xref: /openbmc/linux/drivers/regulator/core.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89 				  unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 				     int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93 				     suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
95 					  struct device *dev,
96 					  const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
99 
100 const char *rdev_get_name(struct regulator_dev *rdev)
101 {
102 	if (rdev->constraints && rdev->constraints->name)
103 		return rdev->constraints->name;
104 	else if (rdev->desc->name)
105 		return rdev->desc->name;
106 	else
107 		return "";
108 }
109 EXPORT_SYMBOL_GPL(rdev_get_name);
110 
111 static bool have_full_constraints(void)
112 {
113 	return has_full_constraints || of_have_populated_dt();
114 }
115 
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117 {
118 	if (!rdev->constraints) {
119 		rdev_err(rdev, "no constraints\n");
120 		return false;
121 	}
122 
123 	if (rdev->constraints->valid_ops_mask & ops)
124 		return true;
125 
126 	return false;
127 }
128 
129 /**
130  * regulator_lock_nested - lock a single regulator
131  * @rdev:		regulator source
132  * @ww_ctx:		w/w mutex acquire context
133  *
134  * This function can be called many times by one task on
135  * a single regulator and its mutex will be locked only
136  * once. If a task, which is calling this function is other
137  * than the one, which initially locked the mutex, it will
138  * wait on mutex.
139  */
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 					struct ww_acquire_ctx *ww_ctx)
142 {
143 	bool lock = false;
144 	int ret = 0;
145 
146 	mutex_lock(&regulator_nesting_mutex);
147 
148 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149 		if (rdev->mutex_owner == current)
150 			rdev->ref_cnt++;
151 		else
152 			lock = true;
153 
154 		if (lock) {
155 			mutex_unlock(&regulator_nesting_mutex);
156 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 			mutex_lock(&regulator_nesting_mutex);
158 		}
159 	} else {
160 		lock = true;
161 	}
162 
163 	if (lock && ret != -EDEADLK) {
164 		rdev->ref_cnt++;
165 		rdev->mutex_owner = current;
166 	}
167 
168 	mutex_unlock(&regulator_nesting_mutex);
169 
170 	return ret;
171 }
172 
173 /**
174  * regulator_lock - lock a single regulator
175  * @rdev:		regulator source
176  *
177  * This function can be called many times by one task on
178  * a single regulator and its mutex will be locked only
179  * once. If a task, which is calling this function is other
180  * than the one, which initially locked the mutex, it will
181  * wait on mutex.
182  */
183 static void regulator_lock(struct regulator_dev *rdev)
184 {
185 	regulator_lock_nested(rdev, NULL);
186 }
187 
188 /**
189  * regulator_unlock - unlock a single regulator
190  * @rdev:		regulator_source
191  *
192  * This function unlocks the mutex when the
193  * reference counter reaches 0.
194  */
195 static void regulator_unlock(struct regulator_dev *rdev)
196 {
197 	mutex_lock(&regulator_nesting_mutex);
198 
199 	if (--rdev->ref_cnt == 0) {
200 		rdev->mutex_owner = NULL;
201 		ww_mutex_unlock(&rdev->mutex);
202 	}
203 
204 	WARN_ON_ONCE(rdev->ref_cnt < 0);
205 
206 	mutex_unlock(&regulator_nesting_mutex);
207 }
208 
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210 {
211 	struct regulator_dev *c_rdev;
212 	int i;
213 
214 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216 
217 		if (rdev->supply->rdev == c_rdev)
218 			return true;
219 	}
220 
221 	return false;
222 }
223 
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 				       unsigned int n_coupled)
226 {
227 	struct regulator_dev *c_rdev, *supply_rdev;
228 	int i, supply_n_coupled;
229 
230 	for (i = n_coupled; i > 0; i--) {
231 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232 
233 		if (!c_rdev)
234 			continue;
235 
236 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 			supply_rdev = c_rdev->supply->rdev;
238 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239 
240 			regulator_unlock_recursive(supply_rdev,
241 						   supply_n_coupled);
242 		}
243 
244 		regulator_unlock(c_rdev);
245 	}
246 }
247 
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249 				    struct regulator_dev **new_contended_rdev,
250 				    struct regulator_dev **old_contended_rdev,
251 				    struct ww_acquire_ctx *ww_ctx)
252 {
253 	struct regulator_dev *c_rdev;
254 	int i, err;
255 
256 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258 
259 		if (!c_rdev)
260 			continue;
261 
262 		if (c_rdev != *old_contended_rdev) {
263 			err = regulator_lock_nested(c_rdev, ww_ctx);
264 			if (err) {
265 				if (err == -EDEADLK) {
266 					*new_contended_rdev = c_rdev;
267 					goto err_unlock;
268 				}
269 
270 				/* shouldn't happen */
271 				WARN_ON_ONCE(err != -EALREADY);
272 			}
273 		} else {
274 			*old_contended_rdev = NULL;
275 		}
276 
277 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 			err = regulator_lock_recursive(c_rdev->supply->rdev,
279 						       new_contended_rdev,
280 						       old_contended_rdev,
281 						       ww_ctx);
282 			if (err) {
283 				regulator_unlock(c_rdev);
284 				goto err_unlock;
285 			}
286 		}
287 	}
288 
289 	return 0;
290 
291 err_unlock:
292 	regulator_unlock_recursive(rdev, i);
293 
294 	return err;
295 }
296 
297 /**
298  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299  *				regulators
300  * @rdev:			regulator source
301  * @ww_ctx:			w/w mutex acquire context
302  *
303  * Unlock all regulators related with rdev by coupling or supplying.
304  */
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 				       struct ww_acquire_ctx *ww_ctx)
307 {
308 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 	ww_acquire_fini(ww_ctx);
310 }
311 
312 /**
313  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314  * @rdev:			regulator source
315  * @ww_ctx:			w/w mutex acquire context
316  *
317  * This function as a wrapper on regulator_lock_recursive(), which locks
318  * all regulators related with rdev by coupling or supplying.
319  */
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321 				     struct ww_acquire_ctx *ww_ctx)
322 {
323 	struct regulator_dev *new_contended_rdev = NULL;
324 	struct regulator_dev *old_contended_rdev = NULL;
325 	int err;
326 
327 	mutex_lock(&regulator_list_mutex);
328 
329 	ww_acquire_init(ww_ctx, &regulator_ww_class);
330 
331 	do {
332 		if (new_contended_rdev) {
333 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 			old_contended_rdev = new_contended_rdev;
335 			old_contended_rdev->ref_cnt++;
336 		}
337 
338 		err = regulator_lock_recursive(rdev,
339 					       &new_contended_rdev,
340 					       &old_contended_rdev,
341 					       ww_ctx);
342 
343 		if (old_contended_rdev)
344 			regulator_unlock(old_contended_rdev);
345 
346 	} while (err == -EDEADLK);
347 
348 	ww_acquire_done(ww_ctx);
349 
350 	mutex_unlock(&regulator_list_mutex);
351 }
352 
353 /**
354  * of_get_child_regulator - get a child regulator device node
355  * based on supply name
356  * @parent: Parent device node
357  * @prop_name: Combination regulator supply name and "-supply"
358  *
359  * Traverse all child nodes.
360  * Extract the child regulator device node corresponding to the supply name.
361  * returns the device node corresponding to the regulator if found, else
362  * returns NULL.
363  */
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365 						  const char *prop_name)
366 {
367 	struct device_node *regnode = NULL;
368 	struct device_node *child = NULL;
369 
370 	for_each_child_of_node(parent, child) {
371 		regnode = of_parse_phandle(child, prop_name, 0);
372 
373 		if (!regnode) {
374 			regnode = of_get_child_regulator(child, prop_name);
375 			if (regnode)
376 				goto err_node_put;
377 		} else {
378 			goto err_node_put;
379 		}
380 	}
381 	return NULL;
382 
383 err_node_put:
384 	of_node_put(child);
385 	return regnode;
386 }
387 
388 /**
389  * of_get_regulator - get a regulator device node based on supply name
390  * @dev: Device pointer for the consumer (of regulator) device
391  * @supply: regulator supply name
392  *
393  * Extract the regulator device node corresponding to the supply name.
394  * returns the device node corresponding to the regulator if found, else
395  * returns NULL.
396  */
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398 {
399 	struct device_node *regnode = NULL;
400 	char prop_name[64]; /* 64 is max size of property name */
401 
402 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403 
404 	snprintf(prop_name, 64, "%s-supply", supply);
405 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406 
407 	if (!regnode) {
408 		regnode = of_get_child_regulator(dev->of_node, prop_name);
409 		if (regnode)
410 			return regnode;
411 
412 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 				prop_name, dev->of_node);
414 		return NULL;
415 	}
416 	return regnode;
417 }
418 
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421 			    int *min_uV, int *max_uV)
422 {
423 	BUG_ON(*min_uV > *max_uV);
424 
425 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 		rdev_err(rdev, "voltage operation not allowed\n");
427 		return -EPERM;
428 	}
429 
430 	if (*max_uV > rdev->constraints->max_uV)
431 		*max_uV = rdev->constraints->max_uV;
432 	if (*min_uV < rdev->constraints->min_uV)
433 		*min_uV = rdev->constraints->min_uV;
434 
435 	if (*min_uV > *max_uV) {
436 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 			 *min_uV, *max_uV);
438 		return -EINVAL;
439 	}
440 
441 	return 0;
442 }
443 
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
446 {
447 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448 }
449 
450 /* Make sure we select a voltage that suits the needs of all
451  * regulator consumers
452  */
453 int regulator_check_consumers(struct regulator_dev *rdev,
454 			      int *min_uV, int *max_uV,
455 			      suspend_state_t state)
456 {
457 	struct regulator *regulator;
458 	struct regulator_voltage *voltage;
459 
460 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 		voltage = &regulator->voltage[state];
462 		/*
463 		 * Assume consumers that didn't say anything are OK
464 		 * with anything in the constraint range.
465 		 */
466 		if (!voltage->min_uV && !voltage->max_uV)
467 			continue;
468 
469 		if (*max_uV > voltage->max_uV)
470 			*max_uV = voltage->max_uV;
471 		if (*min_uV < voltage->min_uV)
472 			*min_uV = voltage->min_uV;
473 	}
474 
475 	if (*min_uV > *max_uV) {
476 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 			*min_uV, *max_uV);
478 		return -EINVAL;
479 	}
480 
481 	return 0;
482 }
483 
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486 					int *min_uA, int *max_uA)
487 {
488 	BUG_ON(*min_uA > *max_uA);
489 
490 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 		rdev_err(rdev, "current operation not allowed\n");
492 		return -EPERM;
493 	}
494 
495 	if (*max_uA > rdev->constraints->max_uA)
496 		*max_uA = rdev->constraints->max_uA;
497 	if (*min_uA < rdev->constraints->min_uA)
498 		*min_uA = rdev->constraints->min_uA;
499 
500 	if (*min_uA > *max_uA) {
501 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 			 *min_uA, *max_uA);
503 		return -EINVAL;
504 	}
505 
506 	return 0;
507 }
508 
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
511 				    unsigned int *mode)
512 {
513 	switch (*mode) {
514 	case REGULATOR_MODE_FAST:
515 	case REGULATOR_MODE_NORMAL:
516 	case REGULATOR_MODE_IDLE:
517 	case REGULATOR_MODE_STANDBY:
518 		break;
519 	default:
520 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 		return -EINVAL;
522 	}
523 
524 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 		rdev_err(rdev, "mode operation not allowed\n");
526 		return -EPERM;
527 	}
528 
529 	/* The modes are bitmasks, the most power hungry modes having
530 	 * the lowest values. If the requested mode isn't supported
531 	 * try higher modes.
532 	 */
533 	while (*mode) {
534 		if (rdev->constraints->valid_modes_mask & *mode)
535 			return 0;
536 		*mode /= 2;
537 	}
538 
539 	return -EINVAL;
540 }
541 
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544 {
545 	if (rdev->constraints == NULL)
546 		return NULL;
547 
548 	switch (state) {
549 	case PM_SUSPEND_STANDBY:
550 		return &rdev->constraints->state_standby;
551 	case PM_SUSPEND_MEM:
552 		return &rdev->constraints->state_mem;
553 	case PM_SUSPEND_MAX:
554 		return &rdev->constraints->state_disk;
555 	default:
556 		return NULL;
557 	}
558 }
559 
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562 {
563 	const struct regulator_state *rstate;
564 
565 	rstate = regulator_get_suspend_state(rdev, state);
566 	if (rstate == NULL)
567 		return NULL;
568 
569 	/* If we have no suspend mode configuration don't set anything;
570 	 * only warn if the driver implements set_suspend_voltage or
571 	 * set_suspend_mode callback.
572 	 */
573 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 	    rstate->enabled != DISABLE_IN_SUSPEND) {
575 		if (rdev->desc->ops->set_suspend_voltage ||
576 		    rdev->desc->ops->set_suspend_mode)
577 			rdev_warn(rdev, "No configuration\n");
578 		return NULL;
579 	}
580 
581 	return rstate;
582 }
583 
584 static ssize_t microvolts_show(struct device *dev,
585 			       struct device_attribute *attr, char *buf)
586 {
587 	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 	int uV;
589 
590 	regulator_lock(rdev);
591 	uV = regulator_get_voltage_rdev(rdev);
592 	regulator_unlock(rdev);
593 
594 	if (uV < 0)
595 		return uV;
596 	return sprintf(buf, "%d\n", uV);
597 }
598 static DEVICE_ATTR_RO(microvolts);
599 
600 static ssize_t microamps_show(struct device *dev,
601 			      struct device_attribute *attr, char *buf)
602 {
603 	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 
605 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606 }
607 static DEVICE_ATTR_RO(microamps);
608 
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 			 char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 
614 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
615 }
616 static DEVICE_ATTR_RO(name);
617 
618 static const char *regulator_opmode_to_str(int mode)
619 {
620 	switch (mode) {
621 	case REGULATOR_MODE_FAST:
622 		return "fast";
623 	case REGULATOR_MODE_NORMAL:
624 		return "normal";
625 	case REGULATOR_MODE_IDLE:
626 		return "idle";
627 	case REGULATOR_MODE_STANDBY:
628 		return "standby";
629 	}
630 	return "unknown";
631 }
632 
633 static ssize_t regulator_print_opmode(char *buf, int mode)
634 {
635 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 }
637 
638 static ssize_t opmode_show(struct device *dev,
639 			   struct device_attribute *attr, char *buf)
640 {
641 	struct regulator_dev *rdev = dev_get_drvdata(dev);
642 
643 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644 }
645 static DEVICE_ATTR_RO(opmode);
646 
647 static ssize_t regulator_print_state(char *buf, int state)
648 {
649 	if (state > 0)
650 		return sprintf(buf, "enabled\n");
651 	else if (state == 0)
652 		return sprintf(buf, "disabled\n");
653 	else
654 		return sprintf(buf, "unknown\n");
655 }
656 
657 static ssize_t state_show(struct device *dev,
658 			  struct device_attribute *attr, char *buf)
659 {
660 	struct regulator_dev *rdev = dev_get_drvdata(dev);
661 	ssize_t ret;
662 
663 	regulator_lock(rdev);
664 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 	regulator_unlock(rdev);
666 
667 	return ret;
668 }
669 static DEVICE_ATTR_RO(state);
670 
671 static ssize_t status_show(struct device *dev,
672 			   struct device_attribute *attr, char *buf)
673 {
674 	struct regulator_dev *rdev = dev_get_drvdata(dev);
675 	int status;
676 	char *label;
677 
678 	status = rdev->desc->ops->get_status(rdev);
679 	if (status < 0)
680 		return status;
681 
682 	switch (status) {
683 	case REGULATOR_STATUS_OFF:
684 		label = "off";
685 		break;
686 	case REGULATOR_STATUS_ON:
687 		label = "on";
688 		break;
689 	case REGULATOR_STATUS_ERROR:
690 		label = "error";
691 		break;
692 	case REGULATOR_STATUS_FAST:
693 		label = "fast";
694 		break;
695 	case REGULATOR_STATUS_NORMAL:
696 		label = "normal";
697 		break;
698 	case REGULATOR_STATUS_IDLE:
699 		label = "idle";
700 		break;
701 	case REGULATOR_STATUS_STANDBY:
702 		label = "standby";
703 		break;
704 	case REGULATOR_STATUS_BYPASS:
705 		label = "bypass";
706 		break;
707 	case REGULATOR_STATUS_UNDEFINED:
708 		label = "undefined";
709 		break;
710 	default:
711 		return -ERANGE;
712 	}
713 
714 	return sprintf(buf, "%s\n", label);
715 }
716 static DEVICE_ATTR_RO(status);
717 
718 static ssize_t min_microamps_show(struct device *dev,
719 				  struct device_attribute *attr, char *buf)
720 {
721 	struct regulator_dev *rdev = dev_get_drvdata(dev);
722 
723 	if (!rdev->constraints)
724 		return sprintf(buf, "constraint not defined\n");
725 
726 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727 }
728 static DEVICE_ATTR_RO(min_microamps);
729 
730 static ssize_t max_microamps_show(struct device *dev,
731 				  struct device_attribute *attr, char *buf)
732 {
733 	struct regulator_dev *rdev = dev_get_drvdata(dev);
734 
735 	if (!rdev->constraints)
736 		return sprintf(buf, "constraint not defined\n");
737 
738 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739 }
740 static DEVICE_ATTR_RO(max_microamps);
741 
742 static ssize_t min_microvolts_show(struct device *dev,
743 				   struct device_attribute *attr, char *buf)
744 {
745 	struct regulator_dev *rdev = dev_get_drvdata(dev);
746 
747 	if (!rdev->constraints)
748 		return sprintf(buf, "constraint not defined\n");
749 
750 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751 }
752 static DEVICE_ATTR_RO(min_microvolts);
753 
754 static ssize_t max_microvolts_show(struct device *dev,
755 				   struct device_attribute *attr, char *buf)
756 {
757 	struct regulator_dev *rdev = dev_get_drvdata(dev);
758 
759 	if (!rdev->constraints)
760 		return sprintf(buf, "constraint not defined\n");
761 
762 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763 }
764 static DEVICE_ATTR_RO(max_microvolts);
765 
766 static ssize_t requested_microamps_show(struct device *dev,
767 					struct device_attribute *attr, char *buf)
768 {
769 	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 	struct regulator *regulator;
771 	int uA = 0;
772 
773 	regulator_lock(rdev);
774 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 		if (regulator->enable_count)
776 			uA += regulator->uA_load;
777 	}
778 	regulator_unlock(rdev);
779 	return sprintf(buf, "%d\n", uA);
780 }
781 static DEVICE_ATTR_RO(requested_microamps);
782 
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 			      char *buf)
785 {
786 	struct regulator_dev *rdev = dev_get_drvdata(dev);
787 	return sprintf(buf, "%d\n", rdev->use_count);
788 }
789 static DEVICE_ATTR_RO(num_users);
790 
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 			 char *buf)
793 {
794 	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 
796 	switch (rdev->desc->type) {
797 	case REGULATOR_VOLTAGE:
798 		return sprintf(buf, "voltage\n");
799 	case REGULATOR_CURRENT:
800 		return sprintf(buf, "current\n");
801 	}
802 	return sprintf(buf, "unknown\n");
803 }
804 static DEVICE_ATTR_RO(type);
805 
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 					   struct device_attribute *attr, char *buf)
808 {
809 	struct regulator_dev *rdev = dev_get_drvdata(dev);
810 
811 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812 }
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
814 
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 					    struct device_attribute *attr, char *buf)
817 {
818 	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821 }
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
823 
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 					       struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830 }
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
832 
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834 				     struct device_attribute *attr, char *buf)
835 {
836 	struct regulator_dev *rdev = dev_get_drvdata(dev);
837 
838 	return regulator_print_opmode(buf,
839 		rdev->constraints->state_mem.mode);
840 }
841 static DEVICE_ATTR_RO(suspend_mem_mode);
842 
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844 				      struct device_attribute *attr, char *buf)
845 {
846 	struct regulator_dev *rdev = dev_get_drvdata(dev);
847 
848 	return regulator_print_opmode(buf,
849 		rdev->constraints->state_disk.mode);
850 }
851 static DEVICE_ATTR_RO(suspend_disk_mode);
852 
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854 					 struct device_attribute *attr, char *buf)
855 {
856 	struct regulator_dev *rdev = dev_get_drvdata(dev);
857 
858 	return regulator_print_opmode(buf,
859 		rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR_RO(suspend_standby_mode);
862 
863 static ssize_t suspend_mem_state_show(struct device *dev,
864 				      struct device_attribute *attr, char *buf)
865 {
866 	struct regulator_dev *rdev = dev_get_drvdata(dev);
867 
868 	return regulator_print_state(buf,
869 			rdev->constraints->state_mem.enabled);
870 }
871 static DEVICE_ATTR_RO(suspend_mem_state);
872 
873 static ssize_t suspend_disk_state_show(struct device *dev,
874 				       struct device_attribute *attr, char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	return regulator_print_state(buf,
879 			rdev->constraints->state_disk.enabled);
880 }
881 static DEVICE_ATTR_RO(suspend_disk_state);
882 
883 static ssize_t suspend_standby_state_show(struct device *dev,
884 					  struct device_attribute *attr, char *buf)
885 {
886 	struct regulator_dev *rdev = dev_get_drvdata(dev);
887 
888 	return regulator_print_state(buf,
889 			rdev->constraints->state_standby.enabled);
890 }
891 static DEVICE_ATTR_RO(suspend_standby_state);
892 
893 static ssize_t bypass_show(struct device *dev,
894 			   struct device_attribute *attr, char *buf)
895 {
896 	struct regulator_dev *rdev = dev_get_drvdata(dev);
897 	const char *report;
898 	bool bypass;
899 	int ret;
900 
901 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902 
903 	if (ret != 0)
904 		report = "unknown";
905 	else if (bypass)
906 		report = "enabled";
907 	else
908 		report = "disabled";
909 
910 	return sprintf(buf, "%s\n", report);
911 }
912 static DEVICE_ATTR_RO(bypass);
913 
914 /* Calculate the new optimum regulator operating mode based on the new total
915  * consumer load. All locks held by caller
916  */
917 static int drms_uA_update(struct regulator_dev *rdev)
918 {
919 	struct regulator *sibling;
920 	int current_uA = 0, output_uV, input_uV, err;
921 	unsigned int mode;
922 
923 	/*
924 	 * first check to see if we can set modes at all, otherwise just
925 	 * tell the consumer everything is OK.
926 	 */
927 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 		rdev_dbg(rdev, "DRMS operation not allowed\n");
929 		return 0;
930 	}
931 
932 	if (!rdev->desc->ops->get_optimum_mode &&
933 	    !rdev->desc->ops->set_load)
934 		return 0;
935 
936 	if (!rdev->desc->ops->set_mode &&
937 	    !rdev->desc->ops->set_load)
938 		return -EINVAL;
939 
940 	/* calc total requested load */
941 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 		if (sibling->enable_count)
943 			current_uA += sibling->uA_load;
944 	}
945 
946 	current_uA += rdev->constraints->system_load;
947 
948 	if (rdev->desc->ops->set_load) {
949 		/* set the optimum mode for our new total regulator load */
950 		err = rdev->desc->ops->set_load(rdev, current_uA);
951 		if (err < 0)
952 			rdev_err(rdev, "failed to set load %d: %pe\n",
953 				 current_uA, ERR_PTR(err));
954 	} else {
955 		/* get output voltage */
956 		output_uV = regulator_get_voltage_rdev(rdev);
957 		if (output_uV <= 0) {
958 			rdev_err(rdev, "invalid output voltage found\n");
959 			return -EINVAL;
960 		}
961 
962 		/* get input voltage */
963 		input_uV = 0;
964 		if (rdev->supply)
965 			input_uV = regulator_get_voltage(rdev->supply);
966 		if (input_uV <= 0)
967 			input_uV = rdev->constraints->input_uV;
968 		if (input_uV <= 0) {
969 			rdev_err(rdev, "invalid input voltage found\n");
970 			return -EINVAL;
971 		}
972 
973 		/* now get the optimum mode for our new total regulator load */
974 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 							 output_uV, current_uA);
976 
977 		/* check the new mode is allowed */
978 		err = regulator_mode_constrain(rdev, &mode);
979 		if (err < 0) {
980 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 				 current_uA, input_uV, output_uV, ERR_PTR(err));
982 			return err;
983 		}
984 
985 		err = rdev->desc->ops->set_mode(rdev, mode);
986 		if (err < 0)
987 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 				 mode, ERR_PTR(err));
989 	}
990 
991 	return err;
992 }
993 
994 static int __suspend_set_state(struct regulator_dev *rdev,
995 			       const struct regulator_state *rstate)
996 {
997 	int ret = 0;
998 
999 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 		rdev->desc->ops->set_suspend_enable)
1001 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 		rdev->desc->ops->set_suspend_disable)
1004 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 		ret = 0;
1007 
1008 	if (ret < 0) {
1009 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 		return ret;
1011 	}
1012 
1013 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 		if (ret < 0) {
1016 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 			return ret;
1018 		}
1019 	}
1020 
1021 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 		if (ret < 0) {
1024 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 			return ret;
1026 		}
1027 	}
1028 
1029 	return ret;
1030 }
1031 
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1033 {
1034 	const struct regulator_state *rstate;
1035 
1036 	rstate = regulator_get_suspend_state_check(rdev,
1037 			rdev->constraints->initial_state);
1038 	if (!rstate)
1039 		return 0;
1040 
1041 	return __suspend_set_state(rdev, rstate);
1042 }
1043 
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1046 {
1047 	struct regulation_constraints *constraints = rdev->constraints;
1048 	char buf[160] = "";
1049 	size_t len = sizeof(buf) - 1;
1050 	int count = 0;
1051 	int ret;
1052 
1053 	if (constraints->min_uV && constraints->max_uV) {
1054 		if (constraints->min_uV == constraints->max_uV)
1055 			count += scnprintf(buf + count, len - count, "%d mV ",
1056 					   constraints->min_uV / 1000);
1057 		else
1058 			count += scnprintf(buf + count, len - count,
1059 					   "%d <--> %d mV ",
1060 					   constraints->min_uV / 1000,
1061 					   constraints->max_uV / 1000);
1062 	}
1063 
1064 	if (!constraints->min_uV ||
1065 	    constraints->min_uV != constraints->max_uV) {
1066 		ret = regulator_get_voltage_rdev(rdev);
1067 		if (ret > 0)
1068 			count += scnprintf(buf + count, len - count,
1069 					   "at %d mV ", ret / 1000);
1070 	}
1071 
1072 	if (constraints->uV_offset)
1073 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 				   constraints->uV_offset / 1000);
1075 
1076 	if (constraints->min_uA && constraints->max_uA) {
1077 		if (constraints->min_uA == constraints->max_uA)
1078 			count += scnprintf(buf + count, len - count, "%d mA ",
1079 					   constraints->min_uA / 1000);
1080 		else
1081 			count += scnprintf(buf + count, len - count,
1082 					   "%d <--> %d mA ",
1083 					   constraints->min_uA / 1000,
1084 					   constraints->max_uA / 1000);
1085 	}
1086 
1087 	if (!constraints->min_uA ||
1088 	    constraints->min_uA != constraints->max_uA) {
1089 		ret = _regulator_get_current_limit(rdev);
1090 		if (ret > 0)
1091 			count += scnprintf(buf + count, len - count,
1092 					   "at %d mA ", ret / 1000);
1093 	}
1094 
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 		count += scnprintf(buf + count, len - count, "fast ");
1097 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 		count += scnprintf(buf + count, len - count, "normal ");
1099 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 		count += scnprintf(buf + count, len - count, "idle ");
1101 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 		count += scnprintf(buf + count, len - count, "standby ");
1103 
1104 	if (!count)
1105 		count = scnprintf(buf, len, "no parameters");
1106 	else
1107 		--count;
1108 
1109 	count += scnprintf(buf + count, len - count, ", %s",
1110 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111 
1112 	rdev_dbg(rdev, "%s\n", buf);
1113 }
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117 
1118 static void print_constraints(struct regulator_dev *rdev)
1119 {
1120 	struct regulation_constraints *constraints = rdev->constraints;
1121 
1122 	print_constraints_debug(rdev);
1123 
1124 	if ((constraints->min_uV != constraints->max_uV) &&
1125 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 		rdev_warn(rdev,
1127 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 }
1129 
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 	struct regulation_constraints *constraints)
1132 {
1133 	const struct regulator_ops *ops = rdev->desc->ops;
1134 	int ret;
1135 
1136 	/* do we need to apply the constraint voltage */
1137 	if (rdev->constraints->apply_uV &&
1138 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 		int target_min, target_max;
1140 		int current_uV = regulator_get_voltage_rdev(rdev);
1141 
1142 		if (current_uV == -ENOTRECOVERABLE) {
1143 			/* This regulator can't be read and must be initialized */
1144 			rdev_info(rdev, "Setting %d-%duV\n",
1145 				  rdev->constraints->min_uV,
1146 				  rdev->constraints->max_uV);
1147 			_regulator_do_set_voltage(rdev,
1148 						  rdev->constraints->min_uV,
1149 						  rdev->constraints->max_uV);
1150 			current_uV = regulator_get_voltage_rdev(rdev);
1151 		}
1152 
1153 		if (current_uV < 0) {
1154 			rdev_err(rdev,
1155 				 "failed to get the current voltage: %pe\n",
1156 				 ERR_PTR(current_uV));
1157 			return current_uV;
1158 		}
1159 
1160 		/*
1161 		 * If we're below the minimum voltage move up to the
1162 		 * minimum voltage, if we're above the maximum voltage
1163 		 * then move down to the maximum.
1164 		 */
1165 		target_min = current_uV;
1166 		target_max = current_uV;
1167 
1168 		if (current_uV < rdev->constraints->min_uV) {
1169 			target_min = rdev->constraints->min_uV;
1170 			target_max = rdev->constraints->min_uV;
1171 		}
1172 
1173 		if (current_uV > rdev->constraints->max_uV) {
1174 			target_min = rdev->constraints->max_uV;
1175 			target_max = rdev->constraints->max_uV;
1176 		}
1177 
1178 		if (target_min != current_uV || target_max != current_uV) {
1179 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180 				  current_uV, target_min, target_max);
1181 			ret = _regulator_do_set_voltage(
1182 				rdev, target_min, target_max);
1183 			if (ret < 0) {
1184 				rdev_err(rdev,
1185 					"failed to apply %d-%duV constraint: %pe\n",
1186 					target_min, target_max, ERR_PTR(ret));
1187 				return ret;
1188 			}
1189 		}
1190 	}
1191 
1192 	/* constrain machine-level voltage specs to fit
1193 	 * the actual range supported by this regulator.
1194 	 */
1195 	if (ops->list_voltage && rdev->desc->n_voltages) {
1196 		int	count = rdev->desc->n_voltages;
1197 		int	i;
1198 		int	min_uV = INT_MAX;
1199 		int	max_uV = INT_MIN;
1200 		int	cmin = constraints->min_uV;
1201 		int	cmax = constraints->max_uV;
1202 
1203 		/* it's safe to autoconfigure fixed-voltage supplies
1204 		 * and the constraints are used by list_voltage.
1205 		 */
1206 		if (count == 1 && !cmin) {
1207 			cmin = 1;
1208 			cmax = INT_MAX;
1209 			constraints->min_uV = cmin;
1210 			constraints->max_uV = cmax;
1211 		}
1212 
1213 		/* voltage constraints are optional */
1214 		if ((cmin == 0) && (cmax == 0))
1215 			return 0;
1216 
1217 		/* else require explicit machine-level constraints */
1218 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219 			rdev_err(rdev, "invalid voltage constraints\n");
1220 			return -EINVAL;
1221 		}
1222 
1223 		/* no need to loop voltages if range is continuous */
1224 		if (rdev->desc->continuous_voltage_range)
1225 			return 0;
1226 
1227 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228 		for (i = 0; i < count; i++) {
1229 			int	value;
1230 
1231 			value = ops->list_voltage(rdev, i);
1232 			if (value <= 0)
1233 				continue;
1234 
1235 			/* maybe adjust [min_uV..max_uV] */
1236 			if (value >= cmin && value < min_uV)
1237 				min_uV = value;
1238 			if (value <= cmax && value > max_uV)
1239 				max_uV = value;
1240 		}
1241 
1242 		/* final: [min_uV..max_uV] valid iff constraints valid */
1243 		if (max_uV < min_uV) {
1244 			rdev_err(rdev,
1245 				 "unsupportable voltage constraints %u-%uuV\n",
1246 				 min_uV, max_uV);
1247 			return -EINVAL;
1248 		}
1249 
1250 		/* use regulator's subset of machine constraints */
1251 		if (constraints->min_uV < min_uV) {
1252 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253 				 constraints->min_uV, min_uV);
1254 			constraints->min_uV = min_uV;
1255 		}
1256 		if (constraints->max_uV > max_uV) {
1257 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258 				 constraints->max_uV, max_uV);
1259 			constraints->max_uV = max_uV;
1260 		}
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static int machine_constraints_current(struct regulator_dev *rdev,
1267 	struct regulation_constraints *constraints)
1268 {
1269 	const struct regulator_ops *ops = rdev->desc->ops;
1270 	int ret;
1271 
1272 	if (!constraints->min_uA && !constraints->max_uA)
1273 		return 0;
1274 
1275 	if (constraints->min_uA > constraints->max_uA) {
1276 		rdev_err(rdev, "Invalid current constraints\n");
1277 		return -EINVAL;
1278 	}
1279 
1280 	if (!ops->set_current_limit || !ops->get_current_limit) {
1281 		rdev_warn(rdev, "Operation of current configuration missing\n");
1282 		return 0;
1283 	}
1284 
1285 	/* Set regulator current in constraints range */
1286 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1287 			constraints->max_uA);
1288 	if (ret < 0) {
1289 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290 		return ret;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 static int _regulator_do_enable(struct regulator_dev *rdev);
1297 
1298 static int notif_set_limit(struct regulator_dev *rdev,
1299 			   int (*set)(struct regulator_dev *, int, int, bool),
1300 			   int limit, int severity)
1301 {
1302 	bool enable;
1303 
1304 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305 		enable = false;
1306 		limit = 0;
1307 	} else {
1308 		enable = true;
1309 	}
1310 
1311 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312 		limit = 0;
1313 
1314 	return set(rdev, limit, severity, enable);
1315 }
1316 
1317 static int handle_notify_limits(struct regulator_dev *rdev,
1318 			int (*set)(struct regulator_dev *, int, int, bool),
1319 			struct notification_limit *limits)
1320 {
1321 	int ret = 0;
1322 
1323 	if (!set)
1324 		return -EOPNOTSUPP;
1325 
1326 	if (limits->prot)
1327 		ret = notif_set_limit(rdev, set, limits->prot,
1328 				      REGULATOR_SEVERITY_PROT);
1329 	if (ret)
1330 		return ret;
1331 
1332 	if (limits->err)
1333 		ret = notif_set_limit(rdev, set, limits->err,
1334 				      REGULATOR_SEVERITY_ERR);
1335 	if (ret)
1336 		return ret;
1337 
1338 	if (limits->warn)
1339 		ret = notif_set_limit(rdev, set, limits->warn,
1340 				      REGULATOR_SEVERITY_WARN);
1341 
1342 	return ret;
1343 }
1344 /**
1345  * set_machine_constraints - sets regulator constraints
1346  * @rdev: regulator source
1347  *
1348  * Allows platform initialisation code to define and constrain
1349  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1350  * Constraints *must* be set by platform code in order for some
1351  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352  * set_mode.
1353  */
1354 static int set_machine_constraints(struct regulator_dev *rdev)
1355 {
1356 	int ret = 0;
1357 	const struct regulator_ops *ops = rdev->desc->ops;
1358 
1359 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1360 	if (ret != 0)
1361 		return ret;
1362 
1363 	ret = machine_constraints_current(rdev, rdev->constraints);
1364 	if (ret != 0)
1365 		return ret;
1366 
1367 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368 		ret = ops->set_input_current_limit(rdev,
1369 						   rdev->constraints->ilim_uA);
1370 		if (ret < 0) {
1371 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372 			return ret;
1373 		}
1374 	}
1375 
1376 	/* do we need to setup our suspend state */
1377 	if (rdev->constraints->initial_state) {
1378 		ret = suspend_set_initial_state(rdev);
1379 		if (ret < 0) {
1380 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381 			return ret;
1382 		}
1383 	}
1384 
1385 	if (rdev->constraints->initial_mode) {
1386 		if (!ops->set_mode) {
1387 			rdev_err(rdev, "no set_mode operation\n");
1388 			return -EINVAL;
1389 		}
1390 
1391 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392 		if (ret < 0) {
1393 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394 			return ret;
1395 		}
1396 	} else if (rdev->constraints->system_load) {
1397 		/*
1398 		 * We'll only apply the initial system load if an
1399 		 * initial mode wasn't specified.
1400 		 */
1401 		drms_uA_update(rdev);
1402 	}
1403 
1404 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405 		&& ops->set_ramp_delay) {
1406 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407 		if (ret < 0) {
1408 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409 			return ret;
1410 		}
1411 	}
1412 
1413 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1414 		ret = ops->set_pull_down(rdev);
1415 		if (ret < 0) {
1416 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417 			return ret;
1418 		}
1419 	}
1420 
1421 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1422 		ret = ops->set_soft_start(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	/*
1430 	 * Existing logic does not warn if over_current_protection is given as
1431 	 * a constraint but driver does not support that. I think we should
1432 	 * warn about this type of issues as it is possible someone changes
1433 	 * PMIC on board to another type - and the another PMIC's driver does
1434 	 * not support setting protection. Board composer may happily believe
1435 	 * the DT limits are respected - especially if the new PMIC HW also
1436 	 * supports protection but the driver does not. I won't change the logic
1437 	 * without hearing more experienced opinion on this though.
1438 	 *
1439 	 * If warning is seen as a good idea then we can merge handling the
1440 	 * over-curret protection and detection and get rid of this special
1441 	 * handling.
1442 	 */
1443 	if (rdev->constraints->over_current_protection
1444 		&& ops->set_over_current_protection) {
1445 		int lim = rdev->constraints->over_curr_limits.prot;
1446 
1447 		ret = ops->set_over_current_protection(rdev, lim,
1448 						       REGULATOR_SEVERITY_PROT,
1449 						       true);
1450 		if (ret < 0) {
1451 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1452 				 ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->over_current_detection)
1458 		ret = handle_notify_limits(rdev,
1459 					   ops->set_over_current_protection,
1460 					   &rdev->constraints->over_curr_limits);
1461 	if (ret) {
1462 		if (ret != -EOPNOTSUPP) {
1463 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1464 				 ERR_PTR(ret));
1465 			return ret;
1466 		}
1467 		rdev_warn(rdev,
1468 			  "IC does not support requested over-current limits\n");
1469 	}
1470 
1471 	if (rdev->constraints->over_voltage_detection)
1472 		ret = handle_notify_limits(rdev,
1473 					   ops->set_over_voltage_protection,
1474 					   &rdev->constraints->over_voltage_limits);
1475 	if (ret) {
1476 		if (ret != -EOPNOTSUPP) {
1477 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478 				 ERR_PTR(ret));
1479 			return ret;
1480 		}
1481 		rdev_warn(rdev,
1482 			  "IC does not support requested over voltage limits\n");
1483 	}
1484 
1485 	if (rdev->constraints->under_voltage_detection)
1486 		ret = handle_notify_limits(rdev,
1487 					   ops->set_under_voltage_protection,
1488 					   &rdev->constraints->under_voltage_limits);
1489 	if (ret) {
1490 		if (ret != -EOPNOTSUPP) {
1491 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492 				 ERR_PTR(ret));
1493 			return ret;
1494 		}
1495 		rdev_warn(rdev,
1496 			  "IC does not support requested under voltage limits\n");
1497 	}
1498 
1499 	if (rdev->constraints->over_temp_detection)
1500 		ret = handle_notify_limits(rdev,
1501 					   ops->set_thermal_protection,
1502 					   &rdev->constraints->temp_limits);
1503 	if (ret) {
1504 		if (ret != -EOPNOTSUPP) {
1505 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1506 				 ERR_PTR(ret));
1507 			return ret;
1508 		}
1509 		rdev_warn(rdev,
1510 			  "IC does not support requested temperature limits\n");
1511 	}
1512 
1513 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514 		bool ad_state = (rdev->constraints->active_discharge ==
1515 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516 
1517 		ret = ops->set_active_discharge(rdev, ad_state);
1518 		if (ret < 0) {
1519 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520 			return ret;
1521 		}
1522 	}
1523 
1524 	/* If the constraints say the regulator should be on at this point
1525 	 * and we have control then make sure it is enabled.
1526 	 */
1527 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528 		/* If we want to enable this regulator, make sure that we know
1529 		 * the supplying regulator.
1530 		 */
1531 		if (rdev->supply_name && !rdev->supply)
1532 			return -EPROBE_DEFER;
1533 
1534 		if (rdev->supply) {
1535 			ret = regulator_enable(rdev->supply);
1536 			if (ret < 0) {
1537 				_regulator_put(rdev->supply);
1538 				rdev->supply = NULL;
1539 				return ret;
1540 			}
1541 		}
1542 
1543 		ret = _regulator_do_enable(rdev);
1544 		if (ret < 0 && ret != -EINVAL) {
1545 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546 			return ret;
1547 		}
1548 
1549 		if (rdev->constraints->always_on)
1550 			rdev->use_count++;
1551 	} else if (rdev->desc->off_on_delay) {
1552 		rdev->last_off = ktime_get();
1553 	}
1554 
1555 	print_constraints(rdev);
1556 	return 0;
1557 }
1558 
1559 /**
1560  * set_supply - set regulator supply regulator
1561  * @rdev: regulator name
1562  * @supply_rdev: supply regulator name
1563  *
1564  * Called by platform initialisation code to set the supply regulator for this
1565  * regulator. This ensures that a regulators supply will also be enabled by the
1566  * core if it's child is enabled.
1567  */
1568 static int set_supply(struct regulator_dev *rdev,
1569 		      struct regulator_dev *supply_rdev)
1570 {
1571 	int err;
1572 
1573 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574 
1575 	if (!try_module_get(supply_rdev->owner))
1576 		return -ENODEV;
1577 
1578 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579 	if (rdev->supply == NULL) {
1580 		err = -ENOMEM;
1581 		return err;
1582 	}
1583 	supply_rdev->open_count++;
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590  * @rdev:         regulator source
1591  * @consumer_dev_name: dev_name() string for device supply applies to
1592  * @supply:       symbolic name for supply
1593  *
1594  * Allows platform initialisation code to map physical regulator
1595  * sources to symbolic names for supplies for use by devices.  Devices
1596  * should use these symbolic names to request regulators, avoiding the
1597  * need to provide board-specific regulator names as platform data.
1598  */
1599 static int set_consumer_device_supply(struct regulator_dev *rdev,
1600 				      const char *consumer_dev_name,
1601 				      const char *supply)
1602 {
1603 	struct regulator_map *node, *new_node;
1604 	int has_dev;
1605 
1606 	if (supply == NULL)
1607 		return -EINVAL;
1608 
1609 	if (consumer_dev_name != NULL)
1610 		has_dev = 1;
1611 	else
1612 		has_dev = 0;
1613 
1614 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615 	if (new_node == NULL)
1616 		return -ENOMEM;
1617 
1618 	new_node->regulator = rdev;
1619 	new_node->supply = supply;
1620 
1621 	if (has_dev) {
1622 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623 		if (new_node->dev_name == NULL) {
1624 			kfree(new_node);
1625 			return -ENOMEM;
1626 		}
1627 	}
1628 
1629 	mutex_lock(&regulator_list_mutex);
1630 	list_for_each_entry(node, &regulator_map_list, list) {
1631 		if (node->dev_name && consumer_dev_name) {
1632 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633 				continue;
1634 		} else if (node->dev_name || consumer_dev_name) {
1635 			continue;
1636 		}
1637 
1638 		if (strcmp(node->supply, supply) != 0)
1639 			continue;
1640 
1641 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642 			 consumer_dev_name,
1643 			 dev_name(&node->regulator->dev),
1644 			 node->regulator->desc->name,
1645 			 supply,
1646 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1647 		goto fail;
1648 	}
1649 
1650 	list_add(&new_node->list, &regulator_map_list);
1651 	mutex_unlock(&regulator_list_mutex);
1652 
1653 	return 0;
1654 
1655 fail:
1656 	mutex_unlock(&regulator_list_mutex);
1657 	kfree(new_node->dev_name);
1658 	kfree(new_node);
1659 	return -EBUSY;
1660 }
1661 
1662 static void unset_regulator_supplies(struct regulator_dev *rdev)
1663 {
1664 	struct regulator_map *node, *n;
1665 
1666 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1667 		if (rdev == node->regulator) {
1668 			list_del(&node->list);
1669 			kfree(node->dev_name);
1670 			kfree(node);
1671 		}
1672 	}
1673 }
1674 
1675 #ifdef CONFIG_DEBUG_FS
1676 static ssize_t constraint_flags_read_file(struct file *file,
1677 					  char __user *user_buf,
1678 					  size_t count, loff_t *ppos)
1679 {
1680 	const struct regulator *regulator = file->private_data;
1681 	const struct regulation_constraints *c = regulator->rdev->constraints;
1682 	char *buf;
1683 	ssize_t ret;
1684 
1685 	if (!c)
1686 		return 0;
1687 
1688 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689 	if (!buf)
1690 		return -ENOMEM;
1691 
1692 	ret = snprintf(buf, PAGE_SIZE,
1693 			"always_on: %u\n"
1694 			"boot_on: %u\n"
1695 			"apply_uV: %u\n"
1696 			"ramp_disable: %u\n"
1697 			"soft_start: %u\n"
1698 			"pull_down: %u\n"
1699 			"over_current_protection: %u\n",
1700 			c->always_on,
1701 			c->boot_on,
1702 			c->apply_uV,
1703 			c->ramp_disable,
1704 			c->soft_start,
1705 			c->pull_down,
1706 			c->over_current_protection);
1707 
1708 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709 	kfree(buf);
1710 
1711 	return ret;
1712 }
1713 
1714 #endif
1715 
1716 static const struct file_operations constraint_flags_fops = {
1717 #ifdef CONFIG_DEBUG_FS
1718 	.open = simple_open,
1719 	.read = constraint_flags_read_file,
1720 	.llseek = default_llseek,
1721 #endif
1722 };
1723 
1724 #define REG_STR_SIZE	64
1725 
1726 static struct regulator *create_regulator(struct regulator_dev *rdev,
1727 					  struct device *dev,
1728 					  const char *supply_name)
1729 {
1730 	struct regulator *regulator;
1731 	int err = 0;
1732 
1733 	if (dev) {
1734 		char buf[REG_STR_SIZE];
1735 		int size;
1736 
1737 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738 				dev->kobj.name, supply_name);
1739 		if (size >= REG_STR_SIZE)
1740 			return NULL;
1741 
1742 		supply_name = kstrdup(buf, GFP_KERNEL);
1743 		if (supply_name == NULL)
1744 			return NULL;
1745 	} else {
1746 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747 		if (supply_name == NULL)
1748 			return NULL;
1749 	}
1750 
1751 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752 	if (regulator == NULL) {
1753 		kfree(supply_name);
1754 		return NULL;
1755 	}
1756 
1757 	regulator->rdev = rdev;
1758 	regulator->supply_name = supply_name;
1759 
1760 	regulator_lock(rdev);
1761 	list_add(&regulator->list, &rdev->consumer_list);
1762 	regulator_unlock(rdev);
1763 
1764 	if (dev) {
1765 		regulator->dev = dev;
1766 
1767 		/* Add a link to the device sysfs entry */
1768 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769 					       supply_name);
1770 		if (err) {
1771 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772 				  dev->kobj.name, ERR_PTR(err));
1773 			/* non-fatal */
1774 		}
1775 	}
1776 
1777 	if (err != -EEXIST)
1778 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779 	if (!regulator->debugfs) {
1780 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781 	} else {
1782 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783 				   &regulator->uA_load);
1784 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1786 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1788 		debugfs_create_file("constraint_flags", 0444,
1789 				    regulator->debugfs, regulator,
1790 				    &constraint_flags_fops);
1791 	}
1792 
1793 	/*
1794 	 * Check now if the regulator is an always on regulator - if
1795 	 * it is then we don't need to do nearly so much work for
1796 	 * enable/disable calls.
1797 	 */
1798 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799 	    _regulator_is_enabled(rdev))
1800 		regulator->always_on = true;
1801 
1802 	return regulator;
1803 }
1804 
1805 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806 {
1807 	if (rdev->constraints && rdev->constraints->enable_time)
1808 		return rdev->constraints->enable_time;
1809 	if (rdev->desc->ops->enable_time)
1810 		return rdev->desc->ops->enable_time(rdev);
1811 	return rdev->desc->enable_time;
1812 }
1813 
1814 static struct regulator_supply_alias *regulator_find_supply_alias(
1815 		struct device *dev, const char *supply)
1816 {
1817 	struct regulator_supply_alias *map;
1818 
1819 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1820 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821 			return map;
1822 
1823 	return NULL;
1824 }
1825 
1826 static void regulator_supply_alias(struct device **dev, const char **supply)
1827 {
1828 	struct regulator_supply_alias *map;
1829 
1830 	map = regulator_find_supply_alias(*dev, *supply);
1831 	if (map) {
1832 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833 				*supply, map->alias_supply,
1834 				dev_name(map->alias_dev));
1835 		*dev = map->alias_dev;
1836 		*supply = map->alias_supply;
1837 	}
1838 }
1839 
1840 static int regulator_match(struct device *dev, const void *data)
1841 {
1842 	struct regulator_dev *r = dev_to_rdev(dev);
1843 
1844 	return strcmp(rdev_get_name(r), data) == 0;
1845 }
1846 
1847 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848 {
1849 	struct device *dev;
1850 
1851 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1852 
1853 	return dev ? dev_to_rdev(dev) : NULL;
1854 }
1855 
1856 /**
1857  * regulator_dev_lookup - lookup a regulator device.
1858  * @dev: device for regulator "consumer".
1859  * @supply: Supply name or regulator ID.
1860  *
1861  * If successful, returns a struct regulator_dev that corresponds to the name
1862  * @supply and with the embedded struct device refcount incremented by one.
1863  * The refcount must be dropped by calling put_device().
1864  * On failure one of the following ERR-PTR-encoded values is returned:
1865  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866  * in the future.
1867  */
1868 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869 						  const char *supply)
1870 {
1871 	struct regulator_dev *r = NULL;
1872 	struct device_node *node;
1873 	struct regulator_map *map;
1874 	const char *devname = NULL;
1875 
1876 	regulator_supply_alias(&dev, &supply);
1877 
1878 	/* first do a dt based lookup */
1879 	if (dev && dev->of_node) {
1880 		node = of_get_regulator(dev, supply);
1881 		if (node) {
1882 			r = of_find_regulator_by_node(node);
1883 			if (r)
1884 				return r;
1885 
1886 			/*
1887 			 * We have a node, but there is no device.
1888 			 * assume it has not registered yet.
1889 			 */
1890 			return ERR_PTR(-EPROBE_DEFER);
1891 		}
1892 	}
1893 
1894 	/* if not found, try doing it non-dt way */
1895 	if (dev)
1896 		devname = dev_name(dev);
1897 
1898 	mutex_lock(&regulator_list_mutex);
1899 	list_for_each_entry(map, &regulator_map_list, list) {
1900 		/* If the mapping has a device set up it must match */
1901 		if (map->dev_name &&
1902 		    (!devname || strcmp(map->dev_name, devname)))
1903 			continue;
1904 
1905 		if (strcmp(map->supply, supply) == 0 &&
1906 		    get_device(&map->regulator->dev)) {
1907 			r = map->regulator;
1908 			break;
1909 		}
1910 	}
1911 	mutex_unlock(&regulator_list_mutex);
1912 
1913 	if (r)
1914 		return r;
1915 
1916 	r = regulator_lookup_by_name(supply);
1917 	if (r)
1918 		return r;
1919 
1920 	return ERR_PTR(-ENODEV);
1921 }
1922 
1923 static int regulator_resolve_supply(struct regulator_dev *rdev)
1924 {
1925 	struct regulator_dev *r;
1926 	struct device *dev = rdev->dev.parent;
1927 	int ret = 0;
1928 
1929 	/* No supply to resolve? */
1930 	if (!rdev->supply_name)
1931 		return 0;
1932 
1933 	/* Supply already resolved? (fast-path without locking contention) */
1934 	if (rdev->supply)
1935 		return 0;
1936 
1937 	r = regulator_dev_lookup(dev, rdev->supply_name);
1938 	if (IS_ERR(r)) {
1939 		ret = PTR_ERR(r);
1940 
1941 		/* Did the lookup explicitly defer for us? */
1942 		if (ret == -EPROBE_DEFER)
1943 			goto out;
1944 
1945 		if (have_full_constraints()) {
1946 			r = dummy_regulator_rdev;
1947 			get_device(&r->dev);
1948 		} else {
1949 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950 				rdev->supply_name, rdev->desc->name);
1951 			ret = -EPROBE_DEFER;
1952 			goto out;
1953 		}
1954 	}
1955 
1956 	if (r == rdev) {
1957 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958 			rdev->desc->name, rdev->supply_name);
1959 		if (!have_full_constraints()) {
1960 			ret = -EINVAL;
1961 			goto out;
1962 		}
1963 		r = dummy_regulator_rdev;
1964 		get_device(&r->dev);
1965 	}
1966 
1967 	/*
1968 	 * If the supply's parent device is not the same as the
1969 	 * regulator's parent device, then ensure the parent device
1970 	 * is bound before we resolve the supply, in case the parent
1971 	 * device get probe deferred and unregisters the supply.
1972 	 */
1973 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974 		if (!device_is_bound(r->dev.parent)) {
1975 			put_device(&r->dev);
1976 			ret = -EPROBE_DEFER;
1977 			goto out;
1978 		}
1979 	}
1980 
1981 	/* Recursively resolve the supply of the supply */
1982 	ret = regulator_resolve_supply(r);
1983 	if (ret < 0) {
1984 		put_device(&r->dev);
1985 		goto out;
1986 	}
1987 
1988 	/*
1989 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990 	 * between rdev->supply null check and setting rdev->supply in
1991 	 * set_supply() from concurrent tasks.
1992 	 */
1993 	regulator_lock(rdev);
1994 
1995 	/* Supply just resolved by a concurrent task? */
1996 	if (rdev->supply) {
1997 		regulator_unlock(rdev);
1998 		put_device(&r->dev);
1999 		goto out;
2000 	}
2001 
2002 	ret = set_supply(rdev, r);
2003 	if (ret < 0) {
2004 		regulator_unlock(rdev);
2005 		put_device(&r->dev);
2006 		goto out;
2007 	}
2008 
2009 	regulator_unlock(rdev);
2010 
2011 	/*
2012 	 * In set_machine_constraints() we may have turned this regulator on
2013 	 * but we couldn't propagate to the supply if it hadn't been resolved
2014 	 * yet.  Do it now.
2015 	 */
2016 	if (rdev->use_count) {
2017 		ret = regulator_enable(rdev->supply);
2018 		if (ret < 0) {
2019 			_regulator_put(rdev->supply);
2020 			rdev->supply = NULL;
2021 			goto out;
2022 		}
2023 	}
2024 
2025 out:
2026 	return ret;
2027 }
2028 
2029 /* Internal regulator request function */
2030 struct regulator *_regulator_get(struct device *dev, const char *id,
2031 				 enum regulator_get_type get_type)
2032 {
2033 	struct regulator_dev *rdev;
2034 	struct regulator *regulator;
2035 	struct device_link *link;
2036 	int ret;
2037 
2038 	if (get_type >= MAX_GET_TYPE) {
2039 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040 		return ERR_PTR(-EINVAL);
2041 	}
2042 
2043 	if (id == NULL) {
2044 		pr_err("get() with no identifier\n");
2045 		return ERR_PTR(-EINVAL);
2046 	}
2047 
2048 	rdev = regulator_dev_lookup(dev, id);
2049 	if (IS_ERR(rdev)) {
2050 		ret = PTR_ERR(rdev);
2051 
2052 		/*
2053 		 * If regulator_dev_lookup() fails with error other
2054 		 * than -ENODEV our job here is done, we simply return it.
2055 		 */
2056 		if (ret != -ENODEV)
2057 			return ERR_PTR(ret);
2058 
2059 		if (!have_full_constraints()) {
2060 			dev_warn(dev,
2061 				 "incomplete constraints, dummy supplies not allowed\n");
2062 			return ERR_PTR(-ENODEV);
2063 		}
2064 
2065 		switch (get_type) {
2066 		case NORMAL_GET:
2067 			/*
2068 			 * Assume that a regulator is physically present and
2069 			 * enabled, even if it isn't hooked up, and just
2070 			 * provide a dummy.
2071 			 */
2072 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073 			rdev = dummy_regulator_rdev;
2074 			get_device(&rdev->dev);
2075 			break;
2076 
2077 		case EXCLUSIVE_GET:
2078 			dev_warn(dev,
2079 				 "dummy supplies not allowed for exclusive requests\n");
2080 			fallthrough;
2081 
2082 		default:
2083 			return ERR_PTR(-ENODEV);
2084 		}
2085 	}
2086 
2087 	if (rdev->exclusive) {
2088 		regulator = ERR_PTR(-EPERM);
2089 		put_device(&rdev->dev);
2090 		return regulator;
2091 	}
2092 
2093 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094 		regulator = ERR_PTR(-EBUSY);
2095 		put_device(&rdev->dev);
2096 		return regulator;
2097 	}
2098 
2099 	mutex_lock(&regulator_list_mutex);
2100 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101 	mutex_unlock(&regulator_list_mutex);
2102 
2103 	if (ret != 0) {
2104 		regulator = ERR_PTR(-EPROBE_DEFER);
2105 		put_device(&rdev->dev);
2106 		return regulator;
2107 	}
2108 
2109 	ret = regulator_resolve_supply(rdev);
2110 	if (ret < 0) {
2111 		regulator = ERR_PTR(ret);
2112 		put_device(&rdev->dev);
2113 		return regulator;
2114 	}
2115 
2116 	if (!try_module_get(rdev->owner)) {
2117 		regulator = ERR_PTR(-EPROBE_DEFER);
2118 		put_device(&rdev->dev);
2119 		return regulator;
2120 	}
2121 
2122 	regulator = create_regulator(rdev, dev, id);
2123 	if (regulator == NULL) {
2124 		regulator = ERR_PTR(-ENOMEM);
2125 		module_put(rdev->owner);
2126 		put_device(&rdev->dev);
2127 		return regulator;
2128 	}
2129 
2130 	rdev->open_count++;
2131 	if (get_type == EXCLUSIVE_GET) {
2132 		rdev->exclusive = 1;
2133 
2134 		ret = _regulator_is_enabled(rdev);
2135 		if (ret > 0)
2136 			rdev->use_count = 1;
2137 		else
2138 			rdev->use_count = 0;
2139 	}
2140 
2141 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142 	if (!IS_ERR_OR_NULL(link))
2143 		regulator->device_link = true;
2144 
2145 	return regulator;
2146 }
2147 
2148 /**
2149  * regulator_get - lookup and obtain a reference to a regulator.
2150  * @dev: device for regulator "consumer"
2151  * @id: Supply name or regulator ID.
2152  *
2153  * Returns a struct regulator corresponding to the regulator producer,
2154  * or IS_ERR() condition containing errno.
2155  *
2156  * Use of supply names configured via set_consumer_device_supply() is
2157  * strongly encouraged.  It is recommended that the supply name used
2158  * should match the name used for the supply and/or the relevant
2159  * device pins in the datasheet.
2160  */
2161 struct regulator *regulator_get(struct device *dev, const char *id)
2162 {
2163 	return _regulator_get(dev, id, NORMAL_GET);
2164 }
2165 EXPORT_SYMBOL_GPL(regulator_get);
2166 
2167 /**
2168  * regulator_get_exclusive - obtain exclusive access to a regulator.
2169  * @dev: device for regulator "consumer"
2170  * @id: Supply name or regulator ID.
2171  *
2172  * Returns a struct regulator corresponding to the regulator producer,
2173  * or IS_ERR() condition containing errno.  Other consumers will be
2174  * unable to obtain this regulator while this reference is held and the
2175  * use count for the regulator will be initialised to reflect the current
2176  * state of the regulator.
2177  *
2178  * This is intended for use by consumers which cannot tolerate shared
2179  * use of the regulator such as those which need to force the
2180  * regulator off for correct operation of the hardware they are
2181  * controlling.
2182  *
2183  * Use of supply names configured via set_consumer_device_supply() is
2184  * strongly encouraged.  It is recommended that the supply name used
2185  * should match the name used for the supply and/or the relevant
2186  * device pins in the datasheet.
2187  */
2188 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189 {
2190 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193 
2194 /**
2195  * regulator_get_optional - obtain optional access to a regulator.
2196  * @dev: device for regulator "consumer"
2197  * @id: Supply name or regulator ID.
2198  *
2199  * Returns a struct regulator corresponding to the regulator producer,
2200  * or IS_ERR() condition containing errno.
2201  *
2202  * This is intended for use by consumers for devices which can have
2203  * some supplies unconnected in normal use, such as some MMC devices.
2204  * It can allow the regulator core to provide stub supplies for other
2205  * supplies requested using normal regulator_get() calls without
2206  * disrupting the operation of drivers that can handle absent
2207  * supplies.
2208  *
2209  * Use of supply names configured via set_consumer_device_supply() is
2210  * strongly encouraged.  It is recommended that the supply name used
2211  * should match the name used for the supply and/or the relevant
2212  * device pins in the datasheet.
2213  */
2214 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215 {
2216 	return _regulator_get(dev, id, OPTIONAL_GET);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_optional);
2219 
2220 static void destroy_regulator(struct regulator *regulator)
2221 {
2222 	struct regulator_dev *rdev = regulator->rdev;
2223 
2224 	debugfs_remove_recursive(regulator->debugfs);
2225 
2226 	if (regulator->dev) {
2227 		if (regulator->device_link)
2228 			device_link_remove(regulator->dev, &rdev->dev);
2229 
2230 		/* remove any sysfs entries */
2231 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232 	}
2233 
2234 	regulator_lock(rdev);
2235 	list_del(&regulator->list);
2236 
2237 	rdev->open_count--;
2238 	rdev->exclusive = 0;
2239 	regulator_unlock(rdev);
2240 
2241 	kfree_const(regulator->supply_name);
2242 	kfree(regulator);
2243 }
2244 
2245 /* regulator_list_mutex lock held by regulator_put() */
2246 static void _regulator_put(struct regulator *regulator)
2247 {
2248 	struct regulator_dev *rdev;
2249 
2250 	if (IS_ERR_OR_NULL(regulator))
2251 		return;
2252 
2253 	lockdep_assert_held_once(&regulator_list_mutex);
2254 
2255 	/* Docs say you must disable before calling regulator_put() */
2256 	WARN_ON(regulator->enable_count);
2257 
2258 	rdev = regulator->rdev;
2259 
2260 	destroy_regulator(regulator);
2261 
2262 	module_put(rdev->owner);
2263 	put_device(&rdev->dev);
2264 }
2265 
2266 /**
2267  * regulator_put - "free" the regulator source
2268  * @regulator: regulator source
2269  *
2270  * Note: drivers must ensure that all regulator_enable calls made on this
2271  * regulator source are balanced by regulator_disable calls prior to calling
2272  * this function.
2273  */
2274 void regulator_put(struct regulator *regulator)
2275 {
2276 	mutex_lock(&regulator_list_mutex);
2277 	_regulator_put(regulator);
2278 	mutex_unlock(&regulator_list_mutex);
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_put);
2281 
2282 /**
2283  * regulator_register_supply_alias - Provide device alias for supply lookup
2284  *
2285  * @dev: device that will be given as the regulator "consumer"
2286  * @id: Supply name or regulator ID
2287  * @alias_dev: device that should be used to lookup the supply
2288  * @alias_id: Supply name or regulator ID that should be used to lookup the
2289  * supply
2290  *
2291  * All lookups for id on dev will instead be conducted for alias_id on
2292  * alias_dev.
2293  */
2294 int regulator_register_supply_alias(struct device *dev, const char *id,
2295 				    struct device *alias_dev,
2296 				    const char *alias_id)
2297 {
2298 	struct regulator_supply_alias *map;
2299 
2300 	map = regulator_find_supply_alias(dev, id);
2301 	if (map)
2302 		return -EEXIST;
2303 
2304 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305 	if (!map)
2306 		return -ENOMEM;
2307 
2308 	map->src_dev = dev;
2309 	map->src_supply = id;
2310 	map->alias_dev = alias_dev;
2311 	map->alias_supply = alias_id;
2312 
2313 	list_add(&map->list, &regulator_supply_alias_list);
2314 
2315 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2317 
2318 	return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321 
2322 /**
2323  * regulator_unregister_supply_alias - Remove device alias
2324  *
2325  * @dev: device that will be given as the regulator "consumer"
2326  * @id: Supply name or regulator ID
2327  *
2328  * Remove a lookup alias if one exists for id on dev.
2329  */
2330 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331 {
2332 	struct regulator_supply_alias *map;
2333 
2334 	map = regulator_find_supply_alias(dev, id);
2335 	if (map) {
2336 		list_del(&map->list);
2337 		kfree(map);
2338 	}
2339 }
2340 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341 
2342 /**
2343  * regulator_bulk_register_supply_alias - register multiple aliases
2344  *
2345  * @dev: device that will be given as the regulator "consumer"
2346  * @id: List of supply names or regulator IDs
2347  * @alias_dev: device that should be used to lookup the supply
2348  * @alias_id: List of supply names or regulator IDs that should be used to
2349  * lookup the supply
2350  * @num_id: Number of aliases to register
2351  *
2352  * @return 0 on success, an errno on failure.
2353  *
2354  * This helper function allows drivers to register several supply
2355  * aliases in one operation.  If any of the aliases cannot be
2356  * registered any aliases that were registered will be removed
2357  * before returning to the caller.
2358  */
2359 int regulator_bulk_register_supply_alias(struct device *dev,
2360 					 const char *const *id,
2361 					 struct device *alias_dev,
2362 					 const char *const *alias_id,
2363 					 int num_id)
2364 {
2365 	int i;
2366 	int ret;
2367 
2368 	for (i = 0; i < num_id; ++i) {
2369 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370 						      alias_id[i]);
2371 		if (ret < 0)
2372 			goto err;
2373 	}
2374 
2375 	return 0;
2376 
2377 err:
2378 	dev_err(dev,
2379 		"Failed to create supply alias %s,%s -> %s,%s\n",
2380 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381 
2382 	while (--i >= 0)
2383 		regulator_unregister_supply_alias(dev, id[i]);
2384 
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388 
2389 /**
2390  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391  *
2392  * @dev: device that will be given as the regulator "consumer"
2393  * @id: List of supply names or regulator IDs
2394  * @num_id: Number of aliases to unregister
2395  *
2396  * This helper function allows drivers to unregister several supply
2397  * aliases in one operation.
2398  */
2399 void regulator_bulk_unregister_supply_alias(struct device *dev,
2400 					    const char *const *id,
2401 					    int num_id)
2402 {
2403 	int i;
2404 
2405 	for (i = 0; i < num_id; ++i)
2406 		regulator_unregister_supply_alias(dev, id[i]);
2407 }
2408 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409 
2410 
2411 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413 				const struct regulator_config *config)
2414 {
2415 	struct regulator_enable_gpio *pin, *new_pin;
2416 	struct gpio_desc *gpiod;
2417 
2418 	gpiod = config->ena_gpiod;
2419 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420 
2421 	mutex_lock(&regulator_list_mutex);
2422 
2423 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2424 		if (pin->gpiod == gpiod) {
2425 			rdev_dbg(rdev, "GPIO is already used\n");
2426 			goto update_ena_gpio_to_rdev;
2427 		}
2428 	}
2429 
2430 	if (new_pin == NULL) {
2431 		mutex_unlock(&regulator_list_mutex);
2432 		return -ENOMEM;
2433 	}
2434 
2435 	pin = new_pin;
2436 	new_pin = NULL;
2437 
2438 	pin->gpiod = gpiod;
2439 	list_add(&pin->list, &regulator_ena_gpio_list);
2440 
2441 update_ena_gpio_to_rdev:
2442 	pin->request_count++;
2443 	rdev->ena_pin = pin;
2444 
2445 	mutex_unlock(&regulator_list_mutex);
2446 	kfree(new_pin);
2447 
2448 	return 0;
2449 }
2450 
2451 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452 {
2453 	struct regulator_enable_gpio *pin, *n;
2454 
2455 	if (!rdev->ena_pin)
2456 		return;
2457 
2458 	/* Free the GPIO only in case of no use */
2459 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2460 		if (pin != rdev->ena_pin)
2461 			continue;
2462 
2463 		if (--pin->request_count)
2464 			break;
2465 
2466 		gpiod_put(pin->gpiod);
2467 		list_del(&pin->list);
2468 		kfree(pin);
2469 		break;
2470 	}
2471 
2472 	rdev->ena_pin = NULL;
2473 }
2474 
2475 /**
2476  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477  * @rdev: regulator_dev structure
2478  * @enable: enable GPIO at initial use?
2479  *
2480  * GPIO is enabled in case of initial use. (enable_count is 0)
2481  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482  */
2483 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484 {
2485 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2486 
2487 	if (!pin)
2488 		return -EINVAL;
2489 
2490 	if (enable) {
2491 		/* Enable GPIO at initial use */
2492 		if (pin->enable_count == 0)
2493 			gpiod_set_value_cansleep(pin->gpiod, 1);
2494 
2495 		pin->enable_count++;
2496 	} else {
2497 		if (pin->enable_count > 1) {
2498 			pin->enable_count--;
2499 			return 0;
2500 		}
2501 
2502 		/* Disable GPIO if not used */
2503 		if (pin->enable_count <= 1) {
2504 			gpiod_set_value_cansleep(pin->gpiod, 0);
2505 			pin->enable_count = 0;
2506 		}
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 /**
2513  * _regulator_enable_delay - a delay helper function
2514  * @delay: time to delay in microseconds
2515  *
2516  * Delay for the requested amount of time as per the guidelines in:
2517  *
2518  *     Documentation/timers/timers-howto.rst
2519  *
2520  * The assumption here is that regulators will never be enabled in
2521  * atomic context and therefore sleeping functions can be used.
2522  */
2523 static void _regulator_enable_delay(unsigned int delay)
2524 {
2525 	unsigned int ms = delay / 1000;
2526 	unsigned int us = delay % 1000;
2527 
2528 	if (ms > 0) {
2529 		/*
2530 		 * For small enough values, handle super-millisecond
2531 		 * delays in the usleep_range() call below.
2532 		 */
2533 		if (ms < 20)
2534 			us += ms * 1000;
2535 		else
2536 			msleep(ms);
2537 	}
2538 
2539 	/*
2540 	 * Give the scheduler some room to coalesce with any other
2541 	 * wakeup sources. For delays shorter than 10 us, don't even
2542 	 * bother setting up high-resolution timers and just busy-
2543 	 * loop.
2544 	 */
2545 	if (us >= 10)
2546 		usleep_range(us, us + 100);
2547 	else
2548 		udelay(us);
2549 }
2550 
2551 /**
2552  * _regulator_check_status_enabled
2553  *
2554  * A helper function to check if the regulator status can be interpreted
2555  * as 'regulator is enabled'.
2556  * @rdev: the regulator device to check
2557  *
2558  * Return:
2559  * * 1			- if status shows regulator is in enabled state
2560  * * 0			- if not enabled state
2561  * * Error Value	- as received from ops->get_status()
2562  */
2563 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564 {
2565 	int ret = rdev->desc->ops->get_status(rdev);
2566 
2567 	if (ret < 0) {
2568 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2569 		return ret;
2570 	}
2571 
2572 	switch (ret) {
2573 	case REGULATOR_STATUS_OFF:
2574 	case REGULATOR_STATUS_ERROR:
2575 	case REGULATOR_STATUS_UNDEFINED:
2576 		return 0;
2577 	default:
2578 		return 1;
2579 	}
2580 }
2581 
2582 static int _regulator_do_enable(struct regulator_dev *rdev)
2583 {
2584 	int ret, delay;
2585 
2586 	/* Query before enabling in case configuration dependent.  */
2587 	ret = _regulator_get_enable_time(rdev);
2588 	if (ret >= 0) {
2589 		delay = ret;
2590 	} else {
2591 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592 		delay = 0;
2593 	}
2594 
2595 	trace_regulator_enable(rdev_get_name(rdev));
2596 
2597 	if (rdev->desc->off_on_delay && rdev->last_off) {
2598 		/* if needed, keep a distance of off_on_delay from last time
2599 		 * this regulator was disabled.
2600 		 */
2601 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602 		s64 remaining = ktime_us_delta(end, ktime_get());
2603 
2604 		if (remaining > 0)
2605 			_regulator_enable_delay(remaining);
2606 	}
2607 
2608 	if (rdev->ena_pin) {
2609 		if (!rdev->ena_gpio_state) {
2610 			ret = regulator_ena_gpio_ctrl(rdev, true);
2611 			if (ret < 0)
2612 				return ret;
2613 			rdev->ena_gpio_state = 1;
2614 		}
2615 	} else if (rdev->desc->ops->enable) {
2616 		ret = rdev->desc->ops->enable(rdev);
2617 		if (ret < 0)
2618 			return ret;
2619 	} else {
2620 		return -EINVAL;
2621 	}
2622 
2623 	/* Allow the regulator to ramp; it would be useful to extend
2624 	 * this for bulk operations so that the regulators can ramp
2625 	 * together.
2626 	 */
2627 	trace_regulator_enable_delay(rdev_get_name(rdev));
2628 
2629 	/* If poll_enabled_time is set, poll upto the delay calculated
2630 	 * above, delaying poll_enabled_time uS to check if the regulator
2631 	 * actually got enabled.
2632 	 * If the regulator isn't enabled after enable_delay has
2633 	 * expired, return -ETIMEDOUT.
2634 	 */
2635 	if (rdev->desc->poll_enabled_time) {
2636 		unsigned int time_remaining = delay;
2637 
2638 		while (time_remaining > 0) {
2639 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2640 
2641 			if (rdev->desc->ops->get_status) {
2642 				ret = _regulator_check_status_enabled(rdev);
2643 				if (ret < 0)
2644 					return ret;
2645 				else if (ret)
2646 					break;
2647 			} else if (rdev->desc->ops->is_enabled(rdev))
2648 				break;
2649 
2650 			time_remaining -= rdev->desc->poll_enabled_time;
2651 		}
2652 
2653 		if (time_remaining <= 0) {
2654 			rdev_err(rdev, "Enabled check timed out\n");
2655 			return -ETIMEDOUT;
2656 		}
2657 	} else {
2658 		_regulator_enable_delay(delay);
2659 	}
2660 
2661 	trace_regulator_enable_complete(rdev_get_name(rdev));
2662 
2663 	return 0;
2664 }
2665 
2666 /**
2667  * _regulator_handle_consumer_enable - handle that a consumer enabled
2668  * @regulator: regulator source
2669  *
2670  * Some things on a regulator consumer (like the contribution towards total
2671  * load on the regulator) only have an effect when the consumer wants the
2672  * regulator enabled.  Explained in example with two consumers of the same
2673  * regulator:
2674  *   consumer A: set_load(100);       => total load = 0
2675  *   consumer A: regulator_enable();  => total load = 100
2676  *   consumer B: set_load(1000);      => total load = 100
2677  *   consumer B: regulator_enable();  => total load = 1100
2678  *   consumer A: regulator_disable(); => total_load = 1000
2679  *
2680  * This function (together with _regulator_handle_consumer_disable) is
2681  * responsible for keeping track of the refcount for a given regulator consumer
2682  * and applying / unapplying these things.
2683  *
2684  * Returns 0 upon no error; -error upon error.
2685  */
2686 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687 {
2688 	struct regulator_dev *rdev = regulator->rdev;
2689 
2690 	lockdep_assert_held_once(&rdev->mutex.base);
2691 
2692 	regulator->enable_count++;
2693 	if (regulator->uA_load && regulator->enable_count == 1)
2694 		return drms_uA_update(rdev);
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  * _regulator_handle_consumer_disable - handle that a consumer disabled
2701  * @regulator: regulator source
2702  *
2703  * The opposite of _regulator_handle_consumer_enable().
2704  *
2705  * Returns 0 upon no error; -error upon error.
2706  */
2707 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708 {
2709 	struct regulator_dev *rdev = regulator->rdev;
2710 
2711 	lockdep_assert_held_once(&rdev->mutex.base);
2712 
2713 	if (!regulator->enable_count) {
2714 		rdev_err(rdev, "Underflow of regulator enable count\n");
2715 		return -EINVAL;
2716 	}
2717 
2718 	regulator->enable_count--;
2719 	if (regulator->uA_load && regulator->enable_count == 0)
2720 		return drms_uA_update(rdev);
2721 
2722 	return 0;
2723 }
2724 
2725 /* locks held by regulator_enable() */
2726 static int _regulator_enable(struct regulator *regulator)
2727 {
2728 	struct regulator_dev *rdev = regulator->rdev;
2729 	int ret;
2730 
2731 	lockdep_assert_held_once(&rdev->mutex.base);
2732 
2733 	if (rdev->use_count == 0 && rdev->supply) {
2734 		ret = _regulator_enable(rdev->supply);
2735 		if (ret < 0)
2736 			return ret;
2737 	}
2738 
2739 	/* balance only if there are regulators coupled */
2740 	if (rdev->coupling_desc.n_coupled > 1) {
2741 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 		if (ret < 0)
2743 			goto err_disable_supply;
2744 	}
2745 
2746 	ret = _regulator_handle_consumer_enable(regulator);
2747 	if (ret < 0)
2748 		goto err_disable_supply;
2749 
2750 	if (rdev->use_count == 0) {
2751 		/*
2752 		 * The regulator may already be enabled if it's not switchable
2753 		 * or was left on
2754 		 */
2755 		ret = _regulator_is_enabled(rdev);
2756 		if (ret == -EINVAL || ret == 0) {
2757 			if (!regulator_ops_is_valid(rdev,
2758 					REGULATOR_CHANGE_STATUS)) {
2759 				ret = -EPERM;
2760 				goto err_consumer_disable;
2761 			}
2762 
2763 			ret = _regulator_do_enable(rdev);
2764 			if (ret < 0)
2765 				goto err_consumer_disable;
2766 
2767 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768 					     NULL);
2769 		} else if (ret < 0) {
2770 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771 			goto err_consumer_disable;
2772 		}
2773 		/* Fallthrough on positive return values - already enabled */
2774 	}
2775 
2776 	rdev->use_count++;
2777 
2778 	return 0;
2779 
2780 err_consumer_disable:
2781 	_regulator_handle_consumer_disable(regulator);
2782 
2783 err_disable_supply:
2784 	if (rdev->use_count == 0 && rdev->supply)
2785 		_regulator_disable(rdev->supply);
2786 
2787 	return ret;
2788 }
2789 
2790 /**
2791  * regulator_enable - enable regulator output
2792  * @regulator: regulator source
2793  *
2794  * Request that the regulator be enabled with the regulator output at
2795  * the predefined voltage or current value.  Calls to regulator_enable()
2796  * must be balanced with calls to regulator_disable().
2797  *
2798  * NOTE: the output value can be set by other drivers, boot loader or may be
2799  * hardwired in the regulator.
2800  */
2801 int regulator_enable(struct regulator *regulator)
2802 {
2803 	struct regulator_dev *rdev = regulator->rdev;
2804 	struct ww_acquire_ctx ww_ctx;
2805 	int ret;
2806 
2807 	regulator_lock_dependent(rdev, &ww_ctx);
2808 	ret = _regulator_enable(regulator);
2809 	regulator_unlock_dependent(rdev, &ww_ctx);
2810 
2811 	return ret;
2812 }
2813 EXPORT_SYMBOL_GPL(regulator_enable);
2814 
2815 static int _regulator_do_disable(struct regulator_dev *rdev)
2816 {
2817 	int ret;
2818 
2819 	trace_regulator_disable(rdev_get_name(rdev));
2820 
2821 	if (rdev->ena_pin) {
2822 		if (rdev->ena_gpio_state) {
2823 			ret = regulator_ena_gpio_ctrl(rdev, false);
2824 			if (ret < 0)
2825 				return ret;
2826 			rdev->ena_gpio_state = 0;
2827 		}
2828 
2829 	} else if (rdev->desc->ops->disable) {
2830 		ret = rdev->desc->ops->disable(rdev);
2831 		if (ret != 0)
2832 			return ret;
2833 	}
2834 
2835 	if (rdev->desc->off_on_delay)
2836 		rdev->last_off = ktime_get();
2837 
2838 	trace_regulator_disable_complete(rdev_get_name(rdev));
2839 
2840 	return 0;
2841 }
2842 
2843 /* locks held by regulator_disable() */
2844 static int _regulator_disable(struct regulator *regulator)
2845 {
2846 	struct regulator_dev *rdev = regulator->rdev;
2847 	int ret = 0;
2848 
2849 	lockdep_assert_held_once(&rdev->mutex.base);
2850 
2851 	if (WARN(rdev->use_count <= 0,
2852 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853 		return -EIO;
2854 
2855 	/* are we the last user and permitted to disable ? */
2856 	if (rdev->use_count == 1 &&
2857 	    (rdev->constraints && !rdev->constraints->always_on)) {
2858 
2859 		/* we are last user */
2860 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 			ret = _notifier_call_chain(rdev,
2862 						   REGULATOR_EVENT_PRE_DISABLE,
2863 						   NULL);
2864 			if (ret & NOTIFY_STOP_MASK)
2865 				return -EINVAL;
2866 
2867 			ret = _regulator_do_disable(rdev);
2868 			if (ret < 0) {
2869 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 				_notifier_call_chain(rdev,
2871 						REGULATOR_EVENT_ABORT_DISABLE,
2872 						NULL);
2873 				return ret;
2874 			}
2875 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876 					NULL);
2877 		}
2878 
2879 		rdev->use_count = 0;
2880 	} else if (rdev->use_count > 1) {
2881 		rdev->use_count--;
2882 	}
2883 
2884 	if (ret == 0)
2885 		ret = _regulator_handle_consumer_disable(regulator);
2886 
2887 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 
2890 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891 		ret = _regulator_disable(rdev->supply);
2892 
2893 	return ret;
2894 }
2895 
2896 /**
2897  * regulator_disable - disable regulator output
2898  * @regulator: regulator source
2899  *
2900  * Disable the regulator output voltage or current.  Calls to
2901  * regulator_enable() must be balanced with calls to
2902  * regulator_disable().
2903  *
2904  * NOTE: this will only disable the regulator output if no other consumer
2905  * devices have it enabled, the regulator device supports disabling and
2906  * machine constraints permit this operation.
2907  */
2908 int regulator_disable(struct regulator *regulator)
2909 {
2910 	struct regulator_dev *rdev = regulator->rdev;
2911 	struct ww_acquire_ctx ww_ctx;
2912 	int ret;
2913 
2914 	regulator_lock_dependent(rdev, &ww_ctx);
2915 	ret = _regulator_disable(regulator);
2916 	regulator_unlock_dependent(rdev, &ww_ctx);
2917 
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_disable);
2921 
2922 /* locks held by regulator_force_disable() */
2923 static int _regulator_force_disable(struct regulator_dev *rdev)
2924 {
2925 	int ret = 0;
2926 
2927 	lockdep_assert_held_once(&rdev->mutex.base);
2928 
2929 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2931 	if (ret & NOTIFY_STOP_MASK)
2932 		return -EINVAL;
2933 
2934 	ret = _regulator_do_disable(rdev);
2935 	if (ret < 0) {
2936 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939 		return ret;
2940 	}
2941 
2942 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943 			REGULATOR_EVENT_DISABLE, NULL);
2944 
2945 	return 0;
2946 }
2947 
2948 /**
2949  * regulator_force_disable - force disable regulator output
2950  * @regulator: regulator source
2951  *
2952  * Forcibly disable the regulator output voltage or current.
2953  * NOTE: this *will* disable the regulator output even if other consumer
2954  * devices have it enabled. This should be used for situations when device
2955  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956  */
2957 int regulator_force_disable(struct regulator *regulator)
2958 {
2959 	struct regulator_dev *rdev = regulator->rdev;
2960 	struct ww_acquire_ctx ww_ctx;
2961 	int ret;
2962 
2963 	regulator_lock_dependent(rdev, &ww_ctx);
2964 
2965 	ret = _regulator_force_disable(regulator->rdev);
2966 
2967 	if (rdev->coupling_desc.n_coupled > 1)
2968 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969 
2970 	if (regulator->uA_load) {
2971 		regulator->uA_load = 0;
2972 		ret = drms_uA_update(rdev);
2973 	}
2974 
2975 	if (rdev->use_count != 0 && rdev->supply)
2976 		_regulator_disable(rdev->supply);
2977 
2978 	regulator_unlock_dependent(rdev, &ww_ctx);
2979 
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_force_disable);
2983 
2984 static void regulator_disable_work(struct work_struct *work)
2985 {
2986 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987 						  disable_work.work);
2988 	struct ww_acquire_ctx ww_ctx;
2989 	int count, i, ret;
2990 	struct regulator *regulator;
2991 	int total_count = 0;
2992 
2993 	regulator_lock_dependent(rdev, &ww_ctx);
2994 
2995 	/*
2996 	 * Workqueue functions queue the new work instance while the previous
2997 	 * work instance is being processed. Cancel the queued work instance
2998 	 * as the work instance under processing does the job of the queued
2999 	 * work instance.
3000 	 */
3001 	cancel_delayed_work(&rdev->disable_work);
3002 
3003 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004 		count = regulator->deferred_disables;
3005 
3006 		if (!count)
3007 			continue;
3008 
3009 		total_count += count;
3010 		regulator->deferred_disables = 0;
3011 
3012 		for (i = 0; i < count; i++) {
3013 			ret = _regulator_disable(regulator);
3014 			if (ret != 0)
3015 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3016 					 ERR_PTR(ret));
3017 		}
3018 	}
3019 	WARN_ON(!total_count);
3020 
3021 	if (rdev->coupling_desc.n_coupled > 1)
3022 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023 
3024 	regulator_unlock_dependent(rdev, &ww_ctx);
3025 }
3026 
3027 /**
3028  * regulator_disable_deferred - disable regulator output with delay
3029  * @regulator: regulator source
3030  * @ms: milliseconds until the regulator is disabled
3031  *
3032  * Execute regulator_disable() on the regulator after a delay.  This
3033  * is intended for use with devices that require some time to quiesce.
3034  *
3035  * NOTE: this will only disable the regulator output if no other consumer
3036  * devices have it enabled, the regulator device supports disabling and
3037  * machine constraints permit this operation.
3038  */
3039 int regulator_disable_deferred(struct regulator *regulator, int ms)
3040 {
3041 	struct regulator_dev *rdev = regulator->rdev;
3042 
3043 	if (!ms)
3044 		return regulator_disable(regulator);
3045 
3046 	regulator_lock(rdev);
3047 	regulator->deferred_disables++;
3048 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049 			 msecs_to_jiffies(ms));
3050 	regulator_unlock(rdev);
3051 
3052 	return 0;
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055 
3056 static int _regulator_is_enabled(struct regulator_dev *rdev)
3057 {
3058 	/* A GPIO control always takes precedence */
3059 	if (rdev->ena_pin)
3060 		return rdev->ena_gpio_state;
3061 
3062 	/* If we don't know then assume that the regulator is always on */
3063 	if (!rdev->desc->ops->is_enabled)
3064 		return 1;
3065 
3066 	return rdev->desc->ops->is_enabled(rdev);
3067 }
3068 
3069 static int _regulator_list_voltage(struct regulator_dev *rdev,
3070 				   unsigned selector, int lock)
3071 {
3072 	const struct regulator_ops *ops = rdev->desc->ops;
3073 	int ret;
3074 
3075 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076 		return rdev->desc->fixed_uV;
3077 
3078 	if (ops->list_voltage) {
3079 		if (selector >= rdev->desc->n_voltages)
3080 			return -EINVAL;
3081 		if (selector < rdev->desc->linear_min_sel)
3082 			return 0;
3083 		if (lock)
3084 			regulator_lock(rdev);
3085 		ret = ops->list_voltage(rdev, selector);
3086 		if (lock)
3087 			regulator_unlock(rdev);
3088 	} else if (rdev->is_switch && rdev->supply) {
3089 		ret = _regulator_list_voltage(rdev->supply->rdev,
3090 					      selector, lock);
3091 	} else {
3092 		return -EINVAL;
3093 	}
3094 
3095 	if (ret > 0) {
3096 		if (ret < rdev->constraints->min_uV)
3097 			ret = 0;
3098 		else if (ret > rdev->constraints->max_uV)
3099 			ret = 0;
3100 	}
3101 
3102 	return ret;
3103 }
3104 
3105 /**
3106  * regulator_is_enabled - is the regulator output enabled
3107  * @regulator: regulator source
3108  *
3109  * Returns positive if the regulator driver backing the source/client
3110  * has requested that the device be enabled, zero if it hasn't, else a
3111  * negative errno code.
3112  *
3113  * Note that the device backing this regulator handle can have multiple
3114  * users, so it might be enabled even if regulator_enable() was never
3115  * called for this particular source.
3116  */
3117 int regulator_is_enabled(struct regulator *regulator)
3118 {
3119 	int ret;
3120 
3121 	if (regulator->always_on)
3122 		return 1;
3123 
3124 	regulator_lock(regulator->rdev);
3125 	ret = _regulator_is_enabled(regulator->rdev);
3126 	regulator_unlock(regulator->rdev);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131 
3132 /**
3133  * regulator_count_voltages - count regulator_list_voltage() selectors
3134  * @regulator: regulator source
3135  *
3136  * Returns number of selectors, or negative errno.  Selectors are
3137  * numbered starting at zero, and typically correspond to bitfields
3138  * in hardware registers.
3139  */
3140 int regulator_count_voltages(struct regulator *regulator)
3141 {
3142 	struct regulator_dev	*rdev = regulator->rdev;
3143 
3144 	if (rdev->desc->n_voltages)
3145 		return rdev->desc->n_voltages;
3146 
3147 	if (!rdev->is_switch || !rdev->supply)
3148 		return -EINVAL;
3149 
3150 	return regulator_count_voltages(rdev->supply);
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153 
3154 /**
3155  * regulator_list_voltage - enumerate supported voltages
3156  * @regulator: regulator source
3157  * @selector: identify voltage to list
3158  * Context: can sleep
3159  *
3160  * Returns a voltage that can be passed to @regulator_set_voltage(),
3161  * zero if this selector code can't be used on this system, or a
3162  * negative errno.
3163  */
3164 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165 {
3166 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169 
3170 /**
3171  * regulator_get_regmap - get the regulator's register map
3172  * @regulator: regulator source
3173  *
3174  * Returns the register map for the given regulator, or an ERR_PTR value
3175  * if the regulator doesn't use regmap.
3176  */
3177 struct regmap *regulator_get_regmap(struct regulator *regulator)
3178 {
3179 	struct regmap *map = regulator->rdev->regmap;
3180 
3181 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3182 }
3183 
3184 /**
3185  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186  * @regulator: regulator source
3187  * @vsel_reg: voltage selector register, output parameter
3188  * @vsel_mask: mask for voltage selector bitfield, output parameter
3189  *
3190  * Returns the hardware register offset and bitmask used for setting the
3191  * regulator voltage. This might be useful when configuring voltage-scaling
3192  * hardware or firmware that can make I2C requests behind the kernel's back,
3193  * for example.
3194  *
3195  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196  * and 0 is returned, otherwise a negative errno is returned.
3197  */
3198 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 					 unsigned *vsel_reg,
3200 					 unsigned *vsel_mask)
3201 {
3202 	struct regulator_dev *rdev = regulator->rdev;
3203 	const struct regulator_ops *ops = rdev->desc->ops;
3204 
3205 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 		return -EOPNOTSUPP;
3207 
3208 	*vsel_reg = rdev->desc->vsel_reg;
3209 	*vsel_mask = rdev->desc->vsel_mask;
3210 
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214 
3215 /**
3216  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217  * @regulator: regulator source
3218  * @selector: identify voltage to list
3219  *
3220  * Converts the selector to a hardware-specific voltage selector that can be
3221  * directly written to the regulator registers. The address of the voltage
3222  * register can be determined by calling @regulator_get_hardware_vsel_register.
3223  *
3224  * On error a negative errno is returned.
3225  */
3226 int regulator_list_hardware_vsel(struct regulator *regulator,
3227 				 unsigned selector)
3228 {
3229 	struct regulator_dev *rdev = regulator->rdev;
3230 	const struct regulator_ops *ops = rdev->desc->ops;
3231 
3232 	if (selector >= rdev->desc->n_voltages)
3233 		return -EINVAL;
3234 	if (selector < rdev->desc->linear_min_sel)
3235 		return 0;
3236 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 		return -EOPNOTSUPP;
3238 
3239 	return selector;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242 
3243 /**
3244  * regulator_get_linear_step - return the voltage step size between VSEL values
3245  * @regulator: regulator source
3246  *
3247  * Returns the voltage step size between VSEL values for linear
3248  * regulators, or return 0 if the regulator isn't a linear regulator.
3249  */
3250 unsigned int regulator_get_linear_step(struct regulator *regulator)
3251 {
3252 	struct regulator_dev *rdev = regulator->rdev;
3253 
3254 	return rdev->desc->uV_step;
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257 
3258 /**
3259  * regulator_is_supported_voltage - check if a voltage range can be supported
3260  *
3261  * @regulator: Regulator to check.
3262  * @min_uV: Minimum required voltage in uV.
3263  * @max_uV: Maximum required voltage in uV.
3264  *
3265  * Returns a boolean.
3266  */
3267 int regulator_is_supported_voltage(struct regulator *regulator,
3268 				   int min_uV, int max_uV)
3269 {
3270 	struct regulator_dev *rdev = regulator->rdev;
3271 	int i, voltages, ret;
3272 
3273 	/* If we can't change voltage check the current voltage */
3274 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 		ret = regulator_get_voltage(regulator);
3276 		if (ret >= 0)
3277 			return min_uV <= ret && ret <= max_uV;
3278 		else
3279 			return ret;
3280 	}
3281 
3282 	/* Any voltage within constrains range is fine? */
3283 	if (rdev->desc->continuous_voltage_range)
3284 		return min_uV >= rdev->constraints->min_uV &&
3285 				max_uV <= rdev->constraints->max_uV;
3286 
3287 	ret = regulator_count_voltages(regulator);
3288 	if (ret < 0)
3289 		return 0;
3290 	voltages = ret;
3291 
3292 	for (i = 0; i < voltages; i++) {
3293 		ret = regulator_list_voltage(regulator, i);
3294 
3295 		if (ret >= min_uV && ret <= max_uV)
3296 			return 1;
3297 	}
3298 
3299 	return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302 
3303 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 				 int max_uV)
3305 {
3306 	const struct regulator_desc *desc = rdev->desc;
3307 
3308 	if (desc->ops->map_voltage)
3309 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310 
3311 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313 
3314 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316 
3317 	if (desc->ops->list_voltage ==
3318 		regulator_list_voltage_pickable_linear_range)
3319 		return regulator_map_voltage_pickable_linear_range(rdev,
3320 							min_uV, max_uV);
3321 
3322 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323 }
3324 
3325 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 				       int min_uV, int max_uV,
3327 				       unsigned *selector)
3328 {
3329 	struct pre_voltage_change_data data;
3330 	int ret;
3331 
3332 	data.old_uV = regulator_get_voltage_rdev(rdev);
3333 	data.min_uV = min_uV;
3334 	data.max_uV = max_uV;
3335 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 				   &data);
3337 	if (ret & NOTIFY_STOP_MASK)
3338 		return -EINVAL;
3339 
3340 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 	if (ret >= 0)
3342 		return ret;
3343 
3344 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 			     (void *)data.old_uV);
3346 
3347 	return ret;
3348 }
3349 
3350 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 					   int uV, unsigned selector)
3352 {
3353 	struct pre_voltage_change_data data;
3354 	int ret;
3355 
3356 	data.old_uV = regulator_get_voltage_rdev(rdev);
3357 	data.min_uV = uV;
3358 	data.max_uV = uV;
3359 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 				   &data);
3361 	if (ret & NOTIFY_STOP_MASK)
3362 		return -EINVAL;
3363 
3364 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 	if (ret >= 0)
3366 		return ret;
3367 
3368 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 			     (void *)data.old_uV);
3370 
3371 	return ret;
3372 }
3373 
3374 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 					   int uV, int new_selector)
3376 {
3377 	const struct regulator_ops *ops = rdev->desc->ops;
3378 	int diff, old_sel, curr_sel, ret;
3379 
3380 	/* Stepping is only needed if the regulator is enabled. */
3381 	if (!_regulator_is_enabled(rdev))
3382 		goto final_set;
3383 
3384 	if (!ops->get_voltage_sel)
3385 		return -EINVAL;
3386 
3387 	old_sel = ops->get_voltage_sel(rdev);
3388 	if (old_sel < 0)
3389 		return old_sel;
3390 
3391 	diff = new_selector - old_sel;
3392 	if (diff == 0)
3393 		return 0; /* No change needed. */
3394 
3395 	if (diff > 0) {
3396 		/* Stepping up. */
3397 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 		     curr_sel < new_selector;
3399 		     curr_sel += rdev->desc->vsel_step) {
3400 			/*
3401 			 * Call the callback directly instead of using
3402 			 * _regulator_call_set_voltage_sel() as we don't
3403 			 * want to notify anyone yet. Same in the branch
3404 			 * below.
3405 			 */
3406 			ret = ops->set_voltage_sel(rdev, curr_sel);
3407 			if (ret)
3408 				goto try_revert;
3409 		}
3410 	} else {
3411 		/* Stepping down. */
3412 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 		     curr_sel > new_selector;
3414 		     curr_sel -= rdev->desc->vsel_step) {
3415 			ret = ops->set_voltage_sel(rdev, curr_sel);
3416 			if (ret)
3417 				goto try_revert;
3418 		}
3419 	}
3420 
3421 final_set:
3422 	/* The final selector will trigger the notifiers. */
3423 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424 
3425 try_revert:
3426 	/*
3427 	 * At least try to return to the previous voltage if setting a new
3428 	 * one failed.
3429 	 */
3430 	(void)ops->set_voltage_sel(rdev, old_sel);
3431 	return ret;
3432 }
3433 
3434 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 				       int old_uV, int new_uV)
3436 {
3437 	unsigned int ramp_delay = 0;
3438 
3439 	if (rdev->constraints->ramp_delay)
3440 		ramp_delay = rdev->constraints->ramp_delay;
3441 	else if (rdev->desc->ramp_delay)
3442 		ramp_delay = rdev->desc->ramp_delay;
3443 	else if (rdev->constraints->settling_time)
3444 		return rdev->constraints->settling_time;
3445 	else if (rdev->constraints->settling_time_up &&
3446 		 (new_uV > old_uV))
3447 		return rdev->constraints->settling_time_up;
3448 	else if (rdev->constraints->settling_time_down &&
3449 		 (new_uV < old_uV))
3450 		return rdev->constraints->settling_time_down;
3451 
3452 	if (ramp_delay == 0) {
3453 		rdev_dbg(rdev, "ramp_delay not set\n");
3454 		return 0;
3455 	}
3456 
3457 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458 }
3459 
3460 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 				     int min_uV, int max_uV)
3462 {
3463 	int ret;
3464 	int delay = 0;
3465 	int best_val = 0;
3466 	unsigned int selector;
3467 	int old_selector = -1;
3468 	const struct regulator_ops *ops = rdev->desc->ops;
3469 	int old_uV = regulator_get_voltage_rdev(rdev);
3470 
3471 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472 
3473 	min_uV += rdev->constraints->uV_offset;
3474 	max_uV += rdev->constraints->uV_offset;
3475 
3476 	/*
3477 	 * If we can't obtain the old selector there is not enough
3478 	 * info to call set_voltage_time_sel().
3479 	 */
3480 	if (_regulator_is_enabled(rdev) &&
3481 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 		old_selector = ops->get_voltage_sel(rdev);
3483 		if (old_selector < 0)
3484 			return old_selector;
3485 	}
3486 
3487 	if (ops->set_voltage) {
3488 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 						  &selector);
3490 
3491 		if (ret >= 0) {
3492 			if (ops->list_voltage)
3493 				best_val = ops->list_voltage(rdev,
3494 							     selector);
3495 			else
3496 				best_val = regulator_get_voltage_rdev(rdev);
3497 		}
3498 
3499 	} else if (ops->set_voltage_sel) {
3500 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 		if (ret >= 0) {
3502 			best_val = ops->list_voltage(rdev, ret);
3503 			if (min_uV <= best_val && max_uV >= best_val) {
3504 				selector = ret;
3505 				if (old_selector == selector)
3506 					ret = 0;
3507 				else if (rdev->desc->vsel_step)
3508 					ret = _regulator_set_voltage_sel_step(
3509 						rdev, best_val, selector);
3510 				else
3511 					ret = _regulator_call_set_voltage_sel(
3512 						rdev, best_val, selector);
3513 			} else {
3514 				ret = -EINVAL;
3515 			}
3516 		}
3517 	} else {
3518 		ret = -EINVAL;
3519 	}
3520 
3521 	if (ret)
3522 		goto out;
3523 
3524 	if (ops->set_voltage_time_sel) {
3525 		/*
3526 		 * Call set_voltage_time_sel if successfully obtained
3527 		 * old_selector
3528 		 */
3529 		if (old_selector >= 0 && old_selector != selector)
3530 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 							  selector);
3532 	} else {
3533 		if (old_uV != best_val) {
3534 			if (ops->set_voltage_time)
3535 				delay = ops->set_voltage_time(rdev, old_uV,
3536 							      best_val);
3537 			else
3538 				delay = _regulator_set_voltage_time(rdev,
3539 								    old_uV,
3540 								    best_val);
3541 		}
3542 	}
3543 
3544 	if (delay < 0) {
3545 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 		delay = 0;
3547 	}
3548 
3549 	/* Insert any necessary delays */
3550 	if (delay >= 1000) {
3551 		mdelay(delay / 1000);
3552 		udelay(delay % 1000);
3553 	} else if (delay) {
3554 		udelay(delay);
3555 	}
3556 
3557 	if (best_val >= 0) {
3558 		unsigned long data = best_val;
3559 
3560 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 				     (void *)data);
3562 	}
3563 
3564 out:
3565 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566 
3567 	return ret;
3568 }
3569 
3570 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 				  int min_uV, int max_uV, suspend_state_t state)
3572 {
3573 	struct regulator_state *rstate;
3574 	int uV, sel;
3575 
3576 	rstate = regulator_get_suspend_state(rdev, state);
3577 	if (rstate == NULL)
3578 		return -EINVAL;
3579 
3580 	if (min_uV < rstate->min_uV)
3581 		min_uV = rstate->min_uV;
3582 	if (max_uV > rstate->max_uV)
3583 		max_uV = rstate->max_uV;
3584 
3585 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 	if (sel < 0)
3587 		return sel;
3588 
3589 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 	if (uV >= min_uV && uV <= max_uV)
3591 		rstate->uV = uV;
3592 
3593 	return 0;
3594 }
3595 
3596 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 					  int min_uV, int max_uV,
3598 					  suspend_state_t state)
3599 {
3600 	struct regulator_dev *rdev = regulator->rdev;
3601 	struct regulator_voltage *voltage = &regulator->voltage[state];
3602 	int ret = 0;
3603 	int old_min_uV, old_max_uV;
3604 	int current_uV;
3605 
3606 	/* If we're setting the same range as last time the change
3607 	 * should be a noop (some cpufreq implementations use the same
3608 	 * voltage for multiple frequencies, for example).
3609 	 */
3610 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 		goto out;
3612 
3613 	/* If we're trying to set a range that overlaps the current voltage,
3614 	 * return successfully even though the regulator does not support
3615 	 * changing the voltage.
3616 	 */
3617 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 		current_uV = regulator_get_voltage_rdev(rdev);
3619 		if (min_uV <= current_uV && current_uV <= max_uV) {
3620 			voltage->min_uV = min_uV;
3621 			voltage->max_uV = max_uV;
3622 			goto out;
3623 		}
3624 	}
3625 
3626 	/* sanity check */
3627 	if (!rdev->desc->ops->set_voltage &&
3628 	    !rdev->desc->ops->set_voltage_sel) {
3629 		ret = -EINVAL;
3630 		goto out;
3631 	}
3632 
3633 	/* constraints check */
3634 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 	if (ret < 0)
3636 		goto out;
3637 
3638 	/* restore original values in case of error */
3639 	old_min_uV = voltage->min_uV;
3640 	old_max_uV = voltage->max_uV;
3641 	voltage->min_uV = min_uV;
3642 	voltage->max_uV = max_uV;
3643 
3644 	/* for not coupled regulators this will just set the voltage */
3645 	ret = regulator_balance_voltage(rdev, state);
3646 	if (ret < 0) {
3647 		voltage->min_uV = old_min_uV;
3648 		voltage->max_uV = old_max_uV;
3649 	}
3650 
3651 out:
3652 	return ret;
3653 }
3654 
3655 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 			       int max_uV, suspend_state_t state)
3657 {
3658 	int best_supply_uV = 0;
3659 	int supply_change_uV = 0;
3660 	int ret;
3661 
3662 	if (rdev->supply &&
3663 	    regulator_ops_is_valid(rdev->supply->rdev,
3664 				   REGULATOR_CHANGE_VOLTAGE) &&
3665 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 					   rdev->desc->ops->get_voltage_sel))) {
3667 		int current_supply_uV;
3668 		int selector;
3669 
3670 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 		if (selector < 0) {
3672 			ret = selector;
3673 			goto out;
3674 		}
3675 
3676 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 		if (best_supply_uV < 0) {
3678 			ret = best_supply_uV;
3679 			goto out;
3680 		}
3681 
3682 		best_supply_uV += rdev->desc->min_dropout_uV;
3683 
3684 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 		if (current_supply_uV < 0) {
3686 			ret = current_supply_uV;
3687 			goto out;
3688 		}
3689 
3690 		supply_change_uV = best_supply_uV - current_supply_uV;
3691 	}
3692 
3693 	if (supply_change_uV > 0) {
3694 		ret = regulator_set_voltage_unlocked(rdev->supply,
3695 				best_supply_uV, INT_MAX, state);
3696 		if (ret) {
3697 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 				ERR_PTR(ret));
3699 			goto out;
3700 		}
3701 	}
3702 
3703 	if (state == PM_SUSPEND_ON)
3704 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 	else
3706 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 							max_uV, state);
3708 	if (ret < 0)
3709 		goto out;
3710 
3711 	if (supply_change_uV < 0) {
3712 		ret = regulator_set_voltage_unlocked(rdev->supply,
3713 				best_supply_uV, INT_MAX, state);
3714 		if (ret)
3715 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 				 ERR_PTR(ret));
3717 		/* No need to fail here */
3718 		ret = 0;
3719 	}
3720 
3721 out:
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725 
3726 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 					int *current_uV, int *min_uV)
3728 {
3729 	struct regulation_constraints *constraints = rdev->constraints;
3730 
3731 	/* Limit voltage change only if necessary */
3732 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 		return 1;
3734 
3735 	if (*current_uV < 0) {
3736 		*current_uV = regulator_get_voltage_rdev(rdev);
3737 
3738 		if (*current_uV < 0)
3739 			return *current_uV;
3740 	}
3741 
3742 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 		return 1;
3744 
3745 	/* Clamp target voltage within the given step */
3746 	if (*current_uV < *min_uV)
3747 		*min_uV = min(*current_uV + constraints->max_uV_step,
3748 			      *min_uV);
3749 	else
3750 		*min_uV = max(*current_uV - constraints->max_uV_step,
3751 			      *min_uV);
3752 
3753 	return 0;
3754 }
3755 
3756 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 					 int *current_uV,
3758 					 int *min_uV, int *max_uV,
3759 					 suspend_state_t state,
3760 					 int n_coupled)
3761 {
3762 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 	struct regulation_constraints *constraints = rdev->constraints;
3765 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 	int max_current_uV = 0, min_current_uV = INT_MAX;
3767 	int highest_min_uV = 0, target_uV, possible_uV;
3768 	int i, ret, max_spread;
3769 	bool done;
3770 
3771 	*current_uV = -1;
3772 
3773 	/*
3774 	 * If there are no coupled regulators, simply set the voltage
3775 	 * demanded by consumers.
3776 	 */
3777 	if (n_coupled == 1) {
3778 		/*
3779 		 * If consumers don't provide any demands, set voltage
3780 		 * to min_uV
3781 		 */
3782 		desired_min_uV = constraints->min_uV;
3783 		desired_max_uV = constraints->max_uV;
3784 
3785 		ret = regulator_check_consumers(rdev,
3786 						&desired_min_uV,
3787 						&desired_max_uV, state);
3788 		if (ret < 0)
3789 			return ret;
3790 
3791 		possible_uV = desired_min_uV;
3792 		done = true;
3793 
3794 		goto finish;
3795 	}
3796 
3797 	/* Find highest min desired voltage */
3798 	for (i = 0; i < n_coupled; i++) {
3799 		int tmp_min = 0;
3800 		int tmp_max = INT_MAX;
3801 
3802 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803 
3804 		ret = regulator_check_consumers(c_rdevs[i],
3805 						&tmp_min,
3806 						&tmp_max, state);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 		if (ret < 0)
3812 			return ret;
3813 
3814 		highest_min_uV = max(highest_min_uV, tmp_min);
3815 
3816 		if (i == 0) {
3817 			desired_min_uV = tmp_min;
3818 			desired_max_uV = tmp_max;
3819 		}
3820 	}
3821 
3822 	max_spread = constraints->max_spread[0];
3823 
3824 	/*
3825 	 * Let target_uV be equal to the desired one if possible.
3826 	 * If not, set it to minimum voltage, allowed by other coupled
3827 	 * regulators.
3828 	 */
3829 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830 
3831 	/*
3832 	 * Find min and max voltages, which currently aren't violating
3833 	 * max_spread.
3834 	 */
3835 	for (i = 1; i < n_coupled; i++) {
3836 		int tmp_act;
3837 
3838 		if (!_regulator_is_enabled(c_rdevs[i]))
3839 			continue;
3840 
3841 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 		if (tmp_act < 0)
3843 			return tmp_act;
3844 
3845 		min_current_uV = min(tmp_act, min_current_uV);
3846 		max_current_uV = max(tmp_act, max_current_uV);
3847 	}
3848 
3849 	/* There aren't any other regulators enabled */
3850 	if (max_current_uV == 0) {
3851 		possible_uV = target_uV;
3852 	} else {
3853 		/*
3854 		 * Correct target voltage, so as it currently isn't
3855 		 * violating max_spread
3856 		 */
3857 		possible_uV = max(target_uV, max_current_uV - max_spread);
3858 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 	}
3860 
3861 	if (possible_uV > desired_max_uV)
3862 		return -EINVAL;
3863 
3864 	done = (possible_uV == target_uV);
3865 	desired_min_uV = possible_uV;
3866 
3867 finish:
3868 	/* Apply max_uV_step constraint if necessary */
3869 	if (state == PM_SUSPEND_ON) {
3870 		ret = regulator_limit_voltage_step(rdev, current_uV,
3871 						   &desired_min_uV);
3872 		if (ret < 0)
3873 			return ret;
3874 
3875 		if (ret == 0)
3876 			done = false;
3877 	}
3878 
3879 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3880 	if (n_coupled > 1 && *current_uV == -1) {
3881 
3882 		if (_regulator_is_enabled(rdev)) {
3883 			ret = regulator_get_voltage_rdev(rdev);
3884 			if (ret < 0)
3885 				return ret;
3886 
3887 			*current_uV = ret;
3888 		} else {
3889 			*current_uV = desired_min_uV;
3890 		}
3891 	}
3892 
3893 	*min_uV = desired_min_uV;
3894 	*max_uV = desired_max_uV;
3895 
3896 	return done;
3897 }
3898 
3899 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 				 suspend_state_t state, bool skip_coupled)
3901 {
3902 	struct regulator_dev **c_rdevs;
3903 	struct regulator_dev *best_rdev;
3904 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 	unsigned int delta, best_delta;
3907 	unsigned long c_rdev_done = 0;
3908 	bool best_c_rdev_done;
3909 
3910 	c_rdevs = c_desc->coupled_rdevs;
3911 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912 
3913 	/*
3914 	 * Find the best possible voltage change on each loop. Leave the loop
3915 	 * if there isn't any possible change.
3916 	 */
3917 	do {
3918 		best_c_rdev_done = false;
3919 		best_delta = 0;
3920 		best_min_uV = 0;
3921 		best_max_uV = 0;
3922 		best_c_rdev = 0;
3923 		best_rdev = NULL;
3924 
3925 		/*
3926 		 * Find highest difference between optimal voltage
3927 		 * and current voltage.
3928 		 */
3929 		for (i = 0; i < n_coupled; i++) {
3930 			/*
3931 			 * optimal_uV is the best voltage that can be set for
3932 			 * i-th regulator at the moment without violating
3933 			 * max_spread constraint in order to balance
3934 			 * the coupled voltages.
3935 			 */
3936 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937 
3938 			if (test_bit(i, &c_rdev_done))
3939 				continue;
3940 
3941 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 							    &current_uV,
3943 							    &optimal_uV,
3944 							    &optimal_max_uV,
3945 							    state, n_coupled);
3946 			if (ret < 0)
3947 				goto out;
3948 
3949 			delta = abs(optimal_uV - current_uV);
3950 
3951 			if (delta && best_delta <= delta) {
3952 				best_c_rdev_done = ret;
3953 				best_delta = delta;
3954 				best_rdev = c_rdevs[i];
3955 				best_min_uV = optimal_uV;
3956 				best_max_uV = optimal_max_uV;
3957 				best_c_rdev = i;
3958 			}
3959 		}
3960 
3961 		/* Nothing to change, return successfully */
3962 		if (!best_rdev) {
3963 			ret = 0;
3964 			goto out;
3965 		}
3966 
3967 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 						 best_max_uV, state);
3969 
3970 		if (ret < 0)
3971 			goto out;
3972 
3973 		if (best_c_rdev_done)
3974 			set_bit(best_c_rdev, &c_rdev_done);
3975 
3976 	} while (n_coupled > 1);
3977 
3978 out:
3979 	return ret;
3980 }
3981 
3982 static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 				     suspend_state_t state)
3984 {
3985 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 	struct regulator_coupler *coupler = c_desc->coupler;
3987 	bool skip_coupled = false;
3988 
3989 	/*
3990 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 	 * other coupled regulators.
3992 	 */
3993 	if (state != PM_SUSPEND_ON)
3994 		skip_coupled = true;
3995 
3996 	if (c_desc->n_resolved < c_desc->n_coupled) {
3997 		rdev_err(rdev, "Not all coupled regulators registered\n");
3998 		return -EPERM;
3999 	}
4000 
4001 	/* Invoke custom balancer for customized couplers */
4002 	if (coupler && coupler->balance_voltage)
4003 		return coupler->balance_voltage(coupler, rdev, state);
4004 
4005 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006 }
4007 
4008 /**
4009  * regulator_set_voltage - set regulator output voltage
4010  * @regulator: regulator source
4011  * @min_uV: Minimum required voltage in uV
4012  * @max_uV: Maximum acceptable voltage in uV
4013  *
4014  * Sets a voltage regulator to the desired output voltage. This can be set
4015  * during any regulator state. IOW, regulator can be disabled or enabled.
4016  *
4017  * If the regulator is enabled then the voltage will change to the new value
4018  * immediately otherwise if the regulator is disabled the regulator will
4019  * output at the new voltage when enabled.
4020  *
4021  * NOTE: If the regulator is shared between several devices then the lowest
4022  * request voltage that meets the system constraints will be used.
4023  * Regulator system constraints must be set for this regulator before
4024  * calling this function otherwise this call will fail.
4025  */
4026 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027 {
4028 	struct ww_acquire_ctx ww_ctx;
4029 	int ret;
4030 
4031 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032 
4033 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 					     PM_SUSPEND_ON);
4035 
4036 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037 
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041 
4042 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 					   suspend_state_t state, bool en)
4044 {
4045 	struct regulator_state *rstate;
4046 
4047 	rstate = regulator_get_suspend_state(rdev, state);
4048 	if (rstate == NULL)
4049 		return -EINVAL;
4050 
4051 	if (!rstate->changeable)
4052 		return -EPERM;
4053 
4054 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055 
4056 	return 0;
4057 }
4058 
4059 int regulator_suspend_enable(struct regulator_dev *rdev,
4060 				    suspend_state_t state)
4061 {
4062 	return regulator_suspend_toggle(rdev, state, true);
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065 
4066 int regulator_suspend_disable(struct regulator_dev *rdev,
4067 				     suspend_state_t state)
4068 {
4069 	struct regulator *regulator;
4070 	struct regulator_voltage *voltage;
4071 
4072 	/*
4073 	 * if any consumer wants this regulator device keeping on in
4074 	 * suspend states, don't set it as disabled.
4075 	 */
4076 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 		voltage = &regulator->voltage[state];
4078 		if (voltage->min_uV || voltage->max_uV)
4079 			return 0;
4080 	}
4081 
4082 	return regulator_suspend_toggle(rdev, state, false);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085 
4086 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 					  int min_uV, int max_uV,
4088 					  suspend_state_t state)
4089 {
4090 	struct regulator_dev *rdev = regulator->rdev;
4091 	struct regulator_state *rstate;
4092 
4093 	rstate = regulator_get_suspend_state(rdev, state);
4094 	if (rstate == NULL)
4095 		return -EINVAL;
4096 
4097 	if (rstate->min_uV == rstate->max_uV) {
4098 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 		return -EPERM;
4100 	}
4101 
4102 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103 }
4104 
4105 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 				  int max_uV, suspend_state_t state)
4107 {
4108 	struct ww_acquire_ctx ww_ctx;
4109 	int ret;
4110 
4111 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 		return -EINVAL;
4114 
4115 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116 
4117 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 					     max_uV, state);
4119 
4120 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121 
4122 	return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125 
4126 /**
4127  * regulator_set_voltage_time - get raise/fall time
4128  * @regulator: regulator source
4129  * @old_uV: starting voltage in microvolts
4130  * @new_uV: target voltage in microvolts
4131  *
4132  * Provided with the starting and ending voltage, this function attempts to
4133  * calculate the time in microseconds required to rise or fall to this new
4134  * voltage.
4135  */
4136 int regulator_set_voltage_time(struct regulator *regulator,
4137 			       int old_uV, int new_uV)
4138 {
4139 	struct regulator_dev *rdev = regulator->rdev;
4140 	const struct regulator_ops *ops = rdev->desc->ops;
4141 	int old_sel = -1;
4142 	int new_sel = -1;
4143 	int voltage;
4144 	int i;
4145 
4146 	if (ops->set_voltage_time)
4147 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 	else if (!ops->set_voltage_time_sel)
4149 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150 
4151 	/* Currently requires operations to do this */
4152 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 		return -EINVAL;
4154 
4155 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 		/* We only look for exact voltage matches here */
4157 		if (i < rdev->desc->linear_min_sel)
4158 			continue;
4159 
4160 		if (old_sel >= 0 && new_sel >= 0)
4161 			break;
4162 
4163 		voltage = regulator_list_voltage(regulator, i);
4164 		if (voltage < 0)
4165 			return -EINVAL;
4166 		if (voltage == 0)
4167 			continue;
4168 		if (voltage == old_uV)
4169 			old_sel = i;
4170 		if (voltage == new_uV)
4171 			new_sel = i;
4172 	}
4173 
4174 	if (old_sel < 0 || new_sel < 0)
4175 		return -EINVAL;
4176 
4177 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178 }
4179 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180 
4181 /**
4182  * regulator_set_voltage_time_sel - get raise/fall time
4183  * @rdev: regulator source device
4184  * @old_selector: selector for starting voltage
4185  * @new_selector: selector for target voltage
4186  *
4187  * Provided with the starting and target voltage selectors, this function
4188  * returns time in microseconds required to rise or fall to this new voltage
4189  *
4190  * Drivers providing ramp_delay in regulation_constraints can use this as their
4191  * set_voltage_time_sel() operation.
4192  */
4193 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194 				   unsigned int old_selector,
4195 				   unsigned int new_selector)
4196 {
4197 	int old_volt, new_volt;
4198 
4199 	/* sanity check */
4200 	if (!rdev->desc->ops->list_voltage)
4201 		return -EINVAL;
4202 
4203 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205 
4206 	if (rdev->desc->ops->set_voltage_time)
4207 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208 							 new_volt);
4209 	else
4210 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213 
4214 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215 {
4216 	int ret;
4217 
4218 	regulator_lock(rdev);
4219 
4220 	if (!rdev->desc->ops->set_voltage &&
4221 	    !rdev->desc->ops->set_voltage_sel) {
4222 		ret = -EINVAL;
4223 		goto out;
4224 	}
4225 
4226 	/* balance only, if regulator is coupled */
4227 	if (rdev->coupling_desc.n_coupled > 1)
4228 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229 	else
4230 		ret = -EOPNOTSUPP;
4231 
4232 out:
4233 	regulator_unlock(rdev);
4234 	return ret;
4235 }
4236 
4237 /**
4238  * regulator_sync_voltage - re-apply last regulator output voltage
4239  * @regulator: regulator source
4240  *
4241  * Re-apply the last configured voltage.  This is intended to be used
4242  * where some external control source the consumer is cooperating with
4243  * has caused the configured voltage to change.
4244  */
4245 int regulator_sync_voltage(struct regulator *regulator)
4246 {
4247 	struct regulator_dev *rdev = regulator->rdev;
4248 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4249 	int ret, min_uV, max_uV;
4250 
4251 	regulator_lock(rdev);
4252 
4253 	if (!rdev->desc->ops->set_voltage &&
4254 	    !rdev->desc->ops->set_voltage_sel) {
4255 		ret = -EINVAL;
4256 		goto out;
4257 	}
4258 
4259 	/* This is only going to work if we've had a voltage configured. */
4260 	if (!voltage->min_uV && !voltage->max_uV) {
4261 		ret = -EINVAL;
4262 		goto out;
4263 	}
4264 
4265 	min_uV = voltage->min_uV;
4266 	max_uV = voltage->max_uV;
4267 
4268 	/* This should be a paranoia check... */
4269 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270 	if (ret < 0)
4271 		goto out;
4272 
4273 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274 	if (ret < 0)
4275 		goto out;
4276 
4277 	/* balance only, if regulator is coupled */
4278 	if (rdev->coupling_desc.n_coupled > 1)
4279 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280 	else
4281 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282 
4283 out:
4284 	regulator_unlock(rdev);
4285 	return ret;
4286 }
4287 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288 
4289 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290 {
4291 	int sel, ret;
4292 	bool bypassed;
4293 
4294 	if (rdev->desc->ops->get_bypass) {
4295 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296 		if (ret < 0)
4297 			return ret;
4298 		if (bypassed) {
4299 			/* if bypassed the regulator must have a supply */
4300 			if (!rdev->supply) {
4301 				rdev_err(rdev,
4302 					 "bypassed regulator has no supply!\n");
4303 				return -EPROBE_DEFER;
4304 			}
4305 
4306 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4307 		}
4308 	}
4309 
4310 	if (rdev->desc->ops->get_voltage_sel) {
4311 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4312 		if (sel < 0)
4313 			return sel;
4314 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4315 	} else if (rdev->desc->ops->get_voltage) {
4316 		ret = rdev->desc->ops->get_voltage(rdev);
4317 	} else if (rdev->desc->ops->list_voltage) {
4318 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4319 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320 		ret = rdev->desc->fixed_uV;
4321 	} else if (rdev->supply) {
4322 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323 	} else if (rdev->supply_name) {
4324 		return -EPROBE_DEFER;
4325 	} else {
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (ret < 0)
4330 		return ret;
4331 	return ret - rdev->constraints->uV_offset;
4332 }
4333 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334 
4335 /**
4336  * regulator_get_voltage - get regulator output voltage
4337  * @regulator: regulator source
4338  *
4339  * This returns the current regulator voltage in uV.
4340  *
4341  * NOTE: If the regulator is disabled it will return the voltage value. This
4342  * function should not be used to determine regulator state.
4343  */
4344 int regulator_get_voltage(struct regulator *regulator)
4345 {
4346 	struct ww_acquire_ctx ww_ctx;
4347 	int ret;
4348 
4349 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350 	ret = regulator_get_voltage_rdev(regulator->rdev);
4351 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352 
4353 	return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356 
4357 /**
4358  * regulator_set_current_limit - set regulator output current limit
4359  * @regulator: regulator source
4360  * @min_uA: Minimum supported current in uA
4361  * @max_uA: Maximum supported current in uA
4362  *
4363  * Sets current sink to the desired output current. This can be set during
4364  * any regulator state. IOW, regulator can be disabled or enabled.
4365  *
4366  * If the regulator is enabled then the current will change to the new value
4367  * immediately otherwise if the regulator is disabled the regulator will
4368  * output at the new current when enabled.
4369  *
4370  * NOTE: Regulator system constraints must be set for this regulator before
4371  * calling this function otherwise this call will fail.
4372  */
4373 int regulator_set_current_limit(struct regulator *regulator,
4374 			       int min_uA, int max_uA)
4375 {
4376 	struct regulator_dev *rdev = regulator->rdev;
4377 	int ret;
4378 
4379 	regulator_lock(rdev);
4380 
4381 	/* sanity check */
4382 	if (!rdev->desc->ops->set_current_limit) {
4383 		ret = -EINVAL;
4384 		goto out;
4385 	}
4386 
4387 	/* constraints check */
4388 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389 	if (ret < 0)
4390 		goto out;
4391 
4392 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393 out:
4394 	regulator_unlock(rdev);
4395 	return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398 
4399 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400 {
4401 	/* sanity check */
4402 	if (!rdev->desc->ops->get_current_limit)
4403 		return -EINVAL;
4404 
4405 	return rdev->desc->ops->get_current_limit(rdev);
4406 }
4407 
4408 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409 {
4410 	int ret;
4411 
4412 	regulator_lock(rdev);
4413 	ret = _regulator_get_current_limit_unlocked(rdev);
4414 	regulator_unlock(rdev);
4415 
4416 	return ret;
4417 }
4418 
4419 /**
4420  * regulator_get_current_limit - get regulator output current
4421  * @regulator: regulator source
4422  *
4423  * This returns the current supplied by the specified current sink in uA.
4424  *
4425  * NOTE: If the regulator is disabled it will return the current value. This
4426  * function should not be used to determine regulator state.
4427  */
4428 int regulator_get_current_limit(struct regulator *regulator)
4429 {
4430 	return _regulator_get_current_limit(regulator->rdev);
4431 }
4432 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433 
4434 /**
4435  * regulator_set_mode - set regulator operating mode
4436  * @regulator: regulator source
4437  * @mode: operating mode - one of the REGULATOR_MODE constants
4438  *
4439  * Set regulator operating mode to increase regulator efficiency or improve
4440  * regulation performance.
4441  *
4442  * NOTE: Regulator system constraints must be set for this regulator before
4443  * calling this function otherwise this call will fail.
4444  */
4445 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446 {
4447 	struct regulator_dev *rdev = regulator->rdev;
4448 	int ret;
4449 	int regulator_curr_mode;
4450 
4451 	regulator_lock(rdev);
4452 
4453 	/* sanity check */
4454 	if (!rdev->desc->ops->set_mode) {
4455 		ret = -EINVAL;
4456 		goto out;
4457 	}
4458 
4459 	/* return if the same mode is requested */
4460 	if (rdev->desc->ops->get_mode) {
4461 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462 		if (regulator_curr_mode == mode) {
4463 			ret = 0;
4464 			goto out;
4465 		}
4466 	}
4467 
4468 	/* constraints check */
4469 	ret = regulator_mode_constrain(rdev, &mode);
4470 	if (ret < 0)
4471 		goto out;
4472 
4473 	ret = rdev->desc->ops->set_mode(rdev, mode);
4474 out:
4475 	regulator_unlock(rdev);
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(regulator_set_mode);
4479 
4480 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481 {
4482 	/* sanity check */
4483 	if (!rdev->desc->ops->get_mode)
4484 		return -EINVAL;
4485 
4486 	return rdev->desc->ops->get_mode(rdev);
4487 }
4488 
4489 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490 {
4491 	int ret;
4492 
4493 	regulator_lock(rdev);
4494 	ret = _regulator_get_mode_unlocked(rdev);
4495 	regulator_unlock(rdev);
4496 
4497 	return ret;
4498 }
4499 
4500 /**
4501  * regulator_get_mode - get regulator operating mode
4502  * @regulator: regulator source
4503  *
4504  * Get the current regulator operating mode.
4505  */
4506 unsigned int regulator_get_mode(struct regulator *regulator)
4507 {
4508 	return _regulator_get_mode(regulator->rdev);
4509 }
4510 EXPORT_SYMBOL_GPL(regulator_get_mode);
4511 
4512 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513 {
4514 	int ret = 0;
4515 
4516 	if (rdev->use_cached_err) {
4517 		spin_lock(&rdev->err_lock);
4518 		ret = rdev->cached_err;
4519 		spin_unlock(&rdev->err_lock);
4520 	}
4521 	return ret;
4522 }
4523 
4524 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525 					unsigned int *flags)
4526 {
4527 	int cached_flags, ret = 0;
4528 
4529 	regulator_lock(rdev);
4530 
4531 	cached_flags = rdev_get_cached_err_flags(rdev);
4532 
4533 	if (rdev->desc->ops->get_error_flags)
4534 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535 	else if (!rdev->use_cached_err)
4536 		ret = -EINVAL;
4537 
4538 	*flags |= cached_flags;
4539 
4540 	regulator_unlock(rdev);
4541 
4542 	return ret;
4543 }
4544 
4545 /**
4546  * regulator_get_error_flags - get regulator error information
4547  * @regulator: regulator source
4548  * @flags: pointer to store error flags
4549  *
4550  * Get the current regulator error information.
4551  */
4552 int regulator_get_error_flags(struct regulator *regulator,
4553 				unsigned int *flags)
4554 {
4555 	return _regulator_get_error_flags(regulator->rdev, flags);
4556 }
4557 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558 
4559 /**
4560  * regulator_set_load - set regulator load
4561  * @regulator: regulator source
4562  * @uA_load: load current
4563  *
4564  * Notifies the regulator core of a new device load. This is then used by
4565  * DRMS (if enabled by constraints) to set the most efficient regulator
4566  * operating mode for the new regulator loading.
4567  *
4568  * Consumer devices notify their supply regulator of the maximum power
4569  * they will require (can be taken from device datasheet in the power
4570  * consumption tables) when they change operational status and hence power
4571  * state. Examples of operational state changes that can affect power
4572  * consumption are :-
4573  *
4574  *    o Device is opened / closed.
4575  *    o Device I/O is about to begin or has just finished.
4576  *    o Device is idling in between work.
4577  *
4578  * This information is also exported via sysfs to userspace.
4579  *
4580  * DRMS will sum the total requested load on the regulator and change
4581  * to the most efficient operating mode if platform constraints allow.
4582  *
4583  * NOTE: when a regulator consumer requests to have a regulator
4584  * disabled then any load that consumer requested no longer counts
4585  * toward the total requested load.  If the regulator is re-enabled
4586  * then the previously requested load will start counting again.
4587  *
4588  * If a regulator is an always-on regulator then an individual consumer's
4589  * load will still be removed if that consumer is fully disabled.
4590  *
4591  * On error a negative errno is returned.
4592  */
4593 int regulator_set_load(struct regulator *regulator, int uA_load)
4594 {
4595 	struct regulator_dev *rdev = regulator->rdev;
4596 	int old_uA_load;
4597 	int ret = 0;
4598 
4599 	regulator_lock(rdev);
4600 	old_uA_load = regulator->uA_load;
4601 	regulator->uA_load = uA_load;
4602 	if (regulator->enable_count && old_uA_load != uA_load) {
4603 		ret = drms_uA_update(rdev);
4604 		if (ret < 0)
4605 			regulator->uA_load = old_uA_load;
4606 	}
4607 	regulator_unlock(rdev);
4608 
4609 	return ret;
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_set_load);
4612 
4613 /**
4614  * regulator_allow_bypass - allow the regulator to go into bypass mode
4615  *
4616  * @regulator: Regulator to configure
4617  * @enable: enable or disable bypass mode
4618  *
4619  * Allow the regulator to go into bypass mode if all other consumers
4620  * for the regulator also enable bypass mode and the machine
4621  * constraints allow this.  Bypass mode means that the regulator is
4622  * simply passing the input directly to the output with no regulation.
4623  */
4624 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625 {
4626 	struct regulator_dev *rdev = regulator->rdev;
4627 	const char *name = rdev_get_name(rdev);
4628 	int ret = 0;
4629 
4630 	if (!rdev->desc->ops->set_bypass)
4631 		return 0;
4632 
4633 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634 		return 0;
4635 
4636 	regulator_lock(rdev);
4637 
4638 	if (enable && !regulator->bypass) {
4639 		rdev->bypass_count++;
4640 
4641 		if (rdev->bypass_count == rdev->open_count) {
4642 			trace_regulator_bypass_enable(name);
4643 
4644 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4645 			if (ret != 0)
4646 				rdev->bypass_count--;
4647 			else
4648 				trace_regulator_bypass_enable_complete(name);
4649 		}
4650 
4651 	} else if (!enable && regulator->bypass) {
4652 		rdev->bypass_count--;
4653 
4654 		if (rdev->bypass_count != rdev->open_count) {
4655 			trace_regulator_bypass_disable(name);
4656 
4657 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4658 			if (ret != 0)
4659 				rdev->bypass_count++;
4660 			else
4661 				trace_regulator_bypass_disable_complete(name);
4662 		}
4663 	}
4664 
4665 	if (ret == 0)
4666 		regulator->bypass = enable;
4667 
4668 	regulator_unlock(rdev);
4669 
4670 	return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673 
4674 /**
4675  * regulator_register_notifier - register regulator event notifier
4676  * @regulator: regulator source
4677  * @nb: notifier block
4678  *
4679  * Register notifier block to receive regulator events.
4680  */
4681 int regulator_register_notifier(struct regulator *regulator,
4682 			      struct notifier_block *nb)
4683 {
4684 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4685 						nb);
4686 }
4687 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688 
4689 /**
4690  * regulator_unregister_notifier - unregister regulator event notifier
4691  * @regulator: regulator source
4692  * @nb: notifier block
4693  *
4694  * Unregister regulator event notifier block.
4695  */
4696 int regulator_unregister_notifier(struct regulator *regulator,
4697 				struct notifier_block *nb)
4698 {
4699 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4700 						  nb);
4701 }
4702 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703 
4704 /* notify regulator consumers and downstream regulator consumers.
4705  * Note mutex must be held by caller.
4706  */
4707 static int _notifier_call_chain(struct regulator_dev *rdev,
4708 				  unsigned long event, void *data)
4709 {
4710 	/* call rdev chain first */
4711 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712 }
4713 
4714 /**
4715  * regulator_bulk_get - get multiple regulator consumers
4716  *
4717  * @dev:           Device to supply
4718  * @num_consumers: Number of consumers to register
4719  * @consumers:     Configuration of consumers; clients are stored here.
4720  *
4721  * @return 0 on success, an errno on failure.
4722  *
4723  * This helper function allows drivers to get several regulator
4724  * consumers in one operation.  If any of the regulators cannot be
4725  * acquired then any regulators that were allocated will be freed
4726  * before returning to the caller.
4727  */
4728 int regulator_bulk_get(struct device *dev, int num_consumers,
4729 		       struct regulator_bulk_data *consumers)
4730 {
4731 	int i;
4732 	int ret;
4733 
4734 	for (i = 0; i < num_consumers; i++)
4735 		consumers[i].consumer = NULL;
4736 
4737 	for (i = 0; i < num_consumers; i++) {
4738 		consumers[i].consumer = regulator_get(dev,
4739 						      consumers[i].supply);
4740 		if (IS_ERR(consumers[i].consumer)) {
4741 			ret = PTR_ERR(consumers[i].consumer);
4742 			consumers[i].consumer = NULL;
4743 			goto err;
4744 		}
4745 	}
4746 
4747 	return 0;
4748 
4749 err:
4750 	if (ret != -EPROBE_DEFER)
4751 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4752 			consumers[i].supply, ERR_PTR(ret));
4753 	else
4754 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755 			consumers[i].supply);
4756 
4757 	while (--i >= 0)
4758 		regulator_put(consumers[i].consumer);
4759 
4760 	return ret;
4761 }
4762 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763 
4764 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765 {
4766 	struct regulator_bulk_data *bulk = data;
4767 
4768 	bulk->ret = regulator_enable(bulk->consumer);
4769 }
4770 
4771 /**
4772  * regulator_bulk_enable - enable multiple regulator consumers
4773  *
4774  * @num_consumers: Number of consumers
4775  * @consumers:     Consumer data; clients are stored here.
4776  * @return         0 on success, an errno on failure
4777  *
4778  * This convenience API allows consumers to enable multiple regulator
4779  * clients in a single API call.  If any consumers cannot be enabled
4780  * then any others that were enabled will be disabled again prior to
4781  * return.
4782  */
4783 int regulator_bulk_enable(int num_consumers,
4784 			  struct regulator_bulk_data *consumers)
4785 {
4786 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787 	int i;
4788 	int ret = 0;
4789 
4790 	for (i = 0; i < num_consumers; i++) {
4791 		async_schedule_domain(regulator_bulk_enable_async,
4792 				      &consumers[i], &async_domain);
4793 	}
4794 
4795 	async_synchronize_full_domain(&async_domain);
4796 
4797 	/* If any consumer failed we need to unwind any that succeeded */
4798 	for (i = 0; i < num_consumers; i++) {
4799 		if (consumers[i].ret != 0) {
4800 			ret = consumers[i].ret;
4801 			goto err;
4802 		}
4803 	}
4804 
4805 	return 0;
4806 
4807 err:
4808 	for (i = 0; i < num_consumers; i++) {
4809 		if (consumers[i].ret < 0)
4810 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811 			       ERR_PTR(consumers[i].ret));
4812 		else
4813 			regulator_disable(consumers[i].consumer);
4814 	}
4815 
4816 	return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819 
4820 /**
4821  * regulator_bulk_disable - disable multiple regulator consumers
4822  *
4823  * @num_consumers: Number of consumers
4824  * @consumers:     Consumer data; clients are stored here.
4825  * @return         0 on success, an errno on failure
4826  *
4827  * This convenience API allows consumers to disable multiple regulator
4828  * clients in a single API call.  If any consumers cannot be disabled
4829  * then any others that were disabled will be enabled again prior to
4830  * return.
4831  */
4832 int regulator_bulk_disable(int num_consumers,
4833 			   struct regulator_bulk_data *consumers)
4834 {
4835 	int i;
4836 	int ret, r;
4837 
4838 	for (i = num_consumers - 1; i >= 0; --i) {
4839 		ret = regulator_disable(consumers[i].consumer);
4840 		if (ret != 0)
4841 			goto err;
4842 	}
4843 
4844 	return 0;
4845 
4846 err:
4847 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848 	for (++i; i < num_consumers; ++i) {
4849 		r = regulator_enable(consumers[i].consumer);
4850 		if (r != 0)
4851 			pr_err("Failed to re-enable %s: %pe\n",
4852 			       consumers[i].supply, ERR_PTR(r));
4853 	}
4854 
4855 	return ret;
4856 }
4857 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858 
4859 /**
4860  * regulator_bulk_force_disable - force disable multiple regulator consumers
4861  *
4862  * @num_consumers: Number of consumers
4863  * @consumers:     Consumer data; clients are stored here.
4864  * @return         0 on success, an errno on failure
4865  *
4866  * This convenience API allows consumers to forcibly disable multiple regulator
4867  * clients in a single API call.
4868  * NOTE: This should be used for situations when device damage will
4869  * likely occur if the regulators are not disabled (e.g. over temp).
4870  * Although regulator_force_disable function call for some consumers can
4871  * return error numbers, the function is called for all consumers.
4872  */
4873 int regulator_bulk_force_disable(int num_consumers,
4874 			   struct regulator_bulk_data *consumers)
4875 {
4876 	int i;
4877 	int ret = 0;
4878 
4879 	for (i = 0; i < num_consumers; i++) {
4880 		consumers[i].ret =
4881 			    regulator_force_disable(consumers[i].consumer);
4882 
4883 		/* Store first error for reporting */
4884 		if (consumers[i].ret && !ret)
4885 			ret = consumers[i].ret;
4886 	}
4887 
4888 	return ret;
4889 }
4890 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891 
4892 /**
4893  * regulator_bulk_free - free multiple regulator consumers
4894  *
4895  * @num_consumers: Number of consumers
4896  * @consumers:     Consumer data; clients are stored here.
4897  *
4898  * This convenience API allows consumers to free multiple regulator
4899  * clients in a single API call.
4900  */
4901 void regulator_bulk_free(int num_consumers,
4902 			 struct regulator_bulk_data *consumers)
4903 {
4904 	int i;
4905 
4906 	for (i = 0; i < num_consumers; i++) {
4907 		regulator_put(consumers[i].consumer);
4908 		consumers[i].consumer = NULL;
4909 	}
4910 }
4911 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912 
4913 /**
4914  * regulator_notifier_call_chain - call regulator event notifier
4915  * @rdev: regulator source
4916  * @event: notifier block
4917  * @data: callback-specific data.
4918  *
4919  * Called by regulator drivers to notify clients a regulator event has
4920  * occurred.
4921  */
4922 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923 				  unsigned long event, void *data)
4924 {
4925 	_notifier_call_chain(rdev, event, data);
4926 	return NOTIFY_DONE;
4927 
4928 }
4929 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930 
4931 /**
4932  * regulator_mode_to_status - convert a regulator mode into a status
4933  *
4934  * @mode: Mode to convert
4935  *
4936  * Convert a regulator mode into a status.
4937  */
4938 int regulator_mode_to_status(unsigned int mode)
4939 {
4940 	switch (mode) {
4941 	case REGULATOR_MODE_FAST:
4942 		return REGULATOR_STATUS_FAST;
4943 	case REGULATOR_MODE_NORMAL:
4944 		return REGULATOR_STATUS_NORMAL;
4945 	case REGULATOR_MODE_IDLE:
4946 		return REGULATOR_STATUS_IDLE;
4947 	case REGULATOR_MODE_STANDBY:
4948 		return REGULATOR_STATUS_STANDBY;
4949 	default:
4950 		return REGULATOR_STATUS_UNDEFINED;
4951 	}
4952 }
4953 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954 
4955 static struct attribute *regulator_dev_attrs[] = {
4956 	&dev_attr_name.attr,
4957 	&dev_attr_num_users.attr,
4958 	&dev_attr_type.attr,
4959 	&dev_attr_microvolts.attr,
4960 	&dev_attr_microamps.attr,
4961 	&dev_attr_opmode.attr,
4962 	&dev_attr_state.attr,
4963 	&dev_attr_status.attr,
4964 	&dev_attr_bypass.attr,
4965 	&dev_attr_requested_microamps.attr,
4966 	&dev_attr_min_microvolts.attr,
4967 	&dev_attr_max_microvolts.attr,
4968 	&dev_attr_min_microamps.attr,
4969 	&dev_attr_max_microamps.attr,
4970 	&dev_attr_suspend_standby_state.attr,
4971 	&dev_attr_suspend_mem_state.attr,
4972 	&dev_attr_suspend_disk_state.attr,
4973 	&dev_attr_suspend_standby_microvolts.attr,
4974 	&dev_attr_suspend_mem_microvolts.attr,
4975 	&dev_attr_suspend_disk_microvolts.attr,
4976 	&dev_attr_suspend_standby_mode.attr,
4977 	&dev_attr_suspend_mem_mode.attr,
4978 	&dev_attr_suspend_disk_mode.attr,
4979 	NULL
4980 };
4981 
4982 /*
4983  * To avoid cluttering sysfs (and memory) with useless state, only
4984  * create attributes that can be meaningfully displayed.
4985  */
4986 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987 					 struct attribute *attr, int idx)
4988 {
4989 	struct device *dev = kobj_to_dev(kobj);
4990 	struct regulator_dev *rdev = dev_to_rdev(dev);
4991 	const struct regulator_ops *ops = rdev->desc->ops;
4992 	umode_t mode = attr->mode;
4993 
4994 	/* these three are always present */
4995 	if (attr == &dev_attr_name.attr ||
4996 	    attr == &dev_attr_num_users.attr ||
4997 	    attr == &dev_attr_type.attr)
4998 		return mode;
4999 
5000 	/* some attributes need specific methods to be displayed */
5001 	if (attr == &dev_attr_microvolts.attr) {
5002 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006 			return mode;
5007 		return 0;
5008 	}
5009 
5010 	if (attr == &dev_attr_microamps.attr)
5011 		return ops->get_current_limit ? mode : 0;
5012 
5013 	if (attr == &dev_attr_opmode.attr)
5014 		return ops->get_mode ? mode : 0;
5015 
5016 	if (attr == &dev_attr_state.attr)
5017 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018 
5019 	if (attr == &dev_attr_status.attr)
5020 		return ops->get_status ? mode : 0;
5021 
5022 	if (attr == &dev_attr_bypass.attr)
5023 		return ops->get_bypass ? mode : 0;
5024 
5025 	/* constraints need specific supporting methods */
5026 	if (attr == &dev_attr_min_microvolts.attr ||
5027 	    attr == &dev_attr_max_microvolts.attr)
5028 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029 
5030 	if (attr == &dev_attr_min_microamps.attr ||
5031 	    attr == &dev_attr_max_microamps.attr)
5032 		return ops->set_current_limit ? mode : 0;
5033 
5034 	if (attr == &dev_attr_suspend_standby_state.attr ||
5035 	    attr == &dev_attr_suspend_mem_state.attr ||
5036 	    attr == &dev_attr_suspend_disk_state.attr)
5037 		return mode;
5038 
5039 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5041 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5042 		return ops->set_suspend_voltage ? mode : 0;
5043 
5044 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5045 	    attr == &dev_attr_suspend_mem_mode.attr ||
5046 	    attr == &dev_attr_suspend_disk_mode.attr)
5047 		return ops->set_suspend_mode ? mode : 0;
5048 
5049 	return mode;
5050 }
5051 
5052 static const struct attribute_group regulator_dev_group = {
5053 	.attrs = regulator_dev_attrs,
5054 	.is_visible = regulator_attr_is_visible,
5055 };
5056 
5057 static const struct attribute_group *regulator_dev_groups[] = {
5058 	&regulator_dev_group,
5059 	NULL
5060 };
5061 
5062 static void regulator_dev_release(struct device *dev)
5063 {
5064 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5065 
5066 	kfree(rdev->constraints);
5067 	of_node_put(rdev->dev.of_node);
5068 	kfree(rdev);
5069 }
5070 
5071 static void rdev_init_debugfs(struct regulator_dev *rdev)
5072 {
5073 	struct device *parent = rdev->dev.parent;
5074 	const char *rname = rdev_get_name(rdev);
5075 	char name[NAME_MAX];
5076 
5077 	/* Avoid duplicate debugfs directory names */
5078 	if (parent && rname == rdev->desc->name) {
5079 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080 			 rname);
5081 		rname = name;
5082 	}
5083 
5084 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085 	if (!rdev->debugfs) {
5086 		rdev_warn(rdev, "Failed to create debugfs directory\n");
5087 		return;
5088 	}
5089 
5090 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091 			   &rdev->use_count);
5092 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093 			   &rdev->open_count);
5094 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095 			   &rdev->bypass_count);
5096 }
5097 
5098 static int regulator_register_resolve_supply(struct device *dev, void *data)
5099 {
5100 	struct regulator_dev *rdev = dev_to_rdev(dev);
5101 
5102 	if (regulator_resolve_supply(rdev))
5103 		rdev_dbg(rdev, "unable to resolve supply\n");
5104 
5105 	return 0;
5106 }
5107 
5108 int regulator_coupler_register(struct regulator_coupler *coupler)
5109 {
5110 	mutex_lock(&regulator_list_mutex);
5111 	list_add_tail(&coupler->list, &regulator_coupler_list);
5112 	mutex_unlock(&regulator_list_mutex);
5113 
5114 	return 0;
5115 }
5116 
5117 static struct regulator_coupler *
5118 regulator_find_coupler(struct regulator_dev *rdev)
5119 {
5120 	struct regulator_coupler *coupler;
5121 	int err;
5122 
5123 	/*
5124 	 * Note that regulators are appended to the list and the generic
5125 	 * coupler is registered first, hence it will be attached at last
5126 	 * if nobody cared.
5127 	 */
5128 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5129 		err = coupler->attach_regulator(coupler, rdev);
5130 		if (!err) {
5131 			if (!coupler->balance_voltage &&
5132 			    rdev->coupling_desc.n_coupled > 2)
5133 				goto err_unsupported;
5134 
5135 			return coupler;
5136 		}
5137 
5138 		if (err < 0)
5139 			return ERR_PTR(err);
5140 
5141 		if (err == 1)
5142 			continue;
5143 
5144 		break;
5145 	}
5146 
5147 	return ERR_PTR(-EINVAL);
5148 
5149 err_unsupported:
5150 	if (coupler->detach_regulator)
5151 		coupler->detach_regulator(coupler, rdev);
5152 
5153 	rdev_err(rdev,
5154 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5155 
5156 	return ERR_PTR(-EPERM);
5157 }
5158 
5159 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160 {
5161 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5163 	int n_coupled = c_desc->n_coupled;
5164 	struct regulator_dev *c_rdev;
5165 	int i;
5166 
5167 	for (i = 1; i < n_coupled; i++) {
5168 		/* already resolved */
5169 		if (c_desc->coupled_rdevs[i])
5170 			continue;
5171 
5172 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173 
5174 		if (!c_rdev)
5175 			continue;
5176 
5177 		if (c_rdev->coupling_desc.coupler != coupler) {
5178 			rdev_err(rdev, "coupler mismatch with %s\n",
5179 				 rdev_get_name(c_rdev));
5180 			return;
5181 		}
5182 
5183 		c_desc->coupled_rdevs[i] = c_rdev;
5184 		c_desc->n_resolved++;
5185 
5186 		regulator_resolve_coupling(c_rdev);
5187 	}
5188 }
5189 
5190 static void regulator_remove_coupling(struct regulator_dev *rdev)
5191 {
5192 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194 	struct regulator_dev *__c_rdev, *c_rdev;
5195 	unsigned int __n_coupled, n_coupled;
5196 	int i, k;
5197 	int err;
5198 
5199 	n_coupled = c_desc->n_coupled;
5200 
5201 	for (i = 1; i < n_coupled; i++) {
5202 		c_rdev = c_desc->coupled_rdevs[i];
5203 
5204 		if (!c_rdev)
5205 			continue;
5206 
5207 		regulator_lock(c_rdev);
5208 
5209 		__c_desc = &c_rdev->coupling_desc;
5210 		__n_coupled = __c_desc->n_coupled;
5211 
5212 		for (k = 1; k < __n_coupled; k++) {
5213 			__c_rdev = __c_desc->coupled_rdevs[k];
5214 
5215 			if (__c_rdev == rdev) {
5216 				__c_desc->coupled_rdevs[k] = NULL;
5217 				__c_desc->n_resolved--;
5218 				break;
5219 			}
5220 		}
5221 
5222 		regulator_unlock(c_rdev);
5223 
5224 		c_desc->coupled_rdevs[i] = NULL;
5225 		c_desc->n_resolved--;
5226 	}
5227 
5228 	if (coupler && coupler->detach_regulator) {
5229 		err = coupler->detach_regulator(coupler, rdev);
5230 		if (err)
5231 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232 				 ERR_PTR(err));
5233 	}
5234 
5235 	kfree(rdev->coupling_desc.coupled_rdevs);
5236 	rdev->coupling_desc.coupled_rdevs = NULL;
5237 }
5238 
5239 static int regulator_init_coupling(struct regulator_dev *rdev)
5240 {
5241 	struct regulator_dev **coupled;
5242 	int err, n_phandles;
5243 
5244 	if (!IS_ENABLED(CONFIG_OF))
5245 		n_phandles = 0;
5246 	else
5247 		n_phandles = of_get_n_coupled(rdev);
5248 
5249 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250 	if (!coupled)
5251 		return -ENOMEM;
5252 
5253 	rdev->coupling_desc.coupled_rdevs = coupled;
5254 
5255 	/*
5256 	 * Every regulator should always have coupling descriptor filled with
5257 	 * at least pointer to itself.
5258 	 */
5259 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5261 	rdev->coupling_desc.n_resolved++;
5262 
5263 	/* regulator isn't coupled */
5264 	if (n_phandles == 0)
5265 		return 0;
5266 
5267 	if (!of_check_coupling_data(rdev))
5268 		return -EPERM;
5269 
5270 	mutex_lock(&regulator_list_mutex);
5271 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272 	mutex_unlock(&regulator_list_mutex);
5273 
5274 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5275 		err = PTR_ERR(rdev->coupling_desc.coupler);
5276 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277 		return err;
5278 	}
5279 
5280 	return 0;
5281 }
5282 
5283 static int generic_coupler_attach(struct regulator_coupler *coupler,
5284 				  struct regulator_dev *rdev)
5285 {
5286 	if (rdev->coupling_desc.n_coupled > 2) {
5287 		rdev_err(rdev,
5288 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289 		return -EPERM;
5290 	}
5291 
5292 	if (!rdev->constraints->always_on) {
5293 		rdev_err(rdev,
5294 			 "Coupling of a non always-on regulator is unimplemented\n");
5295 		return -ENOTSUPP;
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 static struct regulator_coupler generic_regulator_coupler = {
5302 	.attach_regulator = generic_coupler_attach,
5303 };
5304 
5305 /**
5306  * regulator_register - register regulator
5307  * @regulator_desc: regulator to register
5308  * @cfg: runtime configuration for regulator
5309  *
5310  * Called by regulator drivers to register a regulator.
5311  * Returns a valid pointer to struct regulator_dev on success
5312  * or an ERR_PTR() on error.
5313  */
5314 struct regulator_dev *
5315 regulator_register(const struct regulator_desc *regulator_desc,
5316 		   const struct regulator_config *cfg)
5317 {
5318 	const struct regulator_init_data *init_data;
5319 	struct regulator_config *config = NULL;
5320 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5321 	struct regulator_dev *rdev;
5322 	bool dangling_cfg_gpiod = false;
5323 	bool dangling_of_gpiod = false;
5324 	struct device *dev;
5325 	int ret, i;
5326 
5327 	if (cfg == NULL)
5328 		return ERR_PTR(-EINVAL);
5329 	if (cfg->ena_gpiod)
5330 		dangling_cfg_gpiod = true;
5331 	if (regulator_desc == NULL) {
5332 		ret = -EINVAL;
5333 		goto rinse;
5334 	}
5335 
5336 	dev = cfg->dev;
5337 	WARN_ON(!dev);
5338 
5339 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340 		ret = -EINVAL;
5341 		goto rinse;
5342 	}
5343 
5344 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345 	    regulator_desc->type != REGULATOR_CURRENT) {
5346 		ret = -EINVAL;
5347 		goto rinse;
5348 	}
5349 
5350 	/* Only one of each should be implemented */
5351 	WARN_ON(regulator_desc->ops->get_voltage &&
5352 		regulator_desc->ops->get_voltage_sel);
5353 	WARN_ON(regulator_desc->ops->set_voltage &&
5354 		regulator_desc->ops->set_voltage_sel);
5355 
5356 	/* If we're using selectors we must implement list_voltage. */
5357 	if (regulator_desc->ops->get_voltage_sel &&
5358 	    !regulator_desc->ops->list_voltage) {
5359 		ret = -EINVAL;
5360 		goto rinse;
5361 	}
5362 	if (regulator_desc->ops->set_voltage_sel &&
5363 	    !regulator_desc->ops->list_voltage) {
5364 		ret = -EINVAL;
5365 		goto rinse;
5366 	}
5367 
5368 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369 	if (rdev == NULL) {
5370 		ret = -ENOMEM;
5371 		goto rinse;
5372 	}
5373 	device_initialize(&rdev->dev);
5374 	spin_lock_init(&rdev->err_lock);
5375 
5376 	/*
5377 	 * Duplicate the config so the driver could override it after
5378 	 * parsing init data.
5379 	 */
5380 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381 	if (config == NULL) {
5382 		ret = -ENOMEM;
5383 		goto clean;
5384 	}
5385 
5386 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387 					       &rdev->dev.of_node);
5388 
5389 	/*
5390 	 * Sometimes not all resources are probed already so we need to take
5391 	 * that into account. This happens most the time if the ena_gpiod comes
5392 	 * from a gpio extender or something else.
5393 	 */
5394 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395 		ret = -EPROBE_DEFER;
5396 		goto clean;
5397 	}
5398 
5399 	/*
5400 	 * We need to keep track of any GPIO descriptor coming from the
5401 	 * device tree until we have handled it over to the core. If the
5402 	 * config that was passed in to this function DOES NOT contain
5403 	 * a descriptor, and the config after this call DOES contain
5404 	 * a descriptor, we definitely got one from parsing the device
5405 	 * tree.
5406 	 */
5407 	if (!cfg->ena_gpiod && config->ena_gpiod)
5408 		dangling_of_gpiod = true;
5409 	if (!init_data) {
5410 		init_data = config->init_data;
5411 		rdev->dev.of_node = of_node_get(config->of_node);
5412 	}
5413 
5414 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5415 	rdev->reg_data = config->driver_data;
5416 	rdev->owner = regulator_desc->owner;
5417 	rdev->desc = regulator_desc;
5418 	if (config->regmap)
5419 		rdev->regmap = config->regmap;
5420 	else if (dev_get_regmap(dev, NULL))
5421 		rdev->regmap = dev_get_regmap(dev, NULL);
5422 	else if (dev->parent)
5423 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424 	INIT_LIST_HEAD(&rdev->consumer_list);
5425 	INIT_LIST_HEAD(&rdev->list);
5426 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428 
5429 	/* preform any regulator specific init */
5430 	if (init_data && init_data->regulator_init) {
5431 		ret = init_data->regulator_init(rdev->reg_data);
5432 		if (ret < 0)
5433 			goto clean;
5434 	}
5435 
5436 	if (config->ena_gpiod) {
5437 		ret = regulator_ena_gpio_request(rdev, config);
5438 		if (ret != 0) {
5439 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440 				 ERR_PTR(ret));
5441 			goto clean;
5442 		}
5443 		/* The regulator core took over the GPIO descriptor */
5444 		dangling_cfg_gpiod = false;
5445 		dangling_of_gpiod = false;
5446 	}
5447 
5448 	/* register with sysfs */
5449 	rdev->dev.class = &regulator_class;
5450 	rdev->dev.parent = dev;
5451 	dev_set_name(&rdev->dev, "regulator.%lu",
5452 		    (unsigned long) atomic_inc_return(&regulator_no));
5453 	dev_set_drvdata(&rdev->dev, rdev);
5454 
5455 	/* set regulator constraints */
5456 	if (init_data)
5457 		rdev->constraints = kmemdup(&init_data->constraints,
5458 					    sizeof(*rdev->constraints),
5459 					    GFP_KERNEL);
5460 	else
5461 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462 					    GFP_KERNEL);
5463 	if (!rdev->constraints) {
5464 		ret = -ENOMEM;
5465 		goto wash;
5466 	}
5467 
5468 	if (init_data && init_data->supply_regulator)
5469 		rdev->supply_name = init_data->supply_regulator;
5470 	else if (regulator_desc->supply_name)
5471 		rdev->supply_name = regulator_desc->supply_name;
5472 
5473 	ret = set_machine_constraints(rdev);
5474 	if (ret == -EPROBE_DEFER) {
5475 		/* Regulator might be in bypass mode and so needs its supply
5476 		 * to set the constraints
5477 		 */
5478 		/* FIXME: this currently triggers a chicken-and-egg problem
5479 		 * when creating -SUPPLY symlink in sysfs to a regulator
5480 		 * that is just being created
5481 		 */
5482 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5483 			 rdev->supply_name);
5484 		ret = regulator_resolve_supply(rdev);
5485 		if (!ret)
5486 			ret = set_machine_constraints(rdev);
5487 		else
5488 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489 				 ERR_PTR(ret));
5490 	}
5491 	if (ret < 0)
5492 		goto wash;
5493 
5494 	ret = regulator_init_coupling(rdev);
5495 	if (ret < 0)
5496 		goto wash;
5497 
5498 	/* add consumers devices */
5499 	if (init_data) {
5500 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501 			ret = set_consumer_device_supply(rdev,
5502 				init_data->consumer_supplies[i].dev_name,
5503 				init_data->consumer_supplies[i].supply);
5504 			if (ret < 0) {
5505 				dev_err(dev, "Failed to set supply %s\n",
5506 					init_data->consumer_supplies[i].supply);
5507 				goto unset_supplies;
5508 			}
5509 		}
5510 	}
5511 
5512 	if (!rdev->desc->ops->get_voltage &&
5513 	    !rdev->desc->ops->list_voltage &&
5514 	    !rdev->desc->fixed_uV)
5515 		rdev->is_switch = true;
5516 
5517 	ret = device_add(&rdev->dev);
5518 	if (ret != 0)
5519 		goto unset_supplies;
5520 
5521 	rdev_init_debugfs(rdev);
5522 
5523 	/* try to resolve regulators coupling since a new one was registered */
5524 	mutex_lock(&regulator_list_mutex);
5525 	regulator_resolve_coupling(rdev);
5526 	mutex_unlock(&regulator_list_mutex);
5527 
5528 	/* try to resolve regulators supply since a new one was registered */
5529 	class_for_each_device(&regulator_class, NULL, NULL,
5530 			      regulator_register_resolve_supply);
5531 	kfree(config);
5532 	return rdev;
5533 
5534 unset_supplies:
5535 	mutex_lock(&regulator_list_mutex);
5536 	unset_regulator_supplies(rdev);
5537 	regulator_remove_coupling(rdev);
5538 	mutex_unlock(&regulator_list_mutex);
5539 wash:
5540 	kfree(rdev->coupling_desc.coupled_rdevs);
5541 	mutex_lock(&regulator_list_mutex);
5542 	regulator_ena_gpio_free(rdev);
5543 	mutex_unlock(&regulator_list_mutex);
5544 clean:
5545 	if (dangling_of_gpiod)
5546 		gpiod_put(config->ena_gpiod);
5547 	kfree(config);
5548 	put_device(&rdev->dev);
5549 rinse:
5550 	if (dangling_cfg_gpiod)
5551 		gpiod_put(cfg->ena_gpiod);
5552 	return ERR_PTR(ret);
5553 }
5554 EXPORT_SYMBOL_GPL(regulator_register);
5555 
5556 /**
5557  * regulator_unregister - unregister regulator
5558  * @rdev: regulator to unregister
5559  *
5560  * Called by regulator drivers to unregister a regulator.
5561  */
5562 void regulator_unregister(struct regulator_dev *rdev)
5563 {
5564 	if (rdev == NULL)
5565 		return;
5566 
5567 	if (rdev->supply) {
5568 		while (rdev->use_count--)
5569 			regulator_disable(rdev->supply);
5570 		regulator_put(rdev->supply);
5571 	}
5572 
5573 	flush_work(&rdev->disable_work.work);
5574 
5575 	mutex_lock(&regulator_list_mutex);
5576 
5577 	debugfs_remove_recursive(rdev->debugfs);
5578 	WARN_ON(rdev->open_count);
5579 	regulator_remove_coupling(rdev);
5580 	unset_regulator_supplies(rdev);
5581 	list_del(&rdev->list);
5582 	regulator_ena_gpio_free(rdev);
5583 	device_unregister(&rdev->dev);
5584 
5585 	mutex_unlock(&regulator_list_mutex);
5586 }
5587 EXPORT_SYMBOL_GPL(regulator_unregister);
5588 
5589 #ifdef CONFIG_SUSPEND
5590 /**
5591  * regulator_suspend - prepare regulators for system wide suspend
5592  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593  *
5594  * Configure each regulator with it's suspend operating parameters for state.
5595  */
5596 static int regulator_suspend(struct device *dev)
5597 {
5598 	struct regulator_dev *rdev = dev_to_rdev(dev);
5599 	suspend_state_t state = pm_suspend_target_state;
5600 	int ret;
5601 	const struct regulator_state *rstate;
5602 
5603 	rstate = regulator_get_suspend_state_check(rdev, state);
5604 	if (!rstate)
5605 		return 0;
5606 
5607 	regulator_lock(rdev);
5608 	ret = __suspend_set_state(rdev, rstate);
5609 	regulator_unlock(rdev);
5610 
5611 	return ret;
5612 }
5613 
5614 static int regulator_resume(struct device *dev)
5615 {
5616 	suspend_state_t state = pm_suspend_target_state;
5617 	struct regulator_dev *rdev = dev_to_rdev(dev);
5618 	struct regulator_state *rstate;
5619 	int ret = 0;
5620 
5621 	rstate = regulator_get_suspend_state(rdev, state);
5622 	if (rstate == NULL)
5623 		return 0;
5624 
5625 	/* Avoid grabbing the lock if we don't need to */
5626 	if (!rdev->desc->ops->resume)
5627 		return 0;
5628 
5629 	regulator_lock(rdev);
5630 
5631 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632 	    rstate->enabled == DISABLE_IN_SUSPEND)
5633 		ret = rdev->desc->ops->resume(rdev);
5634 
5635 	regulator_unlock(rdev);
5636 
5637 	return ret;
5638 }
5639 #else /* !CONFIG_SUSPEND */
5640 
5641 #define regulator_suspend	NULL
5642 #define regulator_resume	NULL
5643 
5644 #endif /* !CONFIG_SUSPEND */
5645 
5646 #ifdef CONFIG_PM
5647 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648 	.suspend	= regulator_suspend,
5649 	.resume		= regulator_resume,
5650 };
5651 #endif
5652 
5653 struct class regulator_class = {
5654 	.name = "regulator",
5655 	.dev_release = regulator_dev_release,
5656 	.dev_groups = regulator_dev_groups,
5657 #ifdef CONFIG_PM
5658 	.pm = &regulator_pm_ops,
5659 #endif
5660 };
5661 /**
5662  * regulator_has_full_constraints - the system has fully specified constraints
5663  *
5664  * Calling this function will cause the regulator API to disable all
5665  * regulators which have a zero use count and don't have an always_on
5666  * constraint in a late_initcall.
5667  *
5668  * The intention is that this will become the default behaviour in a
5669  * future kernel release so users are encouraged to use this facility
5670  * now.
5671  */
5672 void regulator_has_full_constraints(void)
5673 {
5674 	has_full_constraints = 1;
5675 }
5676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677 
5678 /**
5679  * rdev_get_drvdata - get rdev regulator driver data
5680  * @rdev: regulator
5681  *
5682  * Get rdev regulator driver private data. This call can be used in the
5683  * regulator driver context.
5684  */
5685 void *rdev_get_drvdata(struct regulator_dev *rdev)
5686 {
5687 	return rdev->reg_data;
5688 }
5689 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690 
5691 /**
5692  * regulator_get_drvdata - get regulator driver data
5693  * @regulator: regulator
5694  *
5695  * Get regulator driver private data. This call can be used in the consumer
5696  * driver context when non API regulator specific functions need to be called.
5697  */
5698 void *regulator_get_drvdata(struct regulator *regulator)
5699 {
5700 	return regulator->rdev->reg_data;
5701 }
5702 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703 
5704 /**
5705  * regulator_set_drvdata - set regulator driver data
5706  * @regulator: regulator
5707  * @data: data
5708  */
5709 void regulator_set_drvdata(struct regulator *regulator, void *data)
5710 {
5711 	regulator->rdev->reg_data = data;
5712 }
5713 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714 
5715 /**
5716  * rdev_get_id - get regulator ID
5717  * @rdev: regulator
5718  */
5719 int rdev_get_id(struct regulator_dev *rdev)
5720 {
5721 	return rdev->desc->id;
5722 }
5723 EXPORT_SYMBOL_GPL(rdev_get_id);
5724 
5725 struct device *rdev_get_dev(struct regulator_dev *rdev)
5726 {
5727 	return &rdev->dev;
5728 }
5729 EXPORT_SYMBOL_GPL(rdev_get_dev);
5730 
5731 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732 {
5733 	return rdev->regmap;
5734 }
5735 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736 
5737 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738 {
5739 	return reg_init_data->driver_data;
5740 }
5741 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742 
5743 #ifdef CONFIG_DEBUG_FS
5744 static int supply_map_show(struct seq_file *sf, void *data)
5745 {
5746 	struct regulator_map *map;
5747 
5748 	list_for_each_entry(map, &regulator_map_list, list) {
5749 		seq_printf(sf, "%s -> %s.%s\n",
5750 				rdev_get_name(map->regulator), map->dev_name,
5751 				map->supply);
5752 	}
5753 
5754 	return 0;
5755 }
5756 DEFINE_SHOW_ATTRIBUTE(supply_map);
5757 
5758 struct summary_data {
5759 	struct seq_file *s;
5760 	struct regulator_dev *parent;
5761 	int level;
5762 };
5763 
5764 static void regulator_summary_show_subtree(struct seq_file *s,
5765 					   struct regulator_dev *rdev,
5766 					   int level);
5767 
5768 static int regulator_summary_show_children(struct device *dev, void *data)
5769 {
5770 	struct regulator_dev *rdev = dev_to_rdev(dev);
5771 	struct summary_data *summary_data = data;
5772 
5773 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774 		regulator_summary_show_subtree(summary_data->s, rdev,
5775 					       summary_data->level + 1);
5776 
5777 	return 0;
5778 }
5779 
5780 static void regulator_summary_show_subtree(struct seq_file *s,
5781 					   struct regulator_dev *rdev,
5782 					   int level)
5783 {
5784 	struct regulation_constraints *c;
5785 	struct regulator *consumer;
5786 	struct summary_data summary_data;
5787 	unsigned int opmode;
5788 
5789 	if (!rdev)
5790 		return;
5791 
5792 	opmode = _regulator_get_mode_unlocked(rdev);
5793 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794 		   level * 3 + 1, "",
5795 		   30 - level * 3, rdev_get_name(rdev),
5796 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5797 		   regulator_opmode_to_str(opmode));
5798 
5799 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800 	seq_printf(s, "%5dmA ",
5801 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5802 
5803 	c = rdev->constraints;
5804 	if (c) {
5805 		switch (rdev->desc->type) {
5806 		case REGULATOR_VOLTAGE:
5807 			seq_printf(s, "%5dmV %5dmV ",
5808 				   c->min_uV / 1000, c->max_uV / 1000);
5809 			break;
5810 		case REGULATOR_CURRENT:
5811 			seq_printf(s, "%5dmA %5dmA ",
5812 				   c->min_uA / 1000, c->max_uA / 1000);
5813 			break;
5814 		}
5815 	}
5816 
5817 	seq_puts(s, "\n");
5818 
5819 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820 		if (consumer->dev && consumer->dev->class == &regulator_class)
5821 			continue;
5822 
5823 		seq_printf(s, "%*s%-*s ",
5824 			   (level + 1) * 3 + 1, "",
5825 			   30 - (level + 1) * 3,
5826 			   consumer->supply_name ? consumer->supply_name :
5827 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828 
5829 		switch (rdev->desc->type) {
5830 		case REGULATOR_VOLTAGE:
5831 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832 				   consumer->enable_count,
5833 				   consumer->uA_load / 1000,
5834 				   consumer->uA_load && !consumer->enable_count ?
5835 				   '*' : ' ',
5836 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838 			break;
5839 		case REGULATOR_CURRENT:
5840 			break;
5841 		}
5842 
5843 		seq_puts(s, "\n");
5844 	}
5845 
5846 	summary_data.s = s;
5847 	summary_data.level = level;
5848 	summary_data.parent = rdev;
5849 
5850 	class_for_each_device(&regulator_class, NULL, &summary_data,
5851 			      regulator_summary_show_children);
5852 }
5853 
5854 struct summary_lock_data {
5855 	struct ww_acquire_ctx *ww_ctx;
5856 	struct regulator_dev **new_contended_rdev;
5857 	struct regulator_dev **old_contended_rdev;
5858 };
5859 
5860 static int regulator_summary_lock_one(struct device *dev, void *data)
5861 {
5862 	struct regulator_dev *rdev = dev_to_rdev(dev);
5863 	struct summary_lock_data *lock_data = data;
5864 	int ret = 0;
5865 
5866 	if (rdev != *lock_data->old_contended_rdev) {
5867 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868 
5869 		if (ret == -EDEADLK)
5870 			*lock_data->new_contended_rdev = rdev;
5871 		else
5872 			WARN_ON_ONCE(ret);
5873 	} else {
5874 		*lock_data->old_contended_rdev = NULL;
5875 	}
5876 
5877 	return ret;
5878 }
5879 
5880 static int regulator_summary_unlock_one(struct device *dev, void *data)
5881 {
5882 	struct regulator_dev *rdev = dev_to_rdev(dev);
5883 	struct summary_lock_data *lock_data = data;
5884 
5885 	if (lock_data) {
5886 		if (rdev == *lock_data->new_contended_rdev)
5887 			return -EDEADLK;
5888 	}
5889 
5890 	regulator_unlock(rdev);
5891 
5892 	return 0;
5893 }
5894 
5895 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896 				      struct regulator_dev **new_contended_rdev,
5897 				      struct regulator_dev **old_contended_rdev)
5898 {
5899 	struct summary_lock_data lock_data;
5900 	int ret;
5901 
5902 	lock_data.ww_ctx = ww_ctx;
5903 	lock_data.new_contended_rdev = new_contended_rdev;
5904 	lock_data.old_contended_rdev = old_contended_rdev;
5905 
5906 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5907 				    regulator_summary_lock_one);
5908 	if (ret)
5909 		class_for_each_device(&regulator_class, NULL, &lock_data,
5910 				      regulator_summary_unlock_one);
5911 
5912 	return ret;
5913 }
5914 
5915 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916 {
5917 	struct regulator_dev *new_contended_rdev = NULL;
5918 	struct regulator_dev *old_contended_rdev = NULL;
5919 	int err;
5920 
5921 	mutex_lock(&regulator_list_mutex);
5922 
5923 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5924 
5925 	do {
5926 		if (new_contended_rdev) {
5927 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928 			old_contended_rdev = new_contended_rdev;
5929 			old_contended_rdev->ref_cnt++;
5930 		}
5931 
5932 		err = regulator_summary_lock_all(ww_ctx,
5933 						 &new_contended_rdev,
5934 						 &old_contended_rdev);
5935 
5936 		if (old_contended_rdev)
5937 			regulator_unlock(old_contended_rdev);
5938 
5939 	} while (err == -EDEADLK);
5940 
5941 	ww_acquire_done(ww_ctx);
5942 }
5943 
5944 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945 {
5946 	class_for_each_device(&regulator_class, NULL, NULL,
5947 			      regulator_summary_unlock_one);
5948 	ww_acquire_fini(ww_ctx);
5949 
5950 	mutex_unlock(&regulator_list_mutex);
5951 }
5952 
5953 static int regulator_summary_show_roots(struct device *dev, void *data)
5954 {
5955 	struct regulator_dev *rdev = dev_to_rdev(dev);
5956 	struct seq_file *s = data;
5957 
5958 	if (!rdev->supply)
5959 		regulator_summary_show_subtree(s, rdev, 0);
5960 
5961 	return 0;
5962 }
5963 
5964 static int regulator_summary_show(struct seq_file *s, void *data)
5965 {
5966 	struct ww_acquire_ctx ww_ctx;
5967 
5968 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5969 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970 
5971 	regulator_summary_lock(&ww_ctx);
5972 
5973 	class_for_each_device(&regulator_class, NULL, s,
5974 			      regulator_summary_show_roots);
5975 
5976 	regulator_summary_unlock(&ww_ctx);
5977 
5978 	return 0;
5979 }
5980 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981 #endif /* CONFIG_DEBUG_FS */
5982 
5983 static int __init regulator_init(void)
5984 {
5985 	int ret;
5986 
5987 	ret = class_register(&regulator_class);
5988 
5989 	debugfs_root = debugfs_create_dir("regulator", NULL);
5990 	if (!debugfs_root)
5991 		pr_warn("regulator: Failed to create debugfs directory\n");
5992 
5993 #ifdef CONFIG_DEBUG_FS
5994 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995 			    &supply_map_fops);
5996 
5997 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998 			    NULL, &regulator_summary_fops);
5999 #endif
6000 	regulator_dummy_init();
6001 
6002 	regulator_coupler_register(&generic_regulator_coupler);
6003 
6004 	return ret;
6005 }
6006 
6007 /* init early to allow our consumers to complete system booting */
6008 core_initcall(regulator_init);
6009 
6010 static int regulator_late_cleanup(struct device *dev, void *data)
6011 {
6012 	struct regulator_dev *rdev = dev_to_rdev(dev);
6013 	const struct regulator_ops *ops = rdev->desc->ops;
6014 	struct regulation_constraints *c = rdev->constraints;
6015 	int enabled, ret;
6016 
6017 	if (c && c->always_on)
6018 		return 0;
6019 
6020 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021 		return 0;
6022 
6023 	regulator_lock(rdev);
6024 
6025 	if (rdev->use_count)
6026 		goto unlock;
6027 
6028 	/* If we can't read the status assume it's always on. */
6029 	if (ops->is_enabled)
6030 		enabled = ops->is_enabled(rdev);
6031 	else
6032 		enabled = 1;
6033 
6034 	/* But if reading the status failed, assume that it's off. */
6035 	if (enabled <= 0)
6036 		goto unlock;
6037 
6038 	if (have_full_constraints()) {
6039 		/* We log since this may kill the system if it goes
6040 		 * wrong.
6041 		 */
6042 		rdev_info(rdev, "disabling\n");
6043 		ret = _regulator_do_disable(rdev);
6044 		if (ret != 0)
6045 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046 	} else {
6047 		/* The intention is that in future we will
6048 		 * assume that full constraints are provided
6049 		 * so warn even if we aren't going to do
6050 		 * anything here.
6051 		 */
6052 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053 	}
6054 
6055 unlock:
6056 	regulator_unlock(rdev);
6057 
6058 	return 0;
6059 }
6060 
6061 static void regulator_init_complete_work_function(struct work_struct *work)
6062 {
6063 	/*
6064 	 * Regulators may had failed to resolve their input supplies
6065 	 * when were registered, either because the input supply was
6066 	 * not registered yet or because its parent device was not
6067 	 * bound yet. So attempt to resolve the input supplies for
6068 	 * pending regulators before trying to disable unused ones.
6069 	 */
6070 	class_for_each_device(&regulator_class, NULL, NULL,
6071 			      regulator_register_resolve_supply);
6072 
6073 	/* If we have a full configuration then disable any regulators
6074 	 * we have permission to change the status for and which are
6075 	 * not in use or always_on.  This is effectively the default
6076 	 * for DT and ACPI as they have full constraints.
6077 	 */
6078 	class_for_each_device(&regulator_class, NULL, NULL,
6079 			      regulator_late_cleanup);
6080 }
6081 
6082 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083 			    regulator_init_complete_work_function);
6084 
6085 static int __init regulator_init_complete(void)
6086 {
6087 	/*
6088 	 * Since DT doesn't provide an idiomatic mechanism for
6089 	 * enabling full constraints and since it's much more natural
6090 	 * with DT to provide them just assume that a DT enabled
6091 	 * system has full constraints.
6092 	 */
6093 	if (of_have_populated_dt())
6094 		has_full_constraints = true;
6095 
6096 	/*
6097 	 * We punt completion for an arbitrary amount of time since
6098 	 * systems like distros will load many drivers from userspace
6099 	 * so consumers might not always be ready yet, this is
6100 	 * particularly an issue with laptops where this might bounce
6101 	 * the display off then on.  Ideally we'd get a notification
6102 	 * from userspace when this happens but we don't so just wait
6103 	 * a bit and hope we waited long enough.  It'd be better if
6104 	 * we'd only do this on systems that need it, and a kernel
6105 	 * command line option might be useful.
6106 	 */
6107 	schedule_delayed_work(&regulator_init_complete_work,
6108 			      msecs_to_jiffies(30000));
6109 
6110 	return 0;
6111 }
6112 late_initcall_sync(regulator_init_complete);
6113