xref: /openbmc/linux/drivers/regulator/core.c (revision a2fb4d78)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	int gpio;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 	if (rdev->constraints && rdev->constraints->name)
115 		return rdev->constraints->name;
116 	else if (rdev->desc->name)
117 		return rdev->desc->name;
118 	else
119 		return "";
120 }
121 
122 static bool have_full_constraints(void)
123 {
124 	return has_full_constraints || of_have_populated_dt();
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 			 char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334 
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 	switch (mode) {
338 	case REGULATOR_MODE_FAST:
339 		return sprintf(buf, "fast\n");
340 	case REGULATOR_MODE_NORMAL:
341 		return sprintf(buf, "normal\n");
342 	case REGULATOR_MODE_IDLE:
343 		return sprintf(buf, "idle\n");
344 	case REGULATOR_MODE_STANDBY:
345 		return sprintf(buf, "standby\n");
346 	}
347 	return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_opmode_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 	if (state > 0)
362 		return sprintf(buf, "enabled\n");
363 	else if (state == 0)
364 		return sprintf(buf, "disabled\n");
365 	else
366 		return sprintf(buf, "unknown\n");
367 }
368 
369 static ssize_t regulator_state_show(struct device *dev,
370 				   struct device_attribute *attr, char *buf)
371 {
372 	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 	ssize_t ret;
374 
375 	mutex_lock(&rdev->mutex);
376 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 	mutex_unlock(&rdev->mutex);
378 
379 	return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 
383 static ssize_t regulator_status_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	int status;
388 	char *label;
389 
390 	status = rdev->desc->ops->get_status(rdev);
391 	if (status < 0)
392 		return status;
393 
394 	switch (status) {
395 	case REGULATOR_STATUS_OFF:
396 		label = "off";
397 		break;
398 	case REGULATOR_STATUS_ON:
399 		label = "on";
400 		break;
401 	case REGULATOR_STATUS_ERROR:
402 		label = "error";
403 		break;
404 	case REGULATOR_STATUS_FAST:
405 		label = "fast";
406 		break;
407 	case REGULATOR_STATUS_NORMAL:
408 		label = "normal";
409 		break;
410 	case REGULATOR_STATUS_IDLE:
411 		label = "idle";
412 		break;
413 	case REGULATOR_STATUS_STANDBY:
414 		label = "standby";
415 		break;
416 	case REGULATOR_STATUS_BYPASS:
417 		label = "bypass";
418 		break;
419 	case REGULATOR_STATUS_UNDEFINED:
420 		label = "undefined";
421 		break;
422 	default:
423 		return -ERANGE;
424 	}
425 
426 	return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 				    struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	if (!rdev->constraints)
436 		return sprintf(buf, "constraint not defined\n");
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 				    struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 
447 	if (!rdev->constraints)
448 		return sprintf(buf, "constraint not defined\n");
449 
450 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	struct regulator *regulator;
483 	int uA = 0;
484 
485 	mutex_lock(&rdev->mutex);
486 	list_for_each_entry(regulator, &rdev->consumer_list, list)
487 		uA += regulator->uA_load;
488 	mutex_unlock(&rdev->mutex);
489 	return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 			      char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 	return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500 
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 			 char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515 
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 		regulator_suspend_mem_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 		regulator_suspend_disk_uV_show, NULL);
535 
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 				struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 		regulator_suspend_standby_uV_show, NULL);
545 
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 				struct device_attribute *attr, char *buf)
548 {
549 	struct regulator_dev *rdev = dev_get_drvdata(dev);
550 
551 	return regulator_print_opmode(buf,
552 		rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 		regulator_suspend_mem_mode_show, NULL);
556 
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 				struct device_attribute *attr, char *buf)
559 {
560 	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 
562 	return regulator_print_opmode(buf,
563 		rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 		regulator_suspend_disk_mode_show, NULL);
567 
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 
573 	return regulator_print_opmode(buf,
574 		rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 		regulator_suspend_standby_mode_show, NULL);
578 
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 				   struct device_attribute *attr, char *buf)
581 {
582 	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 
584 	return regulator_print_state(buf,
585 			rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 		regulator_suspend_mem_state_show, NULL);
589 
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 				   struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_state(buf,
596 			rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 		regulator_suspend_disk_state_show, NULL);
600 
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 				   struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_state(buf,
607 			rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 		regulator_suspend_standby_state_show, NULL);
611 
612 static ssize_t regulator_bypass_show(struct device *dev,
613 				     struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 	const char *report;
617 	bool bypass;
618 	int ret;
619 
620 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621 
622 	if (ret != 0)
623 		report = "unknown";
624 	else if (bypass)
625 		report = "enabled";
626 	else
627 		report = "disabled";
628 
629 	return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 		   regulator_bypass_show, NULL);
633 
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639 	&dev_attr_name.attr,
640 	&dev_attr_num_users.attr,
641 	&dev_attr_type.attr,
642 	NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645 
646 static void regulator_dev_release(struct device *dev)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 	kfree(rdev);
650 }
651 
652 static struct class regulator_class = {
653 	.name = "regulator",
654 	.dev_release = regulator_dev_release,
655 	.dev_groups = regulator_dev_groups,
656 };
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	err = regulator_check_drms(rdev);
667 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 	    (!rdev->desc->ops->get_voltage &&
669 	     !rdev->desc->ops->get_voltage_sel) ||
670 	    !rdev->desc->ops->set_mode)
671 		return;
672 
673 	/* get output voltage */
674 	output_uV = _regulator_get_voltage(rdev);
675 	if (output_uV <= 0)
676 		return;
677 
678 	/* get input voltage */
679 	input_uV = 0;
680 	if (rdev->supply)
681 		input_uV = regulator_get_voltage(rdev->supply);
682 	if (input_uV <= 0)
683 		input_uV = rdev->constraints->input_uV;
684 	if (input_uV <= 0)
685 		return;
686 
687 	/* calc total requested load */
688 	list_for_each_entry(sibling, &rdev->consumer_list, list)
689 		current_uA += sibling->uA_load;
690 
691 	/* now get the optimum mode for our new total regulator load */
692 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 						  output_uV, current_uA);
694 
695 	/* check the new mode is allowed */
696 	err = regulator_mode_constrain(rdev, &mode);
697 	if (err == 0)
698 		rdev->desc->ops->set_mode(rdev, mode);
699 }
700 
701 static int suspend_set_state(struct regulator_dev *rdev,
702 	struct regulator_state *rstate)
703 {
704 	int ret = 0;
705 
706 	/* If we have no suspend mode configration don't set anything;
707 	 * only warn if the driver implements set_suspend_voltage or
708 	 * set_suspend_mode callback.
709 	 */
710 	if (!rstate->enabled && !rstate->disabled) {
711 		if (rdev->desc->ops->set_suspend_voltage ||
712 		    rdev->desc->ops->set_suspend_mode)
713 			rdev_warn(rdev, "No configuration\n");
714 		return 0;
715 	}
716 
717 	if (rstate->enabled && rstate->disabled) {
718 		rdev_err(rdev, "invalid configuration\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 		ret = rdev->desc->ops->set_suspend_enable(rdev);
724 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 		ret = 0;
728 
729 	if (ret < 0) {
730 		rdev_err(rdev, "failed to enabled/disable\n");
731 		return ret;
732 	}
733 
734 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 		if (ret < 0) {
737 			rdev_err(rdev, "failed to set voltage\n");
738 			return ret;
739 		}
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set mode\n");
746 			return ret;
747 		}
748 	}
749 	return ret;
750 }
751 
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 	if (!rdev->constraints)
756 		return -EINVAL;
757 
758 	switch (state) {
759 	case PM_SUSPEND_STANDBY:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_standby);
762 	case PM_SUSPEND_MEM:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_mem);
765 	case PM_SUSPEND_MAX:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_disk);
768 	default:
769 		return -EINVAL;
770 	}
771 }
772 
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 	struct regulation_constraints *constraints = rdev->constraints;
776 	char buf[80] = "";
777 	int count = 0;
778 	int ret;
779 
780 	if (constraints->min_uV && constraints->max_uV) {
781 		if (constraints->min_uV == constraints->max_uV)
782 			count += sprintf(buf + count, "%d mV ",
783 					 constraints->min_uV / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mV ",
786 					 constraints->min_uV / 1000,
787 					 constraints->max_uV / 1000);
788 	}
789 
790 	if (!constraints->min_uV ||
791 	    constraints->min_uV != constraints->max_uV) {
792 		ret = _regulator_get_voltage(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 	}
796 
797 	if (constraints->uV_offset)
798 		count += sprintf(buf, "%dmV offset ",
799 				 constraints->uV_offset / 1000);
800 
801 	if (constraints->min_uA && constraints->max_uA) {
802 		if (constraints->min_uA == constraints->max_uA)
803 			count += sprintf(buf + count, "%d mA ",
804 					 constraints->min_uA / 1000);
805 		else
806 			count += sprintf(buf + count, "%d <--> %d mA ",
807 					 constraints->min_uA / 1000,
808 					 constraints->max_uA / 1000);
809 	}
810 
811 	if (!constraints->min_uA ||
812 	    constraints->min_uA != constraints->max_uA) {
813 		ret = _regulator_get_current_limit(rdev);
814 		if (ret > 0)
815 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 	}
817 
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 		count += sprintf(buf + count, "fast ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 		count += sprintf(buf + count, "normal ");
822 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 		count += sprintf(buf + count, "idle ");
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 		count += sprintf(buf + count, "standby");
826 
827 	if (!count)
828 		sprintf(buf, "no parameters");
829 
830 	rdev_info(rdev, "%s\n", buf);
831 
832 	if ((constraints->min_uV != constraints->max_uV) &&
833 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 		rdev_warn(rdev,
835 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837 
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 	struct regulation_constraints *constraints)
840 {
841 	struct regulator_ops *ops = rdev->desc->ops;
842 	int ret;
843 
844 	/* do we need to apply the constraint voltage */
845 	if (rdev->constraints->apply_uV &&
846 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 		ret = _regulator_do_set_voltage(rdev,
848 						rdev->constraints->min_uV,
849 						rdev->constraints->max_uV);
850 		if (ret < 0) {
851 			rdev_err(rdev, "failed to apply %duV constraint\n",
852 				 rdev->constraints->min_uV);
853 			return ret;
854 		}
855 	}
856 
857 	/* constrain machine-level voltage specs to fit
858 	 * the actual range supported by this regulator.
859 	 */
860 	if (ops->list_voltage && rdev->desc->n_voltages) {
861 		int	count = rdev->desc->n_voltages;
862 		int	i;
863 		int	min_uV = INT_MAX;
864 		int	max_uV = INT_MIN;
865 		int	cmin = constraints->min_uV;
866 		int	cmax = constraints->max_uV;
867 
868 		/* it's safe to autoconfigure fixed-voltage supplies
869 		   and the constraints are used by list_voltage. */
870 		if (count == 1 && !cmin) {
871 			cmin = 1;
872 			cmax = INT_MAX;
873 			constraints->min_uV = cmin;
874 			constraints->max_uV = cmax;
875 		}
876 
877 		/* voltage constraints are optional */
878 		if ((cmin == 0) && (cmax == 0))
879 			return 0;
880 
881 		/* else require explicit machine-level constraints */
882 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 			rdev_err(rdev, "invalid voltage constraints\n");
884 			return -EINVAL;
885 		}
886 
887 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 		for (i = 0; i < count; i++) {
889 			int	value;
890 
891 			value = ops->list_voltage(rdev, i);
892 			if (value <= 0)
893 				continue;
894 
895 			/* maybe adjust [min_uV..max_uV] */
896 			if (value >= cmin && value < min_uV)
897 				min_uV = value;
898 			if (value <= cmax && value > max_uV)
899 				max_uV = value;
900 		}
901 
902 		/* final: [min_uV..max_uV] valid iff constraints valid */
903 		if (max_uV < min_uV) {
904 			rdev_err(rdev,
905 				 "unsupportable voltage constraints %u-%uuV\n",
906 				 min_uV, max_uV);
907 			return -EINVAL;
908 		}
909 
910 		/* use regulator's subset of machine constraints */
911 		if (constraints->min_uV < min_uV) {
912 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 				 constraints->min_uV, min_uV);
914 			constraints->min_uV = min_uV;
915 		}
916 		if (constraints->max_uV > max_uV) {
917 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 				 constraints->max_uV, max_uV);
919 			constraints->max_uV = max_uV;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 	struct regulation_constraints *constraints)
928 {
929 	struct regulator_ops *ops = rdev->desc->ops;
930 	int ret;
931 
932 	if (!constraints->min_uA && !constraints->max_uA)
933 		return 0;
934 
935 	if (constraints->min_uA > constraints->max_uA) {
936 		rdev_err(rdev, "Invalid current constraints\n");
937 		return -EINVAL;
938 	}
939 
940 	if (!ops->set_current_limit || !ops->get_current_limit) {
941 		rdev_warn(rdev, "Operation of current configuration missing\n");
942 		return 0;
943 	}
944 
945 	/* Set regulator current in constraints range */
946 	ret = ops->set_current_limit(rdev, constraints->min_uA,
947 			constraints->max_uA);
948 	if (ret < 0) {
949 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 		return ret;
951 	}
952 
953 	return 0;
954 }
955 
956 static int _regulator_do_enable(struct regulator_dev *rdev);
957 
958 /**
959  * set_machine_constraints - sets regulator constraints
960  * @rdev: regulator source
961  * @constraints: constraints to apply
962  *
963  * Allows platform initialisation code to define and constrain
964  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
965  * Constraints *must* be set by platform code in order for some
966  * regulator operations to proceed i.e. set_voltage, set_current_limit,
967  * set_mode.
968  */
969 static int set_machine_constraints(struct regulator_dev *rdev,
970 	const struct regulation_constraints *constraints)
971 {
972 	int ret = 0;
973 	struct regulator_ops *ops = rdev->desc->ops;
974 
975 	if (constraints)
976 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977 					    GFP_KERNEL);
978 	else
979 		rdev->constraints = kzalloc(sizeof(*constraints),
980 					    GFP_KERNEL);
981 	if (!rdev->constraints)
982 		return -ENOMEM;
983 
984 	ret = machine_constraints_voltage(rdev, rdev->constraints);
985 	if (ret != 0)
986 		goto out;
987 
988 	ret = machine_constraints_current(rdev, rdev->constraints);
989 	if (ret != 0)
990 		goto out;
991 
992 	/* do we need to setup our suspend state */
993 	if (rdev->constraints->initial_state) {
994 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995 		if (ret < 0) {
996 			rdev_err(rdev, "failed to set suspend state\n");
997 			goto out;
998 		}
999 	}
1000 
1001 	if (rdev->constraints->initial_mode) {
1002 		if (!ops->set_mode) {
1003 			rdev_err(rdev, "no set_mode operation\n");
1004 			ret = -EINVAL;
1005 			goto out;
1006 		}
1007 
1008 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009 		if (ret < 0) {
1010 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011 			goto out;
1012 		}
1013 	}
1014 
1015 	/* If the constraints say the regulator should be on at this point
1016 	 * and we have control then make sure it is enabled.
1017 	 */
1018 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019 		ret = _regulator_do_enable(rdev);
1020 		if (ret < 0 && ret != -EINVAL) {
1021 			rdev_err(rdev, "failed to enable\n");
1022 			goto out;
1023 		}
1024 	}
1025 
1026 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027 		&& ops->set_ramp_delay) {
1028 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029 		if (ret < 0) {
1030 			rdev_err(rdev, "failed to set ramp_delay\n");
1031 			goto out;
1032 		}
1033 	}
1034 
1035 	print_constraints(rdev);
1036 	return 0;
1037 out:
1038 	kfree(rdev->constraints);
1039 	rdev->constraints = NULL;
1040 	return ret;
1041 }
1042 
1043 /**
1044  * set_supply - set regulator supply regulator
1045  * @rdev: regulator name
1046  * @supply_rdev: supply regulator name
1047  *
1048  * Called by platform initialisation code to set the supply regulator for this
1049  * regulator. This ensures that a regulators supply will also be enabled by the
1050  * core if it's child is enabled.
1051  */
1052 static int set_supply(struct regulator_dev *rdev,
1053 		      struct regulator_dev *supply_rdev)
1054 {
1055 	int err;
1056 
1057 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058 
1059 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060 	if (rdev->supply == NULL) {
1061 		err = -ENOMEM;
1062 		return err;
1063 	}
1064 	supply_rdev->open_count++;
1065 
1066 	return 0;
1067 }
1068 
1069 /**
1070  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071  * @rdev:         regulator source
1072  * @consumer_dev_name: dev_name() string for device supply applies to
1073  * @supply:       symbolic name for supply
1074  *
1075  * Allows platform initialisation code to map physical regulator
1076  * sources to symbolic names for supplies for use by devices.  Devices
1077  * should use these symbolic names to request regulators, avoiding the
1078  * need to provide board-specific regulator names as platform data.
1079  */
1080 static int set_consumer_device_supply(struct regulator_dev *rdev,
1081 				      const char *consumer_dev_name,
1082 				      const char *supply)
1083 {
1084 	struct regulator_map *node;
1085 	int has_dev;
1086 
1087 	if (supply == NULL)
1088 		return -EINVAL;
1089 
1090 	if (consumer_dev_name != NULL)
1091 		has_dev = 1;
1092 	else
1093 		has_dev = 0;
1094 
1095 	list_for_each_entry(node, &regulator_map_list, list) {
1096 		if (node->dev_name && consumer_dev_name) {
1097 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098 				continue;
1099 		} else if (node->dev_name || consumer_dev_name) {
1100 			continue;
1101 		}
1102 
1103 		if (strcmp(node->supply, supply) != 0)
1104 			continue;
1105 
1106 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 			 consumer_dev_name,
1108 			 dev_name(&node->regulator->dev),
1109 			 node->regulator->desc->name,
1110 			 supply,
1111 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1112 		return -EBUSY;
1113 	}
1114 
1115 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116 	if (node == NULL)
1117 		return -ENOMEM;
1118 
1119 	node->regulator = rdev;
1120 	node->supply = supply;
1121 
1122 	if (has_dev) {
1123 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124 		if (node->dev_name == NULL) {
1125 			kfree(node);
1126 			return -ENOMEM;
1127 		}
1128 	}
1129 
1130 	list_add(&node->list, &regulator_map_list);
1131 	return 0;
1132 }
1133 
1134 static void unset_regulator_supplies(struct regulator_dev *rdev)
1135 {
1136 	struct regulator_map *node, *n;
1137 
1138 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139 		if (rdev == node->regulator) {
1140 			list_del(&node->list);
1141 			kfree(node->dev_name);
1142 			kfree(node);
1143 		}
1144 	}
1145 }
1146 
1147 #define REG_STR_SIZE	64
1148 
1149 static struct regulator *create_regulator(struct regulator_dev *rdev,
1150 					  struct device *dev,
1151 					  const char *supply_name)
1152 {
1153 	struct regulator *regulator;
1154 	char buf[REG_STR_SIZE];
1155 	int err, size;
1156 
1157 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158 	if (regulator == NULL)
1159 		return NULL;
1160 
1161 	mutex_lock(&rdev->mutex);
1162 	regulator->rdev = rdev;
1163 	list_add(&regulator->list, &rdev->consumer_list);
1164 
1165 	if (dev) {
1166 		regulator->dev = dev;
1167 
1168 		/* Add a link to the device sysfs entry */
1169 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170 				 dev->kobj.name, supply_name);
1171 		if (size >= REG_STR_SIZE)
1172 			goto overflow_err;
1173 
1174 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175 		if (regulator->supply_name == NULL)
1176 			goto overflow_err;
1177 
1178 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179 					buf);
1180 		if (err) {
1181 			rdev_warn(rdev, "could not add device link %s err %d\n",
1182 				  dev->kobj.name, err);
1183 			/* non-fatal */
1184 		}
1185 	} else {
1186 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187 		if (regulator->supply_name == NULL)
1188 			goto overflow_err;
1189 	}
1190 
1191 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192 						rdev->debugfs);
1193 	if (!regulator->debugfs) {
1194 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1195 	} else {
1196 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197 				   &regulator->uA_load);
1198 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199 				   &regulator->min_uV);
1200 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201 				   &regulator->max_uV);
1202 	}
1203 
1204 	/*
1205 	 * Check now if the regulator is an always on regulator - if
1206 	 * it is then we don't need to do nearly so much work for
1207 	 * enable/disable calls.
1208 	 */
1209 	if (!_regulator_can_change_status(rdev) &&
1210 	    _regulator_is_enabled(rdev))
1211 		regulator->always_on = true;
1212 
1213 	mutex_unlock(&rdev->mutex);
1214 	return regulator;
1215 overflow_err:
1216 	list_del(&regulator->list);
1217 	kfree(regulator);
1218 	mutex_unlock(&rdev->mutex);
1219 	return NULL;
1220 }
1221 
1222 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223 {
1224 	if (rdev->constraints && rdev->constraints->enable_time)
1225 		return rdev->constraints->enable_time;
1226 	if (!rdev->desc->ops->enable_time)
1227 		return rdev->desc->enable_time;
1228 	return rdev->desc->ops->enable_time(rdev);
1229 }
1230 
1231 static struct regulator_supply_alias *regulator_find_supply_alias(
1232 		struct device *dev, const char *supply)
1233 {
1234 	struct regulator_supply_alias *map;
1235 
1236 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1237 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238 			return map;
1239 
1240 	return NULL;
1241 }
1242 
1243 static void regulator_supply_alias(struct device **dev, const char **supply)
1244 {
1245 	struct regulator_supply_alias *map;
1246 
1247 	map = regulator_find_supply_alias(*dev, *supply);
1248 	if (map) {
1249 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250 				*supply, map->alias_supply,
1251 				dev_name(map->alias_dev));
1252 		*dev = map->alias_dev;
1253 		*supply = map->alias_supply;
1254 	}
1255 }
1256 
1257 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258 						  const char *supply,
1259 						  int *ret)
1260 {
1261 	struct regulator_dev *r;
1262 	struct device_node *node;
1263 	struct regulator_map *map;
1264 	const char *devname = NULL;
1265 
1266 	regulator_supply_alias(&dev, &supply);
1267 
1268 	/* first do a dt based lookup */
1269 	if (dev && dev->of_node) {
1270 		node = of_get_regulator(dev, supply);
1271 		if (node) {
1272 			list_for_each_entry(r, &regulator_list, list)
1273 				if (r->dev.parent &&
1274 					node == r->dev.of_node)
1275 					return r;
1276 			*ret = -EPROBE_DEFER;
1277 			return NULL;
1278 		} else {
1279 			/*
1280 			 * If we couldn't even get the node then it's
1281 			 * not just that the device didn't register
1282 			 * yet, there's no node and we'll never
1283 			 * succeed.
1284 			 */
1285 			*ret = -ENODEV;
1286 		}
1287 	}
1288 
1289 	/* if not found, try doing it non-dt way */
1290 	if (dev)
1291 		devname = dev_name(dev);
1292 
1293 	list_for_each_entry(r, &regulator_list, list)
1294 		if (strcmp(rdev_get_name(r), supply) == 0)
1295 			return r;
1296 
1297 	list_for_each_entry(map, &regulator_map_list, list) {
1298 		/* If the mapping has a device set up it must match */
1299 		if (map->dev_name &&
1300 		    (!devname || strcmp(map->dev_name, devname)))
1301 			continue;
1302 
1303 		if (strcmp(map->supply, supply) == 0)
1304 			return map->regulator;
1305 	}
1306 
1307 
1308 	return NULL;
1309 }
1310 
1311 /* Internal regulator request function */
1312 static struct regulator *_regulator_get(struct device *dev, const char *id,
1313 					bool exclusive, bool allow_dummy)
1314 {
1315 	struct regulator_dev *rdev;
1316 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317 	const char *devname = NULL;
1318 	int ret;
1319 
1320 	if (id == NULL) {
1321 		pr_err("get() with no identifier\n");
1322 		return ERR_PTR(-EINVAL);
1323 	}
1324 
1325 	if (dev)
1326 		devname = dev_name(dev);
1327 
1328 	if (have_full_constraints())
1329 		ret = -ENODEV;
1330 	else
1331 		ret = -EPROBE_DEFER;
1332 
1333 	mutex_lock(&regulator_list_mutex);
1334 
1335 	rdev = regulator_dev_lookup(dev, id, &ret);
1336 	if (rdev)
1337 		goto found;
1338 
1339 	regulator = ERR_PTR(ret);
1340 
1341 	/*
1342 	 * If we have return value from dev_lookup fail, we do not expect to
1343 	 * succeed, so, quit with appropriate error value
1344 	 */
1345 	if (ret && ret != -ENODEV)
1346 		goto out;
1347 
1348 	if (!devname)
1349 		devname = "deviceless";
1350 
1351 	/*
1352 	 * Assume that a regulator is physically present and enabled
1353 	 * even if it isn't hooked up and just provide a dummy.
1354 	 */
1355 	if (have_full_constraints() && allow_dummy) {
1356 		pr_warn("%s supply %s not found, using dummy regulator\n",
1357 			devname, id);
1358 
1359 		rdev = dummy_regulator_rdev;
1360 		goto found;
1361 	/* Don't log an error when called from regulator_get_optional() */
1362 	} else if (!have_full_constraints() || exclusive) {
1363 		dev_warn(dev, "dummy supplies not allowed\n");
1364 	}
1365 
1366 	mutex_unlock(&regulator_list_mutex);
1367 	return regulator;
1368 
1369 found:
1370 	if (rdev->exclusive) {
1371 		regulator = ERR_PTR(-EPERM);
1372 		goto out;
1373 	}
1374 
1375 	if (exclusive && rdev->open_count) {
1376 		regulator = ERR_PTR(-EBUSY);
1377 		goto out;
1378 	}
1379 
1380 	if (!try_module_get(rdev->owner))
1381 		goto out;
1382 
1383 	regulator = create_regulator(rdev, dev, id);
1384 	if (regulator == NULL) {
1385 		regulator = ERR_PTR(-ENOMEM);
1386 		module_put(rdev->owner);
1387 		goto out;
1388 	}
1389 
1390 	rdev->open_count++;
1391 	if (exclusive) {
1392 		rdev->exclusive = 1;
1393 
1394 		ret = _regulator_is_enabled(rdev);
1395 		if (ret > 0)
1396 			rdev->use_count = 1;
1397 		else
1398 			rdev->use_count = 0;
1399 	}
1400 
1401 out:
1402 	mutex_unlock(&regulator_list_mutex);
1403 
1404 	return regulator;
1405 }
1406 
1407 /**
1408  * regulator_get - lookup and obtain a reference to a regulator.
1409  * @dev: device for regulator "consumer"
1410  * @id: Supply name or regulator ID.
1411  *
1412  * Returns a struct regulator corresponding to the regulator producer,
1413  * or IS_ERR() condition containing errno.
1414  *
1415  * Use of supply names configured via regulator_set_device_supply() is
1416  * strongly encouraged.  It is recommended that the supply name used
1417  * should match the name used for the supply and/or the relevant
1418  * device pins in the datasheet.
1419  */
1420 struct regulator *regulator_get(struct device *dev, const char *id)
1421 {
1422 	return _regulator_get(dev, id, false, true);
1423 }
1424 EXPORT_SYMBOL_GPL(regulator_get);
1425 
1426 /**
1427  * regulator_get_exclusive - obtain exclusive access to a regulator.
1428  * @dev: device for regulator "consumer"
1429  * @id: Supply name or regulator ID.
1430  *
1431  * Returns a struct regulator corresponding to the regulator producer,
1432  * or IS_ERR() condition containing errno.  Other consumers will be
1433  * unable to obtain this reference is held and the use count for the
1434  * regulator will be initialised to reflect the current state of the
1435  * regulator.
1436  *
1437  * This is intended for use by consumers which cannot tolerate shared
1438  * use of the regulator such as those which need to force the
1439  * regulator off for correct operation of the hardware they are
1440  * controlling.
1441  *
1442  * Use of supply names configured via regulator_set_device_supply() is
1443  * strongly encouraged.  It is recommended that the supply name used
1444  * should match the name used for the supply and/or the relevant
1445  * device pins in the datasheet.
1446  */
1447 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448 {
1449 	return _regulator_get(dev, id, true, false);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452 
1453 /**
1454  * regulator_get_optional - obtain optional access to a regulator.
1455  * @dev: device for regulator "consumer"
1456  * @id: Supply name or regulator ID.
1457  *
1458  * Returns a struct regulator corresponding to the regulator producer,
1459  * or IS_ERR() condition containing errno.  Other consumers will be
1460  * unable to obtain this reference is held and the use count for the
1461  * regulator will be initialised to reflect the current state of the
1462  * regulator.
1463  *
1464  * This is intended for use by consumers for devices which can have
1465  * some supplies unconnected in normal use, such as some MMC devices.
1466  * It can allow the regulator core to provide stub supplies for other
1467  * supplies requested using normal regulator_get() calls without
1468  * disrupting the operation of drivers that can handle absent
1469  * supplies.
1470  *
1471  * Use of supply names configured via regulator_set_device_supply() is
1472  * strongly encouraged.  It is recommended that the supply name used
1473  * should match the name used for the supply and/or the relevant
1474  * device pins in the datasheet.
1475  */
1476 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477 {
1478 	return _regulator_get(dev, id, false, false);
1479 }
1480 EXPORT_SYMBOL_GPL(regulator_get_optional);
1481 
1482 /* Locks held by regulator_put() */
1483 static void _regulator_put(struct regulator *regulator)
1484 {
1485 	struct regulator_dev *rdev;
1486 
1487 	if (regulator == NULL || IS_ERR(regulator))
1488 		return;
1489 
1490 	rdev = regulator->rdev;
1491 
1492 	debugfs_remove_recursive(regulator->debugfs);
1493 
1494 	/* remove any sysfs entries */
1495 	if (regulator->dev)
1496 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497 	kfree(regulator->supply_name);
1498 	list_del(&regulator->list);
1499 	kfree(regulator);
1500 
1501 	rdev->open_count--;
1502 	rdev->exclusive = 0;
1503 
1504 	module_put(rdev->owner);
1505 }
1506 
1507 /**
1508  * regulator_put - "free" the regulator source
1509  * @regulator: regulator source
1510  *
1511  * Note: drivers must ensure that all regulator_enable calls made on this
1512  * regulator source are balanced by regulator_disable calls prior to calling
1513  * this function.
1514  */
1515 void regulator_put(struct regulator *regulator)
1516 {
1517 	mutex_lock(&regulator_list_mutex);
1518 	_regulator_put(regulator);
1519 	mutex_unlock(&regulator_list_mutex);
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_put);
1522 
1523 /**
1524  * regulator_register_supply_alias - Provide device alias for supply lookup
1525  *
1526  * @dev: device that will be given as the regulator "consumer"
1527  * @id: Supply name or regulator ID
1528  * @alias_dev: device that should be used to lookup the supply
1529  * @alias_id: Supply name or regulator ID that should be used to lookup the
1530  * supply
1531  *
1532  * All lookups for id on dev will instead be conducted for alias_id on
1533  * alias_dev.
1534  */
1535 int regulator_register_supply_alias(struct device *dev, const char *id,
1536 				    struct device *alias_dev,
1537 				    const char *alias_id)
1538 {
1539 	struct regulator_supply_alias *map;
1540 
1541 	map = regulator_find_supply_alias(dev, id);
1542 	if (map)
1543 		return -EEXIST;
1544 
1545 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546 	if (!map)
1547 		return -ENOMEM;
1548 
1549 	map->src_dev = dev;
1550 	map->src_supply = id;
1551 	map->alias_dev = alias_dev;
1552 	map->alias_supply = alias_id;
1553 
1554 	list_add(&map->list, &regulator_supply_alias_list);
1555 
1556 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562 
1563 /**
1564  * regulator_unregister_supply_alias - Remove device alias
1565  *
1566  * @dev: device that will be given as the regulator "consumer"
1567  * @id: Supply name or regulator ID
1568  *
1569  * Remove a lookup alias if one exists for id on dev.
1570  */
1571 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572 {
1573 	struct regulator_supply_alias *map;
1574 
1575 	map = regulator_find_supply_alias(dev, id);
1576 	if (map) {
1577 		list_del(&map->list);
1578 		kfree(map);
1579 	}
1580 }
1581 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582 
1583 /**
1584  * regulator_bulk_register_supply_alias - register multiple aliases
1585  *
1586  * @dev: device that will be given as the regulator "consumer"
1587  * @id: List of supply names or regulator IDs
1588  * @alias_dev: device that should be used to lookup the supply
1589  * @alias_id: List of supply names or regulator IDs that should be used to
1590  * lookup the supply
1591  * @num_id: Number of aliases to register
1592  *
1593  * @return 0 on success, an errno on failure.
1594  *
1595  * This helper function allows drivers to register several supply
1596  * aliases in one operation.  If any of the aliases cannot be
1597  * registered any aliases that were registered will be removed
1598  * before returning to the caller.
1599  */
1600 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601 					 struct device *alias_dev,
1602 					 const char **alias_id,
1603 					 int num_id)
1604 {
1605 	int i;
1606 	int ret;
1607 
1608 	for (i = 0; i < num_id; ++i) {
1609 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610 						      alias_id[i]);
1611 		if (ret < 0)
1612 			goto err;
1613 	}
1614 
1615 	return 0;
1616 
1617 err:
1618 	dev_err(dev,
1619 		"Failed to create supply alias %s,%s -> %s,%s\n",
1620 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621 
1622 	while (--i >= 0)
1623 		regulator_unregister_supply_alias(dev, id[i]);
1624 
1625 	return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628 
1629 /**
1630  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631  *
1632  * @dev: device that will be given as the regulator "consumer"
1633  * @id: List of supply names or regulator IDs
1634  * @num_id: Number of aliases to unregister
1635  *
1636  * This helper function allows drivers to unregister several supply
1637  * aliases in one operation.
1638  */
1639 void regulator_bulk_unregister_supply_alias(struct device *dev,
1640 					    const char **id,
1641 					    int num_id)
1642 {
1643 	int i;
1644 
1645 	for (i = 0; i < num_id; ++i)
1646 		regulator_unregister_supply_alias(dev, id[i]);
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649 
1650 
1651 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653 				const struct regulator_config *config)
1654 {
1655 	struct regulator_enable_gpio *pin;
1656 	int ret;
1657 
1658 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659 		if (pin->gpio == config->ena_gpio) {
1660 			rdev_dbg(rdev, "GPIO %d is already used\n",
1661 				config->ena_gpio);
1662 			goto update_ena_gpio_to_rdev;
1663 		}
1664 	}
1665 
1666 	ret = gpio_request_one(config->ena_gpio,
1667 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1668 				rdev_get_name(rdev));
1669 	if (ret)
1670 		return ret;
1671 
1672 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673 	if (pin == NULL) {
1674 		gpio_free(config->ena_gpio);
1675 		return -ENOMEM;
1676 	}
1677 
1678 	pin->gpio = config->ena_gpio;
1679 	pin->ena_gpio_invert = config->ena_gpio_invert;
1680 	list_add(&pin->list, &regulator_ena_gpio_list);
1681 
1682 update_ena_gpio_to_rdev:
1683 	pin->request_count++;
1684 	rdev->ena_pin = pin;
1685 	return 0;
1686 }
1687 
1688 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689 {
1690 	struct regulator_enable_gpio *pin, *n;
1691 
1692 	if (!rdev->ena_pin)
1693 		return;
1694 
1695 	/* Free the GPIO only in case of no use */
1696 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697 		if (pin->gpio == rdev->ena_pin->gpio) {
1698 			if (pin->request_count <= 1) {
1699 				pin->request_count = 0;
1700 				gpio_free(pin->gpio);
1701 				list_del(&pin->list);
1702 				kfree(pin);
1703 			} else {
1704 				pin->request_count--;
1705 			}
1706 		}
1707 	}
1708 }
1709 
1710 /**
1711  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712  * @rdev: regulator_dev structure
1713  * @enable: enable GPIO at initial use?
1714  *
1715  * GPIO is enabled in case of initial use. (enable_count is 0)
1716  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717  */
1718 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719 {
1720 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1721 
1722 	if (!pin)
1723 		return -EINVAL;
1724 
1725 	if (enable) {
1726 		/* Enable GPIO at initial use */
1727 		if (pin->enable_count == 0)
1728 			gpio_set_value_cansleep(pin->gpio,
1729 						!pin->ena_gpio_invert);
1730 
1731 		pin->enable_count++;
1732 	} else {
1733 		if (pin->enable_count > 1) {
1734 			pin->enable_count--;
1735 			return 0;
1736 		}
1737 
1738 		/* Disable GPIO if not used */
1739 		if (pin->enable_count <= 1) {
1740 			gpio_set_value_cansleep(pin->gpio,
1741 						pin->ena_gpio_invert);
1742 			pin->enable_count = 0;
1743 		}
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 static int _regulator_do_enable(struct regulator_dev *rdev)
1750 {
1751 	int ret, delay;
1752 
1753 	/* Query before enabling in case configuration dependent.  */
1754 	ret = _regulator_get_enable_time(rdev);
1755 	if (ret >= 0) {
1756 		delay = ret;
1757 	} else {
1758 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759 		delay = 0;
1760 	}
1761 
1762 	trace_regulator_enable(rdev_get_name(rdev));
1763 
1764 	if (rdev->ena_pin) {
1765 		ret = regulator_ena_gpio_ctrl(rdev, true);
1766 		if (ret < 0)
1767 			return ret;
1768 		rdev->ena_gpio_state = 1;
1769 	} else if (rdev->desc->ops->enable) {
1770 		ret = rdev->desc->ops->enable(rdev);
1771 		if (ret < 0)
1772 			return ret;
1773 	} else {
1774 		return -EINVAL;
1775 	}
1776 
1777 	/* Allow the regulator to ramp; it would be useful to extend
1778 	 * this for bulk operations so that the regulators can ramp
1779 	 * together.  */
1780 	trace_regulator_enable_delay(rdev_get_name(rdev));
1781 
1782 	/*
1783 	 * Delay for the requested amount of time as per the guidelines in:
1784 	 *
1785 	 *     Documentation/timers/timers-howto.txt
1786 	 *
1787 	 * The assumption here is that regulators will never be enabled in
1788 	 * atomic context and therefore sleeping functions can be used.
1789 	 */
1790 	if (delay) {
1791 		unsigned int ms = delay / 1000;
1792 		unsigned int us = delay % 1000;
1793 
1794 		if (ms > 0) {
1795 			/*
1796 			 * For small enough values, handle super-millisecond
1797 			 * delays in the usleep_range() call below.
1798 			 */
1799 			if (ms < 20)
1800 				us += ms * 1000;
1801 			else
1802 				msleep(ms);
1803 		}
1804 
1805 		/*
1806 		 * Give the scheduler some room to coalesce with any other
1807 		 * wakeup sources. For delays shorter than 10 us, don't even
1808 		 * bother setting up high-resolution timers and just busy-
1809 		 * loop.
1810 		 */
1811 		if (us >= 10)
1812 			usleep_range(us, us + 100);
1813 		else
1814 			udelay(us);
1815 	}
1816 
1817 	trace_regulator_enable_complete(rdev_get_name(rdev));
1818 
1819 	return 0;
1820 }
1821 
1822 /* locks held by regulator_enable() */
1823 static int _regulator_enable(struct regulator_dev *rdev)
1824 {
1825 	int ret;
1826 
1827 	/* check voltage and requested load before enabling */
1828 	if (rdev->constraints &&
1829 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830 		drms_uA_update(rdev);
1831 
1832 	if (rdev->use_count == 0) {
1833 		/* The regulator may on if it's not switchable or left on */
1834 		ret = _regulator_is_enabled(rdev);
1835 		if (ret == -EINVAL || ret == 0) {
1836 			if (!_regulator_can_change_status(rdev))
1837 				return -EPERM;
1838 
1839 			ret = _regulator_do_enable(rdev);
1840 			if (ret < 0)
1841 				return ret;
1842 
1843 		} else if (ret < 0) {
1844 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845 			return ret;
1846 		}
1847 		/* Fallthrough on positive return values - already enabled */
1848 	}
1849 
1850 	rdev->use_count++;
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * regulator_enable - enable regulator output
1857  * @regulator: regulator source
1858  *
1859  * Request that the regulator be enabled with the regulator output at
1860  * the predefined voltage or current value.  Calls to regulator_enable()
1861  * must be balanced with calls to regulator_disable().
1862  *
1863  * NOTE: the output value can be set by other drivers, boot loader or may be
1864  * hardwired in the regulator.
1865  */
1866 int regulator_enable(struct regulator *regulator)
1867 {
1868 	struct regulator_dev *rdev = regulator->rdev;
1869 	int ret = 0;
1870 
1871 	if (regulator->always_on)
1872 		return 0;
1873 
1874 	if (rdev->supply) {
1875 		ret = regulator_enable(rdev->supply);
1876 		if (ret != 0)
1877 			return ret;
1878 	}
1879 
1880 	mutex_lock(&rdev->mutex);
1881 	ret = _regulator_enable(rdev);
1882 	mutex_unlock(&rdev->mutex);
1883 
1884 	if (ret != 0 && rdev->supply)
1885 		regulator_disable(rdev->supply);
1886 
1887 	return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_enable);
1890 
1891 static int _regulator_do_disable(struct regulator_dev *rdev)
1892 {
1893 	int ret;
1894 
1895 	trace_regulator_disable(rdev_get_name(rdev));
1896 
1897 	if (rdev->ena_pin) {
1898 		ret = regulator_ena_gpio_ctrl(rdev, false);
1899 		if (ret < 0)
1900 			return ret;
1901 		rdev->ena_gpio_state = 0;
1902 
1903 	} else if (rdev->desc->ops->disable) {
1904 		ret = rdev->desc->ops->disable(rdev);
1905 		if (ret != 0)
1906 			return ret;
1907 	}
1908 
1909 	trace_regulator_disable_complete(rdev_get_name(rdev));
1910 
1911 	return 0;
1912 }
1913 
1914 /* locks held by regulator_disable() */
1915 static int _regulator_disable(struct regulator_dev *rdev)
1916 {
1917 	int ret = 0;
1918 
1919 	if (WARN(rdev->use_count <= 0,
1920 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921 		return -EIO;
1922 
1923 	/* are we the last user and permitted to disable ? */
1924 	if (rdev->use_count == 1 &&
1925 	    (rdev->constraints && !rdev->constraints->always_on)) {
1926 
1927 		/* we are last user */
1928 		if (_regulator_can_change_status(rdev)) {
1929 			ret = _regulator_do_disable(rdev);
1930 			if (ret < 0) {
1931 				rdev_err(rdev, "failed to disable\n");
1932 				return ret;
1933 			}
1934 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935 					NULL);
1936 		}
1937 
1938 		rdev->use_count = 0;
1939 	} else if (rdev->use_count > 1) {
1940 
1941 		if (rdev->constraints &&
1942 			(rdev->constraints->valid_ops_mask &
1943 			REGULATOR_CHANGE_DRMS))
1944 			drms_uA_update(rdev);
1945 
1946 		rdev->use_count--;
1947 	}
1948 
1949 	return ret;
1950 }
1951 
1952 /**
1953  * regulator_disable - disable regulator output
1954  * @regulator: regulator source
1955  *
1956  * Disable the regulator output voltage or current.  Calls to
1957  * regulator_enable() must be balanced with calls to
1958  * regulator_disable().
1959  *
1960  * NOTE: this will only disable the regulator output if no other consumer
1961  * devices have it enabled, the regulator device supports disabling and
1962  * machine constraints permit this operation.
1963  */
1964 int regulator_disable(struct regulator *regulator)
1965 {
1966 	struct regulator_dev *rdev = regulator->rdev;
1967 	int ret = 0;
1968 
1969 	if (regulator->always_on)
1970 		return 0;
1971 
1972 	mutex_lock(&rdev->mutex);
1973 	ret = _regulator_disable(rdev);
1974 	mutex_unlock(&rdev->mutex);
1975 
1976 	if (ret == 0 && rdev->supply)
1977 		regulator_disable(rdev->supply);
1978 
1979 	return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(regulator_disable);
1982 
1983 /* locks held by regulator_force_disable() */
1984 static int _regulator_force_disable(struct regulator_dev *rdev)
1985 {
1986 	int ret = 0;
1987 
1988 	ret = _regulator_do_disable(rdev);
1989 	if (ret < 0) {
1990 		rdev_err(rdev, "failed to force disable\n");
1991 		return ret;
1992 	}
1993 
1994 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995 			REGULATOR_EVENT_DISABLE, NULL);
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  * regulator_force_disable - force disable regulator output
2002  * @regulator: regulator source
2003  *
2004  * Forcibly disable the regulator output voltage or current.
2005  * NOTE: this *will* disable the regulator output even if other consumer
2006  * devices have it enabled. This should be used for situations when device
2007  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008  */
2009 int regulator_force_disable(struct regulator *regulator)
2010 {
2011 	struct regulator_dev *rdev = regulator->rdev;
2012 	int ret;
2013 
2014 	mutex_lock(&rdev->mutex);
2015 	regulator->uA_load = 0;
2016 	ret = _regulator_force_disable(regulator->rdev);
2017 	mutex_unlock(&rdev->mutex);
2018 
2019 	if (rdev->supply)
2020 		while (rdev->open_count--)
2021 			regulator_disable(rdev->supply);
2022 
2023 	return ret;
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_force_disable);
2026 
2027 static void regulator_disable_work(struct work_struct *work)
2028 {
2029 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030 						  disable_work.work);
2031 	int count, i, ret;
2032 
2033 	mutex_lock(&rdev->mutex);
2034 
2035 	BUG_ON(!rdev->deferred_disables);
2036 
2037 	count = rdev->deferred_disables;
2038 	rdev->deferred_disables = 0;
2039 
2040 	for (i = 0; i < count; i++) {
2041 		ret = _regulator_disable(rdev);
2042 		if (ret != 0)
2043 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044 	}
2045 
2046 	mutex_unlock(&rdev->mutex);
2047 
2048 	if (rdev->supply) {
2049 		for (i = 0; i < count; i++) {
2050 			ret = regulator_disable(rdev->supply);
2051 			if (ret != 0) {
2052 				rdev_err(rdev,
2053 					 "Supply disable failed: %d\n", ret);
2054 			}
2055 		}
2056 	}
2057 }
2058 
2059 /**
2060  * regulator_disable_deferred - disable regulator output with delay
2061  * @regulator: regulator source
2062  * @ms: miliseconds until the regulator is disabled
2063  *
2064  * Execute regulator_disable() on the regulator after a delay.  This
2065  * is intended for use with devices that require some time to quiesce.
2066  *
2067  * NOTE: this will only disable the regulator output if no other consumer
2068  * devices have it enabled, the regulator device supports disabling and
2069  * machine constraints permit this operation.
2070  */
2071 int regulator_disable_deferred(struct regulator *regulator, int ms)
2072 {
2073 	struct regulator_dev *rdev = regulator->rdev;
2074 	int ret;
2075 
2076 	if (regulator->always_on)
2077 		return 0;
2078 
2079 	if (!ms)
2080 		return regulator_disable(regulator);
2081 
2082 	mutex_lock(&rdev->mutex);
2083 	rdev->deferred_disables++;
2084 	mutex_unlock(&rdev->mutex);
2085 
2086 	ret = queue_delayed_work(system_power_efficient_wq,
2087 				 &rdev->disable_work,
2088 				 msecs_to_jiffies(ms));
2089 	if (ret < 0)
2090 		return ret;
2091 	else
2092 		return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095 
2096 static int _regulator_is_enabled(struct regulator_dev *rdev)
2097 {
2098 	/* A GPIO control always takes precedence */
2099 	if (rdev->ena_pin)
2100 		return rdev->ena_gpio_state;
2101 
2102 	/* If we don't know then assume that the regulator is always on */
2103 	if (!rdev->desc->ops->is_enabled)
2104 		return 1;
2105 
2106 	return rdev->desc->ops->is_enabled(rdev);
2107 }
2108 
2109 /**
2110  * regulator_is_enabled - is the regulator output enabled
2111  * @regulator: regulator source
2112  *
2113  * Returns positive if the regulator driver backing the source/client
2114  * has requested that the device be enabled, zero if it hasn't, else a
2115  * negative errno code.
2116  *
2117  * Note that the device backing this regulator handle can have multiple
2118  * users, so it might be enabled even if regulator_enable() was never
2119  * called for this particular source.
2120  */
2121 int regulator_is_enabled(struct regulator *regulator)
2122 {
2123 	int ret;
2124 
2125 	if (regulator->always_on)
2126 		return 1;
2127 
2128 	mutex_lock(&regulator->rdev->mutex);
2129 	ret = _regulator_is_enabled(regulator->rdev);
2130 	mutex_unlock(&regulator->rdev->mutex);
2131 
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135 
2136 /**
2137  * regulator_can_change_voltage - check if regulator can change voltage
2138  * @regulator: regulator source
2139  *
2140  * Returns positive if the regulator driver backing the source/client
2141  * can change its voltage, false otherwise. Usefull for detecting fixed
2142  * or dummy regulators and disabling voltage change logic in the client
2143  * driver.
2144  */
2145 int regulator_can_change_voltage(struct regulator *regulator)
2146 {
2147 	struct regulator_dev	*rdev = regulator->rdev;
2148 
2149 	if (rdev->constraints &&
2150 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152 			return 1;
2153 
2154 		if (rdev->desc->continuous_voltage_range &&
2155 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2157 			return 1;
2158 	}
2159 
2160 	return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163 
2164 /**
2165  * regulator_count_voltages - count regulator_list_voltage() selectors
2166  * @regulator: regulator source
2167  *
2168  * Returns number of selectors, or negative errno.  Selectors are
2169  * numbered starting at zero, and typically correspond to bitfields
2170  * in hardware registers.
2171  */
2172 int regulator_count_voltages(struct regulator *regulator)
2173 {
2174 	struct regulator_dev	*rdev = regulator->rdev;
2175 
2176 	return rdev->desc->n_voltages ? : -EINVAL;
2177 }
2178 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179 
2180 /**
2181  * regulator_list_voltage - enumerate supported voltages
2182  * @regulator: regulator source
2183  * @selector: identify voltage to list
2184  * Context: can sleep
2185  *
2186  * Returns a voltage that can be passed to @regulator_set_voltage(),
2187  * zero if this selector code can't be used on this system, or a
2188  * negative errno.
2189  */
2190 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191 {
2192 	struct regulator_dev	*rdev = regulator->rdev;
2193 	struct regulator_ops	*ops = rdev->desc->ops;
2194 	int			ret;
2195 
2196 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197 		return rdev->desc->fixed_uV;
2198 
2199 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200 		return -EINVAL;
2201 
2202 	mutex_lock(&rdev->mutex);
2203 	ret = ops->list_voltage(rdev, selector);
2204 	mutex_unlock(&rdev->mutex);
2205 
2206 	if (ret > 0) {
2207 		if (ret < rdev->constraints->min_uV)
2208 			ret = 0;
2209 		else if (ret > rdev->constraints->max_uV)
2210 			ret = 0;
2211 	}
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216 
2217 /**
2218  * regulator_get_linear_step - return the voltage step size between VSEL values
2219  * @regulator: regulator source
2220  *
2221  * Returns the voltage step size between VSEL values for linear
2222  * regulators, or return 0 if the regulator isn't a linear regulator.
2223  */
2224 unsigned int regulator_get_linear_step(struct regulator *regulator)
2225 {
2226 	struct regulator_dev *rdev = regulator->rdev;
2227 
2228 	return rdev->desc->uV_step;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231 
2232 /**
2233  * regulator_is_supported_voltage - check if a voltage range can be supported
2234  *
2235  * @regulator: Regulator to check.
2236  * @min_uV: Minimum required voltage in uV.
2237  * @max_uV: Maximum required voltage in uV.
2238  *
2239  * Returns a boolean or a negative error code.
2240  */
2241 int regulator_is_supported_voltage(struct regulator *regulator,
2242 				   int min_uV, int max_uV)
2243 {
2244 	struct regulator_dev *rdev = regulator->rdev;
2245 	int i, voltages, ret;
2246 
2247 	/* If we can't change voltage check the current voltage */
2248 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249 		ret = regulator_get_voltage(regulator);
2250 		if (ret >= 0)
2251 			return min_uV <= ret && ret <= max_uV;
2252 		else
2253 			return ret;
2254 	}
2255 
2256 	/* Any voltage within constrains range is fine? */
2257 	if (rdev->desc->continuous_voltage_range)
2258 		return min_uV >= rdev->constraints->min_uV &&
2259 				max_uV <= rdev->constraints->max_uV;
2260 
2261 	ret = regulator_count_voltages(regulator);
2262 	if (ret < 0)
2263 		return ret;
2264 	voltages = ret;
2265 
2266 	for (i = 0; i < voltages; i++) {
2267 		ret = regulator_list_voltage(regulator, i);
2268 
2269 		if (ret >= min_uV && ret <= max_uV)
2270 			return 1;
2271 	}
2272 
2273 	return 0;
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276 
2277 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278 				     int min_uV, int max_uV)
2279 {
2280 	int ret;
2281 	int delay = 0;
2282 	int best_val = 0;
2283 	unsigned int selector;
2284 	int old_selector = -1;
2285 
2286 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287 
2288 	min_uV += rdev->constraints->uV_offset;
2289 	max_uV += rdev->constraints->uV_offset;
2290 
2291 	/*
2292 	 * If we can't obtain the old selector there is not enough
2293 	 * info to call set_voltage_time_sel().
2294 	 */
2295 	if (_regulator_is_enabled(rdev) &&
2296 	    rdev->desc->ops->set_voltage_time_sel &&
2297 	    rdev->desc->ops->get_voltage_sel) {
2298 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299 		if (old_selector < 0)
2300 			return old_selector;
2301 	}
2302 
2303 	if (rdev->desc->ops->set_voltage) {
2304 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305 						   &selector);
2306 
2307 		if (ret >= 0) {
2308 			if (rdev->desc->ops->list_voltage)
2309 				best_val = rdev->desc->ops->list_voltage(rdev,
2310 									 selector);
2311 			else
2312 				best_val = _regulator_get_voltage(rdev);
2313 		}
2314 
2315 	} else if (rdev->desc->ops->set_voltage_sel) {
2316 		if (rdev->desc->ops->map_voltage) {
2317 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318 							   max_uV);
2319 		} else {
2320 			if (rdev->desc->ops->list_voltage ==
2321 			    regulator_list_voltage_linear)
2322 				ret = regulator_map_voltage_linear(rdev,
2323 								min_uV, max_uV);
2324 			else
2325 				ret = regulator_map_voltage_iterate(rdev,
2326 								min_uV, max_uV);
2327 		}
2328 
2329 		if (ret >= 0) {
2330 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331 			if (min_uV <= best_val && max_uV >= best_val) {
2332 				selector = ret;
2333 				if (old_selector == selector)
2334 					ret = 0;
2335 				else
2336 					ret = rdev->desc->ops->set_voltage_sel(
2337 								rdev, ret);
2338 			} else {
2339 				ret = -EINVAL;
2340 			}
2341 		}
2342 	} else {
2343 		ret = -EINVAL;
2344 	}
2345 
2346 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2347 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348 		&& old_selector != selector) {
2349 
2350 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351 						old_selector, selector);
2352 		if (delay < 0) {
2353 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354 				  delay);
2355 			delay = 0;
2356 		}
2357 
2358 		/* Insert any necessary delays */
2359 		if (delay >= 1000) {
2360 			mdelay(delay / 1000);
2361 			udelay(delay % 1000);
2362 		} else if (delay) {
2363 			udelay(delay);
2364 		}
2365 	}
2366 
2367 	if (ret == 0 && best_val >= 0) {
2368 		unsigned long data = best_val;
2369 
2370 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371 				     (void *)data);
2372 	}
2373 
2374 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375 
2376 	return ret;
2377 }
2378 
2379 /**
2380  * regulator_set_voltage - set regulator output voltage
2381  * @regulator: regulator source
2382  * @min_uV: Minimum required voltage in uV
2383  * @max_uV: Maximum acceptable voltage in uV
2384  *
2385  * Sets a voltage regulator to the desired output voltage. This can be set
2386  * during any regulator state. IOW, regulator can be disabled or enabled.
2387  *
2388  * If the regulator is enabled then the voltage will change to the new value
2389  * immediately otherwise if the regulator is disabled the regulator will
2390  * output at the new voltage when enabled.
2391  *
2392  * NOTE: If the regulator is shared between several devices then the lowest
2393  * request voltage that meets the system constraints will be used.
2394  * Regulator system constraints must be set for this regulator before
2395  * calling this function otherwise this call will fail.
2396  */
2397 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398 {
2399 	struct regulator_dev *rdev = regulator->rdev;
2400 	int ret = 0;
2401 	int old_min_uV, old_max_uV;
2402 
2403 	mutex_lock(&rdev->mutex);
2404 
2405 	/* If we're setting the same range as last time the change
2406 	 * should be a noop (some cpufreq implementations use the same
2407 	 * voltage for multiple frequencies, for example).
2408 	 */
2409 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2410 		goto out;
2411 
2412 	/* sanity check */
2413 	if (!rdev->desc->ops->set_voltage &&
2414 	    !rdev->desc->ops->set_voltage_sel) {
2415 		ret = -EINVAL;
2416 		goto out;
2417 	}
2418 
2419 	/* constraints check */
2420 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2421 	if (ret < 0)
2422 		goto out;
2423 
2424 	/* restore original values in case of error */
2425 	old_min_uV = regulator->min_uV;
2426 	old_max_uV = regulator->max_uV;
2427 	regulator->min_uV = min_uV;
2428 	regulator->max_uV = max_uV;
2429 
2430 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2431 	if (ret < 0)
2432 		goto out2;
2433 
2434 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2435 	if (ret < 0)
2436 		goto out2;
2437 
2438 out:
2439 	mutex_unlock(&rdev->mutex);
2440 	return ret;
2441 out2:
2442 	regulator->min_uV = old_min_uV;
2443 	regulator->max_uV = old_max_uV;
2444 	mutex_unlock(&rdev->mutex);
2445 	return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2448 
2449 /**
2450  * regulator_set_voltage_time - get raise/fall time
2451  * @regulator: regulator source
2452  * @old_uV: starting voltage in microvolts
2453  * @new_uV: target voltage in microvolts
2454  *
2455  * Provided with the starting and ending voltage, this function attempts to
2456  * calculate the time in microseconds required to rise or fall to this new
2457  * voltage.
2458  */
2459 int regulator_set_voltage_time(struct regulator *regulator,
2460 			       int old_uV, int new_uV)
2461 {
2462 	struct regulator_dev	*rdev = regulator->rdev;
2463 	struct regulator_ops	*ops = rdev->desc->ops;
2464 	int old_sel = -1;
2465 	int new_sel = -1;
2466 	int voltage;
2467 	int i;
2468 
2469 	/* Currently requires operations to do this */
2470 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2471 	    || !rdev->desc->n_voltages)
2472 		return -EINVAL;
2473 
2474 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2475 		/* We only look for exact voltage matches here */
2476 		voltage = regulator_list_voltage(regulator, i);
2477 		if (voltage < 0)
2478 			return -EINVAL;
2479 		if (voltage == 0)
2480 			continue;
2481 		if (voltage == old_uV)
2482 			old_sel = i;
2483 		if (voltage == new_uV)
2484 			new_sel = i;
2485 	}
2486 
2487 	if (old_sel < 0 || new_sel < 0)
2488 		return -EINVAL;
2489 
2490 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2491 }
2492 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2493 
2494 /**
2495  * regulator_set_voltage_time_sel - get raise/fall time
2496  * @rdev: regulator source device
2497  * @old_selector: selector for starting voltage
2498  * @new_selector: selector for target voltage
2499  *
2500  * Provided with the starting and target voltage selectors, this function
2501  * returns time in microseconds required to rise or fall to this new voltage
2502  *
2503  * Drivers providing ramp_delay in regulation_constraints can use this as their
2504  * set_voltage_time_sel() operation.
2505  */
2506 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2507 				   unsigned int old_selector,
2508 				   unsigned int new_selector)
2509 {
2510 	unsigned int ramp_delay = 0;
2511 	int old_volt, new_volt;
2512 
2513 	if (rdev->constraints->ramp_delay)
2514 		ramp_delay = rdev->constraints->ramp_delay;
2515 	else if (rdev->desc->ramp_delay)
2516 		ramp_delay = rdev->desc->ramp_delay;
2517 
2518 	if (ramp_delay == 0) {
2519 		rdev_warn(rdev, "ramp_delay not set\n");
2520 		return 0;
2521 	}
2522 
2523 	/* sanity check */
2524 	if (!rdev->desc->ops->list_voltage)
2525 		return -EINVAL;
2526 
2527 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2528 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2529 
2530 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2533 
2534 /**
2535  * regulator_sync_voltage - re-apply last regulator output voltage
2536  * @regulator: regulator source
2537  *
2538  * Re-apply the last configured voltage.  This is intended to be used
2539  * where some external control source the consumer is cooperating with
2540  * has caused the configured voltage to change.
2541  */
2542 int regulator_sync_voltage(struct regulator *regulator)
2543 {
2544 	struct regulator_dev *rdev = regulator->rdev;
2545 	int ret, min_uV, max_uV;
2546 
2547 	mutex_lock(&rdev->mutex);
2548 
2549 	if (!rdev->desc->ops->set_voltage &&
2550 	    !rdev->desc->ops->set_voltage_sel) {
2551 		ret = -EINVAL;
2552 		goto out;
2553 	}
2554 
2555 	/* This is only going to work if we've had a voltage configured. */
2556 	if (!regulator->min_uV && !regulator->max_uV) {
2557 		ret = -EINVAL;
2558 		goto out;
2559 	}
2560 
2561 	min_uV = regulator->min_uV;
2562 	max_uV = regulator->max_uV;
2563 
2564 	/* This should be a paranoia check... */
2565 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2566 	if (ret < 0)
2567 		goto out;
2568 
2569 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2570 	if (ret < 0)
2571 		goto out;
2572 
2573 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2574 
2575 out:
2576 	mutex_unlock(&rdev->mutex);
2577 	return ret;
2578 }
2579 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2580 
2581 static int _regulator_get_voltage(struct regulator_dev *rdev)
2582 {
2583 	int sel, ret;
2584 
2585 	if (rdev->desc->ops->get_voltage_sel) {
2586 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2587 		if (sel < 0)
2588 			return sel;
2589 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2590 	} else if (rdev->desc->ops->get_voltage) {
2591 		ret = rdev->desc->ops->get_voltage(rdev);
2592 	} else if (rdev->desc->ops->list_voltage) {
2593 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2594 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2595 		ret = rdev->desc->fixed_uV;
2596 	} else {
2597 		return -EINVAL;
2598 	}
2599 
2600 	if (ret < 0)
2601 		return ret;
2602 	return ret - rdev->constraints->uV_offset;
2603 }
2604 
2605 /**
2606  * regulator_get_voltage - get regulator output voltage
2607  * @regulator: regulator source
2608  *
2609  * This returns the current regulator voltage in uV.
2610  *
2611  * NOTE: If the regulator is disabled it will return the voltage value. This
2612  * function should not be used to determine regulator state.
2613  */
2614 int regulator_get_voltage(struct regulator *regulator)
2615 {
2616 	int ret;
2617 
2618 	mutex_lock(&regulator->rdev->mutex);
2619 
2620 	ret = _regulator_get_voltage(regulator->rdev);
2621 
2622 	mutex_unlock(&regulator->rdev->mutex);
2623 
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2627 
2628 /**
2629  * regulator_set_current_limit - set regulator output current limit
2630  * @regulator: regulator source
2631  * @min_uA: Minimum supported current in uA
2632  * @max_uA: Maximum supported current in uA
2633  *
2634  * Sets current sink to the desired output current. This can be set during
2635  * any regulator state. IOW, regulator can be disabled or enabled.
2636  *
2637  * If the regulator is enabled then the current will change to the new value
2638  * immediately otherwise if the regulator is disabled the regulator will
2639  * output at the new current when enabled.
2640  *
2641  * NOTE: Regulator system constraints must be set for this regulator before
2642  * calling this function otherwise this call will fail.
2643  */
2644 int regulator_set_current_limit(struct regulator *regulator,
2645 			       int min_uA, int max_uA)
2646 {
2647 	struct regulator_dev *rdev = regulator->rdev;
2648 	int ret;
2649 
2650 	mutex_lock(&rdev->mutex);
2651 
2652 	/* sanity check */
2653 	if (!rdev->desc->ops->set_current_limit) {
2654 		ret = -EINVAL;
2655 		goto out;
2656 	}
2657 
2658 	/* constraints check */
2659 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2664 out:
2665 	mutex_unlock(&rdev->mutex);
2666 	return ret;
2667 }
2668 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2669 
2670 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2671 {
2672 	int ret;
2673 
2674 	mutex_lock(&rdev->mutex);
2675 
2676 	/* sanity check */
2677 	if (!rdev->desc->ops->get_current_limit) {
2678 		ret = -EINVAL;
2679 		goto out;
2680 	}
2681 
2682 	ret = rdev->desc->ops->get_current_limit(rdev);
2683 out:
2684 	mutex_unlock(&rdev->mutex);
2685 	return ret;
2686 }
2687 
2688 /**
2689  * regulator_get_current_limit - get regulator output current
2690  * @regulator: regulator source
2691  *
2692  * This returns the current supplied by the specified current sink in uA.
2693  *
2694  * NOTE: If the regulator is disabled it will return the current value. This
2695  * function should not be used to determine regulator state.
2696  */
2697 int regulator_get_current_limit(struct regulator *regulator)
2698 {
2699 	return _regulator_get_current_limit(regulator->rdev);
2700 }
2701 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2702 
2703 /**
2704  * regulator_set_mode - set regulator operating mode
2705  * @regulator: regulator source
2706  * @mode: operating mode - one of the REGULATOR_MODE constants
2707  *
2708  * Set regulator operating mode to increase regulator efficiency or improve
2709  * regulation performance.
2710  *
2711  * NOTE: Regulator system constraints must be set for this regulator before
2712  * calling this function otherwise this call will fail.
2713  */
2714 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2715 {
2716 	struct regulator_dev *rdev = regulator->rdev;
2717 	int ret;
2718 	int regulator_curr_mode;
2719 
2720 	mutex_lock(&rdev->mutex);
2721 
2722 	/* sanity check */
2723 	if (!rdev->desc->ops->set_mode) {
2724 		ret = -EINVAL;
2725 		goto out;
2726 	}
2727 
2728 	/* return if the same mode is requested */
2729 	if (rdev->desc->ops->get_mode) {
2730 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2731 		if (regulator_curr_mode == mode) {
2732 			ret = 0;
2733 			goto out;
2734 		}
2735 	}
2736 
2737 	/* constraints check */
2738 	ret = regulator_mode_constrain(rdev, &mode);
2739 	if (ret < 0)
2740 		goto out;
2741 
2742 	ret = rdev->desc->ops->set_mode(rdev, mode);
2743 out:
2744 	mutex_unlock(&rdev->mutex);
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_set_mode);
2748 
2749 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2750 {
2751 	int ret;
2752 
2753 	mutex_lock(&rdev->mutex);
2754 
2755 	/* sanity check */
2756 	if (!rdev->desc->ops->get_mode) {
2757 		ret = -EINVAL;
2758 		goto out;
2759 	}
2760 
2761 	ret = rdev->desc->ops->get_mode(rdev);
2762 out:
2763 	mutex_unlock(&rdev->mutex);
2764 	return ret;
2765 }
2766 
2767 /**
2768  * regulator_get_mode - get regulator operating mode
2769  * @regulator: regulator source
2770  *
2771  * Get the current regulator operating mode.
2772  */
2773 unsigned int regulator_get_mode(struct regulator *regulator)
2774 {
2775 	return _regulator_get_mode(regulator->rdev);
2776 }
2777 EXPORT_SYMBOL_GPL(regulator_get_mode);
2778 
2779 /**
2780  * regulator_set_optimum_mode - set regulator optimum operating mode
2781  * @regulator: regulator source
2782  * @uA_load: load current
2783  *
2784  * Notifies the regulator core of a new device load. This is then used by
2785  * DRMS (if enabled by constraints) to set the most efficient regulator
2786  * operating mode for the new regulator loading.
2787  *
2788  * Consumer devices notify their supply regulator of the maximum power
2789  * they will require (can be taken from device datasheet in the power
2790  * consumption tables) when they change operational status and hence power
2791  * state. Examples of operational state changes that can affect power
2792  * consumption are :-
2793  *
2794  *    o Device is opened / closed.
2795  *    o Device I/O is about to begin or has just finished.
2796  *    o Device is idling in between work.
2797  *
2798  * This information is also exported via sysfs to userspace.
2799  *
2800  * DRMS will sum the total requested load on the regulator and change
2801  * to the most efficient operating mode if platform constraints allow.
2802  *
2803  * Returns the new regulator mode or error.
2804  */
2805 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2806 {
2807 	struct regulator_dev *rdev = regulator->rdev;
2808 	struct regulator *consumer;
2809 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2810 	unsigned int mode;
2811 
2812 	if (rdev->supply)
2813 		input_uV = regulator_get_voltage(rdev->supply);
2814 
2815 	mutex_lock(&rdev->mutex);
2816 
2817 	/*
2818 	 * first check to see if we can set modes at all, otherwise just
2819 	 * tell the consumer everything is OK.
2820 	 */
2821 	regulator->uA_load = uA_load;
2822 	ret = regulator_check_drms(rdev);
2823 	if (ret < 0) {
2824 		ret = 0;
2825 		goto out;
2826 	}
2827 
2828 	if (!rdev->desc->ops->get_optimum_mode)
2829 		goto out;
2830 
2831 	/*
2832 	 * we can actually do this so any errors are indicators of
2833 	 * potential real failure.
2834 	 */
2835 	ret = -EINVAL;
2836 
2837 	if (!rdev->desc->ops->set_mode)
2838 		goto out;
2839 
2840 	/* get output voltage */
2841 	output_uV = _regulator_get_voltage(rdev);
2842 	if (output_uV <= 0) {
2843 		rdev_err(rdev, "invalid output voltage found\n");
2844 		goto out;
2845 	}
2846 
2847 	/* No supply? Use constraint voltage */
2848 	if (input_uV <= 0)
2849 		input_uV = rdev->constraints->input_uV;
2850 	if (input_uV <= 0) {
2851 		rdev_err(rdev, "invalid input voltage found\n");
2852 		goto out;
2853 	}
2854 
2855 	/* calc total requested load for this regulator */
2856 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2857 		total_uA_load += consumer->uA_load;
2858 
2859 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2860 						 input_uV, output_uV,
2861 						 total_uA_load);
2862 	ret = regulator_mode_constrain(rdev, &mode);
2863 	if (ret < 0) {
2864 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2865 			 total_uA_load, input_uV, output_uV);
2866 		goto out;
2867 	}
2868 
2869 	ret = rdev->desc->ops->set_mode(rdev, mode);
2870 	if (ret < 0) {
2871 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2872 		goto out;
2873 	}
2874 	ret = mode;
2875 out:
2876 	mutex_unlock(&rdev->mutex);
2877 	return ret;
2878 }
2879 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2880 
2881 /**
2882  * regulator_allow_bypass - allow the regulator to go into bypass mode
2883  *
2884  * @regulator: Regulator to configure
2885  * @enable: enable or disable bypass mode
2886  *
2887  * Allow the regulator to go into bypass mode if all other consumers
2888  * for the regulator also enable bypass mode and the machine
2889  * constraints allow this.  Bypass mode means that the regulator is
2890  * simply passing the input directly to the output with no regulation.
2891  */
2892 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2893 {
2894 	struct regulator_dev *rdev = regulator->rdev;
2895 	int ret = 0;
2896 
2897 	if (!rdev->desc->ops->set_bypass)
2898 		return 0;
2899 
2900 	if (rdev->constraints &&
2901 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2902 		return 0;
2903 
2904 	mutex_lock(&rdev->mutex);
2905 
2906 	if (enable && !regulator->bypass) {
2907 		rdev->bypass_count++;
2908 
2909 		if (rdev->bypass_count == rdev->open_count) {
2910 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2911 			if (ret != 0)
2912 				rdev->bypass_count--;
2913 		}
2914 
2915 	} else if (!enable && regulator->bypass) {
2916 		rdev->bypass_count--;
2917 
2918 		if (rdev->bypass_count != rdev->open_count) {
2919 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2920 			if (ret != 0)
2921 				rdev->bypass_count++;
2922 		}
2923 	}
2924 
2925 	if (ret == 0)
2926 		regulator->bypass = enable;
2927 
2928 	mutex_unlock(&rdev->mutex);
2929 
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2933 
2934 /**
2935  * regulator_register_notifier - register regulator event notifier
2936  * @regulator: regulator source
2937  * @nb: notifier block
2938  *
2939  * Register notifier block to receive regulator events.
2940  */
2941 int regulator_register_notifier(struct regulator *regulator,
2942 			      struct notifier_block *nb)
2943 {
2944 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2945 						nb);
2946 }
2947 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2948 
2949 /**
2950  * regulator_unregister_notifier - unregister regulator event notifier
2951  * @regulator: regulator source
2952  * @nb: notifier block
2953  *
2954  * Unregister regulator event notifier block.
2955  */
2956 int regulator_unregister_notifier(struct regulator *regulator,
2957 				struct notifier_block *nb)
2958 {
2959 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2960 						  nb);
2961 }
2962 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2963 
2964 /* notify regulator consumers and downstream regulator consumers.
2965  * Note mutex must be held by caller.
2966  */
2967 static void _notifier_call_chain(struct regulator_dev *rdev,
2968 				  unsigned long event, void *data)
2969 {
2970 	/* call rdev chain first */
2971 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2972 }
2973 
2974 /**
2975  * regulator_bulk_get - get multiple regulator consumers
2976  *
2977  * @dev:           Device to supply
2978  * @num_consumers: Number of consumers to register
2979  * @consumers:     Configuration of consumers; clients are stored here.
2980  *
2981  * @return 0 on success, an errno on failure.
2982  *
2983  * This helper function allows drivers to get several regulator
2984  * consumers in one operation.  If any of the regulators cannot be
2985  * acquired then any regulators that were allocated will be freed
2986  * before returning to the caller.
2987  */
2988 int regulator_bulk_get(struct device *dev, int num_consumers,
2989 		       struct regulator_bulk_data *consumers)
2990 {
2991 	int i;
2992 	int ret;
2993 
2994 	for (i = 0; i < num_consumers; i++)
2995 		consumers[i].consumer = NULL;
2996 
2997 	for (i = 0; i < num_consumers; i++) {
2998 		consumers[i].consumer = regulator_get(dev,
2999 						      consumers[i].supply);
3000 		if (IS_ERR(consumers[i].consumer)) {
3001 			ret = PTR_ERR(consumers[i].consumer);
3002 			dev_err(dev, "Failed to get supply '%s': %d\n",
3003 				consumers[i].supply, ret);
3004 			consumers[i].consumer = NULL;
3005 			goto err;
3006 		}
3007 	}
3008 
3009 	return 0;
3010 
3011 err:
3012 	while (--i >= 0)
3013 		regulator_put(consumers[i].consumer);
3014 
3015 	return ret;
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3018 
3019 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3020 {
3021 	struct regulator_bulk_data *bulk = data;
3022 
3023 	bulk->ret = regulator_enable(bulk->consumer);
3024 }
3025 
3026 /**
3027  * regulator_bulk_enable - enable multiple regulator consumers
3028  *
3029  * @num_consumers: Number of consumers
3030  * @consumers:     Consumer data; clients are stored here.
3031  * @return         0 on success, an errno on failure
3032  *
3033  * This convenience API allows consumers to enable multiple regulator
3034  * clients in a single API call.  If any consumers cannot be enabled
3035  * then any others that were enabled will be disabled again prior to
3036  * return.
3037  */
3038 int regulator_bulk_enable(int num_consumers,
3039 			  struct regulator_bulk_data *consumers)
3040 {
3041 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3042 	int i;
3043 	int ret = 0;
3044 
3045 	for (i = 0; i < num_consumers; i++) {
3046 		if (consumers[i].consumer->always_on)
3047 			consumers[i].ret = 0;
3048 		else
3049 			async_schedule_domain(regulator_bulk_enable_async,
3050 					      &consumers[i], &async_domain);
3051 	}
3052 
3053 	async_synchronize_full_domain(&async_domain);
3054 
3055 	/* If any consumer failed we need to unwind any that succeeded */
3056 	for (i = 0; i < num_consumers; i++) {
3057 		if (consumers[i].ret != 0) {
3058 			ret = consumers[i].ret;
3059 			goto err;
3060 		}
3061 	}
3062 
3063 	return 0;
3064 
3065 err:
3066 	for (i = 0; i < num_consumers; i++) {
3067 		if (consumers[i].ret < 0)
3068 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3069 			       consumers[i].ret);
3070 		else
3071 			regulator_disable(consumers[i].consumer);
3072 	}
3073 
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3077 
3078 /**
3079  * regulator_bulk_disable - disable multiple regulator consumers
3080  *
3081  * @num_consumers: Number of consumers
3082  * @consumers:     Consumer data; clients are stored here.
3083  * @return         0 on success, an errno on failure
3084  *
3085  * This convenience API allows consumers to disable multiple regulator
3086  * clients in a single API call.  If any consumers cannot be disabled
3087  * then any others that were disabled will be enabled again prior to
3088  * return.
3089  */
3090 int regulator_bulk_disable(int num_consumers,
3091 			   struct regulator_bulk_data *consumers)
3092 {
3093 	int i;
3094 	int ret, r;
3095 
3096 	for (i = num_consumers - 1; i >= 0; --i) {
3097 		ret = regulator_disable(consumers[i].consumer);
3098 		if (ret != 0)
3099 			goto err;
3100 	}
3101 
3102 	return 0;
3103 
3104 err:
3105 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3106 	for (++i; i < num_consumers; ++i) {
3107 		r = regulator_enable(consumers[i].consumer);
3108 		if (r != 0)
3109 			pr_err("Failed to reename %s: %d\n",
3110 			       consumers[i].supply, r);
3111 	}
3112 
3113 	return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3116 
3117 /**
3118  * regulator_bulk_force_disable - force disable multiple regulator consumers
3119  *
3120  * @num_consumers: Number of consumers
3121  * @consumers:     Consumer data; clients are stored here.
3122  * @return         0 on success, an errno on failure
3123  *
3124  * This convenience API allows consumers to forcibly disable multiple regulator
3125  * clients in a single API call.
3126  * NOTE: This should be used for situations when device damage will
3127  * likely occur if the regulators are not disabled (e.g. over temp).
3128  * Although regulator_force_disable function call for some consumers can
3129  * return error numbers, the function is called for all consumers.
3130  */
3131 int regulator_bulk_force_disable(int num_consumers,
3132 			   struct regulator_bulk_data *consumers)
3133 {
3134 	int i;
3135 	int ret;
3136 
3137 	for (i = 0; i < num_consumers; i++)
3138 		consumers[i].ret =
3139 			    regulator_force_disable(consumers[i].consumer);
3140 
3141 	for (i = 0; i < num_consumers; i++) {
3142 		if (consumers[i].ret != 0) {
3143 			ret = consumers[i].ret;
3144 			goto out;
3145 		}
3146 	}
3147 
3148 	return 0;
3149 out:
3150 	return ret;
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3153 
3154 /**
3155  * regulator_bulk_free - free multiple regulator consumers
3156  *
3157  * @num_consumers: Number of consumers
3158  * @consumers:     Consumer data; clients are stored here.
3159  *
3160  * This convenience API allows consumers to free multiple regulator
3161  * clients in a single API call.
3162  */
3163 void regulator_bulk_free(int num_consumers,
3164 			 struct regulator_bulk_data *consumers)
3165 {
3166 	int i;
3167 
3168 	for (i = 0; i < num_consumers; i++) {
3169 		regulator_put(consumers[i].consumer);
3170 		consumers[i].consumer = NULL;
3171 	}
3172 }
3173 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3174 
3175 /**
3176  * regulator_notifier_call_chain - call regulator event notifier
3177  * @rdev: regulator source
3178  * @event: notifier block
3179  * @data: callback-specific data.
3180  *
3181  * Called by regulator drivers to notify clients a regulator event has
3182  * occurred. We also notify regulator clients downstream.
3183  * Note lock must be held by caller.
3184  */
3185 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3186 				  unsigned long event, void *data)
3187 {
3188 	_notifier_call_chain(rdev, event, data);
3189 	return NOTIFY_DONE;
3190 
3191 }
3192 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3193 
3194 /**
3195  * regulator_mode_to_status - convert a regulator mode into a status
3196  *
3197  * @mode: Mode to convert
3198  *
3199  * Convert a regulator mode into a status.
3200  */
3201 int regulator_mode_to_status(unsigned int mode)
3202 {
3203 	switch (mode) {
3204 	case REGULATOR_MODE_FAST:
3205 		return REGULATOR_STATUS_FAST;
3206 	case REGULATOR_MODE_NORMAL:
3207 		return REGULATOR_STATUS_NORMAL;
3208 	case REGULATOR_MODE_IDLE:
3209 		return REGULATOR_STATUS_IDLE;
3210 	case REGULATOR_MODE_STANDBY:
3211 		return REGULATOR_STATUS_STANDBY;
3212 	default:
3213 		return REGULATOR_STATUS_UNDEFINED;
3214 	}
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3217 
3218 /*
3219  * To avoid cluttering sysfs (and memory) with useless state, only
3220  * create attributes that can be meaningfully displayed.
3221  */
3222 static int add_regulator_attributes(struct regulator_dev *rdev)
3223 {
3224 	struct device		*dev = &rdev->dev;
3225 	struct regulator_ops	*ops = rdev->desc->ops;
3226 	int			status = 0;
3227 
3228 	/* some attributes need specific methods to be displayed */
3229 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3230 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3231 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3232 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3233 		status = device_create_file(dev, &dev_attr_microvolts);
3234 		if (status < 0)
3235 			return status;
3236 	}
3237 	if (ops->get_current_limit) {
3238 		status = device_create_file(dev, &dev_attr_microamps);
3239 		if (status < 0)
3240 			return status;
3241 	}
3242 	if (ops->get_mode) {
3243 		status = device_create_file(dev, &dev_attr_opmode);
3244 		if (status < 0)
3245 			return status;
3246 	}
3247 	if (rdev->ena_pin || ops->is_enabled) {
3248 		status = device_create_file(dev, &dev_attr_state);
3249 		if (status < 0)
3250 			return status;
3251 	}
3252 	if (ops->get_status) {
3253 		status = device_create_file(dev, &dev_attr_status);
3254 		if (status < 0)
3255 			return status;
3256 	}
3257 	if (ops->get_bypass) {
3258 		status = device_create_file(dev, &dev_attr_bypass);
3259 		if (status < 0)
3260 			return status;
3261 	}
3262 
3263 	/* some attributes are type-specific */
3264 	if (rdev->desc->type == REGULATOR_CURRENT) {
3265 		status = device_create_file(dev, &dev_attr_requested_microamps);
3266 		if (status < 0)
3267 			return status;
3268 	}
3269 
3270 	/* all the other attributes exist to support constraints;
3271 	 * don't show them if there are no constraints, or if the
3272 	 * relevant supporting methods are missing.
3273 	 */
3274 	if (!rdev->constraints)
3275 		return status;
3276 
3277 	/* constraints need specific supporting methods */
3278 	if (ops->set_voltage || ops->set_voltage_sel) {
3279 		status = device_create_file(dev, &dev_attr_min_microvolts);
3280 		if (status < 0)
3281 			return status;
3282 		status = device_create_file(dev, &dev_attr_max_microvolts);
3283 		if (status < 0)
3284 			return status;
3285 	}
3286 	if (ops->set_current_limit) {
3287 		status = device_create_file(dev, &dev_attr_min_microamps);
3288 		if (status < 0)
3289 			return status;
3290 		status = device_create_file(dev, &dev_attr_max_microamps);
3291 		if (status < 0)
3292 			return status;
3293 	}
3294 
3295 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3296 	if (status < 0)
3297 		return status;
3298 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3299 	if (status < 0)
3300 		return status;
3301 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3302 	if (status < 0)
3303 		return status;
3304 
3305 	if (ops->set_suspend_voltage) {
3306 		status = device_create_file(dev,
3307 				&dev_attr_suspend_standby_microvolts);
3308 		if (status < 0)
3309 			return status;
3310 		status = device_create_file(dev,
3311 				&dev_attr_suspend_mem_microvolts);
3312 		if (status < 0)
3313 			return status;
3314 		status = device_create_file(dev,
3315 				&dev_attr_suspend_disk_microvolts);
3316 		if (status < 0)
3317 			return status;
3318 	}
3319 
3320 	if (ops->set_suspend_mode) {
3321 		status = device_create_file(dev,
3322 				&dev_attr_suspend_standby_mode);
3323 		if (status < 0)
3324 			return status;
3325 		status = device_create_file(dev,
3326 				&dev_attr_suspend_mem_mode);
3327 		if (status < 0)
3328 			return status;
3329 		status = device_create_file(dev,
3330 				&dev_attr_suspend_disk_mode);
3331 		if (status < 0)
3332 			return status;
3333 	}
3334 
3335 	return status;
3336 }
3337 
3338 static void rdev_init_debugfs(struct regulator_dev *rdev)
3339 {
3340 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3341 	if (!rdev->debugfs) {
3342 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3343 		return;
3344 	}
3345 
3346 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3347 			   &rdev->use_count);
3348 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3349 			   &rdev->open_count);
3350 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3351 			   &rdev->bypass_count);
3352 }
3353 
3354 /**
3355  * regulator_register - register regulator
3356  * @regulator_desc: regulator to register
3357  * @config: runtime configuration for regulator
3358  *
3359  * Called by regulator drivers to register a regulator.
3360  * Returns a valid pointer to struct regulator_dev on success
3361  * or an ERR_PTR() on error.
3362  */
3363 struct regulator_dev *
3364 regulator_register(const struct regulator_desc *regulator_desc,
3365 		   const struct regulator_config *config)
3366 {
3367 	const struct regulation_constraints *constraints = NULL;
3368 	const struct regulator_init_data *init_data;
3369 	static atomic_t regulator_no = ATOMIC_INIT(0);
3370 	struct regulator_dev *rdev;
3371 	struct device *dev;
3372 	int ret, i;
3373 	const char *supply = NULL;
3374 
3375 	if (regulator_desc == NULL || config == NULL)
3376 		return ERR_PTR(-EINVAL);
3377 
3378 	dev = config->dev;
3379 	WARN_ON(!dev);
3380 
3381 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3382 		return ERR_PTR(-EINVAL);
3383 
3384 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3385 	    regulator_desc->type != REGULATOR_CURRENT)
3386 		return ERR_PTR(-EINVAL);
3387 
3388 	/* Only one of each should be implemented */
3389 	WARN_ON(regulator_desc->ops->get_voltage &&
3390 		regulator_desc->ops->get_voltage_sel);
3391 	WARN_ON(regulator_desc->ops->set_voltage &&
3392 		regulator_desc->ops->set_voltage_sel);
3393 
3394 	/* If we're using selectors we must implement list_voltage. */
3395 	if (regulator_desc->ops->get_voltage_sel &&
3396 	    !regulator_desc->ops->list_voltage) {
3397 		return ERR_PTR(-EINVAL);
3398 	}
3399 	if (regulator_desc->ops->set_voltage_sel &&
3400 	    !regulator_desc->ops->list_voltage) {
3401 		return ERR_PTR(-EINVAL);
3402 	}
3403 
3404 	init_data = config->init_data;
3405 
3406 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3407 	if (rdev == NULL)
3408 		return ERR_PTR(-ENOMEM);
3409 
3410 	mutex_lock(&regulator_list_mutex);
3411 
3412 	mutex_init(&rdev->mutex);
3413 	rdev->reg_data = config->driver_data;
3414 	rdev->owner = regulator_desc->owner;
3415 	rdev->desc = regulator_desc;
3416 	if (config->regmap)
3417 		rdev->regmap = config->regmap;
3418 	else if (dev_get_regmap(dev, NULL))
3419 		rdev->regmap = dev_get_regmap(dev, NULL);
3420 	else if (dev->parent)
3421 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3422 	INIT_LIST_HEAD(&rdev->consumer_list);
3423 	INIT_LIST_HEAD(&rdev->list);
3424 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3425 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3426 
3427 	/* preform any regulator specific init */
3428 	if (init_data && init_data->regulator_init) {
3429 		ret = init_data->regulator_init(rdev->reg_data);
3430 		if (ret < 0)
3431 			goto clean;
3432 	}
3433 
3434 	/* register with sysfs */
3435 	rdev->dev.class = &regulator_class;
3436 	rdev->dev.of_node = config->of_node;
3437 	rdev->dev.parent = dev;
3438 	dev_set_name(&rdev->dev, "regulator.%d",
3439 		     atomic_inc_return(&regulator_no) - 1);
3440 	ret = device_register(&rdev->dev);
3441 	if (ret != 0) {
3442 		put_device(&rdev->dev);
3443 		goto clean;
3444 	}
3445 
3446 	dev_set_drvdata(&rdev->dev, rdev);
3447 
3448 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3449 		ret = regulator_ena_gpio_request(rdev, config);
3450 		if (ret != 0) {
3451 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3452 				 config->ena_gpio, ret);
3453 			goto wash;
3454 		}
3455 
3456 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3457 			rdev->ena_gpio_state = 1;
3458 
3459 		if (config->ena_gpio_invert)
3460 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3461 	}
3462 
3463 	/* set regulator constraints */
3464 	if (init_data)
3465 		constraints = &init_data->constraints;
3466 
3467 	ret = set_machine_constraints(rdev, constraints);
3468 	if (ret < 0)
3469 		goto scrub;
3470 
3471 	/* add attributes supported by this regulator */
3472 	ret = add_regulator_attributes(rdev);
3473 	if (ret < 0)
3474 		goto scrub;
3475 
3476 	if (init_data && init_data->supply_regulator)
3477 		supply = init_data->supply_regulator;
3478 	else if (regulator_desc->supply_name)
3479 		supply = regulator_desc->supply_name;
3480 
3481 	if (supply) {
3482 		struct regulator_dev *r;
3483 
3484 		r = regulator_dev_lookup(dev, supply, &ret);
3485 
3486 		if (ret == -ENODEV) {
3487 			/*
3488 			 * No supply was specified for this regulator and
3489 			 * there will never be one.
3490 			 */
3491 			ret = 0;
3492 			goto add_dev;
3493 		} else if (!r) {
3494 			dev_err(dev, "Failed to find supply %s\n", supply);
3495 			ret = -EPROBE_DEFER;
3496 			goto scrub;
3497 		}
3498 
3499 		ret = set_supply(rdev, r);
3500 		if (ret < 0)
3501 			goto scrub;
3502 
3503 		/* Enable supply if rail is enabled */
3504 		if (_regulator_is_enabled(rdev)) {
3505 			ret = regulator_enable(rdev->supply);
3506 			if (ret < 0)
3507 				goto scrub;
3508 		}
3509 	}
3510 
3511 add_dev:
3512 	/* add consumers devices */
3513 	if (init_data) {
3514 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3515 			ret = set_consumer_device_supply(rdev,
3516 				init_data->consumer_supplies[i].dev_name,
3517 				init_data->consumer_supplies[i].supply);
3518 			if (ret < 0) {
3519 				dev_err(dev, "Failed to set supply %s\n",
3520 					init_data->consumer_supplies[i].supply);
3521 				goto unset_supplies;
3522 			}
3523 		}
3524 	}
3525 
3526 	list_add(&rdev->list, &regulator_list);
3527 
3528 	rdev_init_debugfs(rdev);
3529 out:
3530 	mutex_unlock(&regulator_list_mutex);
3531 	return rdev;
3532 
3533 unset_supplies:
3534 	unset_regulator_supplies(rdev);
3535 
3536 scrub:
3537 	if (rdev->supply)
3538 		_regulator_put(rdev->supply);
3539 	regulator_ena_gpio_free(rdev);
3540 	kfree(rdev->constraints);
3541 wash:
3542 	device_unregister(&rdev->dev);
3543 	/* device core frees rdev */
3544 	rdev = ERR_PTR(ret);
3545 	goto out;
3546 
3547 clean:
3548 	kfree(rdev);
3549 	rdev = ERR_PTR(ret);
3550 	goto out;
3551 }
3552 EXPORT_SYMBOL_GPL(regulator_register);
3553 
3554 /**
3555  * regulator_unregister - unregister regulator
3556  * @rdev: regulator to unregister
3557  *
3558  * Called by regulator drivers to unregister a regulator.
3559  */
3560 void regulator_unregister(struct regulator_dev *rdev)
3561 {
3562 	if (rdev == NULL)
3563 		return;
3564 
3565 	if (rdev->supply) {
3566 		while (rdev->use_count--)
3567 			regulator_disable(rdev->supply);
3568 		regulator_put(rdev->supply);
3569 	}
3570 	mutex_lock(&regulator_list_mutex);
3571 	debugfs_remove_recursive(rdev->debugfs);
3572 	flush_work(&rdev->disable_work.work);
3573 	WARN_ON(rdev->open_count);
3574 	unset_regulator_supplies(rdev);
3575 	list_del(&rdev->list);
3576 	kfree(rdev->constraints);
3577 	regulator_ena_gpio_free(rdev);
3578 	device_unregister(&rdev->dev);
3579 	mutex_unlock(&regulator_list_mutex);
3580 }
3581 EXPORT_SYMBOL_GPL(regulator_unregister);
3582 
3583 /**
3584  * regulator_suspend_prepare - prepare regulators for system wide suspend
3585  * @state: system suspend state
3586  *
3587  * Configure each regulator with it's suspend operating parameters for state.
3588  * This will usually be called by machine suspend code prior to supending.
3589  */
3590 int regulator_suspend_prepare(suspend_state_t state)
3591 {
3592 	struct regulator_dev *rdev;
3593 	int ret = 0;
3594 
3595 	/* ON is handled by regulator active state */
3596 	if (state == PM_SUSPEND_ON)
3597 		return -EINVAL;
3598 
3599 	mutex_lock(&regulator_list_mutex);
3600 	list_for_each_entry(rdev, &regulator_list, list) {
3601 
3602 		mutex_lock(&rdev->mutex);
3603 		ret = suspend_prepare(rdev, state);
3604 		mutex_unlock(&rdev->mutex);
3605 
3606 		if (ret < 0) {
3607 			rdev_err(rdev, "failed to prepare\n");
3608 			goto out;
3609 		}
3610 	}
3611 out:
3612 	mutex_unlock(&regulator_list_mutex);
3613 	return ret;
3614 }
3615 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3616 
3617 /**
3618  * regulator_suspend_finish - resume regulators from system wide suspend
3619  *
3620  * Turn on regulators that might be turned off by regulator_suspend_prepare
3621  * and that should be turned on according to the regulators properties.
3622  */
3623 int regulator_suspend_finish(void)
3624 {
3625 	struct regulator_dev *rdev;
3626 	int ret = 0, error;
3627 
3628 	mutex_lock(&regulator_list_mutex);
3629 	list_for_each_entry(rdev, &regulator_list, list) {
3630 		mutex_lock(&rdev->mutex);
3631 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3632 			error = _regulator_do_enable(rdev);
3633 			if (error)
3634 				ret = error;
3635 		} else {
3636 			if (!have_full_constraints())
3637 				goto unlock;
3638 			if (!_regulator_is_enabled(rdev))
3639 				goto unlock;
3640 
3641 			error = _regulator_do_disable(rdev);
3642 			if (error)
3643 				ret = error;
3644 		}
3645 unlock:
3646 		mutex_unlock(&rdev->mutex);
3647 	}
3648 	mutex_unlock(&regulator_list_mutex);
3649 	return ret;
3650 }
3651 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3652 
3653 /**
3654  * regulator_has_full_constraints - the system has fully specified constraints
3655  *
3656  * Calling this function will cause the regulator API to disable all
3657  * regulators which have a zero use count and don't have an always_on
3658  * constraint in a late_initcall.
3659  *
3660  * The intention is that this will become the default behaviour in a
3661  * future kernel release so users are encouraged to use this facility
3662  * now.
3663  */
3664 void regulator_has_full_constraints(void)
3665 {
3666 	has_full_constraints = 1;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3669 
3670 /**
3671  * rdev_get_drvdata - get rdev regulator driver data
3672  * @rdev: regulator
3673  *
3674  * Get rdev regulator driver private data. This call can be used in the
3675  * regulator driver context.
3676  */
3677 void *rdev_get_drvdata(struct regulator_dev *rdev)
3678 {
3679 	return rdev->reg_data;
3680 }
3681 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3682 
3683 /**
3684  * regulator_get_drvdata - get regulator driver data
3685  * @regulator: regulator
3686  *
3687  * Get regulator driver private data. This call can be used in the consumer
3688  * driver context when non API regulator specific functions need to be called.
3689  */
3690 void *regulator_get_drvdata(struct regulator *regulator)
3691 {
3692 	return regulator->rdev->reg_data;
3693 }
3694 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3695 
3696 /**
3697  * regulator_set_drvdata - set regulator driver data
3698  * @regulator: regulator
3699  * @data: data
3700  */
3701 void regulator_set_drvdata(struct regulator *regulator, void *data)
3702 {
3703 	regulator->rdev->reg_data = data;
3704 }
3705 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3706 
3707 /**
3708  * regulator_get_id - get regulator ID
3709  * @rdev: regulator
3710  */
3711 int rdev_get_id(struct regulator_dev *rdev)
3712 {
3713 	return rdev->desc->id;
3714 }
3715 EXPORT_SYMBOL_GPL(rdev_get_id);
3716 
3717 struct device *rdev_get_dev(struct regulator_dev *rdev)
3718 {
3719 	return &rdev->dev;
3720 }
3721 EXPORT_SYMBOL_GPL(rdev_get_dev);
3722 
3723 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3724 {
3725 	return reg_init_data->driver_data;
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3728 
3729 #ifdef CONFIG_DEBUG_FS
3730 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3731 				    size_t count, loff_t *ppos)
3732 {
3733 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3734 	ssize_t len, ret = 0;
3735 	struct regulator_map *map;
3736 
3737 	if (!buf)
3738 		return -ENOMEM;
3739 
3740 	list_for_each_entry(map, &regulator_map_list, list) {
3741 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3742 			       "%s -> %s.%s\n",
3743 			       rdev_get_name(map->regulator), map->dev_name,
3744 			       map->supply);
3745 		if (len >= 0)
3746 			ret += len;
3747 		if (ret > PAGE_SIZE) {
3748 			ret = PAGE_SIZE;
3749 			break;
3750 		}
3751 	}
3752 
3753 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3754 
3755 	kfree(buf);
3756 
3757 	return ret;
3758 }
3759 #endif
3760 
3761 static const struct file_operations supply_map_fops = {
3762 #ifdef CONFIG_DEBUG_FS
3763 	.read = supply_map_read_file,
3764 	.llseek = default_llseek,
3765 #endif
3766 };
3767 
3768 static int __init regulator_init(void)
3769 {
3770 	int ret;
3771 
3772 	ret = class_register(&regulator_class);
3773 
3774 	debugfs_root = debugfs_create_dir("regulator", NULL);
3775 	if (!debugfs_root)
3776 		pr_warn("regulator: Failed to create debugfs directory\n");
3777 
3778 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3779 			    &supply_map_fops);
3780 
3781 	regulator_dummy_init();
3782 
3783 	return ret;
3784 }
3785 
3786 /* init early to allow our consumers to complete system booting */
3787 core_initcall(regulator_init);
3788 
3789 static int __init regulator_init_complete(void)
3790 {
3791 	struct regulator_dev *rdev;
3792 	struct regulator_ops *ops;
3793 	struct regulation_constraints *c;
3794 	int enabled, ret;
3795 
3796 	/*
3797 	 * Since DT doesn't provide an idiomatic mechanism for
3798 	 * enabling full constraints and since it's much more natural
3799 	 * with DT to provide them just assume that a DT enabled
3800 	 * system has full constraints.
3801 	 */
3802 	if (of_have_populated_dt())
3803 		has_full_constraints = true;
3804 
3805 	mutex_lock(&regulator_list_mutex);
3806 
3807 	/* If we have a full configuration then disable any regulators
3808 	 * which are not in use or always_on.  This will become the
3809 	 * default behaviour in the future.
3810 	 */
3811 	list_for_each_entry(rdev, &regulator_list, list) {
3812 		ops = rdev->desc->ops;
3813 		c = rdev->constraints;
3814 
3815 		if (c && c->always_on)
3816 			continue;
3817 
3818 		mutex_lock(&rdev->mutex);
3819 
3820 		if (rdev->use_count)
3821 			goto unlock;
3822 
3823 		/* If we can't read the status assume it's on. */
3824 		if (ops->is_enabled)
3825 			enabled = ops->is_enabled(rdev);
3826 		else
3827 			enabled = 1;
3828 
3829 		if (!enabled)
3830 			goto unlock;
3831 
3832 		if (have_full_constraints()) {
3833 			/* We log since this may kill the system if it
3834 			 * goes wrong. */
3835 			rdev_info(rdev, "disabling\n");
3836 			ret = _regulator_do_disable(rdev);
3837 			if (ret != 0)
3838 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3839 		} else {
3840 			/* The intention is that in future we will
3841 			 * assume that full constraints are provided
3842 			 * so warn even if we aren't going to do
3843 			 * anything here.
3844 			 */
3845 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3846 		}
3847 
3848 unlock:
3849 		mutex_unlock(&rdev->mutex);
3850 	}
3851 
3852 	mutex_unlock(&regulator_list_mutex);
3853 
3854 	return 0;
3855 }
3856 late_initcall(regulator_init_complete);
3857