xref: /openbmc/linux/drivers/regulator/core.c (revision 9cfc5c90)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 /**
136  * regulator_lock_supply - lock a regulator and its supplies
137  * @rdev:         regulator source
138  */
139 static void regulator_lock_supply(struct regulator_dev *rdev)
140 {
141 	struct regulator *supply;
142 	int i = 0;
143 
144 	while (1) {
145 		mutex_lock_nested(&rdev->mutex, i++);
146 		supply = rdev->supply;
147 
148 		if (!rdev->supply)
149 			return;
150 
151 		rdev = supply->rdev;
152 	}
153 }
154 
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 	struct regulator *supply;
162 
163 	while (1) {
164 		mutex_unlock(&rdev->mutex);
165 		supply = rdev->supply;
166 
167 		if (!rdev->supply)
168 			return;
169 
170 		rdev = supply->rdev;
171 	}
172 }
173 
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 	struct device_node *regnode = NULL;
186 	char prop_name[32]; /* 32 is max size of property name */
187 
188 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189 
190 	snprintf(prop_name, 32, "%s-supply", supply);
191 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192 
193 	if (!regnode) {
194 		dev_dbg(dev, "Looking up %s property in node %s failed",
195 				prop_name, dev->of_node->full_name);
196 		return NULL;
197 	}
198 	return regnode;
199 }
200 
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 	if (!rdev->constraints)
204 		return 0;
205 
206 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 		return 1;
208 	else
209 		return 0;
210 }
211 
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 				   int *min_uV, int *max_uV)
215 {
216 	BUG_ON(*min_uV > *max_uV);
217 
218 	if (!rdev->constraints) {
219 		rdev_err(rdev, "no constraints\n");
220 		return -ENODEV;
221 	}
222 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 		rdev_err(rdev, "voltage operation not allowed\n");
224 		return -EPERM;
225 	}
226 
227 	if (*max_uV > rdev->constraints->max_uV)
228 		*max_uV = rdev->constraints->max_uV;
229 	if (*min_uV < rdev->constraints->min_uV)
230 		*min_uV = rdev->constraints->min_uV;
231 
232 	if (*min_uV > *max_uV) {
233 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 			 *min_uV, *max_uV);
235 		return -EINVAL;
236 	}
237 
238 	return 0;
239 }
240 
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 				     int *min_uV, int *max_uV)
246 {
247 	struct regulator *regulator;
248 
249 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 		/*
251 		 * Assume consumers that didn't say anything are OK
252 		 * with anything in the constraint range.
253 		 */
254 		if (!regulator->min_uV && !regulator->max_uV)
255 			continue;
256 
257 		if (*max_uV > regulator->max_uV)
258 			*max_uV = regulator->max_uV;
259 		if (*min_uV < regulator->min_uV)
260 			*min_uV = regulator->min_uV;
261 	}
262 
263 	if (*min_uV > *max_uV) {
264 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 			*min_uV, *max_uV);
266 		return -EINVAL;
267 	}
268 
269 	return 0;
270 }
271 
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 					int *min_uA, int *max_uA)
275 {
276 	BUG_ON(*min_uA > *max_uA);
277 
278 	if (!rdev->constraints) {
279 		rdev_err(rdev, "no constraints\n");
280 		return -ENODEV;
281 	}
282 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 		rdev_err(rdev, "current operation not allowed\n");
284 		return -EPERM;
285 	}
286 
287 	if (*max_uA > rdev->constraints->max_uA)
288 		*max_uA = rdev->constraints->max_uA;
289 	if (*min_uA < rdev->constraints->min_uA)
290 		*min_uA = rdev->constraints->min_uA;
291 
292 	if (*min_uA > *max_uA) {
293 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 			 *min_uA, *max_uA);
295 		return -EINVAL;
296 	}
297 
298 	return 0;
299 }
300 
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 	switch (*mode) {
305 	case REGULATOR_MODE_FAST:
306 	case REGULATOR_MODE_NORMAL:
307 	case REGULATOR_MODE_IDLE:
308 	case REGULATOR_MODE_STANDBY:
309 		break;
310 	default:
311 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 		return -EINVAL;
313 	}
314 
315 	if (!rdev->constraints) {
316 		rdev_err(rdev, "no constraints\n");
317 		return -ENODEV;
318 	}
319 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 		rdev_err(rdev, "mode operation not allowed\n");
321 		return -EPERM;
322 	}
323 
324 	/* The modes are bitmasks, the most power hungry modes having
325 	 * the lowest values. If the requested mode isn't supported
326 	 * try higher modes. */
327 	while (*mode) {
328 		if (rdev->constraints->valid_modes_mask & *mode)
329 			return 0;
330 		*mode /= 2;
331 	}
332 
333 	return -EINVAL;
334 }
335 
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 	if (!rdev->constraints) {
340 		rdev_err(rdev, "no constraints\n");
341 		return -ENODEV;
342 	}
343 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 		rdev_dbg(rdev, "drms operation not allowed\n");
345 		return -EPERM;
346 	}
347 	return 0;
348 }
349 
350 static ssize_t regulator_uV_show(struct device *dev,
351 				struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 	ssize_t ret;
355 
356 	mutex_lock(&rdev->mutex);
357 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 	mutex_unlock(&rdev->mutex);
359 
360 	return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363 
364 static ssize_t regulator_uA_show(struct device *dev,
365 				struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 
369 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372 
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 			 char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381 
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 	switch (mode) {
385 	case REGULATOR_MODE_FAST:
386 		return sprintf(buf, "fast\n");
387 	case REGULATOR_MODE_NORMAL:
388 		return sprintf(buf, "normal\n");
389 	case REGULATOR_MODE_IDLE:
390 		return sprintf(buf, "idle\n");
391 	case REGULATOR_MODE_STANDBY:
392 		return sprintf(buf, "standby\n");
393 	}
394 	return sprintf(buf, "unknown\n");
395 }
396 
397 static ssize_t regulator_opmode_show(struct device *dev,
398 				    struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 
402 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405 
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 	if (state > 0)
409 		return sprintf(buf, "enabled\n");
410 	else if (state == 0)
411 		return sprintf(buf, "disabled\n");
412 	else
413 		return sprintf(buf, "unknown\n");
414 }
415 
416 static ssize_t regulator_state_show(struct device *dev,
417 				   struct device_attribute *attr, char *buf)
418 {
419 	struct regulator_dev *rdev = dev_get_drvdata(dev);
420 	ssize_t ret;
421 
422 	mutex_lock(&rdev->mutex);
423 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 	mutex_unlock(&rdev->mutex);
425 
426 	return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429 
430 static ssize_t regulator_status_show(struct device *dev,
431 				   struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 	int status;
435 	char *label;
436 
437 	status = rdev->desc->ops->get_status(rdev);
438 	if (status < 0)
439 		return status;
440 
441 	switch (status) {
442 	case REGULATOR_STATUS_OFF:
443 		label = "off";
444 		break;
445 	case REGULATOR_STATUS_ON:
446 		label = "on";
447 		break;
448 	case REGULATOR_STATUS_ERROR:
449 		label = "error";
450 		break;
451 	case REGULATOR_STATUS_FAST:
452 		label = "fast";
453 		break;
454 	case REGULATOR_STATUS_NORMAL:
455 		label = "normal";
456 		break;
457 	case REGULATOR_STATUS_IDLE:
458 		label = "idle";
459 		break;
460 	case REGULATOR_STATUS_STANDBY:
461 		label = "standby";
462 		break;
463 	case REGULATOR_STATUS_BYPASS:
464 		label = "bypass";
465 		break;
466 	case REGULATOR_STATUS_UNDEFINED:
467 		label = "undefined";
468 		break;
469 	default:
470 		return -ERANGE;
471 	}
472 
473 	return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476 
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 				    struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	if (!rdev->constraints)
483 		return sprintf(buf, "constraint not defined\n");
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488 
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 				    struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	if (!rdev->constraints)
495 		return sprintf(buf, "constraint not defined\n");
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500 
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 				    struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	if (!rdev->constraints)
507 		return sprintf(buf, "constraint not defined\n");
508 
509 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512 
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 				    struct device_attribute *attr, char *buf)
515 {
516 	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 
518 	if (!rdev->constraints)
519 		return sprintf(buf, "constraint not defined\n");
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524 
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 				      struct device_attribute *attr, char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 	struct regulator *regulator;
530 	int uA = 0;
531 
532 	mutex_lock(&rdev->mutex);
533 	list_for_each_entry(regulator, &rdev->consumer_list, list)
534 		uA += regulator->uA_load;
535 	mutex_unlock(&rdev->mutex);
536 	return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539 
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 			      char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 	return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547 
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 			 char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	switch (rdev->desc->type) {
554 	case REGULATOR_VOLTAGE:
555 		return sprintf(buf, "voltage\n");
556 	case REGULATOR_CURRENT:
557 		return sprintf(buf, "current\n");
558 	}
559 	return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562 
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 		regulator_suspend_mem_uV_show, NULL);
572 
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 				struct device_attribute *attr, char *buf)
575 {
576 	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 
578 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 		regulator_suspend_disk_uV_show, NULL);
582 
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 				struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 		regulator_suspend_standby_uV_show, NULL);
592 
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 
598 	return regulator_print_opmode(buf,
599 		rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 		regulator_suspend_mem_mode_show, NULL);
603 
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 				struct device_attribute *attr, char *buf)
606 {
607 	struct regulator_dev *rdev = dev_get_drvdata(dev);
608 
609 	return regulator_print_opmode(buf,
610 		rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 		regulator_suspend_disk_mode_show, NULL);
614 
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 				struct device_attribute *attr, char *buf)
617 {
618 	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 
620 	return regulator_print_opmode(buf,
621 		rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 		regulator_suspend_standby_mode_show, NULL);
625 
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 				   struct device_attribute *attr, char *buf)
628 {
629 	struct regulator_dev *rdev = dev_get_drvdata(dev);
630 
631 	return regulator_print_state(buf,
632 			rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 		regulator_suspend_mem_state_show, NULL);
636 
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 				   struct device_attribute *attr, char *buf)
639 {
640 	struct regulator_dev *rdev = dev_get_drvdata(dev);
641 
642 	return regulator_print_state(buf,
643 			rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 		regulator_suspend_disk_state_show, NULL);
647 
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 				   struct device_attribute *attr, char *buf)
650 {
651 	struct regulator_dev *rdev = dev_get_drvdata(dev);
652 
653 	return regulator_print_state(buf,
654 			rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 		regulator_suspend_standby_state_show, NULL);
658 
659 static ssize_t regulator_bypass_show(struct device *dev,
660 				     struct device_attribute *attr, char *buf)
661 {
662 	struct regulator_dev *rdev = dev_get_drvdata(dev);
663 	const char *report;
664 	bool bypass;
665 	int ret;
666 
667 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668 
669 	if (ret != 0)
670 		report = "unknown";
671 	else if (bypass)
672 		report = "enabled";
673 	else
674 		report = "disabled";
675 
676 	return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 		   regulator_bypass_show, NULL);
680 
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 	struct regulator *sibling;
686 	int current_uA = 0, output_uV, input_uV, err;
687 	unsigned int mode;
688 
689 	lockdep_assert_held_once(&rdev->mutex);
690 
691 	/*
692 	 * first check to see if we can set modes at all, otherwise just
693 	 * tell the consumer everything is OK.
694 	 */
695 	err = regulator_check_drms(rdev);
696 	if (err < 0)
697 		return 0;
698 
699 	if (!rdev->desc->ops->get_optimum_mode &&
700 	    !rdev->desc->ops->set_load)
701 		return 0;
702 
703 	if (!rdev->desc->ops->set_mode &&
704 	    !rdev->desc->ops->set_load)
705 		return -EINVAL;
706 
707 	/* get output voltage */
708 	output_uV = _regulator_get_voltage(rdev);
709 	if (output_uV <= 0) {
710 		rdev_err(rdev, "invalid output voltage found\n");
711 		return -EINVAL;
712 	}
713 
714 	/* get input voltage */
715 	input_uV = 0;
716 	if (rdev->supply)
717 		input_uV = regulator_get_voltage(rdev->supply);
718 	if (input_uV <= 0)
719 		input_uV = rdev->constraints->input_uV;
720 	if (input_uV <= 0) {
721 		rdev_err(rdev, "invalid input voltage found\n");
722 		return -EINVAL;
723 	}
724 
725 	/* calc total requested load */
726 	list_for_each_entry(sibling, &rdev->consumer_list, list)
727 		current_uA += sibling->uA_load;
728 
729 	current_uA += rdev->constraints->system_load;
730 
731 	if (rdev->desc->ops->set_load) {
732 		/* set the optimum mode for our new total regulator load */
733 		err = rdev->desc->ops->set_load(rdev, current_uA);
734 		if (err < 0)
735 			rdev_err(rdev, "failed to set load %d\n", current_uA);
736 	} else {
737 		/* now get the optimum mode for our new total regulator load */
738 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 							 output_uV, current_uA);
740 
741 		/* check the new mode is allowed */
742 		err = regulator_mode_constrain(rdev, &mode);
743 		if (err < 0) {
744 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 				 current_uA, input_uV, output_uV);
746 			return err;
747 		}
748 
749 		err = rdev->desc->ops->set_mode(rdev, mode);
750 		if (err < 0)
751 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 	}
753 
754 	return err;
755 }
756 
757 static int suspend_set_state(struct regulator_dev *rdev,
758 	struct regulator_state *rstate)
759 {
760 	int ret = 0;
761 
762 	/* If we have no suspend mode configration don't set anything;
763 	 * only warn if the driver implements set_suspend_voltage or
764 	 * set_suspend_mode callback.
765 	 */
766 	if (!rstate->enabled && !rstate->disabled) {
767 		if (rdev->desc->ops->set_suspend_voltage ||
768 		    rdev->desc->ops->set_suspend_mode)
769 			rdev_warn(rdev, "No configuration\n");
770 		return 0;
771 	}
772 
773 	if (rstate->enabled && rstate->disabled) {
774 		rdev_err(rdev, "invalid configuration\n");
775 		return -EINVAL;
776 	}
777 
778 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 		ret = rdev->desc->ops->set_suspend_enable(rdev);
780 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 		ret = rdev->desc->ops->set_suspend_disable(rdev);
782 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 		ret = 0;
784 
785 	if (ret < 0) {
786 		rdev_err(rdev, "failed to enabled/disable\n");
787 		return ret;
788 	}
789 
790 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 		if (ret < 0) {
793 			rdev_err(rdev, "failed to set voltage\n");
794 			return ret;
795 		}
796 	}
797 
798 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 		if (ret < 0) {
801 			rdev_err(rdev, "failed to set mode\n");
802 			return ret;
803 		}
804 	}
805 	return ret;
806 }
807 
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 	lockdep_assert_held_once(&rdev->mutex);
812 
813 	if (!rdev->constraints)
814 		return -EINVAL;
815 
816 	switch (state) {
817 	case PM_SUSPEND_STANDBY:
818 		return suspend_set_state(rdev,
819 			&rdev->constraints->state_standby);
820 	case PM_SUSPEND_MEM:
821 		return suspend_set_state(rdev,
822 			&rdev->constraints->state_mem);
823 	case PM_SUSPEND_MAX:
824 		return suspend_set_state(rdev,
825 			&rdev->constraints->state_disk);
826 	default:
827 		return -EINVAL;
828 	}
829 }
830 
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 	struct regulation_constraints *constraints = rdev->constraints;
834 	char buf[160] = "";
835 	size_t len = sizeof(buf) - 1;
836 	int count = 0;
837 	int ret;
838 
839 	if (constraints->min_uV && constraints->max_uV) {
840 		if (constraints->min_uV == constraints->max_uV)
841 			count += scnprintf(buf + count, len - count, "%d mV ",
842 					   constraints->min_uV / 1000);
843 		else
844 			count += scnprintf(buf + count, len - count,
845 					   "%d <--> %d mV ",
846 					   constraints->min_uV / 1000,
847 					   constraints->max_uV / 1000);
848 	}
849 
850 	if (!constraints->min_uV ||
851 	    constraints->min_uV != constraints->max_uV) {
852 		ret = _regulator_get_voltage(rdev);
853 		if (ret > 0)
854 			count += scnprintf(buf + count, len - count,
855 					   "at %d mV ", ret / 1000);
856 	}
857 
858 	if (constraints->uV_offset)
859 		count += scnprintf(buf + count, len - count, "%dmV offset ",
860 				   constraints->uV_offset / 1000);
861 
862 	if (constraints->min_uA && constraints->max_uA) {
863 		if (constraints->min_uA == constraints->max_uA)
864 			count += scnprintf(buf + count, len - count, "%d mA ",
865 					   constraints->min_uA / 1000);
866 		else
867 			count += scnprintf(buf + count, len - count,
868 					   "%d <--> %d mA ",
869 					   constraints->min_uA / 1000,
870 					   constraints->max_uA / 1000);
871 	}
872 
873 	if (!constraints->min_uA ||
874 	    constraints->min_uA != constraints->max_uA) {
875 		ret = _regulator_get_current_limit(rdev);
876 		if (ret > 0)
877 			count += scnprintf(buf + count, len - count,
878 					   "at %d mA ", ret / 1000);
879 	}
880 
881 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 		count += scnprintf(buf + count, len - count, "fast ");
883 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 		count += scnprintf(buf + count, len - count, "normal ");
885 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 		count += scnprintf(buf + count, len - count, "idle ");
887 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 		count += scnprintf(buf + count, len - count, "standby");
889 
890 	if (!count)
891 		scnprintf(buf, len, "no parameters");
892 
893 	rdev_dbg(rdev, "%s\n", buf);
894 
895 	if ((constraints->min_uV != constraints->max_uV) &&
896 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 		rdev_warn(rdev,
898 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900 
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 	struct regulation_constraints *constraints)
903 {
904 	const struct regulator_ops *ops = rdev->desc->ops;
905 	int ret;
906 
907 	/* do we need to apply the constraint voltage */
908 	if (rdev->constraints->apply_uV &&
909 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 		int current_uV = _regulator_get_voltage(rdev);
911 		if (current_uV < 0) {
912 			rdev_err(rdev,
913 				 "failed to get the current voltage(%d)\n",
914 				 current_uV);
915 			return current_uV;
916 		}
917 		if (current_uV < rdev->constraints->min_uV ||
918 		    current_uV > rdev->constraints->max_uV) {
919 			ret = _regulator_do_set_voltage(
920 				rdev, rdev->constraints->min_uV,
921 				rdev->constraints->max_uV);
922 			if (ret < 0) {
923 				rdev_err(rdev,
924 					"failed to apply %duV constraint(%d)\n",
925 					rdev->constraints->min_uV, ret);
926 				return ret;
927 			}
928 		}
929 	}
930 
931 	/* constrain machine-level voltage specs to fit
932 	 * the actual range supported by this regulator.
933 	 */
934 	if (ops->list_voltage && rdev->desc->n_voltages) {
935 		int	count = rdev->desc->n_voltages;
936 		int	i;
937 		int	min_uV = INT_MAX;
938 		int	max_uV = INT_MIN;
939 		int	cmin = constraints->min_uV;
940 		int	cmax = constraints->max_uV;
941 
942 		/* it's safe to autoconfigure fixed-voltage supplies
943 		   and the constraints are used by list_voltage. */
944 		if (count == 1 && !cmin) {
945 			cmin = 1;
946 			cmax = INT_MAX;
947 			constraints->min_uV = cmin;
948 			constraints->max_uV = cmax;
949 		}
950 
951 		/* voltage constraints are optional */
952 		if ((cmin == 0) && (cmax == 0))
953 			return 0;
954 
955 		/* else require explicit machine-level constraints */
956 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 			rdev_err(rdev, "invalid voltage constraints\n");
958 			return -EINVAL;
959 		}
960 
961 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 		for (i = 0; i < count; i++) {
963 			int	value;
964 
965 			value = ops->list_voltage(rdev, i);
966 			if (value <= 0)
967 				continue;
968 
969 			/* maybe adjust [min_uV..max_uV] */
970 			if (value >= cmin && value < min_uV)
971 				min_uV = value;
972 			if (value <= cmax && value > max_uV)
973 				max_uV = value;
974 		}
975 
976 		/* final: [min_uV..max_uV] valid iff constraints valid */
977 		if (max_uV < min_uV) {
978 			rdev_err(rdev,
979 				 "unsupportable voltage constraints %u-%uuV\n",
980 				 min_uV, max_uV);
981 			return -EINVAL;
982 		}
983 
984 		/* use regulator's subset of machine constraints */
985 		if (constraints->min_uV < min_uV) {
986 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 				 constraints->min_uV, min_uV);
988 			constraints->min_uV = min_uV;
989 		}
990 		if (constraints->max_uV > max_uV) {
991 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 				 constraints->max_uV, max_uV);
993 			constraints->max_uV = max_uV;
994 		}
995 	}
996 
997 	return 0;
998 }
999 
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 	struct regulation_constraints *constraints)
1002 {
1003 	const struct regulator_ops *ops = rdev->desc->ops;
1004 	int ret;
1005 
1006 	if (!constraints->min_uA && !constraints->max_uA)
1007 		return 0;
1008 
1009 	if (constraints->min_uA > constraints->max_uA) {
1010 		rdev_err(rdev, "Invalid current constraints\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (!ops->set_current_limit || !ops->get_current_limit) {
1015 		rdev_warn(rdev, "Operation of current configuration missing\n");
1016 		return 0;
1017 	}
1018 
1019 	/* Set regulator current in constraints range */
1020 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 			constraints->max_uA);
1022 	if (ret < 0) {
1023 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 		return ret;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031 
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 	const struct regulation_constraints *constraints)
1045 {
1046 	int ret = 0;
1047 	const struct regulator_ops *ops = rdev->desc->ops;
1048 
1049 	if (constraints)
1050 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 					    GFP_KERNEL);
1052 	else
1053 		rdev->constraints = kzalloc(sizeof(*constraints),
1054 					    GFP_KERNEL);
1055 	if (!rdev->constraints)
1056 		return -ENOMEM;
1057 
1058 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 	if (ret != 0)
1060 		goto out;
1061 
1062 	ret = machine_constraints_current(rdev, rdev->constraints);
1063 	if (ret != 0)
1064 		goto out;
1065 
1066 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 		ret = ops->set_input_current_limit(rdev,
1068 						   rdev->constraints->ilim_uA);
1069 		if (ret < 0) {
1070 			rdev_err(rdev, "failed to set input limit\n");
1071 			goto out;
1072 		}
1073 	}
1074 
1075 	/* do we need to setup our suspend state */
1076 	if (rdev->constraints->initial_state) {
1077 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 		if (ret < 0) {
1079 			rdev_err(rdev, "failed to set suspend state\n");
1080 			goto out;
1081 		}
1082 	}
1083 
1084 	if (rdev->constraints->initial_mode) {
1085 		if (!ops->set_mode) {
1086 			rdev_err(rdev, "no set_mode operation\n");
1087 			ret = -EINVAL;
1088 			goto out;
1089 		}
1090 
1091 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1092 		if (ret < 0) {
1093 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1094 			goto out;
1095 		}
1096 	}
1097 
1098 	/* If the constraints say the regulator should be on at this point
1099 	 * and we have control then make sure it is enabled.
1100 	 */
1101 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1102 		ret = _regulator_do_enable(rdev);
1103 		if (ret < 0 && ret != -EINVAL) {
1104 			rdev_err(rdev, "failed to enable\n");
1105 			goto out;
1106 		}
1107 	}
1108 
1109 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1110 		&& ops->set_ramp_delay) {
1111 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1112 		if (ret < 0) {
1113 			rdev_err(rdev, "failed to set ramp_delay\n");
1114 			goto out;
1115 		}
1116 	}
1117 
1118 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1119 		ret = ops->set_pull_down(rdev);
1120 		if (ret < 0) {
1121 			rdev_err(rdev, "failed to set pull down\n");
1122 			goto out;
1123 		}
1124 	}
1125 
1126 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1127 		ret = ops->set_soft_start(rdev);
1128 		if (ret < 0) {
1129 			rdev_err(rdev, "failed to set soft start\n");
1130 			goto out;
1131 		}
1132 	}
1133 
1134 	if (rdev->constraints->over_current_protection
1135 		&& ops->set_over_current_protection) {
1136 		ret = ops->set_over_current_protection(rdev);
1137 		if (ret < 0) {
1138 			rdev_err(rdev, "failed to set over current protection\n");
1139 			goto out;
1140 		}
1141 	}
1142 
1143 	print_constraints(rdev);
1144 	return 0;
1145 out:
1146 	kfree(rdev->constraints);
1147 	rdev->constraints = NULL;
1148 	return ret;
1149 }
1150 
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161 		      struct regulator_dev *supply_rdev)
1162 {
1163 	int err;
1164 
1165 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166 
1167 	if (!try_module_get(supply_rdev->owner))
1168 		return -ENODEV;
1169 
1170 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 	if (rdev->supply == NULL) {
1172 		err = -ENOMEM;
1173 		return err;
1174 	}
1175 	supply_rdev->open_count++;
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 				      const char *consumer_dev_name,
1193 				      const char *supply)
1194 {
1195 	struct regulator_map *node;
1196 	int has_dev;
1197 
1198 	if (supply == NULL)
1199 		return -EINVAL;
1200 
1201 	if (consumer_dev_name != NULL)
1202 		has_dev = 1;
1203 	else
1204 		has_dev = 0;
1205 
1206 	list_for_each_entry(node, &regulator_map_list, list) {
1207 		if (node->dev_name && consumer_dev_name) {
1208 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 				continue;
1210 		} else if (node->dev_name || consumer_dev_name) {
1211 			continue;
1212 		}
1213 
1214 		if (strcmp(node->supply, supply) != 0)
1215 			continue;
1216 
1217 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 			 consumer_dev_name,
1219 			 dev_name(&node->regulator->dev),
1220 			 node->regulator->desc->name,
1221 			 supply,
1222 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 		return -EBUSY;
1224 	}
1225 
1226 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 	if (node == NULL)
1228 		return -ENOMEM;
1229 
1230 	node->regulator = rdev;
1231 	node->supply = supply;
1232 
1233 	if (has_dev) {
1234 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 		if (node->dev_name == NULL) {
1236 			kfree(node);
1237 			return -ENOMEM;
1238 		}
1239 	}
1240 
1241 	list_add(&node->list, &regulator_map_list);
1242 	return 0;
1243 }
1244 
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 	struct regulator_map *node, *n;
1248 
1249 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 		if (rdev == node->regulator) {
1251 			list_del(&node->list);
1252 			kfree(node->dev_name);
1253 			kfree(node);
1254 		}
1255 	}
1256 }
1257 
1258 #define REG_STR_SIZE	64
1259 
1260 static struct regulator *create_regulator(struct regulator_dev *rdev,
1261 					  struct device *dev,
1262 					  const char *supply_name)
1263 {
1264 	struct regulator *regulator;
1265 	char buf[REG_STR_SIZE];
1266 	int err, size;
1267 
1268 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1269 	if (regulator == NULL)
1270 		return NULL;
1271 
1272 	mutex_lock(&rdev->mutex);
1273 	regulator->rdev = rdev;
1274 	list_add(&regulator->list, &rdev->consumer_list);
1275 
1276 	if (dev) {
1277 		regulator->dev = dev;
1278 
1279 		/* Add a link to the device sysfs entry */
1280 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1281 				 dev->kobj.name, supply_name);
1282 		if (size >= REG_STR_SIZE)
1283 			goto overflow_err;
1284 
1285 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1286 		if (regulator->supply_name == NULL)
1287 			goto overflow_err;
1288 
1289 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1290 					buf);
1291 		if (err) {
1292 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1293 				  dev->kobj.name, err);
1294 			/* non-fatal */
1295 		}
1296 	} else {
1297 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1298 		if (regulator->supply_name == NULL)
1299 			goto overflow_err;
1300 	}
1301 
1302 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1303 						rdev->debugfs);
1304 	if (!regulator->debugfs) {
1305 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1306 	} else {
1307 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1308 				   &regulator->uA_load);
1309 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1310 				   &regulator->min_uV);
1311 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1312 				   &regulator->max_uV);
1313 	}
1314 
1315 	/*
1316 	 * Check now if the regulator is an always on regulator - if
1317 	 * it is then we don't need to do nearly so much work for
1318 	 * enable/disable calls.
1319 	 */
1320 	if (!_regulator_can_change_status(rdev) &&
1321 	    _regulator_is_enabled(rdev))
1322 		regulator->always_on = true;
1323 
1324 	mutex_unlock(&rdev->mutex);
1325 	return regulator;
1326 overflow_err:
1327 	list_del(&regulator->list);
1328 	kfree(regulator);
1329 	mutex_unlock(&rdev->mutex);
1330 	return NULL;
1331 }
1332 
1333 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1334 {
1335 	if (rdev->constraints && rdev->constraints->enable_time)
1336 		return rdev->constraints->enable_time;
1337 	if (!rdev->desc->ops->enable_time)
1338 		return rdev->desc->enable_time;
1339 	return rdev->desc->ops->enable_time(rdev);
1340 }
1341 
1342 static struct regulator_supply_alias *regulator_find_supply_alias(
1343 		struct device *dev, const char *supply)
1344 {
1345 	struct regulator_supply_alias *map;
1346 
1347 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1348 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1349 			return map;
1350 
1351 	return NULL;
1352 }
1353 
1354 static void regulator_supply_alias(struct device **dev, const char **supply)
1355 {
1356 	struct regulator_supply_alias *map;
1357 
1358 	map = regulator_find_supply_alias(*dev, *supply);
1359 	if (map) {
1360 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1361 				*supply, map->alias_supply,
1362 				dev_name(map->alias_dev));
1363 		*dev = map->alias_dev;
1364 		*supply = map->alias_supply;
1365 	}
1366 }
1367 
1368 static int of_node_match(struct device *dev, const void *data)
1369 {
1370 	return dev->of_node == data;
1371 }
1372 
1373 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1374 {
1375 	struct device *dev;
1376 
1377 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1378 
1379 	return dev ? dev_to_rdev(dev) : NULL;
1380 }
1381 
1382 static int regulator_match(struct device *dev, const void *data)
1383 {
1384 	struct regulator_dev *r = dev_to_rdev(dev);
1385 
1386 	return strcmp(rdev_get_name(r), data) == 0;
1387 }
1388 
1389 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1390 {
1391 	struct device *dev;
1392 
1393 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1394 
1395 	return dev ? dev_to_rdev(dev) : NULL;
1396 }
1397 
1398 /**
1399  * regulator_dev_lookup - lookup a regulator device.
1400  * @dev: device for regulator "consumer".
1401  * @supply: Supply name or regulator ID.
1402  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403  * lookup could succeed in the future.
1404  *
1405  * If successful, returns a struct regulator_dev that corresponds to the name
1406  * @supply and with the embedded struct device refcount incremented by one,
1407  * or NULL on failure. The refcount must be dropped by calling put_device().
1408  */
1409 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1410 						  const char *supply,
1411 						  int *ret)
1412 {
1413 	struct regulator_dev *r;
1414 	struct device_node *node;
1415 	struct regulator_map *map;
1416 	const char *devname = NULL;
1417 
1418 	regulator_supply_alias(&dev, &supply);
1419 
1420 	/* first do a dt based lookup */
1421 	if (dev && dev->of_node) {
1422 		node = of_get_regulator(dev, supply);
1423 		if (node) {
1424 			r = of_find_regulator_by_node(node);
1425 			if (r)
1426 				return r;
1427 			*ret = -EPROBE_DEFER;
1428 			return NULL;
1429 		} else {
1430 			/*
1431 			 * If we couldn't even get the node then it's
1432 			 * not just that the device didn't register
1433 			 * yet, there's no node and we'll never
1434 			 * succeed.
1435 			 */
1436 			*ret = -ENODEV;
1437 		}
1438 	}
1439 
1440 	/* if not found, try doing it non-dt way */
1441 	if (dev)
1442 		devname = dev_name(dev);
1443 
1444 	r = regulator_lookup_by_name(supply);
1445 	if (r)
1446 		return r;
1447 
1448 	mutex_lock(&regulator_list_mutex);
1449 	list_for_each_entry(map, &regulator_map_list, list) {
1450 		/* If the mapping has a device set up it must match */
1451 		if (map->dev_name &&
1452 		    (!devname || strcmp(map->dev_name, devname)))
1453 			continue;
1454 
1455 		if (strcmp(map->supply, supply) == 0 &&
1456 		    get_device(&map->regulator->dev)) {
1457 			mutex_unlock(&regulator_list_mutex);
1458 			return map->regulator;
1459 		}
1460 	}
1461 	mutex_unlock(&regulator_list_mutex);
1462 
1463 	return NULL;
1464 }
1465 
1466 static int regulator_resolve_supply(struct regulator_dev *rdev)
1467 {
1468 	struct regulator_dev *r;
1469 	struct device *dev = rdev->dev.parent;
1470 	int ret;
1471 
1472 	/* No supply to resovle? */
1473 	if (!rdev->supply_name)
1474 		return 0;
1475 
1476 	/* Supply already resolved? */
1477 	if (rdev->supply)
1478 		return 0;
1479 
1480 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1481 	if (!r) {
1482 		if (ret == -ENODEV) {
1483 			/*
1484 			 * No supply was specified for this regulator and
1485 			 * there will never be one.
1486 			 */
1487 			return 0;
1488 		}
1489 
1490 		/* Did the lookup explicitly defer for us? */
1491 		if (ret == -EPROBE_DEFER)
1492 			return ret;
1493 
1494 		if (have_full_constraints()) {
1495 			r = dummy_regulator_rdev;
1496 			get_device(&r->dev);
1497 		} else {
1498 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1499 				rdev->supply_name, rdev->desc->name);
1500 			return -EPROBE_DEFER;
1501 		}
1502 	}
1503 
1504 	/* Recursively resolve the supply of the supply */
1505 	ret = regulator_resolve_supply(r);
1506 	if (ret < 0) {
1507 		put_device(&r->dev);
1508 		return ret;
1509 	}
1510 
1511 	ret = set_supply(rdev, r);
1512 	if (ret < 0) {
1513 		put_device(&r->dev);
1514 		return ret;
1515 	}
1516 
1517 	/* Cascade always-on state to supply */
1518 	if (_regulator_is_enabled(rdev) && rdev->supply) {
1519 		ret = regulator_enable(rdev->supply);
1520 		if (ret < 0) {
1521 			_regulator_put(rdev->supply);
1522 			return ret;
1523 		}
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 /* Internal regulator request function */
1530 static struct regulator *_regulator_get(struct device *dev, const char *id,
1531 					bool exclusive, bool allow_dummy)
1532 {
1533 	struct regulator_dev *rdev;
1534 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1535 	const char *devname = NULL;
1536 	int ret;
1537 
1538 	if (id == NULL) {
1539 		pr_err("get() with no identifier\n");
1540 		return ERR_PTR(-EINVAL);
1541 	}
1542 
1543 	if (dev)
1544 		devname = dev_name(dev);
1545 
1546 	if (have_full_constraints())
1547 		ret = -ENODEV;
1548 	else
1549 		ret = -EPROBE_DEFER;
1550 
1551 	rdev = regulator_dev_lookup(dev, id, &ret);
1552 	if (rdev)
1553 		goto found;
1554 
1555 	regulator = ERR_PTR(ret);
1556 
1557 	/*
1558 	 * If we have return value from dev_lookup fail, we do not expect to
1559 	 * succeed, so, quit with appropriate error value
1560 	 */
1561 	if (ret && ret != -ENODEV)
1562 		return regulator;
1563 
1564 	if (!devname)
1565 		devname = "deviceless";
1566 
1567 	/*
1568 	 * Assume that a regulator is physically present and enabled
1569 	 * even if it isn't hooked up and just provide a dummy.
1570 	 */
1571 	if (have_full_constraints() && allow_dummy) {
1572 		pr_warn("%s supply %s not found, using dummy regulator\n",
1573 			devname, id);
1574 
1575 		rdev = dummy_regulator_rdev;
1576 		get_device(&rdev->dev);
1577 		goto found;
1578 	/* Don't log an error when called from regulator_get_optional() */
1579 	} else if (!have_full_constraints() || exclusive) {
1580 		dev_warn(dev, "dummy supplies not allowed\n");
1581 	}
1582 
1583 	return regulator;
1584 
1585 found:
1586 	if (rdev->exclusive) {
1587 		regulator = ERR_PTR(-EPERM);
1588 		put_device(&rdev->dev);
1589 		return regulator;
1590 	}
1591 
1592 	if (exclusive && rdev->open_count) {
1593 		regulator = ERR_PTR(-EBUSY);
1594 		put_device(&rdev->dev);
1595 		return regulator;
1596 	}
1597 
1598 	ret = regulator_resolve_supply(rdev);
1599 	if (ret < 0) {
1600 		regulator = ERR_PTR(ret);
1601 		put_device(&rdev->dev);
1602 		return regulator;
1603 	}
1604 
1605 	if (!try_module_get(rdev->owner)) {
1606 		put_device(&rdev->dev);
1607 		return regulator;
1608 	}
1609 
1610 	regulator = create_regulator(rdev, dev, id);
1611 	if (regulator == NULL) {
1612 		regulator = ERR_PTR(-ENOMEM);
1613 		put_device(&rdev->dev);
1614 		module_put(rdev->owner);
1615 		return regulator;
1616 	}
1617 
1618 	rdev->open_count++;
1619 	if (exclusive) {
1620 		rdev->exclusive = 1;
1621 
1622 		ret = _regulator_is_enabled(rdev);
1623 		if (ret > 0)
1624 			rdev->use_count = 1;
1625 		else
1626 			rdev->use_count = 0;
1627 	}
1628 
1629 	return regulator;
1630 }
1631 
1632 /**
1633  * regulator_get - lookup and obtain a reference to a regulator.
1634  * @dev: device for regulator "consumer"
1635  * @id: Supply name or regulator ID.
1636  *
1637  * Returns a struct regulator corresponding to the regulator producer,
1638  * or IS_ERR() condition containing errno.
1639  *
1640  * Use of supply names configured via regulator_set_device_supply() is
1641  * strongly encouraged.  It is recommended that the supply name used
1642  * should match the name used for the supply and/or the relevant
1643  * device pins in the datasheet.
1644  */
1645 struct regulator *regulator_get(struct device *dev, const char *id)
1646 {
1647 	return _regulator_get(dev, id, false, true);
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_get);
1650 
1651 /**
1652  * regulator_get_exclusive - obtain exclusive access to a regulator.
1653  * @dev: device for regulator "consumer"
1654  * @id: Supply name or regulator ID.
1655  *
1656  * Returns a struct regulator corresponding to the regulator producer,
1657  * or IS_ERR() condition containing errno.  Other consumers will be
1658  * unable to obtain this regulator while this reference is held and the
1659  * use count for the regulator will be initialised to reflect the current
1660  * state of the regulator.
1661  *
1662  * This is intended for use by consumers which cannot tolerate shared
1663  * use of the regulator such as those which need to force the
1664  * regulator off for correct operation of the hardware they are
1665  * controlling.
1666  *
1667  * Use of supply names configured via regulator_set_device_supply() is
1668  * strongly encouraged.  It is recommended that the supply name used
1669  * should match the name used for the supply and/or the relevant
1670  * device pins in the datasheet.
1671  */
1672 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1673 {
1674 	return _regulator_get(dev, id, true, false);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1677 
1678 /**
1679  * regulator_get_optional - obtain optional access to a regulator.
1680  * @dev: device for regulator "consumer"
1681  * @id: Supply name or regulator ID.
1682  *
1683  * Returns a struct regulator corresponding to the regulator producer,
1684  * or IS_ERR() condition containing errno.
1685  *
1686  * This is intended for use by consumers for devices which can have
1687  * some supplies unconnected in normal use, such as some MMC devices.
1688  * It can allow the regulator core to provide stub supplies for other
1689  * supplies requested using normal regulator_get() calls without
1690  * disrupting the operation of drivers that can handle absent
1691  * supplies.
1692  *
1693  * Use of supply names configured via regulator_set_device_supply() is
1694  * strongly encouraged.  It is recommended that the supply name used
1695  * should match the name used for the supply and/or the relevant
1696  * device pins in the datasheet.
1697  */
1698 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1699 {
1700 	return _regulator_get(dev, id, false, false);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get_optional);
1703 
1704 /* regulator_list_mutex lock held by regulator_put() */
1705 static void _regulator_put(struct regulator *regulator)
1706 {
1707 	struct regulator_dev *rdev;
1708 
1709 	if (IS_ERR_OR_NULL(regulator))
1710 		return;
1711 
1712 	lockdep_assert_held_once(&regulator_list_mutex);
1713 
1714 	rdev = regulator->rdev;
1715 
1716 	debugfs_remove_recursive(regulator->debugfs);
1717 
1718 	/* remove any sysfs entries */
1719 	if (regulator->dev)
1720 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1721 	mutex_lock(&rdev->mutex);
1722 	list_del(&regulator->list);
1723 
1724 	rdev->open_count--;
1725 	rdev->exclusive = 0;
1726 	put_device(&rdev->dev);
1727 	mutex_unlock(&rdev->mutex);
1728 
1729 	kfree(regulator->supply_name);
1730 	kfree(regulator);
1731 
1732 	module_put(rdev->owner);
1733 }
1734 
1735 /**
1736  * regulator_put - "free" the regulator source
1737  * @regulator: regulator source
1738  *
1739  * Note: drivers must ensure that all regulator_enable calls made on this
1740  * regulator source are balanced by regulator_disable calls prior to calling
1741  * this function.
1742  */
1743 void regulator_put(struct regulator *regulator)
1744 {
1745 	mutex_lock(&regulator_list_mutex);
1746 	_regulator_put(regulator);
1747 	mutex_unlock(&regulator_list_mutex);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_put);
1750 
1751 /**
1752  * regulator_register_supply_alias - Provide device alias for supply lookup
1753  *
1754  * @dev: device that will be given as the regulator "consumer"
1755  * @id: Supply name or regulator ID
1756  * @alias_dev: device that should be used to lookup the supply
1757  * @alias_id: Supply name or regulator ID that should be used to lookup the
1758  * supply
1759  *
1760  * All lookups for id on dev will instead be conducted for alias_id on
1761  * alias_dev.
1762  */
1763 int regulator_register_supply_alias(struct device *dev, const char *id,
1764 				    struct device *alias_dev,
1765 				    const char *alias_id)
1766 {
1767 	struct regulator_supply_alias *map;
1768 
1769 	map = regulator_find_supply_alias(dev, id);
1770 	if (map)
1771 		return -EEXIST;
1772 
1773 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1774 	if (!map)
1775 		return -ENOMEM;
1776 
1777 	map->src_dev = dev;
1778 	map->src_supply = id;
1779 	map->alias_dev = alias_dev;
1780 	map->alias_supply = alias_id;
1781 
1782 	list_add(&map->list, &regulator_supply_alias_list);
1783 
1784 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1786 
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1790 
1791 /**
1792  * regulator_unregister_supply_alias - Remove device alias
1793  *
1794  * @dev: device that will be given as the regulator "consumer"
1795  * @id: Supply name or regulator ID
1796  *
1797  * Remove a lookup alias if one exists for id on dev.
1798  */
1799 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1800 {
1801 	struct regulator_supply_alias *map;
1802 
1803 	map = regulator_find_supply_alias(dev, id);
1804 	if (map) {
1805 		list_del(&map->list);
1806 		kfree(map);
1807 	}
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1810 
1811 /**
1812  * regulator_bulk_register_supply_alias - register multiple aliases
1813  *
1814  * @dev: device that will be given as the regulator "consumer"
1815  * @id: List of supply names or regulator IDs
1816  * @alias_dev: device that should be used to lookup the supply
1817  * @alias_id: List of supply names or regulator IDs that should be used to
1818  * lookup the supply
1819  * @num_id: Number of aliases to register
1820  *
1821  * @return 0 on success, an errno on failure.
1822  *
1823  * This helper function allows drivers to register several supply
1824  * aliases in one operation.  If any of the aliases cannot be
1825  * registered any aliases that were registered will be removed
1826  * before returning to the caller.
1827  */
1828 int regulator_bulk_register_supply_alias(struct device *dev,
1829 					 const char *const *id,
1830 					 struct device *alias_dev,
1831 					 const char *const *alias_id,
1832 					 int num_id)
1833 {
1834 	int i;
1835 	int ret;
1836 
1837 	for (i = 0; i < num_id; ++i) {
1838 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1839 						      alias_id[i]);
1840 		if (ret < 0)
1841 			goto err;
1842 	}
1843 
1844 	return 0;
1845 
1846 err:
1847 	dev_err(dev,
1848 		"Failed to create supply alias %s,%s -> %s,%s\n",
1849 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1850 
1851 	while (--i >= 0)
1852 		regulator_unregister_supply_alias(dev, id[i]);
1853 
1854 	return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1857 
1858 /**
1859  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1860  *
1861  * @dev: device that will be given as the regulator "consumer"
1862  * @id: List of supply names or regulator IDs
1863  * @num_id: Number of aliases to unregister
1864  *
1865  * This helper function allows drivers to unregister several supply
1866  * aliases in one operation.
1867  */
1868 void regulator_bulk_unregister_supply_alias(struct device *dev,
1869 					    const char *const *id,
1870 					    int num_id)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < num_id; ++i)
1875 		regulator_unregister_supply_alias(dev, id[i]);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1878 
1879 
1880 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1882 				const struct regulator_config *config)
1883 {
1884 	struct regulator_enable_gpio *pin;
1885 	struct gpio_desc *gpiod;
1886 	int ret;
1887 
1888 	gpiod = gpio_to_desc(config->ena_gpio);
1889 
1890 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1891 		if (pin->gpiod == gpiod) {
1892 			rdev_dbg(rdev, "GPIO %d is already used\n",
1893 				config->ena_gpio);
1894 			goto update_ena_gpio_to_rdev;
1895 		}
1896 	}
1897 
1898 	ret = gpio_request_one(config->ena_gpio,
1899 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1900 				rdev_get_name(rdev));
1901 	if (ret)
1902 		return ret;
1903 
1904 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1905 	if (pin == NULL) {
1906 		gpio_free(config->ena_gpio);
1907 		return -ENOMEM;
1908 	}
1909 
1910 	pin->gpiod = gpiod;
1911 	pin->ena_gpio_invert = config->ena_gpio_invert;
1912 	list_add(&pin->list, &regulator_ena_gpio_list);
1913 
1914 update_ena_gpio_to_rdev:
1915 	pin->request_count++;
1916 	rdev->ena_pin = pin;
1917 	return 0;
1918 }
1919 
1920 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1921 {
1922 	struct regulator_enable_gpio *pin, *n;
1923 
1924 	if (!rdev->ena_pin)
1925 		return;
1926 
1927 	/* Free the GPIO only in case of no use */
1928 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1929 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1930 			if (pin->request_count <= 1) {
1931 				pin->request_count = 0;
1932 				gpiod_put(pin->gpiod);
1933 				list_del(&pin->list);
1934 				kfree(pin);
1935 				rdev->ena_pin = NULL;
1936 				return;
1937 			} else {
1938 				pin->request_count--;
1939 			}
1940 		}
1941 	}
1942 }
1943 
1944 /**
1945  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946  * @rdev: regulator_dev structure
1947  * @enable: enable GPIO at initial use?
1948  *
1949  * GPIO is enabled in case of initial use. (enable_count is 0)
1950  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1951  */
1952 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1953 {
1954 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1955 
1956 	if (!pin)
1957 		return -EINVAL;
1958 
1959 	if (enable) {
1960 		/* Enable GPIO at initial use */
1961 		if (pin->enable_count == 0)
1962 			gpiod_set_value_cansleep(pin->gpiod,
1963 						 !pin->ena_gpio_invert);
1964 
1965 		pin->enable_count++;
1966 	} else {
1967 		if (pin->enable_count > 1) {
1968 			pin->enable_count--;
1969 			return 0;
1970 		}
1971 
1972 		/* Disable GPIO if not used */
1973 		if (pin->enable_count <= 1) {
1974 			gpiod_set_value_cansleep(pin->gpiod,
1975 						 pin->ena_gpio_invert);
1976 			pin->enable_count = 0;
1977 		}
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * _regulator_enable_delay - a delay helper function
1985  * @delay: time to delay in microseconds
1986  *
1987  * Delay for the requested amount of time as per the guidelines in:
1988  *
1989  *     Documentation/timers/timers-howto.txt
1990  *
1991  * The assumption here is that regulators will never be enabled in
1992  * atomic context and therefore sleeping functions can be used.
1993  */
1994 static void _regulator_enable_delay(unsigned int delay)
1995 {
1996 	unsigned int ms = delay / 1000;
1997 	unsigned int us = delay % 1000;
1998 
1999 	if (ms > 0) {
2000 		/*
2001 		 * For small enough values, handle super-millisecond
2002 		 * delays in the usleep_range() call below.
2003 		 */
2004 		if (ms < 20)
2005 			us += ms * 1000;
2006 		else
2007 			msleep(ms);
2008 	}
2009 
2010 	/*
2011 	 * Give the scheduler some room to coalesce with any other
2012 	 * wakeup sources. For delays shorter than 10 us, don't even
2013 	 * bother setting up high-resolution timers and just busy-
2014 	 * loop.
2015 	 */
2016 	if (us >= 10)
2017 		usleep_range(us, us + 100);
2018 	else
2019 		udelay(us);
2020 }
2021 
2022 static int _regulator_do_enable(struct regulator_dev *rdev)
2023 {
2024 	int ret, delay;
2025 
2026 	/* Query before enabling in case configuration dependent.  */
2027 	ret = _regulator_get_enable_time(rdev);
2028 	if (ret >= 0) {
2029 		delay = ret;
2030 	} else {
2031 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2032 		delay = 0;
2033 	}
2034 
2035 	trace_regulator_enable(rdev_get_name(rdev));
2036 
2037 	if (rdev->desc->off_on_delay) {
2038 		/* if needed, keep a distance of off_on_delay from last time
2039 		 * this regulator was disabled.
2040 		 */
2041 		unsigned long start_jiffy = jiffies;
2042 		unsigned long intended, max_delay, remaining;
2043 
2044 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2045 		intended = rdev->last_off_jiffy + max_delay;
2046 
2047 		if (time_before(start_jiffy, intended)) {
2048 			/* calc remaining jiffies to deal with one-time
2049 			 * timer wrapping.
2050 			 * in case of multiple timer wrapping, either it can be
2051 			 * detected by out-of-range remaining, or it cannot be
2052 			 * detected and we gets a panelty of
2053 			 * _regulator_enable_delay().
2054 			 */
2055 			remaining = intended - start_jiffy;
2056 			if (remaining <= max_delay)
2057 				_regulator_enable_delay(
2058 						jiffies_to_usecs(remaining));
2059 		}
2060 	}
2061 
2062 	if (rdev->ena_pin) {
2063 		if (!rdev->ena_gpio_state) {
2064 			ret = regulator_ena_gpio_ctrl(rdev, true);
2065 			if (ret < 0)
2066 				return ret;
2067 			rdev->ena_gpio_state = 1;
2068 		}
2069 	} else if (rdev->desc->ops->enable) {
2070 		ret = rdev->desc->ops->enable(rdev);
2071 		if (ret < 0)
2072 			return ret;
2073 	} else {
2074 		return -EINVAL;
2075 	}
2076 
2077 	/* Allow the regulator to ramp; it would be useful to extend
2078 	 * this for bulk operations so that the regulators can ramp
2079 	 * together.  */
2080 	trace_regulator_enable_delay(rdev_get_name(rdev));
2081 
2082 	_regulator_enable_delay(delay);
2083 
2084 	trace_regulator_enable_complete(rdev_get_name(rdev));
2085 
2086 	return 0;
2087 }
2088 
2089 /* locks held by regulator_enable() */
2090 static int _regulator_enable(struct regulator_dev *rdev)
2091 {
2092 	int ret;
2093 
2094 	lockdep_assert_held_once(&rdev->mutex);
2095 
2096 	/* check voltage and requested load before enabling */
2097 	if (rdev->constraints &&
2098 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2099 		drms_uA_update(rdev);
2100 
2101 	if (rdev->use_count == 0) {
2102 		/* The regulator may on if it's not switchable or left on */
2103 		ret = _regulator_is_enabled(rdev);
2104 		if (ret == -EINVAL || ret == 0) {
2105 			if (!_regulator_can_change_status(rdev))
2106 				return -EPERM;
2107 
2108 			ret = _regulator_do_enable(rdev);
2109 			if (ret < 0)
2110 				return ret;
2111 
2112 		} else if (ret < 0) {
2113 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2114 			return ret;
2115 		}
2116 		/* Fallthrough on positive return values - already enabled */
2117 	}
2118 
2119 	rdev->use_count++;
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  * regulator_enable - enable regulator output
2126  * @regulator: regulator source
2127  *
2128  * Request that the regulator be enabled with the regulator output at
2129  * the predefined voltage or current value.  Calls to regulator_enable()
2130  * must be balanced with calls to regulator_disable().
2131  *
2132  * NOTE: the output value can be set by other drivers, boot loader or may be
2133  * hardwired in the regulator.
2134  */
2135 int regulator_enable(struct regulator *regulator)
2136 {
2137 	struct regulator_dev *rdev = regulator->rdev;
2138 	int ret = 0;
2139 
2140 	if (regulator->always_on)
2141 		return 0;
2142 
2143 	if (rdev->supply) {
2144 		ret = regulator_enable(rdev->supply);
2145 		if (ret != 0)
2146 			return ret;
2147 	}
2148 
2149 	mutex_lock(&rdev->mutex);
2150 	ret = _regulator_enable(rdev);
2151 	mutex_unlock(&rdev->mutex);
2152 
2153 	if (ret != 0 && rdev->supply)
2154 		regulator_disable(rdev->supply);
2155 
2156 	return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_enable);
2159 
2160 static int _regulator_do_disable(struct regulator_dev *rdev)
2161 {
2162 	int ret;
2163 
2164 	trace_regulator_disable(rdev_get_name(rdev));
2165 
2166 	if (rdev->ena_pin) {
2167 		if (rdev->ena_gpio_state) {
2168 			ret = regulator_ena_gpio_ctrl(rdev, false);
2169 			if (ret < 0)
2170 				return ret;
2171 			rdev->ena_gpio_state = 0;
2172 		}
2173 
2174 	} else if (rdev->desc->ops->disable) {
2175 		ret = rdev->desc->ops->disable(rdev);
2176 		if (ret != 0)
2177 			return ret;
2178 	}
2179 
2180 	/* cares about last_off_jiffy only if off_on_delay is required by
2181 	 * device.
2182 	 */
2183 	if (rdev->desc->off_on_delay)
2184 		rdev->last_off_jiffy = jiffies;
2185 
2186 	trace_regulator_disable_complete(rdev_get_name(rdev));
2187 
2188 	return 0;
2189 }
2190 
2191 /* locks held by regulator_disable() */
2192 static int _regulator_disable(struct regulator_dev *rdev)
2193 {
2194 	int ret = 0;
2195 
2196 	lockdep_assert_held_once(&rdev->mutex);
2197 
2198 	if (WARN(rdev->use_count <= 0,
2199 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2200 		return -EIO;
2201 
2202 	/* are we the last user and permitted to disable ? */
2203 	if (rdev->use_count == 1 &&
2204 	    (rdev->constraints && !rdev->constraints->always_on)) {
2205 
2206 		/* we are last user */
2207 		if (_regulator_can_change_status(rdev)) {
2208 			ret = _notifier_call_chain(rdev,
2209 						   REGULATOR_EVENT_PRE_DISABLE,
2210 						   NULL);
2211 			if (ret & NOTIFY_STOP_MASK)
2212 				return -EINVAL;
2213 
2214 			ret = _regulator_do_disable(rdev);
2215 			if (ret < 0) {
2216 				rdev_err(rdev, "failed to disable\n");
2217 				_notifier_call_chain(rdev,
2218 						REGULATOR_EVENT_ABORT_DISABLE,
2219 						NULL);
2220 				return ret;
2221 			}
2222 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2223 					NULL);
2224 		}
2225 
2226 		rdev->use_count = 0;
2227 	} else if (rdev->use_count > 1) {
2228 
2229 		if (rdev->constraints &&
2230 			(rdev->constraints->valid_ops_mask &
2231 			REGULATOR_CHANGE_DRMS))
2232 			drms_uA_update(rdev);
2233 
2234 		rdev->use_count--;
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 /**
2241  * regulator_disable - disable regulator output
2242  * @regulator: regulator source
2243  *
2244  * Disable the regulator output voltage or current.  Calls to
2245  * regulator_enable() must be balanced with calls to
2246  * regulator_disable().
2247  *
2248  * NOTE: this will only disable the regulator output if no other consumer
2249  * devices have it enabled, the regulator device supports disabling and
2250  * machine constraints permit this operation.
2251  */
2252 int regulator_disable(struct regulator *regulator)
2253 {
2254 	struct regulator_dev *rdev = regulator->rdev;
2255 	int ret = 0;
2256 
2257 	if (regulator->always_on)
2258 		return 0;
2259 
2260 	mutex_lock(&rdev->mutex);
2261 	ret = _regulator_disable(rdev);
2262 	mutex_unlock(&rdev->mutex);
2263 
2264 	if (ret == 0 && rdev->supply)
2265 		regulator_disable(rdev->supply);
2266 
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_disable);
2270 
2271 /* locks held by regulator_force_disable() */
2272 static int _regulator_force_disable(struct regulator_dev *rdev)
2273 {
2274 	int ret = 0;
2275 
2276 	lockdep_assert_held_once(&rdev->mutex);
2277 
2278 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2280 	if (ret & NOTIFY_STOP_MASK)
2281 		return -EINVAL;
2282 
2283 	ret = _regulator_do_disable(rdev);
2284 	if (ret < 0) {
2285 		rdev_err(rdev, "failed to force disable\n");
2286 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2288 		return ret;
2289 	}
2290 
2291 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2292 			REGULATOR_EVENT_DISABLE, NULL);
2293 
2294 	return 0;
2295 }
2296 
2297 /**
2298  * regulator_force_disable - force disable regulator output
2299  * @regulator: regulator source
2300  *
2301  * Forcibly disable the regulator output voltage or current.
2302  * NOTE: this *will* disable the regulator output even if other consumer
2303  * devices have it enabled. This should be used for situations when device
2304  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2305  */
2306 int regulator_force_disable(struct regulator *regulator)
2307 {
2308 	struct regulator_dev *rdev = regulator->rdev;
2309 	int ret;
2310 
2311 	mutex_lock(&rdev->mutex);
2312 	regulator->uA_load = 0;
2313 	ret = _regulator_force_disable(regulator->rdev);
2314 	mutex_unlock(&rdev->mutex);
2315 
2316 	if (rdev->supply)
2317 		while (rdev->open_count--)
2318 			regulator_disable(rdev->supply);
2319 
2320 	return ret;
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_force_disable);
2323 
2324 static void regulator_disable_work(struct work_struct *work)
2325 {
2326 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2327 						  disable_work.work);
2328 	int count, i, ret;
2329 
2330 	mutex_lock(&rdev->mutex);
2331 
2332 	BUG_ON(!rdev->deferred_disables);
2333 
2334 	count = rdev->deferred_disables;
2335 	rdev->deferred_disables = 0;
2336 
2337 	for (i = 0; i < count; i++) {
2338 		ret = _regulator_disable(rdev);
2339 		if (ret != 0)
2340 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2341 	}
2342 
2343 	mutex_unlock(&rdev->mutex);
2344 
2345 	if (rdev->supply) {
2346 		for (i = 0; i < count; i++) {
2347 			ret = regulator_disable(rdev->supply);
2348 			if (ret != 0) {
2349 				rdev_err(rdev,
2350 					 "Supply disable failed: %d\n", ret);
2351 			}
2352 		}
2353 	}
2354 }
2355 
2356 /**
2357  * regulator_disable_deferred - disable regulator output with delay
2358  * @regulator: regulator source
2359  * @ms: miliseconds until the regulator is disabled
2360  *
2361  * Execute regulator_disable() on the regulator after a delay.  This
2362  * is intended for use with devices that require some time to quiesce.
2363  *
2364  * NOTE: this will only disable the regulator output if no other consumer
2365  * devices have it enabled, the regulator device supports disabling and
2366  * machine constraints permit this operation.
2367  */
2368 int regulator_disable_deferred(struct regulator *regulator, int ms)
2369 {
2370 	struct regulator_dev *rdev = regulator->rdev;
2371 	int ret;
2372 
2373 	if (regulator->always_on)
2374 		return 0;
2375 
2376 	if (!ms)
2377 		return regulator_disable(regulator);
2378 
2379 	mutex_lock(&rdev->mutex);
2380 	rdev->deferred_disables++;
2381 	mutex_unlock(&rdev->mutex);
2382 
2383 	ret = queue_delayed_work(system_power_efficient_wq,
2384 				 &rdev->disable_work,
2385 				 msecs_to_jiffies(ms));
2386 	if (ret < 0)
2387 		return ret;
2388 	else
2389 		return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2392 
2393 static int _regulator_is_enabled(struct regulator_dev *rdev)
2394 {
2395 	/* A GPIO control always takes precedence */
2396 	if (rdev->ena_pin)
2397 		return rdev->ena_gpio_state;
2398 
2399 	/* If we don't know then assume that the regulator is always on */
2400 	if (!rdev->desc->ops->is_enabled)
2401 		return 1;
2402 
2403 	return rdev->desc->ops->is_enabled(rdev);
2404 }
2405 
2406 static int _regulator_list_voltage(struct regulator *regulator,
2407 				    unsigned selector, int lock)
2408 {
2409 	struct regulator_dev *rdev = regulator->rdev;
2410 	const struct regulator_ops *ops = rdev->desc->ops;
2411 	int ret;
2412 
2413 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2414 		return rdev->desc->fixed_uV;
2415 
2416 	if (ops->list_voltage) {
2417 		if (selector >= rdev->desc->n_voltages)
2418 			return -EINVAL;
2419 		if (lock)
2420 			mutex_lock(&rdev->mutex);
2421 		ret = ops->list_voltage(rdev, selector);
2422 		if (lock)
2423 			mutex_unlock(&rdev->mutex);
2424 	} else if (rdev->supply) {
2425 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2426 	} else {
2427 		return -EINVAL;
2428 	}
2429 
2430 	if (ret > 0) {
2431 		if (ret < rdev->constraints->min_uV)
2432 			ret = 0;
2433 		else if (ret > rdev->constraints->max_uV)
2434 			ret = 0;
2435 	}
2436 
2437 	return ret;
2438 }
2439 
2440 /**
2441  * regulator_is_enabled - is the regulator output enabled
2442  * @regulator: regulator source
2443  *
2444  * Returns positive if the regulator driver backing the source/client
2445  * has requested that the device be enabled, zero if it hasn't, else a
2446  * negative errno code.
2447  *
2448  * Note that the device backing this regulator handle can have multiple
2449  * users, so it might be enabled even if regulator_enable() was never
2450  * called for this particular source.
2451  */
2452 int regulator_is_enabled(struct regulator *regulator)
2453 {
2454 	int ret;
2455 
2456 	if (regulator->always_on)
2457 		return 1;
2458 
2459 	mutex_lock(&regulator->rdev->mutex);
2460 	ret = _regulator_is_enabled(regulator->rdev);
2461 	mutex_unlock(&regulator->rdev->mutex);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2466 
2467 /**
2468  * regulator_can_change_voltage - check if regulator can change voltage
2469  * @regulator: regulator source
2470  *
2471  * Returns positive if the regulator driver backing the source/client
2472  * can change its voltage, false otherwise. Useful for detecting fixed
2473  * or dummy regulators and disabling voltage change logic in the client
2474  * driver.
2475  */
2476 int regulator_can_change_voltage(struct regulator *regulator)
2477 {
2478 	struct regulator_dev	*rdev = regulator->rdev;
2479 
2480 	if (rdev->constraints &&
2481 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2482 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2483 			return 1;
2484 
2485 		if (rdev->desc->continuous_voltage_range &&
2486 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2487 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2488 			return 1;
2489 	}
2490 
2491 	return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2494 
2495 /**
2496  * regulator_count_voltages - count regulator_list_voltage() selectors
2497  * @regulator: regulator source
2498  *
2499  * Returns number of selectors, or negative errno.  Selectors are
2500  * numbered starting at zero, and typically correspond to bitfields
2501  * in hardware registers.
2502  */
2503 int regulator_count_voltages(struct regulator *regulator)
2504 {
2505 	struct regulator_dev	*rdev = regulator->rdev;
2506 
2507 	if (rdev->desc->n_voltages)
2508 		return rdev->desc->n_voltages;
2509 
2510 	if (!rdev->supply)
2511 		return -EINVAL;
2512 
2513 	return regulator_count_voltages(rdev->supply);
2514 }
2515 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2516 
2517 /**
2518  * regulator_list_voltage - enumerate supported voltages
2519  * @regulator: regulator source
2520  * @selector: identify voltage to list
2521  * Context: can sleep
2522  *
2523  * Returns a voltage that can be passed to @regulator_set_voltage(),
2524  * zero if this selector code can't be used on this system, or a
2525  * negative errno.
2526  */
2527 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2528 {
2529 	return _regulator_list_voltage(regulator, selector, 1);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2532 
2533 /**
2534  * regulator_get_regmap - get the regulator's register map
2535  * @regulator: regulator source
2536  *
2537  * Returns the register map for the given regulator, or an ERR_PTR value
2538  * if the regulator doesn't use regmap.
2539  */
2540 struct regmap *regulator_get_regmap(struct regulator *regulator)
2541 {
2542 	struct regmap *map = regulator->rdev->regmap;
2543 
2544 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2545 }
2546 
2547 /**
2548  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2549  * @regulator: regulator source
2550  * @vsel_reg: voltage selector register, output parameter
2551  * @vsel_mask: mask for voltage selector bitfield, output parameter
2552  *
2553  * Returns the hardware register offset and bitmask used for setting the
2554  * regulator voltage. This might be useful when configuring voltage-scaling
2555  * hardware or firmware that can make I2C requests behind the kernel's back,
2556  * for example.
2557  *
2558  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2559  * and 0 is returned, otherwise a negative errno is returned.
2560  */
2561 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2562 					 unsigned *vsel_reg,
2563 					 unsigned *vsel_mask)
2564 {
2565 	struct regulator_dev *rdev = regulator->rdev;
2566 	const struct regulator_ops *ops = rdev->desc->ops;
2567 
2568 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2569 		return -EOPNOTSUPP;
2570 
2571 	 *vsel_reg = rdev->desc->vsel_reg;
2572 	 *vsel_mask = rdev->desc->vsel_mask;
2573 
2574 	 return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2577 
2578 /**
2579  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2580  * @regulator: regulator source
2581  * @selector: identify voltage to list
2582  *
2583  * Converts the selector to a hardware-specific voltage selector that can be
2584  * directly written to the regulator registers. The address of the voltage
2585  * register can be determined by calling @regulator_get_hardware_vsel_register.
2586  *
2587  * On error a negative errno is returned.
2588  */
2589 int regulator_list_hardware_vsel(struct regulator *regulator,
2590 				 unsigned selector)
2591 {
2592 	struct regulator_dev *rdev = regulator->rdev;
2593 	const struct regulator_ops *ops = rdev->desc->ops;
2594 
2595 	if (selector >= rdev->desc->n_voltages)
2596 		return -EINVAL;
2597 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2598 		return -EOPNOTSUPP;
2599 
2600 	return selector;
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2603 
2604 /**
2605  * regulator_get_linear_step - return the voltage step size between VSEL values
2606  * @regulator: regulator source
2607  *
2608  * Returns the voltage step size between VSEL values for linear
2609  * regulators, or return 0 if the regulator isn't a linear regulator.
2610  */
2611 unsigned int regulator_get_linear_step(struct regulator *regulator)
2612 {
2613 	struct regulator_dev *rdev = regulator->rdev;
2614 
2615 	return rdev->desc->uV_step;
2616 }
2617 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2618 
2619 /**
2620  * regulator_is_supported_voltage - check if a voltage range can be supported
2621  *
2622  * @regulator: Regulator to check.
2623  * @min_uV: Minimum required voltage in uV.
2624  * @max_uV: Maximum required voltage in uV.
2625  *
2626  * Returns a boolean or a negative error code.
2627  */
2628 int regulator_is_supported_voltage(struct regulator *regulator,
2629 				   int min_uV, int max_uV)
2630 {
2631 	struct regulator_dev *rdev = regulator->rdev;
2632 	int i, voltages, ret;
2633 
2634 	/* If we can't change voltage check the current voltage */
2635 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2636 		ret = regulator_get_voltage(regulator);
2637 		if (ret >= 0)
2638 			return min_uV <= ret && ret <= max_uV;
2639 		else
2640 			return ret;
2641 	}
2642 
2643 	/* Any voltage within constrains range is fine? */
2644 	if (rdev->desc->continuous_voltage_range)
2645 		return min_uV >= rdev->constraints->min_uV &&
2646 				max_uV <= rdev->constraints->max_uV;
2647 
2648 	ret = regulator_count_voltages(regulator);
2649 	if (ret < 0)
2650 		return ret;
2651 	voltages = ret;
2652 
2653 	for (i = 0; i < voltages; i++) {
2654 		ret = regulator_list_voltage(regulator, i);
2655 
2656 		if (ret >= min_uV && ret <= max_uV)
2657 			return 1;
2658 	}
2659 
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2663 
2664 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2665 				 int max_uV)
2666 {
2667 	const struct regulator_desc *desc = rdev->desc;
2668 
2669 	if (desc->ops->map_voltage)
2670 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2671 
2672 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2673 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2674 
2675 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2676 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2677 
2678 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2679 }
2680 
2681 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2682 				       int min_uV, int max_uV,
2683 				       unsigned *selector)
2684 {
2685 	struct pre_voltage_change_data data;
2686 	int ret;
2687 
2688 	data.old_uV = _regulator_get_voltage(rdev);
2689 	data.min_uV = min_uV;
2690 	data.max_uV = max_uV;
2691 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2692 				   &data);
2693 	if (ret & NOTIFY_STOP_MASK)
2694 		return -EINVAL;
2695 
2696 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2697 	if (ret >= 0)
2698 		return ret;
2699 
2700 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2701 			     (void *)data.old_uV);
2702 
2703 	return ret;
2704 }
2705 
2706 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2707 					   int uV, unsigned selector)
2708 {
2709 	struct pre_voltage_change_data data;
2710 	int ret;
2711 
2712 	data.old_uV = _regulator_get_voltage(rdev);
2713 	data.min_uV = uV;
2714 	data.max_uV = uV;
2715 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2716 				   &data);
2717 	if (ret & NOTIFY_STOP_MASK)
2718 		return -EINVAL;
2719 
2720 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2721 	if (ret >= 0)
2722 		return ret;
2723 
2724 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2725 			     (void *)data.old_uV);
2726 
2727 	return ret;
2728 }
2729 
2730 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2731 				     int min_uV, int max_uV)
2732 {
2733 	int ret;
2734 	int delay = 0;
2735 	int best_val = 0;
2736 	unsigned int selector;
2737 	int old_selector = -1;
2738 
2739 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2740 
2741 	min_uV += rdev->constraints->uV_offset;
2742 	max_uV += rdev->constraints->uV_offset;
2743 
2744 	/*
2745 	 * If we can't obtain the old selector there is not enough
2746 	 * info to call set_voltage_time_sel().
2747 	 */
2748 	if (_regulator_is_enabled(rdev) &&
2749 	    rdev->desc->ops->set_voltage_time_sel &&
2750 	    rdev->desc->ops->get_voltage_sel) {
2751 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2752 		if (old_selector < 0)
2753 			return old_selector;
2754 	}
2755 
2756 	if (rdev->desc->ops->set_voltage) {
2757 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2758 						  &selector);
2759 
2760 		if (ret >= 0) {
2761 			if (rdev->desc->ops->list_voltage)
2762 				best_val = rdev->desc->ops->list_voltage(rdev,
2763 									 selector);
2764 			else
2765 				best_val = _regulator_get_voltage(rdev);
2766 		}
2767 
2768 	} else if (rdev->desc->ops->set_voltage_sel) {
2769 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2770 		if (ret >= 0) {
2771 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2772 			if (min_uV <= best_val && max_uV >= best_val) {
2773 				selector = ret;
2774 				if (old_selector == selector)
2775 					ret = 0;
2776 				else
2777 					ret = _regulator_call_set_voltage_sel(
2778 						rdev, best_val, selector);
2779 			} else {
2780 				ret = -EINVAL;
2781 			}
2782 		}
2783 	} else {
2784 		ret = -EINVAL;
2785 	}
2786 
2787 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2788 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2789 		&& old_selector != selector) {
2790 
2791 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2792 						old_selector, selector);
2793 		if (delay < 0) {
2794 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2795 				  delay);
2796 			delay = 0;
2797 		}
2798 
2799 		/* Insert any necessary delays */
2800 		if (delay >= 1000) {
2801 			mdelay(delay / 1000);
2802 			udelay(delay % 1000);
2803 		} else if (delay) {
2804 			udelay(delay);
2805 		}
2806 	}
2807 
2808 	if (ret == 0 && best_val >= 0) {
2809 		unsigned long data = best_val;
2810 
2811 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2812 				     (void *)data);
2813 	}
2814 
2815 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2816 
2817 	return ret;
2818 }
2819 
2820 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2821 					  int min_uV, int max_uV)
2822 {
2823 	struct regulator_dev *rdev = regulator->rdev;
2824 	int ret = 0;
2825 	int old_min_uV, old_max_uV;
2826 	int current_uV;
2827 	int best_supply_uV = 0;
2828 	int supply_change_uV = 0;
2829 
2830 	/* If we're setting the same range as last time the change
2831 	 * should be a noop (some cpufreq implementations use the same
2832 	 * voltage for multiple frequencies, for example).
2833 	 */
2834 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2835 		goto out;
2836 
2837 	/* If we're trying to set a range that overlaps the current voltage,
2838 	 * return successfully even though the regulator does not support
2839 	 * changing the voltage.
2840 	 */
2841 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2842 		current_uV = _regulator_get_voltage(rdev);
2843 		if (min_uV <= current_uV && current_uV <= max_uV) {
2844 			regulator->min_uV = min_uV;
2845 			regulator->max_uV = max_uV;
2846 			goto out;
2847 		}
2848 	}
2849 
2850 	/* sanity check */
2851 	if (!rdev->desc->ops->set_voltage &&
2852 	    !rdev->desc->ops->set_voltage_sel) {
2853 		ret = -EINVAL;
2854 		goto out;
2855 	}
2856 
2857 	/* constraints check */
2858 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2859 	if (ret < 0)
2860 		goto out;
2861 
2862 	/* restore original values in case of error */
2863 	old_min_uV = regulator->min_uV;
2864 	old_max_uV = regulator->max_uV;
2865 	regulator->min_uV = min_uV;
2866 	regulator->max_uV = max_uV;
2867 
2868 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2869 	if (ret < 0)
2870 		goto out2;
2871 
2872 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2873 				!rdev->desc->ops->get_voltage)) {
2874 		int current_supply_uV;
2875 		int selector;
2876 
2877 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2878 		if (selector < 0) {
2879 			ret = selector;
2880 			goto out2;
2881 		}
2882 
2883 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2884 		if (best_supply_uV < 0) {
2885 			ret = best_supply_uV;
2886 			goto out2;
2887 		}
2888 
2889 		best_supply_uV += rdev->desc->min_dropout_uV;
2890 
2891 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2892 		if (current_supply_uV < 0) {
2893 			ret = current_supply_uV;
2894 			goto out2;
2895 		}
2896 
2897 		supply_change_uV = best_supply_uV - current_supply_uV;
2898 	}
2899 
2900 	if (supply_change_uV > 0) {
2901 		ret = regulator_set_voltage_unlocked(rdev->supply,
2902 				best_supply_uV, INT_MAX);
2903 		if (ret) {
2904 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2905 					ret);
2906 			goto out2;
2907 		}
2908 	}
2909 
2910 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2911 	if (ret < 0)
2912 		goto out2;
2913 
2914 	if (supply_change_uV < 0) {
2915 		ret = regulator_set_voltage_unlocked(rdev->supply,
2916 				best_supply_uV, INT_MAX);
2917 		if (ret)
2918 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2919 					ret);
2920 		/* No need to fail here */
2921 		ret = 0;
2922 	}
2923 
2924 out:
2925 	return ret;
2926 out2:
2927 	regulator->min_uV = old_min_uV;
2928 	regulator->max_uV = old_max_uV;
2929 
2930 	return ret;
2931 }
2932 
2933 /**
2934  * regulator_set_voltage - set regulator output voltage
2935  * @regulator: regulator source
2936  * @min_uV: Minimum required voltage in uV
2937  * @max_uV: Maximum acceptable voltage in uV
2938  *
2939  * Sets a voltage regulator to the desired output voltage. This can be set
2940  * during any regulator state. IOW, regulator can be disabled or enabled.
2941  *
2942  * If the regulator is enabled then the voltage will change to the new value
2943  * immediately otherwise if the regulator is disabled the regulator will
2944  * output at the new voltage when enabled.
2945  *
2946  * NOTE: If the regulator is shared between several devices then the lowest
2947  * request voltage that meets the system constraints will be used.
2948  * Regulator system constraints must be set for this regulator before
2949  * calling this function otherwise this call will fail.
2950  */
2951 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2952 {
2953 	int ret = 0;
2954 
2955 	regulator_lock_supply(regulator->rdev);
2956 
2957 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2958 
2959 	regulator_unlock_supply(regulator->rdev);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2964 
2965 /**
2966  * regulator_set_voltage_time - get raise/fall time
2967  * @regulator: regulator source
2968  * @old_uV: starting voltage in microvolts
2969  * @new_uV: target voltage in microvolts
2970  *
2971  * Provided with the starting and ending voltage, this function attempts to
2972  * calculate the time in microseconds required to rise or fall to this new
2973  * voltage.
2974  */
2975 int regulator_set_voltage_time(struct regulator *regulator,
2976 			       int old_uV, int new_uV)
2977 {
2978 	struct regulator_dev *rdev = regulator->rdev;
2979 	const struct regulator_ops *ops = rdev->desc->ops;
2980 	int old_sel = -1;
2981 	int new_sel = -1;
2982 	int voltage;
2983 	int i;
2984 
2985 	/* Currently requires operations to do this */
2986 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2987 	    || !rdev->desc->n_voltages)
2988 		return -EINVAL;
2989 
2990 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2991 		/* We only look for exact voltage matches here */
2992 		voltage = regulator_list_voltage(regulator, i);
2993 		if (voltage < 0)
2994 			return -EINVAL;
2995 		if (voltage == 0)
2996 			continue;
2997 		if (voltage == old_uV)
2998 			old_sel = i;
2999 		if (voltage == new_uV)
3000 			new_sel = i;
3001 	}
3002 
3003 	if (old_sel < 0 || new_sel < 0)
3004 		return -EINVAL;
3005 
3006 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3009 
3010 /**
3011  * regulator_set_voltage_time_sel - get raise/fall time
3012  * @rdev: regulator source device
3013  * @old_selector: selector for starting voltage
3014  * @new_selector: selector for target voltage
3015  *
3016  * Provided with the starting and target voltage selectors, this function
3017  * returns time in microseconds required to rise or fall to this new voltage
3018  *
3019  * Drivers providing ramp_delay in regulation_constraints can use this as their
3020  * set_voltage_time_sel() operation.
3021  */
3022 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3023 				   unsigned int old_selector,
3024 				   unsigned int new_selector)
3025 {
3026 	unsigned int ramp_delay = 0;
3027 	int old_volt, new_volt;
3028 
3029 	if (rdev->constraints->ramp_delay)
3030 		ramp_delay = rdev->constraints->ramp_delay;
3031 	else if (rdev->desc->ramp_delay)
3032 		ramp_delay = rdev->desc->ramp_delay;
3033 
3034 	if (ramp_delay == 0) {
3035 		rdev_warn(rdev, "ramp_delay not set\n");
3036 		return 0;
3037 	}
3038 
3039 	/* sanity check */
3040 	if (!rdev->desc->ops->list_voltage)
3041 		return -EINVAL;
3042 
3043 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3044 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3045 
3046 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3049 
3050 /**
3051  * regulator_sync_voltage - re-apply last regulator output voltage
3052  * @regulator: regulator source
3053  *
3054  * Re-apply the last configured voltage.  This is intended to be used
3055  * where some external control source the consumer is cooperating with
3056  * has caused the configured voltage to change.
3057  */
3058 int regulator_sync_voltage(struct regulator *regulator)
3059 {
3060 	struct regulator_dev *rdev = regulator->rdev;
3061 	int ret, min_uV, max_uV;
3062 
3063 	mutex_lock(&rdev->mutex);
3064 
3065 	if (!rdev->desc->ops->set_voltage &&
3066 	    !rdev->desc->ops->set_voltage_sel) {
3067 		ret = -EINVAL;
3068 		goto out;
3069 	}
3070 
3071 	/* This is only going to work if we've had a voltage configured. */
3072 	if (!regulator->min_uV && !regulator->max_uV) {
3073 		ret = -EINVAL;
3074 		goto out;
3075 	}
3076 
3077 	min_uV = regulator->min_uV;
3078 	max_uV = regulator->max_uV;
3079 
3080 	/* This should be a paranoia check... */
3081 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3082 	if (ret < 0)
3083 		goto out;
3084 
3085 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3086 	if (ret < 0)
3087 		goto out;
3088 
3089 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3090 
3091 out:
3092 	mutex_unlock(&rdev->mutex);
3093 	return ret;
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3096 
3097 static int _regulator_get_voltage(struct regulator_dev *rdev)
3098 {
3099 	int sel, ret;
3100 
3101 	if (rdev->desc->ops->get_voltage_sel) {
3102 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3103 		if (sel < 0)
3104 			return sel;
3105 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3106 	} else if (rdev->desc->ops->get_voltage) {
3107 		ret = rdev->desc->ops->get_voltage(rdev);
3108 	} else if (rdev->desc->ops->list_voltage) {
3109 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3110 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3111 		ret = rdev->desc->fixed_uV;
3112 	} else if (rdev->supply) {
3113 		ret = _regulator_get_voltage(rdev->supply->rdev);
3114 	} else {
3115 		return -EINVAL;
3116 	}
3117 
3118 	if (ret < 0)
3119 		return ret;
3120 	return ret - rdev->constraints->uV_offset;
3121 }
3122 
3123 /**
3124  * regulator_get_voltage - get regulator output voltage
3125  * @regulator: regulator source
3126  *
3127  * This returns the current regulator voltage in uV.
3128  *
3129  * NOTE: If the regulator is disabled it will return the voltage value. This
3130  * function should not be used to determine regulator state.
3131  */
3132 int regulator_get_voltage(struct regulator *regulator)
3133 {
3134 	int ret;
3135 
3136 	regulator_lock_supply(regulator->rdev);
3137 
3138 	ret = _regulator_get_voltage(regulator->rdev);
3139 
3140 	regulator_unlock_supply(regulator->rdev);
3141 
3142 	return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3145 
3146 /**
3147  * regulator_set_current_limit - set regulator output current limit
3148  * @regulator: regulator source
3149  * @min_uA: Minimum supported current in uA
3150  * @max_uA: Maximum supported current in uA
3151  *
3152  * Sets current sink to the desired output current. This can be set during
3153  * any regulator state. IOW, regulator can be disabled or enabled.
3154  *
3155  * If the regulator is enabled then the current will change to the new value
3156  * immediately otherwise if the regulator is disabled the regulator will
3157  * output at the new current when enabled.
3158  *
3159  * NOTE: Regulator system constraints must be set for this regulator before
3160  * calling this function otherwise this call will fail.
3161  */
3162 int regulator_set_current_limit(struct regulator *regulator,
3163 			       int min_uA, int max_uA)
3164 {
3165 	struct regulator_dev *rdev = regulator->rdev;
3166 	int ret;
3167 
3168 	mutex_lock(&rdev->mutex);
3169 
3170 	/* sanity check */
3171 	if (!rdev->desc->ops->set_current_limit) {
3172 		ret = -EINVAL;
3173 		goto out;
3174 	}
3175 
3176 	/* constraints check */
3177 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3178 	if (ret < 0)
3179 		goto out;
3180 
3181 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3182 out:
3183 	mutex_unlock(&rdev->mutex);
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3187 
3188 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3189 {
3190 	int ret;
3191 
3192 	mutex_lock(&rdev->mutex);
3193 
3194 	/* sanity check */
3195 	if (!rdev->desc->ops->get_current_limit) {
3196 		ret = -EINVAL;
3197 		goto out;
3198 	}
3199 
3200 	ret = rdev->desc->ops->get_current_limit(rdev);
3201 out:
3202 	mutex_unlock(&rdev->mutex);
3203 	return ret;
3204 }
3205 
3206 /**
3207  * regulator_get_current_limit - get regulator output current
3208  * @regulator: regulator source
3209  *
3210  * This returns the current supplied by the specified current sink in uA.
3211  *
3212  * NOTE: If the regulator is disabled it will return the current value. This
3213  * function should not be used to determine regulator state.
3214  */
3215 int regulator_get_current_limit(struct regulator *regulator)
3216 {
3217 	return _regulator_get_current_limit(regulator->rdev);
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3220 
3221 /**
3222  * regulator_set_mode - set regulator operating mode
3223  * @regulator: regulator source
3224  * @mode: operating mode - one of the REGULATOR_MODE constants
3225  *
3226  * Set regulator operating mode to increase regulator efficiency or improve
3227  * regulation performance.
3228  *
3229  * NOTE: Regulator system constraints must be set for this regulator before
3230  * calling this function otherwise this call will fail.
3231  */
3232 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3233 {
3234 	struct regulator_dev *rdev = regulator->rdev;
3235 	int ret;
3236 	int regulator_curr_mode;
3237 
3238 	mutex_lock(&rdev->mutex);
3239 
3240 	/* sanity check */
3241 	if (!rdev->desc->ops->set_mode) {
3242 		ret = -EINVAL;
3243 		goto out;
3244 	}
3245 
3246 	/* return if the same mode is requested */
3247 	if (rdev->desc->ops->get_mode) {
3248 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3249 		if (regulator_curr_mode == mode) {
3250 			ret = 0;
3251 			goto out;
3252 		}
3253 	}
3254 
3255 	/* constraints check */
3256 	ret = regulator_mode_constrain(rdev, &mode);
3257 	if (ret < 0)
3258 		goto out;
3259 
3260 	ret = rdev->desc->ops->set_mode(rdev, mode);
3261 out:
3262 	mutex_unlock(&rdev->mutex);
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(regulator_set_mode);
3266 
3267 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3268 {
3269 	int ret;
3270 
3271 	mutex_lock(&rdev->mutex);
3272 
3273 	/* sanity check */
3274 	if (!rdev->desc->ops->get_mode) {
3275 		ret = -EINVAL;
3276 		goto out;
3277 	}
3278 
3279 	ret = rdev->desc->ops->get_mode(rdev);
3280 out:
3281 	mutex_unlock(&rdev->mutex);
3282 	return ret;
3283 }
3284 
3285 /**
3286  * regulator_get_mode - get regulator operating mode
3287  * @regulator: regulator source
3288  *
3289  * Get the current regulator operating mode.
3290  */
3291 unsigned int regulator_get_mode(struct regulator *regulator)
3292 {
3293 	return _regulator_get_mode(regulator->rdev);
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_get_mode);
3296 
3297 /**
3298  * regulator_set_load - set regulator load
3299  * @regulator: regulator source
3300  * @uA_load: load current
3301  *
3302  * Notifies the regulator core of a new device load. This is then used by
3303  * DRMS (if enabled by constraints) to set the most efficient regulator
3304  * operating mode for the new regulator loading.
3305  *
3306  * Consumer devices notify their supply regulator of the maximum power
3307  * they will require (can be taken from device datasheet in the power
3308  * consumption tables) when they change operational status and hence power
3309  * state. Examples of operational state changes that can affect power
3310  * consumption are :-
3311  *
3312  *    o Device is opened / closed.
3313  *    o Device I/O is about to begin or has just finished.
3314  *    o Device is idling in between work.
3315  *
3316  * This information is also exported via sysfs to userspace.
3317  *
3318  * DRMS will sum the total requested load on the regulator and change
3319  * to the most efficient operating mode if platform constraints allow.
3320  *
3321  * On error a negative errno is returned.
3322  */
3323 int regulator_set_load(struct regulator *regulator, int uA_load)
3324 {
3325 	struct regulator_dev *rdev = regulator->rdev;
3326 	int ret;
3327 
3328 	mutex_lock(&rdev->mutex);
3329 	regulator->uA_load = uA_load;
3330 	ret = drms_uA_update(rdev);
3331 	mutex_unlock(&rdev->mutex);
3332 
3333 	return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_set_load);
3336 
3337 /**
3338  * regulator_allow_bypass - allow the regulator to go into bypass mode
3339  *
3340  * @regulator: Regulator to configure
3341  * @enable: enable or disable bypass mode
3342  *
3343  * Allow the regulator to go into bypass mode if all other consumers
3344  * for the regulator also enable bypass mode and the machine
3345  * constraints allow this.  Bypass mode means that the regulator is
3346  * simply passing the input directly to the output with no regulation.
3347  */
3348 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3349 {
3350 	struct regulator_dev *rdev = regulator->rdev;
3351 	int ret = 0;
3352 
3353 	if (!rdev->desc->ops->set_bypass)
3354 		return 0;
3355 
3356 	if (rdev->constraints &&
3357 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3358 		return 0;
3359 
3360 	mutex_lock(&rdev->mutex);
3361 
3362 	if (enable && !regulator->bypass) {
3363 		rdev->bypass_count++;
3364 
3365 		if (rdev->bypass_count == rdev->open_count) {
3366 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3367 			if (ret != 0)
3368 				rdev->bypass_count--;
3369 		}
3370 
3371 	} else if (!enable && regulator->bypass) {
3372 		rdev->bypass_count--;
3373 
3374 		if (rdev->bypass_count != rdev->open_count) {
3375 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3376 			if (ret != 0)
3377 				rdev->bypass_count++;
3378 		}
3379 	}
3380 
3381 	if (ret == 0)
3382 		regulator->bypass = enable;
3383 
3384 	mutex_unlock(&rdev->mutex);
3385 
3386 	return ret;
3387 }
3388 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3389 
3390 /**
3391  * regulator_register_notifier - register regulator event notifier
3392  * @regulator: regulator source
3393  * @nb: notifier block
3394  *
3395  * Register notifier block to receive regulator events.
3396  */
3397 int regulator_register_notifier(struct regulator *regulator,
3398 			      struct notifier_block *nb)
3399 {
3400 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3401 						nb);
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3404 
3405 /**
3406  * regulator_unregister_notifier - unregister regulator event notifier
3407  * @regulator: regulator source
3408  * @nb: notifier block
3409  *
3410  * Unregister regulator event notifier block.
3411  */
3412 int regulator_unregister_notifier(struct regulator *regulator,
3413 				struct notifier_block *nb)
3414 {
3415 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3416 						  nb);
3417 }
3418 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3419 
3420 /* notify regulator consumers and downstream regulator consumers.
3421  * Note mutex must be held by caller.
3422  */
3423 static int _notifier_call_chain(struct regulator_dev *rdev,
3424 				  unsigned long event, void *data)
3425 {
3426 	/* call rdev chain first */
3427 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3428 }
3429 
3430 /**
3431  * regulator_bulk_get - get multiple regulator consumers
3432  *
3433  * @dev:           Device to supply
3434  * @num_consumers: Number of consumers to register
3435  * @consumers:     Configuration of consumers; clients are stored here.
3436  *
3437  * @return 0 on success, an errno on failure.
3438  *
3439  * This helper function allows drivers to get several regulator
3440  * consumers in one operation.  If any of the regulators cannot be
3441  * acquired then any regulators that were allocated will be freed
3442  * before returning to the caller.
3443  */
3444 int regulator_bulk_get(struct device *dev, int num_consumers,
3445 		       struct regulator_bulk_data *consumers)
3446 {
3447 	int i;
3448 	int ret;
3449 
3450 	for (i = 0; i < num_consumers; i++)
3451 		consumers[i].consumer = NULL;
3452 
3453 	for (i = 0; i < num_consumers; i++) {
3454 		consumers[i].consumer = regulator_get(dev,
3455 						      consumers[i].supply);
3456 		if (IS_ERR(consumers[i].consumer)) {
3457 			ret = PTR_ERR(consumers[i].consumer);
3458 			dev_err(dev, "Failed to get supply '%s': %d\n",
3459 				consumers[i].supply, ret);
3460 			consumers[i].consumer = NULL;
3461 			goto err;
3462 		}
3463 	}
3464 
3465 	return 0;
3466 
3467 err:
3468 	while (--i >= 0)
3469 		regulator_put(consumers[i].consumer);
3470 
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3474 
3475 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3476 {
3477 	struct regulator_bulk_data *bulk = data;
3478 
3479 	bulk->ret = regulator_enable(bulk->consumer);
3480 }
3481 
3482 /**
3483  * regulator_bulk_enable - enable multiple regulator consumers
3484  *
3485  * @num_consumers: Number of consumers
3486  * @consumers:     Consumer data; clients are stored here.
3487  * @return         0 on success, an errno on failure
3488  *
3489  * This convenience API allows consumers to enable multiple regulator
3490  * clients in a single API call.  If any consumers cannot be enabled
3491  * then any others that were enabled will be disabled again prior to
3492  * return.
3493  */
3494 int regulator_bulk_enable(int num_consumers,
3495 			  struct regulator_bulk_data *consumers)
3496 {
3497 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3498 	int i;
3499 	int ret = 0;
3500 
3501 	for (i = 0; i < num_consumers; i++) {
3502 		if (consumers[i].consumer->always_on)
3503 			consumers[i].ret = 0;
3504 		else
3505 			async_schedule_domain(regulator_bulk_enable_async,
3506 					      &consumers[i], &async_domain);
3507 	}
3508 
3509 	async_synchronize_full_domain(&async_domain);
3510 
3511 	/* If any consumer failed we need to unwind any that succeeded */
3512 	for (i = 0; i < num_consumers; i++) {
3513 		if (consumers[i].ret != 0) {
3514 			ret = consumers[i].ret;
3515 			goto err;
3516 		}
3517 	}
3518 
3519 	return 0;
3520 
3521 err:
3522 	for (i = 0; i < num_consumers; i++) {
3523 		if (consumers[i].ret < 0)
3524 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3525 			       consumers[i].ret);
3526 		else
3527 			regulator_disable(consumers[i].consumer);
3528 	}
3529 
3530 	return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3533 
3534 /**
3535  * regulator_bulk_disable - disable multiple regulator consumers
3536  *
3537  * @num_consumers: Number of consumers
3538  * @consumers:     Consumer data; clients are stored here.
3539  * @return         0 on success, an errno on failure
3540  *
3541  * This convenience API allows consumers to disable multiple regulator
3542  * clients in a single API call.  If any consumers cannot be disabled
3543  * then any others that were disabled will be enabled again prior to
3544  * return.
3545  */
3546 int regulator_bulk_disable(int num_consumers,
3547 			   struct regulator_bulk_data *consumers)
3548 {
3549 	int i;
3550 	int ret, r;
3551 
3552 	for (i = num_consumers - 1; i >= 0; --i) {
3553 		ret = regulator_disable(consumers[i].consumer);
3554 		if (ret != 0)
3555 			goto err;
3556 	}
3557 
3558 	return 0;
3559 
3560 err:
3561 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3562 	for (++i; i < num_consumers; ++i) {
3563 		r = regulator_enable(consumers[i].consumer);
3564 		if (r != 0)
3565 			pr_err("Failed to reename %s: %d\n",
3566 			       consumers[i].supply, r);
3567 	}
3568 
3569 	return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3572 
3573 /**
3574  * regulator_bulk_force_disable - force disable multiple regulator consumers
3575  *
3576  * @num_consumers: Number of consumers
3577  * @consumers:     Consumer data; clients are stored here.
3578  * @return         0 on success, an errno on failure
3579  *
3580  * This convenience API allows consumers to forcibly disable multiple regulator
3581  * clients in a single API call.
3582  * NOTE: This should be used for situations when device damage will
3583  * likely occur if the regulators are not disabled (e.g. over temp).
3584  * Although regulator_force_disable function call for some consumers can
3585  * return error numbers, the function is called for all consumers.
3586  */
3587 int regulator_bulk_force_disable(int num_consumers,
3588 			   struct regulator_bulk_data *consumers)
3589 {
3590 	int i;
3591 	int ret;
3592 
3593 	for (i = 0; i < num_consumers; i++)
3594 		consumers[i].ret =
3595 			    regulator_force_disable(consumers[i].consumer);
3596 
3597 	for (i = 0; i < num_consumers; i++) {
3598 		if (consumers[i].ret != 0) {
3599 			ret = consumers[i].ret;
3600 			goto out;
3601 		}
3602 	}
3603 
3604 	return 0;
3605 out:
3606 	return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3609 
3610 /**
3611  * regulator_bulk_free - free multiple regulator consumers
3612  *
3613  * @num_consumers: Number of consumers
3614  * @consumers:     Consumer data; clients are stored here.
3615  *
3616  * This convenience API allows consumers to free multiple regulator
3617  * clients in a single API call.
3618  */
3619 void regulator_bulk_free(int num_consumers,
3620 			 struct regulator_bulk_data *consumers)
3621 {
3622 	int i;
3623 
3624 	for (i = 0; i < num_consumers; i++) {
3625 		regulator_put(consumers[i].consumer);
3626 		consumers[i].consumer = NULL;
3627 	}
3628 }
3629 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3630 
3631 /**
3632  * regulator_notifier_call_chain - call regulator event notifier
3633  * @rdev: regulator source
3634  * @event: notifier block
3635  * @data: callback-specific data.
3636  *
3637  * Called by regulator drivers to notify clients a regulator event has
3638  * occurred. We also notify regulator clients downstream.
3639  * Note lock must be held by caller.
3640  */
3641 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3642 				  unsigned long event, void *data)
3643 {
3644 	lockdep_assert_held_once(&rdev->mutex);
3645 
3646 	_notifier_call_chain(rdev, event, data);
3647 	return NOTIFY_DONE;
3648 
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3651 
3652 /**
3653  * regulator_mode_to_status - convert a regulator mode into a status
3654  *
3655  * @mode: Mode to convert
3656  *
3657  * Convert a regulator mode into a status.
3658  */
3659 int regulator_mode_to_status(unsigned int mode)
3660 {
3661 	switch (mode) {
3662 	case REGULATOR_MODE_FAST:
3663 		return REGULATOR_STATUS_FAST;
3664 	case REGULATOR_MODE_NORMAL:
3665 		return REGULATOR_STATUS_NORMAL;
3666 	case REGULATOR_MODE_IDLE:
3667 		return REGULATOR_STATUS_IDLE;
3668 	case REGULATOR_MODE_STANDBY:
3669 		return REGULATOR_STATUS_STANDBY;
3670 	default:
3671 		return REGULATOR_STATUS_UNDEFINED;
3672 	}
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3675 
3676 static struct attribute *regulator_dev_attrs[] = {
3677 	&dev_attr_name.attr,
3678 	&dev_attr_num_users.attr,
3679 	&dev_attr_type.attr,
3680 	&dev_attr_microvolts.attr,
3681 	&dev_attr_microamps.attr,
3682 	&dev_attr_opmode.attr,
3683 	&dev_attr_state.attr,
3684 	&dev_attr_status.attr,
3685 	&dev_attr_bypass.attr,
3686 	&dev_attr_requested_microamps.attr,
3687 	&dev_attr_min_microvolts.attr,
3688 	&dev_attr_max_microvolts.attr,
3689 	&dev_attr_min_microamps.attr,
3690 	&dev_attr_max_microamps.attr,
3691 	&dev_attr_suspend_standby_state.attr,
3692 	&dev_attr_suspend_mem_state.attr,
3693 	&dev_attr_suspend_disk_state.attr,
3694 	&dev_attr_suspend_standby_microvolts.attr,
3695 	&dev_attr_suspend_mem_microvolts.attr,
3696 	&dev_attr_suspend_disk_microvolts.attr,
3697 	&dev_attr_suspend_standby_mode.attr,
3698 	&dev_attr_suspend_mem_mode.attr,
3699 	&dev_attr_suspend_disk_mode.attr,
3700 	NULL
3701 };
3702 
3703 /*
3704  * To avoid cluttering sysfs (and memory) with useless state, only
3705  * create attributes that can be meaningfully displayed.
3706  */
3707 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3708 					 struct attribute *attr, int idx)
3709 {
3710 	struct device *dev = kobj_to_dev(kobj);
3711 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3712 	const struct regulator_ops *ops = rdev->desc->ops;
3713 	umode_t mode = attr->mode;
3714 
3715 	/* these three are always present */
3716 	if (attr == &dev_attr_name.attr ||
3717 	    attr == &dev_attr_num_users.attr ||
3718 	    attr == &dev_attr_type.attr)
3719 		return mode;
3720 
3721 	/* some attributes need specific methods to be displayed */
3722 	if (attr == &dev_attr_microvolts.attr) {
3723 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3724 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3725 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3726 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3727 			return mode;
3728 		return 0;
3729 	}
3730 
3731 	if (attr == &dev_attr_microamps.attr)
3732 		return ops->get_current_limit ? mode : 0;
3733 
3734 	if (attr == &dev_attr_opmode.attr)
3735 		return ops->get_mode ? mode : 0;
3736 
3737 	if (attr == &dev_attr_state.attr)
3738 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3739 
3740 	if (attr == &dev_attr_status.attr)
3741 		return ops->get_status ? mode : 0;
3742 
3743 	if (attr == &dev_attr_bypass.attr)
3744 		return ops->get_bypass ? mode : 0;
3745 
3746 	/* some attributes are type-specific */
3747 	if (attr == &dev_attr_requested_microamps.attr)
3748 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3749 
3750 	/* constraints need specific supporting methods */
3751 	if (attr == &dev_attr_min_microvolts.attr ||
3752 	    attr == &dev_attr_max_microvolts.attr)
3753 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3754 
3755 	if (attr == &dev_attr_min_microamps.attr ||
3756 	    attr == &dev_attr_max_microamps.attr)
3757 		return ops->set_current_limit ? mode : 0;
3758 
3759 	if (attr == &dev_attr_suspend_standby_state.attr ||
3760 	    attr == &dev_attr_suspend_mem_state.attr ||
3761 	    attr == &dev_attr_suspend_disk_state.attr)
3762 		return mode;
3763 
3764 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3765 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3766 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3767 		return ops->set_suspend_voltage ? mode : 0;
3768 
3769 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3770 	    attr == &dev_attr_suspend_mem_mode.attr ||
3771 	    attr == &dev_attr_suspend_disk_mode.attr)
3772 		return ops->set_suspend_mode ? mode : 0;
3773 
3774 	return mode;
3775 }
3776 
3777 static const struct attribute_group regulator_dev_group = {
3778 	.attrs = regulator_dev_attrs,
3779 	.is_visible = regulator_attr_is_visible,
3780 };
3781 
3782 static const struct attribute_group *regulator_dev_groups[] = {
3783 	&regulator_dev_group,
3784 	NULL
3785 };
3786 
3787 static void regulator_dev_release(struct device *dev)
3788 {
3789 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3790 
3791 	kfree(rdev->constraints);
3792 	of_node_put(rdev->dev.of_node);
3793 	kfree(rdev);
3794 }
3795 
3796 static struct class regulator_class = {
3797 	.name = "regulator",
3798 	.dev_release = regulator_dev_release,
3799 	.dev_groups = regulator_dev_groups,
3800 };
3801 
3802 static void rdev_init_debugfs(struct regulator_dev *rdev)
3803 {
3804 	struct device *parent = rdev->dev.parent;
3805 	const char *rname = rdev_get_name(rdev);
3806 	char name[NAME_MAX];
3807 
3808 	/* Avoid duplicate debugfs directory names */
3809 	if (parent && rname == rdev->desc->name) {
3810 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3811 			 rname);
3812 		rname = name;
3813 	}
3814 
3815 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3816 	if (!rdev->debugfs) {
3817 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3818 		return;
3819 	}
3820 
3821 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3822 			   &rdev->use_count);
3823 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3824 			   &rdev->open_count);
3825 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3826 			   &rdev->bypass_count);
3827 }
3828 
3829 /**
3830  * regulator_register - register regulator
3831  * @regulator_desc: regulator to register
3832  * @cfg: runtime configuration for regulator
3833  *
3834  * Called by regulator drivers to register a regulator.
3835  * Returns a valid pointer to struct regulator_dev on success
3836  * or an ERR_PTR() on error.
3837  */
3838 struct regulator_dev *
3839 regulator_register(const struct regulator_desc *regulator_desc,
3840 		   const struct regulator_config *cfg)
3841 {
3842 	const struct regulation_constraints *constraints = NULL;
3843 	const struct regulator_init_data *init_data;
3844 	struct regulator_config *config = NULL;
3845 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3846 	struct regulator_dev *rdev;
3847 	struct device *dev;
3848 	int ret, i;
3849 
3850 	if (regulator_desc == NULL || cfg == NULL)
3851 		return ERR_PTR(-EINVAL);
3852 
3853 	dev = cfg->dev;
3854 	WARN_ON(!dev);
3855 
3856 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3857 		return ERR_PTR(-EINVAL);
3858 
3859 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3860 	    regulator_desc->type != REGULATOR_CURRENT)
3861 		return ERR_PTR(-EINVAL);
3862 
3863 	/* Only one of each should be implemented */
3864 	WARN_ON(regulator_desc->ops->get_voltage &&
3865 		regulator_desc->ops->get_voltage_sel);
3866 	WARN_ON(regulator_desc->ops->set_voltage &&
3867 		regulator_desc->ops->set_voltage_sel);
3868 
3869 	/* If we're using selectors we must implement list_voltage. */
3870 	if (regulator_desc->ops->get_voltage_sel &&
3871 	    !regulator_desc->ops->list_voltage) {
3872 		return ERR_PTR(-EINVAL);
3873 	}
3874 	if (regulator_desc->ops->set_voltage_sel &&
3875 	    !regulator_desc->ops->list_voltage) {
3876 		return ERR_PTR(-EINVAL);
3877 	}
3878 
3879 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3880 	if (rdev == NULL)
3881 		return ERR_PTR(-ENOMEM);
3882 
3883 	/*
3884 	 * Duplicate the config so the driver could override it after
3885 	 * parsing init data.
3886 	 */
3887 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3888 	if (config == NULL) {
3889 		kfree(rdev);
3890 		return ERR_PTR(-ENOMEM);
3891 	}
3892 
3893 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3894 					       &rdev->dev.of_node);
3895 	if (!init_data) {
3896 		init_data = config->init_data;
3897 		rdev->dev.of_node = of_node_get(config->of_node);
3898 	}
3899 
3900 	mutex_lock(&regulator_list_mutex);
3901 
3902 	mutex_init(&rdev->mutex);
3903 	rdev->reg_data = config->driver_data;
3904 	rdev->owner = regulator_desc->owner;
3905 	rdev->desc = regulator_desc;
3906 	if (config->regmap)
3907 		rdev->regmap = config->regmap;
3908 	else if (dev_get_regmap(dev, NULL))
3909 		rdev->regmap = dev_get_regmap(dev, NULL);
3910 	else if (dev->parent)
3911 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3912 	INIT_LIST_HEAD(&rdev->consumer_list);
3913 	INIT_LIST_HEAD(&rdev->list);
3914 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3915 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3916 
3917 	/* preform any regulator specific init */
3918 	if (init_data && init_data->regulator_init) {
3919 		ret = init_data->regulator_init(rdev->reg_data);
3920 		if (ret < 0)
3921 			goto clean;
3922 	}
3923 
3924 	/* register with sysfs */
3925 	rdev->dev.class = &regulator_class;
3926 	rdev->dev.parent = dev;
3927 	dev_set_name(&rdev->dev, "regulator.%lu",
3928 		    (unsigned long) atomic_inc_return(&regulator_no));
3929 	ret = device_register(&rdev->dev);
3930 	if (ret != 0) {
3931 		put_device(&rdev->dev);
3932 		goto clean;
3933 	}
3934 
3935 	dev_set_drvdata(&rdev->dev, rdev);
3936 
3937 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3938 	    gpio_is_valid(config->ena_gpio)) {
3939 		ret = regulator_ena_gpio_request(rdev, config);
3940 		if (ret != 0) {
3941 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3942 				 config->ena_gpio, ret);
3943 			goto wash;
3944 		}
3945 	}
3946 
3947 	/* set regulator constraints */
3948 	if (init_data)
3949 		constraints = &init_data->constraints;
3950 
3951 	ret = set_machine_constraints(rdev, constraints);
3952 	if (ret < 0)
3953 		goto scrub;
3954 
3955 	if (init_data && init_data->supply_regulator)
3956 		rdev->supply_name = init_data->supply_regulator;
3957 	else if (regulator_desc->supply_name)
3958 		rdev->supply_name = regulator_desc->supply_name;
3959 
3960 	/* add consumers devices */
3961 	if (init_data) {
3962 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3963 			ret = set_consumer_device_supply(rdev,
3964 				init_data->consumer_supplies[i].dev_name,
3965 				init_data->consumer_supplies[i].supply);
3966 			if (ret < 0) {
3967 				dev_err(dev, "Failed to set supply %s\n",
3968 					init_data->consumer_supplies[i].supply);
3969 				goto unset_supplies;
3970 			}
3971 		}
3972 	}
3973 
3974 	rdev_init_debugfs(rdev);
3975 out:
3976 	mutex_unlock(&regulator_list_mutex);
3977 	kfree(config);
3978 	return rdev;
3979 
3980 unset_supplies:
3981 	unset_regulator_supplies(rdev);
3982 
3983 scrub:
3984 	regulator_ena_gpio_free(rdev);
3985 	kfree(rdev->constraints);
3986 wash:
3987 	device_unregister(&rdev->dev);
3988 	/* device core frees rdev */
3989 	rdev = ERR_PTR(ret);
3990 	goto out;
3991 
3992 clean:
3993 	kfree(rdev);
3994 	rdev = ERR_PTR(ret);
3995 	goto out;
3996 }
3997 EXPORT_SYMBOL_GPL(regulator_register);
3998 
3999 /**
4000  * regulator_unregister - unregister regulator
4001  * @rdev: regulator to unregister
4002  *
4003  * Called by regulator drivers to unregister a regulator.
4004  */
4005 void regulator_unregister(struct regulator_dev *rdev)
4006 {
4007 	if (rdev == NULL)
4008 		return;
4009 
4010 	if (rdev->supply) {
4011 		while (rdev->use_count--)
4012 			regulator_disable(rdev->supply);
4013 		regulator_put(rdev->supply);
4014 	}
4015 	mutex_lock(&regulator_list_mutex);
4016 	debugfs_remove_recursive(rdev->debugfs);
4017 	flush_work(&rdev->disable_work.work);
4018 	WARN_ON(rdev->open_count);
4019 	unset_regulator_supplies(rdev);
4020 	list_del(&rdev->list);
4021 	mutex_unlock(&regulator_list_mutex);
4022 	regulator_ena_gpio_free(rdev);
4023 	device_unregister(&rdev->dev);
4024 }
4025 EXPORT_SYMBOL_GPL(regulator_unregister);
4026 
4027 static int _regulator_suspend_prepare(struct device *dev, void *data)
4028 {
4029 	struct regulator_dev *rdev = dev_to_rdev(dev);
4030 	const suspend_state_t *state = data;
4031 	int ret;
4032 
4033 	mutex_lock(&rdev->mutex);
4034 	ret = suspend_prepare(rdev, *state);
4035 	mutex_unlock(&rdev->mutex);
4036 
4037 	return ret;
4038 }
4039 
4040 /**
4041  * regulator_suspend_prepare - prepare regulators for system wide suspend
4042  * @state: system suspend state
4043  *
4044  * Configure each regulator with it's suspend operating parameters for state.
4045  * This will usually be called by machine suspend code prior to supending.
4046  */
4047 int regulator_suspend_prepare(suspend_state_t state)
4048 {
4049 	/* ON is handled by regulator active state */
4050 	if (state == PM_SUSPEND_ON)
4051 		return -EINVAL;
4052 
4053 	return class_for_each_device(&regulator_class, NULL, &state,
4054 				     _regulator_suspend_prepare);
4055 }
4056 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4057 
4058 static int _regulator_suspend_finish(struct device *dev, void *data)
4059 {
4060 	struct regulator_dev *rdev = dev_to_rdev(dev);
4061 	int ret;
4062 
4063 	mutex_lock(&rdev->mutex);
4064 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4065 		if (!_regulator_is_enabled(rdev)) {
4066 			ret = _regulator_do_enable(rdev);
4067 			if (ret)
4068 				dev_err(dev,
4069 					"Failed to resume regulator %d\n",
4070 					ret);
4071 		}
4072 	} else {
4073 		if (!have_full_constraints())
4074 			goto unlock;
4075 		if (!_regulator_is_enabled(rdev))
4076 			goto unlock;
4077 
4078 		ret = _regulator_do_disable(rdev);
4079 		if (ret)
4080 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4081 	}
4082 unlock:
4083 	mutex_unlock(&rdev->mutex);
4084 
4085 	/* Keep processing regulators in spite of any errors */
4086 	return 0;
4087 }
4088 
4089 /**
4090  * regulator_suspend_finish - resume regulators from system wide suspend
4091  *
4092  * Turn on regulators that might be turned off by regulator_suspend_prepare
4093  * and that should be turned on according to the regulators properties.
4094  */
4095 int regulator_suspend_finish(void)
4096 {
4097 	return class_for_each_device(&regulator_class, NULL, NULL,
4098 				     _regulator_suspend_finish);
4099 }
4100 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4101 
4102 /**
4103  * regulator_has_full_constraints - the system has fully specified constraints
4104  *
4105  * Calling this function will cause the regulator API to disable all
4106  * regulators which have a zero use count and don't have an always_on
4107  * constraint in a late_initcall.
4108  *
4109  * The intention is that this will become the default behaviour in a
4110  * future kernel release so users are encouraged to use this facility
4111  * now.
4112  */
4113 void regulator_has_full_constraints(void)
4114 {
4115 	has_full_constraints = 1;
4116 }
4117 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4118 
4119 /**
4120  * rdev_get_drvdata - get rdev regulator driver data
4121  * @rdev: regulator
4122  *
4123  * Get rdev regulator driver private data. This call can be used in the
4124  * regulator driver context.
4125  */
4126 void *rdev_get_drvdata(struct regulator_dev *rdev)
4127 {
4128 	return rdev->reg_data;
4129 }
4130 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4131 
4132 /**
4133  * regulator_get_drvdata - get regulator driver data
4134  * @regulator: regulator
4135  *
4136  * Get regulator driver private data. This call can be used in the consumer
4137  * driver context when non API regulator specific functions need to be called.
4138  */
4139 void *regulator_get_drvdata(struct regulator *regulator)
4140 {
4141 	return regulator->rdev->reg_data;
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4144 
4145 /**
4146  * regulator_set_drvdata - set regulator driver data
4147  * @regulator: regulator
4148  * @data: data
4149  */
4150 void regulator_set_drvdata(struct regulator *regulator, void *data)
4151 {
4152 	regulator->rdev->reg_data = data;
4153 }
4154 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4155 
4156 /**
4157  * regulator_get_id - get regulator ID
4158  * @rdev: regulator
4159  */
4160 int rdev_get_id(struct regulator_dev *rdev)
4161 {
4162 	return rdev->desc->id;
4163 }
4164 EXPORT_SYMBOL_GPL(rdev_get_id);
4165 
4166 struct device *rdev_get_dev(struct regulator_dev *rdev)
4167 {
4168 	return &rdev->dev;
4169 }
4170 EXPORT_SYMBOL_GPL(rdev_get_dev);
4171 
4172 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4173 {
4174 	return reg_init_data->driver_data;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4177 
4178 #ifdef CONFIG_DEBUG_FS
4179 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4180 				    size_t count, loff_t *ppos)
4181 {
4182 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4183 	ssize_t len, ret = 0;
4184 	struct regulator_map *map;
4185 
4186 	if (!buf)
4187 		return -ENOMEM;
4188 
4189 	list_for_each_entry(map, &regulator_map_list, list) {
4190 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4191 			       "%s -> %s.%s\n",
4192 			       rdev_get_name(map->regulator), map->dev_name,
4193 			       map->supply);
4194 		if (len >= 0)
4195 			ret += len;
4196 		if (ret > PAGE_SIZE) {
4197 			ret = PAGE_SIZE;
4198 			break;
4199 		}
4200 	}
4201 
4202 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4203 
4204 	kfree(buf);
4205 
4206 	return ret;
4207 }
4208 #endif
4209 
4210 static const struct file_operations supply_map_fops = {
4211 #ifdef CONFIG_DEBUG_FS
4212 	.read = supply_map_read_file,
4213 	.llseek = default_llseek,
4214 #endif
4215 };
4216 
4217 #ifdef CONFIG_DEBUG_FS
4218 struct summary_data {
4219 	struct seq_file *s;
4220 	struct regulator_dev *parent;
4221 	int level;
4222 };
4223 
4224 static void regulator_summary_show_subtree(struct seq_file *s,
4225 					   struct regulator_dev *rdev,
4226 					   int level);
4227 
4228 static int regulator_summary_show_children(struct device *dev, void *data)
4229 {
4230 	struct regulator_dev *rdev = dev_to_rdev(dev);
4231 	struct summary_data *summary_data = data;
4232 
4233 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4234 		regulator_summary_show_subtree(summary_data->s, rdev,
4235 					       summary_data->level + 1);
4236 
4237 	return 0;
4238 }
4239 
4240 static void regulator_summary_show_subtree(struct seq_file *s,
4241 					   struct regulator_dev *rdev,
4242 					   int level)
4243 {
4244 	struct regulation_constraints *c;
4245 	struct regulator *consumer;
4246 	struct summary_data summary_data;
4247 
4248 	if (!rdev)
4249 		return;
4250 
4251 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4252 		   level * 3 + 1, "",
4253 		   30 - level * 3, rdev_get_name(rdev),
4254 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4255 
4256 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4257 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4258 
4259 	c = rdev->constraints;
4260 	if (c) {
4261 		switch (rdev->desc->type) {
4262 		case REGULATOR_VOLTAGE:
4263 			seq_printf(s, "%5dmV %5dmV ",
4264 				   c->min_uV / 1000, c->max_uV / 1000);
4265 			break;
4266 		case REGULATOR_CURRENT:
4267 			seq_printf(s, "%5dmA %5dmA ",
4268 				   c->min_uA / 1000, c->max_uA / 1000);
4269 			break;
4270 		}
4271 	}
4272 
4273 	seq_puts(s, "\n");
4274 
4275 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4276 		if (consumer->dev->class == &regulator_class)
4277 			continue;
4278 
4279 		seq_printf(s, "%*s%-*s ",
4280 			   (level + 1) * 3 + 1, "",
4281 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4282 
4283 		switch (rdev->desc->type) {
4284 		case REGULATOR_VOLTAGE:
4285 			seq_printf(s, "%37dmV %5dmV",
4286 				   consumer->min_uV / 1000,
4287 				   consumer->max_uV / 1000);
4288 			break;
4289 		case REGULATOR_CURRENT:
4290 			break;
4291 		}
4292 
4293 		seq_puts(s, "\n");
4294 	}
4295 
4296 	summary_data.s = s;
4297 	summary_data.level = level;
4298 	summary_data.parent = rdev;
4299 
4300 	class_for_each_device(&regulator_class, NULL, &summary_data,
4301 			      regulator_summary_show_children);
4302 }
4303 
4304 static int regulator_summary_show_roots(struct device *dev, void *data)
4305 {
4306 	struct regulator_dev *rdev = dev_to_rdev(dev);
4307 	struct seq_file *s = data;
4308 
4309 	if (!rdev->supply)
4310 		regulator_summary_show_subtree(s, rdev, 0);
4311 
4312 	return 0;
4313 }
4314 
4315 static int regulator_summary_show(struct seq_file *s, void *data)
4316 {
4317 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4318 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4319 
4320 	class_for_each_device(&regulator_class, NULL, s,
4321 			      regulator_summary_show_roots);
4322 
4323 	return 0;
4324 }
4325 
4326 static int regulator_summary_open(struct inode *inode, struct file *file)
4327 {
4328 	return single_open(file, regulator_summary_show, inode->i_private);
4329 }
4330 #endif
4331 
4332 static const struct file_operations regulator_summary_fops = {
4333 #ifdef CONFIG_DEBUG_FS
4334 	.open		= regulator_summary_open,
4335 	.read		= seq_read,
4336 	.llseek		= seq_lseek,
4337 	.release	= single_release,
4338 #endif
4339 };
4340 
4341 static int __init regulator_init(void)
4342 {
4343 	int ret;
4344 
4345 	ret = class_register(&regulator_class);
4346 
4347 	debugfs_root = debugfs_create_dir("regulator", NULL);
4348 	if (!debugfs_root)
4349 		pr_warn("regulator: Failed to create debugfs directory\n");
4350 
4351 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4352 			    &supply_map_fops);
4353 
4354 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4355 			    NULL, &regulator_summary_fops);
4356 
4357 	regulator_dummy_init();
4358 
4359 	return ret;
4360 }
4361 
4362 /* init early to allow our consumers to complete system booting */
4363 core_initcall(regulator_init);
4364 
4365 static int __init regulator_late_cleanup(struct device *dev, void *data)
4366 {
4367 	struct regulator_dev *rdev = dev_to_rdev(dev);
4368 	const struct regulator_ops *ops = rdev->desc->ops;
4369 	struct regulation_constraints *c = rdev->constraints;
4370 	int enabled, ret;
4371 
4372 	if (c && c->always_on)
4373 		return 0;
4374 
4375 	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4376 		return 0;
4377 
4378 	mutex_lock(&rdev->mutex);
4379 
4380 	if (rdev->use_count)
4381 		goto unlock;
4382 
4383 	/* If we can't read the status assume it's on. */
4384 	if (ops->is_enabled)
4385 		enabled = ops->is_enabled(rdev);
4386 	else
4387 		enabled = 1;
4388 
4389 	if (!enabled)
4390 		goto unlock;
4391 
4392 	if (have_full_constraints()) {
4393 		/* We log since this may kill the system if it goes
4394 		 * wrong. */
4395 		rdev_info(rdev, "disabling\n");
4396 		ret = _regulator_do_disable(rdev);
4397 		if (ret != 0)
4398 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4399 	} else {
4400 		/* The intention is that in future we will
4401 		 * assume that full constraints are provided
4402 		 * so warn even if we aren't going to do
4403 		 * anything here.
4404 		 */
4405 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4406 	}
4407 
4408 unlock:
4409 	mutex_unlock(&rdev->mutex);
4410 
4411 	return 0;
4412 }
4413 
4414 static int __init regulator_init_complete(void)
4415 {
4416 	/*
4417 	 * Since DT doesn't provide an idiomatic mechanism for
4418 	 * enabling full constraints and since it's much more natural
4419 	 * with DT to provide them just assume that a DT enabled
4420 	 * system has full constraints.
4421 	 */
4422 	if (of_have_populated_dt())
4423 		has_full_constraints = true;
4424 
4425 	/* If we have a full configuration then disable any regulators
4426 	 * we have permission to change the status for and which are
4427 	 * not in use or always_on.  This is effectively the default
4428 	 * for DT and ACPI as they have full constraints.
4429 	 */
4430 	class_for_each_device(&regulator_class, NULL, NULL,
4431 			      regulator_late_cleanup);
4432 
4433 	return 0;
4434 }
4435 late_initcall_sync(regulator_init_complete);
4436