xref: /openbmc/linux/drivers/regulator/core.c (revision 980b4503)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 	int i;
163 
164 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 		mutex_lock_nested(&rdev->mutex, i);
166 }
167 
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 	struct regulator *supply;
175 
176 	while (1) {
177 		mutex_unlock(&rdev->mutex);
178 		supply = rdev->supply;
179 
180 		if (!rdev->supply)
181 			return;
182 
183 		rdev = supply->rdev;
184 	}
185 }
186 
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 	struct device_node *regnode = NULL;
199 	char prop_name[32]; /* 32 is max size of property name */
200 
201 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202 
203 	snprintf(prop_name, 32, "%s-supply", supply);
204 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205 
206 	if (!regnode) {
207 		dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 				prop_name, dev->of_node->full_name);
209 		return NULL;
210 	}
211 	return regnode;
212 }
213 
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 				   int *min_uV, int *max_uV)
217 {
218 	BUG_ON(*min_uV > *max_uV);
219 
220 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 		rdev_err(rdev, "voltage operation not allowed\n");
222 		return -EPERM;
223 	}
224 
225 	if (*max_uV > rdev->constraints->max_uV)
226 		*max_uV = rdev->constraints->max_uV;
227 	if (*min_uV < rdev->constraints->min_uV)
228 		*min_uV = rdev->constraints->min_uV;
229 
230 	if (*min_uV > *max_uV) {
231 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 			 *min_uV, *max_uV);
233 		return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 				     int *min_uV, int *max_uV)
244 {
245 	struct regulator *regulator;
246 
247 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 		/*
249 		 * Assume consumers that didn't say anything are OK
250 		 * with anything in the constraint range.
251 		 */
252 		if (!regulator->min_uV && !regulator->max_uV)
253 			continue;
254 
255 		if (*max_uV > regulator->max_uV)
256 			*max_uV = regulator->max_uV;
257 		if (*min_uV < regulator->min_uV)
258 			*min_uV = regulator->min_uV;
259 	}
260 
261 	if (*min_uV > *max_uV) {
262 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 			*min_uV, *max_uV);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 					int *min_uA, int *max_uA)
273 {
274 	BUG_ON(*min_uA > *max_uA);
275 
276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 		rdev_err(rdev, "current operation not allowed\n");
278 		return -EPERM;
279 	}
280 
281 	if (*max_uA > rdev->constraints->max_uA)
282 		*max_uA = rdev->constraints->max_uA;
283 	if (*min_uA < rdev->constraints->min_uA)
284 		*min_uA = rdev->constraints->min_uA;
285 
286 	if (*min_uA > *max_uA) {
287 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 			 *min_uA, *max_uA);
289 		return -EINVAL;
290 	}
291 
292 	return 0;
293 }
294 
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 				    unsigned int *mode)
298 {
299 	switch (*mode) {
300 	case REGULATOR_MODE_FAST:
301 	case REGULATOR_MODE_NORMAL:
302 	case REGULATOR_MODE_IDLE:
303 	case REGULATOR_MODE_STANDBY:
304 		break;
305 	default:
306 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 		return -EINVAL;
308 	}
309 
310 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 		rdev_err(rdev, "mode operation not allowed\n");
312 		return -EPERM;
313 	}
314 
315 	/* The modes are bitmasks, the most power hungry modes having
316 	 * the lowest values. If the requested mode isn't supported
317 	 * try higher modes. */
318 	while (*mode) {
319 		if (rdev->constraints->valid_modes_mask & *mode)
320 			return 0;
321 		*mode /= 2;
322 	}
323 
324 	return -EINVAL;
325 }
326 
327 static ssize_t regulator_uV_show(struct device *dev,
328 				struct device_attribute *attr, char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 	ssize_t ret;
332 
333 	mutex_lock(&rdev->mutex);
334 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 	mutex_unlock(&rdev->mutex);
336 
337 	return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340 
341 static ssize_t regulator_uA_show(struct device *dev,
342 				struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349 
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 			 char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358 
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 	switch (mode) {
362 	case REGULATOR_MODE_FAST:
363 		return sprintf(buf, "fast\n");
364 	case REGULATOR_MODE_NORMAL:
365 		return sprintf(buf, "normal\n");
366 	case REGULATOR_MODE_IDLE:
367 		return sprintf(buf, "idle\n");
368 	case REGULATOR_MODE_STANDBY:
369 		return sprintf(buf, "standby\n");
370 	}
371 	return sprintf(buf, "unknown\n");
372 }
373 
374 static ssize_t regulator_opmode_show(struct device *dev,
375 				    struct device_attribute *attr, char *buf)
376 {
377 	struct regulator_dev *rdev = dev_get_drvdata(dev);
378 
379 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382 
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 	if (state > 0)
386 		return sprintf(buf, "enabled\n");
387 	else if (state == 0)
388 		return sprintf(buf, "disabled\n");
389 	else
390 		return sprintf(buf, "unknown\n");
391 }
392 
393 static ssize_t regulator_state_show(struct device *dev,
394 				   struct device_attribute *attr, char *buf)
395 {
396 	struct regulator_dev *rdev = dev_get_drvdata(dev);
397 	ssize_t ret;
398 
399 	mutex_lock(&rdev->mutex);
400 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 	mutex_unlock(&rdev->mutex);
402 
403 	return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406 
407 static ssize_t regulator_status_show(struct device *dev,
408 				   struct device_attribute *attr, char *buf)
409 {
410 	struct regulator_dev *rdev = dev_get_drvdata(dev);
411 	int status;
412 	char *label;
413 
414 	status = rdev->desc->ops->get_status(rdev);
415 	if (status < 0)
416 		return status;
417 
418 	switch (status) {
419 	case REGULATOR_STATUS_OFF:
420 		label = "off";
421 		break;
422 	case REGULATOR_STATUS_ON:
423 		label = "on";
424 		break;
425 	case REGULATOR_STATUS_ERROR:
426 		label = "error";
427 		break;
428 	case REGULATOR_STATUS_FAST:
429 		label = "fast";
430 		break;
431 	case REGULATOR_STATUS_NORMAL:
432 		label = "normal";
433 		break;
434 	case REGULATOR_STATUS_IDLE:
435 		label = "idle";
436 		break;
437 	case REGULATOR_STATUS_STANDBY:
438 		label = "standby";
439 		break;
440 	case REGULATOR_STATUS_BYPASS:
441 		label = "bypass";
442 		break;
443 	case REGULATOR_STATUS_UNDEFINED:
444 		label = "undefined";
445 		break;
446 	default:
447 		return -ERANGE;
448 	}
449 
450 	return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453 
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465 
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477 
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 				    struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	if (!rdev->constraints)
484 		return sprintf(buf, "constraint not defined\n");
485 
486 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489 
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 				    struct device_attribute *attr, char *buf)
492 {
493 	struct regulator_dev *rdev = dev_get_drvdata(dev);
494 
495 	if (!rdev->constraints)
496 		return sprintf(buf, "constraint not defined\n");
497 
498 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501 
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 				      struct device_attribute *attr, char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 	struct regulator *regulator;
507 	int uA = 0;
508 
509 	mutex_lock(&rdev->mutex);
510 	list_for_each_entry(regulator, &rdev->consumer_list, list)
511 		uA += regulator->uA_load;
512 	mutex_unlock(&rdev->mutex);
513 	return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516 
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 			      char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 	return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524 
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 			 char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 
530 	switch (rdev->desc->type) {
531 	case REGULATOR_VOLTAGE:
532 		return sprintf(buf, "voltage\n");
533 	case REGULATOR_CURRENT:
534 		return sprintf(buf, "current\n");
535 	}
536 	return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539 
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 				struct device_attribute *attr, char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 
545 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 		regulator_suspend_mem_uV_show, NULL);
549 
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 				struct device_attribute *attr, char *buf)
552 {
553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 
555 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 		regulator_suspend_disk_uV_show, NULL);
559 
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 				struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 		regulator_suspend_standby_uV_show, NULL);
569 
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 				struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return regulator_print_opmode(buf,
576 		rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 		regulator_suspend_mem_mode_show, NULL);
580 
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 				struct device_attribute *attr, char *buf)
583 {
584 	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 
586 	return regulator_print_opmode(buf,
587 		rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 		regulator_suspend_disk_mode_show, NULL);
591 
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 				struct device_attribute *attr, char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 
597 	return regulator_print_opmode(buf,
598 		rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 		regulator_suspend_standby_mode_show, NULL);
602 
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 				   struct device_attribute *attr, char *buf)
605 {
606 	struct regulator_dev *rdev = dev_get_drvdata(dev);
607 
608 	return regulator_print_state(buf,
609 			rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 		regulator_suspend_mem_state_show, NULL);
613 
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 				   struct device_attribute *attr, char *buf)
616 {
617 	struct regulator_dev *rdev = dev_get_drvdata(dev);
618 
619 	return regulator_print_state(buf,
620 			rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 		regulator_suspend_disk_state_show, NULL);
624 
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 				   struct device_attribute *attr, char *buf)
627 {
628 	struct regulator_dev *rdev = dev_get_drvdata(dev);
629 
630 	return regulator_print_state(buf,
631 			rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 		regulator_suspend_standby_state_show, NULL);
635 
636 static ssize_t regulator_bypass_show(struct device *dev,
637 				     struct device_attribute *attr, char *buf)
638 {
639 	struct regulator_dev *rdev = dev_get_drvdata(dev);
640 	const char *report;
641 	bool bypass;
642 	int ret;
643 
644 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645 
646 	if (ret != 0)
647 		report = "unknown";
648 	else if (bypass)
649 		report = "enabled";
650 	else
651 		report = "disabled";
652 
653 	return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 		   regulator_bypass_show, NULL);
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	lockdep_assert_held_once(&rdev->mutex);
667 
668 	/*
669 	 * first check to see if we can set modes at all, otherwise just
670 	 * tell the consumer everything is OK.
671 	 */
672 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 		return 0;
674 
675 	if (!rdev->desc->ops->get_optimum_mode &&
676 	    !rdev->desc->ops->set_load)
677 		return 0;
678 
679 	if (!rdev->desc->ops->set_mode &&
680 	    !rdev->desc->ops->set_load)
681 		return -EINVAL;
682 
683 	/* calc total requested load */
684 	list_for_each_entry(sibling, &rdev->consumer_list, list)
685 		current_uA += sibling->uA_load;
686 
687 	current_uA += rdev->constraints->system_load;
688 
689 	if (rdev->desc->ops->set_load) {
690 		/* set the optimum mode for our new total regulator load */
691 		err = rdev->desc->ops->set_load(rdev, current_uA);
692 		if (err < 0)
693 			rdev_err(rdev, "failed to set load %d\n", current_uA);
694 	} else {
695 		/* get output voltage */
696 		output_uV = _regulator_get_voltage(rdev);
697 		if (output_uV <= 0) {
698 			rdev_err(rdev, "invalid output voltage found\n");
699 			return -EINVAL;
700 		}
701 
702 		/* get input voltage */
703 		input_uV = 0;
704 		if (rdev->supply)
705 			input_uV = regulator_get_voltage(rdev->supply);
706 		if (input_uV <= 0)
707 			input_uV = rdev->constraints->input_uV;
708 		if (input_uV <= 0) {
709 			rdev_err(rdev, "invalid input voltage found\n");
710 			return -EINVAL;
711 		}
712 
713 		/* now get the optimum mode for our new total regulator load */
714 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 							 output_uV, current_uA);
716 
717 		/* check the new mode is allowed */
718 		err = regulator_mode_constrain(rdev, &mode);
719 		if (err < 0) {
720 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 				 current_uA, input_uV, output_uV);
722 			return err;
723 		}
724 
725 		err = rdev->desc->ops->set_mode(rdev, mode);
726 		if (err < 0)
727 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 	}
729 
730 	return err;
731 }
732 
733 static int suspend_set_state(struct regulator_dev *rdev,
734 	struct regulator_state *rstate)
735 {
736 	int ret = 0;
737 
738 	/* If we have no suspend mode configration don't set anything;
739 	 * only warn if the driver implements set_suspend_voltage or
740 	 * set_suspend_mode callback.
741 	 */
742 	if (!rstate->enabled && !rstate->disabled) {
743 		if (rdev->desc->ops->set_suspend_voltage ||
744 		    rdev->desc->ops->set_suspend_mode)
745 			rdev_warn(rdev, "No configuration\n");
746 		return 0;
747 	}
748 
749 	if (rstate->enabled && rstate->disabled) {
750 		rdev_err(rdev, "invalid configuration\n");
751 		return -EINVAL;
752 	}
753 
754 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 		ret = rdev->desc->ops->set_suspend_enable(rdev);
756 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 		ret = rdev->desc->ops->set_suspend_disable(rdev);
758 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 		ret = 0;
760 
761 	if (ret < 0) {
762 		rdev_err(rdev, "failed to enabled/disable\n");
763 		return ret;
764 	}
765 
766 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 		if (ret < 0) {
769 			rdev_err(rdev, "failed to set voltage\n");
770 			return ret;
771 		}
772 	}
773 
774 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 		if (ret < 0) {
777 			rdev_err(rdev, "failed to set mode\n");
778 			return ret;
779 		}
780 	}
781 	return ret;
782 }
783 
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 	if (!rdev->constraints)
788 		return -EINVAL;
789 
790 	switch (state) {
791 	case PM_SUSPEND_STANDBY:
792 		return suspend_set_state(rdev,
793 			&rdev->constraints->state_standby);
794 	case PM_SUSPEND_MEM:
795 		return suspend_set_state(rdev,
796 			&rdev->constraints->state_mem);
797 	case PM_SUSPEND_MAX:
798 		return suspend_set_state(rdev,
799 			&rdev->constraints->state_disk);
800 	default:
801 		return -EINVAL;
802 	}
803 }
804 
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 	struct regulation_constraints *constraints = rdev->constraints;
808 	char buf[160] = "";
809 	size_t len = sizeof(buf) - 1;
810 	int count = 0;
811 	int ret;
812 
813 	if (constraints->min_uV && constraints->max_uV) {
814 		if (constraints->min_uV == constraints->max_uV)
815 			count += scnprintf(buf + count, len - count, "%d mV ",
816 					   constraints->min_uV / 1000);
817 		else
818 			count += scnprintf(buf + count, len - count,
819 					   "%d <--> %d mV ",
820 					   constraints->min_uV / 1000,
821 					   constraints->max_uV / 1000);
822 	}
823 
824 	if (!constraints->min_uV ||
825 	    constraints->min_uV != constraints->max_uV) {
826 		ret = _regulator_get_voltage(rdev);
827 		if (ret > 0)
828 			count += scnprintf(buf + count, len - count,
829 					   "at %d mV ", ret / 1000);
830 	}
831 
832 	if (constraints->uV_offset)
833 		count += scnprintf(buf + count, len - count, "%dmV offset ",
834 				   constraints->uV_offset / 1000);
835 
836 	if (constraints->min_uA && constraints->max_uA) {
837 		if (constraints->min_uA == constraints->max_uA)
838 			count += scnprintf(buf + count, len - count, "%d mA ",
839 					   constraints->min_uA / 1000);
840 		else
841 			count += scnprintf(buf + count, len - count,
842 					   "%d <--> %d mA ",
843 					   constraints->min_uA / 1000,
844 					   constraints->max_uA / 1000);
845 	}
846 
847 	if (!constraints->min_uA ||
848 	    constraints->min_uA != constraints->max_uA) {
849 		ret = _regulator_get_current_limit(rdev);
850 		if (ret > 0)
851 			count += scnprintf(buf + count, len - count,
852 					   "at %d mA ", ret / 1000);
853 	}
854 
855 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 		count += scnprintf(buf + count, len - count, "fast ");
857 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 		count += scnprintf(buf + count, len - count, "normal ");
859 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 		count += scnprintf(buf + count, len - count, "idle ");
861 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 		count += scnprintf(buf + count, len - count, "standby");
863 
864 	if (!count)
865 		scnprintf(buf, len, "no parameters");
866 
867 	rdev_dbg(rdev, "%s\n", buf);
868 
869 	if ((constraints->min_uV != constraints->max_uV) &&
870 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 		rdev_warn(rdev,
872 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874 
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 	struct regulation_constraints *constraints)
877 {
878 	const struct regulator_ops *ops = rdev->desc->ops;
879 	int ret;
880 
881 	/* do we need to apply the constraint voltage */
882 	if (rdev->constraints->apply_uV &&
883 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 		int target_min, target_max;
885 		int current_uV = _regulator_get_voltage(rdev);
886 		if (current_uV < 0) {
887 			rdev_err(rdev,
888 				 "failed to get the current voltage(%d)\n",
889 				 current_uV);
890 			return current_uV;
891 		}
892 
893 		/*
894 		 * If we're below the minimum voltage move up to the
895 		 * minimum voltage, if we're above the maximum voltage
896 		 * then move down to the maximum.
897 		 */
898 		target_min = current_uV;
899 		target_max = current_uV;
900 
901 		if (current_uV < rdev->constraints->min_uV) {
902 			target_min = rdev->constraints->min_uV;
903 			target_max = rdev->constraints->min_uV;
904 		}
905 
906 		if (current_uV > rdev->constraints->max_uV) {
907 			target_min = rdev->constraints->max_uV;
908 			target_max = rdev->constraints->max_uV;
909 		}
910 
911 		if (target_min != current_uV || target_max != current_uV) {
912 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 				  current_uV, target_min, target_max);
914 			ret = _regulator_do_set_voltage(
915 				rdev, target_min, target_max);
916 			if (ret < 0) {
917 				rdev_err(rdev,
918 					"failed to apply %d-%duV constraint(%d)\n",
919 					target_min, target_max, ret);
920 				return ret;
921 			}
922 		}
923 	}
924 
925 	/* constrain machine-level voltage specs to fit
926 	 * the actual range supported by this regulator.
927 	 */
928 	if (ops->list_voltage && rdev->desc->n_voltages) {
929 		int	count = rdev->desc->n_voltages;
930 		int	i;
931 		int	min_uV = INT_MAX;
932 		int	max_uV = INT_MIN;
933 		int	cmin = constraints->min_uV;
934 		int	cmax = constraints->max_uV;
935 
936 		/* it's safe to autoconfigure fixed-voltage supplies
937 		   and the constraints are used by list_voltage. */
938 		if (count == 1 && !cmin) {
939 			cmin = 1;
940 			cmax = INT_MAX;
941 			constraints->min_uV = cmin;
942 			constraints->max_uV = cmax;
943 		}
944 
945 		/* voltage constraints are optional */
946 		if ((cmin == 0) && (cmax == 0))
947 			return 0;
948 
949 		/* else require explicit machine-level constraints */
950 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 			rdev_err(rdev, "invalid voltage constraints\n");
952 			return -EINVAL;
953 		}
954 
955 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 		for (i = 0; i < count; i++) {
957 			int	value;
958 
959 			value = ops->list_voltage(rdev, i);
960 			if (value <= 0)
961 				continue;
962 
963 			/* maybe adjust [min_uV..max_uV] */
964 			if (value >= cmin && value < min_uV)
965 				min_uV = value;
966 			if (value <= cmax && value > max_uV)
967 				max_uV = value;
968 		}
969 
970 		/* final: [min_uV..max_uV] valid iff constraints valid */
971 		if (max_uV < min_uV) {
972 			rdev_err(rdev,
973 				 "unsupportable voltage constraints %u-%uuV\n",
974 				 min_uV, max_uV);
975 			return -EINVAL;
976 		}
977 
978 		/* use regulator's subset of machine constraints */
979 		if (constraints->min_uV < min_uV) {
980 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 				 constraints->min_uV, min_uV);
982 			constraints->min_uV = min_uV;
983 		}
984 		if (constraints->max_uV > max_uV) {
985 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 				 constraints->max_uV, max_uV);
987 			constraints->max_uV = max_uV;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 	struct regulation_constraints *constraints)
996 {
997 	const struct regulator_ops *ops = rdev->desc->ops;
998 	int ret;
999 
1000 	if (!constraints->min_uA && !constraints->max_uA)
1001 		return 0;
1002 
1003 	if (constraints->min_uA > constraints->max_uA) {
1004 		rdev_err(rdev, "Invalid current constraints\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	if (!ops->set_current_limit || !ops->get_current_limit) {
1009 		rdev_warn(rdev, "Operation of current configuration missing\n");
1010 		return 0;
1011 	}
1012 
1013 	/* Set regulator current in constraints range */
1014 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 			constraints->max_uA);
1016 	if (ret < 0) {
1017 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 		return ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025 
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 	const struct regulation_constraints *constraints)
1039 {
1040 	int ret = 0;
1041 	const struct regulator_ops *ops = rdev->desc->ops;
1042 
1043 	if (constraints)
1044 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 					    GFP_KERNEL);
1046 	else
1047 		rdev->constraints = kzalloc(sizeof(*constraints),
1048 					    GFP_KERNEL);
1049 	if (!rdev->constraints)
1050 		return -ENOMEM;
1051 
1052 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 	if (ret != 0)
1054 		return ret;
1055 
1056 	ret = machine_constraints_current(rdev, rdev->constraints);
1057 	if (ret != 0)
1058 		return ret;
1059 
1060 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 		ret = ops->set_input_current_limit(rdev,
1062 						   rdev->constraints->ilim_uA);
1063 		if (ret < 0) {
1064 			rdev_err(rdev, "failed to set input limit\n");
1065 			return ret;
1066 		}
1067 	}
1068 
1069 	/* do we need to setup our suspend state */
1070 	if (rdev->constraints->initial_state) {
1071 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 		if (ret < 0) {
1073 			rdev_err(rdev, "failed to set suspend state\n");
1074 			return ret;
1075 		}
1076 	}
1077 
1078 	if (rdev->constraints->initial_mode) {
1079 		if (!ops->set_mode) {
1080 			rdev_err(rdev, "no set_mode operation\n");
1081 			return -EINVAL;
1082 		}
1083 
1084 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 		if (ret < 0) {
1086 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 			return ret;
1088 		}
1089 	}
1090 
1091 	/* If the constraints say the regulator should be on at this point
1092 	 * and we have control then make sure it is enabled.
1093 	 */
1094 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 		ret = _regulator_do_enable(rdev);
1096 		if (ret < 0 && ret != -EINVAL) {
1097 			rdev_err(rdev, "failed to enable\n");
1098 			return ret;
1099 		}
1100 	}
1101 
1102 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 		&& ops->set_ramp_delay) {
1104 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 		if (ret < 0) {
1106 			rdev_err(rdev, "failed to set ramp_delay\n");
1107 			return ret;
1108 		}
1109 	}
1110 
1111 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 		ret = ops->set_pull_down(rdev);
1113 		if (ret < 0) {
1114 			rdev_err(rdev, "failed to set pull down\n");
1115 			return ret;
1116 		}
1117 	}
1118 
1119 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 		ret = ops->set_soft_start(rdev);
1121 		if (ret < 0) {
1122 			rdev_err(rdev, "failed to set soft start\n");
1123 			return ret;
1124 		}
1125 	}
1126 
1127 	if (rdev->constraints->over_current_protection
1128 		&& ops->set_over_current_protection) {
1129 		ret = ops->set_over_current_protection(rdev);
1130 		if (ret < 0) {
1131 			rdev_err(rdev, "failed to set over current protection\n");
1132 			return ret;
1133 		}
1134 	}
1135 
1136 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 		bool ad_state = (rdev->constraints->active_discharge ==
1138 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139 
1140 		ret = ops->set_active_discharge(rdev, ad_state);
1141 		if (ret < 0) {
1142 			rdev_err(rdev, "failed to set active discharge\n");
1143 			return ret;
1144 		}
1145 	}
1146 
1147 	print_constraints(rdev);
1148 	return 0;
1149 }
1150 
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161 		      struct regulator_dev *supply_rdev)
1162 {
1163 	int err;
1164 
1165 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166 
1167 	if (!try_module_get(supply_rdev->owner))
1168 		return -ENODEV;
1169 
1170 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 	if (rdev->supply == NULL) {
1172 		err = -ENOMEM;
1173 		return err;
1174 	}
1175 	supply_rdev->open_count++;
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 				      const char *consumer_dev_name,
1193 				      const char *supply)
1194 {
1195 	struct regulator_map *node;
1196 	int has_dev;
1197 
1198 	if (supply == NULL)
1199 		return -EINVAL;
1200 
1201 	if (consumer_dev_name != NULL)
1202 		has_dev = 1;
1203 	else
1204 		has_dev = 0;
1205 
1206 	list_for_each_entry(node, &regulator_map_list, list) {
1207 		if (node->dev_name && consumer_dev_name) {
1208 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 				continue;
1210 		} else if (node->dev_name || consumer_dev_name) {
1211 			continue;
1212 		}
1213 
1214 		if (strcmp(node->supply, supply) != 0)
1215 			continue;
1216 
1217 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 			 consumer_dev_name,
1219 			 dev_name(&node->regulator->dev),
1220 			 node->regulator->desc->name,
1221 			 supply,
1222 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 		return -EBUSY;
1224 	}
1225 
1226 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 	if (node == NULL)
1228 		return -ENOMEM;
1229 
1230 	node->regulator = rdev;
1231 	node->supply = supply;
1232 
1233 	if (has_dev) {
1234 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 		if (node->dev_name == NULL) {
1236 			kfree(node);
1237 			return -ENOMEM;
1238 		}
1239 	}
1240 
1241 	list_add(&node->list, &regulator_map_list);
1242 	return 0;
1243 }
1244 
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 	struct regulator_map *node, *n;
1248 
1249 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 		if (rdev == node->regulator) {
1251 			list_del(&node->list);
1252 			kfree(node->dev_name);
1253 			kfree(node);
1254 		}
1255 	}
1256 }
1257 
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 					  char __user *user_buf,
1261 					  size_t count, loff_t *ppos)
1262 {
1263 	const struct regulator *regulator = file->private_data;
1264 	const struct regulation_constraints *c = regulator->rdev->constraints;
1265 	char *buf;
1266 	ssize_t ret;
1267 
1268 	if (!c)
1269 		return 0;
1270 
1271 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	ret = snprintf(buf, PAGE_SIZE,
1276 			"always_on: %u\n"
1277 			"boot_on: %u\n"
1278 			"apply_uV: %u\n"
1279 			"ramp_disable: %u\n"
1280 			"soft_start: %u\n"
1281 			"pull_down: %u\n"
1282 			"over_current_protection: %u\n",
1283 			c->always_on,
1284 			c->boot_on,
1285 			c->apply_uV,
1286 			c->ramp_disable,
1287 			c->soft_start,
1288 			c->pull_down,
1289 			c->over_current_protection);
1290 
1291 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 	kfree(buf);
1293 
1294 	return ret;
1295 }
1296 
1297 #endif
1298 
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 	.open = simple_open,
1302 	.read = constraint_flags_read_file,
1303 	.llseek = default_llseek,
1304 #endif
1305 };
1306 
1307 #define REG_STR_SIZE	64
1308 
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 					  struct device *dev,
1311 					  const char *supply_name)
1312 {
1313 	struct regulator *regulator;
1314 	char buf[REG_STR_SIZE];
1315 	int err, size;
1316 
1317 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 	if (regulator == NULL)
1319 		return NULL;
1320 
1321 	mutex_lock(&rdev->mutex);
1322 	regulator->rdev = rdev;
1323 	list_add(&regulator->list, &rdev->consumer_list);
1324 
1325 	if (dev) {
1326 		regulator->dev = dev;
1327 
1328 		/* Add a link to the device sysfs entry */
1329 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1330 				dev->kobj.name, supply_name);
1331 		if (size >= REG_STR_SIZE)
1332 			goto overflow_err;
1333 
1334 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 		if (regulator->supply_name == NULL)
1336 			goto overflow_err;
1337 
1338 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 					buf);
1340 		if (err) {
1341 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 				  dev->kobj.name, err);
1343 			/* non-fatal */
1344 		}
1345 	} else {
1346 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1347 		if (regulator->supply_name == NULL)
1348 			goto overflow_err;
1349 	}
1350 
1351 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 						rdev->debugfs);
1353 	if (!regulator->debugfs) {
1354 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 	} else {
1356 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 				   &regulator->uA_load);
1358 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 				   &regulator->min_uV);
1360 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 				   &regulator->max_uV);
1362 		debugfs_create_file("constraint_flags", 0444,
1363 				    regulator->debugfs, regulator,
1364 				    &constraint_flags_fops);
1365 	}
1366 
1367 	/*
1368 	 * Check now if the regulator is an always on regulator - if
1369 	 * it is then we don't need to do nearly so much work for
1370 	 * enable/disable calls.
1371 	 */
1372 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 	    _regulator_is_enabled(rdev))
1374 		regulator->always_on = true;
1375 
1376 	mutex_unlock(&rdev->mutex);
1377 	return regulator;
1378 overflow_err:
1379 	list_del(&regulator->list);
1380 	kfree(regulator);
1381 	mutex_unlock(&rdev->mutex);
1382 	return NULL;
1383 }
1384 
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 	if (rdev->constraints && rdev->constraints->enable_time)
1388 		return rdev->constraints->enable_time;
1389 	if (!rdev->desc->ops->enable_time)
1390 		return rdev->desc->enable_time;
1391 	return rdev->desc->ops->enable_time(rdev);
1392 }
1393 
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 		struct device *dev, const char *supply)
1396 {
1397 	struct regulator_supply_alias *map;
1398 
1399 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 			return map;
1402 
1403 	return NULL;
1404 }
1405 
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 	struct regulator_supply_alias *map;
1409 
1410 	map = regulator_find_supply_alias(*dev, *supply);
1411 	if (map) {
1412 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 				*supply, map->alias_supply,
1414 				dev_name(map->alias_dev));
1415 		*dev = map->alias_dev;
1416 		*supply = map->alias_supply;
1417 	}
1418 }
1419 
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 	return dev->of_node == data;
1423 }
1424 
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 	struct device *dev;
1428 
1429 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430 
1431 	return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433 
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 	struct regulator_dev *r = dev_to_rdev(dev);
1437 
1438 	return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440 
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 	struct device *dev;
1444 
1445 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446 
1447 	return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449 
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  *
1455  * If successful, returns a struct regulator_dev that corresponds to the name
1456  * @supply and with the embedded struct device refcount incremented by one.
1457  * The refcount must be dropped by calling put_device().
1458  * On failure one of the following ERR-PTR-encoded values is returned:
1459  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1460  * in the future.
1461  */
1462 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1463 						  const char *supply)
1464 {
1465 	struct regulator_dev *r = NULL;
1466 	struct device_node *node;
1467 	struct regulator_map *map;
1468 	const char *devname = NULL;
1469 
1470 	regulator_supply_alias(&dev, &supply);
1471 
1472 	/* first do a dt based lookup */
1473 	if (dev && dev->of_node) {
1474 		node = of_get_regulator(dev, supply);
1475 		if (node) {
1476 			r = of_find_regulator_by_node(node);
1477 			if (r)
1478 				return r;
1479 
1480 			/*
1481 			 * We have a node, but there is no device.
1482 			 * assume it has not registered yet.
1483 			 */
1484 			return ERR_PTR(-EPROBE_DEFER);
1485 		}
1486 	}
1487 
1488 	/* if not found, try doing it non-dt way */
1489 	if (dev)
1490 		devname = dev_name(dev);
1491 
1492 	mutex_lock(&regulator_list_mutex);
1493 	list_for_each_entry(map, &regulator_map_list, list) {
1494 		/* If the mapping has a device set up it must match */
1495 		if (map->dev_name &&
1496 		    (!devname || strcmp(map->dev_name, devname)))
1497 			continue;
1498 
1499 		if (strcmp(map->supply, supply) == 0 &&
1500 		    get_device(&map->regulator->dev)) {
1501 			r = map->regulator;
1502 			break;
1503 		}
1504 	}
1505 	mutex_unlock(&regulator_list_mutex);
1506 
1507 	if (r)
1508 		return r;
1509 
1510 	r = regulator_lookup_by_name(supply);
1511 	if (r)
1512 		return r;
1513 
1514 	return ERR_PTR(-ENODEV);
1515 }
1516 
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519 	struct regulator_dev *r;
1520 	struct device *dev = rdev->dev.parent;
1521 	int ret;
1522 
1523 	/* No supply to resovle? */
1524 	if (!rdev->supply_name)
1525 		return 0;
1526 
1527 	/* Supply already resolved? */
1528 	if (rdev->supply)
1529 		return 0;
1530 
1531 	r = regulator_dev_lookup(dev, rdev->supply_name);
1532 	if (IS_ERR(r)) {
1533 		ret = PTR_ERR(r);
1534 
1535 		/* Did the lookup explicitly defer for us? */
1536 		if (ret == -EPROBE_DEFER)
1537 			return ret;
1538 
1539 		if (have_full_constraints()) {
1540 			r = dummy_regulator_rdev;
1541 			get_device(&r->dev);
1542 		} else {
1543 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1544 				rdev->supply_name, rdev->desc->name);
1545 			return -EPROBE_DEFER;
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * If the supply's parent device is not the same as the
1551 	 * regulator's parent device, then ensure the parent device
1552 	 * is bound before we resolve the supply, in case the parent
1553 	 * device get probe deferred and unregisters the supply.
1554 	 */
1555 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1556 		if (!device_is_bound(r->dev.parent)) {
1557 			put_device(&r->dev);
1558 			return -EPROBE_DEFER;
1559 		}
1560 	}
1561 
1562 	/* Recursively resolve the supply of the supply */
1563 	ret = regulator_resolve_supply(r);
1564 	if (ret < 0) {
1565 		put_device(&r->dev);
1566 		return ret;
1567 	}
1568 
1569 	ret = set_supply(rdev, r);
1570 	if (ret < 0) {
1571 		put_device(&r->dev);
1572 		return ret;
1573 	}
1574 
1575 	/* Cascade always-on state to supply */
1576 	if (_regulator_is_enabled(rdev)) {
1577 		ret = regulator_enable(rdev->supply);
1578 		if (ret < 0) {
1579 			_regulator_put(rdev->supply);
1580 			rdev->supply = NULL;
1581 			return ret;
1582 		}
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /* Internal regulator request function */
1589 struct regulator *_regulator_get(struct device *dev, const char *id,
1590 				 enum regulator_get_type get_type)
1591 {
1592 	struct regulator_dev *rdev;
1593 	struct regulator *regulator;
1594 	const char *devname = dev ? dev_name(dev) : "deviceless";
1595 	int ret;
1596 
1597 	if (get_type >= MAX_GET_TYPE) {
1598 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1599 		return ERR_PTR(-EINVAL);
1600 	}
1601 
1602 	if (id == NULL) {
1603 		pr_err("get() with no identifier\n");
1604 		return ERR_PTR(-EINVAL);
1605 	}
1606 
1607 	rdev = regulator_dev_lookup(dev, id);
1608 	if (IS_ERR(rdev)) {
1609 		ret = PTR_ERR(rdev);
1610 
1611 		/*
1612 		 * If regulator_dev_lookup() fails with error other
1613 		 * than -ENODEV our job here is done, we simply return it.
1614 		 */
1615 		if (ret != -ENODEV)
1616 			return ERR_PTR(ret);
1617 
1618 		if (!have_full_constraints()) {
1619 			dev_warn(dev,
1620 				 "incomplete constraints, dummy supplies not allowed\n");
1621 			return ERR_PTR(-ENODEV);
1622 		}
1623 
1624 		switch (get_type) {
1625 		case NORMAL_GET:
1626 			/*
1627 			 * Assume that a regulator is physically present and
1628 			 * enabled, even if it isn't hooked up, and just
1629 			 * provide a dummy.
1630 			 */
1631 			dev_warn(dev,
1632 				 "%s supply %s not found, using dummy regulator\n",
1633 				 devname, id);
1634 			rdev = dummy_regulator_rdev;
1635 			get_device(&rdev->dev);
1636 			break;
1637 
1638 		case EXCLUSIVE_GET:
1639 			dev_warn(dev,
1640 				 "dummy supplies not allowed for exclusive requests\n");
1641 			/* fall through */
1642 
1643 		default:
1644 			return ERR_PTR(-ENODEV);
1645 		}
1646 	}
1647 
1648 	if (rdev->exclusive) {
1649 		regulator = ERR_PTR(-EPERM);
1650 		put_device(&rdev->dev);
1651 		return regulator;
1652 	}
1653 
1654 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1655 		regulator = ERR_PTR(-EBUSY);
1656 		put_device(&rdev->dev);
1657 		return regulator;
1658 	}
1659 
1660 	ret = regulator_resolve_supply(rdev);
1661 	if (ret < 0) {
1662 		regulator = ERR_PTR(ret);
1663 		put_device(&rdev->dev);
1664 		return regulator;
1665 	}
1666 
1667 	if (!try_module_get(rdev->owner)) {
1668 		regulator = ERR_PTR(-EPROBE_DEFER);
1669 		put_device(&rdev->dev);
1670 		return regulator;
1671 	}
1672 
1673 	regulator = create_regulator(rdev, dev, id);
1674 	if (regulator == NULL) {
1675 		regulator = ERR_PTR(-ENOMEM);
1676 		put_device(&rdev->dev);
1677 		module_put(rdev->owner);
1678 		return regulator;
1679 	}
1680 
1681 	rdev->open_count++;
1682 	if (get_type == EXCLUSIVE_GET) {
1683 		rdev->exclusive = 1;
1684 
1685 		ret = _regulator_is_enabled(rdev);
1686 		if (ret > 0)
1687 			rdev->use_count = 1;
1688 		else
1689 			rdev->use_count = 0;
1690 	}
1691 
1692 	return regulator;
1693 }
1694 
1695 /**
1696  * regulator_get - lookup and obtain a reference to a regulator.
1697  * @dev: device for regulator "consumer"
1698  * @id: Supply name or regulator ID.
1699  *
1700  * Returns a struct regulator corresponding to the regulator producer,
1701  * or IS_ERR() condition containing errno.
1702  *
1703  * Use of supply names configured via regulator_set_device_supply() is
1704  * strongly encouraged.  It is recommended that the supply name used
1705  * should match the name used for the supply and/or the relevant
1706  * device pins in the datasheet.
1707  */
1708 struct regulator *regulator_get(struct device *dev, const char *id)
1709 {
1710 	return _regulator_get(dev, id, NORMAL_GET);
1711 }
1712 EXPORT_SYMBOL_GPL(regulator_get);
1713 
1714 /**
1715  * regulator_get_exclusive - obtain exclusive access to a regulator.
1716  * @dev: device for regulator "consumer"
1717  * @id: Supply name or regulator ID.
1718  *
1719  * Returns a struct regulator corresponding to the regulator producer,
1720  * or IS_ERR() condition containing errno.  Other consumers will be
1721  * unable to obtain this regulator while this reference is held and the
1722  * use count for the regulator will be initialised to reflect the current
1723  * state of the regulator.
1724  *
1725  * This is intended for use by consumers which cannot tolerate shared
1726  * use of the regulator such as those which need to force the
1727  * regulator off for correct operation of the hardware they are
1728  * controlling.
1729  *
1730  * Use of supply names configured via regulator_set_device_supply() is
1731  * strongly encouraged.  It is recommended that the supply name used
1732  * should match the name used for the supply and/or the relevant
1733  * device pins in the datasheet.
1734  */
1735 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1736 {
1737 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1738 }
1739 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1740 
1741 /**
1742  * regulator_get_optional - obtain optional access to a regulator.
1743  * @dev: device for regulator "consumer"
1744  * @id: Supply name or regulator ID.
1745  *
1746  * Returns a struct regulator corresponding to the regulator producer,
1747  * or IS_ERR() condition containing errno.
1748  *
1749  * This is intended for use by consumers for devices which can have
1750  * some supplies unconnected in normal use, such as some MMC devices.
1751  * It can allow the regulator core to provide stub supplies for other
1752  * supplies requested using normal regulator_get() calls without
1753  * disrupting the operation of drivers that can handle absent
1754  * supplies.
1755  *
1756  * Use of supply names configured via regulator_set_device_supply() is
1757  * strongly encouraged.  It is recommended that the supply name used
1758  * should match the name used for the supply and/or the relevant
1759  * device pins in the datasheet.
1760  */
1761 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1762 {
1763 	return _regulator_get(dev, id, OPTIONAL_GET);
1764 }
1765 EXPORT_SYMBOL_GPL(regulator_get_optional);
1766 
1767 /* regulator_list_mutex lock held by regulator_put() */
1768 static void _regulator_put(struct regulator *regulator)
1769 {
1770 	struct regulator_dev *rdev;
1771 
1772 	if (IS_ERR_OR_NULL(regulator))
1773 		return;
1774 
1775 	lockdep_assert_held_once(&regulator_list_mutex);
1776 
1777 	rdev = regulator->rdev;
1778 
1779 	debugfs_remove_recursive(regulator->debugfs);
1780 
1781 	/* remove any sysfs entries */
1782 	if (regulator->dev)
1783 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1784 	mutex_lock(&rdev->mutex);
1785 	list_del(&regulator->list);
1786 
1787 	rdev->open_count--;
1788 	rdev->exclusive = 0;
1789 	put_device(&rdev->dev);
1790 	mutex_unlock(&rdev->mutex);
1791 
1792 	kfree_const(regulator->supply_name);
1793 	kfree(regulator);
1794 
1795 	module_put(rdev->owner);
1796 }
1797 
1798 /**
1799  * regulator_put - "free" the regulator source
1800  * @regulator: regulator source
1801  *
1802  * Note: drivers must ensure that all regulator_enable calls made on this
1803  * regulator source are balanced by regulator_disable calls prior to calling
1804  * this function.
1805  */
1806 void regulator_put(struct regulator *regulator)
1807 {
1808 	mutex_lock(&regulator_list_mutex);
1809 	_regulator_put(regulator);
1810 	mutex_unlock(&regulator_list_mutex);
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_put);
1813 
1814 /**
1815  * regulator_register_supply_alias - Provide device alias for supply lookup
1816  *
1817  * @dev: device that will be given as the regulator "consumer"
1818  * @id: Supply name or regulator ID
1819  * @alias_dev: device that should be used to lookup the supply
1820  * @alias_id: Supply name or regulator ID that should be used to lookup the
1821  * supply
1822  *
1823  * All lookups for id on dev will instead be conducted for alias_id on
1824  * alias_dev.
1825  */
1826 int regulator_register_supply_alias(struct device *dev, const char *id,
1827 				    struct device *alias_dev,
1828 				    const char *alias_id)
1829 {
1830 	struct regulator_supply_alias *map;
1831 
1832 	map = regulator_find_supply_alias(dev, id);
1833 	if (map)
1834 		return -EEXIST;
1835 
1836 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1837 	if (!map)
1838 		return -ENOMEM;
1839 
1840 	map->src_dev = dev;
1841 	map->src_supply = id;
1842 	map->alias_dev = alias_dev;
1843 	map->alias_supply = alias_id;
1844 
1845 	list_add(&map->list, &regulator_supply_alias_list);
1846 
1847 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1848 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1849 
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1853 
1854 /**
1855  * regulator_unregister_supply_alias - Remove device alias
1856  *
1857  * @dev: device that will be given as the regulator "consumer"
1858  * @id: Supply name or regulator ID
1859  *
1860  * Remove a lookup alias if one exists for id on dev.
1861  */
1862 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1863 {
1864 	struct regulator_supply_alias *map;
1865 
1866 	map = regulator_find_supply_alias(dev, id);
1867 	if (map) {
1868 		list_del(&map->list);
1869 		kfree(map);
1870 	}
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1873 
1874 /**
1875  * regulator_bulk_register_supply_alias - register multiple aliases
1876  *
1877  * @dev: device that will be given as the regulator "consumer"
1878  * @id: List of supply names or regulator IDs
1879  * @alias_dev: device that should be used to lookup the supply
1880  * @alias_id: List of supply names or regulator IDs that should be used to
1881  * lookup the supply
1882  * @num_id: Number of aliases to register
1883  *
1884  * @return 0 on success, an errno on failure.
1885  *
1886  * This helper function allows drivers to register several supply
1887  * aliases in one operation.  If any of the aliases cannot be
1888  * registered any aliases that were registered will be removed
1889  * before returning to the caller.
1890  */
1891 int regulator_bulk_register_supply_alias(struct device *dev,
1892 					 const char *const *id,
1893 					 struct device *alias_dev,
1894 					 const char *const *alias_id,
1895 					 int num_id)
1896 {
1897 	int i;
1898 	int ret;
1899 
1900 	for (i = 0; i < num_id; ++i) {
1901 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1902 						      alias_id[i]);
1903 		if (ret < 0)
1904 			goto err;
1905 	}
1906 
1907 	return 0;
1908 
1909 err:
1910 	dev_err(dev,
1911 		"Failed to create supply alias %s,%s -> %s,%s\n",
1912 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1913 
1914 	while (--i >= 0)
1915 		regulator_unregister_supply_alias(dev, id[i]);
1916 
1917 	return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1920 
1921 /**
1922  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1923  *
1924  * @dev: device that will be given as the regulator "consumer"
1925  * @id: List of supply names or regulator IDs
1926  * @num_id: Number of aliases to unregister
1927  *
1928  * This helper function allows drivers to unregister several supply
1929  * aliases in one operation.
1930  */
1931 void regulator_bulk_unregister_supply_alias(struct device *dev,
1932 					    const char *const *id,
1933 					    int num_id)
1934 {
1935 	int i;
1936 
1937 	for (i = 0; i < num_id; ++i)
1938 		regulator_unregister_supply_alias(dev, id[i]);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1941 
1942 
1943 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1944 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1945 				const struct regulator_config *config)
1946 {
1947 	struct regulator_enable_gpio *pin;
1948 	struct gpio_desc *gpiod;
1949 	int ret;
1950 
1951 	gpiod = gpio_to_desc(config->ena_gpio);
1952 
1953 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1954 		if (pin->gpiod == gpiod) {
1955 			rdev_dbg(rdev, "GPIO %d is already used\n",
1956 				config->ena_gpio);
1957 			goto update_ena_gpio_to_rdev;
1958 		}
1959 	}
1960 
1961 	ret = gpio_request_one(config->ena_gpio,
1962 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1963 				rdev_get_name(rdev));
1964 	if (ret)
1965 		return ret;
1966 
1967 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1968 	if (pin == NULL) {
1969 		gpio_free(config->ena_gpio);
1970 		return -ENOMEM;
1971 	}
1972 
1973 	pin->gpiod = gpiod;
1974 	pin->ena_gpio_invert = config->ena_gpio_invert;
1975 	list_add(&pin->list, &regulator_ena_gpio_list);
1976 
1977 update_ena_gpio_to_rdev:
1978 	pin->request_count++;
1979 	rdev->ena_pin = pin;
1980 	return 0;
1981 }
1982 
1983 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1984 {
1985 	struct regulator_enable_gpio *pin, *n;
1986 
1987 	if (!rdev->ena_pin)
1988 		return;
1989 
1990 	/* Free the GPIO only in case of no use */
1991 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1992 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1993 			if (pin->request_count <= 1) {
1994 				pin->request_count = 0;
1995 				gpiod_put(pin->gpiod);
1996 				list_del(&pin->list);
1997 				kfree(pin);
1998 				rdev->ena_pin = NULL;
1999 				return;
2000 			} else {
2001 				pin->request_count--;
2002 			}
2003 		}
2004 	}
2005 }
2006 
2007 /**
2008  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2009  * @rdev: regulator_dev structure
2010  * @enable: enable GPIO at initial use?
2011  *
2012  * GPIO is enabled in case of initial use. (enable_count is 0)
2013  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2014  */
2015 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2016 {
2017 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2018 
2019 	if (!pin)
2020 		return -EINVAL;
2021 
2022 	if (enable) {
2023 		/* Enable GPIO at initial use */
2024 		if (pin->enable_count == 0)
2025 			gpiod_set_value_cansleep(pin->gpiod,
2026 						 !pin->ena_gpio_invert);
2027 
2028 		pin->enable_count++;
2029 	} else {
2030 		if (pin->enable_count > 1) {
2031 			pin->enable_count--;
2032 			return 0;
2033 		}
2034 
2035 		/* Disable GPIO if not used */
2036 		if (pin->enable_count <= 1) {
2037 			gpiod_set_value_cansleep(pin->gpiod,
2038 						 pin->ena_gpio_invert);
2039 			pin->enable_count = 0;
2040 		}
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 /**
2047  * _regulator_enable_delay - a delay helper function
2048  * @delay: time to delay in microseconds
2049  *
2050  * Delay for the requested amount of time as per the guidelines in:
2051  *
2052  *     Documentation/timers/timers-howto.txt
2053  *
2054  * The assumption here is that regulators will never be enabled in
2055  * atomic context and therefore sleeping functions can be used.
2056  */
2057 static void _regulator_enable_delay(unsigned int delay)
2058 {
2059 	unsigned int ms = delay / 1000;
2060 	unsigned int us = delay % 1000;
2061 
2062 	if (ms > 0) {
2063 		/*
2064 		 * For small enough values, handle super-millisecond
2065 		 * delays in the usleep_range() call below.
2066 		 */
2067 		if (ms < 20)
2068 			us += ms * 1000;
2069 		else
2070 			msleep(ms);
2071 	}
2072 
2073 	/*
2074 	 * Give the scheduler some room to coalesce with any other
2075 	 * wakeup sources. For delays shorter than 10 us, don't even
2076 	 * bother setting up high-resolution timers and just busy-
2077 	 * loop.
2078 	 */
2079 	if (us >= 10)
2080 		usleep_range(us, us + 100);
2081 	else
2082 		udelay(us);
2083 }
2084 
2085 static int _regulator_do_enable(struct regulator_dev *rdev)
2086 {
2087 	int ret, delay;
2088 
2089 	/* Query before enabling in case configuration dependent.  */
2090 	ret = _regulator_get_enable_time(rdev);
2091 	if (ret >= 0) {
2092 		delay = ret;
2093 	} else {
2094 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2095 		delay = 0;
2096 	}
2097 
2098 	trace_regulator_enable(rdev_get_name(rdev));
2099 
2100 	if (rdev->desc->off_on_delay) {
2101 		/* if needed, keep a distance of off_on_delay from last time
2102 		 * this regulator was disabled.
2103 		 */
2104 		unsigned long start_jiffy = jiffies;
2105 		unsigned long intended, max_delay, remaining;
2106 
2107 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2108 		intended = rdev->last_off_jiffy + max_delay;
2109 
2110 		if (time_before(start_jiffy, intended)) {
2111 			/* calc remaining jiffies to deal with one-time
2112 			 * timer wrapping.
2113 			 * in case of multiple timer wrapping, either it can be
2114 			 * detected by out-of-range remaining, or it cannot be
2115 			 * detected and we gets a panelty of
2116 			 * _regulator_enable_delay().
2117 			 */
2118 			remaining = intended - start_jiffy;
2119 			if (remaining <= max_delay)
2120 				_regulator_enable_delay(
2121 						jiffies_to_usecs(remaining));
2122 		}
2123 	}
2124 
2125 	if (rdev->ena_pin) {
2126 		if (!rdev->ena_gpio_state) {
2127 			ret = regulator_ena_gpio_ctrl(rdev, true);
2128 			if (ret < 0)
2129 				return ret;
2130 			rdev->ena_gpio_state = 1;
2131 		}
2132 	} else if (rdev->desc->ops->enable) {
2133 		ret = rdev->desc->ops->enable(rdev);
2134 		if (ret < 0)
2135 			return ret;
2136 	} else {
2137 		return -EINVAL;
2138 	}
2139 
2140 	/* Allow the regulator to ramp; it would be useful to extend
2141 	 * this for bulk operations so that the regulators can ramp
2142 	 * together.  */
2143 	trace_regulator_enable_delay(rdev_get_name(rdev));
2144 
2145 	_regulator_enable_delay(delay);
2146 
2147 	trace_regulator_enable_complete(rdev_get_name(rdev));
2148 
2149 	return 0;
2150 }
2151 
2152 /* locks held by regulator_enable() */
2153 static int _regulator_enable(struct regulator_dev *rdev)
2154 {
2155 	int ret;
2156 
2157 	lockdep_assert_held_once(&rdev->mutex);
2158 
2159 	/* check voltage and requested load before enabling */
2160 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2161 		drms_uA_update(rdev);
2162 
2163 	if (rdev->use_count == 0) {
2164 		/* The regulator may on if it's not switchable or left on */
2165 		ret = _regulator_is_enabled(rdev);
2166 		if (ret == -EINVAL || ret == 0) {
2167 			if (!regulator_ops_is_valid(rdev,
2168 					REGULATOR_CHANGE_STATUS))
2169 				return -EPERM;
2170 
2171 			ret = _regulator_do_enable(rdev);
2172 			if (ret < 0)
2173 				return ret;
2174 
2175 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2176 					     NULL);
2177 		} else if (ret < 0) {
2178 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2179 			return ret;
2180 		}
2181 		/* Fallthrough on positive return values - already enabled */
2182 	}
2183 
2184 	rdev->use_count++;
2185 
2186 	return 0;
2187 }
2188 
2189 /**
2190  * regulator_enable - enable regulator output
2191  * @regulator: regulator source
2192  *
2193  * Request that the regulator be enabled with the regulator output at
2194  * the predefined voltage or current value.  Calls to regulator_enable()
2195  * must be balanced with calls to regulator_disable().
2196  *
2197  * NOTE: the output value can be set by other drivers, boot loader or may be
2198  * hardwired in the regulator.
2199  */
2200 int regulator_enable(struct regulator *regulator)
2201 {
2202 	struct regulator_dev *rdev = regulator->rdev;
2203 	int ret = 0;
2204 
2205 	if (regulator->always_on)
2206 		return 0;
2207 
2208 	if (rdev->supply) {
2209 		ret = regulator_enable(rdev->supply);
2210 		if (ret != 0)
2211 			return ret;
2212 	}
2213 
2214 	mutex_lock(&rdev->mutex);
2215 	ret = _regulator_enable(rdev);
2216 	mutex_unlock(&rdev->mutex);
2217 
2218 	if (ret != 0 && rdev->supply)
2219 		regulator_disable(rdev->supply);
2220 
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(regulator_enable);
2224 
2225 static int _regulator_do_disable(struct regulator_dev *rdev)
2226 {
2227 	int ret;
2228 
2229 	trace_regulator_disable(rdev_get_name(rdev));
2230 
2231 	if (rdev->ena_pin) {
2232 		if (rdev->ena_gpio_state) {
2233 			ret = regulator_ena_gpio_ctrl(rdev, false);
2234 			if (ret < 0)
2235 				return ret;
2236 			rdev->ena_gpio_state = 0;
2237 		}
2238 
2239 	} else if (rdev->desc->ops->disable) {
2240 		ret = rdev->desc->ops->disable(rdev);
2241 		if (ret != 0)
2242 			return ret;
2243 	}
2244 
2245 	/* cares about last_off_jiffy only if off_on_delay is required by
2246 	 * device.
2247 	 */
2248 	if (rdev->desc->off_on_delay)
2249 		rdev->last_off_jiffy = jiffies;
2250 
2251 	trace_regulator_disable_complete(rdev_get_name(rdev));
2252 
2253 	return 0;
2254 }
2255 
2256 /* locks held by regulator_disable() */
2257 static int _regulator_disable(struct regulator_dev *rdev)
2258 {
2259 	int ret = 0;
2260 
2261 	lockdep_assert_held_once(&rdev->mutex);
2262 
2263 	if (WARN(rdev->use_count <= 0,
2264 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2265 		return -EIO;
2266 
2267 	/* are we the last user and permitted to disable ? */
2268 	if (rdev->use_count == 1 &&
2269 	    (rdev->constraints && !rdev->constraints->always_on)) {
2270 
2271 		/* we are last user */
2272 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2273 			ret = _notifier_call_chain(rdev,
2274 						   REGULATOR_EVENT_PRE_DISABLE,
2275 						   NULL);
2276 			if (ret & NOTIFY_STOP_MASK)
2277 				return -EINVAL;
2278 
2279 			ret = _regulator_do_disable(rdev);
2280 			if (ret < 0) {
2281 				rdev_err(rdev, "failed to disable\n");
2282 				_notifier_call_chain(rdev,
2283 						REGULATOR_EVENT_ABORT_DISABLE,
2284 						NULL);
2285 				return ret;
2286 			}
2287 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2288 					NULL);
2289 		}
2290 
2291 		rdev->use_count = 0;
2292 	} else if (rdev->use_count > 1) {
2293 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2294 			drms_uA_update(rdev);
2295 
2296 		rdev->use_count--;
2297 	}
2298 
2299 	return ret;
2300 }
2301 
2302 /**
2303  * regulator_disable - disable regulator output
2304  * @regulator: regulator source
2305  *
2306  * Disable the regulator output voltage or current.  Calls to
2307  * regulator_enable() must be balanced with calls to
2308  * regulator_disable().
2309  *
2310  * NOTE: this will only disable the regulator output if no other consumer
2311  * devices have it enabled, the regulator device supports disabling and
2312  * machine constraints permit this operation.
2313  */
2314 int regulator_disable(struct regulator *regulator)
2315 {
2316 	struct regulator_dev *rdev = regulator->rdev;
2317 	int ret = 0;
2318 
2319 	if (regulator->always_on)
2320 		return 0;
2321 
2322 	mutex_lock(&rdev->mutex);
2323 	ret = _regulator_disable(rdev);
2324 	mutex_unlock(&rdev->mutex);
2325 
2326 	if (ret == 0 && rdev->supply)
2327 		regulator_disable(rdev->supply);
2328 
2329 	return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_disable);
2332 
2333 /* locks held by regulator_force_disable() */
2334 static int _regulator_force_disable(struct regulator_dev *rdev)
2335 {
2336 	int ret = 0;
2337 
2338 	lockdep_assert_held_once(&rdev->mutex);
2339 
2340 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2342 	if (ret & NOTIFY_STOP_MASK)
2343 		return -EINVAL;
2344 
2345 	ret = _regulator_do_disable(rdev);
2346 	if (ret < 0) {
2347 		rdev_err(rdev, "failed to force disable\n");
2348 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2350 		return ret;
2351 	}
2352 
2353 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2354 			REGULATOR_EVENT_DISABLE, NULL);
2355 
2356 	return 0;
2357 }
2358 
2359 /**
2360  * regulator_force_disable - force disable regulator output
2361  * @regulator: regulator source
2362  *
2363  * Forcibly disable the regulator output voltage or current.
2364  * NOTE: this *will* disable the regulator output even if other consumer
2365  * devices have it enabled. This should be used for situations when device
2366  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2367  */
2368 int regulator_force_disable(struct regulator *regulator)
2369 {
2370 	struct regulator_dev *rdev = regulator->rdev;
2371 	int ret;
2372 
2373 	mutex_lock(&rdev->mutex);
2374 	regulator->uA_load = 0;
2375 	ret = _regulator_force_disable(regulator->rdev);
2376 	mutex_unlock(&rdev->mutex);
2377 
2378 	if (rdev->supply)
2379 		while (rdev->open_count--)
2380 			regulator_disable(rdev->supply);
2381 
2382 	return ret;
2383 }
2384 EXPORT_SYMBOL_GPL(regulator_force_disable);
2385 
2386 static void regulator_disable_work(struct work_struct *work)
2387 {
2388 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2389 						  disable_work.work);
2390 	int count, i, ret;
2391 
2392 	mutex_lock(&rdev->mutex);
2393 
2394 	BUG_ON(!rdev->deferred_disables);
2395 
2396 	count = rdev->deferred_disables;
2397 	rdev->deferred_disables = 0;
2398 
2399 	for (i = 0; i < count; i++) {
2400 		ret = _regulator_disable(rdev);
2401 		if (ret != 0)
2402 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2403 	}
2404 
2405 	mutex_unlock(&rdev->mutex);
2406 
2407 	if (rdev->supply) {
2408 		for (i = 0; i < count; i++) {
2409 			ret = regulator_disable(rdev->supply);
2410 			if (ret != 0) {
2411 				rdev_err(rdev,
2412 					 "Supply disable failed: %d\n", ret);
2413 			}
2414 		}
2415 	}
2416 }
2417 
2418 /**
2419  * regulator_disable_deferred - disable regulator output with delay
2420  * @regulator: regulator source
2421  * @ms: miliseconds until the regulator is disabled
2422  *
2423  * Execute regulator_disable() on the regulator after a delay.  This
2424  * is intended for use with devices that require some time to quiesce.
2425  *
2426  * NOTE: this will only disable the regulator output if no other consumer
2427  * devices have it enabled, the regulator device supports disabling and
2428  * machine constraints permit this operation.
2429  */
2430 int regulator_disable_deferred(struct regulator *regulator, int ms)
2431 {
2432 	struct regulator_dev *rdev = regulator->rdev;
2433 
2434 	if (regulator->always_on)
2435 		return 0;
2436 
2437 	if (!ms)
2438 		return regulator_disable(regulator);
2439 
2440 	mutex_lock(&rdev->mutex);
2441 	rdev->deferred_disables++;
2442 	mutex_unlock(&rdev->mutex);
2443 
2444 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2445 			   msecs_to_jiffies(ms));
2446 	return 0;
2447 }
2448 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2449 
2450 static int _regulator_is_enabled(struct regulator_dev *rdev)
2451 {
2452 	/* A GPIO control always takes precedence */
2453 	if (rdev->ena_pin)
2454 		return rdev->ena_gpio_state;
2455 
2456 	/* If we don't know then assume that the regulator is always on */
2457 	if (!rdev->desc->ops->is_enabled)
2458 		return 1;
2459 
2460 	return rdev->desc->ops->is_enabled(rdev);
2461 }
2462 
2463 static int _regulator_list_voltage(struct regulator *regulator,
2464 				    unsigned selector, int lock)
2465 {
2466 	struct regulator_dev *rdev = regulator->rdev;
2467 	const struct regulator_ops *ops = rdev->desc->ops;
2468 	int ret;
2469 
2470 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2471 		return rdev->desc->fixed_uV;
2472 
2473 	if (ops->list_voltage) {
2474 		if (selector >= rdev->desc->n_voltages)
2475 			return -EINVAL;
2476 		if (lock)
2477 			mutex_lock(&rdev->mutex);
2478 		ret = ops->list_voltage(rdev, selector);
2479 		if (lock)
2480 			mutex_unlock(&rdev->mutex);
2481 	} else if (rdev->is_switch && rdev->supply) {
2482 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2483 	} else {
2484 		return -EINVAL;
2485 	}
2486 
2487 	if (ret > 0) {
2488 		if (ret < rdev->constraints->min_uV)
2489 			ret = 0;
2490 		else if (ret > rdev->constraints->max_uV)
2491 			ret = 0;
2492 	}
2493 
2494 	return ret;
2495 }
2496 
2497 /**
2498  * regulator_is_enabled - is the regulator output enabled
2499  * @regulator: regulator source
2500  *
2501  * Returns positive if the regulator driver backing the source/client
2502  * has requested that the device be enabled, zero if it hasn't, else a
2503  * negative errno code.
2504  *
2505  * Note that the device backing this regulator handle can have multiple
2506  * users, so it might be enabled even if regulator_enable() was never
2507  * called for this particular source.
2508  */
2509 int regulator_is_enabled(struct regulator *regulator)
2510 {
2511 	int ret;
2512 
2513 	if (regulator->always_on)
2514 		return 1;
2515 
2516 	mutex_lock(&regulator->rdev->mutex);
2517 	ret = _regulator_is_enabled(regulator->rdev);
2518 	mutex_unlock(&regulator->rdev->mutex);
2519 
2520 	return ret;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2523 
2524 /**
2525  * regulator_count_voltages - count regulator_list_voltage() selectors
2526  * @regulator: regulator source
2527  *
2528  * Returns number of selectors, or negative errno.  Selectors are
2529  * numbered starting at zero, and typically correspond to bitfields
2530  * in hardware registers.
2531  */
2532 int regulator_count_voltages(struct regulator *regulator)
2533 {
2534 	struct regulator_dev	*rdev = regulator->rdev;
2535 
2536 	if (rdev->desc->n_voltages)
2537 		return rdev->desc->n_voltages;
2538 
2539 	if (!rdev->is_switch || !rdev->supply)
2540 		return -EINVAL;
2541 
2542 	return regulator_count_voltages(rdev->supply);
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2545 
2546 /**
2547  * regulator_list_voltage - enumerate supported voltages
2548  * @regulator: regulator source
2549  * @selector: identify voltage to list
2550  * Context: can sleep
2551  *
2552  * Returns a voltage that can be passed to @regulator_set_voltage(),
2553  * zero if this selector code can't be used on this system, or a
2554  * negative errno.
2555  */
2556 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2557 {
2558 	return _regulator_list_voltage(regulator, selector, 1);
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2561 
2562 /**
2563  * regulator_get_regmap - get the regulator's register map
2564  * @regulator: regulator source
2565  *
2566  * Returns the register map for the given regulator, or an ERR_PTR value
2567  * if the regulator doesn't use regmap.
2568  */
2569 struct regmap *regulator_get_regmap(struct regulator *regulator)
2570 {
2571 	struct regmap *map = regulator->rdev->regmap;
2572 
2573 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2574 }
2575 
2576 /**
2577  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2578  * @regulator: regulator source
2579  * @vsel_reg: voltage selector register, output parameter
2580  * @vsel_mask: mask for voltage selector bitfield, output parameter
2581  *
2582  * Returns the hardware register offset and bitmask used for setting the
2583  * regulator voltage. This might be useful when configuring voltage-scaling
2584  * hardware or firmware that can make I2C requests behind the kernel's back,
2585  * for example.
2586  *
2587  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2588  * and 0 is returned, otherwise a negative errno is returned.
2589  */
2590 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2591 					 unsigned *vsel_reg,
2592 					 unsigned *vsel_mask)
2593 {
2594 	struct regulator_dev *rdev = regulator->rdev;
2595 	const struct regulator_ops *ops = rdev->desc->ops;
2596 
2597 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2598 		return -EOPNOTSUPP;
2599 
2600 	 *vsel_reg = rdev->desc->vsel_reg;
2601 	 *vsel_mask = rdev->desc->vsel_mask;
2602 
2603 	 return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2606 
2607 /**
2608  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2609  * @regulator: regulator source
2610  * @selector: identify voltage to list
2611  *
2612  * Converts the selector to a hardware-specific voltage selector that can be
2613  * directly written to the regulator registers. The address of the voltage
2614  * register can be determined by calling @regulator_get_hardware_vsel_register.
2615  *
2616  * On error a negative errno is returned.
2617  */
2618 int regulator_list_hardware_vsel(struct regulator *regulator,
2619 				 unsigned selector)
2620 {
2621 	struct regulator_dev *rdev = regulator->rdev;
2622 	const struct regulator_ops *ops = rdev->desc->ops;
2623 
2624 	if (selector >= rdev->desc->n_voltages)
2625 		return -EINVAL;
2626 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2627 		return -EOPNOTSUPP;
2628 
2629 	return selector;
2630 }
2631 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2632 
2633 /**
2634  * regulator_get_linear_step - return the voltage step size between VSEL values
2635  * @regulator: regulator source
2636  *
2637  * Returns the voltage step size between VSEL values for linear
2638  * regulators, or return 0 if the regulator isn't a linear regulator.
2639  */
2640 unsigned int regulator_get_linear_step(struct regulator *regulator)
2641 {
2642 	struct regulator_dev *rdev = regulator->rdev;
2643 
2644 	return rdev->desc->uV_step;
2645 }
2646 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2647 
2648 /**
2649  * regulator_is_supported_voltage - check if a voltage range can be supported
2650  *
2651  * @regulator: Regulator to check.
2652  * @min_uV: Minimum required voltage in uV.
2653  * @max_uV: Maximum required voltage in uV.
2654  *
2655  * Returns a boolean or a negative error code.
2656  */
2657 int regulator_is_supported_voltage(struct regulator *regulator,
2658 				   int min_uV, int max_uV)
2659 {
2660 	struct regulator_dev *rdev = regulator->rdev;
2661 	int i, voltages, ret;
2662 
2663 	/* If we can't change voltage check the current voltage */
2664 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2665 		ret = regulator_get_voltage(regulator);
2666 		if (ret >= 0)
2667 			return min_uV <= ret && ret <= max_uV;
2668 		else
2669 			return ret;
2670 	}
2671 
2672 	/* Any voltage within constrains range is fine? */
2673 	if (rdev->desc->continuous_voltage_range)
2674 		return min_uV >= rdev->constraints->min_uV &&
2675 				max_uV <= rdev->constraints->max_uV;
2676 
2677 	ret = regulator_count_voltages(regulator);
2678 	if (ret < 0)
2679 		return ret;
2680 	voltages = ret;
2681 
2682 	for (i = 0; i < voltages; i++) {
2683 		ret = regulator_list_voltage(regulator, i);
2684 
2685 		if (ret >= min_uV && ret <= max_uV)
2686 			return 1;
2687 	}
2688 
2689 	return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2692 
2693 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2694 				 int max_uV)
2695 {
2696 	const struct regulator_desc *desc = rdev->desc;
2697 
2698 	if (desc->ops->map_voltage)
2699 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2700 
2701 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2702 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2703 
2704 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2705 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2706 
2707 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2708 }
2709 
2710 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2711 				       int min_uV, int max_uV,
2712 				       unsigned *selector)
2713 {
2714 	struct pre_voltage_change_data data;
2715 	int ret;
2716 
2717 	data.old_uV = _regulator_get_voltage(rdev);
2718 	data.min_uV = min_uV;
2719 	data.max_uV = max_uV;
2720 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2721 				   &data);
2722 	if (ret & NOTIFY_STOP_MASK)
2723 		return -EINVAL;
2724 
2725 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2726 	if (ret >= 0)
2727 		return ret;
2728 
2729 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2730 			     (void *)data.old_uV);
2731 
2732 	return ret;
2733 }
2734 
2735 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2736 					   int uV, unsigned selector)
2737 {
2738 	struct pre_voltage_change_data data;
2739 	int ret;
2740 
2741 	data.old_uV = _regulator_get_voltage(rdev);
2742 	data.min_uV = uV;
2743 	data.max_uV = uV;
2744 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2745 				   &data);
2746 	if (ret & NOTIFY_STOP_MASK)
2747 		return -EINVAL;
2748 
2749 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2750 	if (ret >= 0)
2751 		return ret;
2752 
2753 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2754 			     (void *)data.old_uV);
2755 
2756 	return ret;
2757 }
2758 
2759 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2760 				       int old_uV, int new_uV)
2761 {
2762 	unsigned int ramp_delay = 0;
2763 
2764 	if (rdev->constraints->ramp_delay)
2765 		ramp_delay = rdev->constraints->ramp_delay;
2766 	else if (rdev->desc->ramp_delay)
2767 		ramp_delay = rdev->desc->ramp_delay;
2768 	else if (rdev->constraints->settling_time)
2769 		return rdev->constraints->settling_time;
2770 	else if (rdev->constraints->settling_time_up &&
2771 		 (new_uV > old_uV))
2772 		return rdev->constraints->settling_time_up;
2773 	else if (rdev->constraints->settling_time_down &&
2774 		 (new_uV < old_uV))
2775 		return rdev->constraints->settling_time_down;
2776 
2777 	if (ramp_delay == 0) {
2778 		rdev_dbg(rdev, "ramp_delay not set\n");
2779 		return 0;
2780 	}
2781 
2782 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2783 }
2784 
2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2786 				     int min_uV, int max_uV)
2787 {
2788 	int ret;
2789 	int delay = 0;
2790 	int best_val = 0;
2791 	unsigned int selector;
2792 	int old_selector = -1;
2793 	const struct regulator_ops *ops = rdev->desc->ops;
2794 	int old_uV = _regulator_get_voltage(rdev);
2795 
2796 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2797 
2798 	min_uV += rdev->constraints->uV_offset;
2799 	max_uV += rdev->constraints->uV_offset;
2800 
2801 	/*
2802 	 * If we can't obtain the old selector there is not enough
2803 	 * info to call set_voltage_time_sel().
2804 	 */
2805 	if (_regulator_is_enabled(rdev) &&
2806 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2807 		old_selector = ops->get_voltage_sel(rdev);
2808 		if (old_selector < 0)
2809 			return old_selector;
2810 	}
2811 
2812 	if (ops->set_voltage) {
2813 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2814 						  &selector);
2815 
2816 		if (ret >= 0) {
2817 			if (ops->list_voltage)
2818 				best_val = ops->list_voltage(rdev,
2819 							     selector);
2820 			else
2821 				best_val = _regulator_get_voltage(rdev);
2822 		}
2823 
2824 	} else if (ops->set_voltage_sel) {
2825 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2826 		if (ret >= 0) {
2827 			best_val = ops->list_voltage(rdev, ret);
2828 			if (min_uV <= best_val && max_uV >= best_val) {
2829 				selector = ret;
2830 				if (old_selector == selector)
2831 					ret = 0;
2832 				else
2833 					ret = _regulator_call_set_voltage_sel(
2834 						rdev, best_val, selector);
2835 			} else {
2836 				ret = -EINVAL;
2837 			}
2838 		}
2839 	} else {
2840 		ret = -EINVAL;
2841 	}
2842 
2843 	if (ret)
2844 		goto out;
2845 
2846 	if (ops->set_voltage_time_sel) {
2847 		/*
2848 		 * Call set_voltage_time_sel if successfully obtained
2849 		 * old_selector
2850 		 */
2851 		if (old_selector >= 0 && old_selector != selector)
2852 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2853 							  selector);
2854 	} else {
2855 		if (old_uV != best_val) {
2856 			if (ops->set_voltage_time)
2857 				delay = ops->set_voltage_time(rdev, old_uV,
2858 							      best_val);
2859 			else
2860 				delay = _regulator_set_voltage_time(rdev,
2861 								    old_uV,
2862 								    best_val);
2863 		}
2864 	}
2865 
2866 	if (delay < 0) {
2867 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2868 		delay = 0;
2869 	}
2870 
2871 	/* Insert any necessary delays */
2872 	if (delay >= 1000) {
2873 		mdelay(delay / 1000);
2874 		udelay(delay % 1000);
2875 	} else if (delay) {
2876 		udelay(delay);
2877 	}
2878 
2879 	if (best_val >= 0) {
2880 		unsigned long data = best_val;
2881 
2882 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2883 				     (void *)data);
2884 	}
2885 
2886 out:
2887 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2888 
2889 	return ret;
2890 }
2891 
2892 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2893 					  int min_uV, int max_uV)
2894 {
2895 	struct regulator_dev *rdev = regulator->rdev;
2896 	int ret = 0;
2897 	int old_min_uV, old_max_uV;
2898 	int current_uV;
2899 	int best_supply_uV = 0;
2900 	int supply_change_uV = 0;
2901 
2902 	/* If we're setting the same range as last time the change
2903 	 * should be a noop (some cpufreq implementations use the same
2904 	 * voltage for multiple frequencies, for example).
2905 	 */
2906 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2907 		goto out;
2908 
2909 	/* If we're trying to set a range that overlaps the current voltage,
2910 	 * return successfully even though the regulator does not support
2911 	 * changing the voltage.
2912 	 */
2913 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2914 		current_uV = _regulator_get_voltage(rdev);
2915 		if (min_uV <= current_uV && current_uV <= max_uV) {
2916 			regulator->min_uV = min_uV;
2917 			regulator->max_uV = max_uV;
2918 			goto out;
2919 		}
2920 	}
2921 
2922 	/* sanity check */
2923 	if (!rdev->desc->ops->set_voltage &&
2924 	    !rdev->desc->ops->set_voltage_sel) {
2925 		ret = -EINVAL;
2926 		goto out;
2927 	}
2928 
2929 	/* constraints check */
2930 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2931 	if (ret < 0)
2932 		goto out;
2933 
2934 	/* restore original values in case of error */
2935 	old_min_uV = regulator->min_uV;
2936 	old_max_uV = regulator->max_uV;
2937 	regulator->min_uV = min_uV;
2938 	regulator->max_uV = max_uV;
2939 
2940 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2941 	if (ret < 0)
2942 		goto out2;
2943 
2944 	if (rdev->supply &&
2945 	    regulator_ops_is_valid(rdev->supply->rdev,
2946 				   REGULATOR_CHANGE_VOLTAGE) &&
2947 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2948 					   rdev->desc->ops->get_voltage_sel))) {
2949 		int current_supply_uV;
2950 		int selector;
2951 
2952 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2953 		if (selector < 0) {
2954 			ret = selector;
2955 			goto out2;
2956 		}
2957 
2958 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2959 		if (best_supply_uV < 0) {
2960 			ret = best_supply_uV;
2961 			goto out2;
2962 		}
2963 
2964 		best_supply_uV += rdev->desc->min_dropout_uV;
2965 
2966 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2967 		if (current_supply_uV < 0) {
2968 			ret = current_supply_uV;
2969 			goto out2;
2970 		}
2971 
2972 		supply_change_uV = best_supply_uV - current_supply_uV;
2973 	}
2974 
2975 	if (supply_change_uV > 0) {
2976 		ret = regulator_set_voltage_unlocked(rdev->supply,
2977 				best_supply_uV, INT_MAX);
2978 		if (ret) {
2979 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2980 					ret);
2981 			goto out2;
2982 		}
2983 	}
2984 
2985 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2986 	if (ret < 0)
2987 		goto out2;
2988 
2989 	if (supply_change_uV < 0) {
2990 		ret = regulator_set_voltage_unlocked(rdev->supply,
2991 				best_supply_uV, INT_MAX);
2992 		if (ret)
2993 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2994 					ret);
2995 		/* No need to fail here */
2996 		ret = 0;
2997 	}
2998 
2999 out:
3000 	return ret;
3001 out2:
3002 	regulator->min_uV = old_min_uV;
3003 	regulator->max_uV = old_max_uV;
3004 
3005 	return ret;
3006 }
3007 
3008 /**
3009  * regulator_set_voltage - set regulator output voltage
3010  * @regulator: regulator source
3011  * @min_uV: Minimum required voltage in uV
3012  * @max_uV: Maximum acceptable voltage in uV
3013  *
3014  * Sets a voltage regulator to the desired output voltage. This can be set
3015  * during any regulator state. IOW, regulator can be disabled or enabled.
3016  *
3017  * If the regulator is enabled then the voltage will change to the new value
3018  * immediately otherwise if the regulator is disabled the regulator will
3019  * output at the new voltage when enabled.
3020  *
3021  * NOTE: If the regulator is shared between several devices then the lowest
3022  * request voltage that meets the system constraints will be used.
3023  * Regulator system constraints must be set for this regulator before
3024  * calling this function otherwise this call will fail.
3025  */
3026 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3027 {
3028 	int ret = 0;
3029 
3030 	regulator_lock_supply(regulator->rdev);
3031 
3032 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3033 
3034 	regulator_unlock_supply(regulator->rdev);
3035 
3036 	return ret;
3037 }
3038 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3039 
3040 /**
3041  * regulator_set_voltage_time - get raise/fall time
3042  * @regulator: regulator source
3043  * @old_uV: starting voltage in microvolts
3044  * @new_uV: target voltage in microvolts
3045  *
3046  * Provided with the starting and ending voltage, this function attempts to
3047  * calculate the time in microseconds required to rise or fall to this new
3048  * voltage.
3049  */
3050 int regulator_set_voltage_time(struct regulator *regulator,
3051 			       int old_uV, int new_uV)
3052 {
3053 	struct regulator_dev *rdev = regulator->rdev;
3054 	const struct regulator_ops *ops = rdev->desc->ops;
3055 	int old_sel = -1;
3056 	int new_sel = -1;
3057 	int voltage;
3058 	int i;
3059 
3060 	if (ops->set_voltage_time)
3061 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3062 	else if (!ops->set_voltage_time_sel)
3063 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3064 
3065 	/* Currently requires operations to do this */
3066 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3067 		return -EINVAL;
3068 
3069 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3070 		/* We only look for exact voltage matches here */
3071 		voltage = regulator_list_voltage(regulator, i);
3072 		if (voltage < 0)
3073 			return -EINVAL;
3074 		if (voltage == 0)
3075 			continue;
3076 		if (voltage == old_uV)
3077 			old_sel = i;
3078 		if (voltage == new_uV)
3079 			new_sel = i;
3080 	}
3081 
3082 	if (old_sel < 0 || new_sel < 0)
3083 		return -EINVAL;
3084 
3085 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3086 }
3087 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3088 
3089 /**
3090  * regulator_set_voltage_time_sel - get raise/fall time
3091  * @rdev: regulator source device
3092  * @old_selector: selector for starting voltage
3093  * @new_selector: selector for target voltage
3094  *
3095  * Provided with the starting and target voltage selectors, this function
3096  * returns time in microseconds required to rise or fall to this new voltage
3097  *
3098  * Drivers providing ramp_delay in regulation_constraints can use this as their
3099  * set_voltage_time_sel() operation.
3100  */
3101 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3102 				   unsigned int old_selector,
3103 				   unsigned int new_selector)
3104 {
3105 	int old_volt, new_volt;
3106 
3107 	/* sanity check */
3108 	if (!rdev->desc->ops->list_voltage)
3109 		return -EINVAL;
3110 
3111 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3112 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3113 
3114 	if (rdev->desc->ops->set_voltage_time)
3115 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3116 							 new_volt);
3117 	else
3118 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3119 }
3120 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3121 
3122 /**
3123  * regulator_sync_voltage - re-apply last regulator output voltage
3124  * @regulator: regulator source
3125  *
3126  * Re-apply the last configured voltage.  This is intended to be used
3127  * where some external control source the consumer is cooperating with
3128  * has caused the configured voltage to change.
3129  */
3130 int regulator_sync_voltage(struct regulator *regulator)
3131 {
3132 	struct regulator_dev *rdev = regulator->rdev;
3133 	int ret, min_uV, max_uV;
3134 
3135 	mutex_lock(&rdev->mutex);
3136 
3137 	if (!rdev->desc->ops->set_voltage &&
3138 	    !rdev->desc->ops->set_voltage_sel) {
3139 		ret = -EINVAL;
3140 		goto out;
3141 	}
3142 
3143 	/* This is only going to work if we've had a voltage configured. */
3144 	if (!regulator->min_uV && !regulator->max_uV) {
3145 		ret = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	min_uV = regulator->min_uV;
3150 	max_uV = regulator->max_uV;
3151 
3152 	/* This should be a paranoia check... */
3153 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3154 	if (ret < 0)
3155 		goto out;
3156 
3157 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3158 	if (ret < 0)
3159 		goto out;
3160 
3161 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3162 
3163 out:
3164 	mutex_unlock(&rdev->mutex);
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3168 
3169 static int _regulator_get_voltage(struct regulator_dev *rdev)
3170 {
3171 	int sel, ret;
3172 	bool bypassed;
3173 
3174 	if (rdev->desc->ops->get_bypass) {
3175 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3176 		if (ret < 0)
3177 			return ret;
3178 		if (bypassed) {
3179 			/* if bypassed the regulator must have a supply */
3180 			if (!rdev->supply) {
3181 				rdev_err(rdev,
3182 					 "bypassed regulator has no supply!\n");
3183 				return -EPROBE_DEFER;
3184 			}
3185 
3186 			return _regulator_get_voltage(rdev->supply->rdev);
3187 		}
3188 	}
3189 
3190 	if (rdev->desc->ops->get_voltage_sel) {
3191 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3192 		if (sel < 0)
3193 			return sel;
3194 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3195 	} else if (rdev->desc->ops->get_voltage) {
3196 		ret = rdev->desc->ops->get_voltage(rdev);
3197 	} else if (rdev->desc->ops->list_voltage) {
3198 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3199 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3200 		ret = rdev->desc->fixed_uV;
3201 	} else if (rdev->supply) {
3202 		ret = _regulator_get_voltage(rdev->supply->rdev);
3203 	} else {
3204 		return -EINVAL;
3205 	}
3206 
3207 	if (ret < 0)
3208 		return ret;
3209 	return ret - rdev->constraints->uV_offset;
3210 }
3211 
3212 /**
3213  * regulator_get_voltage - get regulator output voltage
3214  * @regulator: regulator source
3215  *
3216  * This returns the current regulator voltage in uV.
3217  *
3218  * NOTE: If the regulator is disabled it will return the voltage value. This
3219  * function should not be used to determine regulator state.
3220  */
3221 int regulator_get_voltage(struct regulator *regulator)
3222 {
3223 	int ret;
3224 
3225 	regulator_lock_supply(regulator->rdev);
3226 
3227 	ret = _regulator_get_voltage(regulator->rdev);
3228 
3229 	regulator_unlock_supply(regulator->rdev);
3230 
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3234 
3235 /**
3236  * regulator_set_current_limit - set regulator output current limit
3237  * @regulator: regulator source
3238  * @min_uA: Minimum supported current in uA
3239  * @max_uA: Maximum supported current in uA
3240  *
3241  * Sets current sink to the desired output current. This can be set during
3242  * any regulator state. IOW, regulator can be disabled or enabled.
3243  *
3244  * If the regulator is enabled then the current will change to the new value
3245  * immediately otherwise if the regulator is disabled the regulator will
3246  * output at the new current when enabled.
3247  *
3248  * NOTE: Regulator system constraints must be set for this regulator before
3249  * calling this function otherwise this call will fail.
3250  */
3251 int regulator_set_current_limit(struct regulator *regulator,
3252 			       int min_uA, int max_uA)
3253 {
3254 	struct regulator_dev *rdev = regulator->rdev;
3255 	int ret;
3256 
3257 	mutex_lock(&rdev->mutex);
3258 
3259 	/* sanity check */
3260 	if (!rdev->desc->ops->set_current_limit) {
3261 		ret = -EINVAL;
3262 		goto out;
3263 	}
3264 
3265 	/* constraints check */
3266 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3271 out:
3272 	mutex_unlock(&rdev->mutex);
3273 	return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3276 
3277 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3278 {
3279 	int ret;
3280 
3281 	mutex_lock(&rdev->mutex);
3282 
3283 	/* sanity check */
3284 	if (!rdev->desc->ops->get_current_limit) {
3285 		ret = -EINVAL;
3286 		goto out;
3287 	}
3288 
3289 	ret = rdev->desc->ops->get_current_limit(rdev);
3290 out:
3291 	mutex_unlock(&rdev->mutex);
3292 	return ret;
3293 }
3294 
3295 /**
3296  * regulator_get_current_limit - get regulator output current
3297  * @regulator: regulator source
3298  *
3299  * This returns the current supplied by the specified current sink in uA.
3300  *
3301  * NOTE: If the regulator is disabled it will return the current value. This
3302  * function should not be used to determine regulator state.
3303  */
3304 int regulator_get_current_limit(struct regulator *regulator)
3305 {
3306 	return _regulator_get_current_limit(regulator->rdev);
3307 }
3308 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3309 
3310 /**
3311  * regulator_set_mode - set regulator operating mode
3312  * @regulator: regulator source
3313  * @mode: operating mode - one of the REGULATOR_MODE constants
3314  *
3315  * Set regulator operating mode to increase regulator efficiency or improve
3316  * regulation performance.
3317  *
3318  * NOTE: Regulator system constraints must be set for this regulator before
3319  * calling this function otherwise this call will fail.
3320  */
3321 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3322 {
3323 	struct regulator_dev *rdev = regulator->rdev;
3324 	int ret;
3325 	int regulator_curr_mode;
3326 
3327 	mutex_lock(&rdev->mutex);
3328 
3329 	/* sanity check */
3330 	if (!rdev->desc->ops->set_mode) {
3331 		ret = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	/* return if the same mode is requested */
3336 	if (rdev->desc->ops->get_mode) {
3337 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3338 		if (regulator_curr_mode == mode) {
3339 			ret = 0;
3340 			goto out;
3341 		}
3342 	}
3343 
3344 	/* constraints check */
3345 	ret = regulator_mode_constrain(rdev, &mode);
3346 	if (ret < 0)
3347 		goto out;
3348 
3349 	ret = rdev->desc->ops->set_mode(rdev, mode);
3350 out:
3351 	mutex_unlock(&rdev->mutex);
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(regulator_set_mode);
3355 
3356 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3357 {
3358 	int ret;
3359 
3360 	mutex_lock(&rdev->mutex);
3361 
3362 	/* sanity check */
3363 	if (!rdev->desc->ops->get_mode) {
3364 		ret = -EINVAL;
3365 		goto out;
3366 	}
3367 
3368 	ret = rdev->desc->ops->get_mode(rdev);
3369 out:
3370 	mutex_unlock(&rdev->mutex);
3371 	return ret;
3372 }
3373 
3374 /**
3375  * regulator_get_mode - get regulator operating mode
3376  * @regulator: regulator source
3377  *
3378  * Get the current regulator operating mode.
3379  */
3380 unsigned int regulator_get_mode(struct regulator *regulator)
3381 {
3382 	return _regulator_get_mode(regulator->rdev);
3383 }
3384 EXPORT_SYMBOL_GPL(regulator_get_mode);
3385 
3386 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3387 					unsigned int *flags)
3388 {
3389 	int ret;
3390 
3391 	mutex_lock(&rdev->mutex);
3392 
3393 	/* sanity check */
3394 	if (!rdev->desc->ops->get_error_flags) {
3395 		ret = -EINVAL;
3396 		goto out;
3397 	}
3398 
3399 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3400 out:
3401 	mutex_unlock(&rdev->mutex);
3402 	return ret;
3403 }
3404 
3405 /**
3406  * regulator_get_error_flags - get regulator error information
3407  * @regulator: regulator source
3408  * @flags: pointer to store error flags
3409  *
3410  * Get the current regulator error information.
3411  */
3412 int regulator_get_error_flags(struct regulator *regulator,
3413 				unsigned int *flags)
3414 {
3415 	return _regulator_get_error_flags(regulator->rdev, flags);
3416 }
3417 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3418 
3419 /**
3420  * regulator_set_load - set regulator load
3421  * @regulator: regulator source
3422  * @uA_load: load current
3423  *
3424  * Notifies the regulator core of a new device load. This is then used by
3425  * DRMS (if enabled by constraints) to set the most efficient regulator
3426  * operating mode for the new regulator loading.
3427  *
3428  * Consumer devices notify their supply regulator of the maximum power
3429  * they will require (can be taken from device datasheet in the power
3430  * consumption tables) when they change operational status and hence power
3431  * state. Examples of operational state changes that can affect power
3432  * consumption are :-
3433  *
3434  *    o Device is opened / closed.
3435  *    o Device I/O is about to begin or has just finished.
3436  *    o Device is idling in between work.
3437  *
3438  * This information is also exported via sysfs to userspace.
3439  *
3440  * DRMS will sum the total requested load on the regulator and change
3441  * to the most efficient operating mode if platform constraints allow.
3442  *
3443  * On error a negative errno is returned.
3444  */
3445 int regulator_set_load(struct regulator *regulator, int uA_load)
3446 {
3447 	struct regulator_dev *rdev = regulator->rdev;
3448 	int ret;
3449 
3450 	mutex_lock(&rdev->mutex);
3451 	regulator->uA_load = uA_load;
3452 	ret = drms_uA_update(rdev);
3453 	mutex_unlock(&rdev->mutex);
3454 
3455 	return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(regulator_set_load);
3458 
3459 /**
3460  * regulator_allow_bypass - allow the regulator to go into bypass mode
3461  *
3462  * @regulator: Regulator to configure
3463  * @enable: enable or disable bypass mode
3464  *
3465  * Allow the regulator to go into bypass mode if all other consumers
3466  * for the regulator also enable bypass mode and the machine
3467  * constraints allow this.  Bypass mode means that the regulator is
3468  * simply passing the input directly to the output with no regulation.
3469  */
3470 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3471 {
3472 	struct regulator_dev *rdev = regulator->rdev;
3473 	int ret = 0;
3474 
3475 	if (!rdev->desc->ops->set_bypass)
3476 		return 0;
3477 
3478 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3479 		return 0;
3480 
3481 	mutex_lock(&rdev->mutex);
3482 
3483 	if (enable && !regulator->bypass) {
3484 		rdev->bypass_count++;
3485 
3486 		if (rdev->bypass_count == rdev->open_count) {
3487 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3488 			if (ret != 0)
3489 				rdev->bypass_count--;
3490 		}
3491 
3492 	} else if (!enable && regulator->bypass) {
3493 		rdev->bypass_count--;
3494 
3495 		if (rdev->bypass_count != rdev->open_count) {
3496 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3497 			if (ret != 0)
3498 				rdev->bypass_count++;
3499 		}
3500 	}
3501 
3502 	if (ret == 0)
3503 		regulator->bypass = enable;
3504 
3505 	mutex_unlock(&rdev->mutex);
3506 
3507 	return ret;
3508 }
3509 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3510 
3511 /**
3512  * regulator_register_notifier - register regulator event notifier
3513  * @regulator: regulator source
3514  * @nb: notifier block
3515  *
3516  * Register notifier block to receive regulator events.
3517  */
3518 int regulator_register_notifier(struct regulator *regulator,
3519 			      struct notifier_block *nb)
3520 {
3521 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3522 						nb);
3523 }
3524 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3525 
3526 /**
3527  * regulator_unregister_notifier - unregister regulator event notifier
3528  * @regulator: regulator source
3529  * @nb: notifier block
3530  *
3531  * Unregister regulator event notifier block.
3532  */
3533 int regulator_unregister_notifier(struct regulator *regulator,
3534 				struct notifier_block *nb)
3535 {
3536 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3537 						  nb);
3538 }
3539 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3540 
3541 /* notify regulator consumers and downstream regulator consumers.
3542  * Note mutex must be held by caller.
3543  */
3544 static int _notifier_call_chain(struct regulator_dev *rdev,
3545 				  unsigned long event, void *data)
3546 {
3547 	/* call rdev chain first */
3548 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3549 }
3550 
3551 /**
3552  * regulator_bulk_get - get multiple regulator consumers
3553  *
3554  * @dev:           Device to supply
3555  * @num_consumers: Number of consumers to register
3556  * @consumers:     Configuration of consumers; clients are stored here.
3557  *
3558  * @return 0 on success, an errno on failure.
3559  *
3560  * This helper function allows drivers to get several regulator
3561  * consumers in one operation.  If any of the regulators cannot be
3562  * acquired then any regulators that were allocated will be freed
3563  * before returning to the caller.
3564  */
3565 int regulator_bulk_get(struct device *dev, int num_consumers,
3566 		       struct regulator_bulk_data *consumers)
3567 {
3568 	int i;
3569 	int ret;
3570 
3571 	for (i = 0; i < num_consumers; i++)
3572 		consumers[i].consumer = NULL;
3573 
3574 	for (i = 0; i < num_consumers; i++) {
3575 		consumers[i].consumer = regulator_get(dev,
3576 						      consumers[i].supply);
3577 		if (IS_ERR(consumers[i].consumer)) {
3578 			ret = PTR_ERR(consumers[i].consumer);
3579 			dev_err(dev, "Failed to get supply '%s': %d\n",
3580 				consumers[i].supply, ret);
3581 			consumers[i].consumer = NULL;
3582 			goto err;
3583 		}
3584 	}
3585 
3586 	return 0;
3587 
3588 err:
3589 	while (--i >= 0)
3590 		regulator_put(consumers[i].consumer);
3591 
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3595 
3596 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3597 {
3598 	struct regulator_bulk_data *bulk = data;
3599 
3600 	bulk->ret = regulator_enable(bulk->consumer);
3601 }
3602 
3603 /**
3604  * regulator_bulk_enable - enable multiple regulator consumers
3605  *
3606  * @num_consumers: Number of consumers
3607  * @consumers:     Consumer data; clients are stored here.
3608  * @return         0 on success, an errno on failure
3609  *
3610  * This convenience API allows consumers to enable multiple regulator
3611  * clients in a single API call.  If any consumers cannot be enabled
3612  * then any others that were enabled will be disabled again prior to
3613  * return.
3614  */
3615 int regulator_bulk_enable(int num_consumers,
3616 			  struct regulator_bulk_data *consumers)
3617 {
3618 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3619 	int i;
3620 	int ret = 0;
3621 
3622 	for (i = 0; i < num_consumers; i++) {
3623 		if (consumers[i].consumer->always_on)
3624 			consumers[i].ret = 0;
3625 		else
3626 			async_schedule_domain(regulator_bulk_enable_async,
3627 					      &consumers[i], &async_domain);
3628 	}
3629 
3630 	async_synchronize_full_domain(&async_domain);
3631 
3632 	/* If any consumer failed we need to unwind any that succeeded */
3633 	for (i = 0; i < num_consumers; i++) {
3634 		if (consumers[i].ret != 0) {
3635 			ret = consumers[i].ret;
3636 			goto err;
3637 		}
3638 	}
3639 
3640 	return 0;
3641 
3642 err:
3643 	for (i = 0; i < num_consumers; i++) {
3644 		if (consumers[i].ret < 0)
3645 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3646 			       consumers[i].ret);
3647 		else
3648 			regulator_disable(consumers[i].consumer);
3649 	}
3650 
3651 	return ret;
3652 }
3653 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3654 
3655 /**
3656  * regulator_bulk_disable - disable multiple regulator consumers
3657  *
3658  * @num_consumers: Number of consumers
3659  * @consumers:     Consumer data; clients are stored here.
3660  * @return         0 on success, an errno on failure
3661  *
3662  * This convenience API allows consumers to disable multiple regulator
3663  * clients in a single API call.  If any consumers cannot be disabled
3664  * then any others that were disabled will be enabled again prior to
3665  * return.
3666  */
3667 int regulator_bulk_disable(int num_consumers,
3668 			   struct regulator_bulk_data *consumers)
3669 {
3670 	int i;
3671 	int ret, r;
3672 
3673 	for (i = num_consumers - 1; i >= 0; --i) {
3674 		ret = regulator_disable(consumers[i].consumer);
3675 		if (ret != 0)
3676 			goto err;
3677 	}
3678 
3679 	return 0;
3680 
3681 err:
3682 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3683 	for (++i; i < num_consumers; ++i) {
3684 		r = regulator_enable(consumers[i].consumer);
3685 		if (r != 0)
3686 			pr_err("Failed to re-enable %s: %d\n",
3687 			       consumers[i].supply, r);
3688 	}
3689 
3690 	return ret;
3691 }
3692 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3693 
3694 /**
3695  * regulator_bulk_force_disable - force disable multiple regulator consumers
3696  *
3697  * @num_consumers: Number of consumers
3698  * @consumers:     Consumer data; clients are stored here.
3699  * @return         0 on success, an errno on failure
3700  *
3701  * This convenience API allows consumers to forcibly disable multiple regulator
3702  * clients in a single API call.
3703  * NOTE: This should be used for situations when device damage will
3704  * likely occur if the regulators are not disabled (e.g. over temp).
3705  * Although regulator_force_disable function call for some consumers can
3706  * return error numbers, the function is called for all consumers.
3707  */
3708 int regulator_bulk_force_disable(int num_consumers,
3709 			   struct regulator_bulk_data *consumers)
3710 {
3711 	int i;
3712 	int ret = 0;
3713 
3714 	for (i = 0; i < num_consumers; i++) {
3715 		consumers[i].ret =
3716 			    regulator_force_disable(consumers[i].consumer);
3717 
3718 		/* Store first error for reporting */
3719 		if (consumers[i].ret && !ret)
3720 			ret = consumers[i].ret;
3721 	}
3722 
3723 	return ret;
3724 }
3725 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3726 
3727 /**
3728  * regulator_bulk_free - free multiple regulator consumers
3729  *
3730  * @num_consumers: Number of consumers
3731  * @consumers:     Consumer data; clients are stored here.
3732  *
3733  * This convenience API allows consumers to free multiple regulator
3734  * clients in a single API call.
3735  */
3736 void regulator_bulk_free(int num_consumers,
3737 			 struct regulator_bulk_data *consumers)
3738 {
3739 	int i;
3740 
3741 	for (i = 0; i < num_consumers; i++) {
3742 		regulator_put(consumers[i].consumer);
3743 		consumers[i].consumer = NULL;
3744 	}
3745 }
3746 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3747 
3748 /**
3749  * regulator_notifier_call_chain - call regulator event notifier
3750  * @rdev: regulator source
3751  * @event: notifier block
3752  * @data: callback-specific data.
3753  *
3754  * Called by regulator drivers to notify clients a regulator event has
3755  * occurred. We also notify regulator clients downstream.
3756  * Note lock must be held by caller.
3757  */
3758 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3759 				  unsigned long event, void *data)
3760 {
3761 	lockdep_assert_held_once(&rdev->mutex);
3762 
3763 	_notifier_call_chain(rdev, event, data);
3764 	return NOTIFY_DONE;
3765 
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3768 
3769 /**
3770  * regulator_mode_to_status - convert a regulator mode into a status
3771  *
3772  * @mode: Mode to convert
3773  *
3774  * Convert a regulator mode into a status.
3775  */
3776 int regulator_mode_to_status(unsigned int mode)
3777 {
3778 	switch (mode) {
3779 	case REGULATOR_MODE_FAST:
3780 		return REGULATOR_STATUS_FAST;
3781 	case REGULATOR_MODE_NORMAL:
3782 		return REGULATOR_STATUS_NORMAL;
3783 	case REGULATOR_MODE_IDLE:
3784 		return REGULATOR_STATUS_IDLE;
3785 	case REGULATOR_MODE_STANDBY:
3786 		return REGULATOR_STATUS_STANDBY;
3787 	default:
3788 		return REGULATOR_STATUS_UNDEFINED;
3789 	}
3790 }
3791 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3792 
3793 static struct attribute *regulator_dev_attrs[] = {
3794 	&dev_attr_name.attr,
3795 	&dev_attr_num_users.attr,
3796 	&dev_attr_type.attr,
3797 	&dev_attr_microvolts.attr,
3798 	&dev_attr_microamps.attr,
3799 	&dev_attr_opmode.attr,
3800 	&dev_attr_state.attr,
3801 	&dev_attr_status.attr,
3802 	&dev_attr_bypass.attr,
3803 	&dev_attr_requested_microamps.attr,
3804 	&dev_attr_min_microvolts.attr,
3805 	&dev_attr_max_microvolts.attr,
3806 	&dev_attr_min_microamps.attr,
3807 	&dev_attr_max_microamps.attr,
3808 	&dev_attr_suspend_standby_state.attr,
3809 	&dev_attr_suspend_mem_state.attr,
3810 	&dev_attr_suspend_disk_state.attr,
3811 	&dev_attr_suspend_standby_microvolts.attr,
3812 	&dev_attr_suspend_mem_microvolts.attr,
3813 	&dev_attr_suspend_disk_microvolts.attr,
3814 	&dev_attr_suspend_standby_mode.attr,
3815 	&dev_attr_suspend_mem_mode.attr,
3816 	&dev_attr_suspend_disk_mode.attr,
3817 	NULL
3818 };
3819 
3820 /*
3821  * To avoid cluttering sysfs (and memory) with useless state, only
3822  * create attributes that can be meaningfully displayed.
3823  */
3824 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3825 					 struct attribute *attr, int idx)
3826 {
3827 	struct device *dev = kobj_to_dev(kobj);
3828 	struct regulator_dev *rdev = dev_to_rdev(dev);
3829 	const struct regulator_ops *ops = rdev->desc->ops;
3830 	umode_t mode = attr->mode;
3831 
3832 	/* these three are always present */
3833 	if (attr == &dev_attr_name.attr ||
3834 	    attr == &dev_attr_num_users.attr ||
3835 	    attr == &dev_attr_type.attr)
3836 		return mode;
3837 
3838 	/* some attributes need specific methods to be displayed */
3839 	if (attr == &dev_attr_microvolts.attr) {
3840 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3841 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3842 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3843 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3844 			return mode;
3845 		return 0;
3846 	}
3847 
3848 	if (attr == &dev_attr_microamps.attr)
3849 		return ops->get_current_limit ? mode : 0;
3850 
3851 	if (attr == &dev_attr_opmode.attr)
3852 		return ops->get_mode ? mode : 0;
3853 
3854 	if (attr == &dev_attr_state.attr)
3855 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3856 
3857 	if (attr == &dev_attr_status.attr)
3858 		return ops->get_status ? mode : 0;
3859 
3860 	if (attr == &dev_attr_bypass.attr)
3861 		return ops->get_bypass ? mode : 0;
3862 
3863 	/* some attributes are type-specific */
3864 	if (attr == &dev_attr_requested_microamps.attr)
3865 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3866 
3867 	/* constraints need specific supporting methods */
3868 	if (attr == &dev_attr_min_microvolts.attr ||
3869 	    attr == &dev_attr_max_microvolts.attr)
3870 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3871 
3872 	if (attr == &dev_attr_min_microamps.attr ||
3873 	    attr == &dev_attr_max_microamps.attr)
3874 		return ops->set_current_limit ? mode : 0;
3875 
3876 	if (attr == &dev_attr_suspend_standby_state.attr ||
3877 	    attr == &dev_attr_suspend_mem_state.attr ||
3878 	    attr == &dev_attr_suspend_disk_state.attr)
3879 		return mode;
3880 
3881 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3882 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3883 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3884 		return ops->set_suspend_voltage ? mode : 0;
3885 
3886 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3887 	    attr == &dev_attr_suspend_mem_mode.attr ||
3888 	    attr == &dev_attr_suspend_disk_mode.attr)
3889 		return ops->set_suspend_mode ? mode : 0;
3890 
3891 	return mode;
3892 }
3893 
3894 static const struct attribute_group regulator_dev_group = {
3895 	.attrs = regulator_dev_attrs,
3896 	.is_visible = regulator_attr_is_visible,
3897 };
3898 
3899 static const struct attribute_group *regulator_dev_groups[] = {
3900 	&regulator_dev_group,
3901 	NULL
3902 };
3903 
3904 static void regulator_dev_release(struct device *dev)
3905 {
3906 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3907 
3908 	kfree(rdev->constraints);
3909 	of_node_put(rdev->dev.of_node);
3910 	kfree(rdev);
3911 }
3912 
3913 static struct class regulator_class = {
3914 	.name = "regulator",
3915 	.dev_release = regulator_dev_release,
3916 	.dev_groups = regulator_dev_groups,
3917 };
3918 
3919 static void rdev_init_debugfs(struct regulator_dev *rdev)
3920 {
3921 	struct device *parent = rdev->dev.parent;
3922 	const char *rname = rdev_get_name(rdev);
3923 	char name[NAME_MAX];
3924 
3925 	/* Avoid duplicate debugfs directory names */
3926 	if (parent && rname == rdev->desc->name) {
3927 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3928 			 rname);
3929 		rname = name;
3930 	}
3931 
3932 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3933 	if (!rdev->debugfs) {
3934 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3935 		return;
3936 	}
3937 
3938 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3939 			   &rdev->use_count);
3940 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3941 			   &rdev->open_count);
3942 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3943 			   &rdev->bypass_count);
3944 }
3945 
3946 static int regulator_register_resolve_supply(struct device *dev, void *data)
3947 {
3948 	struct regulator_dev *rdev = dev_to_rdev(dev);
3949 
3950 	if (regulator_resolve_supply(rdev))
3951 		rdev_dbg(rdev, "unable to resolve supply\n");
3952 
3953 	return 0;
3954 }
3955 
3956 /**
3957  * regulator_register - register regulator
3958  * @regulator_desc: regulator to register
3959  * @cfg: runtime configuration for regulator
3960  *
3961  * Called by regulator drivers to register a regulator.
3962  * Returns a valid pointer to struct regulator_dev on success
3963  * or an ERR_PTR() on error.
3964  */
3965 struct regulator_dev *
3966 regulator_register(const struct regulator_desc *regulator_desc,
3967 		   const struct regulator_config *cfg)
3968 {
3969 	const struct regulation_constraints *constraints = NULL;
3970 	const struct regulator_init_data *init_data;
3971 	struct regulator_config *config = NULL;
3972 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3973 	struct regulator_dev *rdev;
3974 	struct device *dev;
3975 	int ret, i;
3976 
3977 	if (regulator_desc == NULL || cfg == NULL)
3978 		return ERR_PTR(-EINVAL);
3979 
3980 	dev = cfg->dev;
3981 	WARN_ON(!dev);
3982 
3983 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3984 		return ERR_PTR(-EINVAL);
3985 
3986 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3987 	    regulator_desc->type != REGULATOR_CURRENT)
3988 		return ERR_PTR(-EINVAL);
3989 
3990 	/* Only one of each should be implemented */
3991 	WARN_ON(regulator_desc->ops->get_voltage &&
3992 		regulator_desc->ops->get_voltage_sel);
3993 	WARN_ON(regulator_desc->ops->set_voltage &&
3994 		regulator_desc->ops->set_voltage_sel);
3995 
3996 	/* If we're using selectors we must implement list_voltage. */
3997 	if (regulator_desc->ops->get_voltage_sel &&
3998 	    !regulator_desc->ops->list_voltage) {
3999 		return ERR_PTR(-EINVAL);
4000 	}
4001 	if (regulator_desc->ops->set_voltage_sel &&
4002 	    !regulator_desc->ops->list_voltage) {
4003 		return ERR_PTR(-EINVAL);
4004 	}
4005 
4006 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4007 	if (rdev == NULL)
4008 		return ERR_PTR(-ENOMEM);
4009 
4010 	/*
4011 	 * Duplicate the config so the driver could override it after
4012 	 * parsing init data.
4013 	 */
4014 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4015 	if (config == NULL) {
4016 		kfree(rdev);
4017 		return ERR_PTR(-ENOMEM);
4018 	}
4019 
4020 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4021 					       &rdev->dev.of_node);
4022 	if (!init_data) {
4023 		init_data = config->init_data;
4024 		rdev->dev.of_node = of_node_get(config->of_node);
4025 	}
4026 
4027 	mutex_init(&rdev->mutex);
4028 	rdev->reg_data = config->driver_data;
4029 	rdev->owner = regulator_desc->owner;
4030 	rdev->desc = regulator_desc;
4031 	if (config->regmap)
4032 		rdev->regmap = config->regmap;
4033 	else if (dev_get_regmap(dev, NULL))
4034 		rdev->regmap = dev_get_regmap(dev, NULL);
4035 	else if (dev->parent)
4036 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4037 	INIT_LIST_HEAD(&rdev->consumer_list);
4038 	INIT_LIST_HEAD(&rdev->list);
4039 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4040 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4041 
4042 	/* preform any regulator specific init */
4043 	if (init_data && init_data->regulator_init) {
4044 		ret = init_data->regulator_init(rdev->reg_data);
4045 		if (ret < 0)
4046 			goto clean;
4047 	}
4048 
4049 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4050 	    gpio_is_valid(config->ena_gpio)) {
4051 		mutex_lock(&regulator_list_mutex);
4052 		ret = regulator_ena_gpio_request(rdev, config);
4053 		mutex_unlock(&regulator_list_mutex);
4054 		if (ret != 0) {
4055 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4056 				 config->ena_gpio, ret);
4057 			goto clean;
4058 		}
4059 	}
4060 
4061 	/* register with sysfs */
4062 	rdev->dev.class = &regulator_class;
4063 	rdev->dev.parent = dev;
4064 	dev_set_name(&rdev->dev, "regulator.%lu",
4065 		    (unsigned long) atomic_inc_return(&regulator_no));
4066 
4067 	/* set regulator constraints */
4068 	if (init_data)
4069 		constraints = &init_data->constraints;
4070 
4071 	if (init_data && init_data->supply_regulator)
4072 		rdev->supply_name = init_data->supply_regulator;
4073 	else if (regulator_desc->supply_name)
4074 		rdev->supply_name = regulator_desc->supply_name;
4075 
4076 	/*
4077 	 * Attempt to resolve the regulator supply, if specified,
4078 	 * but don't return an error if we fail because we will try
4079 	 * to resolve it again later as more regulators are added.
4080 	 */
4081 	if (regulator_resolve_supply(rdev))
4082 		rdev_dbg(rdev, "unable to resolve supply\n");
4083 
4084 	ret = set_machine_constraints(rdev, constraints);
4085 	if (ret < 0)
4086 		goto wash;
4087 
4088 	/* add consumers devices */
4089 	if (init_data) {
4090 		mutex_lock(&regulator_list_mutex);
4091 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4092 			ret = set_consumer_device_supply(rdev,
4093 				init_data->consumer_supplies[i].dev_name,
4094 				init_data->consumer_supplies[i].supply);
4095 			if (ret < 0) {
4096 				mutex_unlock(&regulator_list_mutex);
4097 				dev_err(dev, "Failed to set supply %s\n",
4098 					init_data->consumer_supplies[i].supply);
4099 				goto unset_supplies;
4100 			}
4101 		}
4102 		mutex_unlock(&regulator_list_mutex);
4103 	}
4104 
4105 	if (!rdev->desc->ops->get_voltage &&
4106 	    !rdev->desc->ops->list_voltage &&
4107 	    !rdev->desc->fixed_uV)
4108 		rdev->is_switch = true;
4109 
4110 	ret = device_register(&rdev->dev);
4111 	if (ret != 0) {
4112 		put_device(&rdev->dev);
4113 		goto unset_supplies;
4114 	}
4115 
4116 	dev_set_drvdata(&rdev->dev, rdev);
4117 	rdev_init_debugfs(rdev);
4118 
4119 	/* try to resolve regulators supply since a new one was registered */
4120 	class_for_each_device(&regulator_class, NULL, NULL,
4121 			      regulator_register_resolve_supply);
4122 	kfree(config);
4123 	return rdev;
4124 
4125 unset_supplies:
4126 	mutex_lock(&regulator_list_mutex);
4127 	unset_regulator_supplies(rdev);
4128 	mutex_unlock(&regulator_list_mutex);
4129 wash:
4130 	kfree(rdev->constraints);
4131 	mutex_lock(&regulator_list_mutex);
4132 	regulator_ena_gpio_free(rdev);
4133 	mutex_unlock(&regulator_list_mutex);
4134 clean:
4135 	kfree(rdev);
4136 	kfree(config);
4137 	return ERR_PTR(ret);
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_register);
4140 
4141 /**
4142  * regulator_unregister - unregister regulator
4143  * @rdev: regulator to unregister
4144  *
4145  * Called by regulator drivers to unregister a regulator.
4146  */
4147 void regulator_unregister(struct regulator_dev *rdev)
4148 {
4149 	if (rdev == NULL)
4150 		return;
4151 
4152 	if (rdev->supply) {
4153 		while (rdev->use_count--)
4154 			regulator_disable(rdev->supply);
4155 		regulator_put(rdev->supply);
4156 	}
4157 	mutex_lock(&regulator_list_mutex);
4158 	debugfs_remove_recursive(rdev->debugfs);
4159 	flush_work(&rdev->disable_work.work);
4160 	WARN_ON(rdev->open_count);
4161 	unset_regulator_supplies(rdev);
4162 	list_del(&rdev->list);
4163 	regulator_ena_gpio_free(rdev);
4164 	mutex_unlock(&regulator_list_mutex);
4165 	device_unregister(&rdev->dev);
4166 }
4167 EXPORT_SYMBOL_GPL(regulator_unregister);
4168 
4169 static int _regulator_suspend_prepare(struct device *dev, void *data)
4170 {
4171 	struct regulator_dev *rdev = dev_to_rdev(dev);
4172 	const suspend_state_t *state = data;
4173 	int ret;
4174 
4175 	mutex_lock(&rdev->mutex);
4176 	ret = suspend_prepare(rdev, *state);
4177 	mutex_unlock(&rdev->mutex);
4178 
4179 	return ret;
4180 }
4181 
4182 /**
4183  * regulator_suspend_prepare - prepare regulators for system wide suspend
4184  * @state: system suspend state
4185  *
4186  * Configure each regulator with it's suspend operating parameters for state.
4187  * This will usually be called by machine suspend code prior to supending.
4188  */
4189 int regulator_suspend_prepare(suspend_state_t state)
4190 {
4191 	/* ON is handled by regulator active state */
4192 	if (state == PM_SUSPEND_ON)
4193 		return -EINVAL;
4194 
4195 	return class_for_each_device(&regulator_class, NULL, &state,
4196 				     _regulator_suspend_prepare);
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4199 
4200 static int _regulator_suspend_finish(struct device *dev, void *data)
4201 {
4202 	struct regulator_dev *rdev = dev_to_rdev(dev);
4203 	int ret;
4204 
4205 	mutex_lock(&rdev->mutex);
4206 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4207 		if (!_regulator_is_enabled(rdev)) {
4208 			ret = _regulator_do_enable(rdev);
4209 			if (ret)
4210 				dev_err(dev,
4211 					"Failed to resume regulator %d\n",
4212 					ret);
4213 		}
4214 	} else {
4215 		if (!have_full_constraints())
4216 			goto unlock;
4217 		if (!_regulator_is_enabled(rdev))
4218 			goto unlock;
4219 
4220 		ret = _regulator_do_disable(rdev);
4221 		if (ret)
4222 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4223 	}
4224 unlock:
4225 	mutex_unlock(&rdev->mutex);
4226 
4227 	/* Keep processing regulators in spite of any errors */
4228 	return 0;
4229 }
4230 
4231 /**
4232  * regulator_suspend_finish - resume regulators from system wide suspend
4233  *
4234  * Turn on regulators that might be turned off by regulator_suspend_prepare
4235  * and that should be turned on according to the regulators properties.
4236  */
4237 int regulator_suspend_finish(void)
4238 {
4239 	return class_for_each_device(&regulator_class, NULL, NULL,
4240 				     _regulator_suspend_finish);
4241 }
4242 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4243 
4244 /**
4245  * regulator_has_full_constraints - the system has fully specified constraints
4246  *
4247  * Calling this function will cause the regulator API to disable all
4248  * regulators which have a zero use count and don't have an always_on
4249  * constraint in a late_initcall.
4250  *
4251  * The intention is that this will become the default behaviour in a
4252  * future kernel release so users are encouraged to use this facility
4253  * now.
4254  */
4255 void regulator_has_full_constraints(void)
4256 {
4257 	has_full_constraints = 1;
4258 }
4259 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4260 
4261 /**
4262  * rdev_get_drvdata - get rdev regulator driver data
4263  * @rdev: regulator
4264  *
4265  * Get rdev regulator driver private data. This call can be used in the
4266  * regulator driver context.
4267  */
4268 void *rdev_get_drvdata(struct regulator_dev *rdev)
4269 {
4270 	return rdev->reg_data;
4271 }
4272 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4273 
4274 /**
4275  * regulator_get_drvdata - get regulator driver data
4276  * @regulator: regulator
4277  *
4278  * Get regulator driver private data. This call can be used in the consumer
4279  * driver context when non API regulator specific functions need to be called.
4280  */
4281 void *regulator_get_drvdata(struct regulator *regulator)
4282 {
4283 	return regulator->rdev->reg_data;
4284 }
4285 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4286 
4287 /**
4288  * regulator_set_drvdata - set regulator driver data
4289  * @regulator: regulator
4290  * @data: data
4291  */
4292 void regulator_set_drvdata(struct regulator *regulator, void *data)
4293 {
4294 	regulator->rdev->reg_data = data;
4295 }
4296 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4297 
4298 /**
4299  * regulator_get_id - get regulator ID
4300  * @rdev: regulator
4301  */
4302 int rdev_get_id(struct regulator_dev *rdev)
4303 {
4304 	return rdev->desc->id;
4305 }
4306 EXPORT_SYMBOL_GPL(rdev_get_id);
4307 
4308 struct device *rdev_get_dev(struct regulator_dev *rdev)
4309 {
4310 	return &rdev->dev;
4311 }
4312 EXPORT_SYMBOL_GPL(rdev_get_dev);
4313 
4314 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4315 {
4316 	return reg_init_data->driver_data;
4317 }
4318 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4319 
4320 #ifdef CONFIG_DEBUG_FS
4321 static int supply_map_show(struct seq_file *sf, void *data)
4322 {
4323 	struct regulator_map *map;
4324 
4325 	list_for_each_entry(map, &regulator_map_list, list) {
4326 		seq_printf(sf, "%s -> %s.%s\n",
4327 				rdev_get_name(map->regulator), map->dev_name,
4328 				map->supply);
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 static int supply_map_open(struct inode *inode, struct file *file)
4335 {
4336 	return single_open(file, supply_map_show, inode->i_private);
4337 }
4338 #endif
4339 
4340 static const struct file_operations supply_map_fops = {
4341 #ifdef CONFIG_DEBUG_FS
4342 	.open = supply_map_open,
4343 	.read = seq_read,
4344 	.llseek = seq_lseek,
4345 	.release = single_release,
4346 #endif
4347 };
4348 
4349 #ifdef CONFIG_DEBUG_FS
4350 struct summary_data {
4351 	struct seq_file *s;
4352 	struct regulator_dev *parent;
4353 	int level;
4354 };
4355 
4356 static void regulator_summary_show_subtree(struct seq_file *s,
4357 					   struct regulator_dev *rdev,
4358 					   int level);
4359 
4360 static int regulator_summary_show_children(struct device *dev, void *data)
4361 {
4362 	struct regulator_dev *rdev = dev_to_rdev(dev);
4363 	struct summary_data *summary_data = data;
4364 
4365 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4366 		regulator_summary_show_subtree(summary_data->s, rdev,
4367 					       summary_data->level + 1);
4368 
4369 	return 0;
4370 }
4371 
4372 static void regulator_summary_show_subtree(struct seq_file *s,
4373 					   struct regulator_dev *rdev,
4374 					   int level)
4375 {
4376 	struct regulation_constraints *c;
4377 	struct regulator *consumer;
4378 	struct summary_data summary_data;
4379 
4380 	if (!rdev)
4381 		return;
4382 
4383 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4384 		   level * 3 + 1, "",
4385 		   30 - level * 3, rdev_get_name(rdev),
4386 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4387 
4388 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4389 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4390 
4391 	c = rdev->constraints;
4392 	if (c) {
4393 		switch (rdev->desc->type) {
4394 		case REGULATOR_VOLTAGE:
4395 			seq_printf(s, "%5dmV %5dmV ",
4396 				   c->min_uV / 1000, c->max_uV / 1000);
4397 			break;
4398 		case REGULATOR_CURRENT:
4399 			seq_printf(s, "%5dmA %5dmA ",
4400 				   c->min_uA / 1000, c->max_uA / 1000);
4401 			break;
4402 		}
4403 	}
4404 
4405 	seq_puts(s, "\n");
4406 
4407 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4408 		if (consumer->dev && consumer->dev->class == &regulator_class)
4409 			continue;
4410 
4411 		seq_printf(s, "%*s%-*s ",
4412 			   (level + 1) * 3 + 1, "",
4413 			   30 - (level + 1) * 3,
4414 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4415 
4416 		switch (rdev->desc->type) {
4417 		case REGULATOR_VOLTAGE:
4418 			seq_printf(s, "%37dmV %5dmV",
4419 				   consumer->min_uV / 1000,
4420 				   consumer->max_uV / 1000);
4421 			break;
4422 		case REGULATOR_CURRENT:
4423 			break;
4424 		}
4425 
4426 		seq_puts(s, "\n");
4427 	}
4428 
4429 	summary_data.s = s;
4430 	summary_data.level = level;
4431 	summary_data.parent = rdev;
4432 
4433 	class_for_each_device(&regulator_class, NULL, &summary_data,
4434 			      regulator_summary_show_children);
4435 }
4436 
4437 static int regulator_summary_show_roots(struct device *dev, void *data)
4438 {
4439 	struct regulator_dev *rdev = dev_to_rdev(dev);
4440 	struct seq_file *s = data;
4441 
4442 	if (!rdev->supply)
4443 		regulator_summary_show_subtree(s, rdev, 0);
4444 
4445 	return 0;
4446 }
4447 
4448 static int regulator_summary_show(struct seq_file *s, void *data)
4449 {
4450 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4451 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4452 
4453 	class_for_each_device(&regulator_class, NULL, s,
4454 			      regulator_summary_show_roots);
4455 
4456 	return 0;
4457 }
4458 
4459 static int regulator_summary_open(struct inode *inode, struct file *file)
4460 {
4461 	return single_open(file, regulator_summary_show, inode->i_private);
4462 }
4463 #endif
4464 
4465 static const struct file_operations regulator_summary_fops = {
4466 #ifdef CONFIG_DEBUG_FS
4467 	.open		= regulator_summary_open,
4468 	.read		= seq_read,
4469 	.llseek		= seq_lseek,
4470 	.release	= single_release,
4471 #endif
4472 };
4473 
4474 static int __init regulator_init(void)
4475 {
4476 	int ret;
4477 
4478 	ret = class_register(&regulator_class);
4479 
4480 	debugfs_root = debugfs_create_dir("regulator", NULL);
4481 	if (!debugfs_root)
4482 		pr_warn("regulator: Failed to create debugfs directory\n");
4483 
4484 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4485 			    &supply_map_fops);
4486 
4487 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4488 			    NULL, &regulator_summary_fops);
4489 
4490 	regulator_dummy_init();
4491 
4492 	return ret;
4493 }
4494 
4495 /* init early to allow our consumers to complete system booting */
4496 core_initcall(regulator_init);
4497 
4498 static int __init regulator_late_cleanup(struct device *dev, void *data)
4499 {
4500 	struct regulator_dev *rdev = dev_to_rdev(dev);
4501 	const struct regulator_ops *ops = rdev->desc->ops;
4502 	struct regulation_constraints *c = rdev->constraints;
4503 	int enabled, ret;
4504 
4505 	if (c && c->always_on)
4506 		return 0;
4507 
4508 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4509 		return 0;
4510 
4511 	mutex_lock(&rdev->mutex);
4512 
4513 	if (rdev->use_count)
4514 		goto unlock;
4515 
4516 	/* If we can't read the status assume it's on. */
4517 	if (ops->is_enabled)
4518 		enabled = ops->is_enabled(rdev);
4519 	else
4520 		enabled = 1;
4521 
4522 	if (!enabled)
4523 		goto unlock;
4524 
4525 	if (have_full_constraints()) {
4526 		/* We log since this may kill the system if it goes
4527 		 * wrong. */
4528 		rdev_info(rdev, "disabling\n");
4529 		ret = _regulator_do_disable(rdev);
4530 		if (ret != 0)
4531 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4532 	} else {
4533 		/* The intention is that in future we will
4534 		 * assume that full constraints are provided
4535 		 * so warn even if we aren't going to do
4536 		 * anything here.
4537 		 */
4538 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4539 	}
4540 
4541 unlock:
4542 	mutex_unlock(&rdev->mutex);
4543 
4544 	return 0;
4545 }
4546 
4547 static int __init regulator_init_complete(void)
4548 {
4549 	/*
4550 	 * Since DT doesn't provide an idiomatic mechanism for
4551 	 * enabling full constraints and since it's much more natural
4552 	 * with DT to provide them just assume that a DT enabled
4553 	 * system has full constraints.
4554 	 */
4555 	if (of_have_populated_dt())
4556 		has_full_constraints = true;
4557 
4558 	/*
4559 	 * Regulators may had failed to resolve their input supplies
4560 	 * when were registered, either because the input supply was
4561 	 * not registered yet or because its parent device was not
4562 	 * bound yet. So attempt to resolve the input supplies for
4563 	 * pending regulators before trying to disable unused ones.
4564 	 */
4565 	class_for_each_device(&regulator_class, NULL, NULL,
4566 			      regulator_register_resolve_supply);
4567 
4568 	/* If we have a full configuration then disable any regulators
4569 	 * we have permission to change the status for and which are
4570 	 * not in use or always_on.  This is effectively the default
4571 	 * for DT and ACPI as they have full constraints.
4572 	 */
4573 	class_for_each_device(&regulator_class, NULL, NULL,
4574 			      regulator_late_cleanup);
4575 
4576 	return 0;
4577 }
4578 late_initcall_sync(regulator_init_complete);
4579