xref: /openbmc/linux/drivers/regulator/core.c (revision 9c1f8594)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/regulator.h>
34 
35 #include "dummy.h"
36 
37 #define rdev_crit(rdev, fmt, ...)					\
38 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_err(rdev, fmt, ...)					\
40 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_warn(rdev, fmt, ...)					\
42 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_info(rdev, fmt, ...)					\
44 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_dbg(rdev, fmt, ...)					\
46 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 
48 static DEFINE_MUTEX(regulator_list_mutex);
49 static LIST_HEAD(regulator_list);
50 static LIST_HEAD(regulator_map_list);
51 static bool has_full_constraints;
52 static bool board_wants_dummy_regulator;
53 
54 #ifdef CONFIG_DEBUG_FS
55 static struct dentry *debugfs_root;
56 #endif
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator
72  *
73  * One for each consumer device.
74  */
75 struct regulator {
76 	struct device *dev;
77 	struct list_head list;
78 	int uA_load;
79 	int min_uV;
80 	int max_uV;
81 	char *supply_name;
82 	struct device_attribute dev_attr;
83 	struct regulator_dev *rdev;
84 #ifdef CONFIG_DEBUG_FS
85 	struct dentry *debugfs;
86 #endif
87 };
88 
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 				  unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 				     int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 					  struct device *dev,
100 					  const char *supply_name);
101 
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104 	if (rdev->constraints && rdev->constraints->name)
105 		return rdev->constraints->name;
106 	else if (rdev->desc->name)
107 		return rdev->desc->name;
108 	else
109 		return "";
110 }
111 
112 /* gets the regulator for a given consumer device */
113 static struct regulator *get_device_regulator(struct device *dev)
114 {
115 	struct regulator *regulator = NULL;
116 	struct regulator_dev *rdev;
117 
118 	mutex_lock(&regulator_list_mutex);
119 	list_for_each_entry(rdev, &regulator_list, list) {
120 		mutex_lock(&rdev->mutex);
121 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 			if (regulator->dev == dev) {
123 				mutex_unlock(&rdev->mutex);
124 				mutex_unlock(&regulator_list_mutex);
125 				return regulator;
126 			}
127 		}
128 		mutex_unlock(&rdev->mutex);
129 	}
130 	mutex_unlock(&regulator_list_mutex);
131 	return NULL;
132 }
133 
134 /* Platform voltage constraint check */
135 static int regulator_check_voltage(struct regulator_dev *rdev,
136 				   int *min_uV, int *max_uV)
137 {
138 	BUG_ON(*min_uV > *max_uV);
139 
140 	if (!rdev->constraints) {
141 		rdev_err(rdev, "no constraints\n");
142 		return -ENODEV;
143 	}
144 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 		rdev_err(rdev, "operation not allowed\n");
146 		return -EPERM;
147 	}
148 
149 	if (*max_uV > rdev->constraints->max_uV)
150 		*max_uV = rdev->constraints->max_uV;
151 	if (*min_uV < rdev->constraints->min_uV)
152 		*min_uV = rdev->constraints->min_uV;
153 
154 	if (*min_uV > *max_uV) {
155 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 			 *min_uV, *max_uV);
157 		return -EINVAL;
158 	}
159 
160 	return 0;
161 }
162 
163 /* Make sure we select a voltage that suits the needs of all
164  * regulator consumers
165  */
166 static int regulator_check_consumers(struct regulator_dev *rdev,
167 				     int *min_uV, int *max_uV)
168 {
169 	struct regulator *regulator;
170 
171 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
172 		/*
173 		 * Assume consumers that didn't say anything are OK
174 		 * with anything in the constraint range.
175 		 */
176 		if (!regulator->min_uV && !regulator->max_uV)
177 			continue;
178 
179 		if (*max_uV > regulator->max_uV)
180 			*max_uV = regulator->max_uV;
181 		if (*min_uV < regulator->min_uV)
182 			*min_uV = regulator->min_uV;
183 	}
184 
185 	if (*min_uV > *max_uV)
186 		return -EINVAL;
187 
188 	return 0;
189 }
190 
191 /* current constraint check */
192 static int regulator_check_current_limit(struct regulator_dev *rdev,
193 					int *min_uA, int *max_uA)
194 {
195 	BUG_ON(*min_uA > *max_uA);
196 
197 	if (!rdev->constraints) {
198 		rdev_err(rdev, "no constraints\n");
199 		return -ENODEV;
200 	}
201 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 		rdev_err(rdev, "operation not allowed\n");
203 		return -EPERM;
204 	}
205 
206 	if (*max_uA > rdev->constraints->max_uA)
207 		*max_uA = rdev->constraints->max_uA;
208 	if (*min_uA < rdev->constraints->min_uA)
209 		*min_uA = rdev->constraints->min_uA;
210 
211 	if (*min_uA > *max_uA) {
212 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 			 *min_uA, *max_uA);
214 		return -EINVAL;
215 	}
216 
217 	return 0;
218 }
219 
220 /* operating mode constraint check */
221 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222 {
223 	switch (*mode) {
224 	case REGULATOR_MODE_FAST:
225 	case REGULATOR_MODE_NORMAL:
226 	case REGULATOR_MODE_IDLE:
227 	case REGULATOR_MODE_STANDBY:
228 		break;
229 	default:
230 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 		return -EINVAL;
232 	}
233 
234 	if (!rdev->constraints) {
235 		rdev_err(rdev, "no constraints\n");
236 		return -ENODEV;
237 	}
238 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 		rdev_err(rdev, "operation not allowed\n");
240 		return -EPERM;
241 	}
242 
243 	/* The modes are bitmasks, the most power hungry modes having
244 	 * the lowest values. If the requested mode isn't supported
245 	 * try higher modes. */
246 	while (*mode) {
247 		if (rdev->constraints->valid_modes_mask & *mode)
248 			return 0;
249 		*mode /= 2;
250 	}
251 
252 	return -EINVAL;
253 }
254 
255 /* dynamic regulator mode switching constraint check */
256 static int regulator_check_drms(struct regulator_dev *rdev)
257 {
258 	if (!rdev->constraints) {
259 		rdev_err(rdev, "no constraints\n");
260 		return -ENODEV;
261 	}
262 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 		rdev_err(rdev, "operation not allowed\n");
264 		return -EPERM;
265 	}
266 	return 0;
267 }
268 
269 static ssize_t device_requested_uA_show(struct device *dev,
270 			     struct device_attribute *attr, char *buf)
271 {
272 	struct regulator *regulator;
273 
274 	regulator = get_device_regulator(dev);
275 	if (regulator == NULL)
276 		return 0;
277 
278 	return sprintf(buf, "%d\n", regulator->uA_load);
279 }
280 
281 static ssize_t regulator_uV_show(struct device *dev,
282 				struct device_attribute *attr, char *buf)
283 {
284 	struct regulator_dev *rdev = dev_get_drvdata(dev);
285 	ssize_t ret;
286 
287 	mutex_lock(&rdev->mutex);
288 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 	mutex_unlock(&rdev->mutex);
290 
291 	return ret;
292 }
293 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294 
295 static ssize_t regulator_uA_show(struct device *dev,
296 				struct device_attribute *attr, char *buf)
297 {
298 	struct regulator_dev *rdev = dev_get_drvdata(dev);
299 
300 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301 }
302 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303 
304 static ssize_t regulator_name_show(struct device *dev,
305 			     struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 
309 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
310 }
311 
312 static ssize_t regulator_print_opmode(char *buf, int mode)
313 {
314 	switch (mode) {
315 	case REGULATOR_MODE_FAST:
316 		return sprintf(buf, "fast\n");
317 	case REGULATOR_MODE_NORMAL:
318 		return sprintf(buf, "normal\n");
319 	case REGULATOR_MODE_IDLE:
320 		return sprintf(buf, "idle\n");
321 	case REGULATOR_MODE_STANDBY:
322 		return sprintf(buf, "standby\n");
323 	}
324 	return sprintf(buf, "unknown\n");
325 }
326 
327 static ssize_t regulator_opmode_show(struct device *dev,
328 				    struct device_attribute *attr, char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 
332 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333 }
334 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335 
336 static ssize_t regulator_print_state(char *buf, int state)
337 {
338 	if (state > 0)
339 		return sprintf(buf, "enabled\n");
340 	else if (state == 0)
341 		return sprintf(buf, "disabled\n");
342 	else
343 		return sprintf(buf, "unknown\n");
344 }
345 
346 static ssize_t regulator_state_show(struct device *dev,
347 				   struct device_attribute *attr, char *buf)
348 {
349 	struct regulator_dev *rdev = dev_get_drvdata(dev);
350 	ssize_t ret;
351 
352 	mutex_lock(&rdev->mutex);
353 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 	mutex_unlock(&rdev->mutex);
355 
356 	return ret;
357 }
358 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359 
360 static ssize_t regulator_status_show(struct device *dev,
361 				   struct device_attribute *attr, char *buf)
362 {
363 	struct regulator_dev *rdev = dev_get_drvdata(dev);
364 	int status;
365 	char *label;
366 
367 	status = rdev->desc->ops->get_status(rdev);
368 	if (status < 0)
369 		return status;
370 
371 	switch (status) {
372 	case REGULATOR_STATUS_OFF:
373 		label = "off";
374 		break;
375 	case REGULATOR_STATUS_ON:
376 		label = "on";
377 		break;
378 	case REGULATOR_STATUS_ERROR:
379 		label = "error";
380 		break;
381 	case REGULATOR_STATUS_FAST:
382 		label = "fast";
383 		break;
384 	case REGULATOR_STATUS_NORMAL:
385 		label = "normal";
386 		break;
387 	case REGULATOR_STATUS_IDLE:
388 		label = "idle";
389 		break;
390 	case REGULATOR_STATUS_STANDBY:
391 		label = "standby";
392 		break;
393 	default:
394 		return -ERANGE;
395 	}
396 
397 	return sprintf(buf, "%s\n", label);
398 }
399 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400 
401 static ssize_t regulator_min_uA_show(struct device *dev,
402 				    struct device_attribute *attr, char *buf)
403 {
404 	struct regulator_dev *rdev = dev_get_drvdata(dev);
405 
406 	if (!rdev->constraints)
407 		return sprintf(buf, "constraint not defined\n");
408 
409 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410 }
411 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412 
413 static ssize_t regulator_max_uA_show(struct device *dev,
414 				    struct device_attribute *attr, char *buf)
415 {
416 	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 
418 	if (!rdev->constraints)
419 		return sprintf(buf, "constraint not defined\n");
420 
421 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422 }
423 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424 
425 static ssize_t regulator_min_uV_show(struct device *dev,
426 				    struct device_attribute *attr, char *buf)
427 {
428 	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 
430 	if (!rdev->constraints)
431 		return sprintf(buf, "constraint not defined\n");
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434 }
435 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436 
437 static ssize_t regulator_max_uV_show(struct device *dev,
438 				    struct device_attribute *attr, char *buf)
439 {
440 	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 
442 	if (!rdev->constraints)
443 		return sprintf(buf, "constraint not defined\n");
444 
445 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446 }
447 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448 
449 static ssize_t regulator_total_uA_show(struct device *dev,
450 				      struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 	struct regulator *regulator;
454 	int uA = 0;
455 
456 	mutex_lock(&rdev->mutex);
457 	list_for_each_entry(regulator, &rdev->consumer_list, list)
458 		uA += regulator->uA_load;
459 	mutex_unlock(&rdev->mutex);
460 	return sprintf(buf, "%d\n", uA);
461 }
462 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463 
464 static ssize_t regulator_num_users_show(struct device *dev,
465 				      struct device_attribute *attr, char *buf)
466 {
467 	struct regulator_dev *rdev = dev_get_drvdata(dev);
468 	return sprintf(buf, "%d\n", rdev->use_count);
469 }
470 
471 static ssize_t regulator_type_show(struct device *dev,
472 				  struct device_attribute *attr, char *buf)
473 {
474 	struct regulator_dev *rdev = dev_get_drvdata(dev);
475 
476 	switch (rdev->desc->type) {
477 	case REGULATOR_VOLTAGE:
478 		return sprintf(buf, "voltage\n");
479 	case REGULATOR_CURRENT:
480 		return sprintf(buf, "current\n");
481 	}
482 	return sprintf(buf, "unknown\n");
483 }
484 
485 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 				struct device_attribute *attr, char *buf)
487 {
488 	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 
490 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491 }
492 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 		regulator_suspend_mem_uV_show, NULL);
494 
495 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 				struct device_attribute *attr, char *buf)
497 {
498 	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 
500 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501 }
502 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 		regulator_suspend_disk_uV_show, NULL);
504 
505 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 				struct device_attribute *attr, char *buf)
507 {
508 	struct regulator_dev *rdev = dev_get_drvdata(dev);
509 
510 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511 }
512 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 		regulator_suspend_standby_uV_show, NULL);
514 
515 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 				struct device_attribute *attr, char *buf)
517 {
518 	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 
520 	return regulator_print_opmode(buf,
521 		rdev->constraints->state_mem.mode);
522 }
523 static DEVICE_ATTR(suspend_mem_mode, 0444,
524 		regulator_suspend_mem_mode_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return regulator_print_opmode(buf,
532 		rdev->constraints->state_disk.mode);
533 }
534 static DEVICE_ATTR(suspend_disk_mode, 0444,
535 		regulator_suspend_disk_mode_show, NULL);
536 
537 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return regulator_print_opmode(buf,
543 		rdev->constraints->state_standby.mode);
544 }
545 static DEVICE_ATTR(suspend_standby_mode, 0444,
546 		regulator_suspend_standby_mode_show, NULL);
547 
548 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 				   struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	return regulator_print_state(buf,
554 			rdev->constraints->state_mem.enabled);
555 }
556 static DEVICE_ATTR(suspend_mem_state, 0444,
557 		regulator_suspend_mem_state_show, NULL);
558 
559 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 				   struct device_attribute *attr, char *buf)
561 {
562 	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 
564 	return regulator_print_state(buf,
565 			rdev->constraints->state_disk.enabled);
566 }
567 static DEVICE_ATTR(suspend_disk_state, 0444,
568 		regulator_suspend_disk_state_show, NULL);
569 
570 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 				   struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return regulator_print_state(buf,
576 			rdev->constraints->state_standby.enabled);
577 }
578 static DEVICE_ATTR(suspend_standby_state, 0444,
579 		regulator_suspend_standby_state_show, NULL);
580 
581 
582 /*
583  * These are the only attributes are present for all regulators.
584  * Other attributes are a function of regulator functionality.
585  */
586 static struct device_attribute regulator_dev_attrs[] = {
587 	__ATTR(name, 0444, regulator_name_show, NULL),
588 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 	__ATTR(type, 0444, regulator_type_show, NULL),
590 	__ATTR_NULL,
591 };
592 
593 static void regulator_dev_release(struct device *dev)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 	kfree(rdev);
597 }
598 
599 static struct class regulator_class = {
600 	.name = "regulator",
601 	.dev_release = regulator_dev_release,
602 	.dev_attrs = regulator_dev_attrs,
603 };
604 
605 /* Calculate the new optimum regulator operating mode based on the new total
606  * consumer load. All locks held by caller */
607 static void drms_uA_update(struct regulator_dev *rdev)
608 {
609 	struct regulator *sibling;
610 	int current_uA = 0, output_uV, input_uV, err;
611 	unsigned int mode;
612 
613 	err = regulator_check_drms(rdev);
614 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 	    (!rdev->desc->ops->get_voltage &&
616 	     !rdev->desc->ops->get_voltage_sel) ||
617 	    !rdev->desc->ops->set_mode)
618 		return;
619 
620 	/* get output voltage */
621 	output_uV = _regulator_get_voltage(rdev);
622 	if (output_uV <= 0)
623 		return;
624 
625 	/* get input voltage */
626 	input_uV = 0;
627 	if (rdev->supply)
628 		input_uV = _regulator_get_voltage(rdev);
629 	if (input_uV <= 0)
630 		input_uV = rdev->constraints->input_uV;
631 	if (input_uV <= 0)
632 		return;
633 
634 	/* calc total requested load */
635 	list_for_each_entry(sibling, &rdev->consumer_list, list)
636 		current_uA += sibling->uA_load;
637 
638 	/* now get the optimum mode for our new total regulator load */
639 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 						  output_uV, current_uA);
641 
642 	/* check the new mode is allowed */
643 	err = regulator_mode_constrain(rdev, &mode);
644 	if (err == 0)
645 		rdev->desc->ops->set_mode(rdev, mode);
646 }
647 
648 static int suspend_set_state(struct regulator_dev *rdev,
649 	struct regulator_state *rstate)
650 {
651 	int ret = 0;
652 	bool can_set_state;
653 
654 	can_set_state = rdev->desc->ops->set_suspend_enable &&
655 		rdev->desc->ops->set_suspend_disable;
656 
657 	/* If we have no suspend mode configration don't set anything;
658 	 * only warn if the driver actually makes the suspend mode
659 	 * configurable.
660 	 */
661 	if (!rstate->enabled && !rstate->disabled) {
662 		if (can_set_state)
663 			rdev_warn(rdev, "No configuration\n");
664 		return 0;
665 	}
666 
667 	if (rstate->enabled && rstate->disabled) {
668 		rdev_err(rdev, "invalid configuration\n");
669 		return -EINVAL;
670 	}
671 
672 	if (!can_set_state) {
673 		rdev_err(rdev, "no way to set suspend state\n");
674 		return -EINVAL;
675 	}
676 
677 	if (rstate->enabled)
678 		ret = rdev->desc->ops->set_suspend_enable(rdev);
679 	else
680 		ret = rdev->desc->ops->set_suspend_disable(rdev);
681 	if (ret < 0) {
682 		rdev_err(rdev, "failed to enabled/disable\n");
683 		return ret;
684 	}
685 
686 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 		if (ret < 0) {
689 			rdev_err(rdev, "failed to set voltage\n");
690 			return ret;
691 		}
692 	}
693 
694 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 		if (ret < 0) {
697 			rdev_err(rdev, "failed to set mode\n");
698 			return ret;
699 		}
700 	}
701 	return ret;
702 }
703 
704 /* locks held by caller */
705 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706 {
707 	if (!rdev->constraints)
708 		return -EINVAL;
709 
710 	switch (state) {
711 	case PM_SUSPEND_STANDBY:
712 		return suspend_set_state(rdev,
713 			&rdev->constraints->state_standby);
714 	case PM_SUSPEND_MEM:
715 		return suspend_set_state(rdev,
716 			&rdev->constraints->state_mem);
717 	case PM_SUSPEND_MAX:
718 		return suspend_set_state(rdev,
719 			&rdev->constraints->state_disk);
720 	default:
721 		return -EINVAL;
722 	}
723 }
724 
725 static void print_constraints(struct regulator_dev *rdev)
726 {
727 	struct regulation_constraints *constraints = rdev->constraints;
728 	char buf[80] = "";
729 	int count = 0;
730 	int ret;
731 
732 	if (constraints->min_uV && constraints->max_uV) {
733 		if (constraints->min_uV == constraints->max_uV)
734 			count += sprintf(buf + count, "%d mV ",
735 					 constraints->min_uV / 1000);
736 		else
737 			count += sprintf(buf + count, "%d <--> %d mV ",
738 					 constraints->min_uV / 1000,
739 					 constraints->max_uV / 1000);
740 	}
741 
742 	if (!constraints->min_uV ||
743 	    constraints->min_uV != constraints->max_uV) {
744 		ret = _regulator_get_voltage(rdev);
745 		if (ret > 0)
746 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 	}
748 
749 	if (constraints->uV_offset)
750 		count += sprintf(buf, "%dmV offset ",
751 				 constraints->uV_offset / 1000);
752 
753 	if (constraints->min_uA && constraints->max_uA) {
754 		if (constraints->min_uA == constraints->max_uA)
755 			count += sprintf(buf + count, "%d mA ",
756 					 constraints->min_uA / 1000);
757 		else
758 			count += sprintf(buf + count, "%d <--> %d mA ",
759 					 constraints->min_uA / 1000,
760 					 constraints->max_uA / 1000);
761 	}
762 
763 	if (!constraints->min_uA ||
764 	    constraints->min_uA != constraints->max_uA) {
765 		ret = _regulator_get_current_limit(rdev);
766 		if (ret > 0)
767 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 	}
769 
770 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 		count += sprintf(buf + count, "fast ");
772 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 		count += sprintf(buf + count, "normal ");
774 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 		count += sprintf(buf + count, "idle ");
776 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 		count += sprintf(buf + count, "standby");
778 
779 	rdev_info(rdev, "%s\n", buf);
780 }
781 
782 static int machine_constraints_voltage(struct regulator_dev *rdev,
783 	struct regulation_constraints *constraints)
784 {
785 	struct regulator_ops *ops = rdev->desc->ops;
786 	int ret;
787 
788 	/* do we need to apply the constraint voltage */
789 	if (rdev->constraints->apply_uV &&
790 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 		ret = _regulator_do_set_voltage(rdev,
792 						rdev->constraints->min_uV,
793 						rdev->constraints->max_uV);
794 		if (ret < 0) {
795 			rdev_err(rdev, "failed to apply %duV constraint\n",
796 				 rdev->constraints->min_uV);
797 			return ret;
798 		}
799 	}
800 
801 	/* constrain machine-level voltage specs to fit
802 	 * the actual range supported by this regulator.
803 	 */
804 	if (ops->list_voltage && rdev->desc->n_voltages) {
805 		int	count = rdev->desc->n_voltages;
806 		int	i;
807 		int	min_uV = INT_MAX;
808 		int	max_uV = INT_MIN;
809 		int	cmin = constraints->min_uV;
810 		int	cmax = constraints->max_uV;
811 
812 		/* it's safe to autoconfigure fixed-voltage supplies
813 		   and the constraints are used by list_voltage. */
814 		if (count == 1 && !cmin) {
815 			cmin = 1;
816 			cmax = INT_MAX;
817 			constraints->min_uV = cmin;
818 			constraints->max_uV = cmax;
819 		}
820 
821 		/* voltage constraints are optional */
822 		if ((cmin == 0) && (cmax == 0))
823 			return 0;
824 
825 		/* else require explicit machine-level constraints */
826 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 			rdev_err(rdev, "invalid voltage constraints\n");
828 			return -EINVAL;
829 		}
830 
831 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 		for (i = 0; i < count; i++) {
833 			int	value;
834 
835 			value = ops->list_voltage(rdev, i);
836 			if (value <= 0)
837 				continue;
838 
839 			/* maybe adjust [min_uV..max_uV] */
840 			if (value >= cmin && value < min_uV)
841 				min_uV = value;
842 			if (value <= cmax && value > max_uV)
843 				max_uV = value;
844 		}
845 
846 		/* final: [min_uV..max_uV] valid iff constraints valid */
847 		if (max_uV < min_uV) {
848 			rdev_err(rdev, "unsupportable voltage constraints\n");
849 			return -EINVAL;
850 		}
851 
852 		/* use regulator's subset of machine constraints */
853 		if (constraints->min_uV < min_uV) {
854 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 				 constraints->min_uV, min_uV);
856 			constraints->min_uV = min_uV;
857 		}
858 		if (constraints->max_uV > max_uV) {
859 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 				 constraints->max_uV, max_uV);
861 			constraints->max_uV = max_uV;
862 		}
863 	}
864 
865 	return 0;
866 }
867 
868 /**
869  * set_machine_constraints - sets regulator constraints
870  * @rdev: regulator source
871  * @constraints: constraints to apply
872  *
873  * Allows platform initialisation code to define and constrain
874  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
875  * Constraints *must* be set by platform code in order for some
876  * regulator operations to proceed i.e. set_voltage, set_current_limit,
877  * set_mode.
878  */
879 static int set_machine_constraints(struct regulator_dev *rdev,
880 	const struct regulation_constraints *constraints)
881 {
882 	int ret = 0;
883 	struct regulator_ops *ops = rdev->desc->ops;
884 
885 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 				    GFP_KERNEL);
887 	if (!rdev->constraints)
888 		return -ENOMEM;
889 
890 	ret = machine_constraints_voltage(rdev, rdev->constraints);
891 	if (ret != 0)
892 		goto out;
893 
894 	/* do we need to setup our suspend state */
895 	if (constraints->initial_state) {
896 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 		if (ret < 0) {
898 			rdev_err(rdev, "failed to set suspend state\n");
899 			goto out;
900 		}
901 	}
902 
903 	if (constraints->initial_mode) {
904 		if (!ops->set_mode) {
905 			rdev_err(rdev, "no set_mode operation\n");
906 			ret = -EINVAL;
907 			goto out;
908 		}
909 
910 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 		if (ret < 0) {
912 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 			goto out;
914 		}
915 	}
916 
917 	/* If the constraints say the regulator should be on at this point
918 	 * and we have control then make sure it is enabled.
919 	 */
920 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 	    ops->enable) {
922 		ret = ops->enable(rdev);
923 		if (ret < 0) {
924 			rdev_err(rdev, "failed to enable\n");
925 			goto out;
926 		}
927 	}
928 
929 	print_constraints(rdev);
930 	return 0;
931 out:
932 	kfree(rdev->constraints);
933 	rdev->constraints = NULL;
934 	return ret;
935 }
936 
937 /**
938  * set_supply - set regulator supply regulator
939  * @rdev: regulator name
940  * @supply_rdev: supply regulator name
941  *
942  * Called by platform initialisation code to set the supply regulator for this
943  * regulator. This ensures that a regulators supply will also be enabled by the
944  * core if it's child is enabled.
945  */
946 static int set_supply(struct regulator_dev *rdev,
947 		      struct regulator_dev *supply_rdev)
948 {
949 	int err;
950 
951 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952 
953 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 	if (IS_ERR(rdev->supply)) {
955 		err = PTR_ERR(rdev->supply);
956 		rdev->supply = NULL;
957 		return err;
958 	}
959 
960 	return 0;
961 }
962 
963 /**
964  * set_consumer_device_supply - Bind a regulator to a symbolic supply
965  * @rdev:         regulator source
966  * @consumer_dev: device the supply applies to
967  * @consumer_dev_name: dev_name() string for device supply applies to
968  * @supply:       symbolic name for supply
969  *
970  * Allows platform initialisation code to map physical regulator
971  * sources to symbolic names for supplies for use by devices.  Devices
972  * should use these symbolic names to request regulators, avoiding the
973  * need to provide board-specific regulator names as platform data.
974  *
975  * Only one of consumer_dev and consumer_dev_name may be specified.
976  */
977 static int set_consumer_device_supply(struct regulator_dev *rdev,
978 	struct device *consumer_dev, const char *consumer_dev_name,
979 	const char *supply)
980 {
981 	struct regulator_map *node;
982 	int has_dev;
983 
984 	if (consumer_dev && consumer_dev_name)
985 		return -EINVAL;
986 
987 	if (!consumer_dev_name && consumer_dev)
988 		consumer_dev_name = dev_name(consumer_dev);
989 
990 	if (supply == NULL)
991 		return -EINVAL;
992 
993 	if (consumer_dev_name != NULL)
994 		has_dev = 1;
995 	else
996 		has_dev = 0;
997 
998 	list_for_each_entry(node, &regulator_map_list, list) {
999 		if (node->dev_name && consumer_dev_name) {
1000 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 				continue;
1002 		} else if (node->dev_name || consumer_dev_name) {
1003 			continue;
1004 		}
1005 
1006 		if (strcmp(node->supply, supply) != 0)
1007 			continue;
1008 
1009 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 			dev_name(&node->regulator->dev),
1011 			node->regulator->desc->name,
1012 			supply,
1013 			dev_name(&rdev->dev), rdev_get_name(rdev));
1014 		return -EBUSY;
1015 	}
1016 
1017 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 	if (node == NULL)
1019 		return -ENOMEM;
1020 
1021 	node->regulator = rdev;
1022 	node->supply = supply;
1023 
1024 	if (has_dev) {
1025 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 		if (node->dev_name == NULL) {
1027 			kfree(node);
1028 			return -ENOMEM;
1029 		}
1030 	}
1031 
1032 	list_add(&node->list, &regulator_map_list);
1033 	return 0;
1034 }
1035 
1036 static void unset_regulator_supplies(struct regulator_dev *rdev)
1037 {
1038 	struct regulator_map *node, *n;
1039 
1040 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041 		if (rdev == node->regulator) {
1042 			list_del(&node->list);
1043 			kfree(node->dev_name);
1044 			kfree(node);
1045 		}
1046 	}
1047 }
1048 
1049 #define REG_STR_SIZE	64
1050 
1051 static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 					  struct device *dev,
1053 					  const char *supply_name)
1054 {
1055 	struct regulator *regulator;
1056 	char buf[REG_STR_SIZE];
1057 	int err, size;
1058 
1059 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 	if (regulator == NULL)
1061 		return NULL;
1062 
1063 	mutex_lock(&rdev->mutex);
1064 	regulator->rdev = rdev;
1065 	list_add(&regulator->list, &rdev->consumer_list);
1066 
1067 	if (dev) {
1068 		/* create a 'requested_microamps_name' sysfs entry */
1069 		size = scnprintf(buf, REG_STR_SIZE,
1070 				 "microamps_requested_%s-%s",
1071 				 dev_name(dev), supply_name);
1072 		if (size >= REG_STR_SIZE)
1073 			goto overflow_err;
1074 
1075 		regulator->dev = dev;
1076 		sysfs_attr_init(&regulator->dev_attr.attr);
1077 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 		if (regulator->dev_attr.attr.name == NULL)
1079 			goto attr_name_err;
1080 
1081 		regulator->dev_attr.attr.mode = 0444;
1082 		regulator->dev_attr.show = device_requested_uA_show;
1083 		err = device_create_file(dev, &regulator->dev_attr);
1084 		if (err < 0) {
1085 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 			goto attr_name_err;
1087 		}
1088 
1089 		/* also add a link to the device sysfs entry */
1090 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 				 dev->kobj.name, supply_name);
1092 		if (size >= REG_STR_SIZE)
1093 			goto attr_err;
1094 
1095 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 		if (regulator->supply_name == NULL)
1097 			goto attr_err;
1098 
1099 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 					buf);
1101 		if (err) {
1102 			rdev_warn(rdev, "could not add device link %s err %d\n",
1103 				  dev->kobj.name, err);
1104 			goto link_name_err;
1105 		}
1106 	} else {
1107 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 		if (regulator->supply_name == NULL)
1109 			goto attr_err;
1110 	}
1111 
1112 #ifdef CONFIG_DEBUG_FS
1113 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 						rdev->debugfs);
1115 	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 		regulator->debugfs = NULL;
1118 	} else {
1119 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 				   &regulator->uA_load);
1121 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 				   &regulator->min_uV);
1123 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 				   &regulator->max_uV);
1125 	}
1126 #endif
1127 
1128 	mutex_unlock(&rdev->mutex);
1129 	return regulator;
1130 link_name_err:
1131 	kfree(regulator->supply_name);
1132 attr_err:
1133 	device_remove_file(regulator->dev, &regulator->dev_attr);
1134 attr_name_err:
1135 	kfree(regulator->dev_attr.attr.name);
1136 overflow_err:
1137 	list_del(&regulator->list);
1138 	kfree(regulator);
1139 	mutex_unlock(&rdev->mutex);
1140 	return NULL;
1141 }
1142 
1143 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144 {
1145 	if (!rdev->desc->ops->enable_time)
1146 		return 0;
1147 	return rdev->desc->ops->enable_time(rdev);
1148 }
1149 
1150 /* Internal regulator request function */
1151 static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 					int exclusive)
1153 {
1154 	struct regulator_dev *rdev;
1155 	struct regulator_map *map;
1156 	struct regulator *regulator = ERR_PTR(-ENODEV);
1157 	const char *devname = NULL;
1158 	int ret;
1159 
1160 	if (id == NULL) {
1161 		pr_err("get() with no identifier\n");
1162 		return regulator;
1163 	}
1164 
1165 	if (dev)
1166 		devname = dev_name(dev);
1167 
1168 	mutex_lock(&regulator_list_mutex);
1169 
1170 	list_for_each_entry(map, &regulator_map_list, list) {
1171 		/* If the mapping has a device set up it must match */
1172 		if (map->dev_name &&
1173 		    (!devname || strcmp(map->dev_name, devname)))
1174 			continue;
1175 
1176 		if (strcmp(map->supply, id) == 0) {
1177 			rdev = map->regulator;
1178 			goto found;
1179 		}
1180 	}
1181 
1182 	if (board_wants_dummy_regulator) {
1183 		rdev = dummy_regulator_rdev;
1184 		goto found;
1185 	}
1186 
1187 #ifdef CONFIG_REGULATOR_DUMMY
1188 	if (!devname)
1189 		devname = "deviceless";
1190 
1191 	/* If the board didn't flag that it was fully constrained then
1192 	 * substitute in a dummy regulator so consumers can continue.
1193 	 */
1194 	if (!has_full_constraints) {
1195 		pr_warn("%s supply %s not found, using dummy regulator\n",
1196 			devname, id);
1197 		rdev = dummy_regulator_rdev;
1198 		goto found;
1199 	}
1200 #endif
1201 
1202 	mutex_unlock(&regulator_list_mutex);
1203 	return regulator;
1204 
1205 found:
1206 	if (rdev->exclusive) {
1207 		regulator = ERR_PTR(-EPERM);
1208 		goto out;
1209 	}
1210 
1211 	if (exclusive && rdev->open_count) {
1212 		regulator = ERR_PTR(-EBUSY);
1213 		goto out;
1214 	}
1215 
1216 	if (!try_module_get(rdev->owner))
1217 		goto out;
1218 
1219 	regulator = create_regulator(rdev, dev, id);
1220 	if (regulator == NULL) {
1221 		regulator = ERR_PTR(-ENOMEM);
1222 		module_put(rdev->owner);
1223 	}
1224 
1225 	rdev->open_count++;
1226 	if (exclusive) {
1227 		rdev->exclusive = 1;
1228 
1229 		ret = _regulator_is_enabled(rdev);
1230 		if (ret > 0)
1231 			rdev->use_count = 1;
1232 		else
1233 			rdev->use_count = 0;
1234 	}
1235 
1236 out:
1237 	mutex_unlock(&regulator_list_mutex);
1238 
1239 	return regulator;
1240 }
1241 
1242 /**
1243  * regulator_get - lookup and obtain a reference to a regulator.
1244  * @dev: device for regulator "consumer"
1245  * @id: Supply name or regulator ID.
1246  *
1247  * Returns a struct regulator corresponding to the regulator producer,
1248  * or IS_ERR() condition containing errno.
1249  *
1250  * Use of supply names configured via regulator_set_device_supply() is
1251  * strongly encouraged.  It is recommended that the supply name used
1252  * should match the name used for the supply and/or the relevant
1253  * device pins in the datasheet.
1254  */
1255 struct regulator *regulator_get(struct device *dev, const char *id)
1256 {
1257 	return _regulator_get(dev, id, 0);
1258 }
1259 EXPORT_SYMBOL_GPL(regulator_get);
1260 
1261 /**
1262  * regulator_get_exclusive - obtain exclusive access to a regulator.
1263  * @dev: device for regulator "consumer"
1264  * @id: Supply name or regulator ID.
1265  *
1266  * Returns a struct regulator corresponding to the regulator producer,
1267  * or IS_ERR() condition containing errno.  Other consumers will be
1268  * unable to obtain this reference is held and the use count for the
1269  * regulator will be initialised to reflect the current state of the
1270  * regulator.
1271  *
1272  * This is intended for use by consumers which cannot tolerate shared
1273  * use of the regulator such as those which need to force the
1274  * regulator off for correct operation of the hardware they are
1275  * controlling.
1276  *
1277  * Use of supply names configured via regulator_set_device_supply() is
1278  * strongly encouraged.  It is recommended that the supply name used
1279  * should match the name used for the supply and/or the relevant
1280  * device pins in the datasheet.
1281  */
1282 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283 {
1284 	return _regulator_get(dev, id, 1);
1285 }
1286 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287 
1288 /**
1289  * regulator_put - "free" the regulator source
1290  * @regulator: regulator source
1291  *
1292  * Note: drivers must ensure that all regulator_enable calls made on this
1293  * regulator source are balanced by regulator_disable calls prior to calling
1294  * this function.
1295  */
1296 void regulator_put(struct regulator *regulator)
1297 {
1298 	struct regulator_dev *rdev;
1299 
1300 	if (regulator == NULL || IS_ERR(regulator))
1301 		return;
1302 
1303 	mutex_lock(&regulator_list_mutex);
1304 	rdev = regulator->rdev;
1305 
1306 #ifdef CONFIG_DEBUG_FS
1307 	debugfs_remove_recursive(regulator->debugfs);
1308 #endif
1309 
1310 	/* remove any sysfs entries */
1311 	if (regulator->dev) {
1312 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 		device_remove_file(regulator->dev, &regulator->dev_attr);
1314 		kfree(regulator->dev_attr.attr.name);
1315 	}
1316 	kfree(regulator->supply_name);
1317 	list_del(&regulator->list);
1318 	kfree(regulator);
1319 
1320 	rdev->open_count--;
1321 	rdev->exclusive = 0;
1322 
1323 	module_put(rdev->owner);
1324 	mutex_unlock(&regulator_list_mutex);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_put);
1327 
1328 static int _regulator_can_change_status(struct regulator_dev *rdev)
1329 {
1330 	if (!rdev->constraints)
1331 		return 0;
1332 
1333 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 		return 1;
1335 	else
1336 		return 0;
1337 }
1338 
1339 /* locks held by regulator_enable() */
1340 static int _regulator_enable(struct regulator_dev *rdev)
1341 {
1342 	int ret, delay;
1343 
1344 	/* check voltage and requested load before enabling */
1345 	if (rdev->constraints &&
1346 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 		drms_uA_update(rdev);
1348 
1349 	if (rdev->use_count == 0) {
1350 		/* The regulator may on if it's not switchable or left on */
1351 		ret = _regulator_is_enabled(rdev);
1352 		if (ret == -EINVAL || ret == 0) {
1353 			if (!_regulator_can_change_status(rdev))
1354 				return -EPERM;
1355 
1356 			if (!rdev->desc->ops->enable)
1357 				return -EINVAL;
1358 
1359 			/* Query before enabling in case configuration
1360 			 * dependent.  */
1361 			ret = _regulator_get_enable_time(rdev);
1362 			if (ret >= 0) {
1363 				delay = ret;
1364 			} else {
1365 				rdev_warn(rdev, "enable_time() failed: %d\n",
1366 					   ret);
1367 				delay = 0;
1368 			}
1369 
1370 			trace_regulator_enable(rdev_get_name(rdev));
1371 
1372 			/* Allow the regulator to ramp; it would be useful
1373 			 * to extend this for bulk operations so that the
1374 			 * regulators can ramp together.  */
1375 			ret = rdev->desc->ops->enable(rdev);
1376 			if (ret < 0)
1377 				return ret;
1378 
1379 			trace_regulator_enable_delay(rdev_get_name(rdev));
1380 
1381 			if (delay >= 1000) {
1382 				mdelay(delay / 1000);
1383 				udelay(delay % 1000);
1384 			} else if (delay) {
1385 				udelay(delay);
1386 			}
1387 
1388 			trace_regulator_enable_complete(rdev_get_name(rdev));
1389 
1390 		} else if (ret < 0) {
1391 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 			return ret;
1393 		}
1394 		/* Fallthrough on positive return values - already enabled */
1395 	}
1396 
1397 	rdev->use_count++;
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * regulator_enable - enable regulator output
1404  * @regulator: regulator source
1405  *
1406  * Request that the regulator be enabled with the regulator output at
1407  * the predefined voltage or current value.  Calls to regulator_enable()
1408  * must be balanced with calls to regulator_disable().
1409  *
1410  * NOTE: the output value can be set by other drivers, boot loader or may be
1411  * hardwired in the regulator.
1412  */
1413 int regulator_enable(struct regulator *regulator)
1414 {
1415 	struct regulator_dev *rdev = regulator->rdev;
1416 	int ret = 0;
1417 
1418 	if (rdev->supply) {
1419 		ret = regulator_enable(rdev->supply);
1420 		if (ret != 0)
1421 			return ret;
1422 	}
1423 
1424 	mutex_lock(&rdev->mutex);
1425 	ret = _regulator_enable(rdev);
1426 	mutex_unlock(&rdev->mutex);
1427 
1428 	if (ret != 0)
1429 		regulator_disable(rdev->supply);
1430 
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_enable);
1434 
1435 /* locks held by regulator_disable() */
1436 static int _regulator_disable(struct regulator_dev *rdev)
1437 {
1438 	int ret = 0;
1439 
1440 	if (WARN(rdev->use_count <= 0,
1441 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 		return -EIO;
1443 
1444 	/* are we the last user and permitted to disable ? */
1445 	if (rdev->use_count == 1 &&
1446 	    (rdev->constraints && !rdev->constraints->always_on)) {
1447 
1448 		/* we are last user */
1449 		if (_regulator_can_change_status(rdev) &&
1450 		    rdev->desc->ops->disable) {
1451 			trace_regulator_disable(rdev_get_name(rdev));
1452 
1453 			ret = rdev->desc->ops->disable(rdev);
1454 			if (ret < 0) {
1455 				rdev_err(rdev, "failed to disable\n");
1456 				return ret;
1457 			}
1458 
1459 			trace_regulator_disable_complete(rdev_get_name(rdev));
1460 
1461 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 					     NULL);
1463 		}
1464 
1465 		rdev->use_count = 0;
1466 	} else if (rdev->use_count > 1) {
1467 
1468 		if (rdev->constraints &&
1469 			(rdev->constraints->valid_ops_mask &
1470 			REGULATOR_CHANGE_DRMS))
1471 			drms_uA_update(rdev);
1472 
1473 		rdev->use_count--;
1474 	}
1475 
1476 	return ret;
1477 }
1478 
1479 /**
1480  * regulator_disable - disable regulator output
1481  * @regulator: regulator source
1482  *
1483  * Disable the regulator output voltage or current.  Calls to
1484  * regulator_enable() must be balanced with calls to
1485  * regulator_disable().
1486  *
1487  * NOTE: this will only disable the regulator output if no other consumer
1488  * devices have it enabled, the regulator device supports disabling and
1489  * machine constraints permit this operation.
1490  */
1491 int regulator_disable(struct regulator *regulator)
1492 {
1493 	struct regulator_dev *rdev = regulator->rdev;
1494 	int ret = 0;
1495 
1496 	mutex_lock(&rdev->mutex);
1497 	ret = _regulator_disable(rdev);
1498 	mutex_unlock(&rdev->mutex);
1499 
1500 	if (ret == 0 && rdev->supply)
1501 		regulator_disable(rdev->supply);
1502 
1503 	return ret;
1504 }
1505 EXPORT_SYMBOL_GPL(regulator_disable);
1506 
1507 /* locks held by regulator_force_disable() */
1508 static int _regulator_force_disable(struct regulator_dev *rdev)
1509 {
1510 	int ret = 0;
1511 
1512 	/* force disable */
1513 	if (rdev->desc->ops->disable) {
1514 		/* ah well, who wants to live forever... */
1515 		ret = rdev->desc->ops->disable(rdev);
1516 		if (ret < 0) {
1517 			rdev_err(rdev, "failed to force disable\n");
1518 			return ret;
1519 		}
1520 		/* notify other consumers that power has been forced off */
1521 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 			REGULATOR_EVENT_DISABLE, NULL);
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 /**
1529  * regulator_force_disable - force disable regulator output
1530  * @regulator: regulator source
1531  *
1532  * Forcibly disable the regulator output voltage or current.
1533  * NOTE: this *will* disable the regulator output even if other consumer
1534  * devices have it enabled. This should be used for situations when device
1535  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536  */
1537 int regulator_force_disable(struct regulator *regulator)
1538 {
1539 	struct regulator_dev *rdev = regulator->rdev;
1540 	int ret;
1541 
1542 	mutex_lock(&rdev->mutex);
1543 	regulator->uA_load = 0;
1544 	ret = _regulator_force_disable(regulator->rdev);
1545 	mutex_unlock(&rdev->mutex);
1546 
1547 	if (rdev->supply)
1548 		while (rdev->open_count--)
1549 			regulator_disable(rdev->supply);
1550 
1551 	return ret;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_force_disable);
1554 
1555 static int _regulator_is_enabled(struct regulator_dev *rdev)
1556 {
1557 	/* If we don't know then assume that the regulator is always on */
1558 	if (!rdev->desc->ops->is_enabled)
1559 		return 1;
1560 
1561 	return rdev->desc->ops->is_enabled(rdev);
1562 }
1563 
1564 /**
1565  * regulator_is_enabled - is the regulator output enabled
1566  * @regulator: regulator source
1567  *
1568  * Returns positive if the regulator driver backing the source/client
1569  * has requested that the device be enabled, zero if it hasn't, else a
1570  * negative errno code.
1571  *
1572  * Note that the device backing this regulator handle can have multiple
1573  * users, so it might be enabled even if regulator_enable() was never
1574  * called for this particular source.
1575  */
1576 int regulator_is_enabled(struct regulator *regulator)
1577 {
1578 	int ret;
1579 
1580 	mutex_lock(&regulator->rdev->mutex);
1581 	ret = _regulator_is_enabled(regulator->rdev);
1582 	mutex_unlock(&regulator->rdev->mutex);
1583 
1584 	return ret;
1585 }
1586 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587 
1588 /**
1589  * regulator_count_voltages - count regulator_list_voltage() selectors
1590  * @regulator: regulator source
1591  *
1592  * Returns number of selectors, or negative errno.  Selectors are
1593  * numbered starting at zero, and typically correspond to bitfields
1594  * in hardware registers.
1595  */
1596 int regulator_count_voltages(struct regulator *regulator)
1597 {
1598 	struct regulator_dev	*rdev = regulator->rdev;
1599 
1600 	return rdev->desc->n_voltages ? : -EINVAL;
1601 }
1602 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603 
1604 /**
1605  * regulator_list_voltage - enumerate supported voltages
1606  * @regulator: regulator source
1607  * @selector: identify voltage to list
1608  * Context: can sleep
1609  *
1610  * Returns a voltage that can be passed to @regulator_set_voltage(),
1611  * zero if this selector code can't be used on this system, or a
1612  * negative errno.
1613  */
1614 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615 {
1616 	struct regulator_dev	*rdev = regulator->rdev;
1617 	struct regulator_ops	*ops = rdev->desc->ops;
1618 	int			ret;
1619 
1620 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621 		return -EINVAL;
1622 
1623 	mutex_lock(&rdev->mutex);
1624 	ret = ops->list_voltage(rdev, selector);
1625 	mutex_unlock(&rdev->mutex);
1626 
1627 	if (ret > 0) {
1628 		if (ret < rdev->constraints->min_uV)
1629 			ret = 0;
1630 		else if (ret > rdev->constraints->max_uV)
1631 			ret = 0;
1632 	}
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637 
1638 /**
1639  * regulator_is_supported_voltage - check if a voltage range can be supported
1640  *
1641  * @regulator: Regulator to check.
1642  * @min_uV: Minimum required voltage in uV.
1643  * @max_uV: Maximum required voltage in uV.
1644  *
1645  * Returns a boolean or a negative error code.
1646  */
1647 int regulator_is_supported_voltage(struct regulator *regulator,
1648 				   int min_uV, int max_uV)
1649 {
1650 	int i, voltages, ret;
1651 
1652 	ret = regulator_count_voltages(regulator);
1653 	if (ret < 0)
1654 		return ret;
1655 	voltages = ret;
1656 
1657 	for (i = 0; i < voltages; i++) {
1658 		ret = regulator_list_voltage(regulator, i);
1659 
1660 		if (ret >= min_uV && ret <= max_uV)
1661 			return 1;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668 				     int min_uV, int max_uV)
1669 {
1670 	int ret;
1671 	int delay = 0;
1672 	unsigned int selector;
1673 
1674 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675 
1676 	min_uV += rdev->constraints->uV_offset;
1677 	max_uV += rdev->constraints->uV_offset;
1678 
1679 	if (rdev->desc->ops->set_voltage) {
1680 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681 						   &selector);
1682 
1683 		if (rdev->desc->ops->list_voltage)
1684 			selector = rdev->desc->ops->list_voltage(rdev,
1685 								 selector);
1686 		else
1687 			selector = -1;
1688 	} else if (rdev->desc->ops->set_voltage_sel) {
1689 		int best_val = INT_MAX;
1690 		int i;
1691 
1692 		selector = 0;
1693 
1694 		/* Find the smallest voltage that falls within the specified
1695 		 * range.
1696 		 */
1697 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698 			ret = rdev->desc->ops->list_voltage(rdev, i);
1699 			if (ret < 0)
1700 				continue;
1701 
1702 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703 				best_val = ret;
1704 				selector = i;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * If we can't obtain the old selector there is not enough
1710 		 * info to call set_voltage_time_sel().
1711 		 */
1712 		if (rdev->desc->ops->set_voltage_time_sel &&
1713 		    rdev->desc->ops->get_voltage_sel) {
1714 			unsigned int old_selector = 0;
1715 
1716 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717 			if (ret < 0)
1718 				return ret;
1719 			old_selector = ret;
1720 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721 						old_selector, selector);
1722 		}
1723 
1724 		if (best_val != INT_MAX) {
1725 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726 			selector = best_val;
1727 		} else {
1728 			ret = -EINVAL;
1729 		}
1730 	} else {
1731 		ret = -EINVAL;
1732 	}
1733 
1734 	/* Insert any necessary delays */
1735 	if (delay >= 1000) {
1736 		mdelay(delay / 1000);
1737 		udelay(delay % 1000);
1738 	} else if (delay) {
1739 		udelay(delay);
1740 	}
1741 
1742 	if (ret == 0)
1743 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744 				     NULL);
1745 
1746 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747 
1748 	return ret;
1749 }
1750 
1751 /**
1752  * regulator_set_voltage - set regulator output voltage
1753  * @regulator: regulator source
1754  * @min_uV: Minimum required voltage in uV
1755  * @max_uV: Maximum acceptable voltage in uV
1756  *
1757  * Sets a voltage regulator to the desired output voltage. This can be set
1758  * during any regulator state. IOW, regulator can be disabled or enabled.
1759  *
1760  * If the regulator is enabled then the voltage will change to the new value
1761  * immediately otherwise if the regulator is disabled the regulator will
1762  * output at the new voltage when enabled.
1763  *
1764  * NOTE: If the regulator is shared between several devices then the lowest
1765  * request voltage that meets the system constraints will be used.
1766  * Regulator system constraints must be set for this regulator before
1767  * calling this function otherwise this call will fail.
1768  */
1769 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770 {
1771 	struct regulator_dev *rdev = regulator->rdev;
1772 	int ret = 0;
1773 
1774 	mutex_lock(&rdev->mutex);
1775 
1776 	/* If we're setting the same range as last time the change
1777 	 * should be a noop (some cpufreq implementations use the same
1778 	 * voltage for multiple frequencies, for example).
1779 	 */
1780 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781 		goto out;
1782 
1783 	/* sanity check */
1784 	if (!rdev->desc->ops->set_voltage &&
1785 	    !rdev->desc->ops->set_voltage_sel) {
1786 		ret = -EINVAL;
1787 		goto out;
1788 	}
1789 
1790 	/* constraints check */
1791 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792 	if (ret < 0)
1793 		goto out;
1794 	regulator->min_uV = min_uV;
1795 	regulator->max_uV = max_uV;
1796 
1797 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798 	if (ret < 0)
1799 		goto out;
1800 
1801 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802 
1803 out:
1804 	mutex_unlock(&rdev->mutex);
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808 
1809 /**
1810  * regulator_set_voltage_time - get raise/fall time
1811  * @regulator: regulator source
1812  * @old_uV: starting voltage in microvolts
1813  * @new_uV: target voltage in microvolts
1814  *
1815  * Provided with the starting and ending voltage, this function attempts to
1816  * calculate the time in microseconds required to rise or fall to this new
1817  * voltage.
1818  */
1819 int regulator_set_voltage_time(struct regulator *regulator,
1820 			       int old_uV, int new_uV)
1821 {
1822 	struct regulator_dev	*rdev = regulator->rdev;
1823 	struct regulator_ops	*ops = rdev->desc->ops;
1824 	int old_sel = -1;
1825 	int new_sel = -1;
1826 	int voltage;
1827 	int i;
1828 
1829 	/* Currently requires operations to do this */
1830 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831 	    || !rdev->desc->n_voltages)
1832 		return -EINVAL;
1833 
1834 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835 		/* We only look for exact voltage matches here */
1836 		voltage = regulator_list_voltage(regulator, i);
1837 		if (voltage < 0)
1838 			return -EINVAL;
1839 		if (voltage == 0)
1840 			continue;
1841 		if (voltage == old_uV)
1842 			old_sel = i;
1843 		if (voltage == new_uV)
1844 			new_sel = i;
1845 	}
1846 
1847 	if (old_sel < 0 || new_sel < 0)
1848 		return -EINVAL;
1849 
1850 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853 
1854 /**
1855  * regulator_sync_voltage - re-apply last regulator output voltage
1856  * @regulator: regulator source
1857  *
1858  * Re-apply the last configured voltage.  This is intended to be used
1859  * where some external control source the consumer is cooperating with
1860  * has caused the configured voltage to change.
1861  */
1862 int regulator_sync_voltage(struct regulator *regulator)
1863 {
1864 	struct regulator_dev *rdev = regulator->rdev;
1865 	int ret, min_uV, max_uV;
1866 
1867 	mutex_lock(&rdev->mutex);
1868 
1869 	if (!rdev->desc->ops->set_voltage &&
1870 	    !rdev->desc->ops->set_voltage_sel) {
1871 		ret = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	/* This is only going to work if we've had a voltage configured. */
1876 	if (!regulator->min_uV && !regulator->max_uV) {
1877 		ret = -EINVAL;
1878 		goto out;
1879 	}
1880 
1881 	min_uV = regulator->min_uV;
1882 	max_uV = regulator->max_uV;
1883 
1884 	/* This should be a paranoia check... */
1885 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886 	if (ret < 0)
1887 		goto out;
1888 
1889 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890 	if (ret < 0)
1891 		goto out;
1892 
1893 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894 
1895 out:
1896 	mutex_unlock(&rdev->mutex);
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900 
1901 static int _regulator_get_voltage(struct regulator_dev *rdev)
1902 {
1903 	int sel, ret;
1904 
1905 	if (rdev->desc->ops->get_voltage_sel) {
1906 		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907 		if (sel < 0)
1908 			return sel;
1909 		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910 	} else if (rdev->desc->ops->get_voltage) {
1911 		ret = rdev->desc->ops->get_voltage(rdev);
1912 	} else {
1913 		return -EINVAL;
1914 	}
1915 
1916 	if (ret < 0)
1917 		return ret;
1918 	return ret - rdev->constraints->uV_offset;
1919 }
1920 
1921 /**
1922  * regulator_get_voltage - get regulator output voltage
1923  * @regulator: regulator source
1924  *
1925  * This returns the current regulator voltage in uV.
1926  *
1927  * NOTE: If the regulator is disabled it will return the voltage value. This
1928  * function should not be used to determine regulator state.
1929  */
1930 int regulator_get_voltage(struct regulator *regulator)
1931 {
1932 	int ret;
1933 
1934 	mutex_lock(&regulator->rdev->mutex);
1935 
1936 	ret = _regulator_get_voltage(regulator->rdev);
1937 
1938 	mutex_unlock(&regulator->rdev->mutex);
1939 
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943 
1944 /**
1945  * regulator_set_current_limit - set regulator output current limit
1946  * @regulator: regulator source
1947  * @min_uA: Minimuum supported current in uA
1948  * @max_uA: Maximum supported current in uA
1949  *
1950  * Sets current sink to the desired output current. This can be set during
1951  * any regulator state. IOW, regulator can be disabled or enabled.
1952  *
1953  * If the regulator is enabled then the current will change to the new value
1954  * immediately otherwise if the regulator is disabled the regulator will
1955  * output at the new current when enabled.
1956  *
1957  * NOTE: Regulator system constraints must be set for this regulator before
1958  * calling this function otherwise this call will fail.
1959  */
1960 int regulator_set_current_limit(struct regulator *regulator,
1961 			       int min_uA, int max_uA)
1962 {
1963 	struct regulator_dev *rdev = regulator->rdev;
1964 	int ret;
1965 
1966 	mutex_lock(&rdev->mutex);
1967 
1968 	/* sanity check */
1969 	if (!rdev->desc->ops->set_current_limit) {
1970 		ret = -EINVAL;
1971 		goto out;
1972 	}
1973 
1974 	/* constraints check */
1975 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976 	if (ret < 0)
1977 		goto out;
1978 
1979 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980 out:
1981 	mutex_unlock(&rdev->mutex);
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985 
1986 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987 {
1988 	int ret;
1989 
1990 	mutex_lock(&rdev->mutex);
1991 
1992 	/* sanity check */
1993 	if (!rdev->desc->ops->get_current_limit) {
1994 		ret = -EINVAL;
1995 		goto out;
1996 	}
1997 
1998 	ret = rdev->desc->ops->get_current_limit(rdev);
1999 out:
2000 	mutex_unlock(&rdev->mutex);
2001 	return ret;
2002 }
2003 
2004 /**
2005  * regulator_get_current_limit - get regulator output current
2006  * @regulator: regulator source
2007  *
2008  * This returns the current supplied by the specified current sink in uA.
2009  *
2010  * NOTE: If the regulator is disabled it will return the current value. This
2011  * function should not be used to determine regulator state.
2012  */
2013 int regulator_get_current_limit(struct regulator *regulator)
2014 {
2015 	return _regulator_get_current_limit(regulator->rdev);
2016 }
2017 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018 
2019 /**
2020  * regulator_set_mode - set regulator operating mode
2021  * @regulator: regulator source
2022  * @mode: operating mode - one of the REGULATOR_MODE constants
2023  *
2024  * Set regulator operating mode to increase regulator efficiency or improve
2025  * regulation performance.
2026  *
2027  * NOTE: Regulator system constraints must be set for this regulator before
2028  * calling this function otherwise this call will fail.
2029  */
2030 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031 {
2032 	struct regulator_dev *rdev = regulator->rdev;
2033 	int ret;
2034 	int regulator_curr_mode;
2035 
2036 	mutex_lock(&rdev->mutex);
2037 
2038 	/* sanity check */
2039 	if (!rdev->desc->ops->set_mode) {
2040 		ret = -EINVAL;
2041 		goto out;
2042 	}
2043 
2044 	/* return if the same mode is requested */
2045 	if (rdev->desc->ops->get_mode) {
2046 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047 		if (regulator_curr_mode == mode) {
2048 			ret = 0;
2049 			goto out;
2050 		}
2051 	}
2052 
2053 	/* constraints check */
2054 	ret = regulator_mode_constrain(rdev, &mode);
2055 	if (ret < 0)
2056 		goto out;
2057 
2058 	ret = rdev->desc->ops->set_mode(rdev, mode);
2059 out:
2060 	mutex_unlock(&rdev->mutex);
2061 	return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_set_mode);
2064 
2065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066 {
2067 	int ret;
2068 
2069 	mutex_lock(&rdev->mutex);
2070 
2071 	/* sanity check */
2072 	if (!rdev->desc->ops->get_mode) {
2073 		ret = -EINVAL;
2074 		goto out;
2075 	}
2076 
2077 	ret = rdev->desc->ops->get_mode(rdev);
2078 out:
2079 	mutex_unlock(&rdev->mutex);
2080 	return ret;
2081 }
2082 
2083 /**
2084  * regulator_get_mode - get regulator operating mode
2085  * @regulator: regulator source
2086  *
2087  * Get the current regulator operating mode.
2088  */
2089 unsigned int regulator_get_mode(struct regulator *regulator)
2090 {
2091 	return _regulator_get_mode(regulator->rdev);
2092 }
2093 EXPORT_SYMBOL_GPL(regulator_get_mode);
2094 
2095 /**
2096  * regulator_set_optimum_mode - set regulator optimum operating mode
2097  * @regulator: regulator source
2098  * @uA_load: load current
2099  *
2100  * Notifies the regulator core of a new device load. This is then used by
2101  * DRMS (if enabled by constraints) to set the most efficient regulator
2102  * operating mode for the new regulator loading.
2103  *
2104  * Consumer devices notify their supply regulator of the maximum power
2105  * they will require (can be taken from device datasheet in the power
2106  * consumption tables) when they change operational status and hence power
2107  * state. Examples of operational state changes that can affect power
2108  * consumption are :-
2109  *
2110  *    o Device is opened / closed.
2111  *    o Device I/O is about to begin or has just finished.
2112  *    o Device is idling in between work.
2113  *
2114  * This information is also exported via sysfs to userspace.
2115  *
2116  * DRMS will sum the total requested load on the regulator and change
2117  * to the most efficient operating mode if platform constraints allow.
2118  *
2119  * Returns the new regulator mode or error.
2120  */
2121 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122 {
2123 	struct regulator_dev *rdev = regulator->rdev;
2124 	struct regulator *consumer;
2125 	int ret, output_uV, input_uV, total_uA_load = 0;
2126 	unsigned int mode;
2127 
2128 	mutex_lock(&rdev->mutex);
2129 
2130 	/*
2131 	 * first check to see if we can set modes at all, otherwise just
2132 	 * tell the consumer everything is OK.
2133 	 */
2134 	regulator->uA_load = uA_load;
2135 	ret = regulator_check_drms(rdev);
2136 	if (ret < 0) {
2137 		ret = 0;
2138 		goto out;
2139 	}
2140 
2141 	if (!rdev->desc->ops->get_optimum_mode)
2142 		goto out;
2143 
2144 	/*
2145 	 * we can actually do this so any errors are indicators of
2146 	 * potential real failure.
2147 	 */
2148 	ret = -EINVAL;
2149 
2150 	/* get output voltage */
2151 	output_uV = _regulator_get_voltage(rdev);
2152 	if (output_uV <= 0) {
2153 		rdev_err(rdev, "invalid output voltage found\n");
2154 		goto out;
2155 	}
2156 
2157 	/* get input voltage */
2158 	input_uV = 0;
2159 	if (rdev->supply)
2160 		input_uV = regulator_get_voltage(rdev->supply);
2161 	if (input_uV <= 0)
2162 		input_uV = rdev->constraints->input_uV;
2163 	if (input_uV <= 0) {
2164 		rdev_err(rdev, "invalid input voltage found\n");
2165 		goto out;
2166 	}
2167 
2168 	/* calc total requested load for this regulator */
2169 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170 		total_uA_load += consumer->uA_load;
2171 
2172 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173 						 input_uV, output_uV,
2174 						 total_uA_load);
2175 	ret = regulator_mode_constrain(rdev, &mode);
2176 	if (ret < 0) {
2177 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 			 total_uA_load, input_uV, output_uV);
2179 		goto out;
2180 	}
2181 
2182 	ret = rdev->desc->ops->set_mode(rdev, mode);
2183 	if (ret < 0) {
2184 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185 		goto out;
2186 	}
2187 	ret = mode;
2188 out:
2189 	mutex_unlock(&rdev->mutex);
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193 
2194 /**
2195  * regulator_register_notifier - register regulator event notifier
2196  * @regulator: regulator source
2197  * @nb: notifier block
2198  *
2199  * Register notifier block to receive regulator events.
2200  */
2201 int regulator_register_notifier(struct regulator *regulator,
2202 			      struct notifier_block *nb)
2203 {
2204 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205 						nb);
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208 
2209 /**
2210  * regulator_unregister_notifier - unregister regulator event notifier
2211  * @regulator: regulator source
2212  * @nb: notifier block
2213  *
2214  * Unregister regulator event notifier block.
2215  */
2216 int regulator_unregister_notifier(struct regulator *regulator,
2217 				struct notifier_block *nb)
2218 {
2219 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220 						  nb);
2221 }
2222 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223 
2224 /* notify regulator consumers and downstream regulator consumers.
2225  * Note mutex must be held by caller.
2226  */
2227 static void _notifier_call_chain(struct regulator_dev *rdev,
2228 				  unsigned long event, void *data)
2229 {
2230 	/* call rdev chain first */
2231 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232 }
2233 
2234 /**
2235  * regulator_bulk_get - get multiple regulator consumers
2236  *
2237  * @dev:           Device to supply
2238  * @num_consumers: Number of consumers to register
2239  * @consumers:     Configuration of consumers; clients are stored here.
2240  *
2241  * @return 0 on success, an errno on failure.
2242  *
2243  * This helper function allows drivers to get several regulator
2244  * consumers in one operation.  If any of the regulators cannot be
2245  * acquired then any regulators that were allocated will be freed
2246  * before returning to the caller.
2247  */
2248 int regulator_bulk_get(struct device *dev, int num_consumers,
2249 		       struct regulator_bulk_data *consumers)
2250 {
2251 	int i;
2252 	int ret;
2253 
2254 	for (i = 0; i < num_consumers; i++)
2255 		consumers[i].consumer = NULL;
2256 
2257 	for (i = 0; i < num_consumers; i++) {
2258 		consumers[i].consumer = regulator_get(dev,
2259 						      consumers[i].supply);
2260 		if (IS_ERR(consumers[i].consumer)) {
2261 			ret = PTR_ERR(consumers[i].consumer);
2262 			dev_err(dev, "Failed to get supply '%s': %d\n",
2263 				consumers[i].supply, ret);
2264 			consumers[i].consumer = NULL;
2265 			goto err;
2266 		}
2267 	}
2268 
2269 	return 0;
2270 
2271 err:
2272 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273 		regulator_put(consumers[i].consumer);
2274 
2275 	return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278 
2279 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280 {
2281 	struct regulator_bulk_data *bulk = data;
2282 
2283 	bulk->ret = regulator_enable(bulk->consumer);
2284 }
2285 
2286 /**
2287  * regulator_bulk_enable - enable multiple regulator consumers
2288  *
2289  * @num_consumers: Number of consumers
2290  * @consumers:     Consumer data; clients are stored here.
2291  * @return         0 on success, an errno on failure
2292  *
2293  * This convenience API allows consumers to enable multiple regulator
2294  * clients in a single API call.  If any consumers cannot be enabled
2295  * then any others that were enabled will be disabled again prior to
2296  * return.
2297  */
2298 int regulator_bulk_enable(int num_consumers,
2299 			  struct regulator_bulk_data *consumers)
2300 {
2301 	LIST_HEAD(async_domain);
2302 	int i;
2303 	int ret = 0;
2304 
2305 	for (i = 0; i < num_consumers; i++)
2306 		async_schedule_domain(regulator_bulk_enable_async,
2307 				      &consumers[i], &async_domain);
2308 
2309 	async_synchronize_full_domain(&async_domain);
2310 
2311 	/* If any consumer failed we need to unwind any that succeeded */
2312 	for (i = 0; i < num_consumers; i++) {
2313 		if (consumers[i].ret != 0) {
2314 			ret = consumers[i].ret;
2315 			goto err;
2316 		}
2317 	}
2318 
2319 	return 0;
2320 
2321 err:
2322 	for (i = 0; i < num_consumers; i++)
2323 		if (consumers[i].ret == 0)
2324 			regulator_disable(consumers[i].consumer);
2325 		else
2326 			pr_err("Failed to enable %s: %d\n",
2327 			       consumers[i].supply, consumers[i].ret);
2328 
2329 	return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332 
2333 /**
2334  * regulator_bulk_disable - disable multiple regulator consumers
2335  *
2336  * @num_consumers: Number of consumers
2337  * @consumers:     Consumer data; clients are stored here.
2338  * @return         0 on success, an errno on failure
2339  *
2340  * This convenience API allows consumers to disable multiple regulator
2341  * clients in a single API call.  If any consumers cannot be enabled
2342  * then any others that were disabled will be disabled again prior to
2343  * return.
2344  */
2345 int regulator_bulk_disable(int num_consumers,
2346 			   struct regulator_bulk_data *consumers)
2347 {
2348 	int i;
2349 	int ret;
2350 
2351 	for (i = 0; i < num_consumers; i++) {
2352 		ret = regulator_disable(consumers[i].consumer);
2353 		if (ret != 0)
2354 			goto err;
2355 	}
2356 
2357 	return 0;
2358 
2359 err:
2360 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361 	for (--i; i >= 0; --i)
2362 		regulator_enable(consumers[i].consumer);
2363 
2364 	return ret;
2365 }
2366 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367 
2368 /**
2369  * regulator_bulk_free - free multiple regulator consumers
2370  *
2371  * @num_consumers: Number of consumers
2372  * @consumers:     Consumer data; clients are stored here.
2373  *
2374  * This convenience API allows consumers to free multiple regulator
2375  * clients in a single API call.
2376  */
2377 void regulator_bulk_free(int num_consumers,
2378 			 struct regulator_bulk_data *consumers)
2379 {
2380 	int i;
2381 
2382 	for (i = 0; i < num_consumers; i++) {
2383 		regulator_put(consumers[i].consumer);
2384 		consumers[i].consumer = NULL;
2385 	}
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388 
2389 /**
2390  * regulator_notifier_call_chain - call regulator event notifier
2391  * @rdev: regulator source
2392  * @event: notifier block
2393  * @data: callback-specific data.
2394  *
2395  * Called by regulator drivers to notify clients a regulator event has
2396  * occurred. We also notify regulator clients downstream.
2397  * Note lock must be held by caller.
2398  */
2399 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400 				  unsigned long event, void *data)
2401 {
2402 	_notifier_call_chain(rdev, event, data);
2403 	return NOTIFY_DONE;
2404 
2405 }
2406 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407 
2408 /**
2409  * regulator_mode_to_status - convert a regulator mode into a status
2410  *
2411  * @mode: Mode to convert
2412  *
2413  * Convert a regulator mode into a status.
2414  */
2415 int regulator_mode_to_status(unsigned int mode)
2416 {
2417 	switch (mode) {
2418 	case REGULATOR_MODE_FAST:
2419 		return REGULATOR_STATUS_FAST;
2420 	case REGULATOR_MODE_NORMAL:
2421 		return REGULATOR_STATUS_NORMAL;
2422 	case REGULATOR_MODE_IDLE:
2423 		return REGULATOR_STATUS_IDLE;
2424 	case REGULATOR_STATUS_STANDBY:
2425 		return REGULATOR_STATUS_STANDBY;
2426 	default:
2427 		return 0;
2428 	}
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431 
2432 /*
2433  * To avoid cluttering sysfs (and memory) with useless state, only
2434  * create attributes that can be meaningfully displayed.
2435  */
2436 static int add_regulator_attributes(struct regulator_dev *rdev)
2437 {
2438 	struct device		*dev = &rdev->dev;
2439 	struct regulator_ops	*ops = rdev->desc->ops;
2440 	int			status = 0;
2441 
2442 	/* some attributes need specific methods to be displayed */
2443 	if (ops->get_voltage || ops->get_voltage_sel) {
2444 		status = device_create_file(dev, &dev_attr_microvolts);
2445 		if (status < 0)
2446 			return status;
2447 	}
2448 	if (ops->get_current_limit) {
2449 		status = device_create_file(dev, &dev_attr_microamps);
2450 		if (status < 0)
2451 			return status;
2452 	}
2453 	if (ops->get_mode) {
2454 		status = device_create_file(dev, &dev_attr_opmode);
2455 		if (status < 0)
2456 			return status;
2457 	}
2458 	if (ops->is_enabled) {
2459 		status = device_create_file(dev, &dev_attr_state);
2460 		if (status < 0)
2461 			return status;
2462 	}
2463 	if (ops->get_status) {
2464 		status = device_create_file(dev, &dev_attr_status);
2465 		if (status < 0)
2466 			return status;
2467 	}
2468 
2469 	/* some attributes are type-specific */
2470 	if (rdev->desc->type == REGULATOR_CURRENT) {
2471 		status = device_create_file(dev, &dev_attr_requested_microamps);
2472 		if (status < 0)
2473 			return status;
2474 	}
2475 
2476 	/* all the other attributes exist to support constraints;
2477 	 * don't show them if there are no constraints, or if the
2478 	 * relevant supporting methods are missing.
2479 	 */
2480 	if (!rdev->constraints)
2481 		return status;
2482 
2483 	/* constraints need specific supporting methods */
2484 	if (ops->set_voltage || ops->set_voltage_sel) {
2485 		status = device_create_file(dev, &dev_attr_min_microvolts);
2486 		if (status < 0)
2487 			return status;
2488 		status = device_create_file(dev, &dev_attr_max_microvolts);
2489 		if (status < 0)
2490 			return status;
2491 	}
2492 	if (ops->set_current_limit) {
2493 		status = device_create_file(dev, &dev_attr_min_microamps);
2494 		if (status < 0)
2495 			return status;
2496 		status = device_create_file(dev, &dev_attr_max_microamps);
2497 		if (status < 0)
2498 			return status;
2499 	}
2500 
2501 	/* suspend mode constraints need multiple supporting methods */
2502 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503 		return status;
2504 
2505 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506 	if (status < 0)
2507 		return status;
2508 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509 	if (status < 0)
2510 		return status;
2511 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512 	if (status < 0)
2513 		return status;
2514 
2515 	if (ops->set_suspend_voltage) {
2516 		status = device_create_file(dev,
2517 				&dev_attr_suspend_standby_microvolts);
2518 		if (status < 0)
2519 			return status;
2520 		status = device_create_file(dev,
2521 				&dev_attr_suspend_mem_microvolts);
2522 		if (status < 0)
2523 			return status;
2524 		status = device_create_file(dev,
2525 				&dev_attr_suspend_disk_microvolts);
2526 		if (status < 0)
2527 			return status;
2528 	}
2529 
2530 	if (ops->set_suspend_mode) {
2531 		status = device_create_file(dev,
2532 				&dev_attr_suspend_standby_mode);
2533 		if (status < 0)
2534 			return status;
2535 		status = device_create_file(dev,
2536 				&dev_attr_suspend_mem_mode);
2537 		if (status < 0)
2538 			return status;
2539 		status = device_create_file(dev,
2540 				&dev_attr_suspend_disk_mode);
2541 		if (status < 0)
2542 			return status;
2543 	}
2544 
2545 	return status;
2546 }
2547 
2548 static void rdev_init_debugfs(struct regulator_dev *rdev)
2549 {
2550 #ifdef CONFIG_DEBUG_FS
2551 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554 		rdev->debugfs = NULL;
2555 		return;
2556 	}
2557 
2558 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559 			   &rdev->use_count);
2560 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561 			   &rdev->open_count);
2562 #endif
2563 }
2564 
2565 /**
2566  * regulator_register - register regulator
2567  * @regulator_desc: regulator to register
2568  * @dev: struct device for the regulator
2569  * @init_data: platform provided init data, passed through by driver
2570  * @driver_data: private regulator data
2571  *
2572  * Called by regulator drivers to register a regulator.
2573  * Returns 0 on success.
2574  */
2575 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576 	struct device *dev, const struct regulator_init_data *init_data,
2577 	void *driver_data)
2578 {
2579 	static atomic_t regulator_no = ATOMIC_INIT(0);
2580 	struct regulator_dev *rdev;
2581 	int ret, i;
2582 
2583 	if (regulator_desc == NULL)
2584 		return ERR_PTR(-EINVAL);
2585 
2586 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587 		return ERR_PTR(-EINVAL);
2588 
2589 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590 	    regulator_desc->type != REGULATOR_CURRENT)
2591 		return ERR_PTR(-EINVAL);
2592 
2593 	if (!init_data)
2594 		return ERR_PTR(-EINVAL);
2595 
2596 	/* Only one of each should be implemented */
2597 	WARN_ON(regulator_desc->ops->get_voltage &&
2598 		regulator_desc->ops->get_voltage_sel);
2599 	WARN_ON(regulator_desc->ops->set_voltage &&
2600 		regulator_desc->ops->set_voltage_sel);
2601 
2602 	/* If we're using selectors we must implement list_voltage. */
2603 	if (regulator_desc->ops->get_voltage_sel &&
2604 	    !regulator_desc->ops->list_voltage) {
2605 		return ERR_PTR(-EINVAL);
2606 	}
2607 	if (regulator_desc->ops->set_voltage_sel &&
2608 	    !regulator_desc->ops->list_voltage) {
2609 		return ERR_PTR(-EINVAL);
2610 	}
2611 
2612 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613 	if (rdev == NULL)
2614 		return ERR_PTR(-ENOMEM);
2615 
2616 	mutex_lock(&regulator_list_mutex);
2617 
2618 	mutex_init(&rdev->mutex);
2619 	rdev->reg_data = driver_data;
2620 	rdev->owner = regulator_desc->owner;
2621 	rdev->desc = regulator_desc;
2622 	INIT_LIST_HEAD(&rdev->consumer_list);
2623 	INIT_LIST_HEAD(&rdev->list);
2624 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2625 
2626 	/* preform any regulator specific init */
2627 	if (init_data->regulator_init) {
2628 		ret = init_data->regulator_init(rdev->reg_data);
2629 		if (ret < 0)
2630 			goto clean;
2631 	}
2632 
2633 	/* register with sysfs */
2634 	rdev->dev.class = &regulator_class;
2635 	rdev->dev.parent = dev;
2636 	dev_set_name(&rdev->dev, "regulator.%d",
2637 		     atomic_inc_return(&regulator_no) - 1);
2638 	ret = device_register(&rdev->dev);
2639 	if (ret != 0) {
2640 		put_device(&rdev->dev);
2641 		goto clean;
2642 	}
2643 
2644 	dev_set_drvdata(&rdev->dev, rdev);
2645 
2646 	/* set regulator constraints */
2647 	ret = set_machine_constraints(rdev, &init_data->constraints);
2648 	if (ret < 0)
2649 		goto scrub;
2650 
2651 	/* add attributes supported by this regulator */
2652 	ret = add_regulator_attributes(rdev);
2653 	if (ret < 0)
2654 		goto scrub;
2655 
2656 	if (init_data->supply_regulator) {
2657 		struct regulator_dev *r;
2658 		int found = 0;
2659 
2660 		list_for_each_entry(r, &regulator_list, list) {
2661 			if (strcmp(rdev_get_name(r),
2662 				   init_data->supply_regulator) == 0) {
2663 				found = 1;
2664 				break;
2665 			}
2666 		}
2667 
2668 		if (!found) {
2669 			dev_err(dev, "Failed to find supply %s\n",
2670 				init_data->supply_regulator);
2671 			ret = -ENODEV;
2672 			goto scrub;
2673 		}
2674 
2675 		ret = set_supply(rdev, r);
2676 		if (ret < 0)
2677 			goto scrub;
2678 	}
2679 
2680 	/* add consumers devices */
2681 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682 		ret = set_consumer_device_supply(rdev,
2683 			init_data->consumer_supplies[i].dev,
2684 			init_data->consumer_supplies[i].dev_name,
2685 			init_data->consumer_supplies[i].supply);
2686 		if (ret < 0) {
2687 			dev_err(dev, "Failed to set supply %s\n",
2688 				init_data->consumer_supplies[i].supply);
2689 			goto unset_supplies;
2690 		}
2691 	}
2692 
2693 	list_add(&rdev->list, &regulator_list);
2694 
2695 	rdev_init_debugfs(rdev);
2696 out:
2697 	mutex_unlock(&regulator_list_mutex);
2698 	return rdev;
2699 
2700 unset_supplies:
2701 	unset_regulator_supplies(rdev);
2702 
2703 scrub:
2704 	kfree(rdev->constraints);
2705 	device_unregister(&rdev->dev);
2706 	/* device core frees rdev */
2707 	rdev = ERR_PTR(ret);
2708 	goto out;
2709 
2710 clean:
2711 	kfree(rdev);
2712 	rdev = ERR_PTR(ret);
2713 	goto out;
2714 }
2715 EXPORT_SYMBOL_GPL(regulator_register);
2716 
2717 /**
2718  * regulator_unregister - unregister regulator
2719  * @rdev: regulator to unregister
2720  *
2721  * Called by regulator drivers to unregister a regulator.
2722  */
2723 void regulator_unregister(struct regulator_dev *rdev)
2724 {
2725 	if (rdev == NULL)
2726 		return;
2727 
2728 	mutex_lock(&regulator_list_mutex);
2729 #ifdef CONFIG_DEBUG_FS
2730 	debugfs_remove_recursive(rdev->debugfs);
2731 #endif
2732 	WARN_ON(rdev->open_count);
2733 	unset_regulator_supplies(rdev);
2734 	list_del(&rdev->list);
2735 	if (rdev->supply)
2736 		regulator_put(rdev->supply);
2737 	device_unregister(&rdev->dev);
2738 	kfree(rdev->constraints);
2739 	mutex_unlock(&regulator_list_mutex);
2740 }
2741 EXPORT_SYMBOL_GPL(regulator_unregister);
2742 
2743 /**
2744  * regulator_suspend_prepare - prepare regulators for system wide suspend
2745  * @state: system suspend state
2746  *
2747  * Configure each regulator with it's suspend operating parameters for state.
2748  * This will usually be called by machine suspend code prior to supending.
2749  */
2750 int regulator_suspend_prepare(suspend_state_t state)
2751 {
2752 	struct regulator_dev *rdev;
2753 	int ret = 0;
2754 
2755 	/* ON is handled by regulator active state */
2756 	if (state == PM_SUSPEND_ON)
2757 		return -EINVAL;
2758 
2759 	mutex_lock(&regulator_list_mutex);
2760 	list_for_each_entry(rdev, &regulator_list, list) {
2761 
2762 		mutex_lock(&rdev->mutex);
2763 		ret = suspend_prepare(rdev, state);
2764 		mutex_unlock(&rdev->mutex);
2765 
2766 		if (ret < 0) {
2767 			rdev_err(rdev, "failed to prepare\n");
2768 			goto out;
2769 		}
2770 	}
2771 out:
2772 	mutex_unlock(&regulator_list_mutex);
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776 
2777 /**
2778  * regulator_suspend_finish - resume regulators from system wide suspend
2779  *
2780  * Turn on regulators that might be turned off by regulator_suspend_prepare
2781  * and that should be turned on according to the regulators properties.
2782  */
2783 int regulator_suspend_finish(void)
2784 {
2785 	struct regulator_dev *rdev;
2786 	int ret = 0, error;
2787 
2788 	mutex_lock(&regulator_list_mutex);
2789 	list_for_each_entry(rdev, &regulator_list, list) {
2790 		struct regulator_ops *ops = rdev->desc->ops;
2791 
2792 		mutex_lock(&rdev->mutex);
2793 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794 				ops->enable) {
2795 			error = ops->enable(rdev);
2796 			if (error)
2797 				ret = error;
2798 		} else {
2799 			if (!has_full_constraints)
2800 				goto unlock;
2801 			if (!ops->disable)
2802 				goto unlock;
2803 			if (ops->is_enabled && !ops->is_enabled(rdev))
2804 				goto unlock;
2805 
2806 			error = ops->disable(rdev);
2807 			if (error)
2808 				ret = error;
2809 		}
2810 unlock:
2811 		mutex_unlock(&rdev->mutex);
2812 	}
2813 	mutex_unlock(&regulator_list_mutex);
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817 
2818 /**
2819  * regulator_has_full_constraints - the system has fully specified constraints
2820  *
2821  * Calling this function will cause the regulator API to disable all
2822  * regulators which have a zero use count and don't have an always_on
2823  * constraint in a late_initcall.
2824  *
2825  * The intention is that this will become the default behaviour in a
2826  * future kernel release so users are encouraged to use this facility
2827  * now.
2828  */
2829 void regulator_has_full_constraints(void)
2830 {
2831 	has_full_constraints = 1;
2832 }
2833 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834 
2835 /**
2836  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837  *
2838  * Calling this function will cause the regulator API to provide a
2839  * dummy regulator to consumers if no physical regulator is found,
2840  * allowing most consumers to proceed as though a regulator were
2841  * configured.  This allows systems such as those with software
2842  * controllable regulators for the CPU core only to be brought up more
2843  * readily.
2844  */
2845 void regulator_use_dummy_regulator(void)
2846 {
2847 	board_wants_dummy_regulator = true;
2848 }
2849 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850 
2851 /**
2852  * rdev_get_drvdata - get rdev regulator driver data
2853  * @rdev: regulator
2854  *
2855  * Get rdev regulator driver private data. This call can be used in the
2856  * regulator driver context.
2857  */
2858 void *rdev_get_drvdata(struct regulator_dev *rdev)
2859 {
2860 	return rdev->reg_data;
2861 }
2862 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863 
2864 /**
2865  * regulator_get_drvdata - get regulator driver data
2866  * @regulator: regulator
2867  *
2868  * Get regulator driver private data. This call can be used in the consumer
2869  * driver context when non API regulator specific functions need to be called.
2870  */
2871 void *regulator_get_drvdata(struct regulator *regulator)
2872 {
2873 	return regulator->rdev->reg_data;
2874 }
2875 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876 
2877 /**
2878  * regulator_set_drvdata - set regulator driver data
2879  * @regulator: regulator
2880  * @data: data
2881  */
2882 void regulator_set_drvdata(struct regulator *regulator, void *data)
2883 {
2884 	regulator->rdev->reg_data = data;
2885 }
2886 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887 
2888 /**
2889  * regulator_get_id - get regulator ID
2890  * @rdev: regulator
2891  */
2892 int rdev_get_id(struct regulator_dev *rdev)
2893 {
2894 	return rdev->desc->id;
2895 }
2896 EXPORT_SYMBOL_GPL(rdev_get_id);
2897 
2898 struct device *rdev_get_dev(struct regulator_dev *rdev)
2899 {
2900 	return &rdev->dev;
2901 }
2902 EXPORT_SYMBOL_GPL(rdev_get_dev);
2903 
2904 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905 {
2906 	return reg_init_data->driver_data;
2907 }
2908 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909 
2910 static int __init regulator_init(void)
2911 {
2912 	int ret;
2913 
2914 	ret = class_register(&regulator_class);
2915 
2916 #ifdef CONFIG_DEBUG_FS
2917 	debugfs_root = debugfs_create_dir("regulator", NULL);
2918 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919 		pr_warn("regulator: Failed to create debugfs directory\n");
2920 		debugfs_root = NULL;
2921 	}
2922 #endif
2923 
2924 	regulator_dummy_init();
2925 
2926 	return ret;
2927 }
2928 
2929 /* init early to allow our consumers to complete system booting */
2930 core_initcall(regulator_init);
2931 
2932 static int __init regulator_init_complete(void)
2933 {
2934 	struct regulator_dev *rdev;
2935 	struct regulator_ops *ops;
2936 	struct regulation_constraints *c;
2937 	int enabled, ret;
2938 
2939 	mutex_lock(&regulator_list_mutex);
2940 
2941 	/* If we have a full configuration then disable any regulators
2942 	 * which are not in use or always_on.  This will become the
2943 	 * default behaviour in the future.
2944 	 */
2945 	list_for_each_entry(rdev, &regulator_list, list) {
2946 		ops = rdev->desc->ops;
2947 		c = rdev->constraints;
2948 
2949 		if (!ops->disable || (c && c->always_on))
2950 			continue;
2951 
2952 		mutex_lock(&rdev->mutex);
2953 
2954 		if (rdev->use_count)
2955 			goto unlock;
2956 
2957 		/* If we can't read the status assume it's on. */
2958 		if (ops->is_enabled)
2959 			enabled = ops->is_enabled(rdev);
2960 		else
2961 			enabled = 1;
2962 
2963 		if (!enabled)
2964 			goto unlock;
2965 
2966 		if (has_full_constraints) {
2967 			/* We log since this may kill the system if it
2968 			 * goes wrong. */
2969 			rdev_info(rdev, "disabling\n");
2970 			ret = ops->disable(rdev);
2971 			if (ret != 0) {
2972 				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973 			}
2974 		} else {
2975 			/* The intention is that in future we will
2976 			 * assume that full constraints are provided
2977 			 * so warn even if we aren't going to do
2978 			 * anything here.
2979 			 */
2980 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981 		}
2982 
2983 unlock:
2984 		mutex_unlock(&rdev->mutex);
2985 	}
2986 
2987 	mutex_unlock(&regulator_list_mutex);
2988 
2989 	return 0;
2990 }
2991 late_initcall(regulator_init_complete);
2992