3730 3731 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3732 { 3733 return reg_init_data->driver_data; 3734 } 3735 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3736 3737 #ifdef CONFIG_DEBUG_FS 3738 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3739 size_t count, loff_t *ppos) 3740 { 3741 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3742 ssize_t len, ret = 0; 3743 struct regulator_map *map; 3744 3745 if (!buf) 3746 return -ENOMEM; 3747 3748 list_for_each_entry(map, ®ulator_map_list, list) { 3749 len = snprintf(buf + ret, PAGE_SIZE - ret, 3750 "%s -> %s.%s\n", 3751 rdev_get_name(map->regulator), map->dev_name, 3752 map->supply); 3753 if (len >= 0) 3754 ret += len; 3755 if (ret > PAGE_SIZE) { 3756 ret = PAGE_SIZE; 3757 break; 3758 } 3759 } 3760 3761 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3762 3763 kfree(buf); 3764 3765 return ret; 3766 } 3767 #endif 3768 3769 static const struct file_operations supply_map_fops = { 3770 #ifdef CONFIG_DEBUG_FS 3771 .read = supply_map_read_file, 3772 .llseek = default_llseek, 3773 #endif 3774 }; 3775 3776 static int __init regulator_init(void) 3777 { 3778 int ret; 3779 3780 ret = class_register(®ulator_class); 3781 3782 debugfs_root = debugfs_create_dir("regulator", NULL); 3783 if (!debugfs_root) 3784 pr_warn("regulator: Failed to create debugfs directory\n"); 3785 3786 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3787 &supply_map_fops); 3788 3789 regulator_dummy_init(); 3790 3791 return ret; 3792 } 3793 3794 /* init early to allow our consumers to complete system booting */ 3795 core_initcall(regulator_init); 3796 3797 static int __init regulator_init_complete(void) 3798 { 3799 struct regulator_dev *rdev; 3800 struct regulator_ops *ops; 3801 struct regulation_constraints *c; 3802 int enabled, ret; 3803 3804 /* 3805 * Since DT doesn't provide an idiomatic mechanism for 3806 * enabling full constraints and since it's much more natural 3807 * with DT to provide them just assume that a DT enabled 3808 * system has full constraints. 3809 */ 3810 if (of_have_populated_dt()) 3811 has_full_constraints = true; 3812 3813 mutex_lock(®ulator_list_mutex); 3814 3815 /* If we have a full configuration then disable any regulators 3816 * which are not in use or always_on. This will become the 3817 * default behaviour in the future. 3818 */ 3819 list_for_each_entry(rdev, ®ulator_list, list) { 3820 ops = rdev->desc->ops; 3821 c = rdev->constraints; 3822 3823 if (!ops->disable || (c && c->always_on)) 3824 continue; 3825 3826 mutex_lock(&rdev->mutex); 3827 3828 if (rdev->use_count) 3829 goto unlock; 3830 3831 /* If we can't read the status assume it's on. */ 3832 if (ops->is_enabled) 3833 enabled = ops->is_enabled(rdev); 3834 else 3835 enabled = 1; 3836 3837 if (!enabled) 3838 goto unlock; 3839 3840 if (have_full_constraints()) { 3841 /* We log since this may kill the system if it 3842 * goes wrong. */ 3843 rdev_info(rdev, "disabling\n"); 3844 ret = ops->disable(rdev); 3845 if (ret != 0) 3846 rdev_err(rdev, "couldn't disable: %d\n", ret); 3847 } else { 3848 /* The intention is that in future we will 3849 * assume that full constraints are provided 3850 * so warn even if we aren't going to do 3851 * anything here. 3852 */ 3853 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3854 } 3855 3856 unlock: 3857 mutex_unlock(&rdev->mutex); 3858 } 3859 3860 mutex_unlock(®ulator_list_mutex); 3861 3862 return 0; 3863 } 3864 late_initcall(regulator_init_complete); 3865