1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 #include "internal.h" 40 41 #define rdev_crit(rdev, fmt, ...) \ 42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_err(rdev, fmt, ...) \ 44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_warn(rdev, fmt, ...) \ 46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_info(rdev, fmt, ...) \ 48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 #define rdev_dbg(rdev, fmt, ...) \ 50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 51 52 static DEFINE_MUTEX(regulator_list_mutex); 53 static LIST_HEAD(regulator_list); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 int gpio; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static void _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 112 static const char *rdev_get_name(struct regulator_dev *rdev) 113 { 114 if (rdev->constraints && rdev->constraints->name) 115 return rdev->constraints->name; 116 else if (rdev->desc->name) 117 return rdev->desc->name; 118 else 119 return ""; 120 } 121 122 static bool have_full_constraints(void) 123 { 124 return has_full_constraints || of_have_populated_dt(); 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 static DEVICE_ATTR_RO(name); 334 335 static ssize_t regulator_print_opmode(char *buf, int mode) 336 { 337 switch (mode) { 338 case REGULATOR_MODE_FAST: 339 return sprintf(buf, "fast\n"); 340 case REGULATOR_MODE_NORMAL: 341 return sprintf(buf, "normal\n"); 342 case REGULATOR_MODE_IDLE: 343 return sprintf(buf, "idle\n"); 344 case REGULATOR_MODE_STANDBY: 345 return sprintf(buf, "standby\n"); 346 } 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_opmode_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 356 } 357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 358 359 static ssize_t regulator_print_state(char *buf, int state) 360 { 361 if (state > 0) 362 return sprintf(buf, "enabled\n"); 363 else if (state == 0) 364 return sprintf(buf, "disabled\n"); 365 else 366 return sprintf(buf, "unknown\n"); 367 } 368 369 static ssize_t regulator_state_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct regulator_dev *rdev = dev_get_drvdata(dev); 373 ssize_t ret; 374 375 mutex_lock(&rdev->mutex); 376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 377 mutex_unlock(&rdev->mutex); 378 379 return ret; 380 } 381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 382 383 static ssize_t regulator_status_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 int status; 388 char *label; 389 390 status = rdev->desc->ops->get_status(rdev); 391 if (status < 0) 392 return status; 393 394 switch (status) { 395 case REGULATOR_STATUS_OFF: 396 label = "off"; 397 break; 398 case REGULATOR_STATUS_ON: 399 label = "on"; 400 break; 401 case REGULATOR_STATUS_ERROR: 402 label = "error"; 403 break; 404 case REGULATOR_STATUS_FAST: 405 label = "fast"; 406 break; 407 case REGULATOR_STATUS_NORMAL: 408 label = "normal"; 409 break; 410 case REGULATOR_STATUS_IDLE: 411 label = "idle"; 412 break; 413 case REGULATOR_STATUS_STANDBY: 414 label = "standby"; 415 break; 416 case REGULATOR_STATUS_BYPASS: 417 label = "bypass"; 418 break; 419 case REGULATOR_STATUS_UNDEFINED: 420 label = "undefined"; 421 break; 422 default: 423 return -ERANGE; 424 } 425 426 return sprintf(buf, "%s\n", label); 427 } 428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 429 430 static ssize_t regulator_min_uA_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 struct regulator_dev *rdev = dev_get_drvdata(dev); 434 435 if (!rdev->constraints) 436 return sprintf(buf, "constraint not defined\n"); 437 438 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 439 } 440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 441 442 static ssize_t regulator_max_uA_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct regulator_dev *rdev = dev_get_drvdata(dev); 446 447 if (!rdev->constraints) 448 return sprintf(buf, "constraint not defined\n"); 449 450 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 451 } 452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 453 454 static ssize_t regulator_min_uV_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 463 } 464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 465 466 static ssize_t regulator_max_uV_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 475 } 476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 477 478 static ssize_t regulator_total_uA_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 struct regulator *regulator; 483 int uA = 0; 484 485 mutex_lock(&rdev->mutex); 486 list_for_each_entry(regulator, &rdev->consumer_list, list) 487 uA += regulator->uA_load; 488 mutex_unlock(&rdev->mutex); 489 return sprintf(buf, "%d\n", uA); 490 } 491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 492 493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 494 char *buf) 495 { 496 struct regulator_dev *rdev = dev_get_drvdata(dev); 497 return sprintf(buf, "%d\n", rdev->use_count); 498 } 499 static DEVICE_ATTR_RO(num_users); 500 501 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 502 char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 506 switch (rdev->desc->type) { 507 case REGULATOR_VOLTAGE: 508 return sprintf(buf, "voltage\n"); 509 case REGULATOR_CURRENT: 510 return sprintf(buf, "current\n"); 511 } 512 return sprintf(buf, "unknown\n"); 513 } 514 static DEVICE_ATTR_RO(type); 515 516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 522 } 523 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 524 regulator_suspend_mem_uV_show, NULL); 525 526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 532 } 533 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 534 regulator_suspend_disk_uV_show, NULL); 535 536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 537 struct device_attribute *attr, char *buf) 538 { 539 struct regulator_dev *rdev = dev_get_drvdata(dev); 540 541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 542 } 543 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 544 regulator_suspend_standby_uV_show, NULL); 545 546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct regulator_dev *rdev = dev_get_drvdata(dev); 550 551 return regulator_print_opmode(buf, 552 rdev->constraints->state_mem.mode); 553 } 554 static DEVICE_ATTR(suspend_mem_mode, 0444, 555 regulator_suspend_mem_mode_show, NULL); 556 557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct regulator_dev *rdev = dev_get_drvdata(dev); 561 562 return regulator_print_opmode(buf, 563 rdev->constraints->state_disk.mode); 564 } 565 static DEVICE_ATTR(suspend_disk_mode, 0444, 566 regulator_suspend_disk_mode_show, NULL); 567 568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 569 struct device_attribute *attr, char *buf) 570 { 571 struct regulator_dev *rdev = dev_get_drvdata(dev); 572 573 return regulator_print_opmode(buf, 574 rdev->constraints->state_standby.mode); 575 } 576 static DEVICE_ATTR(suspend_standby_mode, 0444, 577 regulator_suspend_standby_mode_show, NULL); 578 579 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 580 struct device_attribute *attr, char *buf) 581 { 582 struct regulator_dev *rdev = dev_get_drvdata(dev); 583 584 return regulator_print_state(buf, 585 rdev->constraints->state_mem.enabled); 586 } 587 static DEVICE_ATTR(suspend_mem_state, 0444, 588 regulator_suspend_mem_state_show, NULL); 589 590 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_state(buf, 596 rdev->constraints->state_disk.enabled); 597 } 598 static DEVICE_ATTR(suspend_disk_state, 0444, 599 regulator_suspend_disk_state_show, NULL); 600 601 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_state(buf, 607 rdev->constraints->state_standby.enabled); 608 } 609 static DEVICE_ATTR(suspend_standby_state, 0444, 610 regulator_suspend_standby_state_show, NULL); 611 612 static ssize_t regulator_bypass_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 const char *report; 617 bool bypass; 618 int ret; 619 620 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 621 622 if (ret != 0) 623 report = "unknown"; 624 else if (bypass) 625 report = "enabled"; 626 else 627 report = "disabled"; 628 629 return sprintf(buf, "%s\n", report); 630 } 631 static DEVICE_ATTR(bypass, 0444, 632 regulator_bypass_show, NULL); 633 634 /* 635 * These are the only attributes are present for all regulators. 636 * Other attributes are a function of regulator functionality. 637 */ 638 static struct attribute *regulator_dev_attrs[] = { 639 &dev_attr_name.attr, 640 &dev_attr_num_users.attr, 641 &dev_attr_type.attr, 642 NULL, 643 }; 644 ATTRIBUTE_GROUPS(regulator_dev); 645 646 static void regulator_dev_release(struct device *dev) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 kfree(rdev); 650 } 651 652 static struct class regulator_class = { 653 .name = "regulator", 654 .dev_release = regulator_dev_release, 655 .dev_groups = regulator_dev_groups, 656 }; 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static void drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 err = regulator_check_drms(rdev); 667 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 668 (!rdev->desc->ops->get_voltage && 669 !rdev->desc->ops->get_voltage_sel) || 670 !rdev->desc->ops->set_mode) 671 return; 672 673 /* get output voltage */ 674 output_uV = _regulator_get_voltage(rdev); 675 if (output_uV <= 0) 676 return; 677 678 /* get input voltage */ 679 input_uV = 0; 680 if (rdev->supply) 681 input_uV = regulator_get_voltage(rdev->supply); 682 if (input_uV <= 0) 683 input_uV = rdev->constraints->input_uV; 684 if (input_uV <= 0) 685 return; 686 687 /* calc total requested load */ 688 list_for_each_entry(sibling, &rdev->consumer_list, list) 689 current_uA += sibling->uA_load; 690 691 /* now get the optimum mode for our new total regulator load */ 692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 693 output_uV, current_uA); 694 695 /* check the new mode is allowed */ 696 err = regulator_mode_constrain(rdev, &mode); 697 if (err == 0) 698 rdev->desc->ops->set_mode(rdev, mode); 699 } 700 701 static int suspend_set_state(struct regulator_dev *rdev, 702 struct regulator_state *rstate) 703 { 704 int ret = 0; 705 706 /* If we have no suspend mode configration don't set anything; 707 * only warn if the driver implements set_suspend_voltage or 708 * set_suspend_mode callback. 709 */ 710 if (!rstate->enabled && !rstate->disabled) { 711 if (rdev->desc->ops->set_suspend_voltage || 712 rdev->desc->ops->set_suspend_mode) 713 rdev_warn(rdev, "No configuration\n"); 714 return 0; 715 } 716 717 if (rstate->enabled && rstate->disabled) { 718 rdev_err(rdev, "invalid configuration\n"); 719 return -EINVAL; 720 } 721 722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 723 ret = rdev->desc->ops->set_suspend_enable(rdev); 724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 725 ret = rdev->desc->ops->set_suspend_disable(rdev); 726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 727 ret = 0; 728 729 if (ret < 0) { 730 rdev_err(rdev, "failed to enabled/disable\n"); 731 return ret; 732 } 733 734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 736 if (ret < 0) { 737 rdev_err(rdev, "failed to set voltage\n"); 738 return ret; 739 } 740 } 741 742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set mode\n"); 746 return ret; 747 } 748 } 749 return ret; 750 } 751 752 /* locks held by caller */ 753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 754 { 755 if (!rdev->constraints) 756 return -EINVAL; 757 758 switch (state) { 759 case PM_SUSPEND_STANDBY: 760 return suspend_set_state(rdev, 761 &rdev->constraints->state_standby); 762 case PM_SUSPEND_MEM: 763 return suspend_set_state(rdev, 764 &rdev->constraints->state_mem); 765 case PM_SUSPEND_MAX: 766 return suspend_set_state(rdev, 767 &rdev->constraints->state_disk); 768 default: 769 return -EINVAL; 770 } 771 } 772 773 static void print_constraints(struct regulator_dev *rdev) 774 { 775 struct regulation_constraints *constraints = rdev->constraints; 776 char buf[80] = ""; 777 int count = 0; 778 int ret; 779 780 if (constraints->min_uV && constraints->max_uV) { 781 if (constraints->min_uV == constraints->max_uV) 782 count += sprintf(buf + count, "%d mV ", 783 constraints->min_uV / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mV ", 786 constraints->min_uV / 1000, 787 constraints->max_uV / 1000); 788 } 789 790 if (!constraints->min_uV || 791 constraints->min_uV != constraints->max_uV) { 792 ret = _regulator_get_voltage(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mV ", ret / 1000); 795 } 796 797 if (constraints->uV_offset) 798 count += sprintf(buf, "%dmV offset ", 799 constraints->uV_offset / 1000); 800 801 if (constraints->min_uA && constraints->max_uA) { 802 if (constraints->min_uA == constraints->max_uA) 803 count += sprintf(buf + count, "%d mA ", 804 constraints->min_uA / 1000); 805 else 806 count += sprintf(buf + count, "%d <--> %d mA ", 807 constraints->min_uA / 1000, 808 constraints->max_uA / 1000); 809 } 810 811 if (!constraints->min_uA || 812 constraints->min_uA != constraints->max_uA) { 813 ret = _regulator_get_current_limit(rdev); 814 if (ret > 0) 815 count += sprintf(buf + count, "at %d mA ", ret / 1000); 816 } 817 818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 819 count += sprintf(buf + count, "fast "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 821 count += sprintf(buf + count, "normal "); 822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 823 count += sprintf(buf + count, "idle "); 824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 825 count += sprintf(buf + count, "standby"); 826 827 if (!count) 828 sprintf(buf, "no parameters"); 829 830 rdev_info(rdev, "%s\n", buf); 831 832 if ((constraints->min_uV != constraints->max_uV) && 833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 834 rdev_warn(rdev, 835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 836 } 837 838 static int machine_constraints_voltage(struct regulator_dev *rdev, 839 struct regulation_constraints *constraints) 840 { 841 struct regulator_ops *ops = rdev->desc->ops; 842 int ret; 843 844 /* do we need to apply the constraint voltage */ 845 if (rdev->constraints->apply_uV && 846 rdev->constraints->min_uV == rdev->constraints->max_uV) { 847 int current_uV = _regulator_get_voltage(rdev); 848 if (current_uV < 0) { 849 rdev_err(rdev, "failed to get the current voltage\n"); 850 return current_uV; 851 } 852 if (current_uV < rdev->constraints->min_uV || 853 current_uV > rdev->constraints->max_uV) { 854 ret = _regulator_do_set_voltage( 855 rdev, rdev->constraints->min_uV, 856 rdev->constraints->max_uV); 857 if (ret < 0) { 858 rdev_err(rdev, 859 "failed to apply %duV constraint\n", 860 rdev->constraints->min_uV); 861 return ret; 862 } 863 } 864 } 865 866 /* constrain machine-level voltage specs to fit 867 * the actual range supported by this regulator. 868 */ 869 if (ops->list_voltage && rdev->desc->n_voltages) { 870 int count = rdev->desc->n_voltages; 871 int i; 872 int min_uV = INT_MAX; 873 int max_uV = INT_MIN; 874 int cmin = constraints->min_uV; 875 int cmax = constraints->max_uV; 876 877 /* it's safe to autoconfigure fixed-voltage supplies 878 and the constraints are used by list_voltage. */ 879 if (count == 1 && !cmin) { 880 cmin = 1; 881 cmax = INT_MAX; 882 constraints->min_uV = cmin; 883 constraints->max_uV = cmax; 884 } 885 886 /* voltage constraints are optional */ 887 if ((cmin == 0) && (cmax == 0)) 888 return 0; 889 890 /* else require explicit machine-level constraints */ 891 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 892 rdev_err(rdev, "invalid voltage constraints\n"); 893 return -EINVAL; 894 } 895 896 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 897 for (i = 0; i < count; i++) { 898 int value; 899 900 value = ops->list_voltage(rdev, i); 901 if (value <= 0) 902 continue; 903 904 /* maybe adjust [min_uV..max_uV] */ 905 if (value >= cmin && value < min_uV) 906 min_uV = value; 907 if (value <= cmax && value > max_uV) 908 max_uV = value; 909 } 910 911 /* final: [min_uV..max_uV] valid iff constraints valid */ 912 if (max_uV < min_uV) { 913 rdev_err(rdev, 914 "unsupportable voltage constraints %u-%uuV\n", 915 min_uV, max_uV); 916 return -EINVAL; 917 } 918 919 /* use regulator's subset of machine constraints */ 920 if (constraints->min_uV < min_uV) { 921 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 922 constraints->min_uV, min_uV); 923 constraints->min_uV = min_uV; 924 } 925 if (constraints->max_uV > max_uV) { 926 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 927 constraints->max_uV, max_uV); 928 constraints->max_uV = max_uV; 929 } 930 } 931 932 return 0; 933 } 934 935 static int machine_constraints_current(struct regulator_dev *rdev, 936 struct regulation_constraints *constraints) 937 { 938 struct regulator_ops *ops = rdev->desc->ops; 939 int ret; 940 941 if (!constraints->min_uA && !constraints->max_uA) 942 return 0; 943 944 if (constraints->min_uA > constraints->max_uA) { 945 rdev_err(rdev, "Invalid current constraints\n"); 946 return -EINVAL; 947 } 948 949 if (!ops->set_current_limit || !ops->get_current_limit) { 950 rdev_warn(rdev, "Operation of current configuration missing\n"); 951 return 0; 952 } 953 954 /* Set regulator current in constraints range */ 955 ret = ops->set_current_limit(rdev, constraints->min_uA, 956 constraints->max_uA); 957 if (ret < 0) { 958 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 959 return ret; 960 } 961 962 return 0; 963 } 964 965 static int _regulator_do_enable(struct regulator_dev *rdev); 966 967 /** 968 * set_machine_constraints - sets regulator constraints 969 * @rdev: regulator source 970 * @constraints: constraints to apply 971 * 972 * Allows platform initialisation code to define and constrain 973 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 974 * Constraints *must* be set by platform code in order for some 975 * regulator operations to proceed i.e. set_voltage, set_current_limit, 976 * set_mode. 977 */ 978 static int set_machine_constraints(struct regulator_dev *rdev, 979 const struct regulation_constraints *constraints) 980 { 981 int ret = 0; 982 struct regulator_ops *ops = rdev->desc->ops; 983 984 if (constraints) 985 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 986 GFP_KERNEL); 987 else 988 rdev->constraints = kzalloc(sizeof(*constraints), 989 GFP_KERNEL); 990 if (!rdev->constraints) 991 return -ENOMEM; 992 993 ret = machine_constraints_voltage(rdev, rdev->constraints); 994 if (ret != 0) 995 goto out; 996 997 ret = machine_constraints_current(rdev, rdev->constraints); 998 if (ret != 0) 999 goto out; 1000 1001 /* do we need to setup our suspend state */ 1002 if (rdev->constraints->initial_state) { 1003 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1004 if (ret < 0) { 1005 rdev_err(rdev, "failed to set suspend state\n"); 1006 goto out; 1007 } 1008 } 1009 1010 if (rdev->constraints->initial_mode) { 1011 if (!ops->set_mode) { 1012 rdev_err(rdev, "no set_mode operation\n"); 1013 ret = -EINVAL; 1014 goto out; 1015 } 1016 1017 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1018 if (ret < 0) { 1019 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1020 goto out; 1021 } 1022 } 1023 1024 /* If the constraints say the regulator should be on at this point 1025 * and we have control then make sure it is enabled. 1026 */ 1027 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1028 ret = _regulator_do_enable(rdev); 1029 if (ret < 0 && ret != -EINVAL) { 1030 rdev_err(rdev, "failed to enable\n"); 1031 goto out; 1032 } 1033 } 1034 1035 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1036 && ops->set_ramp_delay) { 1037 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1038 if (ret < 0) { 1039 rdev_err(rdev, "failed to set ramp_delay\n"); 1040 goto out; 1041 } 1042 } 1043 1044 print_constraints(rdev); 1045 return 0; 1046 out: 1047 kfree(rdev->constraints); 1048 rdev->constraints = NULL; 1049 return ret; 1050 } 1051 1052 /** 1053 * set_supply - set regulator supply regulator 1054 * @rdev: regulator name 1055 * @supply_rdev: supply regulator name 1056 * 1057 * Called by platform initialisation code to set the supply regulator for this 1058 * regulator. This ensures that a regulators supply will also be enabled by the 1059 * core if it's child is enabled. 1060 */ 1061 static int set_supply(struct regulator_dev *rdev, 1062 struct regulator_dev *supply_rdev) 1063 { 1064 int err; 1065 1066 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1067 1068 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1069 if (rdev->supply == NULL) { 1070 err = -ENOMEM; 1071 return err; 1072 } 1073 supply_rdev->open_count++; 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1080 * @rdev: regulator source 1081 * @consumer_dev_name: dev_name() string for device supply applies to 1082 * @supply: symbolic name for supply 1083 * 1084 * Allows platform initialisation code to map physical regulator 1085 * sources to symbolic names for supplies for use by devices. Devices 1086 * should use these symbolic names to request regulators, avoiding the 1087 * need to provide board-specific regulator names as platform data. 1088 */ 1089 static int set_consumer_device_supply(struct regulator_dev *rdev, 1090 const char *consumer_dev_name, 1091 const char *supply) 1092 { 1093 struct regulator_map *node; 1094 int has_dev; 1095 1096 if (supply == NULL) 1097 return -EINVAL; 1098 1099 if (consumer_dev_name != NULL) 1100 has_dev = 1; 1101 else 1102 has_dev = 0; 1103 1104 list_for_each_entry(node, ®ulator_map_list, list) { 1105 if (node->dev_name && consumer_dev_name) { 1106 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1107 continue; 1108 } else if (node->dev_name || consumer_dev_name) { 1109 continue; 1110 } 1111 1112 if (strcmp(node->supply, supply) != 0) 1113 continue; 1114 1115 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1116 consumer_dev_name, 1117 dev_name(&node->regulator->dev), 1118 node->regulator->desc->name, 1119 supply, 1120 dev_name(&rdev->dev), rdev_get_name(rdev)); 1121 return -EBUSY; 1122 } 1123 1124 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1125 if (node == NULL) 1126 return -ENOMEM; 1127 1128 node->regulator = rdev; 1129 node->supply = supply; 1130 1131 if (has_dev) { 1132 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1133 if (node->dev_name == NULL) { 1134 kfree(node); 1135 return -ENOMEM; 1136 } 1137 } 1138 1139 list_add(&node->list, ®ulator_map_list); 1140 return 0; 1141 } 1142 1143 static void unset_regulator_supplies(struct regulator_dev *rdev) 1144 { 1145 struct regulator_map *node, *n; 1146 1147 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1148 if (rdev == node->regulator) { 1149 list_del(&node->list); 1150 kfree(node->dev_name); 1151 kfree(node); 1152 } 1153 } 1154 } 1155 1156 #define REG_STR_SIZE 64 1157 1158 static struct regulator *create_regulator(struct regulator_dev *rdev, 1159 struct device *dev, 1160 const char *supply_name) 1161 { 1162 struct regulator *regulator; 1163 char buf[REG_STR_SIZE]; 1164 int err, size; 1165 1166 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1167 if (regulator == NULL) 1168 return NULL; 1169 1170 mutex_lock(&rdev->mutex); 1171 regulator->rdev = rdev; 1172 list_add(®ulator->list, &rdev->consumer_list); 1173 1174 if (dev) { 1175 regulator->dev = dev; 1176 1177 /* Add a link to the device sysfs entry */ 1178 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1179 dev->kobj.name, supply_name); 1180 if (size >= REG_STR_SIZE) 1181 goto overflow_err; 1182 1183 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1184 if (regulator->supply_name == NULL) 1185 goto overflow_err; 1186 1187 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1188 buf); 1189 if (err) { 1190 rdev_warn(rdev, "could not add device link %s err %d\n", 1191 dev->kobj.name, err); 1192 /* non-fatal */ 1193 } 1194 } else { 1195 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1196 if (regulator->supply_name == NULL) 1197 goto overflow_err; 1198 } 1199 1200 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1201 rdev->debugfs); 1202 if (!regulator->debugfs) { 1203 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1204 } else { 1205 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1206 ®ulator->uA_load); 1207 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1208 ®ulator->min_uV); 1209 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1210 ®ulator->max_uV); 1211 } 1212 1213 /* 1214 * Check now if the regulator is an always on regulator - if 1215 * it is then we don't need to do nearly so much work for 1216 * enable/disable calls. 1217 */ 1218 if (!_regulator_can_change_status(rdev) && 1219 _regulator_is_enabled(rdev)) 1220 regulator->always_on = true; 1221 1222 mutex_unlock(&rdev->mutex); 1223 return regulator; 1224 overflow_err: 1225 list_del(®ulator->list); 1226 kfree(regulator); 1227 mutex_unlock(&rdev->mutex); 1228 return NULL; 1229 } 1230 1231 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1232 { 1233 if (rdev->constraints && rdev->constraints->enable_time) 1234 return rdev->constraints->enable_time; 1235 if (!rdev->desc->ops->enable_time) 1236 return rdev->desc->enable_time; 1237 return rdev->desc->ops->enable_time(rdev); 1238 } 1239 1240 static struct regulator_supply_alias *regulator_find_supply_alias( 1241 struct device *dev, const char *supply) 1242 { 1243 struct regulator_supply_alias *map; 1244 1245 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1246 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1247 return map; 1248 1249 return NULL; 1250 } 1251 1252 static void regulator_supply_alias(struct device **dev, const char **supply) 1253 { 1254 struct regulator_supply_alias *map; 1255 1256 map = regulator_find_supply_alias(*dev, *supply); 1257 if (map) { 1258 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1259 *supply, map->alias_supply, 1260 dev_name(map->alias_dev)); 1261 *dev = map->alias_dev; 1262 *supply = map->alias_supply; 1263 } 1264 } 1265 1266 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1267 const char *supply, 1268 int *ret) 1269 { 1270 struct regulator_dev *r; 1271 struct device_node *node; 1272 struct regulator_map *map; 1273 const char *devname = NULL; 1274 1275 regulator_supply_alias(&dev, &supply); 1276 1277 /* first do a dt based lookup */ 1278 if (dev && dev->of_node) { 1279 node = of_get_regulator(dev, supply); 1280 if (node) { 1281 list_for_each_entry(r, ®ulator_list, list) 1282 if (r->dev.parent && 1283 node == r->dev.of_node) 1284 return r; 1285 *ret = -EPROBE_DEFER; 1286 return NULL; 1287 } else { 1288 /* 1289 * If we couldn't even get the node then it's 1290 * not just that the device didn't register 1291 * yet, there's no node and we'll never 1292 * succeed. 1293 */ 1294 *ret = -ENODEV; 1295 } 1296 } 1297 1298 /* if not found, try doing it non-dt way */ 1299 if (dev) 1300 devname = dev_name(dev); 1301 1302 list_for_each_entry(r, ®ulator_list, list) 1303 if (strcmp(rdev_get_name(r), supply) == 0) 1304 return r; 1305 1306 list_for_each_entry(map, ®ulator_map_list, list) { 1307 /* If the mapping has a device set up it must match */ 1308 if (map->dev_name && 1309 (!devname || strcmp(map->dev_name, devname))) 1310 continue; 1311 1312 if (strcmp(map->supply, supply) == 0) 1313 return map->regulator; 1314 } 1315 1316 1317 return NULL; 1318 } 1319 1320 /* Internal regulator request function */ 1321 static struct regulator *_regulator_get(struct device *dev, const char *id, 1322 bool exclusive, bool allow_dummy) 1323 { 1324 struct regulator_dev *rdev; 1325 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1326 const char *devname = NULL; 1327 int ret; 1328 1329 if (id == NULL) { 1330 pr_err("get() with no identifier\n"); 1331 return ERR_PTR(-EINVAL); 1332 } 1333 1334 if (dev) 1335 devname = dev_name(dev); 1336 1337 if (have_full_constraints()) 1338 ret = -ENODEV; 1339 else 1340 ret = -EPROBE_DEFER; 1341 1342 mutex_lock(®ulator_list_mutex); 1343 1344 rdev = regulator_dev_lookup(dev, id, &ret); 1345 if (rdev) 1346 goto found; 1347 1348 regulator = ERR_PTR(ret); 1349 1350 /* 1351 * If we have return value from dev_lookup fail, we do not expect to 1352 * succeed, so, quit with appropriate error value 1353 */ 1354 if (ret && ret != -ENODEV) 1355 goto out; 1356 1357 if (!devname) 1358 devname = "deviceless"; 1359 1360 /* 1361 * Assume that a regulator is physically present and enabled 1362 * even if it isn't hooked up and just provide a dummy. 1363 */ 1364 if (have_full_constraints() && allow_dummy) { 1365 pr_warn("%s supply %s not found, using dummy regulator\n", 1366 devname, id); 1367 1368 rdev = dummy_regulator_rdev; 1369 goto found; 1370 /* Don't log an error when called from regulator_get_optional() */ 1371 } else if (!have_full_constraints() || exclusive) { 1372 dev_warn(dev, "dummy supplies not allowed\n"); 1373 } 1374 1375 mutex_unlock(®ulator_list_mutex); 1376 return regulator; 1377 1378 found: 1379 if (rdev->exclusive) { 1380 regulator = ERR_PTR(-EPERM); 1381 goto out; 1382 } 1383 1384 if (exclusive && rdev->open_count) { 1385 regulator = ERR_PTR(-EBUSY); 1386 goto out; 1387 } 1388 1389 if (!try_module_get(rdev->owner)) 1390 goto out; 1391 1392 regulator = create_regulator(rdev, dev, id); 1393 if (regulator == NULL) { 1394 regulator = ERR_PTR(-ENOMEM); 1395 module_put(rdev->owner); 1396 goto out; 1397 } 1398 1399 rdev->open_count++; 1400 if (exclusive) { 1401 rdev->exclusive = 1; 1402 1403 ret = _regulator_is_enabled(rdev); 1404 if (ret > 0) 1405 rdev->use_count = 1; 1406 else 1407 rdev->use_count = 0; 1408 } 1409 1410 out: 1411 mutex_unlock(®ulator_list_mutex); 1412 1413 return regulator; 1414 } 1415 1416 /** 1417 * regulator_get - lookup and obtain a reference to a regulator. 1418 * @dev: device for regulator "consumer" 1419 * @id: Supply name or regulator ID. 1420 * 1421 * Returns a struct regulator corresponding to the regulator producer, 1422 * or IS_ERR() condition containing errno. 1423 * 1424 * Use of supply names configured via regulator_set_device_supply() is 1425 * strongly encouraged. It is recommended that the supply name used 1426 * should match the name used for the supply and/or the relevant 1427 * device pins in the datasheet. 1428 */ 1429 struct regulator *regulator_get(struct device *dev, const char *id) 1430 { 1431 return _regulator_get(dev, id, false, true); 1432 } 1433 EXPORT_SYMBOL_GPL(regulator_get); 1434 1435 /** 1436 * regulator_get_exclusive - obtain exclusive access to a regulator. 1437 * @dev: device for regulator "consumer" 1438 * @id: Supply name or regulator ID. 1439 * 1440 * Returns a struct regulator corresponding to the regulator producer, 1441 * or IS_ERR() condition containing errno. Other consumers will be 1442 * unable to obtain this regulator while this reference is held and the 1443 * use count for the regulator will be initialised to reflect the current 1444 * state of the regulator. 1445 * 1446 * This is intended for use by consumers which cannot tolerate shared 1447 * use of the regulator such as those which need to force the 1448 * regulator off for correct operation of the hardware they are 1449 * controlling. 1450 * 1451 * Use of supply names configured via regulator_set_device_supply() is 1452 * strongly encouraged. It is recommended that the supply name used 1453 * should match the name used for the supply and/or the relevant 1454 * device pins in the datasheet. 1455 */ 1456 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1457 { 1458 return _regulator_get(dev, id, true, false); 1459 } 1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1461 1462 /** 1463 * regulator_get_optional - obtain optional access to a regulator. 1464 * @dev: device for regulator "consumer" 1465 * @id: Supply name or regulator ID. 1466 * 1467 * Returns a struct regulator corresponding to the regulator producer, 1468 * or IS_ERR() condition containing errno. 1469 * 1470 * This is intended for use by consumers for devices which can have 1471 * some supplies unconnected in normal use, such as some MMC devices. 1472 * It can allow the regulator core to provide stub supplies for other 1473 * supplies requested using normal regulator_get() calls without 1474 * disrupting the operation of drivers that can handle absent 1475 * supplies. 1476 * 1477 * Use of supply names configured via regulator_set_device_supply() is 1478 * strongly encouraged. It is recommended that the supply name used 1479 * should match the name used for the supply and/or the relevant 1480 * device pins in the datasheet. 1481 */ 1482 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1483 { 1484 return _regulator_get(dev, id, false, false); 1485 } 1486 EXPORT_SYMBOL_GPL(regulator_get_optional); 1487 1488 /* Locks held by regulator_put() */ 1489 static void _regulator_put(struct regulator *regulator) 1490 { 1491 struct regulator_dev *rdev; 1492 1493 if (regulator == NULL || IS_ERR(regulator)) 1494 return; 1495 1496 rdev = regulator->rdev; 1497 1498 debugfs_remove_recursive(regulator->debugfs); 1499 1500 /* remove any sysfs entries */ 1501 if (regulator->dev) 1502 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1503 kfree(regulator->supply_name); 1504 list_del(®ulator->list); 1505 kfree(regulator); 1506 1507 rdev->open_count--; 1508 rdev->exclusive = 0; 1509 1510 module_put(rdev->owner); 1511 } 1512 1513 /** 1514 * regulator_put - "free" the regulator source 1515 * @regulator: regulator source 1516 * 1517 * Note: drivers must ensure that all regulator_enable calls made on this 1518 * regulator source are balanced by regulator_disable calls prior to calling 1519 * this function. 1520 */ 1521 void regulator_put(struct regulator *regulator) 1522 { 1523 mutex_lock(®ulator_list_mutex); 1524 _regulator_put(regulator); 1525 mutex_unlock(®ulator_list_mutex); 1526 } 1527 EXPORT_SYMBOL_GPL(regulator_put); 1528 1529 /** 1530 * regulator_register_supply_alias - Provide device alias for supply lookup 1531 * 1532 * @dev: device that will be given as the regulator "consumer" 1533 * @id: Supply name or regulator ID 1534 * @alias_dev: device that should be used to lookup the supply 1535 * @alias_id: Supply name or regulator ID that should be used to lookup the 1536 * supply 1537 * 1538 * All lookups for id on dev will instead be conducted for alias_id on 1539 * alias_dev. 1540 */ 1541 int regulator_register_supply_alias(struct device *dev, const char *id, 1542 struct device *alias_dev, 1543 const char *alias_id) 1544 { 1545 struct regulator_supply_alias *map; 1546 1547 map = regulator_find_supply_alias(dev, id); 1548 if (map) 1549 return -EEXIST; 1550 1551 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1552 if (!map) 1553 return -ENOMEM; 1554 1555 map->src_dev = dev; 1556 map->src_supply = id; 1557 map->alias_dev = alias_dev; 1558 map->alias_supply = alias_id; 1559 1560 list_add(&map->list, ®ulator_supply_alias_list); 1561 1562 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1563 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1564 1565 return 0; 1566 } 1567 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1568 1569 /** 1570 * regulator_unregister_supply_alias - Remove device alias 1571 * 1572 * @dev: device that will be given as the regulator "consumer" 1573 * @id: Supply name or regulator ID 1574 * 1575 * Remove a lookup alias if one exists for id on dev. 1576 */ 1577 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1578 { 1579 struct regulator_supply_alias *map; 1580 1581 map = regulator_find_supply_alias(dev, id); 1582 if (map) { 1583 list_del(&map->list); 1584 kfree(map); 1585 } 1586 } 1587 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1588 1589 /** 1590 * regulator_bulk_register_supply_alias - register multiple aliases 1591 * 1592 * @dev: device that will be given as the regulator "consumer" 1593 * @id: List of supply names or regulator IDs 1594 * @alias_dev: device that should be used to lookup the supply 1595 * @alias_id: List of supply names or regulator IDs that should be used to 1596 * lookup the supply 1597 * @num_id: Number of aliases to register 1598 * 1599 * @return 0 on success, an errno on failure. 1600 * 1601 * This helper function allows drivers to register several supply 1602 * aliases in one operation. If any of the aliases cannot be 1603 * registered any aliases that were registered will be removed 1604 * before returning to the caller. 1605 */ 1606 int regulator_bulk_register_supply_alias(struct device *dev, 1607 const char *const *id, 1608 struct device *alias_dev, 1609 const char *const *alias_id, 1610 int num_id) 1611 { 1612 int i; 1613 int ret; 1614 1615 for (i = 0; i < num_id; ++i) { 1616 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1617 alias_id[i]); 1618 if (ret < 0) 1619 goto err; 1620 } 1621 1622 return 0; 1623 1624 err: 1625 dev_err(dev, 1626 "Failed to create supply alias %s,%s -> %s,%s\n", 1627 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1628 1629 while (--i >= 0) 1630 regulator_unregister_supply_alias(dev, id[i]); 1631 1632 return ret; 1633 } 1634 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1635 1636 /** 1637 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1638 * 1639 * @dev: device that will be given as the regulator "consumer" 1640 * @id: List of supply names or regulator IDs 1641 * @num_id: Number of aliases to unregister 1642 * 1643 * This helper function allows drivers to unregister several supply 1644 * aliases in one operation. 1645 */ 1646 void regulator_bulk_unregister_supply_alias(struct device *dev, 1647 const char *const *id, 1648 int num_id) 1649 { 1650 int i; 1651 1652 for (i = 0; i < num_id; ++i) 1653 regulator_unregister_supply_alias(dev, id[i]); 1654 } 1655 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1656 1657 1658 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1659 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1660 const struct regulator_config *config) 1661 { 1662 struct regulator_enable_gpio *pin; 1663 int ret; 1664 1665 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1666 if (pin->gpio == config->ena_gpio) { 1667 rdev_dbg(rdev, "GPIO %d is already used\n", 1668 config->ena_gpio); 1669 goto update_ena_gpio_to_rdev; 1670 } 1671 } 1672 1673 ret = gpio_request_one(config->ena_gpio, 1674 GPIOF_DIR_OUT | config->ena_gpio_flags, 1675 rdev_get_name(rdev)); 1676 if (ret) 1677 return ret; 1678 1679 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1680 if (pin == NULL) { 1681 gpio_free(config->ena_gpio); 1682 return -ENOMEM; 1683 } 1684 1685 pin->gpio = config->ena_gpio; 1686 pin->ena_gpio_invert = config->ena_gpio_invert; 1687 list_add(&pin->list, ®ulator_ena_gpio_list); 1688 1689 update_ena_gpio_to_rdev: 1690 pin->request_count++; 1691 rdev->ena_pin = pin; 1692 return 0; 1693 } 1694 1695 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1696 { 1697 struct regulator_enable_gpio *pin, *n; 1698 1699 if (!rdev->ena_pin) 1700 return; 1701 1702 /* Free the GPIO only in case of no use */ 1703 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1704 if (pin->gpio == rdev->ena_pin->gpio) { 1705 if (pin->request_count <= 1) { 1706 pin->request_count = 0; 1707 gpio_free(pin->gpio); 1708 list_del(&pin->list); 1709 kfree(pin); 1710 } else { 1711 pin->request_count--; 1712 } 1713 } 1714 } 1715 } 1716 1717 /** 1718 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1719 * @rdev: regulator_dev structure 1720 * @enable: enable GPIO at initial use? 1721 * 1722 * GPIO is enabled in case of initial use. (enable_count is 0) 1723 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1724 */ 1725 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1726 { 1727 struct regulator_enable_gpio *pin = rdev->ena_pin; 1728 1729 if (!pin) 1730 return -EINVAL; 1731 1732 if (enable) { 1733 /* Enable GPIO at initial use */ 1734 if (pin->enable_count == 0) 1735 gpio_set_value_cansleep(pin->gpio, 1736 !pin->ena_gpio_invert); 1737 1738 pin->enable_count++; 1739 } else { 1740 if (pin->enable_count > 1) { 1741 pin->enable_count--; 1742 return 0; 1743 } 1744 1745 /* Disable GPIO if not used */ 1746 if (pin->enable_count <= 1) { 1747 gpio_set_value_cansleep(pin->gpio, 1748 pin->ena_gpio_invert); 1749 pin->enable_count = 0; 1750 } 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int _regulator_do_enable(struct regulator_dev *rdev) 1757 { 1758 int ret, delay; 1759 1760 /* Query before enabling in case configuration dependent. */ 1761 ret = _regulator_get_enable_time(rdev); 1762 if (ret >= 0) { 1763 delay = ret; 1764 } else { 1765 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1766 delay = 0; 1767 } 1768 1769 trace_regulator_enable(rdev_get_name(rdev)); 1770 1771 if (rdev->ena_pin) { 1772 ret = regulator_ena_gpio_ctrl(rdev, true); 1773 if (ret < 0) 1774 return ret; 1775 rdev->ena_gpio_state = 1; 1776 } else if (rdev->desc->ops->enable) { 1777 ret = rdev->desc->ops->enable(rdev); 1778 if (ret < 0) 1779 return ret; 1780 } else { 1781 return -EINVAL; 1782 } 1783 1784 /* Allow the regulator to ramp; it would be useful to extend 1785 * this for bulk operations so that the regulators can ramp 1786 * together. */ 1787 trace_regulator_enable_delay(rdev_get_name(rdev)); 1788 1789 /* 1790 * Delay for the requested amount of time as per the guidelines in: 1791 * 1792 * Documentation/timers/timers-howto.txt 1793 * 1794 * The assumption here is that regulators will never be enabled in 1795 * atomic context and therefore sleeping functions can be used. 1796 */ 1797 if (delay) { 1798 unsigned int ms = delay / 1000; 1799 unsigned int us = delay % 1000; 1800 1801 if (ms > 0) { 1802 /* 1803 * For small enough values, handle super-millisecond 1804 * delays in the usleep_range() call below. 1805 */ 1806 if (ms < 20) 1807 us += ms * 1000; 1808 else 1809 msleep(ms); 1810 } 1811 1812 /* 1813 * Give the scheduler some room to coalesce with any other 1814 * wakeup sources. For delays shorter than 10 us, don't even 1815 * bother setting up high-resolution timers and just busy- 1816 * loop. 1817 */ 1818 if (us >= 10) 1819 usleep_range(us, us + 100); 1820 else 1821 udelay(us); 1822 } 1823 1824 trace_regulator_enable_complete(rdev_get_name(rdev)); 1825 1826 return 0; 1827 } 1828 1829 /* locks held by regulator_enable() */ 1830 static int _regulator_enable(struct regulator_dev *rdev) 1831 { 1832 int ret; 1833 1834 /* check voltage and requested load before enabling */ 1835 if (rdev->constraints && 1836 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1837 drms_uA_update(rdev); 1838 1839 if (rdev->use_count == 0) { 1840 /* The regulator may on if it's not switchable or left on */ 1841 ret = _regulator_is_enabled(rdev); 1842 if (ret == -EINVAL || ret == 0) { 1843 if (!_regulator_can_change_status(rdev)) 1844 return -EPERM; 1845 1846 ret = _regulator_do_enable(rdev); 1847 if (ret < 0) 1848 return ret; 1849 1850 } else if (ret < 0) { 1851 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1852 return ret; 1853 } 1854 /* Fallthrough on positive return values - already enabled */ 1855 } 1856 1857 rdev->use_count++; 1858 1859 return 0; 1860 } 1861 1862 /** 1863 * regulator_enable - enable regulator output 1864 * @regulator: regulator source 1865 * 1866 * Request that the regulator be enabled with the regulator output at 1867 * the predefined voltage or current value. Calls to regulator_enable() 1868 * must be balanced with calls to regulator_disable(). 1869 * 1870 * NOTE: the output value can be set by other drivers, boot loader or may be 1871 * hardwired in the regulator. 1872 */ 1873 int regulator_enable(struct regulator *regulator) 1874 { 1875 struct regulator_dev *rdev = regulator->rdev; 1876 int ret = 0; 1877 1878 if (regulator->always_on) 1879 return 0; 1880 1881 if (rdev->supply) { 1882 ret = regulator_enable(rdev->supply); 1883 if (ret != 0) 1884 return ret; 1885 } 1886 1887 mutex_lock(&rdev->mutex); 1888 ret = _regulator_enable(rdev); 1889 mutex_unlock(&rdev->mutex); 1890 1891 if (ret != 0 && rdev->supply) 1892 regulator_disable(rdev->supply); 1893 1894 return ret; 1895 } 1896 EXPORT_SYMBOL_GPL(regulator_enable); 1897 1898 static int _regulator_do_disable(struct regulator_dev *rdev) 1899 { 1900 int ret; 1901 1902 trace_regulator_disable(rdev_get_name(rdev)); 1903 1904 if (rdev->ena_pin) { 1905 ret = regulator_ena_gpio_ctrl(rdev, false); 1906 if (ret < 0) 1907 return ret; 1908 rdev->ena_gpio_state = 0; 1909 1910 } else if (rdev->desc->ops->disable) { 1911 ret = rdev->desc->ops->disable(rdev); 1912 if (ret != 0) 1913 return ret; 1914 } 1915 1916 trace_regulator_disable_complete(rdev_get_name(rdev)); 1917 1918 return 0; 1919 } 1920 1921 /* locks held by regulator_disable() */ 1922 static int _regulator_disable(struct regulator_dev *rdev) 1923 { 1924 int ret = 0; 1925 1926 if (WARN(rdev->use_count <= 0, 1927 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1928 return -EIO; 1929 1930 /* are we the last user and permitted to disable ? */ 1931 if (rdev->use_count == 1 && 1932 (rdev->constraints && !rdev->constraints->always_on)) { 1933 1934 /* we are last user */ 1935 if (_regulator_can_change_status(rdev)) { 1936 ret = _regulator_do_disable(rdev); 1937 if (ret < 0) { 1938 rdev_err(rdev, "failed to disable\n"); 1939 return ret; 1940 } 1941 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1942 NULL); 1943 } 1944 1945 rdev->use_count = 0; 1946 } else if (rdev->use_count > 1) { 1947 1948 if (rdev->constraints && 1949 (rdev->constraints->valid_ops_mask & 1950 REGULATOR_CHANGE_DRMS)) 1951 drms_uA_update(rdev); 1952 1953 rdev->use_count--; 1954 } 1955 1956 return ret; 1957 } 1958 1959 /** 1960 * regulator_disable - disable regulator output 1961 * @regulator: regulator source 1962 * 1963 * Disable the regulator output voltage or current. Calls to 1964 * regulator_enable() must be balanced with calls to 1965 * regulator_disable(). 1966 * 1967 * NOTE: this will only disable the regulator output if no other consumer 1968 * devices have it enabled, the regulator device supports disabling and 1969 * machine constraints permit this operation. 1970 */ 1971 int regulator_disable(struct regulator *regulator) 1972 { 1973 struct regulator_dev *rdev = regulator->rdev; 1974 int ret = 0; 1975 1976 if (regulator->always_on) 1977 return 0; 1978 1979 mutex_lock(&rdev->mutex); 1980 ret = _regulator_disable(rdev); 1981 mutex_unlock(&rdev->mutex); 1982 1983 if (ret == 0 && rdev->supply) 1984 regulator_disable(rdev->supply); 1985 1986 return ret; 1987 } 1988 EXPORT_SYMBOL_GPL(regulator_disable); 1989 1990 /* locks held by regulator_force_disable() */ 1991 static int _regulator_force_disable(struct regulator_dev *rdev) 1992 { 1993 int ret = 0; 1994 1995 ret = _regulator_do_disable(rdev); 1996 if (ret < 0) { 1997 rdev_err(rdev, "failed to force disable\n"); 1998 return ret; 1999 } 2000 2001 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2002 REGULATOR_EVENT_DISABLE, NULL); 2003 2004 return 0; 2005 } 2006 2007 /** 2008 * regulator_force_disable - force disable regulator output 2009 * @regulator: regulator source 2010 * 2011 * Forcibly disable the regulator output voltage or current. 2012 * NOTE: this *will* disable the regulator output even if other consumer 2013 * devices have it enabled. This should be used for situations when device 2014 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2015 */ 2016 int regulator_force_disable(struct regulator *regulator) 2017 { 2018 struct regulator_dev *rdev = regulator->rdev; 2019 int ret; 2020 2021 mutex_lock(&rdev->mutex); 2022 regulator->uA_load = 0; 2023 ret = _regulator_force_disable(regulator->rdev); 2024 mutex_unlock(&rdev->mutex); 2025 2026 if (rdev->supply) 2027 while (rdev->open_count--) 2028 regulator_disable(rdev->supply); 2029 2030 return ret; 2031 } 2032 EXPORT_SYMBOL_GPL(regulator_force_disable); 2033 2034 static void regulator_disable_work(struct work_struct *work) 2035 { 2036 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2037 disable_work.work); 2038 int count, i, ret; 2039 2040 mutex_lock(&rdev->mutex); 2041 2042 BUG_ON(!rdev->deferred_disables); 2043 2044 count = rdev->deferred_disables; 2045 rdev->deferred_disables = 0; 2046 2047 for (i = 0; i < count; i++) { 2048 ret = _regulator_disable(rdev); 2049 if (ret != 0) 2050 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2051 } 2052 2053 mutex_unlock(&rdev->mutex); 2054 2055 if (rdev->supply) { 2056 for (i = 0; i < count; i++) { 2057 ret = regulator_disable(rdev->supply); 2058 if (ret != 0) { 2059 rdev_err(rdev, 2060 "Supply disable failed: %d\n", ret); 2061 } 2062 } 2063 } 2064 } 2065 2066 /** 2067 * regulator_disable_deferred - disable regulator output with delay 2068 * @regulator: regulator source 2069 * @ms: miliseconds until the regulator is disabled 2070 * 2071 * Execute regulator_disable() on the regulator after a delay. This 2072 * is intended for use with devices that require some time to quiesce. 2073 * 2074 * NOTE: this will only disable the regulator output if no other consumer 2075 * devices have it enabled, the regulator device supports disabling and 2076 * machine constraints permit this operation. 2077 */ 2078 int regulator_disable_deferred(struct regulator *regulator, int ms) 2079 { 2080 struct regulator_dev *rdev = regulator->rdev; 2081 int ret; 2082 2083 if (regulator->always_on) 2084 return 0; 2085 2086 if (!ms) 2087 return regulator_disable(regulator); 2088 2089 mutex_lock(&rdev->mutex); 2090 rdev->deferred_disables++; 2091 mutex_unlock(&rdev->mutex); 2092 2093 ret = queue_delayed_work(system_power_efficient_wq, 2094 &rdev->disable_work, 2095 msecs_to_jiffies(ms)); 2096 if (ret < 0) 2097 return ret; 2098 else 2099 return 0; 2100 } 2101 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2102 2103 static int _regulator_is_enabled(struct regulator_dev *rdev) 2104 { 2105 /* A GPIO control always takes precedence */ 2106 if (rdev->ena_pin) 2107 return rdev->ena_gpio_state; 2108 2109 /* If we don't know then assume that the regulator is always on */ 2110 if (!rdev->desc->ops->is_enabled) 2111 return 1; 2112 2113 return rdev->desc->ops->is_enabled(rdev); 2114 } 2115 2116 /** 2117 * regulator_is_enabled - is the regulator output enabled 2118 * @regulator: regulator source 2119 * 2120 * Returns positive if the regulator driver backing the source/client 2121 * has requested that the device be enabled, zero if it hasn't, else a 2122 * negative errno code. 2123 * 2124 * Note that the device backing this regulator handle can have multiple 2125 * users, so it might be enabled even if regulator_enable() was never 2126 * called for this particular source. 2127 */ 2128 int regulator_is_enabled(struct regulator *regulator) 2129 { 2130 int ret; 2131 2132 if (regulator->always_on) 2133 return 1; 2134 2135 mutex_lock(®ulator->rdev->mutex); 2136 ret = _regulator_is_enabled(regulator->rdev); 2137 mutex_unlock(®ulator->rdev->mutex); 2138 2139 return ret; 2140 } 2141 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2142 2143 /** 2144 * regulator_can_change_voltage - check if regulator can change voltage 2145 * @regulator: regulator source 2146 * 2147 * Returns positive if the regulator driver backing the source/client 2148 * can change its voltage, false otherwise. Useful for detecting fixed 2149 * or dummy regulators and disabling voltage change logic in the client 2150 * driver. 2151 */ 2152 int regulator_can_change_voltage(struct regulator *regulator) 2153 { 2154 struct regulator_dev *rdev = regulator->rdev; 2155 2156 if (rdev->constraints && 2157 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2158 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2159 return 1; 2160 2161 if (rdev->desc->continuous_voltage_range && 2162 rdev->constraints->min_uV && rdev->constraints->max_uV && 2163 rdev->constraints->min_uV != rdev->constraints->max_uV) 2164 return 1; 2165 } 2166 2167 return 0; 2168 } 2169 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2170 2171 /** 2172 * regulator_count_voltages - count regulator_list_voltage() selectors 2173 * @regulator: regulator source 2174 * 2175 * Returns number of selectors, or negative errno. Selectors are 2176 * numbered starting at zero, and typically correspond to bitfields 2177 * in hardware registers. 2178 */ 2179 int regulator_count_voltages(struct regulator *regulator) 2180 { 2181 struct regulator_dev *rdev = regulator->rdev; 2182 2183 return rdev->desc->n_voltages ? : -EINVAL; 2184 } 2185 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2186 2187 /** 2188 * regulator_list_voltage - enumerate supported voltages 2189 * @regulator: regulator source 2190 * @selector: identify voltage to list 2191 * Context: can sleep 2192 * 2193 * Returns a voltage that can be passed to @regulator_set_voltage(), 2194 * zero if this selector code can't be used on this system, or a 2195 * negative errno. 2196 */ 2197 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2198 { 2199 struct regulator_dev *rdev = regulator->rdev; 2200 struct regulator_ops *ops = rdev->desc->ops; 2201 int ret; 2202 2203 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2204 return rdev->desc->fixed_uV; 2205 2206 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2207 return -EINVAL; 2208 2209 mutex_lock(&rdev->mutex); 2210 ret = ops->list_voltage(rdev, selector); 2211 mutex_unlock(&rdev->mutex); 2212 2213 if (ret > 0) { 2214 if (ret < rdev->constraints->min_uV) 2215 ret = 0; 2216 else if (ret > rdev->constraints->max_uV) 2217 ret = 0; 2218 } 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2223 2224 /** 2225 * regulator_get_linear_step - return the voltage step size between VSEL values 2226 * @regulator: regulator source 2227 * 2228 * Returns the voltage step size between VSEL values for linear 2229 * regulators, or return 0 if the regulator isn't a linear regulator. 2230 */ 2231 unsigned int regulator_get_linear_step(struct regulator *regulator) 2232 { 2233 struct regulator_dev *rdev = regulator->rdev; 2234 2235 return rdev->desc->uV_step; 2236 } 2237 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2238 2239 /** 2240 * regulator_is_supported_voltage - check if a voltage range can be supported 2241 * 2242 * @regulator: Regulator to check. 2243 * @min_uV: Minimum required voltage in uV. 2244 * @max_uV: Maximum required voltage in uV. 2245 * 2246 * Returns a boolean or a negative error code. 2247 */ 2248 int regulator_is_supported_voltage(struct regulator *regulator, 2249 int min_uV, int max_uV) 2250 { 2251 struct regulator_dev *rdev = regulator->rdev; 2252 int i, voltages, ret; 2253 2254 /* If we can't change voltage check the current voltage */ 2255 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2256 ret = regulator_get_voltage(regulator); 2257 if (ret >= 0) 2258 return min_uV <= ret && ret <= max_uV; 2259 else 2260 return ret; 2261 } 2262 2263 /* Any voltage within constrains range is fine? */ 2264 if (rdev->desc->continuous_voltage_range) 2265 return min_uV >= rdev->constraints->min_uV && 2266 max_uV <= rdev->constraints->max_uV; 2267 2268 ret = regulator_count_voltages(regulator); 2269 if (ret < 0) 2270 return ret; 2271 voltages = ret; 2272 2273 for (i = 0; i < voltages; i++) { 2274 ret = regulator_list_voltage(regulator, i); 2275 2276 if (ret >= min_uV && ret <= max_uV) 2277 return 1; 2278 } 2279 2280 return 0; 2281 } 2282 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2283 2284 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2285 int min_uV, int max_uV) 2286 { 2287 int ret; 2288 int delay = 0; 2289 int best_val = 0; 2290 unsigned int selector; 2291 int old_selector = -1; 2292 2293 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2294 2295 min_uV += rdev->constraints->uV_offset; 2296 max_uV += rdev->constraints->uV_offset; 2297 2298 /* 2299 * If we can't obtain the old selector there is not enough 2300 * info to call set_voltage_time_sel(). 2301 */ 2302 if (_regulator_is_enabled(rdev) && 2303 rdev->desc->ops->set_voltage_time_sel && 2304 rdev->desc->ops->get_voltage_sel) { 2305 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2306 if (old_selector < 0) 2307 return old_selector; 2308 } 2309 2310 if (rdev->desc->ops->set_voltage) { 2311 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2312 &selector); 2313 2314 if (ret >= 0) { 2315 if (rdev->desc->ops->list_voltage) 2316 best_val = rdev->desc->ops->list_voltage(rdev, 2317 selector); 2318 else 2319 best_val = _regulator_get_voltage(rdev); 2320 } 2321 2322 } else if (rdev->desc->ops->set_voltage_sel) { 2323 if (rdev->desc->ops->map_voltage) { 2324 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2325 max_uV); 2326 } else { 2327 if (rdev->desc->ops->list_voltage == 2328 regulator_list_voltage_linear) 2329 ret = regulator_map_voltage_linear(rdev, 2330 min_uV, max_uV); 2331 else if (rdev->desc->ops->list_voltage == 2332 regulator_list_voltage_linear_range) 2333 ret = regulator_map_voltage_linear_range(rdev, 2334 min_uV, max_uV); 2335 else 2336 ret = regulator_map_voltage_iterate(rdev, 2337 min_uV, max_uV); 2338 } 2339 2340 if (ret >= 0) { 2341 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2342 if (min_uV <= best_val && max_uV >= best_val) { 2343 selector = ret; 2344 if (old_selector == selector) 2345 ret = 0; 2346 else 2347 ret = rdev->desc->ops->set_voltage_sel( 2348 rdev, ret); 2349 } else { 2350 ret = -EINVAL; 2351 } 2352 } 2353 } else { 2354 ret = -EINVAL; 2355 } 2356 2357 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2358 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2359 && old_selector != selector) { 2360 2361 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2362 old_selector, selector); 2363 if (delay < 0) { 2364 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2365 delay); 2366 delay = 0; 2367 } 2368 2369 /* Insert any necessary delays */ 2370 if (delay >= 1000) { 2371 mdelay(delay / 1000); 2372 udelay(delay % 1000); 2373 } else if (delay) { 2374 udelay(delay); 2375 } 2376 } 2377 2378 if (ret == 0 && best_val >= 0) { 2379 unsigned long data = best_val; 2380 2381 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2382 (void *)data); 2383 } 2384 2385 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2386 2387 return ret; 2388 } 2389 2390 /** 2391 * regulator_set_voltage - set regulator output voltage 2392 * @regulator: regulator source 2393 * @min_uV: Minimum required voltage in uV 2394 * @max_uV: Maximum acceptable voltage in uV 2395 * 2396 * Sets a voltage regulator to the desired output voltage. This can be set 2397 * during any regulator state. IOW, regulator can be disabled or enabled. 2398 * 2399 * If the regulator is enabled then the voltage will change to the new value 2400 * immediately otherwise if the regulator is disabled the regulator will 2401 * output at the new voltage when enabled. 2402 * 2403 * NOTE: If the regulator is shared between several devices then the lowest 2404 * request voltage that meets the system constraints will be used. 2405 * Regulator system constraints must be set for this regulator before 2406 * calling this function otherwise this call will fail. 2407 */ 2408 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2409 { 2410 struct regulator_dev *rdev = regulator->rdev; 2411 int ret = 0; 2412 int old_min_uV, old_max_uV; 2413 int current_uV; 2414 2415 mutex_lock(&rdev->mutex); 2416 2417 /* If we're setting the same range as last time the change 2418 * should be a noop (some cpufreq implementations use the same 2419 * voltage for multiple frequencies, for example). 2420 */ 2421 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2422 goto out; 2423 2424 /* If we're trying to set a range that overlaps the current voltage, 2425 * return succesfully even though the regulator does not support 2426 * changing the voltage. 2427 */ 2428 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2429 current_uV = _regulator_get_voltage(rdev); 2430 if (min_uV <= current_uV && current_uV <= max_uV) { 2431 regulator->min_uV = min_uV; 2432 regulator->max_uV = max_uV; 2433 goto out; 2434 } 2435 } 2436 2437 /* sanity check */ 2438 if (!rdev->desc->ops->set_voltage && 2439 !rdev->desc->ops->set_voltage_sel) { 2440 ret = -EINVAL; 2441 goto out; 2442 } 2443 2444 /* constraints check */ 2445 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2446 if (ret < 0) 2447 goto out; 2448 2449 /* restore original values in case of error */ 2450 old_min_uV = regulator->min_uV; 2451 old_max_uV = regulator->max_uV; 2452 regulator->min_uV = min_uV; 2453 regulator->max_uV = max_uV; 2454 2455 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2456 if (ret < 0) 2457 goto out2; 2458 2459 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2460 if (ret < 0) 2461 goto out2; 2462 2463 out: 2464 mutex_unlock(&rdev->mutex); 2465 return ret; 2466 out2: 2467 regulator->min_uV = old_min_uV; 2468 regulator->max_uV = old_max_uV; 2469 mutex_unlock(&rdev->mutex); 2470 return ret; 2471 } 2472 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2473 2474 /** 2475 * regulator_set_voltage_time - get raise/fall time 2476 * @regulator: regulator source 2477 * @old_uV: starting voltage in microvolts 2478 * @new_uV: target voltage in microvolts 2479 * 2480 * Provided with the starting and ending voltage, this function attempts to 2481 * calculate the time in microseconds required to rise or fall to this new 2482 * voltage. 2483 */ 2484 int regulator_set_voltage_time(struct regulator *regulator, 2485 int old_uV, int new_uV) 2486 { 2487 struct regulator_dev *rdev = regulator->rdev; 2488 struct regulator_ops *ops = rdev->desc->ops; 2489 int old_sel = -1; 2490 int new_sel = -1; 2491 int voltage; 2492 int i; 2493 2494 /* Currently requires operations to do this */ 2495 if (!ops->list_voltage || !ops->set_voltage_time_sel 2496 || !rdev->desc->n_voltages) 2497 return -EINVAL; 2498 2499 for (i = 0; i < rdev->desc->n_voltages; i++) { 2500 /* We only look for exact voltage matches here */ 2501 voltage = regulator_list_voltage(regulator, i); 2502 if (voltage < 0) 2503 return -EINVAL; 2504 if (voltage == 0) 2505 continue; 2506 if (voltage == old_uV) 2507 old_sel = i; 2508 if (voltage == new_uV) 2509 new_sel = i; 2510 } 2511 2512 if (old_sel < 0 || new_sel < 0) 2513 return -EINVAL; 2514 2515 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2516 } 2517 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2518 2519 /** 2520 * regulator_set_voltage_time_sel - get raise/fall time 2521 * @rdev: regulator source device 2522 * @old_selector: selector for starting voltage 2523 * @new_selector: selector for target voltage 2524 * 2525 * Provided with the starting and target voltage selectors, this function 2526 * returns time in microseconds required to rise or fall to this new voltage 2527 * 2528 * Drivers providing ramp_delay in regulation_constraints can use this as their 2529 * set_voltage_time_sel() operation. 2530 */ 2531 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2532 unsigned int old_selector, 2533 unsigned int new_selector) 2534 { 2535 unsigned int ramp_delay = 0; 2536 int old_volt, new_volt; 2537 2538 if (rdev->constraints->ramp_delay) 2539 ramp_delay = rdev->constraints->ramp_delay; 2540 else if (rdev->desc->ramp_delay) 2541 ramp_delay = rdev->desc->ramp_delay; 2542 2543 if (ramp_delay == 0) { 2544 rdev_warn(rdev, "ramp_delay not set\n"); 2545 return 0; 2546 } 2547 2548 /* sanity check */ 2549 if (!rdev->desc->ops->list_voltage) 2550 return -EINVAL; 2551 2552 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2553 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2554 2555 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2556 } 2557 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2558 2559 /** 2560 * regulator_sync_voltage - re-apply last regulator output voltage 2561 * @regulator: regulator source 2562 * 2563 * Re-apply the last configured voltage. This is intended to be used 2564 * where some external control source the consumer is cooperating with 2565 * has caused the configured voltage to change. 2566 */ 2567 int regulator_sync_voltage(struct regulator *regulator) 2568 { 2569 struct regulator_dev *rdev = regulator->rdev; 2570 int ret, min_uV, max_uV; 2571 2572 mutex_lock(&rdev->mutex); 2573 2574 if (!rdev->desc->ops->set_voltage && 2575 !rdev->desc->ops->set_voltage_sel) { 2576 ret = -EINVAL; 2577 goto out; 2578 } 2579 2580 /* This is only going to work if we've had a voltage configured. */ 2581 if (!regulator->min_uV && !regulator->max_uV) { 2582 ret = -EINVAL; 2583 goto out; 2584 } 2585 2586 min_uV = regulator->min_uV; 2587 max_uV = regulator->max_uV; 2588 2589 /* This should be a paranoia check... */ 2590 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2591 if (ret < 0) 2592 goto out; 2593 2594 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2595 if (ret < 0) 2596 goto out; 2597 2598 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2599 2600 out: 2601 mutex_unlock(&rdev->mutex); 2602 return ret; 2603 } 2604 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2605 2606 static int _regulator_get_voltage(struct regulator_dev *rdev) 2607 { 2608 int sel, ret; 2609 2610 if (rdev->desc->ops->get_voltage_sel) { 2611 sel = rdev->desc->ops->get_voltage_sel(rdev); 2612 if (sel < 0) 2613 return sel; 2614 ret = rdev->desc->ops->list_voltage(rdev, sel); 2615 } else if (rdev->desc->ops->get_voltage) { 2616 ret = rdev->desc->ops->get_voltage(rdev); 2617 } else if (rdev->desc->ops->list_voltage) { 2618 ret = rdev->desc->ops->list_voltage(rdev, 0); 2619 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2620 ret = rdev->desc->fixed_uV; 2621 } else { 2622 return -EINVAL; 2623 } 2624 2625 if (ret < 0) 2626 return ret; 2627 return ret - rdev->constraints->uV_offset; 2628 } 2629 2630 /** 2631 * regulator_get_voltage - get regulator output voltage 2632 * @regulator: regulator source 2633 * 2634 * This returns the current regulator voltage in uV. 2635 * 2636 * NOTE: If the regulator is disabled it will return the voltage value. This 2637 * function should not be used to determine regulator state. 2638 */ 2639 int regulator_get_voltage(struct regulator *regulator) 2640 { 2641 int ret; 2642 2643 mutex_lock(®ulator->rdev->mutex); 2644 2645 ret = _regulator_get_voltage(regulator->rdev); 2646 2647 mutex_unlock(®ulator->rdev->mutex); 2648 2649 return ret; 2650 } 2651 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2652 2653 /** 2654 * regulator_set_current_limit - set regulator output current limit 2655 * @regulator: regulator source 2656 * @min_uA: Minimum supported current in uA 2657 * @max_uA: Maximum supported current in uA 2658 * 2659 * Sets current sink to the desired output current. This can be set during 2660 * any regulator state. IOW, regulator can be disabled or enabled. 2661 * 2662 * If the regulator is enabled then the current will change to the new value 2663 * immediately otherwise if the regulator is disabled the regulator will 2664 * output at the new current when enabled. 2665 * 2666 * NOTE: Regulator system constraints must be set for this regulator before 2667 * calling this function otherwise this call will fail. 2668 */ 2669 int regulator_set_current_limit(struct regulator *regulator, 2670 int min_uA, int max_uA) 2671 { 2672 struct regulator_dev *rdev = regulator->rdev; 2673 int ret; 2674 2675 mutex_lock(&rdev->mutex); 2676 2677 /* sanity check */ 2678 if (!rdev->desc->ops->set_current_limit) { 2679 ret = -EINVAL; 2680 goto out; 2681 } 2682 2683 /* constraints check */ 2684 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2685 if (ret < 0) 2686 goto out; 2687 2688 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2689 out: 2690 mutex_unlock(&rdev->mutex); 2691 return ret; 2692 } 2693 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2694 2695 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2696 { 2697 int ret; 2698 2699 mutex_lock(&rdev->mutex); 2700 2701 /* sanity check */ 2702 if (!rdev->desc->ops->get_current_limit) { 2703 ret = -EINVAL; 2704 goto out; 2705 } 2706 2707 ret = rdev->desc->ops->get_current_limit(rdev); 2708 out: 2709 mutex_unlock(&rdev->mutex); 2710 return ret; 2711 } 2712 2713 /** 2714 * regulator_get_current_limit - get regulator output current 2715 * @regulator: regulator source 2716 * 2717 * This returns the current supplied by the specified current sink in uA. 2718 * 2719 * NOTE: If the regulator is disabled it will return the current value. This 2720 * function should not be used to determine regulator state. 2721 */ 2722 int regulator_get_current_limit(struct regulator *regulator) 2723 { 2724 return _regulator_get_current_limit(regulator->rdev); 2725 } 2726 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2727 2728 /** 2729 * regulator_set_mode - set regulator operating mode 2730 * @regulator: regulator source 2731 * @mode: operating mode - one of the REGULATOR_MODE constants 2732 * 2733 * Set regulator operating mode to increase regulator efficiency or improve 2734 * regulation performance. 2735 * 2736 * NOTE: Regulator system constraints must be set for this regulator before 2737 * calling this function otherwise this call will fail. 2738 */ 2739 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2740 { 2741 struct regulator_dev *rdev = regulator->rdev; 2742 int ret; 2743 int regulator_curr_mode; 2744 2745 mutex_lock(&rdev->mutex); 2746 2747 /* sanity check */ 2748 if (!rdev->desc->ops->set_mode) { 2749 ret = -EINVAL; 2750 goto out; 2751 } 2752 2753 /* return if the same mode is requested */ 2754 if (rdev->desc->ops->get_mode) { 2755 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2756 if (regulator_curr_mode == mode) { 2757 ret = 0; 2758 goto out; 2759 } 2760 } 2761 2762 /* constraints check */ 2763 ret = regulator_mode_constrain(rdev, &mode); 2764 if (ret < 0) 2765 goto out; 2766 2767 ret = rdev->desc->ops->set_mode(rdev, mode); 2768 out: 2769 mutex_unlock(&rdev->mutex); 2770 return ret; 2771 } 2772 EXPORT_SYMBOL_GPL(regulator_set_mode); 2773 2774 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2775 { 2776 int ret; 2777 2778 mutex_lock(&rdev->mutex); 2779 2780 /* sanity check */ 2781 if (!rdev->desc->ops->get_mode) { 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 ret = rdev->desc->ops->get_mode(rdev); 2787 out: 2788 mutex_unlock(&rdev->mutex); 2789 return ret; 2790 } 2791 2792 /** 2793 * regulator_get_mode - get regulator operating mode 2794 * @regulator: regulator source 2795 * 2796 * Get the current regulator operating mode. 2797 */ 2798 unsigned int regulator_get_mode(struct regulator *regulator) 2799 { 2800 return _regulator_get_mode(regulator->rdev); 2801 } 2802 EXPORT_SYMBOL_GPL(regulator_get_mode); 2803 2804 /** 2805 * regulator_set_optimum_mode - set regulator optimum operating mode 2806 * @regulator: regulator source 2807 * @uA_load: load current 2808 * 2809 * Notifies the regulator core of a new device load. This is then used by 2810 * DRMS (if enabled by constraints) to set the most efficient regulator 2811 * operating mode for the new regulator loading. 2812 * 2813 * Consumer devices notify their supply regulator of the maximum power 2814 * they will require (can be taken from device datasheet in the power 2815 * consumption tables) when they change operational status and hence power 2816 * state. Examples of operational state changes that can affect power 2817 * consumption are :- 2818 * 2819 * o Device is opened / closed. 2820 * o Device I/O is about to begin or has just finished. 2821 * o Device is idling in between work. 2822 * 2823 * This information is also exported via sysfs to userspace. 2824 * 2825 * DRMS will sum the total requested load on the regulator and change 2826 * to the most efficient operating mode if platform constraints allow. 2827 * 2828 * Returns the new regulator mode or error. 2829 */ 2830 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2831 { 2832 struct regulator_dev *rdev = regulator->rdev; 2833 struct regulator *consumer; 2834 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2835 unsigned int mode; 2836 2837 if (rdev->supply) 2838 input_uV = regulator_get_voltage(rdev->supply); 2839 2840 mutex_lock(&rdev->mutex); 2841 2842 /* 2843 * first check to see if we can set modes at all, otherwise just 2844 * tell the consumer everything is OK. 2845 */ 2846 regulator->uA_load = uA_load; 2847 ret = regulator_check_drms(rdev); 2848 if (ret < 0) { 2849 ret = 0; 2850 goto out; 2851 } 2852 2853 if (!rdev->desc->ops->get_optimum_mode) 2854 goto out; 2855 2856 /* 2857 * we can actually do this so any errors are indicators of 2858 * potential real failure. 2859 */ 2860 ret = -EINVAL; 2861 2862 if (!rdev->desc->ops->set_mode) 2863 goto out; 2864 2865 /* get output voltage */ 2866 output_uV = _regulator_get_voltage(rdev); 2867 if (output_uV <= 0) { 2868 rdev_err(rdev, "invalid output voltage found\n"); 2869 goto out; 2870 } 2871 2872 /* No supply? Use constraint voltage */ 2873 if (input_uV <= 0) 2874 input_uV = rdev->constraints->input_uV; 2875 if (input_uV <= 0) { 2876 rdev_err(rdev, "invalid input voltage found\n"); 2877 goto out; 2878 } 2879 2880 /* calc total requested load for this regulator */ 2881 list_for_each_entry(consumer, &rdev->consumer_list, list) 2882 total_uA_load += consumer->uA_load; 2883 2884 mode = rdev->desc->ops->get_optimum_mode(rdev, 2885 input_uV, output_uV, 2886 total_uA_load); 2887 ret = regulator_mode_constrain(rdev, &mode); 2888 if (ret < 0) { 2889 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2890 total_uA_load, input_uV, output_uV); 2891 goto out; 2892 } 2893 2894 ret = rdev->desc->ops->set_mode(rdev, mode); 2895 if (ret < 0) { 2896 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2897 goto out; 2898 } 2899 ret = mode; 2900 out: 2901 mutex_unlock(&rdev->mutex); 2902 return ret; 2903 } 2904 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2905 2906 /** 2907 * regulator_allow_bypass - allow the regulator to go into bypass mode 2908 * 2909 * @regulator: Regulator to configure 2910 * @enable: enable or disable bypass mode 2911 * 2912 * Allow the regulator to go into bypass mode if all other consumers 2913 * for the regulator also enable bypass mode and the machine 2914 * constraints allow this. Bypass mode means that the regulator is 2915 * simply passing the input directly to the output with no regulation. 2916 */ 2917 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2918 { 2919 struct regulator_dev *rdev = regulator->rdev; 2920 int ret = 0; 2921 2922 if (!rdev->desc->ops->set_bypass) 2923 return 0; 2924 2925 if (rdev->constraints && 2926 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2927 return 0; 2928 2929 mutex_lock(&rdev->mutex); 2930 2931 if (enable && !regulator->bypass) { 2932 rdev->bypass_count++; 2933 2934 if (rdev->bypass_count == rdev->open_count) { 2935 ret = rdev->desc->ops->set_bypass(rdev, enable); 2936 if (ret != 0) 2937 rdev->bypass_count--; 2938 } 2939 2940 } else if (!enable && regulator->bypass) { 2941 rdev->bypass_count--; 2942 2943 if (rdev->bypass_count != rdev->open_count) { 2944 ret = rdev->desc->ops->set_bypass(rdev, enable); 2945 if (ret != 0) 2946 rdev->bypass_count++; 2947 } 2948 } 2949 2950 if (ret == 0) 2951 regulator->bypass = enable; 2952 2953 mutex_unlock(&rdev->mutex); 2954 2955 return ret; 2956 } 2957 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2958 2959 /** 2960 * regulator_register_notifier - register regulator event notifier 2961 * @regulator: regulator source 2962 * @nb: notifier block 2963 * 2964 * Register notifier block to receive regulator events. 2965 */ 2966 int regulator_register_notifier(struct regulator *regulator, 2967 struct notifier_block *nb) 2968 { 2969 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2970 nb); 2971 } 2972 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2973 2974 /** 2975 * regulator_unregister_notifier - unregister regulator event notifier 2976 * @regulator: regulator source 2977 * @nb: notifier block 2978 * 2979 * Unregister regulator event notifier block. 2980 */ 2981 int regulator_unregister_notifier(struct regulator *regulator, 2982 struct notifier_block *nb) 2983 { 2984 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2985 nb); 2986 } 2987 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2988 2989 /* notify regulator consumers and downstream regulator consumers. 2990 * Note mutex must be held by caller. 2991 */ 2992 static void _notifier_call_chain(struct regulator_dev *rdev, 2993 unsigned long event, void *data) 2994 { 2995 /* call rdev chain first */ 2996 blocking_notifier_call_chain(&rdev->notifier, event, data); 2997 } 2998 2999 /** 3000 * regulator_bulk_get - get multiple regulator consumers 3001 * 3002 * @dev: Device to supply 3003 * @num_consumers: Number of consumers to register 3004 * @consumers: Configuration of consumers; clients are stored here. 3005 * 3006 * @return 0 on success, an errno on failure. 3007 * 3008 * This helper function allows drivers to get several regulator 3009 * consumers in one operation. If any of the regulators cannot be 3010 * acquired then any regulators that were allocated will be freed 3011 * before returning to the caller. 3012 */ 3013 int regulator_bulk_get(struct device *dev, int num_consumers, 3014 struct regulator_bulk_data *consumers) 3015 { 3016 int i; 3017 int ret; 3018 3019 for (i = 0; i < num_consumers; i++) 3020 consumers[i].consumer = NULL; 3021 3022 for (i = 0; i < num_consumers; i++) { 3023 consumers[i].consumer = regulator_get(dev, 3024 consumers[i].supply); 3025 if (IS_ERR(consumers[i].consumer)) { 3026 ret = PTR_ERR(consumers[i].consumer); 3027 dev_err(dev, "Failed to get supply '%s': %d\n", 3028 consumers[i].supply, ret); 3029 consumers[i].consumer = NULL; 3030 goto err; 3031 } 3032 } 3033 3034 return 0; 3035 3036 err: 3037 while (--i >= 0) 3038 regulator_put(consumers[i].consumer); 3039 3040 return ret; 3041 } 3042 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3043 3044 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3045 { 3046 struct regulator_bulk_data *bulk = data; 3047 3048 bulk->ret = regulator_enable(bulk->consumer); 3049 } 3050 3051 /** 3052 * regulator_bulk_enable - enable multiple regulator consumers 3053 * 3054 * @num_consumers: Number of consumers 3055 * @consumers: Consumer data; clients are stored here. 3056 * @return 0 on success, an errno on failure 3057 * 3058 * This convenience API allows consumers to enable multiple regulator 3059 * clients in a single API call. If any consumers cannot be enabled 3060 * then any others that were enabled will be disabled again prior to 3061 * return. 3062 */ 3063 int regulator_bulk_enable(int num_consumers, 3064 struct regulator_bulk_data *consumers) 3065 { 3066 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3067 int i; 3068 int ret = 0; 3069 3070 for (i = 0; i < num_consumers; i++) { 3071 if (consumers[i].consumer->always_on) 3072 consumers[i].ret = 0; 3073 else 3074 async_schedule_domain(regulator_bulk_enable_async, 3075 &consumers[i], &async_domain); 3076 } 3077 3078 async_synchronize_full_domain(&async_domain); 3079 3080 /* If any consumer failed we need to unwind any that succeeded */ 3081 for (i = 0; i < num_consumers; i++) { 3082 if (consumers[i].ret != 0) { 3083 ret = consumers[i].ret; 3084 goto err; 3085 } 3086 } 3087 3088 return 0; 3089 3090 err: 3091 for (i = 0; i < num_consumers; i++) { 3092 if (consumers[i].ret < 0) 3093 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3094 consumers[i].ret); 3095 else 3096 regulator_disable(consumers[i].consumer); 3097 } 3098 3099 return ret; 3100 } 3101 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3102 3103 /** 3104 * regulator_bulk_disable - disable multiple regulator consumers 3105 * 3106 * @num_consumers: Number of consumers 3107 * @consumers: Consumer data; clients are stored here. 3108 * @return 0 on success, an errno on failure 3109 * 3110 * This convenience API allows consumers to disable multiple regulator 3111 * clients in a single API call. If any consumers cannot be disabled 3112 * then any others that were disabled will be enabled again prior to 3113 * return. 3114 */ 3115 int regulator_bulk_disable(int num_consumers, 3116 struct regulator_bulk_data *consumers) 3117 { 3118 int i; 3119 int ret, r; 3120 3121 for (i = num_consumers - 1; i >= 0; --i) { 3122 ret = regulator_disable(consumers[i].consumer); 3123 if (ret != 0) 3124 goto err; 3125 } 3126 3127 return 0; 3128 3129 err: 3130 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3131 for (++i; i < num_consumers; ++i) { 3132 r = regulator_enable(consumers[i].consumer); 3133 if (r != 0) 3134 pr_err("Failed to reename %s: %d\n", 3135 consumers[i].supply, r); 3136 } 3137 3138 return ret; 3139 } 3140 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3141 3142 /** 3143 * regulator_bulk_force_disable - force disable multiple regulator consumers 3144 * 3145 * @num_consumers: Number of consumers 3146 * @consumers: Consumer data; clients are stored here. 3147 * @return 0 on success, an errno on failure 3148 * 3149 * This convenience API allows consumers to forcibly disable multiple regulator 3150 * clients in a single API call. 3151 * NOTE: This should be used for situations when device damage will 3152 * likely occur if the regulators are not disabled (e.g. over temp). 3153 * Although regulator_force_disable function call for some consumers can 3154 * return error numbers, the function is called for all consumers. 3155 */ 3156 int regulator_bulk_force_disable(int num_consumers, 3157 struct regulator_bulk_data *consumers) 3158 { 3159 int i; 3160 int ret; 3161 3162 for (i = 0; i < num_consumers; i++) 3163 consumers[i].ret = 3164 regulator_force_disable(consumers[i].consumer); 3165 3166 for (i = 0; i < num_consumers; i++) { 3167 if (consumers[i].ret != 0) { 3168 ret = consumers[i].ret; 3169 goto out; 3170 } 3171 } 3172 3173 return 0; 3174 out: 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3178 3179 /** 3180 * regulator_bulk_free - free multiple regulator consumers 3181 * 3182 * @num_consumers: Number of consumers 3183 * @consumers: Consumer data; clients are stored here. 3184 * 3185 * This convenience API allows consumers to free multiple regulator 3186 * clients in a single API call. 3187 */ 3188 void regulator_bulk_free(int num_consumers, 3189 struct regulator_bulk_data *consumers) 3190 { 3191 int i; 3192 3193 for (i = 0; i < num_consumers; i++) { 3194 regulator_put(consumers[i].consumer); 3195 consumers[i].consumer = NULL; 3196 } 3197 } 3198 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3199 3200 /** 3201 * regulator_notifier_call_chain - call regulator event notifier 3202 * @rdev: regulator source 3203 * @event: notifier block 3204 * @data: callback-specific data. 3205 * 3206 * Called by regulator drivers to notify clients a regulator event has 3207 * occurred. We also notify regulator clients downstream. 3208 * Note lock must be held by caller. 3209 */ 3210 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3211 unsigned long event, void *data) 3212 { 3213 _notifier_call_chain(rdev, event, data); 3214 return NOTIFY_DONE; 3215 3216 } 3217 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3218 3219 /** 3220 * regulator_mode_to_status - convert a regulator mode into a status 3221 * 3222 * @mode: Mode to convert 3223 * 3224 * Convert a regulator mode into a status. 3225 */ 3226 int regulator_mode_to_status(unsigned int mode) 3227 { 3228 switch (mode) { 3229 case REGULATOR_MODE_FAST: 3230 return REGULATOR_STATUS_FAST; 3231 case REGULATOR_MODE_NORMAL: 3232 return REGULATOR_STATUS_NORMAL; 3233 case REGULATOR_MODE_IDLE: 3234 return REGULATOR_STATUS_IDLE; 3235 case REGULATOR_MODE_STANDBY: 3236 return REGULATOR_STATUS_STANDBY; 3237 default: 3238 return REGULATOR_STATUS_UNDEFINED; 3239 } 3240 } 3241 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3242 3243 /* 3244 * To avoid cluttering sysfs (and memory) with useless state, only 3245 * create attributes that can be meaningfully displayed. 3246 */ 3247 static int add_regulator_attributes(struct regulator_dev *rdev) 3248 { 3249 struct device *dev = &rdev->dev; 3250 struct regulator_ops *ops = rdev->desc->ops; 3251 int status = 0; 3252 3253 /* some attributes need specific methods to be displayed */ 3254 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3255 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3256 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3257 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) { 3258 status = device_create_file(dev, &dev_attr_microvolts); 3259 if (status < 0) 3260 return status; 3261 } 3262 if (ops->get_current_limit) { 3263 status = device_create_file(dev, &dev_attr_microamps); 3264 if (status < 0) 3265 return status; 3266 } 3267 if (ops->get_mode) { 3268 status = device_create_file(dev, &dev_attr_opmode); 3269 if (status < 0) 3270 return status; 3271 } 3272 if (rdev->ena_pin || ops->is_enabled) { 3273 status = device_create_file(dev, &dev_attr_state); 3274 if (status < 0) 3275 return status; 3276 } 3277 if (ops->get_status) { 3278 status = device_create_file(dev, &dev_attr_status); 3279 if (status < 0) 3280 return status; 3281 } 3282 if (ops->get_bypass) { 3283 status = device_create_file(dev, &dev_attr_bypass); 3284 if (status < 0) 3285 return status; 3286 } 3287 3288 /* some attributes are type-specific */ 3289 if (rdev->desc->type == REGULATOR_CURRENT) { 3290 status = device_create_file(dev, &dev_attr_requested_microamps); 3291 if (status < 0) 3292 return status; 3293 } 3294 3295 /* all the other attributes exist to support constraints; 3296 * don't show them if there are no constraints, or if the 3297 * relevant supporting methods are missing. 3298 */ 3299 if (!rdev->constraints) 3300 return status; 3301 3302 /* constraints need specific supporting methods */ 3303 if (ops->set_voltage || ops->set_voltage_sel) { 3304 status = device_create_file(dev, &dev_attr_min_microvolts); 3305 if (status < 0) 3306 return status; 3307 status = device_create_file(dev, &dev_attr_max_microvolts); 3308 if (status < 0) 3309 return status; 3310 } 3311 if (ops->set_current_limit) { 3312 status = device_create_file(dev, &dev_attr_min_microamps); 3313 if (status < 0) 3314 return status; 3315 status = device_create_file(dev, &dev_attr_max_microamps); 3316 if (status < 0) 3317 return status; 3318 } 3319 3320 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3321 if (status < 0) 3322 return status; 3323 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3324 if (status < 0) 3325 return status; 3326 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3327 if (status < 0) 3328 return status; 3329 3330 if (ops->set_suspend_voltage) { 3331 status = device_create_file(dev, 3332 &dev_attr_suspend_standby_microvolts); 3333 if (status < 0) 3334 return status; 3335 status = device_create_file(dev, 3336 &dev_attr_suspend_mem_microvolts); 3337 if (status < 0) 3338 return status; 3339 status = device_create_file(dev, 3340 &dev_attr_suspend_disk_microvolts); 3341 if (status < 0) 3342 return status; 3343 } 3344 3345 if (ops->set_suspend_mode) { 3346 status = device_create_file(dev, 3347 &dev_attr_suspend_standby_mode); 3348 if (status < 0) 3349 return status; 3350 status = device_create_file(dev, 3351 &dev_attr_suspend_mem_mode); 3352 if (status < 0) 3353 return status; 3354 status = device_create_file(dev, 3355 &dev_attr_suspend_disk_mode); 3356 if (status < 0) 3357 return status; 3358 } 3359 3360 return status; 3361 } 3362 3363 static void rdev_init_debugfs(struct regulator_dev *rdev) 3364 { 3365 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3366 if (!rdev->debugfs) { 3367 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3368 return; 3369 } 3370 3371 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3372 &rdev->use_count); 3373 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3374 &rdev->open_count); 3375 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3376 &rdev->bypass_count); 3377 } 3378 3379 /** 3380 * regulator_register - register regulator 3381 * @regulator_desc: regulator to register 3382 * @config: runtime configuration for regulator 3383 * 3384 * Called by regulator drivers to register a regulator. 3385 * Returns a valid pointer to struct regulator_dev on success 3386 * or an ERR_PTR() on error. 3387 */ 3388 struct regulator_dev * 3389 regulator_register(const struct regulator_desc *regulator_desc, 3390 const struct regulator_config *config) 3391 { 3392 const struct regulation_constraints *constraints = NULL; 3393 const struct regulator_init_data *init_data; 3394 static atomic_t regulator_no = ATOMIC_INIT(0); 3395 struct regulator_dev *rdev; 3396 struct device *dev; 3397 int ret, i; 3398 const char *supply = NULL; 3399 3400 if (regulator_desc == NULL || config == NULL) 3401 return ERR_PTR(-EINVAL); 3402 3403 dev = config->dev; 3404 WARN_ON(!dev); 3405 3406 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3407 return ERR_PTR(-EINVAL); 3408 3409 if (regulator_desc->type != REGULATOR_VOLTAGE && 3410 regulator_desc->type != REGULATOR_CURRENT) 3411 return ERR_PTR(-EINVAL); 3412 3413 /* Only one of each should be implemented */ 3414 WARN_ON(regulator_desc->ops->get_voltage && 3415 regulator_desc->ops->get_voltage_sel); 3416 WARN_ON(regulator_desc->ops->set_voltage && 3417 regulator_desc->ops->set_voltage_sel); 3418 3419 /* If we're using selectors we must implement list_voltage. */ 3420 if (regulator_desc->ops->get_voltage_sel && 3421 !regulator_desc->ops->list_voltage) { 3422 return ERR_PTR(-EINVAL); 3423 } 3424 if (regulator_desc->ops->set_voltage_sel && 3425 !regulator_desc->ops->list_voltage) { 3426 return ERR_PTR(-EINVAL); 3427 } 3428 3429 init_data = config->init_data; 3430 3431 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3432 if (rdev == NULL) 3433 return ERR_PTR(-ENOMEM); 3434 3435 mutex_lock(®ulator_list_mutex); 3436 3437 mutex_init(&rdev->mutex); 3438 rdev->reg_data = config->driver_data; 3439 rdev->owner = regulator_desc->owner; 3440 rdev->desc = regulator_desc; 3441 if (config->regmap) 3442 rdev->regmap = config->regmap; 3443 else if (dev_get_regmap(dev, NULL)) 3444 rdev->regmap = dev_get_regmap(dev, NULL); 3445 else if (dev->parent) 3446 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3447 INIT_LIST_HEAD(&rdev->consumer_list); 3448 INIT_LIST_HEAD(&rdev->list); 3449 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3450 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3451 3452 /* preform any regulator specific init */ 3453 if (init_data && init_data->regulator_init) { 3454 ret = init_data->regulator_init(rdev->reg_data); 3455 if (ret < 0) 3456 goto clean; 3457 } 3458 3459 /* register with sysfs */ 3460 rdev->dev.class = ®ulator_class; 3461 rdev->dev.of_node = of_node_get(config->of_node); 3462 rdev->dev.parent = dev; 3463 dev_set_name(&rdev->dev, "regulator.%d", 3464 atomic_inc_return(®ulator_no) - 1); 3465 ret = device_register(&rdev->dev); 3466 if (ret != 0) { 3467 put_device(&rdev->dev); 3468 goto clean; 3469 } 3470 3471 dev_set_drvdata(&rdev->dev, rdev); 3472 3473 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3474 ret = regulator_ena_gpio_request(rdev, config); 3475 if (ret != 0) { 3476 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3477 config->ena_gpio, ret); 3478 goto wash; 3479 } 3480 3481 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3482 rdev->ena_gpio_state = 1; 3483 3484 if (config->ena_gpio_invert) 3485 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3486 } 3487 3488 /* set regulator constraints */ 3489 if (init_data) 3490 constraints = &init_data->constraints; 3491 3492 ret = set_machine_constraints(rdev, constraints); 3493 if (ret < 0) 3494 goto scrub; 3495 3496 /* add attributes supported by this regulator */ 3497 ret = add_regulator_attributes(rdev); 3498 if (ret < 0) 3499 goto scrub; 3500 3501 if (init_data && init_data->supply_regulator) 3502 supply = init_data->supply_regulator; 3503 else if (regulator_desc->supply_name) 3504 supply = regulator_desc->supply_name; 3505 3506 if (supply) { 3507 struct regulator_dev *r; 3508 3509 r = regulator_dev_lookup(dev, supply, &ret); 3510 3511 if (ret == -ENODEV) { 3512 /* 3513 * No supply was specified for this regulator and 3514 * there will never be one. 3515 */ 3516 ret = 0; 3517 goto add_dev; 3518 } else if (!r) { 3519 dev_err(dev, "Failed to find supply %s\n", supply); 3520 ret = -EPROBE_DEFER; 3521 goto scrub; 3522 } 3523 3524 ret = set_supply(rdev, r); 3525 if (ret < 0) 3526 goto scrub; 3527 3528 /* Enable supply if rail is enabled */ 3529 if (_regulator_is_enabled(rdev)) { 3530 ret = regulator_enable(rdev->supply); 3531 if (ret < 0) 3532 goto scrub; 3533 } 3534 } 3535 3536 add_dev: 3537 /* add consumers devices */ 3538 if (init_data) { 3539 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3540 ret = set_consumer_device_supply(rdev, 3541 init_data->consumer_supplies[i].dev_name, 3542 init_data->consumer_supplies[i].supply); 3543 if (ret < 0) { 3544 dev_err(dev, "Failed to set supply %s\n", 3545 init_data->consumer_supplies[i].supply); 3546 goto unset_supplies; 3547 } 3548 } 3549 } 3550 3551 list_add(&rdev->list, ®ulator_list); 3552 3553 rdev_init_debugfs(rdev); 3554 out: 3555 mutex_unlock(®ulator_list_mutex); 3556 return rdev; 3557 3558 unset_supplies: 3559 unset_regulator_supplies(rdev); 3560 3561 scrub: 3562 if (rdev->supply) 3563 _regulator_put(rdev->supply); 3564 regulator_ena_gpio_free(rdev); 3565 kfree(rdev->constraints); 3566 wash: 3567 device_unregister(&rdev->dev); 3568 /* device core frees rdev */ 3569 rdev = ERR_PTR(ret); 3570 goto out; 3571 3572 clean: 3573 kfree(rdev); 3574 rdev = ERR_PTR(ret); 3575 goto out; 3576 } 3577 EXPORT_SYMBOL_GPL(regulator_register); 3578 3579 /** 3580 * regulator_unregister - unregister regulator 3581 * @rdev: regulator to unregister 3582 * 3583 * Called by regulator drivers to unregister a regulator. 3584 */ 3585 void regulator_unregister(struct regulator_dev *rdev) 3586 { 3587 if (rdev == NULL) 3588 return; 3589 3590 if (rdev->supply) { 3591 while (rdev->use_count--) 3592 regulator_disable(rdev->supply); 3593 regulator_put(rdev->supply); 3594 } 3595 mutex_lock(®ulator_list_mutex); 3596 debugfs_remove_recursive(rdev->debugfs); 3597 flush_work(&rdev->disable_work.work); 3598 WARN_ON(rdev->open_count); 3599 unset_regulator_supplies(rdev); 3600 list_del(&rdev->list); 3601 kfree(rdev->constraints); 3602 regulator_ena_gpio_free(rdev); 3603 of_node_put(rdev->dev.of_node); 3604 device_unregister(&rdev->dev); 3605 mutex_unlock(®ulator_list_mutex); 3606 } 3607 EXPORT_SYMBOL_GPL(regulator_unregister); 3608 3609 /** 3610 * regulator_suspend_prepare - prepare regulators for system wide suspend 3611 * @state: system suspend state 3612 * 3613 * Configure each regulator with it's suspend operating parameters for state. 3614 * This will usually be called by machine suspend code prior to supending. 3615 */ 3616 int regulator_suspend_prepare(suspend_state_t state) 3617 { 3618 struct regulator_dev *rdev; 3619 int ret = 0; 3620 3621 /* ON is handled by regulator active state */ 3622 if (state == PM_SUSPEND_ON) 3623 return -EINVAL; 3624 3625 mutex_lock(®ulator_list_mutex); 3626 list_for_each_entry(rdev, ®ulator_list, list) { 3627 3628 mutex_lock(&rdev->mutex); 3629 ret = suspend_prepare(rdev, state); 3630 mutex_unlock(&rdev->mutex); 3631 3632 if (ret < 0) { 3633 rdev_err(rdev, "failed to prepare\n"); 3634 goto out; 3635 } 3636 } 3637 out: 3638 mutex_unlock(®ulator_list_mutex); 3639 return ret; 3640 } 3641 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3642 3643 /** 3644 * regulator_suspend_finish - resume regulators from system wide suspend 3645 * 3646 * Turn on regulators that might be turned off by regulator_suspend_prepare 3647 * and that should be turned on according to the regulators properties. 3648 */ 3649 int regulator_suspend_finish(void) 3650 { 3651 struct regulator_dev *rdev; 3652 int ret = 0, error; 3653 3654 mutex_lock(®ulator_list_mutex); 3655 list_for_each_entry(rdev, ®ulator_list, list) { 3656 mutex_lock(&rdev->mutex); 3657 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3658 error = _regulator_do_enable(rdev); 3659 if (error) 3660 ret = error; 3661 } else { 3662 if (!have_full_constraints()) 3663 goto unlock; 3664 if (!_regulator_is_enabled(rdev)) 3665 goto unlock; 3666 3667 error = _regulator_do_disable(rdev); 3668 if (error) 3669 ret = error; 3670 } 3671 unlock: 3672 mutex_unlock(&rdev->mutex); 3673 } 3674 mutex_unlock(®ulator_list_mutex); 3675 return ret; 3676 } 3677 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3678 3679 /** 3680 * regulator_has_full_constraints - the system has fully specified constraints 3681 * 3682 * Calling this function will cause the regulator API to disable all 3683 * regulators which have a zero use count and don't have an always_on 3684 * constraint in a late_initcall. 3685 * 3686 * The intention is that this will become the default behaviour in a 3687 * future kernel release so users are encouraged to use this facility 3688 * now. 3689 */ 3690 void regulator_has_full_constraints(void) 3691 { 3692 has_full_constraints = 1; 3693 } 3694 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3695 3696 /** 3697 * rdev_get_drvdata - get rdev regulator driver data 3698 * @rdev: regulator 3699 * 3700 * Get rdev regulator driver private data. This call can be used in the 3701 * regulator driver context. 3702 */ 3703 void *rdev_get_drvdata(struct regulator_dev *rdev) 3704 { 3705 return rdev->reg_data; 3706 } 3707 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3708 3709 /** 3710 * regulator_get_drvdata - get regulator driver data 3711 * @regulator: regulator 3712 * 3713 * Get regulator driver private data. This call can be used in the consumer 3714 * driver context when non API regulator specific functions need to be called. 3715 */ 3716 void *regulator_get_drvdata(struct regulator *regulator) 3717 { 3718 return regulator->rdev->reg_data; 3719 } 3720 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3721 3722 /** 3723 * regulator_set_drvdata - set regulator driver data 3724 * @regulator: regulator 3725 * @data: data 3726 */ 3727 void regulator_set_drvdata(struct regulator *regulator, void *data) 3728 { 3729 regulator->rdev->reg_data = data; 3730 } 3731 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3732 3733 /** 3734 * regulator_get_id - get regulator ID 3735 * @rdev: regulator 3736 */ 3737 int rdev_get_id(struct regulator_dev *rdev) 3738 { 3739 return rdev->desc->id; 3740 } 3741 EXPORT_SYMBOL_GPL(rdev_get_id); 3742 3743 struct device *rdev_get_dev(struct regulator_dev *rdev) 3744 { 3745 return &rdev->dev; 3746 } 3747 EXPORT_SYMBOL_GPL(rdev_get_dev); 3748 3749 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3750 { 3751 return reg_init_data->driver_data; 3752 } 3753 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3754 3755 #ifdef CONFIG_DEBUG_FS 3756 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3757 size_t count, loff_t *ppos) 3758 { 3759 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3760 ssize_t len, ret = 0; 3761 struct regulator_map *map; 3762 3763 if (!buf) 3764 return -ENOMEM; 3765 3766 list_for_each_entry(map, ®ulator_map_list, list) { 3767 len = snprintf(buf + ret, PAGE_SIZE - ret, 3768 "%s -> %s.%s\n", 3769 rdev_get_name(map->regulator), map->dev_name, 3770 map->supply); 3771 if (len >= 0) 3772 ret += len; 3773 if (ret > PAGE_SIZE) { 3774 ret = PAGE_SIZE; 3775 break; 3776 } 3777 } 3778 3779 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3780 3781 kfree(buf); 3782 3783 return ret; 3784 } 3785 #endif 3786 3787 static const struct file_operations supply_map_fops = { 3788 #ifdef CONFIG_DEBUG_FS 3789 .read = supply_map_read_file, 3790 .llseek = default_llseek, 3791 #endif 3792 }; 3793 3794 static int __init regulator_init(void) 3795 { 3796 int ret; 3797 3798 ret = class_register(®ulator_class); 3799 3800 debugfs_root = debugfs_create_dir("regulator", NULL); 3801 if (!debugfs_root) 3802 pr_warn("regulator: Failed to create debugfs directory\n"); 3803 3804 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3805 &supply_map_fops); 3806 3807 regulator_dummy_init(); 3808 3809 return ret; 3810 } 3811 3812 /* init early to allow our consumers to complete system booting */ 3813 core_initcall(regulator_init); 3814 3815 static int __init regulator_init_complete(void) 3816 { 3817 struct regulator_dev *rdev; 3818 struct regulator_ops *ops; 3819 struct regulation_constraints *c; 3820 int enabled, ret; 3821 3822 /* 3823 * Since DT doesn't provide an idiomatic mechanism for 3824 * enabling full constraints and since it's much more natural 3825 * with DT to provide them just assume that a DT enabled 3826 * system has full constraints. 3827 */ 3828 if (of_have_populated_dt()) 3829 has_full_constraints = true; 3830 3831 mutex_lock(®ulator_list_mutex); 3832 3833 /* If we have a full configuration then disable any regulators 3834 * we have permission to change the status for and which are 3835 * not in use or always_on. This is effectively the default 3836 * for DT and ACPI as they have full constraints. 3837 */ 3838 list_for_each_entry(rdev, ®ulator_list, list) { 3839 ops = rdev->desc->ops; 3840 c = rdev->constraints; 3841 3842 if (c && c->always_on) 3843 continue; 3844 3845 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 3846 continue; 3847 3848 mutex_lock(&rdev->mutex); 3849 3850 if (rdev->use_count) 3851 goto unlock; 3852 3853 /* If we can't read the status assume it's on. */ 3854 if (ops->is_enabled) 3855 enabled = ops->is_enabled(rdev); 3856 else 3857 enabled = 1; 3858 3859 if (!enabled) 3860 goto unlock; 3861 3862 if (have_full_constraints()) { 3863 /* We log since this may kill the system if it 3864 * goes wrong. */ 3865 rdev_info(rdev, "disabling\n"); 3866 ret = _regulator_do_disable(rdev); 3867 if (ret != 0) 3868 rdev_err(rdev, "couldn't disable: %d\n", ret); 3869 } else { 3870 /* The intention is that in future we will 3871 * assume that full constraints are provided 3872 * so warn even if we aren't going to do 3873 * anything here. 3874 */ 3875 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3876 } 3877 3878 unlock: 3879 mutex_unlock(&rdev->mutex); 3880 } 3881 3882 mutex_unlock(®ulator_list_mutex); 3883 3884 return 0; 3885 } 3886 late_initcall_sync(regulator_init_complete); 3887