xref: /openbmc/linux/drivers/regulator/core.c (revision 9a8f3203)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_WW_CLASS(regulator_ww_class);
53 static DEFINE_MUTEX(regulator_nesting_mutex);
54 static DEFINE_MUTEX(regulator_list_mutex);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109 				     suspend_state_t state);
110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
111 				      int min_uV, int max_uV,
112 				      suspend_state_t state);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 					  struct device *dev,
115 					  const char *supply_name);
116 static void _regulator_put(struct regulator *regulator);
117 
118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 	if (rdev->constraints && rdev->constraints->name)
121 		return rdev->constraints->name;
122 	else if (rdev->desc->name)
123 		return rdev->desc->name;
124 	else
125 		return "";
126 }
127 
128 static bool have_full_constraints(void)
129 {
130 	return has_full_constraints || of_have_populated_dt();
131 }
132 
133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
134 {
135 	if (!rdev->constraints) {
136 		rdev_err(rdev, "no constraints\n");
137 		return false;
138 	}
139 
140 	if (rdev->constraints->valid_ops_mask & ops)
141 		return true;
142 
143 	return false;
144 }
145 
146 /**
147  * regulator_lock_nested - lock a single regulator
148  * @rdev:		regulator source
149  * @ww_ctx:		w/w mutex acquire context
150  *
151  * This function can be called many times by one task on
152  * a single regulator and its mutex will be locked only
153  * once. If a task, which is calling this function is other
154  * than the one, which initially locked the mutex, it will
155  * wait on mutex.
156  */
157 static inline int regulator_lock_nested(struct regulator_dev *rdev,
158 					struct ww_acquire_ctx *ww_ctx)
159 {
160 	bool lock = false;
161 	int ret = 0;
162 
163 	mutex_lock(&regulator_nesting_mutex);
164 
165 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
166 		if (rdev->mutex_owner == current)
167 			rdev->ref_cnt++;
168 		else
169 			lock = true;
170 
171 		if (lock) {
172 			mutex_unlock(&regulator_nesting_mutex);
173 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
174 			mutex_lock(&regulator_nesting_mutex);
175 		}
176 	} else {
177 		lock = true;
178 	}
179 
180 	if (lock && ret != -EDEADLK) {
181 		rdev->ref_cnt++;
182 		rdev->mutex_owner = current;
183 	}
184 
185 	mutex_unlock(&regulator_nesting_mutex);
186 
187 	return ret;
188 }
189 
190 /**
191  * regulator_lock - lock a single regulator
192  * @rdev:		regulator source
193  *
194  * This function can be called many times by one task on
195  * a single regulator and its mutex will be locked only
196  * once. If a task, which is calling this function is other
197  * than the one, which initially locked the mutex, it will
198  * wait on mutex.
199  */
200 void regulator_lock(struct regulator_dev *rdev)
201 {
202 	regulator_lock_nested(rdev, NULL);
203 }
204 EXPORT_SYMBOL_GPL(regulator_lock);
205 
206 /**
207  * regulator_unlock - unlock a single regulator
208  * @rdev:		regulator_source
209  *
210  * This function unlocks the mutex when the
211  * reference counter reaches 0.
212  */
213 void regulator_unlock(struct regulator_dev *rdev)
214 {
215 	mutex_lock(&regulator_nesting_mutex);
216 
217 	if (--rdev->ref_cnt == 0) {
218 		rdev->mutex_owner = NULL;
219 		ww_mutex_unlock(&rdev->mutex);
220 	}
221 
222 	WARN_ON_ONCE(rdev->ref_cnt < 0);
223 
224 	mutex_unlock(&regulator_nesting_mutex);
225 }
226 EXPORT_SYMBOL_GPL(regulator_unlock);
227 
228 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229 {
230 	struct regulator_dev *c_rdev;
231 	int i;
232 
233 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
234 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235 
236 		if (rdev->supply->rdev == c_rdev)
237 			return true;
238 	}
239 
240 	return false;
241 }
242 
243 static void regulator_unlock_recursive(struct regulator_dev *rdev,
244 				       unsigned int n_coupled)
245 {
246 	struct regulator_dev *c_rdev;
247 	int i;
248 
249 	for (i = n_coupled; i > 0; i--) {
250 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251 
252 		if (!c_rdev)
253 			continue;
254 
255 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256 			regulator_unlock_recursive(
257 					c_rdev->supply->rdev,
258 					c_rdev->coupling_desc.n_coupled);
259 
260 		regulator_unlock(c_rdev);
261 	}
262 }
263 
264 static int regulator_lock_recursive(struct regulator_dev *rdev,
265 				    struct regulator_dev **new_contended_rdev,
266 				    struct regulator_dev **old_contended_rdev,
267 				    struct ww_acquire_ctx *ww_ctx)
268 {
269 	struct regulator_dev *c_rdev;
270 	int i, err;
271 
272 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274 
275 		if (!c_rdev)
276 			continue;
277 
278 		if (c_rdev != *old_contended_rdev) {
279 			err = regulator_lock_nested(c_rdev, ww_ctx);
280 			if (err) {
281 				if (err == -EDEADLK) {
282 					*new_contended_rdev = c_rdev;
283 					goto err_unlock;
284 				}
285 
286 				/* shouldn't happen */
287 				WARN_ON_ONCE(err != -EALREADY);
288 			}
289 		} else {
290 			*old_contended_rdev = NULL;
291 		}
292 
293 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294 			err = regulator_lock_recursive(c_rdev->supply->rdev,
295 						       new_contended_rdev,
296 						       old_contended_rdev,
297 						       ww_ctx);
298 			if (err) {
299 				regulator_unlock(c_rdev);
300 				goto err_unlock;
301 			}
302 		}
303 	}
304 
305 	return 0;
306 
307 err_unlock:
308 	regulator_unlock_recursive(rdev, i);
309 
310 	return err;
311 }
312 
313 /**
314  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315  *				regulators
316  * @rdev:			regulator source
317  * @ww_ctx:			w/w mutex acquire context
318  *
319  * Unlock all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_unlock_dependent(struct regulator_dev *rdev,
322 				       struct ww_acquire_ctx *ww_ctx)
323 {
324 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325 	ww_acquire_fini(ww_ctx);
326 }
327 
328 /**
329  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330  * @rdev:			regulator source
331  * @ww_ctx:			w/w mutex acquire context
332  *
333  * This function as a wrapper on regulator_lock_recursive(), which locks
334  * all regulators related with rdev by coupling or supplying.
335  */
336 static void regulator_lock_dependent(struct regulator_dev *rdev,
337 				     struct ww_acquire_ctx *ww_ctx)
338 {
339 	struct regulator_dev *new_contended_rdev = NULL;
340 	struct regulator_dev *old_contended_rdev = NULL;
341 	int err;
342 
343 	mutex_lock(&regulator_list_mutex);
344 
345 	ww_acquire_init(ww_ctx, &regulator_ww_class);
346 
347 	do {
348 		if (new_contended_rdev) {
349 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350 			old_contended_rdev = new_contended_rdev;
351 			old_contended_rdev->ref_cnt++;
352 		}
353 
354 		err = regulator_lock_recursive(rdev,
355 					       &new_contended_rdev,
356 					       &old_contended_rdev,
357 					       ww_ctx);
358 
359 		if (old_contended_rdev)
360 			regulator_unlock(old_contended_rdev);
361 
362 	} while (err == -EDEADLK);
363 
364 	ww_acquire_done(ww_ctx);
365 
366 	mutex_unlock(&regulator_list_mutex);
367 }
368 
369 /**
370  * of_get_child_regulator - get a child regulator device node
371  * based on supply name
372  * @parent: Parent device node
373  * @prop_name: Combination regulator supply name and "-supply"
374  *
375  * Traverse all child nodes.
376  * Extract the child regulator device node corresponding to the supply name.
377  * returns the device node corresponding to the regulator if found, else
378  * returns NULL.
379  */
380 static struct device_node *of_get_child_regulator(struct device_node *parent,
381 						  const char *prop_name)
382 {
383 	struct device_node *regnode = NULL;
384 	struct device_node *child = NULL;
385 
386 	for_each_child_of_node(parent, child) {
387 		regnode = of_parse_phandle(child, prop_name, 0);
388 
389 		if (!regnode) {
390 			regnode = of_get_child_regulator(child, prop_name);
391 			if (regnode)
392 				return regnode;
393 		} else {
394 			return regnode;
395 		}
396 	}
397 	return NULL;
398 }
399 
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411 	struct device_node *regnode = NULL;
412 	char prop_name[32]; /* 32 is max size of property name */
413 
414 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415 
416 	snprintf(prop_name, 32, "%s-supply", supply);
417 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418 
419 	if (!regnode) {
420 		regnode = of_get_child_regulator(dev->of_node, prop_name);
421 		if (regnode)
422 			return regnode;
423 
424 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 				prop_name, dev->of_node);
426 		return NULL;
427 	}
428 	return regnode;
429 }
430 
431 /* Platform voltage constraint check */
432 static int regulator_check_voltage(struct regulator_dev *rdev,
433 				   int *min_uV, int *max_uV)
434 {
435 	BUG_ON(*min_uV > *max_uV);
436 
437 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 		rdev_err(rdev, "voltage operation not allowed\n");
439 		return -EPERM;
440 	}
441 
442 	if (*max_uV > rdev->constraints->max_uV)
443 		*max_uV = rdev->constraints->max_uV;
444 	if (*min_uV < rdev->constraints->min_uV)
445 		*min_uV = rdev->constraints->min_uV;
446 
447 	if (*min_uV > *max_uV) {
448 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 			 *min_uV, *max_uV);
450 		return -EINVAL;
451 	}
452 
453 	return 0;
454 }
455 
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461 
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 static int regulator_check_consumers(struct regulator_dev *rdev,
466 				     int *min_uV, int *max_uV,
467 				     suspend_state_t state)
468 {
469 	struct regulator *regulator;
470 	struct regulator_voltage *voltage;
471 
472 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 		voltage = &regulator->voltage[state];
474 		/*
475 		 * Assume consumers that didn't say anything are OK
476 		 * with anything in the constraint range.
477 		 */
478 		if (!voltage->min_uV && !voltage->max_uV)
479 			continue;
480 
481 		if (*max_uV > voltage->max_uV)
482 			*max_uV = voltage->max_uV;
483 		if (*min_uV < voltage->min_uV)
484 			*min_uV = voltage->min_uV;
485 	}
486 
487 	if (*min_uV > *max_uV) {
488 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 			*min_uV, *max_uV);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498 					int *min_uA, int *max_uA)
499 {
500 	BUG_ON(*min_uA > *max_uA);
501 
502 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 		rdev_err(rdev, "current operation not allowed\n");
504 		return -EPERM;
505 	}
506 
507 	if (*max_uA > rdev->constraints->max_uA)
508 		*max_uA = rdev->constraints->max_uA;
509 	if (*min_uA < rdev->constraints->min_uA)
510 		*min_uA = rdev->constraints->min_uA;
511 
512 	if (*min_uA > *max_uA) {
513 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 			 *min_uA, *max_uA);
515 		return -EINVAL;
516 	}
517 
518 	return 0;
519 }
520 
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523 				    unsigned int *mode)
524 {
525 	switch (*mode) {
526 	case REGULATOR_MODE_FAST:
527 	case REGULATOR_MODE_NORMAL:
528 	case REGULATOR_MODE_IDLE:
529 	case REGULATOR_MODE_STANDBY:
530 		break;
531 	default:
532 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 		return -EINVAL;
534 	}
535 
536 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 		rdev_err(rdev, "mode operation not allowed\n");
538 		return -EPERM;
539 	}
540 
541 	/* The modes are bitmasks, the most power hungry modes having
542 	 * the lowest values. If the requested mode isn't supported
543 	 * try higher modes. */
544 	while (*mode) {
545 		if (rdev->constraints->valid_modes_mask & *mode)
546 			return 0;
547 		*mode /= 2;
548 	}
549 
550 	return -EINVAL;
551 }
552 
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556 	if (rdev->constraints == NULL)
557 		return NULL;
558 
559 	switch (state) {
560 	case PM_SUSPEND_STANDBY:
561 		return &rdev->constraints->state_standby;
562 	case PM_SUSPEND_MEM:
563 		return &rdev->constraints->state_mem;
564 	case PM_SUSPEND_MAX:
565 		return &rdev->constraints->state_disk;
566 	default:
567 		return NULL;
568 	}
569 }
570 
571 static ssize_t regulator_uV_show(struct device *dev,
572 				struct device_attribute *attr, char *buf)
573 {
574 	struct regulator_dev *rdev = dev_get_drvdata(dev);
575 	ssize_t ret;
576 
577 	regulator_lock(rdev);
578 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579 	regulator_unlock(rdev);
580 
581 	return ret;
582 }
583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584 
585 static ssize_t regulator_uA_show(struct device *dev,
586 				struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
591 }
592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593 
594 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595 			 char *buf)
596 {
597 	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 
599 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
600 }
601 static DEVICE_ATTR_RO(name);
602 
603 static const char *regulator_opmode_to_str(int mode)
604 {
605 	switch (mode) {
606 	case REGULATOR_MODE_FAST:
607 		return "fast";
608 	case REGULATOR_MODE_NORMAL:
609 		return "normal";
610 	case REGULATOR_MODE_IDLE:
611 		return "idle";
612 	case REGULATOR_MODE_STANDBY:
613 		return "standby";
614 	}
615 	return "unknown";
616 }
617 
618 static ssize_t regulator_print_opmode(char *buf, int mode)
619 {
620 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 }
622 
623 static ssize_t regulator_opmode_show(struct device *dev,
624 				    struct device_attribute *attr, char *buf)
625 {
626 	struct regulator_dev *rdev = dev_get_drvdata(dev);
627 
628 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
629 }
630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
631 
632 static ssize_t regulator_print_state(char *buf, int state)
633 {
634 	if (state > 0)
635 		return sprintf(buf, "enabled\n");
636 	else if (state == 0)
637 		return sprintf(buf, "disabled\n");
638 	else
639 		return sprintf(buf, "unknown\n");
640 }
641 
642 static ssize_t regulator_state_show(struct device *dev,
643 				   struct device_attribute *attr, char *buf)
644 {
645 	struct regulator_dev *rdev = dev_get_drvdata(dev);
646 	ssize_t ret;
647 
648 	regulator_lock(rdev);
649 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650 	regulator_unlock(rdev);
651 
652 	return ret;
653 }
654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
655 
656 static ssize_t regulator_status_show(struct device *dev,
657 				   struct device_attribute *attr, char *buf)
658 {
659 	struct regulator_dev *rdev = dev_get_drvdata(dev);
660 	int status;
661 	char *label;
662 
663 	status = rdev->desc->ops->get_status(rdev);
664 	if (status < 0)
665 		return status;
666 
667 	switch (status) {
668 	case REGULATOR_STATUS_OFF:
669 		label = "off";
670 		break;
671 	case REGULATOR_STATUS_ON:
672 		label = "on";
673 		break;
674 	case REGULATOR_STATUS_ERROR:
675 		label = "error";
676 		break;
677 	case REGULATOR_STATUS_FAST:
678 		label = "fast";
679 		break;
680 	case REGULATOR_STATUS_NORMAL:
681 		label = "normal";
682 		break;
683 	case REGULATOR_STATUS_IDLE:
684 		label = "idle";
685 		break;
686 	case REGULATOR_STATUS_STANDBY:
687 		label = "standby";
688 		break;
689 	case REGULATOR_STATUS_BYPASS:
690 		label = "bypass";
691 		break;
692 	case REGULATOR_STATUS_UNDEFINED:
693 		label = "undefined";
694 		break;
695 	default:
696 		return -ERANGE;
697 	}
698 
699 	return sprintf(buf, "%s\n", label);
700 }
701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
702 
703 static ssize_t regulator_min_uA_show(struct device *dev,
704 				    struct device_attribute *attr, char *buf)
705 {
706 	struct regulator_dev *rdev = dev_get_drvdata(dev);
707 
708 	if (!rdev->constraints)
709 		return sprintf(buf, "constraint not defined\n");
710 
711 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
712 }
713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714 
715 static ssize_t regulator_max_uA_show(struct device *dev,
716 				    struct device_attribute *attr, char *buf)
717 {
718 	struct regulator_dev *rdev = dev_get_drvdata(dev);
719 
720 	if (!rdev->constraints)
721 		return sprintf(buf, "constraint not defined\n");
722 
723 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
724 }
725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726 
727 static ssize_t regulator_min_uV_show(struct device *dev,
728 				    struct device_attribute *attr, char *buf)
729 {
730 	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 
732 	if (!rdev->constraints)
733 		return sprintf(buf, "constraint not defined\n");
734 
735 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
736 }
737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738 
739 static ssize_t regulator_max_uV_show(struct device *dev,
740 				    struct device_attribute *attr, char *buf)
741 {
742 	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 
744 	if (!rdev->constraints)
745 		return sprintf(buf, "constraint not defined\n");
746 
747 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
748 }
749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750 
751 static ssize_t regulator_total_uA_show(struct device *dev,
752 				      struct device_attribute *attr, char *buf)
753 {
754 	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 	struct regulator *regulator;
756 	int uA = 0;
757 
758 	regulator_lock(rdev);
759 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
760 		if (regulator->enable_count)
761 			uA += regulator->uA_load;
762 	}
763 	regulator_unlock(rdev);
764 	return sprintf(buf, "%d\n", uA);
765 }
766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767 
768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769 			      char *buf)
770 {
771 	struct regulator_dev *rdev = dev_get_drvdata(dev);
772 	return sprintf(buf, "%d\n", rdev->use_count);
773 }
774 static DEVICE_ATTR_RO(num_users);
775 
776 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777 			 char *buf)
778 {
779 	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 
781 	switch (rdev->desc->type) {
782 	case REGULATOR_VOLTAGE:
783 		return sprintf(buf, "voltage\n");
784 	case REGULATOR_CURRENT:
785 		return sprintf(buf, "current\n");
786 	}
787 	return sprintf(buf, "unknown\n");
788 }
789 static DEVICE_ATTR_RO(type);
790 
791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
792 				struct device_attribute *attr, char *buf)
793 {
794 	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 
796 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
797 }
798 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
799 		regulator_suspend_mem_uV_show, NULL);
800 
801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
802 				struct device_attribute *attr, char *buf)
803 {
804 	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 
806 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
807 }
808 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
809 		regulator_suspend_disk_uV_show, NULL);
810 
811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
812 				struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
817 }
818 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
819 		regulator_suspend_standby_uV_show, NULL);
820 
821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
822 				struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	return regulator_print_opmode(buf,
827 		rdev->constraints->state_mem.mode);
828 }
829 static DEVICE_ATTR(suspend_mem_mode, 0444,
830 		regulator_suspend_mem_mode_show, NULL);
831 
832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
833 				struct device_attribute *attr, char *buf)
834 {
835 	struct regulator_dev *rdev = dev_get_drvdata(dev);
836 
837 	return regulator_print_opmode(buf,
838 		rdev->constraints->state_disk.mode);
839 }
840 static DEVICE_ATTR(suspend_disk_mode, 0444,
841 		regulator_suspend_disk_mode_show, NULL);
842 
843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
844 				struct device_attribute *attr, char *buf)
845 {
846 	struct regulator_dev *rdev = dev_get_drvdata(dev);
847 
848 	return regulator_print_opmode(buf,
849 		rdev->constraints->state_standby.mode);
850 }
851 static DEVICE_ATTR(suspend_standby_mode, 0444,
852 		regulator_suspend_standby_mode_show, NULL);
853 
854 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
855 				   struct device_attribute *attr, char *buf)
856 {
857 	struct regulator_dev *rdev = dev_get_drvdata(dev);
858 
859 	return regulator_print_state(buf,
860 			rdev->constraints->state_mem.enabled);
861 }
862 static DEVICE_ATTR(suspend_mem_state, 0444,
863 		regulator_suspend_mem_state_show, NULL);
864 
865 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
866 				   struct device_attribute *attr, char *buf)
867 {
868 	struct regulator_dev *rdev = dev_get_drvdata(dev);
869 
870 	return regulator_print_state(buf,
871 			rdev->constraints->state_disk.enabled);
872 }
873 static DEVICE_ATTR(suspend_disk_state, 0444,
874 		regulator_suspend_disk_state_show, NULL);
875 
876 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
877 				   struct device_attribute *attr, char *buf)
878 {
879 	struct regulator_dev *rdev = dev_get_drvdata(dev);
880 
881 	return regulator_print_state(buf,
882 			rdev->constraints->state_standby.enabled);
883 }
884 static DEVICE_ATTR(suspend_standby_state, 0444,
885 		regulator_suspend_standby_state_show, NULL);
886 
887 static ssize_t regulator_bypass_show(struct device *dev,
888 				     struct device_attribute *attr, char *buf)
889 {
890 	struct regulator_dev *rdev = dev_get_drvdata(dev);
891 	const char *report;
892 	bool bypass;
893 	int ret;
894 
895 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
896 
897 	if (ret != 0)
898 		report = "unknown";
899 	else if (bypass)
900 		report = "enabled";
901 	else
902 		report = "disabled";
903 
904 	return sprintf(buf, "%s\n", report);
905 }
906 static DEVICE_ATTR(bypass, 0444,
907 		   regulator_bypass_show, NULL);
908 
909 /* Calculate the new optimum regulator operating mode based on the new total
910  * consumer load. All locks held by caller */
911 static int drms_uA_update(struct regulator_dev *rdev)
912 {
913 	struct regulator *sibling;
914 	int current_uA = 0, output_uV, input_uV, err;
915 	unsigned int mode;
916 
917 	/*
918 	 * first check to see if we can set modes at all, otherwise just
919 	 * tell the consumer everything is OK.
920 	 */
921 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
922 		rdev_dbg(rdev, "DRMS operation not allowed\n");
923 		return 0;
924 	}
925 
926 	if (!rdev->desc->ops->get_optimum_mode &&
927 	    !rdev->desc->ops->set_load)
928 		return 0;
929 
930 	if (!rdev->desc->ops->set_mode &&
931 	    !rdev->desc->ops->set_load)
932 		return -EINVAL;
933 
934 	/* calc total requested load */
935 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
936 		if (sibling->enable_count)
937 			current_uA += sibling->uA_load;
938 	}
939 
940 	current_uA += rdev->constraints->system_load;
941 
942 	if (rdev->desc->ops->set_load) {
943 		/* set the optimum mode for our new total regulator load */
944 		err = rdev->desc->ops->set_load(rdev, current_uA);
945 		if (err < 0)
946 			rdev_err(rdev, "failed to set load %d\n", current_uA);
947 	} else {
948 		/* get output voltage */
949 		output_uV = _regulator_get_voltage(rdev);
950 		if (output_uV <= 0) {
951 			rdev_err(rdev, "invalid output voltage found\n");
952 			return -EINVAL;
953 		}
954 
955 		/* get input voltage */
956 		input_uV = 0;
957 		if (rdev->supply)
958 			input_uV = regulator_get_voltage(rdev->supply);
959 		if (input_uV <= 0)
960 			input_uV = rdev->constraints->input_uV;
961 		if (input_uV <= 0) {
962 			rdev_err(rdev, "invalid input voltage found\n");
963 			return -EINVAL;
964 		}
965 
966 		/* now get the optimum mode for our new total regulator load */
967 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
968 							 output_uV, current_uA);
969 
970 		/* check the new mode is allowed */
971 		err = regulator_mode_constrain(rdev, &mode);
972 		if (err < 0) {
973 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974 				 current_uA, input_uV, output_uV);
975 			return err;
976 		}
977 
978 		err = rdev->desc->ops->set_mode(rdev, mode);
979 		if (err < 0)
980 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981 	}
982 
983 	return err;
984 }
985 
986 static int suspend_set_state(struct regulator_dev *rdev,
987 				    suspend_state_t state)
988 {
989 	int ret = 0;
990 	struct regulator_state *rstate;
991 
992 	rstate = regulator_get_suspend_state(rdev, state);
993 	if (rstate == NULL)
994 		return 0;
995 
996 	/* If we have no suspend mode configuration don't set anything;
997 	 * only warn if the driver implements set_suspend_voltage or
998 	 * set_suspend_mode callback.
999 	 */
1000 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1001 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1002 		if (rdev->desc->ops->set_suspend_voltage ||
1003 		    rdev->desc->ops->set_suspend_mode)
1004 			rdev_warn(rdev, "No configuration\n");
1005 		return 0;
1006 	}
1007 
1008 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1009 		rdev->desc->ops->set_suspend_enable)
1010 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1011 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1012 		rdev->desc->ops->set_suspend_disable)
1013 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1014 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1015 		ret = 0;
1016 
1017 	if (ret < 0) {
1018 		rdev_err(rdev, "failed to enabled/disable\n");
1019 		return ret;
1020 	}
1021 
1022 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1023 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1024 		if (ret < 0) {
1025 			rdev_err(rdev, "failed to set voltage\n");
1026 			return ret;
1027 		}
1028 	}
1029 
1030 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1031 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1032 		if (ret < 0) {
1033 			rdev_err(rdev, "failed to set mode\n");
1034 			return ret;
1035 		}
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 static void print_constraints(struct regulator_dev *rdev)
1042 {
1043 	struct regulation_constraints *constraints = rdev->constraints;
1044 	char buf[160] = "";
1045 	size_t len = sizeof(buf) - 1;
1046 	int count = 0;
1047 	int ret;
1048 
1049 	if (constraints->min_uV && constraints->max_uV) {
1050 		if (constraints->min_uV == constraints->max_uV)
1051 			count += scnprintf(buf + count, len - count, "%d mV ",
1052 					   constraints->min_uV / 1000);
1053 		else
1054 			count += scnprintf(buf + count, len - count,
1055 					   "%d <--> %d mV ",
1056 					   constraints->min_uV / 1000,
1057 					   constraints->max_uV / 1000);
1058 	}
1059 
1060 	if (!constraints->min_uV ||
1061 	    constraints->min_uV != constraints->max_uV) {
1062 		ret = _regulator_get_voltage(rdev);
1063 		if (ret > 0)
1064 			count += scnprintf(buf + count, len - count,
1065 					   "at %d mV ", ret / 1000);
1066 	}
1067 
1068 	if (constraints->uV_offset)
1069 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1070 				   constraints->uV_offset / 1000);
1071 
1072 	if (constraints->min_uA && constraints->max_uA) {
1073 		if (constraints->min_uA == constraints->max_uA)
1074 			count += scnprintf(buf + count, len - count, "%d mA ",
1075 					   constraints->min_uA / 1000);
1076 		else
1077 			count += scnprintf(buf + count, len - count,
1078 					   "%d <--> %d mA ",
1079 					   constraints->min_uA / 1000,
1080 					   constraints->max_uA / 1000);
1081 	}
1082 
1083 	if (!constraints->min_uA ||
1084 	    constraints->min_uA != constraints->max_uA) {
1085 		ret = _regulator_get_current_limit(rdev);
1086 		if (ret > 0)
1087 			count += scnprintf(buf + count, len - count,
1088 					   "at %d mA ", ret / 1000);
1089 	}
1090 
1091 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092 		count += scnprintf(buf + count, len - count, "fast ");
1093 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094 		count += scnprintf(buf + count, len - count, "normal ");
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096 		count += scnprintf(buf + count, len - count, "idle ");
1097 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098 		count += scnprintf(buf + count, len - count, "standby");
1099 
1100 	if (!count)
1101 		scnprintf(buf, len, "no parameters");
1102 
1103 	rdev_dbg(rdev, "%s\n", buf);
1104 
1105 	if ((constraints->min_uV != constraints->max_uV) &&
1106 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107 		rdev_warn(rdev,
1108 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 }
1110 
1111 static int machine_constraints_voltage(struct regulator_dev *rdev,
1112 	struct regulation_constraints *constraints)
1113 {
1114 	const struct regulator_ops *ops = rdev->desc->ops;
1115 	int ret;
1116 
1117 	/* do we need to apply the constraint voltage */
1118 	if (rdev->constraints->apply_uV &&
1119 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1120 		int target_min, target_max;
1121 		int current_uV = _regulator_get_voltage(rdev);
1122 
1123 		if (current_uV == -ENOTRECOVERABLE) {
1124 			/* This regulator can't be read and must be initialized */
1125 			rdev_info(rdev, "Setting %d-%duV\n",
1126 				  rdev->constraints->min_uV,
1127 				  rdev->constraints->max_uV);
1128 			_regulator_do_set_voltage(rdev,
1129 						  rdev->constraints->min_uV,
1130 						  rdev->constraints->max_uV);
1131 			current_uV = _regulator_get_voltage(rdev);
1132 		}
1133 
1134 		if (current_uV < 0) {
1135 			rdev_err(rdev,
1136 				 "failed to get the current voltage(%d)\n",
1137 				 current_uV);
1138 			return current_uV;
1139 		}
1140 
1141 		/*
1142 		 * If we're below the minimum voltage move up to the
1143 		 * minimum voltage, if we're above the maximum voltage
1144 		 * then move down to the maximum.
1145 		 */
1146 		target_min = current_uV;
1147 		target_max = current_uV;
1148 
1149 		if (current_uV < rdev->constraints->min_uV) {
1150 			target_min = rdev->constraints->min_uV;
1151 			target_max = rdev->constraints->min_uV;
1152 		}
1153 
1154 		if (current_uV > rdev->constraints->max_uV) {
1155 			target_min = rdev->constraints->max_uV;
1156 			target_max = rdev->constraints->max_uV;
1157 		}
1158 
1159 		if (target_min != current_uV || target_max != current_uV) {
1160 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1161 				  current_uV, target_min, target_max);
1162 			ret = _regulator_do_set_voltage(
1163 				rdev, target_min, target_max);
1164 			if (ret < 0) {
1165 				rdev_err(rdev,
1166 					"failed to apply %d-%duV constraint(%d)\n",
1167 					target_min, target_max, ret);
1168 				return ret;
1169 			}
1170 		}
1171 	}
1172 
1173 	/* constrain machine-level voltage specs to fit
1174 	 * the actual range supported by this regulator.
1175 	 */
1176 	if (ops->list_voltage && rdev->desc->n_voltages) {
1177 		int	count = rdev->desc->n_voltages;
1178 		int	i;
1179 		int	min_uV = INT_MAX;
1180 		int	max_uV = INT_MIN;
1181 		int	cmin = constraints->min_uV;
1182 		int	cmax = constraints->max_uV;
1183 
1184 		/* it's safe to autoconfigure fixed-voltage supplies
1185 		   and the constraints are used by list_voltage. */
1186 		if (count == 1 && !cmin) {
1187 			cmin = 1;
1188 			cmax = INT_MAX;
1189 			constraints->min_uV = cmin;
1190 			constraints->max_uV = cmax;
1191 		}
1192 
1193 		/* voltage constraints are optional */
1194 		if ((cmin == 0) && (cmax == 0))
1195 			return 0;
1196 
1197 		/* else require explicit machine-level constraints */
1198 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199 			rdev_err(rdev, "invalid voltage constraints\n");
1200 			return -EINVAL;
1201 		}
1202 
1203 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204 		for (i = 0; i < count; i++) {
1205 			int	value;
1206 
1207 			value = ops->list_voltage(rdev, i);
1208 			if (value <= 0)
1209 				continue;
1210 
1211 			/* maybe adjust [min_uV..max_uV] */
1212 			if (value >= cmin && value < min_uV)
1213 				min_uV = value;
1214 			if (value <= cmax && value > max_uV)
1215 				max_uV = value;
1216 		}
1217 
1218 		/* final: [min_uV..max_uV] valid iff constraints valid */
1219 		if (max_uV < min_uV) {
1220 			rdev_err(rdev,
1221 				 "unsupportable voltage constraints %u-%uuV\n",
1222 				 min_uV, max_uV);
1223 			return -EINVAL;
1224 		}
1225 
1226 		/* use regulator's subset of machine constraints */
1227 		if (constraints->min_uV < min_uV) {
1228 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1229 				 constraints->min_uV, min_uV);
1230 			constraints->min_uV = min_uV;
1231 		}
1232 		if (constraints->max_uV > max_uV) {
1233 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1234 				 constraints->max_uV, max_uV);
1235 			constraints->max_uV = max_uV;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int machine_constraints_current(struct regulator_dev *rdev,
1243 	struct regulation_constraints *constraints)
1244 {
1245 	const struct regulator_ops *ops = rdev->desc->ops;
1246 	int ret;
1247 
1248 	if (!constraints->min_uA && !constraints->max_uA)
1249 		return 0;
1250 
1251 	if (constraints->min_uA > constraints->max_uA) {
1252 		rdev_err(rdev, "Invalid current constraints\n");
1253 		return -EINVAL;
1254 	}
1255 
1256 	if (!ops->set_current_limit || !ops->get_current_limit) {
1257 		rdev_warn(rdev, "Operation of current configuration missing\n");
1258 		return 0;
1259 	}
1260 
1261 	/* Set regulator current in constraints range */
1262 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1263 			constraints->max_uA);
1264 	if (ret < 0) {
1265 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1266 		return ret;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int _regulator_do_enable(struct regulator_dev *rdev);
1273 
1274 /**
1275  * set_machine_constraints - sets regulator constraints
1276  * @rdev: regulator source
1277  * @constraints: constraints to apply
1278  *
1279  * Allows platform initialisation code to define and constrain
1280  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1281  * Constraints *must* be set by platform code in order for some
1282  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283  * set_mode.
1284  */
1285 static int set_machine_constraints(struct regulator_dev *rdev,
1286 	const struct regulation_constraints *constraints)
1287 {
1288 	int ret = 0;
1289 	const struct regulator_ops *ops = rdev->desc->ops;
1290 
1291 	if (constraints)
1292 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293 					    GFP_KERNEL);
1294 	else
1295 		rdev->constraints = kzalloc(sizeof(*constraints),
1296 					    GFP_KERNEL);
1297 	if (!rdev->constraints)
1298 		return -ENOMEM;
1299 
1300 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1301 	if (ret != 0)
1302 		return ret;
1303 
1304 	ret = machine_constraints_current(rdev, rdev->constraints);
1305 	if (ret != 0)
1306 		return ret;
1307 
1308 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1309 		ret = ops->set_input_current_limit(rdev,
1310 						   rdev->constraints->ilim_uA);
1311 		if (ret < 0) {
1312 			rdev_err(rdev, "failed to set input limit\n");
1313 			return ret;
1314 		}
1315 	}
1316 
1317 	/* do we need to setup our suspend state */
1318 	if (rdev->constraints->initial_state) {
1319 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320 		if (ret < 0) {
1321 			rdev_err(rdev, "failed to set suspend state\n");
1322 			return ret;
1323 		}
1324 	}
1325 
1326 	if (rdev->constraints->initial_mode) {
1327 		if (!ops->set_mode) {
1328 			rdev_err(rdev, "no set_mode operation\n");
1329 			return -EINVAL;
1330 		}
1331 
1332 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333 		if (ret < 0) {
1334 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335 			return ret;
1336 		}
1337 	} else if (rdev->constraints->system_load) {
1338 		/*
1339 		 * We'll only apply the initial system load if an
1340 		 * initial mode wasn't specified.
1341 		 */
1342 		regulator_lock(rdev);
1343 		drms_uA_update(rdev);
1344 		regulator_unlock(rdev);
1345 	}
1346 
1347 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348 		&& ops->set_ramp_delay) {
1349 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350 		if (ret < 0) {
1351 			rdev_err(rdev, "failed to set ramp_delay\n");
1352 			return ret;
1353 		}
1354 	}
1355 
1356 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1357 		ret = ops->set_pull_down(rdev);
1358 		if (ret < 0) {
1359 			rdev_err(rdev, "failed to set pull down\n");
1360 			return ret;
1361 		}
1362 	}
1363 
1364 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1365 		ret = ops->set_soft_start(rdev);
1366 		if (ret < 0) {
1367 			rdev_err(rdev, "failed to set soft start\n");
1368 			return ret;
1369 		}
1370 	}
1371 
1372 	if (rdev->constraints->over_current_protection
1373 		&& ops->set_over_current_protection) {
1374 		ret = ops->set_over_current_protection(rdev);
1375 		if (ret < 0) {
1376 			rdev_err(rdev, "failed to set over current protection\n");
1377 			return ret;
1378 		}
1379 	}
1380 
1381 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382 		bool ad_state = (rdev->constraints->active_discharge ==
1383 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384 
1385 		ret = ops->set_active_discharge(rdev, ad_state);
1386 		if (ret < 0) {
1387 			rdev_err(rdev, "failed to set active discharge\n");
1388 			return ret;
1389 		}
1390 	}
1391 
1392 	/* If the constraints say the regulator should be on at this point
1393 	 * and we have control then make sure it is enabled.
1394 	 */
1395 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 		if (rdev->supply) {
1397 			ret = regulator_enable(rdev->supply);
1398 			if (ret < 0) {
1399 				_regulator_put(rdev->supply);
1400 				rdev->supply = NULL;
1401 				return ret;
1402 			}
1403 		}
1404 
1405 		ret = _regulator_do_enable(rdev);
1406 		if (ret < 0 && ret != -EINVAL) {
1407 			rdev_err(rdev, "failed to enable\n");
1408 			return ret;
1409 		}
1410 		rdev->use_count++;
1411 	}
1412 
1413 	print_constraints(rdev);
1414 	return 0;
1415 }
1416 
1417 /**
1418  * set_supply - set regulator supply regulator
1419  * @rdev: regulator name
1420  * @supply_rdev: supply regulator name
1421  *
1422  * Called by platform initialisation code to set the supply regulator for this
1423  * regulator. This ensures that a regulators supply will also be enabled by the
1424  * core if it's child is enabled.
1425  */
1426 static int set_supply(struct regulator_dev *rdev,
1427 		      struct regulator_dev *supply_rdev)
1428 {
1429 	int err;
1430 
1431 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1432 
1433 	if (!try_module_get(supply_rdev->owner))
1434 		return -ENODEV;
1435 
1436 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1437 	if (rdev->supply == NULL) {
1438 		err = -ENOMEM;
1439 		return err;
1440 	}
1441 	supply_rdev->open_count++;
1442 
1443 	return 0;
1444 }
1445 
1446 /**
1447  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1448  * @rdev:         regulator source
1449  * @consumer_dev_name: dev_name() string for device supply applies to
1450  * @supply:       symbolic name for supply
1451  *
1452  * Allows platform initialisation code to map physical regulator
1453  * sources to symbolic names for supplies for use by devices.  Devices
1454  * should use these symbolic names to request regulators, avoiding the
1455  * need to provide board-specific regulator names as platform data.
1456  */
1457 static int set_consumer_device_supply(struct regulator_dev *rdev,
1458 				      const char *consumer_dev_name,
1459 				      const char *supply)
1460 {
1461 	struct regulator_map *node;
1462 	int has_dev;
1463 
1464 	if (supply == NULL)
1465 		return -EINVAL;
1466 
1467 	if (consumer_dev_name != NULL)
1468 		has_dev = 1;
1469 	else
1470 		has_dev = 0;
1471 
1472 	list_for_each_entry(node, &regulator_map_list, list) {
1473 		if (node->dev_name && consumer_dev_name) {
1474 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1475 				continue;
1476 		} else if (node->dev_name || consumer_dev_name) {
1477 			continue;
1478 		}
1479 
1480 		if (strcmp(node->supply, supply) != 0)
1481 			continue;
1482 
1483 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1484 			 consumer_dev_name,
1485 			 dev_name(&node->regulator->dev),
1486 			 node->regulator->desc->name,
1487 			 supply,
1488 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1489 		return -EBUSY;
1490 	}
1491 
1492 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1493 	if (node == NULL)
1494 		return -ENOMEM;
1495 
1496 	node->regulator = rdev;
1497 	node->supply = supply;
1498 
1499 	if (has_dev) {
1500 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1501 		if (node->dev_name == NULL) {
1502 			kfree(node);
1503 			return -ENOMEM;
1504 		}
1505 	}
1506 
1507 	list_add(&node->list, &regulator_map_list);
1508 	return 0;
1509 }
1510 
1511 static void unset_regulator_supplies(struct regulator_dev *rdev)
1512 {
1513 	struct regulator_map *node, *n;
1514 
1515 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1516 		if (rdev == node->regulator) {
1517 			list_del(&node->list);
1518 			kfree(node->dev_name);
1519 			kfree(node);
1520 		}
1521 	}
1522 }
1523 
1524 #ifdef CONFIG_DEBUG_FS
1525 static ssize_t constraint_flags_read_file(struct file *file,
1526 					  char __user *user_buf,
1527 					  size_t count, loff_t *ppos)
1528 {
1529 	const struct regulator *regulator = file->private_data;
1530 	const struct regulation_constraints *c = regulator->rdev->constraints;
1531 	char *buf;
1532 	ssize_t ret;
1533 
1534 	if (!c)
1535 		return 0;
1536 
1537 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1538 	if (!buf)
1539 		return -ENOMEM;
1540 
1541 	ret = snprintf(buf, PAGE_SIZE,
1542 			"always_on: %u\n"
1543 			"boot_on: %u\n"
1544 			"apply_uV: %u\n"
1545 			"ramp_disable: %u\n"
1546 			"soft_start: %u\n"
1547 			"pull_down: %u\n"
1548 			"over_current_protection: %u\n",
1549 			c->always_on,
1550 			c->boot_on,
1551 			c->apply_uV,
1552 			c->ramp_disable,
1553 			c->soft_start,
1554 			c->pull_down,
1555 			c->over_current_protection);
1556 
1557 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1558 	kfree(buf);
1559 
1560 	return ret;
1561 }
1562 
1563 #endif
1564 
1565 static const struct file_operations constraint_flags_fops = {
1566 #ifdef CONFIG_DEBUG_FS
1567 	.open = simple_open,
1568 	.read = constraint_flags_read_file,
1569 	.llseek = default_llseek,
1570 #endif
1571 };
1572 
1573 #define REG_STR_SIZE	64
1574 
1575 static struct regulator *create_regulator(struct regulator_dev *rdev,
1576 					  struct device *dev,
1577 					  const char *supply_name)
1578 {
1579 	struct regulator *regulator;
1580 	char buf[REG_STR_SIZE];
1581 	int err, size;
1582 
1583 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1584 	if (regulator == NULL)
1585 		return NULL;
1586 
1587 	regulator_lock(rdev);
1588 	regulator->rdev = rdev;
1589 	list_add(&regulator->list, &rdev->consumer_list);
1590 
1591 	if (dev) {
1592 		regulator->dev = dev;
1593 
1594 		/* Add a link to the device sysfs entry */
1595 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1596 				dev->kobj.name, supply_name);
1597 		if (size >= REG_STR_SIZE)
1598 			goto overflow_err;
1599 
1600 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1601 		if (regulator->supply_name == NULL)
1602 			goto overflow_err;
1603 
1604 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1605 					buf);
1606 		if (err) {
1607 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1608 				  dev->kobj.name, err);
1609 			/* non-fatal */
1610 		}
1611 	} else {
1612 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1613 		if (regulator->supply_name == NULL)
1614 			goto overflow_err;
1615 	}
1616 
1617 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1618 						rdev->debugfs);
1619 	if (!regulator->debugfs) {
1620 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1621 	} else {
1622 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1623 				   &regulator->uA_load);
1624 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1625 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1626 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1627 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1628 		debugfs_create_file("constraint_flags", 0444,
1629 				    regulator->debugfs, regulator,
1630 				    &constraint_flags_fops);
1631 	}
1632 
1633 	/*
1634 	 * Check now if the regulator is an always on regulator - if
1635 	 * it is then we don't need to do nearly so much work for
1636 	 * enable/disable calls.
1637 	 */
1638 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1639 	    _regulator_is_enabled(rdev))
1640 		regulator->always_on = true;
1641 
1642 	regulator_unlock(rdev);
1643 	return regulator;
1644 overflow_err:
1645 	list_del(&regulator->list);
1646 	kfree(regulator);
1647 	regulator_unlock(rdev);
1648 	return NULL;
1649 }
1650 
1651 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1652 {
1653 	if (rdev->constraints && rdev->constraints->enable_time)
1654 		return rdev->constraints->enable_time;
1655 	if (!rdev->desc->ops->enable_time)
1656 		return rdev->desc->enable_time;
1657 	return rdev->desc->ops->enable_time(rdev);
1658 }
1659 
1660 static struct regulator_supply_alias *regulator_find_supply_alias(
1661 		struct device *dev, const char *supply)
1662 {
1663 	struct regulator_supply_alias *map;
1664 
1665 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1666 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1667 			return map;
1668 
1669 	return NULL;
1670 }
1671 
1672 static void regulator_supply_alias(struct device **dev, const char **supply)
1673 {
1674 	struct regulator_supply_alias *map;
1675 
1676 	map = regulator_find_supply_alias(*dev, *supply);
1677 	if (map) {
1678 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1679 				*supply, map->alias_supply,
1680 				dev_name(map->alias_dev));
1681 		*dev = map->alias_dev;
1682 		*supply = map->alias_supply;
1683 	}
1684 }
1685 
1686 static int regulator_match(struct device *dev, const void *data)
1687 {
1688 	struct regulator_dev *r = dev_to_rdev(dev);
1689 
1690 	return strcmp(rdev_get_name(r), data) == 0;
1691 }
1692 
1693 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1694 {
1695 	struct device *dev;
1696 
1697 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1698 
1699 	return dev ? dev_to_rdev(dev) : NULL;
1700 }
1701 
1702 /**
1703  * regulator_dev_lookup - lookup a regulator device.
1704  * @dev: device for regulator "consumer".
1705  * @supply: Supply name or regulator ID.
1706  *
1707  * If successful, returns a struct regulator_dev that corresponds to the name
1708  * @supply and with the embedded struct device refcount incremented by one.
1709  * The refcount must be dropped by calling put_device().
1710  * On failure one of the following ERR-PTR-encoded values is returned:
1711  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1712  * in the future.
1713  */
1714 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1715 						  const char *supply)
1716 {
1717 	struct regulator_dev *r = NULL;
1718 	struct device_node *node;
1719 	struct regulator_map *map;
1720 	const char *devname = NULL;
1721 
1722 	regulator_supply_alias(&dev, &supply);
1723 
1724 	/* first do a dt based lookup */
1725 	if (dev && dev->of_node) {
1726 		node = of_get_regulator(dev, supply);
1727 		if (node) {
1728 			r = of_find_regulator_by_node(node);
1729 			if (r)
1730 				return r;
1731 
1732 			/*
1733 			 * We have a node, but there is no device.
1734 			 * assume it has not registered yet.
1735 			 */
1736 			return ERR_PTR(-EPROBE_DEFER);
1737 		}
1738 	}
1739 
1740 	/* if not found, try doing it non-dt way */
1741 	if (dev)
1742 		devname = dev_name(dev);
1743 
1744 	mutex_lock(&regulator_list_mutex);
1745 	list_for_each_entry(map, &regulator_map_list, list) {
1746 		/* If the mapping has a device set up it must match */
1747 		if (map->dev_name &&
1748 		    (!devname || strcmp(map->dev_name, devname)))
1749 			continue;
1750 
1751 		if (strcmp(map->supply, supply) == 0 &&
1752 		    get_device(&map->regulator->dev)) {
1753 			r = map->regulator;
1754 			break;
1755 		}
1756 	}
1757 	mutex_unlock(&regulator_list_mutex);
1758 
1759 	if (r)
1760 		return r;
1761 
1762 	r = regulator_lookup_by_name(supply);
1763 	if (r)
1764 		return r;
1765 
1766 	return ERR_PTR(-ENODEV);
1767 }
1768 
1769 static int regulator_resolve_supply(struct regulator_dev *rdev)
1770 {
1771 	struct regulator_dev *r;
1772 	struct device *dev = rdev->dev.parent;
1773 	int ret;
1774 
1775 	/* No supply to resolve? */
1776 	if (!rdev->supply_name)
1777 		return 0;
1778 
1779 	/* Supply already resolved? */
1780 	if (rdev->supply)
1781 		return 0;
1782 
1783 	r = regulator_dev_lookup(dev, rdev->supply_name);
1784 	if (IS_ERR(r)) {
1785 		ret = PTR_ERR(r);
1786 
1787 		/* Did the lookup explicitly defer for us? */
1788 		if (ret == -EPROBE_DEFER)
1789 			return ret;
1790 
1791 		if (have_full_constraints()) {
1792 			r = dummy_regulator_rdev;
1793 			get_device(&r->dev);
1794 		} else {
1795 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1796 				rdev->supply_name, rdev->desc->name);
1797 			return -EPROBE_DEFER;
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * If the supply's parent device is not the same as the
1803 	 * regulator's parent device, then ensure the parent device
1804 	 * is bound before we resolve the supply, in case the parent
1805 	 * device get probe deferred and unregisters the supply.
1806 	 */
1807 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1808 		if (!device_is_bound(r->dev.parent)) {
1809 			put_device(&r->dev);
1810 			return -EPROBE_DEFER;
1811 		}
1812 	}
1813 
1814 	/* Recursively resolve the supply of the supply */
1815 	ret = regulator_resolve_supply(r);
1816 	if (ret < 0) {
1817 		put_device(&r->dev);
1818 		return ret;
1819 	}
1820 
1821 	ret = set_supply(rdev, r);
1822 	if (ret < 0) {
1823 		put_device(&r->dev);
1824 		return ret;
1825 	}
1826 
1827 	/*
1828 	 * In set_machine_constraints() we may have turned this regulator on
1829 	 * but we couldn't propagate to the supply if it hadn't been resolved
1830 	 * yet.  Do it now.
1831 	 */
1832 	if (rdev->use_count) {
1833 		ret = regulator_enable(rdev->supply);
1834 		if (ret < 0) {
1835 			_regulator_put(rdev->supply);
1836 			rdev->supply = NULL;
1837 			return ret;
1838 		}
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 /* Internal regulator request function */
1845 struct regulator *_regulator_get(struct device *dev, const char *id,
1846 				 enum regulator_get_type get_type)
1847 {
1848 	struct regulator_dev *rdev;
1849 	struct regulator *regulator;
1850 	const char *devname = dev ? dev_name(dev) : "deviceless";
1851 	int ret;
1852 
1853 	if (get_type >= MAX_GET_TYPE) {
1854 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1855 		return ERR_PTR(-EINVAL);
1856 	}
1857 
1858 	if (id == NULL) {
1859 		pr_err("get() with no identifier\n");
1860 		return ERR_PTR(-EINVAL);
1861 	}
1862 
1863 	rdev = regulator_dev_lookup(dev, id);
1864 	if (IS_ERR(rdev)) {
1865 		ret = PTR_ERR(rdev);
1866 
1867 		/*
1868 		 * If regulator_dev_lookup() fails with error other
1869 		 * than -ENODEV our job here is done, we simply return it.
1870 		 */
1871 		if (ret != -ENODEV)
1872 			return ERR_PTR(ret);
1873 
1874 		if (!have_full_constraints()) {
1875 			dev_warn(dev,
1876 				 "incomplete constraints, dummy supplies not allowed\n");
1877 			return ERR_PTR(-ENODEV);
1878 		}
1879 
1880 		switch (get_type) {
1881 		case NORMAL_GET:
1882 			/*
1883 			 * Assume that a regulator is physically present and
1884 			 * enabled, even if it isn't hooked up, and just
1885 			 * provide a dummy.
1886 			 */
1887 			dev_warn(dev,
1888 				 "%s supply %s not found, using dummy regulator\n",
1889 				 devname, id);
1890 			rdev = dummy_regulator_rdev;
1891 			get_device(&rdev->dev);
1892 			break;
1893 
1894 		case EXCLUSIVE_GET:
1895 			dev_warn(dev,
1896 				 "dummy supplies not allowed for exclusive requests\n");
1897 			/* fall through */
1898 
1899 		default:
1900 			return ERR_PTR(-ENODEV);
1901 		}
1902 	}
1903 
1904 	if (rdev->exclusive) {
1905 		regulator = ERR_PTR(-EPERM);
1906 		put_device(&rdev->dev);
1907 		return regulator;
1908 	}
1909 
1910 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911 		regulator = ERR_PTR(-EBUSY);
1912 		put_device(&rdev->dev);
1913 		return regulator;
1914 	}
1915 
1916 	mutex_lock(&regulator_list_mutex);
1917 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918 	mutex_unlock(&regulator_list_mutex);
1919 
1920 	if (ret != 0) {
1921 		regulator = ERR_PTR(-EPROBE_DEFER);
1922 		put_device(&rdev->dev);
1923 		return regulator;
1924 	}
1925 
1926 	ret = regulator_resolve_supply(rdev);
1927 	if (ret < 0) {
1928 		regulator = ERR_PTR(ret);
1929 		put_device(&rdev->dev);
1930 		return regulator;
1931 	}
1932 
1933 	if (!try_module_get(rdev->owner)) {
1934 		regulator = ERR_PTR(-EPROBE_DEFER);
1935 		put_device(&rdev->dev);
1936 		return regulator;
1937 	}
1938 
1939 	regulator = create_regulator(rdev, dev, id);
1940 	if (regulator == NULL) {
1941 		regulator = ERR_PTR(-ENOMEM);
1942 		put_device(&rdev->dev);
1943 		module_put(rdev->owner);
1944 		return regulator;
1945 	}
1946 
1947 	rdev->open_count++;
1948 	if (get_type == EXCLUSIVE_GET) {
1949 		rdev->exclusive = 1;
1950 
1951 		ret = _regulator_is_enabled(rdev);
1952 		if (ret > 0)
1953 			rdev->use_count = 1;
1954 		else
1955 			rdev->use_count = 0;
1956 	}
1957 
1958 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959 
1960 	return regulator;
1961 }
1962 
1963 /**
1964  * regulator_get - lookup and obtain a reference to a regulator.
1965  * @dev: device for regulator "consumer"
1966  * @id: Supply name or regulator ID.
1967  *
1968  * Returns a struct regulator corresponding to the regulator producer,
1969  * or IS_ERR() condition containing errno.
1970  *
1971  * Use of supply names configured via regulator_set_device_supply() is
1972  * strongly encouraged.  It is recommended that the supply name used
1973  * should match the name used for the supply and/or the relevant
1974  * device pins in the datasheet.
1975  */
1976 struct regulator *regulator_get(struct device *dev, const char *id)
1977 {
1978 	return _regulator_get(dev, id, NORMAL_GET);
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_get);
1981 
1982 /**
1983  * regulator_get_exclusive - obtain exclusive access to a regulator.
1984  * @dev: device for regulator "consumer"
1985  * @id: Supply name or regulator ID.
1986  *
1987  * Returns a struct regulator corresponding to the regulator producer,
1988  * or IS_ERR() condition containing errno.  Other consumers will be
1989  * unable to obtain this regulator while this reference is held and the
1990  * use count for the regulator will be initialised to reflect the current
1991  * state of the regulator.
1992  *
1993  * This is intended for use by consumers which cannot tolerate shared
1994  * use of the regulator such as those which need to force the
1995  * regulator off for correct operation of the hardware they are
1996  * controlling.
1997  *
1998  * Use of supply names configured via regulator_set_device_supply() is
1999  * strongly encouraged.  It is recommended that the supply name used
2000  * should match the name used for the supply and/or the relevant
2001  * device pins in the datasheet.
2002  */
2003 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2004 {
2005 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2008 
2009 /**
2010  * regulator_get_optional - obtain optional access to a regulator.
2011  * @dev: device for regulator "consumer"
2012  * @id: Supply name or regulator ID.
2013  *
2014  * Returns a struct regulator corresponding to the regulator producer,
2015  * or IS_ERR() condition containing errno.
2016  *
2017  * This is intended for use by consumers for devices which can have
2018  * some supplies unconnected in normal use, such as some MMC devices.
2019  * It can allow the regulator core to provide stub supplies for other
2020  * supplies requested using normal regulator_get() calls without
2021  * disrupting the operation of drivers that can handle absent
2022  * supplies.
2023  *
2024  * Use of supply names configured via regulator_set_device_supply() is
2025  * strongly encouraged.  It is recommended that the supply name used
2026  * should match the name used for the supply and/or the relevant
2027  * device pins in the datasheet.
2028  */
2029 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2030 {
2031 	return _regulator_get(dev, id, OPTIONAL_GET);
2032 }
2033 EXPORT_SYMBOL_GPL(regulator_get_optional);
2034 
2035 /* regulator_list_mutex lock held by regulator_put() */
2036 static void _regulator_put(struct regulator *regulator)
2037 {
2038 	struct regulator_dev *rdev;
2039 
2040 	if (IS_ERR_OR_NULL(regulator))
2041 		return;
2042 
2043 	lockdep_assert_held_once(&regulator_list_mutex);
2044 
2045 	/* Docs say you must disable before calling regulator_put() */
2046 	WARN_ON(regulator->enable_count);
2047 
2048 	rdev = regulator->rdev;
2049 
2050 	debugfs_remove_recursive(regulator->debugfs);
2051 
2052 	if (regulator->dev) {
2053 		device_link_remove(regulator->dev, &rdev->dev);
2054 
2055 		/* remove any sysfs entries */
2056 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2057 	}
2058 
2059 	regulator_lock(rdev);
2060 	list_del(&regulator->list);
2061 
2062 	rdev->open_count--;
2063 	rdev->exclusive = 0;
2064 	put_device(&rdev->dev);
2065 	regulator_unlock(rdev);
2066 
2067 	kfree_const(regulator->supply_name);
2068 	kfree(regulator);
2069 
2070 	module_put(rdev->owner);
2071 }
2072 
2073 /**
2074  * regulator_put - "free" the regulator source
2075  * @regulator: regulator source
2076  *
2077  * Note: drivers must ensure that all regulator_enable calls made on this
2078  * regulator source are balanced by regulator_disable calls prior to calling
2079  * this function.
2080  */
2081 void regulator_put(struct regulator *regulator)
2082 {
2083 	mutex_lock(&regulator_list_mutex);
2084 	_regulator_put(regulator);
2085 	mutex_unlock(&regulator_list_mutex);
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_put);
2088 
2089 /**
2090  * regulator_register_supply_alias - Provide device alias for supply lookup
2091  *
2092  * @dev: device that will be given as the regulator "consumer"
2093  * @id: Supply name or regulator ID
2094  * @alias_dev: device that should be used to lookup the supply
2095  * @alias_id: Supply name or regulator ID that should be used to lookup the
2096  * supply
2097  *
2098  * All lookups for id on dev will instead be conducted for alias_id on
2099  * alias_dev.
2100  */
2101 int regulator_register_supply_alias(struct device *dev, const char *id,
2102 				    struct device *alias_dev,
2103 				    const char *alias_id)
2104 {
2105 	struct regulator_supply_alias *map;
2106 
2107 	map = regulator_find_supply_alias(dev, id);
2108 	if (map)
2109 		return -EEXIST;
2110 
2111 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2112 	if (!map)
2113 		return -ENOMEM;
2114 
2115 	map->src_dev = dev;
2116 	map->src_supply = id;
2117 	map->alias_dev = alias_dev;
2118 	map->alias_supply = alias_id;
2119 
2120 	list_add(&map->list, &regulator_supply_alias_list);
2121 
2122 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2123 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2124 
2125 	return 0;
2126 }
2127 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2128 
2129 /**
2130  * regulator_unregister_supply_alias - Remove device alias
2131  *
2132  * @dev: device that will be given as the regulator "consumer"
2133  * @id: Supply name or regulator ID
2134  *
2135  * Remove a lookup alias if one exists for id on dev.
2136  */
2137 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2138 {
2139 	struct regulator_supply_alias *map;
2140 
2141 	map = regulator_find_supply_alias(dev, id);
2142 	if (map) {
2143 		list_del(&map->list);
2144 		kfree(map);
2145 	}
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2148 
2149 /**
2150  * regulator_bulk_register_supply_alias - register multiple aliases
2151  *
2152  * @dev: device that will be given as the regulator "consumer"
2153  * @id: List of supply names or regulator IDs
2154  * @alias_dev: device that should be used to lookup the supply
2155  * @alias_id: List of supply names or regulator IDs that should be used to
2156  * lookup the supply
2157  * @num_id: Number of aliases to register
2158  *
2159  * @return 0 on success, an errno on failure.
2160  *
2161  * This helper function allows drivers to register several supply
2162  * aliases in one operation.  If any of the aliases cannot be
2163  * registered any aliases that were registered will be removed
2164  * before returning to the caller.
2165  */
2166 int regulator_bulk_register_supply_alias(struct device *dev,
2167 					 const char *const *id,
2168 					 struct device *alias_dev,
2169 					 const char *const *alias_id,
2170 					 int num_id)
2171 {
2172 	int i;
2173 	int ret;
2174 
2175 	for (i = 0; i < num_id; ++i) {
2176 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2177 						      alias_id[i]);
2178 		if (ret < 0)
2179 			goto err;
2180 	}
2181 
2182 	return 0;
2183 
2184 err:
2185 	dev_err(dev,
2186 		"Failed to create supply alias %s,%s -> %s,%s\n",
2187 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2188 
2189 	while (--i >= 0)
2190 		regulator_unregister_supply_alias(dev, id[i]);
2191 
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2195 
2196 /**
2197  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2198  *
2199  * @dev: device that will be given as the regulator "consumer"
2200  * @id: List of supply names or regulator IDs
2201  * @num_id: Number of aliases to unregister
2202  *
2203  * This helper function allows drivers to unregister several supply
2204  * aliases in one operation.
2205  */
2206 void regulator_bulk_unregister_supply_alias(struct device *dev,
2207 					    const char *const *id,
2208 					    int num_id)
2209 {
2210 	int i;
2211 
2212 	for (i = 0; i < num_id; ++i)
2213 		regulator_unregister_supply_alias(dev, id[i]);
2214 }
2215 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2216 
2217 
2218 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2219 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2220 				const struct regulator_config *config)
2221 {
2222 	struct regulator_enable_gpio *pin;
2223 	struct gpio_desc *gpiod;
2224 
2225 	gpiod = config->ena_gpiod;
2226 
2227 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2228 		if (pin->gpiod == gpiod) {
2229 			rdev_dbg(rdev, "GPIO is already used\n");
2230 			goto update_ena_gpio_to_rdev;
2231 		}
2232 	}
2233 
2234 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2235 	if (pin == NULL)
2236 		return -ENOMEM;
2237 
2238 	pin->gpiod = gpiod;
2239 	list_add(&pin->list, &regulator_ena_gpio_list);
2240 
2241 update_ena_gpio_to_rdev:
2242 	pin->request_count++;
2243 	rdev->ena_pin = pin;
2244 	return 0;
2245 }
2246 
2247 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2248 {
2249 	struct regulator_enable_gpio *pin, *n;
2250 
2251 	if (!rdev->ena_pin)
2252 		return;
2253 
2254 	/* Free the GPIO only in case of no use */
2255 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2256 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2257 			if (pin->request_count <= 1) {
2258 				pin->request_count = 0;
2259 				list_del(&pin->list);
2260 				kfree(pin);
2261 				rdev->ena_pin = NULL;
2262 				return;
2263 			} else {
2264 				pin->request_count--;
2265 			}
2266 		}
2267 	}
2268 }
2269 
2270 /**
2271  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2272  * @rdev: regulator_dev structure
2273  * @enable: enable GPIO at initial use?
2274  *
2275  * GPIO is enabled in case of initial use. (enable_count is 0)
2276  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2277  */
2278 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2279 {
2280 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2281 
2282 	if (!pin)
2283 		return -EINVAL;
2284 
2285 	if (enable) {
2286 		/* Enable GPIO at initial use */
2287 		if (pin->enable_count == 0)
2288 			gpiod_set_value_cansleep(pin->gpiod, 1);
2289 
2290 		pin->enable_count++;
2291 	} else {
2292 		if (pin->enable_count > 1) {
2293 			pin->enable_count--;
2294 			return 0;
2295 		}
2296 
2297 		/* Disable GPIO if not used */
2298 		if (pin->enable_count <= 1) {
2299 			gpiod_set_value_cansleep(pin->gpiod, 0);
2300 			pin->enable_count = 0;
2301 		}
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  * _regulator_enable_delay - a delay helper function
2309  * @delay: time to delay in microseconds
2310  *
2311  * Delay for the requested amount of time as per the guidelines in:
2312  *
2313  *     Documentation/timers/timers-howto.txt
2314  *
2315  * The assumption here is that regulators will never be enabled in
2316  * atomic context and therefore sleeping functions can be used.
2317  */
2318 static void _regulator_enable_delay(unsigned int delay)
2319 {
2320 	unsigned int ms = delay / 1000;
2321 	unsigned int us = delay % 1000;
2322 
2323 	if (ms > 0) {
2324 		/*
2325 		 * For small enough values, handle super-millisecond
2326 		 * delays in the usleep_range() call below.
2327 		 */
2328 		if (ms < 20)
2329 			us += ms * 1000;
2330 		else
2331 			msleep(ms);
2332 	}
2333 
2334 	/*
2335 	 * Give the scheduler some room to coalesce with any other
2336 	 * wakeup sources. For delays shorter than 10 us, don't even
2337 	 * bother setting up high-resolution timers and just busy-
2338 	 * loop.
2339 	 */
2340 	if (us >= 10)
2341 		usleep_range(us, us + 100);
2342 	else
2343 		udelay(us);
2344 }
2345 
2346 static int _regulator_do_enable(struct regulator_dev *rdev)
2347 {
2348 	int ret, delay;
2349 
2350 	/* Query before enabling in case configuration dependent.  */
2351 	ret = _regulator_get_enable_time(rdev);
2352 	if (ret >= 0) {
2353 		delay = ret;
2354 	} else {
2355 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2356 		delay = 0;
2357 	}
2358 
2359 	trace_regulator_enable(rdev_get_name(rdev));
2360 
2361 	if (rdev->desc->off_on_delay) {
2362 		/* if needed, keep a distance of off_on_delay from last time
2363 		 * this regulator was disabled.
2364 		 */
2365 		unsigned long start_jiffy = jiffies;
2366 		unsigned long intended, max_delay, remaining;
2367 
2368 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2369 		intended = rdev->last_off_jiffy + max_delay;
2370 
2371 		if (time_before(start_jiffy, intended)) {
2372 			/* calc remaining jiffies to deal with one-time
2373 			 * timer wrapping.
2374 			 * in case of multiple timer wrapping, either it can be
2375 			 * detected by out-of-range remaining, or it cannot be
2376 			 * detected and we get a penalty of
2377 			 * _regulator_enable_delay().
2378 			 */
2379 			remaining = intended - start_jiffy;
2380 			if (remaining <= max_delay)
2381 				_regulator_enable_delay(
2382 						jiffies_to_usecs(remaining));
2383 		}
2384 	}
2385 
2386 	if (rdev->ena_pin) {
2387 		if (!rdev->ena_gpio_state) {
2388 			ret = regulator_ena_gpio_ctrl(rdev, true);
2389 			if (ret < 0)
2390 				return ret;
2391 			rdev->ena_gpio_state = 1;
2392 		}
2393 	} else if (rdev->desc->ops->enable) {
2394 		ret = rdev->desc->ops->enable(rdev);
2395 		if (ret < 0)
2396 			return ret;
2397 	} else {
2398 		return -EINVAL;
2399 	}
2400 
2401 	/* Allow the regulator to ramp; it would be useful to extend
2402 	 * this for bulk operations so that the regulators can ramp
2403 	 * together.  */
2404 	trace_regulator_enable_delay(rdev_get_name(rdev));
2405 
2406 	_regulator_enable_delay(delay);
2407 
2408 	trace_regulator_enable_complete(rdev_get_name(rdev));
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  * _regulator_handle_consumer_enable - handle that a consumer enabled
2415  * @regulator: regulator source
2416  *
2417  * Some things on a regulator consumer (like the contribution towards total
2418  * load on the regulator) only have an effect when the consumer wants the
2419  * regulator enabled.  Explained in example with two consumers of the same
2420  * regulator:
2421  *   consumer A: set_load(100);       => total load = 0
2422  *   consumer A: regulator_enable();  => total load = 100
2423  *   consumer B: set_load(1000);      => total load = 100
2424  *   consumer B: regulator_enable();  => total load = 1100
2425  *   consumer A: regulator_disable(); => total_load = 1000
2426  *
2427  * This function (together with _regulator_handle_consumer_disable) is
2428  * responsible for keeping track of the refcount for a given regulator consumer
2429  * and applying / unapplying these things.
2430  *
2431  * Returns 0 upon no error; -error upon error.
2432  */
2433 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2434 {
2435 	struct regulator_dev *rdev = regulator->rdev;
2436 
2437 	lockdep_assert_held_once(&rdev->mutex.base);
2438 
2439 	regulator->enable_count++;
2440 	if (regulator->uA_load && regulator->enable_count == 1)
2441 		return drms_uA_update(rdev);
2442 
2443 	return 0;
2444 }
2445 
2446 /**
2447  * _regulator_handle_consumer_disable - handle that a consumer disabled
2448  * @regulator: regulator source
2449  *
2450  * The opposite of _regulator_handle_consumer_enable().
2451  *
2452  * Returns 0 upon no error; -error upon error.
2453  */
2454 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2455 {
2456 	struct regulator_dev *rdev = regulator->rdev;
2457 
2458 	lockdep_assert_held_once(&rdev->mutex.base);
2459 
2460 	if (!regulator->enable_count) {
2461 		rdev_err(rdev, "Underflow of regulator enable count\n");
2462 		return -EINVAL;
2463 	}
2464 
2465 	regulator->enable_count--;
2466 	if (regulator->uA_load && regulator->enable_count == 0)
2467 		return drms_uA_update(rdev);
2468 
2469 	return 0;
2470 }
2471 
2472 /* locks held by regulator_enable() */
2473 static int _regulator_enable(struct regulator *regulator)
2474 {
2475 	struct regulator_dev *rdev = regulator->rdev;
2476 	int ret;
2477 
2478 	lockdep_assert_held_once(&rdev->mutex.base);
2479 
2480 	if (rdev->use_count == 0 && rdev->supply) {
2481 		ret = _regulator_enable(rdev->supply);
2482 		if (ret < 0)
2483 			return ret;
2484 	}
2485 
2486 	/* balance only if there are regulators coupled */
2487 	if (rdev->coupling_desc.n_coupled > 1) {
2488 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2489 		if (ret < 0)
2490 			goto err_disable_supply;
2491 	}
2492 
2493 	ret = _regulator_handle_consumer_enable(regulator);
2494 	if (ret < 0)
2495 		goto err_disable_supply;
2496 
2497 	if (rdev->use_count == 0) {
2498 		/* The regulator may on if it's not switchable or left on */
2499 		ret = _regulator_is_enabled(rdev);
2500 		if (ret == -EINVAL || ret == 0) {
2501 			if (!regulator_ops_is_valid(rdev,
2502 					REGULATOR_CHANGE_STATUS)) {
2503 				ret = -EPERM;
2504 				goto err_consumer_disable;
2505 			}
2506 
2507 			ret = _regulator_do_enable(rdev);
2508 			if (ret < 0)
2509 				goto err_consumer_disable;
2510 
2511 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2512 					     NULL);
2513 		} else if (ret < 0) {
2514 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2515 			goto err_consumer_disable;
2516 		}
2517 		/* Fallthrough on positive return values - already enabled */
2518 	}
2519 
2520 	rdev->use_count++;
2521 
2522 	return 0;
2523 
2524 err_consumer_disable:
2525 	_regulator_handle_consumer_disable(regulator);
2526 
2527 err_disable_supply:
2528 	if (rdev->use_count == 0 && rdev->supply)
2529 		_regulator_disable(rdev->supply);
2530 
2531 	return ret;
2532 }
2533 
2534 /**
2535  * regulator_enable - enable regulator output
2536  * @regulator: regulator source
2537  *
2538  * Request that the regulator be enabled with the regulator output at
2539  * the predefined voltage or current value.  Calls to regulator_enable()
2540  * must be balanced with calls to regulator_disable().
2541  *
2542  * NOTE: the output value can be set by other drivers, boot loader or may be
2543  * hardwired in the regulator.
2544  */
2545 int regulator_enable(struct regulator *regulator)
2546 {
2547 	struct regulator_dev *rdev = regulator->rdev;
2548 	struct ww_acquire_ctx ww_ctx;
2549 	int ret;
2550 
2551 	regulator_lock_dependent(rdev, &ww_ctx);
2552 	ret = _regulator_enable(regulator);
2553 	regulator_unlock_dependent(rdev, &ww_ctx);
2554 
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL_GPL(regulator_enable);
2558 
2559 static int _regulator_do_disable(struct regulator_dev *rdev)
2560 {
2561 	int ret;
2562 
2563 	trace_regulator_disable(rdev_get_name(rdev));
2564 
2565 	if (rdev->ena_pin) {
2566 		if (rdev->ena_gpio_state) {
2567 			ret = regulator_ena_gpio_ctrl(rdev, false);
2568 			if (ret < 0)
2569 				return ret;
2570 			rdev->ena_gpio_state = 0;
2571 		}
2572 
2573 	} else if (rdev->desc->ops->disable) {
2574 		ret = rdev->desc->ops->disable(rdev);
2575 		if (ret != 0)
2576 			return ret;
2577 	}
2578 
2579 	/* cares about last_off_jiffy only if off_on_delay is required by
2580 	 * device.
2581 	 */
2582 	if (rdev->desc->off_on_delay)
2583 		rdev->last_off_jiffy = jiffies;
2584 
2585 	trace_regulator_disable_complete(rdev_get_name(rdev));
2586 
2587 	return 0;
2588 }
2589 
2590 /* locks held by regulator_disable() */
2591 static int _regulator_disable(struct regulator *regulator)
2592 {
2593 	struct regulator_dev *rdev = regulator->rdev;
2594 	int ret = 0;
2595 
2596 	lockdep_assert_held_once(&rdev->mutex.base);
2597 
2598 	if (WARN(rdev->use_count <= 0,
2599 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2600 		return -EIO;
2601 
2602 	/* are we the last user and permitted to disable ? */
2603 	if (rdev->use_count == 1 &&
2604 	    (rdev->constraints && !rdev->constraints->always_on)) {
2605 
2606 		/* we are last user */
2607 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2608 			ret = _notifier_call_chain(rdev,
2609 						   REGULATOR_EVENT_PRE_DISABLE,
2610 						   NULL);
2611 			if (ret & NOTIFY_STOP_MASK)
2612 				return -EINVAL;
2613 
2614 			ret = _regulator_do_disable(rdev);
2615 			if (ret < 0) {
2616 				rdev_err(rdev, "failed to disable\n");
2617 				_notifier_call_chain(rdev,
2618 						REGULATOR_EVENT_ABORT_DISABLE,
2619 						NULL);
2620 				return ret;
2621 			}
2622 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2623 					NULL);
2624 		}
2625 
2626 		rdev->use_count = 0;
2627 	} else if (rdev->use_count > 1) {
2628 		rdev->use_count--;
2629 	}
2630 
2631 	if (ret == 0)
2632 		ret = _regulator_handle_consumer_disable(regulator);
2633 
2634 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2635 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2636 
2637 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2638 		ret = _regulator_disable(rdev->supply);
2639 
2640 	return ret;
2641 }
2642 
2643 /**
2644  * regulator_disable - disable regulator output
2645  * @regulator: regulator source
2646  *
2647  * Disable the regulator output voltage or current.  Calls to
2648  * regulator_enable() must be balanced with calls to
2649  * regulator_disable().
2650  *
2651  * NOTE: this will only disable the regulator output if no other consumer
2652  * devices have it enabled, the regulator device supports disabling and
2653  * machine constraints permit this operation.
2654  */
2655 int regulator_disable(struct regulator *regulator)
2656 {
2657 	struct regulator_dev *rdev = regulator->rdev;
2658 	struct ww_acquire_ctx ww_ctx;
2659 	int ret;
2660 
2661 	regulator_lock_dependent(rdev, &ww_ctx);
2662 	ret = _regulator_disable(regulator);
2663 	regulator_unlock_dependent(rdev, &ww_ctx);
2664 
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(regulator_disable);
2668 
2669 /* locks held by regulator_force_disable() */
2670 static int _regulator_force_disable(struct regulator_dev *rdev)
2671 {
2672 	int ret = 0;
2673 
2674 	lockdep_assert_held_once(&rdev->mutex.base);
2675 
2676 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2677 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2678 	if (ret & NOTIFY_STOP_MASK)
2679 		return -EINVAL;
2680 
2681 	ret = _regulator_do_disable(rdev);
2682 	if (ret < 0) {
2683 		rdev_err(rdev, "failed to force disable\n");
2684 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2685 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2686 		return ret;
2687 	}
2688 
2689 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2690 			REGULATOR_EVENT_DISABLE, NULL);
2691 
2692 	return 0;
2693 }
2694 
2695 /**
2696  * regulator_force_disable - force disable regulator output
2697  * @regulator: regulator source
2698  *
2699  * Forcibly disable the regulator output voltage or current.
2700  * NOTE: this *will* disable the regulator output even if other consumer
2701  * devices have it enabled. This should be used for situations when device
2702  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2703  */
2704 int regulator_force_disable(struct regulator *regulator)
2705 {
2706 	struct regulator_dev *rdev = regulator->rdev;
2707 	struct ww_acquire_ctx ww_ctx;
2708 	int ret;
2709 
2710 	regulator_lock_dependent(rdev, &ww_ctx);
2711 
2712 	ret = _regulator_force_disable(regulator->rdev);
2713 
2714 	if (rdev->coupling_desc.n_coupled > 1)
2715 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2716 
2717 	if (regulator->uA_load) {
2718 		regulator->uA_load = 0;
2719 		ret = drms_uA_update(rdev);
2720 	}
2721 
2722 	if (rdev->use_count != 0 && rdev->supply)
2723 		_regulator_disable(rdev->supply);
2724 
2725 	regulator_unlock_dependent(rdev, &ww_ctx);
2726 
2727 	return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_force_disable);
2730 
2731 static void regulator_disable_work(struct work_struct *work)
2732 {
2733 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2734 						  disable_work.work);
2735 	struct ww_acquire_ctx ww_ctx;
2736 	int count, i, ret;
2737 	struct regulator *regulator;
2738 	int total_count = 0;
2739 
2740 	regulator_lock_dependent(rdev, &ww_ctx);
2741 
2742 	/*
2743 	 * Workqueue functions queue the new work instance while the previous
2744 	 * work instance is being processed. Cancel the queued work instance
2745 	 * as the work instance under processing does the job of the queued
2746 	 * work instance.
2747 	 */
2748 	cancel_delayed_work(&rdev->disable_work);
2749 
2750 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2751 		count = regulator->deferred_disables;
2752 
2753 		if (!count)
2754 			continue;
2755 
2756 		total_count += count;
2757 		regulator->deferred_disables = 0;
2758 
2759 		for (i = 0; i < count; i++) {
2760 			ret = _regulator_disable(regulator);
2761 			if (ret != 0)
2762 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2763 		}
2764 	}
2765 	WARN_ON(!total_count);
2766 
2767 	if (rdev->coupling_desc.n_coupled > 1)
2768 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769 
2770 	regulator_unlock_dependent(rdev, &ww_ctx);
2771 }
2772 
2773 /**
2774  * regulator_disable_deferred - disable regulator output with delay
2775  * @regulator: regulator source
2776  * @ms: milliseconds until the regulator is disabled
2777  *
2778  * Execute regulator_disable() on the regulator after a delay.  This
2779  * is intended for use with devices that require some time to quiesce.
2780  *
2781  * NOTE: this will only disable the regulator output if no other consumer
2782  * devices have it enabled, the regulator device supports disabling and
2783  * machine constraints permit this operation.
2784  */
2785 int regulator_disable_deferred(struct regulator *regulator, int ms)
2786 {
2787 	struct regulator_dev *rdev = regulator->rdev;
2788 
2789 	if (!ms)
2790 		return regulator_disable(regulator);
2791 
2792 	regulator_lock(rdev);
2793 	regulator->deferred_disables++;
2794 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2795 			 msecs_to_jiffies(ms));
2796 	regulator_unlock(rdev);
2797 
2798 	return 0;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2801 
2802 static int _regulator_is_enabled(struct regulator_dev *rdev)
2803 {
2804 	/* A GPIO control always takes precedence */
2805 	if (rdev->ena_pin)
2806 		return rdev->ena_gpio_state;
2807 
2808 	/* If we don't know then assume that the regulator is always on */
2809 	if (!rdev->desc->ops->is_enabled)
2810 		return 1;
2811 
2812 	return rdev->desc->ops->is_enabled(rdev);
2813 }
2814 
2815 static int _regulator_list_voltage(struct regulator_dev *rdev,
2816 				   unsigned selector, int lock)
2817 {
2818 	const struct regulator_ops *ops = rdev->desc->ops;
2819 	int ret;
2820 
2821 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2822 		return rdev->desc->fixed_uV;
2823 
2824 	if (ops->list_voltage) {
2825 		if (selector >= rdev->desc->n_voltages)
2826 			return -EINVAL;
2827 		if (lock)
2828 			regulator_lock(rdev);
2829 		ret = ops->list_voltage(rdev, selector);
2830 		if (lock)
2831 			regulator_unlock(rdev);
2832 	} else if (rdev->is_switch && rdev->supply) {
2833 		ret = _regulator_list_voltage(rdev->supply->rdev,
2834 					      selector, lock);
2835 	} else {
2836 		return -EINVAL;
2837 	}
2838 
2839 	if (ret > 0) {
2840 		if (ret < rdev->constraints->min_uV)
2841 			ret = 0;
2842 		else if (ret > rdev->constraints->max_uV)
2843 			ret = 0;
2844 	}
2845 
2846 	return ret;
2847 }
2848 
2849 /**
2850  * regulator_is_enabled - is the regulator output enabled
2851  * @regulator: regulator source
2852  *
2853  * Returns positive if the regulator driver backing the source/client
2854  * has requested that the device be enabled, zero if it hasn't, else a
2855  * negative errno code.
2856  *
2857  * Note that the device backing this regulator handle can have multiple
2858  * users, so it might be enabled even if regulator_enable() was never
2859  * called for this particular source.
2860  */
2861 int regulator_is_enabled(struct regulator *regulator)
2862 {
2863 	int ret;
2864 
2865 	if (regulator->always_on)
2866 		return 1;
2867 
2868 	regulator_lock(regulator->rdev);
2869 	ret = _regulator_is_enabled(regulator->rdev);
2870 	regulator_unlock(regulator->rdev);
2871 
2872 	return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2875 
2876 /**
2877  * regulator_count_voltages - count regulator_list_voltage() selectors
2878  * @regulator: regulator source
2879  *
2880  * Returns number of selectors, or negative errno.  Selectors are
2881  * numbered starting at zero, and typically correspond to bitfields
2882  * in hardware registers.
2883  */
2884 int regulator_count_voltages(struct regulator *regulator)
2885 {
2886 	struct regulator_dev	*rdev = regulator->rdev;
2887 
2888 	if (rdev->desc->n_voltages)
2889 		return rdev->desc->n_voltages;
2890 
2891 	if (!rdev->is_switch || !rdev->supply)
2892 		return -EINVAL;
2893 
2894 	return regulator_count_voltages(rdev->supply);
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2897 
2898 /**
2899  * regulator_list_voltage - enumerate supported voltages
2900  * @regulator: regulator source
2901  * @selector: identify voltage to list
2902  * Context: can sleep
2903  *
2904  * Returns a voltage that can be passed to @regulator_set_voltage(),
2905  * zero if this selector code can't be used on this system, or a
2906  * negative errno.
2907  */
2908 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2909 {
2910 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2911 }
2912 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2913 
2914 /**
2915  * regulator_get_regmap - get the regulator's register map
2916  * @regulator: regulator source
2917  *
2918  * Returns the register map for the given regulator, or an ERR_PTR value
2919  * if the regulator doesn't use regmap.
2920  */
2921 struct regmap *regulator_get_regmap(struct regulator *regulator)
2922 {
2923 	struct regmap *map = regulator->rdev->regmap;
2924 
2925 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2926 }
2927 
2928 /**
2929  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2930  * @regulator: regulator source
2931  * @vsel_reg: voltage selector register, output parameter
2932  * @vsel_mask: mask for voltage selector bitfield, output parameter
2933  *
2934  * Returns the hardware register offset and bitmask used for setting the
2935  * regulator voltage. This might be useful when configuring voltage-scaling
2936  * hardware or firmware that can make I2C requests behind the kernel's back,
2937  * for example.
2938  *
2939  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2940  * and 0 is returned, otherwise a negative errno is returned.
2941  */
2942 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2943 					 unsigned *vsel_reg,
2944 					 unsigned *vsel_mask)
2945 {
2946 	struct regulator_dev *rdev = regulator->rdev;
2947 	const struct regulator_ops *ops = rdev->desc->ops;
2948 
2949 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2950 		return -EOPNOTSUPP;
2951 
2952 	*vsel_reg = rdev->desc->vsel_reg;
2953 	*vsel_mask = rdev->desc->vsel_mask;
2954 
2955 	 return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2958 
2959 /**
2960  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2961  * @regulator: regulator source
2962  * @selector: identify voltage to list
2963  *
2964  * Converts the selector to a hardware-specific voltage selector that can be
2965  * directly written to the regulator registers. The address of the voltage
2966  * register can be determined by calling @regulator_get_hardware_vsel_register.
2967  *
2968  * On error a negative errno is returned.
2969  */
2970 int regulator_list_hardware_vsel(struct regulator *regulator,
2971 				 unsigned selector)
2972 {
2973 	struct regulator_dev *rdev = regulator->rdev;
2974 	const struct regulator_ops *ops = rdev->desc->ops;
2975 
2976 	if (selector >= rdev->desc->n_voltages)
2977 		return -EINVAL;
2978 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2979 		return -EOPNOTSUPP;
2980 
2981 	return selector;
2982 }
2983 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2984 
2985 /**
2986  * regulator_get_linear_step - return the voltage step size between VSEL values
2987  * @regulator: regulator source
2988  *
2989  * Returns the voltage step size between VSEL values for linear
2990  * regulators, or return 0 if the regulator isn't a linear regulator.
2991  */
2992 unsigned int regulator_get_linear_step(struct regulator *regulator)
2993 {
2994 	struct regulator_dev *rdev = regulator->rdev;
2995 
2996 	return rdev->desc->uV_step;
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2999 
3000 /**
3001  * regulator_is_supported_voltage - check if a voltage range can be supported
3002  *
3003  * @regulator: Regulator to check.
3004  * @min_uV: Minimum required voltage in uV.
3005  * @max_uV: Maximum required voltage in uV.
3006  *
3007  * Returns a boolean or a negative error code.
3008  */
3009 int regulator_is_supported_voltage(struct regulator *regulator,
3010 				   int min_uV, int max_uV)
3011 {
3012 	struct regulator_dev *rdev = regulator->rdev;
3013 	int i, voltages, ret;
3014 
3015 	/* If we can't change voltage check the current voltage */
3016 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3017 		ret = regulator_get_voltage(regulator);
3018 		if (ret >= 0)
3019 			return min_uV <= ret && ret <= max_uV;
3020 		else
3021 			return ret;
3022 	}
3023 
3024 	/* Any voltage within constrains range is fine? */
3025 	if (rdev->desc->continuous_voltage_range)
3026 		return min_uV >= rdev->constraints->min_uV &&
3027 				max_uV <= rdev->constraints->max_uV;
3028 
3029 	ret = regulator_count_voltages(regulator);
3030 	if (ret < 0)
3031 		return ret;
3032 	voltages = ret;
3033 
3034 	for (i = 0; i < voltages; i++) {
3035 		ret = regulator_list_voltage(regulator, i);
3036 
3037 		if (ret >= min_uV && ret <= max_uV)
3038 			return 1;
3039 	}
3040 
3041 	return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3044 
3045 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3046 				 int max_uV)
3047 {
3048 	const struct regulator_desc *desc = rdev->desc;
3049 
3050 	if (desc->ops->map_voltage)
3051 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3052 
3053 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3054 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3055 
3056 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3057 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3058 
3059 	if (desc->ops->list_voltage ==
3060 		regulator_list_voltage_pickable_linear_range)
3061 		return regulator_map_voltage_pickable_linear_range(rdev,
3062 							min_uV, max_uV);
3063 
3064 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3065 }
3066 
3067 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3068 				       int min_uV, int max_uV,
3069 				       unsigned *selector)
3070 {
3071 	struct pre_voltage_change_data data;
3072 	int ret;
3073 
3074 	data.old_uV = _regulator_get_voltage(rdev);
3075 	data.min_uV = min_uV;
3076 	data.max_uV = max_uV;
3077 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3078 				   &data);
3079 	if (ret & NOTIFY_STOP_MASK)
3080 		return -EINVAL;
3081 
3082 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3083 	if (ret >= 0)
3084 		return ret;
3085 
3086 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3087 			     (void *)data.old_uV);
3088 
3089 	return ret;
3090 }
3091 
3092 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3093 					   int uV, unsigned selector)
3094 {
3095 	struct pre_voltage_change_data data;
3096 	int ret;
3097 
3098 	data.old_uV = _regulator_get_voltage(rdev);
3099 	data.min_uV = uV;
3100 	data.max_uV = uV;
3101 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3102 				   &data);
3103 	if (ret & NOTIFY_STOP_MASK)
3104 		return -EINVAL;
3105 
3106 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3107 	if (ret >= 0)
3108 		return ret;
3109 
3110 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3111 			     (void *)data.old_uV);
3112 
3113 	return ret;
3114 }
3115 
3116 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3117 				       int old_uV, int new_uV)
3118 {
3119 	unsigned int ramp_delay = 0;
3120 
3121 	if (rdev->constraints->ramp_delay)
3122 		ramp_delay = rdev->constraints->ramp_delay;
3123 	else if (rdev->desc->ramp_delay)
3124 		ramp_delay = rdev->desc->ramp_delay;
3125 	else if (rdev->constraints->settling_time)
3126 		return rdev->constraints->settling_time;
3127 	else if (rdev->constraints->settling_time_up &&
3128 		 (new_uV > old_uV))
3129 		return rdev->constraints->settling_time_up;
3130 	else if (rdev->constraints->settling_time_down &&
3131 		 (new_uV < old_uV))
3132 		return rdev->constraints->settling_time_down;
3133 
3134 	if (ramp_delay == 0) {
3135 		rdev_dbg(rdev, "ramp_delay not set\n");
3136 		return 0;
3137 	}
3138 
3139 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3140 }
3141 
3142 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3143 				     int min_uV, int max_uV)
3144 {
3145 	int ret;
3146 	int delay = 0;
3147 	int best_val = 0;
3148 	unsigned int selector;
3149 	int old_selector = -1;
3150 	const struct regulator_ops *ops = rdev->desc->ops;
3151 	int old_uV = _regulator_get_voltage(rdev);
3152 
3153 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3154 
3155 	min_uV += rdev->constraints->uV_offset;
3156 	max_uV += rdev->constraints->uV_offset;
3157 
3158 	/*
3159 	 * If we can't obtain the old selector there is not enough
3160 	 * info to call set_voltage_time_sel().
3161 	 */
3162 	if (_regulator_is_enabled(rdev) &&
3163 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3164 		old_selector = ops->get_voltage_sel(rdev);
3165 		if (old_selector < 0)
3166 			return old_selector;
3167 	}
3168 
3169 	if (ops->set_voltage) {
3170 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3171 						  &selector);
3172 
3173 		if (ret >= 0) {
3174 			if (ops->list_voltage)
3175 				best_val = ops->list_voltage(rdev,
3176 							     selector);
3177 			else
3178 				best_val = _regulator_get_voltage(rdev);
3179 		}
3180 
3181 	} else if (ops->set_voltage_sel) {
3182 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3183 		if (ret >= 0) {
3184 			best_val = ops->list_voltage(rdev, ret);
3185 			if (min_uV <= best_val && max_uV >= best_val) {
3186 				selector = ret;
3187 				if (old_selector == selector)
3188 					ret = 0;
3189 				else
3190 					ret = _regulator_call_set_voltage_sel(
3191 						rdev, best_val, selector);
3192 			} else {
3193 				ret = -EINVAL;
3194 			}
3195 		}
3196 	} else {
3197 		ret = -EINVAL;
3198 	}
3199 
3200 	if (ret)
3201 		goto out;
3202 
3203 	if (ops->set_voltage_time_sel) {
3204 		/*
3205 		 * Call set_voltage_time_sel if successfully obtained
3206 		 * old_selector
3207 		 */
3208 		if (old_selector >= 0 && old_selector != selector)
3209 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3210 							  selector);
3211 	} else {
3212 		if (old_uV != best_val) {
3213 			if (ops->set_voltage_time)
3214 				delay = ops->set_voltage_time(rdev, old_uV,
3215 							      best_val);
3216 			else
3217 				delay = _regulator_set_voltage_time(rdev,
3218 								    old_uV,
3219 								    best_val);
3220 		}
3221 	}
3222 
3223 	if (delay < 0) {
3224 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3225 		delay = 0;
3226 	}
3227 
3228 	/* Insert any necessary delays */
3229 	if (delay >= 1000) {
3230 		mdelay(delay / 1000);
3231 		udelay(delay % 1000);
3232 	} else if (delay) {
3233 		udelay(delay);
3234 	}
3235 
3236 	if (best_val >= 0) {
3237 		unsigned long data = best_val;
3238 
3239 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3240 				     (void *)data);
3241 	}
3242 
3243 out:
3244 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3245 
3246 	return ret;
3247 }
3248 
3249 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3250 				  int min_uV, int max_uV, suspend_state_t state)
3251 {
3252 	struct regulator_state *rstate;
3253 	int uV, sel;
3254 
3255 	rstate = regulator_get_suspend_state(rdev, state);
3256 	if (rstate == NULL)
3257 		return -EINVAL;
3258 
3259 	if (min_uV < rstate->min_uV)
3260 		min_uV = rstate->min_uV;
3261 	if (max_uV > rstate->max_uV)
3262 		max_uV = rstate->max_uV;
3263 
3264 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3265 	if (sel < 0)
3266 		return sel;
3267 
3268 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3269 	if (uV >= min_uV && uV <= max_uV)
3270 		rstate->uV = uV;
3271 
3272 	return 0;
3273 }
3274 
3275 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3276 					  int min_uV, int max_uV,
3277 					  suspend_state_t state)
3278 {
3279 	struct regulator_dev *rdev = regulator->rdev;
3280 	struct regulator_voltage *voltage = &regulator->voltage[state];
3281 	int ret = 0;
3282 	int old_min_uV, old_max_uV;
3283 	int current_uV;
3284 
3285 	/* If we're setting the same range as last time the change
3286 	 * should be a noop (some cpufreq implementations use the same
3287 	 * voltage for multiple frequencies, for example).
3288 	 */
3289 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3290 		goto out;
3291 
3292 	/* If we're trying to set a range that overlaps the current voltage,
3293 	 * return successfully even though the regulator does not support
3294 	 * changing the voltage.
3295 	 */
3296 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3297 		current_uV = _regulator_get_voltage(rdev);
3298 		if (min_uV <= current_uV && current_uV <= max_uV) {
3299 			voltage->min_uV = min_uV;
3300 			voltage->max_uV = max_uV;
3301 			goto out;
3302 		}
3303 	}
3304 
3305 	/* sanity check */
3306 	if (!rdev->desc->ops->set_voltage &&
3307 	    !rdev->desc->ops->set_voltage_sel) {
3308 		ret = -EINVAL;
3309 		goto out;
3310 	}
3311 
3312 	/* constraints check */
3313 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3314 	if (ret < 0)
3315 		goto out;
3316 
3317 	/* restore original values in case of error */
3318 	old_min_uV = voltage->min_uV;
3319 	old_max_uV = voltage->max_uV;
3320 	voltage->min_uV = min_uV;
3321 	voltage->max_uV = max_uV;
3322 
3323 	/* for not coupled regulators this will just set the voltage */
3324 	ret = regulator_balance_voltage(rdev, state);
3325 	if (ret < 0)
3326 		goto out2;
3327 
3328 out:
3329 	return 0;
3330 out2:
3331 	voltage->min_uV = old_min_uV;
3332 	voltage->max_uV = old_max_uV;
3333 
3334 	return ret;
3335 }
3336 
3337 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3338 				      int max_uV, suspend_state_t state)
3339 {
3340 	int best_supply_uV = 0;
3341 	int supply_change_uV = 0;
3342 	int ret;
3343 
3344 	if (rdev->supply &&
3345 	    regulator_ops_is_valid(rdev->supply->rdev,
3346 				   REGULATOR_CHANGE_VOLTAGE) &&
3347 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3348 					   rdev->desc->ops->get_voltage_sel))) {
3349 		int current_supply_uV;
3350 		int selector;
3351 
3352 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3353 		if (selector < 0) {
3354 			ret = selector;
3355 			goto out;
3356 		}
3357 
3358 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3359 		if (best_supply_uV < 0) {
3360 			ret = best_supply_uV;
3361 			goto out;
3362 		}
3363 
3364 		best_supply_uV += rdev->desc->min_dropout_uV;
3365 
3366 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3367 		if (current_supply_uV < 0) {
3368 			ret = current_supply_uV;
3369 			goto out;
3370 		}
3371 
3372 		supply_change_uV = best_supply_uV - current_supply_uV;
3373 	}
3374 
3375 	if (supply_change_uV > 0) {
3376 		ret = regulator_set_voltage_unlocked(rdev->supply,
3377 				best_supply_uV, INT_MAX, state);
3378 		if (ret) {
3379 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3380 					ret);
3381 			goto out;
3382 		}
3383 	}
3384 
3385 	if (state == PM_SUSPEND_ON)
3386 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3387 	else
3388 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3389 							max_uV, state);
3390 	if (ret < 0)
3391 		goto out;
3392 
3393 	if (supply_change_uV < 0) {
3394 		ret = regulator_set_voltage_unlocked(rdev->supply,
3395 				best_supply_uV, INT_MAX, state);
3396 		if (ret)
3397 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3398 					ret);
3399 		/* No need to fail here */
3400 		ret = 0;
3401 	}
3402 
3403 out:
3404 	return ret;
3405 }
3406 
3407 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3408 					int *current_uV, int *min_uV)
3409 {
3410 	struct regulation_constraints *constraints = rdev->constraints;
3411 
3412 	/* Limit voltage change only if necessary */
3413 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3414 		return 1;
3415 
3416 	if (*current_uV < 0) {
3417 		*current_uV = _regulator_get_voltage(rdev);
3418 
3419 		if (*current_uV < 0)
3420 			return *current_uV;
3421 	}
3422 
3423 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3424 		return 1;
3425 
3426 	/* Clamp target voltage within the given step */
3427 	if (*current_uV < *min_uV)
3428 		*min_uV = min(*current_uV + constraints->max_uV_step,
3429 			      *min_uV);
3430 	else
3431 		*min_uV = max(*current_uV - constraints->max_uV_step,
3432 			      *min_uV);
3433 
3434 	return 0;
3435 }
3436 
3437 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3438 					 int *current_uV,
3439 					 int *min_uV, int *max_uV,
3440 					 suspend_state_t state,
3441 					 int n_coupled)
3442 {
3443 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3444 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3445 	struct regulation_constraints *constraints = rdev->constraints;
3446 	int max_spread = constraints->max_spread;
3447 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3448 	int max_current_uV = 0, min_current_uV = INT_MAX;
3449 	int highest_min_uV = 0, target_uV, possible_uV;
3450 	int i, ret;
3451 	bool done;
3452 
3453 	*current_uV = -1;
3454 
3455 	/*
3456 	 * If there are no coupled regulators, simply set the voltage
3457 	 * demanded by consumers.
3458 	 */
3459 	if (n_coupled == 1) {
3460 		/*
3461 		 * If consumers don't provide any demands, set voltage
3462 		 * to min_uV
3463 		 */
3464 		desired_min_uV = constraints->min_uV;
3465 		desired_max_uV = constraints->max_uV;
3466 
3467 		ret = regulator_check_consumers(rdev,
3468 						&desired_min_uV,
3469 						&desired_max_uV, state);
3470 		if (ret < 0)
3471 			return ret;
3472 
3473 		possible_uV = desired_min_uV;
3474 		done = true;
3475 
3476 		goto finish;
3477 	}
3478 
3479 	/* Find highest min desired voltage */
3480 	for (i = 0; i < n_coupled; i++) {
3481 		int tmp_min = 0;
3482 		int tmp_max = INT_MAX;
3483 
3484 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3485 
3486 		ret = regulator_check_consumers(c_rdevs[i],
3487 						&tmp_min,
3488 						&tmp_max, state);
3489 		if (ret < 0)
3490 			return ret;
3491 
3492 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3493 		if (ret < 0)
3494 			return ret;
3495 
3496 		highest_min_uV = max(highest_min_uV, tmp_min);
3497 
3498 		if (i == 0) {
3499 			desired_min_uV = tmp_min;
3500 			desired_max_uV = tmp_max;
3501 		}
3502 	}
3503 
3504 	/*
3505 	 * Let target_uV be equal to the desired one if possible.
3506 	 * If not, set it to minimum voltage, allowed by other coupled
3507 	 * regulators.
3508 	 */
3509 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3510 
3511 	/*
3512 	 * Find min and max voltages, which currently aren't violating
3513 	 * max_spread.
3514 	 */
3515 	for (i = 1; i < n_coupled; i++) {
3516 		int tmp_act;
3517 
3518 		if (!_regulator_is_enabled(c_rdevs[i]))
3519 			continue;
3520 
3521 		tmp_act = _regulator_get_voltage(c_rdevs[i]);
3522 		if (tmp_act < 0)
3523 			return tmp_act;
3524 
3525 		min_current_uV = min(tmp_act, min_current_uV);
3526 		max_current_uV = max(tmp_act, max_current_uV);
3527 	}
3528 
3529 	/* There aren't any other regulators enabled */
3530 	if (max_current_uV == 0) {
3531 		possible_uV = target_uV;
3532 	} else {
3533 		/*
3534 		 * Correct target voltage, so as it currently isn't
3535 		 * violating max_spread
3536 		 */
3537 		possible_uV = max(target_uV, max_current_uV - max_spread);
3538 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3539 	}
3540 
3541 	if (possible_uV > desired_max_uV)
3542 		return -EINVAL;
3543 
3544 	done = (possible_uV == target_uV);
3545 	desired_min_uV = possible_uV;
3546 
3547 finish:
3548 	/* Apply max_uV_step constraint if necessary */
3549 	if (state == PM_SUSPEND_ON) {
3550 		ret = regulator_limit_voltage_step(rdev, current_uV,
3551 						   &desired_min_uV);
3552 		if (ret < 0)
3553 			return ret;
3554 
3555 		if (ret == 0)
3556 			done = false;
3557 	}
3558 
3559 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3560 	if (n_coupled > 1 && *current_uV == -1) {
3561 
3562 		if (_regulator_is_enabled(rdev)) {
3563 			ret = _regulator_get_voltage(rdev);
3564 			if (ret < 0)
3565 				return ret;
3566 
3567 			*current_uV = ret;
3568 		} else {
3569 			*current_uV = desired_min_uV;
3570 		}
3571 	}
3572 
3573 	*min_uV = desired_min_uV;
3574 	*max_uV = desired_max_uV;
3575 
3576 	return done;
3577 }
3578 
3579 static int regulator_balance_voltage(struct regulator_dev *rdev,
3580 				     suspend_state_t state)
3581 {
3582 	struct regulator_dev **c_rdevs;
3583 	struct regulator_dev *best_rdev;
3584 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3585 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3586 	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3587 	unsigned int delta, best_delta;
3588 
3589 	c_rdevs = c_desc->coupled_rdevs;
3590 	n_coupled = c_desc->n_coupled;
3591 
3592 	/*
3593 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3594 	 * other coupled regulators.
3595 	 */
3596 	if (state != PM_SUSPEND_ON)
3597 		n_coupled = 1;
3598 
3599 	if (c_desc->n_resolved < n_coupled) {
3600 		rdev_err(rdev, "Not all coupled regulators registered\n");
3601 		return -EPERM;
3602 	}
3603 
3604 	for (i = 0; i < n_coupled; i++)
3605 		c_rdev_done[i] = false;
3606 
3607 	/*
3608 	 * Find the best possible voltage change on each loop. Leave the loop
3609 	 * if there isn't any possible change.
3610 	 */
3611 	do {
3612 		best_c_rdev_done = false;
3613 		best_delta = 0;
3614 		best_min_uV = 0;
3615 		best_max_uV = 0;
3616 		best_c_rdev = 0;
3617 		best_rdev = NULL;
3618 
3619 		/*
3620 		 * Find highest difference between optimal voltage
3621 		 * and current voltage.
3622 		 */
3623 		for (i = 0; i < n_coupled; i++) {
3624 			/*
3625 			 * optimal_uV is the best voltage that can be set for
3626 			 * i-th regulator at the moment without violating
3627 			 * max_spread constraint in order to balance
3628 			 * the coupled voltages.
3629 			 */
3630 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3631 
3632 			if (c_rdev_done[i])
3633 				continue;
3634 
3635 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3636 							    &current_uV,
3637 							    &optimal_uV,
3638 							    &optimal_max_uV,
3639 							    state, n_coupled);
3640 			if (ret < 0)
3641 				goto out;
3642 
3643 			delta = abs(optimal_uV - current_uV);
3644 
3645 			if (delta && best_delta <= delta) {
3646 				best_c_rdev_done = ret;
3647 				best_delta = delta;
3648 				best_rdev = c_rdevs[i];
3649 				best_min_uV = optimal_uV;
3650 				best_max_uV = optimal_max_uV;
3651 				best_c_rdev = i;
3652 			}
3653 		}
3654 
3655 		/* Nothing to change, return successfully */
3656 		if (!best_rdev) {
3657 			ret = 0;
3658 			goto out;
3659 		}
3660 
3661 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3662 						 best_max_uV, state);
3663 
3664 		if (ret < 0)
3665 			goto out;
3666 
3667 		c_rdev_done[best_c_rdev] = best_c_rdev_done;
3668 
3669 	} while (n_coupled > 1);
3670 
3671 out:
3672 	return ret;
3673 }
3674 
3675 /**
3676  * regulator_set_voltage - set regulator output voltage
3677  * @regulator: regulator source
3678  * @min_uV: Minimum required voltage in uV
3679  * @max_uV: Maximum acceptable voltage in uV
3680  *
3681  * Sets a voltage regulator to the desired output voltage. This can be set
3682  * during any regulator state. IOW, regulator can be disabled or enabled.
3683  *
3684  * If the regulator is enabled then the voltage will change to the new value
3685  * immediately otherwise if the regulator is disabled the regulator will
3686  * output at the new voltage when enabled.
3687  *
3688  * NOTE: If the regulator is shared between several devices then the lowest
3689  * request voltage that meets the system constraints will be used.
3690  * Regulator system constraints must be set for this regulator before
3691  * calling this function otherwise this call will fail.
3692  */
3693 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3694 {
3695 	struct ww_acquire_ctx ww_ctx;
3696 	int ret;
3697 
3698 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3699 
3700 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3701 					     PM_SUSPEND_ON);
3702 
3703 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3704 
3705 	return ret;
3706 }
3707 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3708 
3709 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3710 					   suspend_state_t state, bool en)
3711 {
3712 	struct regulator_state *rstate;
3713 
3714 	rstate = regulator_get_suspend_state(rdev, state);
3715 	if (rstate == NULL)
3716 		return -EINVAL;
3717 
3718 	if (!rstate->changeable)
3719 		return -EPERM;
3720 
3721 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3722 
3723 	return 0;
3724 }
3725 
3726 int regulator_suspend_enable(struct regulator_dev *rdev,
3727 				    suspend_state_t state)
3728 {
3729 	return regulator_suspend_toggle(rdev, state, true);
3730 }
3731 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3732 
3733 int regulator_suspend_disable(struct regulator_dev *rdev,
3734 				     suspend_state_t state)
3735 {
3736 	struct regulator *regulator;
3737 	struct regulator_voltage *voltage;
3738 
3739 	/*
3740 	 * if any consumer wants this regulator device keeping on in
3741 	 * suspend states, don't set it as disabled.
3742 	 */
3743 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3744 		voltage = &regulator->voltage[state];
3745 		if (voltage->min_uV || voltage->max_uV)
3746 			return 0;
3747 	}
3748 
3749 	return regulator_suspend_toggle(rdev, state, false);
3750 }
3751 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3752 
3753 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3754 					  int min_uV, int max_uV,
3755 					  suspend_state_t state)
3756 {
3757 	struct regulator_dev *rdev = regulator->rdev;
3758 	struct regulator_state *rstate;
3759 
3760 	rstate = regulator_get_suspend_state(rdev, state);
3761 	if (rstate == NULL)
3762 		return -EINVAL;
3763 
3764 	if (rstate->min_uV == rstate->max_uV) {
3765 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3766 		return -EPERM;
3767 	}
3768 
3769 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3770 }
3771 
3772 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3773 				  int max_uV, suspend_state_t state)
3774 {
3775 	struct ww_acquire_ctx ww_ctx;
3776 	int ret;
3777 
3778 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3779 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3780 		return -EINVAL;
3781 
3782 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3783 
3784 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3785 					     max_uV, state);
3786 
3787 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3788 
3789 	return ret;
3790 }
3791 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3792 
3793 /**
3794  * regulator_set_voltage_time - get raise/fall time
3795  * @regulator: regulator source
3796  * @old_uV: starting voltage in microvolts
3797  * @new_uV: target voltage in microvolts
3798  *
3799  * Provided with the starting and ending voltage, this function attempts to
3800  * calculate the time in microseconds required to rise or fall to this new
3801  * voltage.
3802  */
3803 int regulator_set_voltage_time(struct regulator *regulator,
3804 			       int old_uV, int new_uV)
3805 {
3806 	struct regulator_dev *rdev = regulator->rdev;
3807 	const struct regulator_ops *ops = rdev->desc->ops;
3808 	int old_sel = -1;
3809 	int new_sel = -1;
3810 	int voltage;
3811 	int i;
3812 
3813 	if (ops->set_voltage_time)
3814 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3815 	else if (!ops->set_voltage_time_sel)
3816 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3817 
3818 	/* Currently requires operations to do this */
3819 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3820 		return -EINVAL;
3821 
3822 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3823 		/* We only look for exact voltage matches here */
3824 		voltage = regulator_list_voltage(regulator, i);
3825 		if (voltage < 0)
3826 			return -EINVAL;
3827 		if (voltage == 0)
3828 			continue;
3829 		if (voltage == old_uV)
3830 			old_sel = i;
3831 		if (voltage == new_uV)
3832 			new_sel = i;
3833 	}
3834 
3835 	if (old_sel < 0 || new_sel < 0)
3836 		return -EINVAL;
3837 
3838 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3839 }
3840 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3841 
3842 /**
3843  * regulator_set_voltage_time_sel - get raise/fall time
3844  * @rdev: regulator source device
3845  * @old_selector: selector for starting voltage
3846  * @new_selector: selector for target voltage
3847  *
3848  * Provided with the starting and target voltage selectors, this function
3849  * returns time in microseconds required to rise or fall to this new voltage
3850  *
3851  * Drivers providing ramp_delay in regulation_constraints can use this as their
3852  * set_voltage_time_sel() operation.
3853  */
3854 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3855 				   unsigned int old_selector,
3856 				   unsigned int new_selector)
3857 {
3858 	int old_volt, new_volt;
3859 
3860 	/* sanity check */
3861 	if (!rdev->desc->ops->list_voltage)
3862 		return -EINVAL;
3863 
3864 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3865 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3866 
3867 	if (rdev->desc->ops->set_voltage_time)
3868 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3869 							 new_volt);
3870 	else
3871 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3872 }
3873 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3874 
3875 /**
3876  * regulator_sync_voltage - re-apply last regulator output voltage
3877  * @regulator: regulator source
3878  *
3879  * Re-apply the last configured voltage.  This is intended to be used
3880  * where some external control source the consumer is cooperating with
3881  * has caused the configured voltage to change.
3882  */
3883 int regulator_sync_voltage(struct regulator *regulator)
3884 {
3885 	struct regulator_dev *rdev = regulator->rdev;
3886 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3887 	int ret, min_uV, max_uV;
3888 
3889 	regulator_lock(rdev);
3890 
3891 	if (!rdev->desc->ops->set_voltage &&
3892 	    !rdev->desc->ops->set_voltage_sel) {
3893 		ret = -EINVAL;
3894 		goto out;
3895 	}
3896 
3897 	/* This is only going to work if we've had a voltage configured. */
3898 	if (!voltage->min_uV && !voltage->max_uV) {
3899 		ret = -EINVAL;
3900 		goto out;
3901 	}
3902 
3903 	min_uV = voltage->min_uV;
3904 	max_uV = voltage->max_uV;
3905 
3906 	/* This should be a paranoia check... */
3907 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3908 	if (ret < 0)
3909 		goto out;
3910 
3911 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3912 	if (ret < 0)
3913 		goto out;
3914 
3915 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3916 
3917 out:
3918 	regulator_unlock(rdev);
3919 	return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3922 
3923 static int _regulator_get_voltage(struct regulator_dev *rdev)
3924 {
3925 	int sel, ret;
3926 	bool bypassed;
3927 
3928 	if (rdev->desc->ops->get_bypass) {
3929 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3930 		if (ret < 0)
3931 			return ret;
3932 		if (bypassed) {
3933 			/* if bypassed the regulator must have a supply */
3934 			if (!rdev->supply) {
3935 				rdev_err(rdev,
3936 					 "bypassed regulator has no supply!\n");
3937 				return -EPROBE_DEFER;
3938 			}
3939 
3940 			return _regulator_get_voltage(rdev->supply->rdev);
3941 		}
3942 	}
3943 
3944 	if (rdev->desc->ops->get_voltage_sel) {
3945 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3946 		if (sel < 0)
3947 			return sel;
3948 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3949 	} else if (rdev->desc->ops->get_voltage) {
3950 		ret = rdev->desc->ops->get_voltage(rdev);
3951 	} else if (rdev->desc->ops->list_voltage) {
3952 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3953 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3954 		ret = rdev->desc->fixed_uV;
3955 	} else if (rdev->supply) {
3956 		ret = _regulator_get_voltage(rdev->supply->rdev);
3957 	} else {
3958 		return -EINVAL;
3959 	}
3960 
3961 	if (ret < 0)
3962 		return ret;
3963 	return ret - rdev->constraints->uV_offset;
3964 }
3965 
3966 /**
3967  * regulator_get_voltage - get regulator output voltage
3968  * @regulator: regulator source
3969  *
3970  * This returns the current regulator voltage in uV.
3971  *
3972  * NOTE: If the regulator is disabled it will return the voltage value. This
3973  * function should not be used to determine regulator state.
3974  */
3975 int regulator_get_voltage(struct regulator *regulator)
3976 {
3977 	struct ww_acquire_ctx ww_ctx;
3978 	int ret;
3979 
3980 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3981 	ret = _regulator_get_voltage(regulator->rdev);
3982 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3983 
3984 	return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3987 
3988 /**
3989  * regulator_set_current_limit - set regulator output current limit
3990  * @regulator: regulator source
3991  * @min_uA: Minimum supported current in uA
3992  * @max_uA: Maximum supported current in uA
3993  *
3994  * Sets current sink to the desired output current. This can be set during
3995  * any regulator state. IOW, regulator can be disabled or enabled.
3996  *
3997  * If the regulator is enabled then the current will change to the new value
3998  * immediately otherwise if the regulator is disabled the regulator will
3999  * output at the new current when enabled.
4000  *
4001  * NOTE: Regulator system constraints must be set for this regulator before
4002  * calling this function otherwise this call will fail.
4003  */
4004 int regulator_set_current_limit(struct regulator *regulator,
4005 			       int min_uA, int max_uA)
4006 {
4007 	struct regulator_dev *rdev = regulator->rdev;
4008 	int ret;
4009 
4010 	regulator_lock(rdev);
4011 
4012 	/* sanity check */
4013 	if (!rdev->desc->ops->set_current_limit) {
4014 		ret = -EINVAL;
4015 		goto out;
4016 	}
4017 
4018 	/* constraints check */
4019 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4020 	if (ret < 0)
4021 		goto out;
4022 
4023 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4024 out:
4025 	regulator_unlock(rdev);
4026 	return ret;
4027 }
4028 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4029 
4030 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4031 {
4032 	/* sanity check */
4033 	if (!rdev->desc->ops->get_current_limit)
4034 		return -EINVAL;
4035 
4036 	return rdev->desc->ops->get_current_limit(rdev);
4037 }
4038 
4039 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4040 {
4041 	int ret;
4042 
4043 	regulator_lock(rdev);
4044 	ret = _regulator_get_current_limit_unlocked(rdev);
4045 	regulator_unlock(rdev);
4046 
4047 	return ret;
4048 }
4049 
4050 /**
4051  * regulator_get_current_limit - get regulator output current
4052  * @regulator: regulator source
4053  *
4054  * This returns the current supplied by the specified current sink in uA.
4055  *
4056  * NOTE: If the regulator is disabled it will return the current value. This
4057  * function should not be used to determine regulator state.
4058  */
4059 int regulator_get_current_limit(struct regulator *regulator)
4060 {
4061 	return _regulator_get_current_limit(regulator->rdev);
4062 }
4063 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4064 
4065 /**
4066  * regulator_set_mode - set regulator operating mode
4067  * @regulator: regulator source
4068  * @mode: operating mode - one of the REGULATOR_MODE constants
4069  *
4070  * Set regulator operating mode to increase regulator efficiency or improve
4071  * regulation performance.
4072  *
4073  * NOTE: Regulator system constraints must be set for this regulator before
4074  * calling this function otherwise this call will fail.
4075  */
4076 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4077 {
4078 	struct regulator_dev *rdev = regulator->rdev;
4079 	int ret;
4080 	int regulator_curr_mode;
4081 
4082 	regulator_lock(rdev);
4083 
4084 	/* sanity check */
4085 	if (!rdev->desc->ops->set_mode) {
4086 		ret = -EINVAL;
4087 		goto out;
4088 	}
4089 
4090 	/* return if the same mode is requested */
4091 	if (rdev->desc->ops->get_mode) {
4092 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4093 		if (regulator_curr_mode == mode) {
4094 			ret = 0;
4095 			goto out;
4096 		}
4097 	}
4098 
4099 	/* constraints check */
4100 	ret = regulator_mode_constrain(rdev, &mode);
4101 	if (ret < 0)
4102 		goto out;
4103 
4104 	ret = rdev->desc->ops->set_mode(rdev, mode);
4105 out:
4106 	regulator_unlock(rdev);
4107 	return ret;
4108 }
4109 EXPORT_SYMBOL_GPL(regulator_set_mode);
4110 
4111 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4112 {
4113 	/* sanity check */
4114 	if (!rdev->desc->ops->get_mode)
4115 		return -EINVAL;
4116 
4117 	return rdev->desc->ops->get_mode(rdev);
4118 }
4119 
4120 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4121 {
4122 	int ret;
4123 
4124 	regulator_lock(rdev);
4125 	ret = _regulator_get_mode_unlocked(rdev);
4126 	regulator_unlock(rdev);
4127 
4128 	return ret;
4129 }
4130 
4131 /**
4132  * regulator_get_mode - get regulator operating mode
4133  * @regulator: regulator source
4134  *
4135  * Get the current regulator operating mode.
4136  */
4137 unsigned int regulator_get_mode(struct regulator *regulator)
4138 {
4139 	return _regulator_get_mode(regulator->rdev);
4140 }
4141 EXPORT_SYMBOL_GPL(regulator_get_mode);
4142 
4143 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4144 					unsigned int *flags)
4145 {
4146 	int ret;
4147 
4148 	regulator_lock(rdev);
4149 
4150 	/* sanity check */
4151 	if (!rdev->desc->ops->get_error_flags) {
4152 		ret = -EINVAL;
4153 		goto out;
4154 	}
4155 
4156 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4157 out:
4158 	regulator_unlock(rdev);
4159 	return ret;
4160 }
4161 
4162 /**
4163  * regulator_get_error_flags - get regulator error information
4164  * @regulator: regulator source
4165  * @flags: pointer to store error flags
4166  *
4167  * Get the current regulator error information.
4168  */
4169 int regulator_get_error_flags(struct regulator *regulator,
4170 				unsigned int *flags)
4171 {
4172 	return _regulator_get_error_flags(regulator->rdev, flags);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4175 
4176 /**
4177  * regulator_set_load - set regulator load
4178  * @regulator: regulator source
4179  * @uA_load: load current
4180  *
4181  * Notifies the regulator core of a new device load. This is then used by
4182  * DRMS (if enabled by constraints) to set the most efficient regulator
4183  * operating mode for the new regulator loading.
4184  *
4185  * Consumer devices notify their supply regulator of the maximum power
4186  * they will require (can be taken from device datasheet in the power
4187  * consumption tables) when they change operational status and hence power
4188  * state. Examples of operational state changes that can affect power
4189  * consumption are :-
4190  *
4191  *    o Device is opened / closed.
4192  *    o Device I/O is about to begin or has just finished.
4193  *    o Device is idling in between work.
4194  *
4195  * This information is also exported via sysfs to userspace.
4196  *
4197  * DRMS will sum the total requested load on the regulator and change
4198  * to the most efficient operating mode if platform constraints allow.
4199  *
4200  * NOTE: when a regulator consumer requests to have a regulator
4201  * disabled then any load that consumer requested no longer counts
4202  * toward the total requested load.  If the regulator is re-enabled
4203  * then the previously requested load will start counting again.
4204  *
4205  * If a regulator is an always-on regulator then an individual consumer's
4206  * load will still be removed if that consumer is fully disabled.
4207  *
4208  * On error a negative errno is returned.
4209  */
4210 int regulator_set_load(struct regulator *regulator, int uA_load)
4211 {
4212 	struct regulator_dev *rdev = regulator->rdev;
4213 	int old_uA_load;
4214 	int ret = 0;
4215 
4216 	regulator_lock(rdev);
4217 	old_uA_load = regulator->uA_load;
4218 	regulator->uA_load = uA_load;
4219 	if (regulator->enable_count && old_uA_load != uA_load) {
4220 		ret = drms_uA_update(rdev);
4221 		if (ret < 0)
4222 			regulator->uA_load = old_uA_load;
4223 	}
4224 	regulator_unlock(rdev);
4225 
4226 	return ret;
4227 }
4228 EXPORT_SYMBOL_GPL(regulator_set_load);
4229 
4230 /**
4231  * regulator_allow_bypass - allow the regulator to go into bypass mode
4232  *
4233  * @regulator: Regulator to configure
4234  * @enable: enable or disable bypass mode
4235  *
4236  * Allow the regulator to go into bypass mode if all other consumers
4237  * for the regulator also enable bypass mode and the machine
4238  * constraints allow this.  Bypass mode means that the regulator is
4239  * simply passing the input directly to the output with no regulation.
4240  */
4241 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4242 {
4243 	struct regulator_dev *rdev = regulator->rdev;
4244 	int ret = 0;
4245 
4246 	if (!rdev->desc->ops->set_bypass)
4247 		return 0;
4248 
4249 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4250 		return 0;
4251 
4252 	regulator_lock(rdev);
4253 
4254 	if (enable && !regulator->bypass) {
4255 		rdev->bypass_count++;
4256 
4257 		if (rdev->bypass_count == rdev->open_count) {
4258 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4259 			if (ret != 0)
4260 				rdev->bypass_count--;
4261 		}
4262 
4263 	} else if (!enable && regulator->bypass) {
4264 		rdev->bypass_count--;
4265 
4266 		if (rdev->bypass_count != rdev->open_count) {
4267 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4268 			if (ret != 0)
4269 				rdev->bypass_count++;
4270 		}
4271 	}
4272 
4273 	if (ret == 0)
4274 		regulator->bypass = enable;
4275 
4276 	regulator_unlock(rdev);
4277 
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4281 
4282 /**
4283  * regulator_register_notifier - register regulator event notifier
4284  * @regulator: regulator source
4285  * @nb: notifier block
4286  *
4287  * Register notifier block to receive regulator events.
4288  */
4289 int regulator_register_notifier(struct regulator *regulator,
4290 			      struct notifier_block *nb)
4291 {
4292 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4293 						nb);
4294 }
4295 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4296 
4297 /**
4298  * regulator_unregister_notifier - unregister regulator event notifier
4299  * @regulator: regulator source
4300  * @nb: notifier block
4301  *
4302  * Unregister regulator event notifier block.
4303  */
4304 int regulator_unregister_notifier(struct regulator *regulator,
4305 				struct notifier_block *nb)
4306 {
4307 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4308 						  nb);
4309 }
4310 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4311 
4312 /* notify regulator consumers and downstream regulator consumers.
4313  * Note mutex must be held by caller.
4314  */
4315 static int _notifier_call_chain(struct regulator_dev *rdev,
4316 				  unsigned long event, void *data)
4317 {
4318 	/* call rdev chain first */
4319 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4320 }
4321 
4322 /**
4323  * regulator_bulk_get - get multiple regulator consumers
4324  *
4325  * @dev:           Device to supply
4326  * @num_consumers: Number of consumers to register
4327  * @consumers:     Configuration of consumers; clients are stored here.
4328  *
4329  * @return 0 on success, an errno on failure.
4330  *
4331  * This helper function allows drivers to get several regulator
4332  * consumers in one operation.  If any of the regulators cannot be
4333  * acquired then any regulators that were allocated will be freed
4334  * before returning to the caller.
4335  */
4336 int regulator_bulk_get(struct device *dev, int num_consumers,
4337 		       struct regulator_bulk_data *consumers)
4338 {
4339 	int i;
4340 	int ret;
4341 
4342 	for (i = 0; i < num_consumers; i++)
4343 		consumers[i].consumer = NULL;
4344 
4345 	for (i = 0; i < num_consumers; i++) {
4346 		consumers[i].consumer = regulator_get(dev,
4347 						      consumers[i].supply);
4348 		if (IS_ERR(consumers[i].consumer)) {
4349 			ret = PTR_ERR(consumers[i].consumer);
4350 			dev_err(dev, "Failed to get supply '%s': %d\n",
4351 				consumers[i].supply, ret);
4352 			consumers[i].consumer = NULL;
4353 			goto err;
4354 		}
4355 	}
4356 
4357 	return 0;
4358 
4359 err:
4360 	while (--i >= 0)
4361 		regulator_put(consumers[i].consumer);
4362 
4363 	return ret;
4364 }
4365 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4366 
4367 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4368 {
4369 	struct regulator_bulk_data *bulk = data;
4370 
4371 	bulk->ret = regulator_enable(bulk->consumer);
4372 }
4373 
4374 /**
4375  * regulator_bulk_enable - enable multiple regulator consumers
4376  *
4377  * @num_consumers: Number of consumers
4378  * @consumers:     Consumer data; clients are stored here.
4379  * @return         0 on success, an errno on failure
4380  *
4381  * This convenience API allows consumers to enable multiple regulator
4382  * clients in a single API call.  If any consumers cannot be enabled
4383  * then any others that were enabled will be disabled again prior to
4384  * return.
4385  */
4386 int regulator_bulk_enable(int num_consumers,
4387 			  struct regulator_bulk_data *consumers)
4388 {
4389 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4390 	int i;
4391 	int ret = 0;
4392 
4393 	for (i = 0; i < num_consumers; i++) {
4394 		async_schedule_domain(regulator_bulk_enable_async,
4395 				      &consumers[i], &async_domain);
4396 	}
4397 
4398 	async_synchronize_full_domain(&async_domain);
4399 
4400 	/* If any consumer failed we need to unwind any that succeeded */
4401 	for (i = 0; i < num_consumers; i++) {
4402 		if (consumers[i].ret != 0) {
4403 			ret = consumers[i].ret;
4404 			goto err;
4405 		}
4406 	}
4407 
4408 	return 0;
4409 
4410 err:
4411 	for (i = 0; i < num_consumers; i++) {
4412 		if (consumers[i].ret < 0)
4413 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4414 			       consumers[i].ret);
4415 		else
4416 			regulator_disable(consumers[i].consumer);
4417 	}
4418 
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4422 
4423 /**
4424  * regulator_bulk_disable - disable multiple regulator consumers
4425  *
4426  * @num_consumers: Number of consumers
4427  * @consumers:     Consumer data; clients are stored here.
4428  * @return         0 on success, an errno on failure
4429  *
4430  * This convenience API allows consumers to disable multiple regulator
4431  * clients in a single API call.  If any consumers cannot be disabled
4432  * then any others that were disabled will be enabled again prior to
4433  * return.
4434  */
4435 int regulator_bulk_disable(int num_consumers,
4436 			   struct regulator_bulk_data *consumers)
4437 {
4438 	int i;
4439 	int ret, r;
4440 
4441 	for (i = num_consumers - 1; i >= 0; --i) {
4442 		ret = regulator_disable(consumers[i].consumer);
4443 		if (ret != 0)
4444 			goto err;
4445 	}
4446 
4447 	return 0;
4448 
4449 err:
4450 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4451 	for (++i; i < num_consumers; ++i) {
4452 		r = regulator_enable(consumers[i].consumer);
4453 		if (r != 0)
4454 			pr_err("Failed to re-enable %s: %d\n",
4455 			       consumers[i].supply, r);
4456 	}
4457 
4458 	return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4461 
4462 /**
4463  * regulator_bulk_force_disable - force disable multiple regulator consumers
4464  *
4465  * @num_consumers: Number of consumers
4466  * @consumers:     Consumer data; clients are stored here.
4467  * @return         0 on success, an errno on failure
4468  *
4469  * This convenience API allows consumers to forcibly disable multiple regulator
4470  * clients in a single API call.
4471  * NOTE: This should be used for situations when device damage will
4472  * likely occur if the regulators are not disabled (e.g. over temp).
4473  * Although regulator_force_disable function call for some consumers can
4474  * return error numbers, the function is called for all consumers.
4475  */
4476 int regulator_bulk_force_disable(int num_consumers,
4477 			   struct regulator_bulk_data *consumers)
4478 {
4479 	int i;
4480 	int ret = 0;
4481 
4482 	for (i = 0; i < num_consumers; i++) {
4483 		consumers[i].ret =
4484 			    regulator_force_disable(consumers[i].consumer);
4485 
4486 		/* Store first error for reporting */
4487 		if (consumers[i].ret && !ret)
4488 			ret = consumers[i].ret;
4489 	}
4490 
4491 	return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4494 
4495 /**
4496  * regulator_bulk_free - free multiple regulator consumers
4497  *
4498  * @num_consumers: Number of consumers
4499  * @consumers:     Consumer data; clients are stored here.
4500  *
4501  * This convenience API allows consumers to free multiple regulator
4502  * clients in a single API call.
4503  */
4504 void regulator_bulk_free(int num_consumers,
4505 			 struct regulator_bulk_data *consumers)
4506 {
4507 	int i;
4508 
4509 	for (i = 0; i < num_consumers; i++) {
4510 		regulator_put(consumers[i].consumer);
4511 		consumers[i].consumer = NULL;
4512 	}
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4515 
4516 /**
4517  * regulator_notifier_call_chain - call regulator event notifier
4518  * @rdev: regulator source
4519  * @event: notifier block
4520  * @data: callback-specific data.
4521  *
4522  * Called by regulator drivers to notify clients a regulator event has
4523  * occurred. We also notify regulator clients downstream.
4524  * Note lock must be held by caller.
4525  */
4526 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4527 				  unsigned long event, void *data)
4528 {
4529 	lockdep_assert_held_once(&rdev->mutex.base);
4530 
4531 	_notifier_call_chain(rdev, event, data);
4532 	return NOTIFY_DONE;
4533 
4534 }
4535 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4536 
4537 /**
4538  * regulator_mode_to_status - convert a regulator mode into a status
4539  *
4540  * @mode: Mode to convert
4541  *
4542  * Convert a regulator mode into a status.
4543  */
4544 int regulator_mode_to_status(unsigned int mode)
4545 {
4546 	switch (mode) {
4547 	case REGULATOR_MODE_FAST:
4548 		return REGULATOR_STATUS_FAST;
4549 	case REGULATOR_MODE_NORMAL:
4550 		return REGULATOR_STATUS_NORMAL;
4551 	case REGULATOR_MODE_IDLE:
4552 		return REGULATOR_STATUS_IDLE;
4553 	case REGULATOR_MODE_STANDBY:
4554 		return REGULATOR_STATUS_STANDBY;
4555 	default:
4556 		return REGULATOR_STATUS_UNDEFINED;
4557 	}
4558 }
4559 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4560 
4561 static struct attribute *regulator_dev_attrs[] = {
4562 	&dev_attr_name.attr,
4563 	&dev_attr_num_users.attr,
4564 	&dev_attr_type.attr,
4565 	&dev_attr_microvolts.attr,
4566 	&dev_attr_microamps.attr,
4567 	&dev_attr_opmode.attr,
4568 	&dev_attr_state.attr,
4569 	&dev_attr_status.attr,
4570 	&dev_attr_bypass.attr,
4571 	&dev_attr_requested_microamps.attr,
4572 	&dev_attr_min_microvolts.attr,
4573 	&dev_attr_max_microvolts.attr,
4574 	&dev_attr_min_microamps.attr,
4575 	&dev_attr_max_microamps.attr,
4576 	&dev_attr_suspend_standby_state.attr,
4577 	&dev_attr_suspend_mem_state.attr,
4578 	&dev_attr_suspend_disk_state.attr,
4579 	&dev_attr_suspend_standby_microvolts.attr,
4580 	&dev_attr_suspend_mem_microvolts.attr,
4581 	&dev_attr_suspend_disk_microvolts.attr,
4582 	&dev_attr_suspend_standby_mode.attr,
4583 	&dev_attr_suspend_mem_mode.attr,
4584 	&dev_attr_suspend_disk_mode.attr,
4585 	NULL
4586 };
4587 
4588 /*
4589  * To avoid cluttering sysfs (and memory) with useless state, only
4590  * create attributes that can be meaningfully displayed.
4591  */
4592 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4593 					 struct attribute *attr, int idx)
4594 {
4595 	struct device *dev = kobj_to_dev(kobj);
4596 	struct regulator_dev *rdev = dev_to_rdev(dev);
4597 	const struct regulator_ops *ops = rdev->desc->ops;
4598 	umode_t mode = attr->mode;
4599 
4600 	/* these three are always present */
4601 	if (attr == &dev_attr_name.attr ||
4602 	    attr == &dev_attr_num_users.attr ||
4603 	    attr == &dev_attr_type.attr)
4604 		return mode;
4605 
4606 	/* some attributes need specific methods to be displayed */
4607 	if (attr == &dev_attr_microvolts.attr) {
4608 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4609 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4610 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4611 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4612 			return mode;
4613 		return 0;
4614 	}
4615 
4616 	if (attr == &dev_attr_microamps.attr)
4617 		return ops->get_current_limit ? mode : 0;
4618 
4619 	if (attr == &dev_attr_opmode.attr)
4620 		return ops->get_mode ? mode : 0;
4621 
4622 	if (attr == &dev_attr_state.attr)
4623 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4624 
4625 	if (attr == &dev_attr_status.attr)
4626 		return ops->get_status ? mode : 0;
4627 
4628 	if (attr == &dev_attr_bypass.attr)
4629 		return ops->get_bypass ? mode : 0;
4630 
4631 	/* constraints need specific supporting methods */
4632 	if (attr == &dev_attr_min_microvolts.attr ||
4633 	    attr == &dev_attr_max_microvolts.attr)
4634 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4635 
4636 	if (attr == &dev_attr_min_microamps.attr ||
4637 	    attr == &dev_attr_max_microamps.attr)
4638 		return ops->set_current_limit ? mode : 0;
4639 
4640 	if (attr == &dev_attr_suspend_standby_state.attr ||
4641 	    attr == &dev_attr_suspend_mem_state.attr ||
4642 	    attr == &dev_attr_suspend_disk_state.attr)
4643 		return mode;
4644 
4645 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4646 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4647 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4648 		return ops->set_suspend_voltage ? mode : 0;
4649 
4650 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4651 	    attr == &dev_attr_suspend_mem_mode.attr ||
4652 	    attr == &dev_attr_suspend_disk_mode.attr)
4653 		return ops->set_suspend_mode ? mode : 0;
4654 
4655 	return mode;
4656 }
4657 
4658 static const struct attribute_group regulator_dev_group = {
4659 	.attrs = regulator_dev_attrs,
4660 	.is_visible = regulator_attr_is_visible,
4661 };
4662 
4663 static const struct attribute_group *regulator_dev_groups[] = {
4664 	&regulator_dev_group,
4665 	NULL
4666 };
4667 
4668 static void regulator_dev_release(struct device *dev)
4669 {
4670 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4671 
4672 	kfree(rdev->constraints);
4673 	of_node_put(rdev->dev.of_node);
4674 	kfree(rdev);
4675 }
4676 
4677 static void rdev_init_debugfs(struct regulator_dev *rdev)
4678 {
4679 	struct device *parent = rdev->dev.parent;
4680 	const char *rname = rdev_get_name(rdev);
4681 	char name[NAME_MAX];
4682 
4683 	/* Avoid duplicate debugfs directory names */
4684 	if (parent && rname == rdev->desc->name) {
4685 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4686 			 rname);
4687 		rname = name;
4688 	}
4689 
4690 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4691 	if (!rdev->debugfs) {
4692 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4693 		return;
4694 	}
4695 
4696 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4697 			   &rdev->use_count);
4698 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4699 			   &rdev->open_count);
4700 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4701 			   &rdev->bypass_count);
4702 }
4703 
4704 static int regulator_register_resolve_supply(struct device *dev, void *data)
4705 {
4706 	struct regulator_dev *rdev = dev_to_rdev(dev);
4707 
4708 	if (regulator_resolve_supply(rdev))
4709 		rdev_dbg(rdev, "unable to resolve supply\n");
4710 
4711 	return 0;
4712 }
4713 
4714 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4715 {
4716 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4717 	int n_coupled = c_desc->n_coupled;
4718 	struct regulator_dev *c_rdev;
4719 	int i;
4720 
4721 	for (i = 1; i < n_coupled; i++) {
4722 		/* already resolved */
4723 		if (c_desc->coupled_rdevs[i])
4724 			continue;
4725 
4726 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4727 
4728 		if (!c_rdev)
4729 			continue;
4730 
4731 		regulator_lock(c_rdev);
4732 
4733 		c_desc->coupled_rdevs[i] = c_rdev;
4734 		c_desc->n_resolved++;
4735 
4736 		regulator_unlock(c_rdev);
4737 
4738 		regulator_resolve_coupling(c_rdev);
4739 	}
4740 }
4741 
4742 static void regulator_remove_coupling(struct regulator_dev *rdev)
4743 {
4744 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4745 	struct regulator_dev *__c_rdev, *c_rdev;
4746 	unsigned int __n_coupled, n_coupled;
4747 	int i, k;
4748 
4749 	n_coupled = c_desc->n_coupled;
4750 
4751 	for (i = 1; i < n_coupled; i++) {
4752 		c_rdev = c_desc->coupled_rdevs[i];
4753 
4754 		if (!c_rdev)
4755 			continue;
4756 
4757 		regulator_lock(c_rdev);
4758 
4759 		__c_desc = &c_rdev->coupling_desc;
4760 		__n_coupled = __c_desc->n_coupled;
4761 
4762 		for (k = 1; k < __n_coupled; k++) {
4763 			__c_rdev = __c_desc->coupled_rdevs[k];
4764 
4765 			if (__c_rdev == rdev) {
4766 				__c_desc->coupled_rdevs[k] = NULL;
4767 				__c_desc->n_resolved--;
4768 				break;
4769 			}
4770 		}
4771 
4772 		regulator_unlock(c_rdev);
4773 
4774 		c_desc->coupled_rdevs[i] = NULL;
4775 		c_desc->n_resolved--;
4776 	}
4777 }
4778 
4779 static int regulator_init_coupling(struct regulator_dev *rdev)
4780 {
4781 	int n_phandles;
4782 
4783 	if (!IS_ENABLED(CONFIG_OF))
4784 		n_phandles = 0;
4785 	else
4786 		n_phandles = of_get_n_coupled(rdev);
4787 
4788 	if (n_phandles + 1 > MAX_COUPLED) {
4789 		rdev_err(rdev, "too many regulators coupled\n");
4790 		return -EPERM;
4791 	}
4792 
4793 	/*
4794 	 * Every regulator should always have coupling descriptor filled with
4795 	 * at least pointer to itself.
4796 	 */
4797 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4798 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4799 	rdev->coupling_desc.n_resolved++;
4800 
4801 	/* regulator isn't coupled */
4802 	if (n_phandles == 0)
4803 		return 0;
4804 
4805 	/* regulator, which can't change its voltage, can't be coupled */
4806 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4807 		rdev_err(rdev, "voltage operation not allowed\n");
4808 		return -EPERM;
4809 	}
4810 
4811 	if (rdev->constraints->max_spread <= 0) {
4812 		rdev_err(rdev, "wrong max_spread value\n");
4813 		return -EPERM;
4814 	}
4815 
4816 	if (!of_check_coupling_data(rdev))
4817 		return -EPERM;
4818 
4819 	return 0;
4820 }
4821 
4822 /**
4823  * regulator_register - register regulator
4824  * @regulator_desc: regulator to register
4825  * @cfg: runtime configuration for regulator
4826  *
4827  * Called by regulator drivers to register a regulator.
4828  * Returns a valid pointer to struct regulator_dev on success
4829  * or an ERR_PTR() on error.
4830  */
4831 struct regulator_dev *
4832 regulator_register(const struct regulator_desc *regulator_desc,
4833 		   const struct regulator_config *cfg)
4834 {
4835 	const struct regulation_constraints *constraints = NULL;
4836 	const struct regulator_init_data *init_data;
4837 	struct regulator_config *config = NULL;
4838 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4839 	struct regulator_dev *rdev;
4840 	bool dangling_cfg_gpiod = false;
4841 	bool dangling_of_gpiod = false;
4842 	struct device *dev;
4843 	int ret, i;
4844 
4845 	if (cfg == NULL)
4846 		return ERR_PTR(-EINVAL);
4847 	if (cfg->ena_gpiod)
4848 		dangling_cfg_gpiod = true;
4849 	if (regulator_desc == NULL) {
4850 		ret = -EINVAL;
4851 		goto rinse;
4852 	}
4853 
4854 	dev = cfg->dev;
4855 	WARN_ON(!dev);
4856 
4857 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4858 		ret = -EINVAL;
4859 		goto rinse;
4860 	}
4861 
4862 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4863 	    regulator_desc->type != REGULATOR_CURRENT) {
4864 		ret = -EINVAL;
4865 		goto rinse;
4866 	}
4867 
4868 	/* Only one of each should be implemented */
4869 	WARN_ON(regulator_desc->ops->get_voltage &&
4870 		regulator_desc->ops->get_voltage_sel);
4871 	WARN_ON(regulator_desc->ops->set_voltage &&
4872 		regulator_desc->ops->set_voltage_sel);
4873 
4874 	/* If we're using selectors we must implement list_voltage. */
4875 	if (regulator_desc->ops->get_voltage_sel &&
4876 	    !regulator_desc->ops->list_voltage) {
4877 		ret = -EINVAL;
4878 		goto rinse;
4879 	}
4880 	if (regulator_desc->ops->set_voltage_sel &&
4881 	    !regulator_desc->ops->list_voltage) {
4882 		ret = -EINVAL;
4883 		goto rinse;
4884 	}
4885 
4886 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4887 	if (rdev == NULL) {
4888 		ret = -ENOMEM;
4889 		goto rinse;
4890 	}
4891 
4892 	/*
4893 	 * Duplicate the config so the driver could override it after
4894 	 * parsing init data.
4895 	 */
4896 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4897 	if (config == NULL) {
4898 		kfree(rdev);
4899 		ret = -ENOMEM;
4900 		goto rinse;
4901 	}
4902 
4903 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4904 					       &rdev->dev.of_node);
4905 	/*
4906 	 * We need to keep track of any GPIO descriptor coming from the
4907 	 * device tree until we have handled it over to the core. If the
4908 	 * config that was passed in to this function DOES NOT contain
4909 	 * a descriptor, and the config after this call DOES contain
4910 	 * a descriptor, we definitely got one from parsing the device
4911 	 * tree.
4912 	 */
4913 	if (!cfg->ena_gpiod && config->ena_gpiod)
4914 		dangling_of_gpiod = true;
4915 	if (!init_data) {
4916 		init_data = config->init_data;
4917 		rdev->dev.of_node = of_node_get(config->of_node);
4918 	}
4919 
4920 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4921 	rdev->reg_data = config->driver_data;
4922 	rdev->owner = regulator_desc->owner;
4923 	rdev->desc = regulator_desc;
4924 	if (config->regmap)
4925 		rdev->regmap = config->regmap;
4926 	else if (dev_get_regmap(dev, NULL))
4927 		rdev->regmap = dev_get_regmap(dev, NULL);
4928 	else if (dev->parent)
4929 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4930 	INIT_LIST_HEAD(&rdev->consumer_list);
4931 	INIT_LIST_HEAD(&rdev->list);
4932 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4933 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4934 
4935 	/* preform any regulator specific init */
4936 	if (init_data && init_data->regulator_init) {
4937 		ret = init_data->regulator_init(rdev->reg_data);
4938 		if (ret < 0)
4939 			goto clean;
4940 	}
4941 
4942 	if (config->ena_gpiod) {
4943 		mutex_lock(&regulator_list_mutex);
4944 		ret = regulator_ena_gpio_request(rdev, config);
4945 		mutex_unlock(&regulator_list_mutex);
4946 		if (ret != 0) {
4947 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
4948 				 ret);
4949 			goto clean;
4950 		}
4951 		/* The regulator core took over the GPIO descriptor */
4952 		dangling_cfg_gpiod = false;
4953 		dangling_of_gpiod = false;
4954 	}
4955 
4956 	/* register with sysfs */
4957 	rdev->dev.class = &regulator_class;
4958 	rdev->dev.parent = dev;
4959 	dev_set_name(&rdev->dev, "regulator.%lu",
4960 		    (unsigned long) atomic_inc_return(&regulator_no));
4961 
4962 	/* set regulator constraints */
4963 	if (init_data)
4964 		constraints = &init_data->constraints;
4965 
4966 	if (init_data && init_data->supply_regulator)
4967 		rdev->supply_name = init_data->supply_regulator;
4968 	else if (regulator_desc->supply_name)
4969 		rdev->supply_name = regulator_desc->supply_name;
4970 
4971 	/*
4972 	 * Attempt to resolve the regulator supply, if specified,
4973 	 * but don't return an error if we fail because we will try
4974 	 * to resolve it again later as more regulators are added.
4975 	 */
4976 	if (regulator_resolve_supply(rdev))
4977 		rdev_dbg(rdev, "unable to resolve supply\n");
4978 
4979 	ret = set_machine_constraints(rdev, constraints);
4980 	if (ret < 0)
4981 		goto wash;
4982 
4983 	ret = regulator_init_coupling(rdev);
4984 	if (ret < 0)
4985 		goto wash;
4986 
4987 	/* add consumers devices */
4988 	if (init_data) {
4989 		mutex_lock(&regulator_list_mutex);
4990 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4991 			ret = set_consumer_device_supply(rdev,
4992 				init_data->consumer_supplies[i].dev_name,
4993 				init_data->consumer_supplies[i].supply);
4994 			if (ret < 0) {
4995 				mutex_unlock(&regulator_list_mutex);
4996 				dev_err(dev, "Failed to set supply %s\n",
4997 					init_data->consumer_supplies[i].supply);
4998 				goto unset_supplies;
4999 			}
5000 		}
5001 		mutex_unlock(&regulator_list_mutex);
5002 	}
5003 
5004 	if (!rdev->desc->ops->get_voltage &&
5005 	    !rdev->desc->ops->list_voltage &&
5006 	    !rdev->desc->fixed_uV)
5007 		rdev->is_switch = true;
5008 
5009 	dev_set_drvdata(&rdev->dev, rdev);
5010 	ret = device_register(&rdev->dev);
5011 	if (ret != 0) {
5012 		put_device(&rdev->dev);
5013 		goto unset_supplies;
5014 	}
5015 
5016 	rdev_init_debugfs(rdev);
5017 
5018 	/* try to resolve regulators coupling since a new one was registered */
5019 	mutex_lock(&regulator_list_mutex);
5020 	regulator_resolve_coupling(rdev);
5021 	mutex_unlock(&regulator_list_mutex);
5022 
5023 	/* try to resolve regulators supply since a new one was registered */
5024 	class_for_each_device(&regulator_class, NULL, NULL,
5025 			      regulator_register_resolve_supply);
5026 	kfree(config);
5027 	return rdev;
5028 
5029 unset_supplies:
5030 	mutex_lock(&regulator_list_mutex);
5031 	unset_regulator_supplies(rdev);
5032 	mutex_unlock(&regulator_list_mutex);
5033 wash:
5034 	kfree(rdev->constraints);
5035 	mutex_lock(&regulator_list_mutex);
5036 	regulator_ena_gpio_free(rdev);
5037 	mutex_unlock(&regulator_list_mutex);
5038 clean:
5039 	if (dangling_of_gpiod)
5040 		gpiod_put(config->ena_gpiod);
5041 	kfree(rdev);
5042 	kfree(config);
5043 rinse:
5044 	if (dangling_cfg_gpiod)
5045 		gpiod_put(cfg->ena_gpiod);
5046 	return ERR_PTR(ret);
5047 }
5048 EXPORT_SYMBOL_GPL(regulator_register);
5049 
5050 /**
5051  * regulator_unregister - unregister regulator
5052  * @rdev: regulator to unregister
5053  *
5054  * Called by regulator drivers to unregister a regulator.
5055  */
5056 void regulator_unregister(struct regulator_dev *rdev)
5057 {
5058 	if (rdev == NULL)
5059 		return;
5060 
5061 	if (rdev->supply) {
5062 		while (rdev->use_count--)
5063 			regulator_disable(rdev->supply);
5064 		regulator_put(rdev->supply);
5065 	}
5066 
5067 	mutex_lock(&regulator_list_mutex);
5068 
5069 	debugfs_remove_recursive(rdev->debugfs);
5070 	flush_work(&rdev->disable_work.work);
5071 	WARN_ON(rdev->open_count);
5072 	regulator_remove_coupling(rdev);
5073 	unset_regulator_supplies(rdev);
5074 	list_del(&rdev->list);
5075 	regulator_ena_gpio_free(rdev);
5076 	device_unregister(&rdev->dev);
5077 
5078 	mutex_unlock(&regulator_list_mutex);
5079 }
5080 EXPORT_SYMBOL_GPL(regulator_unregister);
5081 
5082 #ifdef CONFIG_SUSPEND
5083 /**
5084  * regulator_suspend - prepare regulators for system wide suspend
5085  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5086  *
5087  * Configure each regulator with it's suspend operating parameters for state.
5088  */
5089 static int regulator_suspend(struct device *dev)
5090 {
5091 	struct regulator_dev *rdev = dev_to_rdev(dev);
5092 	suspend_state_t state = pm_suspend_target_state;
5093 	int ret;
5094 
5095 	regulator_lock(rdev);
5096 	ret = suspend_set_state(rdev, state);
5097 	regulator_unlock(rdev);
5098 
5099 	return ret;
5100 }
5101 
5102 static int regulator_resume(struct device *dev)
5103 {
5104 	suspend_state_t state = pm_suspend_target_state;
5105 	struct regulator_dev *rdev = dev_to_rdev(dev);
5106 	struct regulator_state *rstate;
5107 	int ret = 0;
5108 
5109 	rstate = regulator_get_suspend_state(rdev, state);
5110 	if (rstate == NULL)
5111 		return 0;
5112 
5113 	regulator_lock(rdev);
5114 
5115 	if (rdev->desc->ops->resume &&
5116 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5117 	     rstate->enabled == DISABLE_IN_SUSPEND))
5118 		ret = rdev->desc->ops->resume(rdev);
5119 
5120 	regulator_unlock(rdev);
5121 
5122 	return ret;
5123 }
5124 #else /* !CONFIG_SUSPEND */
5125 
5126 #define regulator_suspend	NULL
5127 #define regulator_resume	NULL
5128 
5129 #endif /* !CONFIG_SUSPEND */
5130 
5131 #ifdef CONFIG_PM
5132 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5133 	.suspend	= regulator_suspend,
5134 	.resume		= regulator_resume,
5135 };
5136 #endif
5137 
5138 struct class regulator_class = {
5139 	.name = "regulator",
5140 	.dev_release = regulator_dev_release,
5141 	.dev_groups = regulator_dev_groups,
5142 #ifdef CONFIG_PM
5143 	.pm = &regulator_pm_ops,
5144 #endif
5145 };
5146 /**
5147  * regulator_has_full_constraints - the system has fully specified constraints
5148  *
5149  * Calling this function will cause the regulator API to disable all
5150  * regulators which have a zero use count and don't have an always_on
5151  * constraint in a late_initcall.
5152  *
5153  * The intention is that this will become the default behaviour in a
5154  * future kernel release so users are encouraged to use this facility
5155  * now.
5156  */
5157 void regulator_has_full_constraints(void)
5158 {
5159 	has_full_constraints = 1;
5160 }
5161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5162 
5163 /**
5164  * rdev_get_drvdata - get rdev regulator driver data
5165  * @rdev: regulator
5166  *
5167  * Get rdev regulator driver private data. This call can be used in the
5168  * regulator driver context.
5169  */
5170 void *rdev_get_drvdata(struct regulator_dev *rdev)
5171 {
5172 	return rdev->reg_data;
5173 }
5174 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5175 
5176 /**
5177  * regulator_get_drvdata - get regulator driver data
5178  * @regulator: regulator
5179  *
5180  * Get regulator driver private data. This call can be used in the consumer
5181  * driver context when non API regulator specific functions need to be called.
5182  */
5183 void *regulator_get_drvdata(struct regulator *regulator)
5184 {
5185 	return regulator->rdev->reg_data;
5186 }
5187 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5188 
5189 /**
5190  * regulator_set_drvdata - set regulator driver data
5191  * @regulator: regulator
5192  * @data: data
5193  */
5194 void regulator_set_drvdata(struct regulator *regulator, void *data)
5195 {
5196 	regulator->rdev->reg_data = data;
5197 }
5198 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5199 
5200 /**
5201  * regulator_get_id - get regulator ID
5202  * @rdev: regulator
5203  */
5204 int rdev_get_id(struct regulator_dev *rdev)
5205 {
5206 	return rdev->desc->id;
5207 }
5208 EXPORT_SYMBOL_GPL(rdev_get_id);
5209 
5210 struct device *rdev_get_dev(struct regulator_dev *rdev)
5211 {
5212 	return &rdev->dev;
5213 }
5214 EXPORT_SYMBOL_GPL(rdev_get_dev);
5215 
5216 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5217 {
5218 	return rdev->regmap;
5219 }
5220 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5221 
5222 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5223 {
5224 	return reg_init_data->driver_data;
5225 }
5226 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5227 
5228 #ifdef CONFIG_DEBUG_FS
5229 static int supply_map_show(struct seq_file *sf, void *data)
5230 {
5231 	struct regulator_map *map;
5232 
5233 	list_for_each_entry(map, &regulator_map_list, list) {
5234 		seq_printf(sf, "%s -> %s.%s\n",
5235 				rdev_get_name(map->regulator), map->dev_name,
5236 				map->supply);
5237 	}
5238 
5239 	return 0;
5240 }
5241 DEFINE_SHOW_ATTRIBUTE(supply_map);
5242 
5243 struct summary_data {
5244 	struct seq_file *s;
5245 	struct regulator_dev *parent;
5246 	int level;
5247 };
5248 
5249 static void regulator_summary_show_subtree(struct seq_file *s,
5250 					   struct regulator_dev *rdev,
5251 					   int level);
5252 
5253 static int regulator_summary_show_children(struct device *dev, void *data)
5254 {
5255 	struct regulator_dev *rdev = dev_to_rdev(dev);
5256 	struct summary_data *summary_data = data;
5257 
5258 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5259 		regulator_summary_show_subtree(summary_data->s, rdev,
5260 					       summary_data->level + 1);
5261 
5262 	return 0;
5263 }
5264 
5265 static void regulator_summary_show_subtree(struct seq_file *s,
5266 					   struct regulator_dev *rdev,
5267 					   int level)
5268 {
5269 	struct regulation_constraints *c;
5270 	struct regulator *consumer;
5271 	struct summary_data summary_data;
5272 	unsigned int opmode;
5273 
5274 	if (!rdev)
5275 		return;
5276 
5277 	opmode = _regulator_get_mode_unlocked(rdev);
5278 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5279 		   level * 3 + 1, "",
5280 		   30 - level * 3, rdev_get_name(rdev),
5281 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5282 		   regulator_opmode_to_str(opmode));
5283 
5284 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5285 	seq_printf(s, "%5dmA ",
5286 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5287 
5288 	c = rdev->constraints;
5289 	if (c) {
5290 		switch (rdev->desc->type) {
5291 		case REGULATOR_VOLTAGE:
5292 			seq_printf(s, "%5dmV %5dmV ",
5293 				   c->min_uV / 1000, c->max_uV / 1000);
5294 			break;
5295 		case REGULATOR_CURRENT:
5296 			seq_printf(s, "%5dmA %5dmA ",
5297 				   c->min_uA / 1000, c->max_uA / 1000);
5298 			break;
5299 		}
5300 	}
5301 
5302 	seq_puts(s, "\n");
5303 
5304 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5305 		if (consumer->dev && consumer->dev->class == &regulator_class)
5306 			continue;
5307 
5308 		seq_printf(s, "%*s%-*s ",
5309 			   (level + 1) * 3 + 1, "",
5310 			   30 - (level + 1) * 3,
5311 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5312 
5313 		switch (rdev->desc->type) {
5314 		case REGULATOR_VOLTAGE:
5315 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5316 				   consumer->enable_count,
5317 				   consumer->uA_load / 1000,
5318 				   consumer->uA_load && !consumer->enable_count ?
5319 				   '*' : ' ',
5320 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5321 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5322 			break;
5323 		case REGULATOR_CURRENT:
5324 			break;
5325 		}
5326 
5327 		seq_puts(s, "\n");
5328 	}
5329 
5330 	summary_data.s = s;
5331 	summary_data.level = level;
5332 	summary_data.parent = rdev;
5333 
5334 	class_for_each_device(&regulator_class, NULL, &summary_data,
5335 			      regulator_summary_show_children);
5336 }
5337 
5338 struct summary_lock_data {
5339 	struct ww_acquire_ctx *ww_ctx;
5340 	struct regulator_dev **new_contended_rdev;
5341 	struct regulator_dev **old_contended_rdev;
5342 };
5343 
5344 static int regulator_summary_lock_one(struct device *dev, void *data)
5345 {
5346 	struct regulator_dev *rdev = dev_to_rdev(dev);
5347 	struct summary_lock_data *lock_data = data;
5348 	int ret = 0;
5349 
5350 	if (rdev != *lock_data->old_contended_rdev) {
5351 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5352 
5353 		if (ret == -EDEADLK)
5354 			*lock_data->new_contended_rdev = rdev;
5355 		else
5356 			WARN_ON_ONCE(ret);
5357 	} else {
5358 		*lock_data->old_contended_rdev = NULL;
5359 	}
5360 
5361 	return ret;
5362 }
5363 
5364 static int regulator_summary_unlock_one(struct device *dev, void *data)
5365 {
5366 	struct regulator_dev *rdev = dev_to_rdev(dev);
5367 	struct summary_lock_data *lock_data = data;
5368 
5369 	if (lock_data) {
5370 		if (rdev == *lock_data->new_contended_rdev)
5371 			return -EDEADLK;
5372 	}
5373 
5374 	regulator_unlock(rdev);
5375 
5376 	return 0;
5377 }
5378 
5379 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5380 				      struct regulator_dev **new_contended_rdev,
5381 				      struct regulator_dev **old_contended_rdev)
5382 {
5383 	struct summary_lock_data lock_data;
5384 	int ret;
5385 
5386 	lock_data.ww_ctx = ww_ctx;
5387 	lock_data.new_contended_rdev = new_contended_rdev;
5388 	lock_data.old_contended_rdev = old_contended_rdev;
5389 
5390 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5391 				    regulator_summary_lock_one);
5392 	if (ret)
5393 		class_for_each_device(&regulator_class, NULL, &lock_data,
5394 				      regulator_summary_unlock_one);
5395 
5396 	return ret;
5397 }
5398 
5399 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5400 {
5401 	struct regulator_dev *new_contended_rdev = NULL;
5402 	struct regulator_dev *old_contended_rdev = NULL;
5403 	int err;
5404 
5405 	mutex_lock(&regulator_list_mutex);
5406 
5407 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5408 
5409 	do {
5410 		if (new_contended_rdev) {
5411 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5412 			old_contended_rdev = new_contended_rdev;
5413 			old_contended_rdev->ref_cnt++;
5414 		}
5415 
5416 		err = regulator_summary_lock_all(ww_ctx,
5417 						 &new_contended_rdev,
5418 						 &old_contended_rdev);
5419 
5420 		if (old_contended_rdev)
5421 			regulator_unlock(old_contended_rdev);
5422 
5423 	} while (err == -EDEADLK);
5424 
5425 	ww_acquire_done(ww_ctx);
5426 }
5427 
5428 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5429 {
5430 	class_for_each_device(&regulator_class, NULL, NULL,
5431 			      regulator_summary_unlock_one);
5432 	ww_acquire_fini(ww_ctx);
5433 
5434 	mutex_unlock(&regulator_list_mutex);
5435 }
5436 
5437 static int regulator_summary_show_roots(struct device *dev, void *data)
5438 {
5439 	struct regulator_dev *rdev = dev_to_rdev(dev);
5440 	struct seq_file *s = data;
5441 
5442 	if (!rdev->supply)
5443 		regulator_summary_show_subtree(s, rdev, 0);
5444 
5445 	return 0;
5446 }
5447 
5448 static int regulator_summary_show(struct seq_file *s, void *data)
5449 {
5450 	struct ww_acquire_ctx ww_ctx;
5451 
5452 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5453 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5454 
5455 	regulator_summary_lock(&ww_ctx);
5456 
5457 	class_for_each_device(&regulator_class, NULL, s,
5458 			      regulator_summary_show_roots);
5459 
5460 	regulator_summary_unlock(&ww_ctx);
5461 
5462 	return 0;
5463 }
5464 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5465 #endif /* CONFIG_DEBUG_FS */
5466 
5467 static int __init regulator_init(void)
5468 {
5469 	int ret;
5470 
5471 	ret = class_register(&regulator_class);
5472 
5473 	debugfs_root = debugfs_create_dir("regulator", NULL);
5474 	if (!debugfs_root)
5475 		pr_warn("regulator: Failed to create debugfs directory\n");
5476 
5477 #ifdef CONFIG_DEBUG_FS
5478 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5479 			    &supply_map_fops);
5480 
5481 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5482 			    NULL, &regulator_summary_fops);
5483 #endif
5484 	regulator_dummy_init();
5485 
5486 	return ret;
5487 }
5488 
5489 /* init early to allow our consumers to complete system booting */
5490 core_initcall(regulator_init);
5491 
5492 static int __init regulator_late_cleanup(struct device *dev, void *data)
5493 {
5494 	struct regulator_dev *rdev = dev_to_rdev(dev);
5495 	const struct regulator_ops *ops = rdev->desc->ops;
5496 	struct regulation_constraints *c = rdev->constraints;
5497 	int enabled, ret;
5498 
5499 	if (c && c->always_on)
5500 		return 0;
5501 
5502 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5503 		return 0;
5504 
5505 	regulator_lock(rdev);
5506 
5507 	if (rdev->use_count)
5508 		goto unlock;
5509 
5510 	/* If we can't read the status assume it's on. */
5511 	if (ops->is_enabled)
5512 		enabled = ops->is_enabled(rdev);
5513 	else
5514 		enabled = 1;
5515 
5516 	if (!enabled)
5517 		goto unlock;
5518 
5519 	if (have_full_constraints()) {
5520 		/* We log since this may kill the system if it goes
5521 		 * wrong. */
5522 		rdev_info(rdev, "disabling\n");
5523 		ret = _regulator_do_disable(rdev);
5524 		if (ret != 0)
5525 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5526 	} else {
5527 		/* The intention is that in future we will
5528 		 * assume that full constraints are provided
5529 		 * so warn even if we aren't going to do
5530 		 * anything here.
5531 		 */
5532 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5533 	}
5534 
5535 unlock:
5536 	regulator_unlock(rdev);
5537 
5538 	return 0;
5539 }
5540 
5541 static int __init regulator_init_complete(void)
5542 {
5543 	/*
5544 	 * Since DT doesn't provide an idiomatic mechanism for
5545 	 * enabling full constraints and since it's much more natural
5546 	 * with DT to provide them just assume that a DT enabled
5547 	 * system has full constraints.
5548 	 */
5549 	if (of_have_populated_dt())
5550 		has_full_constraints = true;
5551 
5552 	/*
5553 	 * Regulators may had failed to resolve their input supplies
5554 	 * when were registered, either because the input supply was
5555 	 * not registered yet or because its parent device was not
5556 	 * bound yet. So attempt to resolve the input supplies for
5557 	 * pending regulators before trying to disable unused ones.
5558 	 */
5559 	class_for_each_device(&regulator_class, NULL, NULL,
5560 			      regulator_register_resolve_supply);
5561 
5562 	/* If we have a full configuration then disable any regulators
5563 	 * we have permission to change the status for and which are
5564 	 * not in use or always_on.  This is effectively the default
5565 	 * for DT and ACPI as they have full constraints.
5566 	 */
5567 	class_for_each_device(&regulator_class, NULL, NULL,
5568 			      regulator_late_cleanup);
5569 
5570 	return 0;
5571 }
5572 late_initcall_sync(regulator_init_complete);
5573