1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 static DEFINE_WW_CLASS(regulator_ww_class); 37 static DEFINE_MUTEX(regulator_nesting_mutex); 38 static DEFINE_MUTEX(regulator_list_mutex); 39 static LIST_HEAD(regulator_map_list); 40 static LIST_HEAD(regulator_ena_gpio_list); 41 static LIST_HEAD(regulator_supply_alias_list); 42 static LIST_HEAD(regulator_coupler_list); 43 static bool has_full_constraints; 44 45 static struct dentry *debugfs_root; 46 47 /* 48 * struct regulator_map 49 * 50 * Used to provide symbolic supply names to devices. 51 */ 52 struct regulator_map { 53 struct list_head list; 54 const char *dev_name; /* The dev_name() for the consumer */ 55 const char *supply; 56 struct regulator_dev *regulator; 57 }; 58 59 /* 60 * struct regulator_enable_gpio 61 * 62 * Management for shared enable GPIO pin 63 */ 64 struct regulator_enable_gpio { 65 struct list_head list; 66 struct gpio_desc *gpiod; 67 u32 enable_count; /* a number of enabled shared GPIO */ 68 u32 request_count; /* a number of requested shared GPIO */ 69 }; 70 71 /* 72 * struct regulator_supply_alias 73 * 74 * Used to map lookups for a supply onto an alternative device. 75 */ 76 struct regulator_supply_alias { 77 struct list_head list; 78 struct device *src_dev; 79 const char *src_supply; 80 struct device *alias_dev; 81 const char *alias_supply; 82 }; 83 84 static int _regulator_is_enabled(struct regulator_dev *rdev); 85 static int _regulator_disable(struct regulator *regulator); 86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 87 static int _regulator_get_current_limit(struct regulator_dev *rdev); 88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 89 static int _notifier_call_chain(struct regulator_dev *rdev, 90 unsigned long event, void *data); 91 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 92 int min_uV, int max_uV); 93 static int regulator_balance_voltage(struct regulator_dev *rdev, 94 suspend_state_t state); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 static void destroy_regulator(struct regulator *regulator); 99 static void _regulator_put(struct regulator *regulator); 100 101 const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 EXPORT_SYMBOL_GPL(rdev_get_name); 111 112 static bool have_full_constraints(void) 113 { 114 return has_full_constraints || of_have_populated_dt(); 115 } 116 117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 118 { 119 if (!rdev->constraints) { 120 rdev_err(rdev, "no constraints\n"); 121 return false; 122 } 123 124 if (rdev->constraints->valid_ops_mask & ops) 125 return true; 126 127 return false; 128 } 129 130 /** 131 * regulator_lock_nested - lock a single regulator 132 * @rdev: regulator source 133 * @ww_ctx: w/w mutex acquire context 134 * 135 * This function can be called many times by one task on 136 * a single regulator and its mutex will be locked only 137 * once. If a task, which is calling this function is other 138 * than the one, which initially locked the mutex, it will 139 * wait on mutex. 140 */ 141 static inline int regulator_lock_nested(struct regulator_dev *rdev, 142 struct ww_acquire_ctx *ww_ctx) 143 { 144 bool lock = false; 145 int ret = 0; 146 147 mutex_lock(®ulator_nesting_mutex); 148 149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 150 if (rdev->mutex_owner == current) 151 rdev->ref_cnt++; 152 else 153 lock = true; 154 155 if (lock) { 156 mutex_unlock(®ulator_nesting_mutex); 157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 158 mutex_lock(®ulator_nesting_mutex); 159 } 160 } else { 161 lock = true; 162 } 163 164 if (lock && ret != -EDEADLK) { 165 rdev->ref_cnt++; 166 rdev->mutex_owner = current; 167 } 168 169 mutex_unlock(®ulator_nesting_mutex); 170 171 return ret; 172 } 173 174 /** 175 * regulator_lock - lock a single regulator 176 * @rdev: regulator source 177 * 178 * This function can be called many times by one task on 179 * a single regulator and its mutex will be locked only 180 * once. If a task, which is calling this function is other 181 * than the one, which initially locked the mutex, it will 182 * wait on mutex. 183 */ 184 static void regulator_lock(struct regulator_dev *rdev) 185 { 186 regulator_lock_nested(rdev, NULL); 187 } 188 189 /** 190 * regulator_unlock - unlock a single regulator 191 * @rdev: regulator_source 192 * 193 * This function unlocks the mutex when the 194 * reference counter reaches 0. 195 */ 196 static void regulator_unlock(struct regulator_dev *rdev) 197 { 198 mutex_lock(®ulator_nesting_mutex); 199 200 if (--rdev->ref_cnt == 0) { 201 rdev->mutex_owner = NULL; 202 ww_mutex_unlock(&rdev->mutex); 203 } 204 205 WARN_ON_ONCE(rdev->ref_cnt < 0); 206 207 mutex_unlock(®ulator_nesting_mutex); 208 } 209 210 /** 211 * regulator_lock_two - lock two regulators 212 * @rdev1: first regulator 213 * @rdev2: second regulator 214 * @ww_ctx: w/w mutex acquire context 215 * 216 * Locks both rdevs using the regulator_ww_class. 217 */ 218 static void regulator_lock_two(struct regulator_dev *rdev1, 219 struct regulator_dev *rdev2, 220 struct ww_acquire_ctx *ww_ctx) 221 { 222 struct regulator_dev *held, *contended; 223 int ret; 224 225 ww_acquire_init(ww_ctx, ®ulator_ww_class); 226 227 /* Try to just grab both of them */ 228 ret = regulator_lock_nested(rdev1, ww_ctx); 229 WARN_ON(ret); 230 ret = regulator_lock_nested(rdev2, ww_ctx); 231 if (ret != -EDEADLOCK) { 232 WARN_ON(ret); 233 goto exit; 234 } 235 236 held = rdev1; 237 contended = rdev2; 238 while (true) { 239 regulator_unlock(held); 240 241 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 242 contended->ref_cnt++; 243 contended->mutex_owner = current; 244 swap(held, contended); 245 ret = regulator_lock_nested(contended, ww_ctx); 246 247 if (ret != -EDEADLOCK) { 248 WARN_ON(ret); 249 break; 250 } 251 } 252 253 exit: 254 ww_acquire_done(ww_ctx); 255 } 256 257 /** 258 * regulator_unlock_two - unlock two regulators 259 * @rdev1: first regulator 260 * @rdev2: second regulator 261 * @ww_ctx: w/w mutex acquire context 262 * 263 * The inverse of regulator_lock_two(). 264 */ 265 266 static void regulator_unlock_two(struct regulator_dev *rdev1, 267 struct regulator_dev *rdev2, 268 struct ww_acquire_ctx *ww_ctx) 269 { 270 regulator_unlock(rdev2); 271 regulator_unlock(rdev1); 272 ww_acquire_fini(ww_ctx); 273 } 274 275 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 276 { 277 struct regulator_dev *c_rdev; 278 int i; 279 280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 281 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 282 283 if (rdev->supply->rdev == c_rdev) 284 return true; 285 } 286 287 return false; 288 } 289 290 static void regulator_unlock_recursive(struct regulator_dev *rdev, 291 unsigned int n_coupled) 292 { 293 struct regulator_dev *c_rdev, *supply_rdev; 294 int i, supply_n_coupled; 295 296 for (i = n_coupled; i > 0; i--) { 297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 298 299 if (!c_rdev) 300 continue; 301 302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 303 supply_rdev = c_rdev->supply->rdev; 304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 305 306 regulator_unlock_recursive(supply_rdev, 307 supply_n_coupled); 308 } 309 310 regulator_unlock(c_rdev); 311 } 312 } 313 314 static int regulator_lock_recursive(struct regulator_dev *rdev, 315 struct regulator_dev **new_contended_rdev, 316 struct regulator_dev **old_contended_rdev, 317 struct ww_acquire_ctx *ww_ctx) 318 { 319 struct regulator_dev *c_rdev; 320 int i, err; 321 322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 323 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 324 325 if (!c_rdev) 326 continue; 327 328 if (c_rdev != *old_contended_rdev) { 329 err = regulator_lock_nested(c_rdev, ww_ctx); 330 if (err) { 331 if (err == -EDEADLK) { 332 *new_contended_rdev = c_rdev; 333 goto err_unlock; 334 } 335 336 /* shouldn't happen */ 337 WARN_ON_ONCE(err != -EALREADY); 338 } 339 } else { 340 *old_contended_rdev = NULL; 341 } 342 343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 344 err = regulator_lock_recursive(c_rdev->supply->rdev, 345 new_contended_rdev, 346 old_contended_rdev, 347 ww_ctx); 348 if (err) { 349 regulator_unlock(c_rdev); 350 goto err_unlock; 351 } 352 } 353 } 354 355 return 0; 356 357 err_unlock: 358 regulator_unlock_recursive(rdev, i); 359 360 return err; 361 } 362 363 /** 364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 365 * regulators 366 * @rdev: regulator source 367 * @ww_ctx: w/w mutex acquire context 368 * 369 * Unlock all regulators related with rdev by coupling or supplying. 370 */ 371 static void regulator_unlock_dependent(struct regulator_dev *rdev, 372 struct ww_acquire_ctx *ww_ctx) 373 { 374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 375 ww_acquire_fini(ww_ctx); 376 } 377 378 /** 379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 380 * @rdev: regulator source 381 * @ww_ctx: w/w mutex acquire context 382 * 383 * This function as a wrapper on regulator_lock_recursive(), which locks 384 * all regulators related with rdev by coupling or supplying. 385 */ 386 static void regulator_lock_dependent(struct regulator_dev *rdev, 387 struct ww_acquire_ctx *ww_ctx) 388 { 389 struct regulator_dev *new_contended_rdev = NULL; 390 struct regulator_dev *old_contended_rdev = NULL; 391 int err; 392 393 mutex_lock(®ulator_list_mutex); 394 395 ww_acquire_init(ww_ctx, ®ulator_ww_class); 396 397 do { 398 if (new_contended_rdev) { 399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 400 old_contended_rdev = new_contended_rdev; 401 old_contended_rdev->ref_cnt++; 402 old_contended_rdev->mutex_owner = current; 403 } 404 405 err = regulator_lock_recursive(rdev, 406 &new_contended_rdev, 407 &old_contended_rdev, 408 ww_ctx); 409 410 if (old_contended_rdev) 411 regulator_unlock(old_contended_rdev); 412 413 } while (err == -EDEADLK); 414 415 ww_acquire_done(ww_ctx); 416 417 mutex_unlock(®ulator_list_mutex); 418 } 419 420 /** 421 * of_get_child_regulator - get a child regulator device node 422 * based on supply name 423 * @parent: Parent device node 424 * @prop_name: Combination regulator supply name and "-supply" 425 * 426 * Traverse all child nodes. 427 * Extract the child regulator device node corresponding to the supply name. 428 * returns the device node corresponding to the regulator if found, else 429 * returns NULL. 430 */ 431 static struct device_node *of_get_child_regulator(struct device_node *parent, 432 const char *prop_name) 433 { 434 struct device_node *regnode = NULL; 435 struct device_node *child = NULL; 436 437 for_each_child_of_node(parent, child) { 438 regnode = of_parse_phandle(child, prop_name, 0); 439 440 if (!regnode) { 441 regnode = of_get_child_regulator(child, prop_name); 442 if (regnode) 443 goto err_node_put; 444 } else { 445 goto err_node_put; 446 } 447 } 448 return NULL; 449 450 err_node_put: 451 of_node_put(child); 452 return regnode; 453 } 454 455 /** 456 * of_get_regulator - get a regulator device node based on supply name 457 * @dev: Device pointer for the consumer (of regulator) device 458 * @supply: regulator supply name 459 * 460 * Extract the regulator device node corresponding to the supply name. 461 * returns the device node corresponding to the regulator if found, else 462 * returns NULL. 463 */ 464 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 465 { 466 struct device_node *regnode = NULL; 467 char prop_name[64]; /* 64 is max size of property name */ 468 469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 470 471 snprintf(prop_name, 64, "%s-supply", supply); 472 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 473 474 if (!regnode) { 475 regnode = of_get_child_regulator(dev->of_node, prop_name); 476 if (regnode) 477 return regnode; 478 479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 480 prop_name, dev->of_node); 481 return NULL; 482 } 483 return regnode; 484 } 485 486 /* Platform voltage constraint check */ 487 int regulator_check_voltage(struct regulator_dev *rdev, 488 int *min_uV, int *max_uV) 489 { 490 BUG_ON(*min_uV > *max_uV); 491 492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 493 rdev_err(rdev, "voltage operation not allowed\n"); 494 return -EPERM; 495 } 496 497 if (*max_uV > rdev->constraints->max_uV) 498 *max_uV = rdev->constraints->max_uV; 499 if (*min_uV < rdev->constraints->min_uV) 500 *min_uV = rdev->constraints->min_uV; 501 502 if (*min_uV > *max_uV) { 503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 504 *min_uV, *max_uV); 505 return -EINVAL; 506 } 507 508 return 0; 509 } 510 511 /* return 0 if the state is valid */ 512 static int regulator_check_states(suspend_state_t state) 513 { 514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 515 } 516 517 /* Make sure we select a voltage that suits the needs of all 518 * regulator consumers 519 */ 520 int regulator_check_consumers(struct regulator_dev *rdev, 521 int *min_uV, int *max_uV, 522 suspend_state_t state) 523 { 524 struct regulator *regulator; 525 struct regulator_voltage *voltage; 526 527 list_for_each_entry(regulator, &rdev->consumer_list, list) { 528 voltage = ®ulator->voltage[state]; 529 /* 530 * Assume consumers that didn't say anything are OK 531 * with anything in the constraint range. 532 */ 533 if (!voltage->min_uV && !voltage->max_uV) 534 continue; 535 536 if (*max_uV > voltage->max_uV) 537 *max_uV = voltage->max_uV; 538 if (*min_uV < voltage->min_uV) 539 *min_uV = voltage->min_uV; 540 } 541 542 if (*min_uV > *max_uV) { 543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 544 *min_uV, *max_uV); 545 return -EINVAL; 546 } 547 548 return 0; 549 } 550 551 /* current constraint check */ 552 static int regulator_check_current_limit(struct regulator_dev *rdev, 553 int *min_uA, int *max_uA) 554 { 555 BUG_ON(*min_uA > *max_uA); 556 557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 558 rdev_err(rdev, "current operation not allowed\n"); 559 return -EPERM; 560 } 561 562 if (*max_uA > rdev->constraints->max_uA) 563 *max_uA = rdev->constraints->max_uA; 564 if (*min_uA < rdev->constraints->min_uA) 565 *min_uA = rdev->constraints->min_uA; 566 567 if (*min_uA > *max_uA) { 568 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 569 *min_uA, *max_uA); 570 return -EINVAL; 571 } 572 573 return 0; 574 } 575 576 /* operating mode constraint check */ 577 static int regulator_mode_constrain(struct regulator_dev *rdev, 578 unsigned int *mode) 579 { 580 switch (*mode) { 581 case REGULATOR_MODE_FAST: 582 case REGULATOR_MODE_NORMAL: 583 case REGULATOR_MODE_IDLE: 584 case REGULATOR_MODE_STANDBY: 585 break; 586 default: 587 rdev_err(rdev, "invalid mode %x specified\n", *mode); 588 return -EINVAL; 589 } 590 591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 592 rdev_err(rdev, "mode operation not allowed\n"); 593 return -EPERM; 594 } 595 596 /* The modes are bitmasks, the most power hungry modes having 597 * the lowest values. If the requested mode isn't supported 598 * try higher modes. 599 */ 600 while (*mode) { 601 if (rdev->constraints->valid_modes_mask & *mode) 602 return 0; 603 *mode /= 2; 604 } 605 606 return -EINVAL; 607 } 608 609 static inline struct regulator_state * 610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 611 { 612 if (rdev->constraints == NULL) 613 return NULL; 614 615 switch (state) { 616 case PM_SUSPEND_STANDBY: 617 return &rdev->constraints->state_standby; 618 case PM_SUSPEND_MEM: 619 return &rdev->constraints->state_mem; 620 case PM_SUSPEND_MAX: 621 return &rdev->constraints->state_disk; 622 default: 623 return NULL; 624 } 625 } 626 627 static const struct regulator_state * 628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 629 { 630 const struct regulator_state *rstate; 631 632 rstate = regulator_get_suspend_state(rdev, state); 633 if (rstate == NULL) 634 return NULL; 635 636 /* If we have no suspend mode configuration don't set anything; 637 * only warn if the driver implements set_suspend_voltage or 638 * set_suspend_mode callback. 639 */ 640 if (rstate->enabled != ENABLE_IN_SUSPEND && 641 rstate->enabled != DISABLE_IN_SUSPEND) { 642 if (rdev->desc->ops->set_suspend_voltage || 643 rdev->desc->ops->set_suspend_mode) 644 rdev_warn(rdev, "No configuration\n"); 645 return NULL; 646 } 647 648 return rstate; 649 } 650 651 static ssize_t microvolts_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 int uV; 656 657 regulator_lock(rdev); 658 uV = regulator_get_voltage_rdev(rdev); 659 regulator_unlock(rdev); 660 661 if (uV < 0) 662 return uV; 663 return sprintf(buf, "%d\n", uV); 664 } 665 static DEVICE_ATTR_RO(microvolts); 666 667 static ssize_t microamps_show(struct device *dev, 668 struct device_attribute *attr, char *buf) 669 { 670 struct regulator_dev *rdev = dev_get_drvdata(dev); 671 672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 673 } 674 static DEVICE_ATTR_RO(microamps); 675 676 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 677 char *buf) 678 { 679 struct regulator_dev *rdev = dev_get_drvdata(dev); 680 681 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 682 } 683 static DEVICE_ATTR_RO(name); 684 685 static const char *regulator_opmode_to_str(int mode) 686 { 687 switch (mode) { 688 case REGULATOR_MODE_FAST: 689 return "fast"; 690 case REGULATOR_MODE_NORMAL: 691 return "normal"; 692 case REGULATOR_MODE_IDLE: 693 return "idle"; 694 case REGULATOR_MODE_STANDBY: 695 return "standby"; 696 } 697 return "unknown"; 698 } 699 700 static ssize_t regulator_print_opmode(char *buf, int mode) 701 { 702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 703 } 704 705 static ssize_t opmode_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 struct regulator_dev *rdev = dev_get_drvdata(dev); 709 710 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 711 } 712 static DEVICE_ATTR_RO(opmode); 713 714 static ssize_t regulator_print_state(char *buf, int state) 715 { 716 if (state > 0) 717 return sprintf(buf, "enabled\n"); 718 else if (state == 0) 719 return sprintf(buf, "disabled\n"); 720 else 721 return sprintf(buf, "unknown\n"); 722 } 723 724 static ssize_t state_show(struct device *dev, 725 struct device_attribute *attr, char *buf) 726 { 727 struct regulator_dev *rdev = dev_get_drvdata(dev); 728 ssize_t ret; 729 730 regulator_lock(rdev); 731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 732 regulator_unlock(rdev); 733 734 return ret; 735 } 736 static DEVICE_ATTR_RO(state); 737 738 static ssize_t status_show(struct device *dev, 739 struct device_attribute *attr, char *buf) 740 { 741 struct regulator_dev *rdev = dev_get_drvdata(dev); 742 int status; 743 char *label; 744 745 status = rdev->desc->ops->get_status(rdev); 746 if (status < 0) 747 return status; 748 749 switch (status) { 750 case REGULATOR_STATUS_OFF: 751 label = "off"; 752 break; 753 case REGULATOR_STATUS_ON: 754 label = "on"; 755 break; 756 case REGULATOR_STATUS_ERROR: 757 label = "error"; 758 break; 759 case REGULATOR_STATUS_FAST: 760 label = "fast"; 761 break; 762 case REGULATOR_STATUS_NORMAL: 763 label = "normal"; 764 break; 765 case REGULATOR_STATUS_IDLE: 766 label = "idle"; 767 break; 768 case REGULATOR_STATUS_STANDBY: 769 label = "standby"; 770 break; 771 case REGULATOR_STATUS_BYPASS: 772 label = "bypass"; 773 break; 774 case REGULATOR_STATUS_UNDEFINED: 775 label = "undefined"; 776 break; 777 default: 778 return -ERANGE; 779 } 780 781 return sprintf(buf, "%s\n", label); 782 } 783 static DEVICE_ATTR_RO(status); 784 785 static ssize_t min_microamps_show(struct device *dev, 786 struct device_attribute *attr, char *buf) 787 { 788 struct regulator_dev *rdev = dev_get_drvdata(dev); 789 790 if (!rdev->constraints) 791 return sprintf(buf, "constraint not defined\n"); 792 793 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 794 } 795 static DEVICE_ATTR_RO(min_microamps); 796 797 static ssize_t max_microamps_show(struct device *dev, 798 struct device_attribute *attr, char *buf) 799 { 800 struct regulator_dev *rdev = dev_get_drvdata(dev); 801 802 if (!rdev->constraints) 803 return sprintf(buf, "constraint not defined\n"); 804 805 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 806 } 807 static DEVICE_ATTR_RO(max_microamps); 808 809 static ssize_t min_microvolts_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 if (!rdev->constraints) 815 return sprintf(buf, "constraint not defined\n"); 816 817 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 818 } 819 static DEVICE_ATTR_RO(min_microvolts); 820 821 static ssize_t max_microvolts_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 if (!rdev->constraints) 827 return sprintf(buf, "constraint not defined\n"); 828 829 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 830 } 831 static DEVICE_ATTR_RO(max_microvolts); 832 833 static ssize_t requested_microamps_show(struct device *dev, 834 struct device_attribute *attr, char *buf) 835 { 836 struct regulator_dev *rdev = dev_get_drvdata(dev); 837 struct regulator *regulator; 838 int uA = 0; 839 840 regulator_lock(rdev); 841 list_for_each_entry(regulator, &rdev->consumer_list, list) { 842 if (regulator->enable_count) 843 uA += regulator->uA_load; 844 } 845 regulator_unlock(rdev); 846 return sprintf(buf, "%d\n", uA); 847 } 848 static DEVICE_ATTR_RO(requested_microamps); 849 850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 851 char *buf) 852 { 853 struct regulator_dev *rdev = dev_get_drvdata(dev); 854 return sprintf(buf, "%d\n", rdev->use_count); 855 } 856 static DEVICE_ATTR_RO(num_users); 857 858 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 859 char *buf) 860 { 861 struct regulator_dev *rdev = dev_get_drvdata(dev); 862 863 switch (rdev->desc->type) { 864 case REGULATOR_VOLTAGE: 865 return sprintf(buf, "voltage\n"); 866 case REGULATOR_CURRENT: 867 return sprintf(buf, "current\n"); 868 } 869 return sprintf(buf, "unknown\n"); 870 } 871 static DEVICE_ATTR_RO(type); 872 873 static ssize_t suspend_mem_microvolts_show(struct device *dev, 874 struct device_attribute *attr, char *buf) 875 { 876 struct regulator_dev *rdev = dev_get_drvdata(dev); 877 878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 879 } 880 static DEVICE_ATTR_RO(suspend_mem_microvolts); 881 882 static ssize_t suspend_disk_microvolts_show(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 struct regulator_dev *rdev = dev_get_drvdata(dev); 886 887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 888 } 889 static DEVICE_ATTR_RO(suspend_disk_microvolts); 890 891 static ssize_t suspend_standby_microvolts_show(struct device *dev, 892 struct device_attribute *attr, char *buf) 893 { 894 struct regulator_dev *rdev = dev_get_drvdata(dev); 895 896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 897 } 898 static DEVICE_ATTR_RO(suspend_standby_microvolts); 899 900 static ssize_t suspend_mem_mode_show(struct device *dev, 901 struct device_attribute *attr, char *buf) 902 { 903 struct regulator_dev *rdev = dev_get_drvdata(dev); 904 905 return regulator_print_opmode(buf, 906 rdev->constraints->state_mem.mode); 907 } 908 static DEVICE_ATTR_RO(suspend_mem_mode); 909 910 static ssize_t suspend_disk_mode_show(struct device *dev, 911 struct device_attribute *attr, char *buf) 912 { 913 struct regulator_dev *rdev = dev_get_drvdata(dev); 914 915 return regulator_print_opmode(buf, 916 rdev->constraints->state_disk.mode); 917 } 918 static DEVICE_ATTR_RO(suspend_disk_mode); 919 920 static ssize_t suspend_standby_mode_show(struct device *dev, 921 struct device_attribute *attr, char *buf) 922 { 923 struct regulator_dev *rdev = dev_get_drvdata(dev); 924 925 return regulator_print_opmode(buf, 926 rdev->constraints->state_standby.mode); 927 } 928 static DEVICE_ATTR_RO(suspend_standby_mode); 929 930 static ssize_t suspend_mem_state_show(struct device *dev, 931 struct device_attribute *attr, char *buf) 932 { 933 struct regulator_dev *rdev = dev_get_drvdata(dev); 934 935 return regulator_print_state(buf, 936 rdev->constraints->state_mem.enabled); 937 } 938 static DEVICE_ATTR_RO(suspend_mem_state); 939 940 static ssize_t suspend_disk_state_show(struct device *dev, 941 struct device_attribute *attr, char *buf) 942 { 943 struct regulator_dev *rdev = dev_get_drvdata(dev); 944 945 return regulator_print_state(buf, 946 rdev->constraints->state_disk.enabled); 947 } 948 static DEVICE_ATTR_RO(suspend_disk_state); 949 950 static ssize_t suspend_standby_state_show(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 struct regulator_dev *rdev = dev_get_drvdata(dev); 954 955 return regulator_print_state(buf, 956 rdev->constraints->state_standby.enabled); 957 } 958 static DEVICE_ATTR_RO(suspend_standby_state); 959 960 static ssize_t bypass_show(struct device *dev, 961 struct device_attribute *attr, char *buf) 962 { 963 struct regulator_dev *rdev = dev_get_drvdata(dev); 964 const char *report; 965 bool bypass; 966 int ret; 967 968 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 969 970 if (ret != 0) 971 report = "unknown"; 972 else if (bypass) 973 report = "enabled"; 974 else 975 report = "disabled"; 976 977 return sprintf(buf, "%s\n", report); 978 } 979 static DEVICE_ATTR_RO(bypass); 980 981 #define REGULATOR_ERROR_ATTR(name, bit) \ 982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 983 char *buf) \ 984 { \ 985 int ret; \ 986 unsigned int flags; \ 987 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 988 ret = _regulator_get_error_flags(rdev, &flags); \ 989 if (ret) \ 990 return ret; \ 991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 992 } \ 993 static DEVICE_ATTR_RO(name) 994 995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1004 1005 /* Calculate the new optimum regulator operating mode based on the new total 1006 * consumer load. All locks held by caller 1007 */ 1008 static int drms_uA_update(struct regulator_dev *rdev) 1009 { 1010 struct regulator *sibling; 1011 int current_uA = 0, output_uV, input_uV, err; 1012 unsigned int mode; 1013 1014 /* 1015 * first check to see if we can set modes at all, otherwise just 1016 * tell the consumer everything is OK. 1017 */ 1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1019 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1020 return 0; 1021 } 1022 1023 if (!rdev->desc->ops->get_optimum_mode && 1024 !rdev->desc->ops->set_load) 1025 return 0; 1026 1027 if (!rdev->desc->ops->set_mode && 1028 !rdev->desc->ops->set_load) 1029 return -EINVAL; 1030 1031 /* calc total requested load */ 1032 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1033 if (sibling->enable_count) 1034 current_uA += sibling->uA_load; 1035 } 1036 1037 current_uA += rdev->constraints->system_load; 1038 1039 if (rdev->desc->ops->set_load) { 1040 /* set the optimum mode for our new total regulator load */ 1041 err = rdev->desc->ops->set_load(rdev, current_uA); 1042 if (err < 0) 1043 rdev_err(rdev, "failed to set load %d: %pe\n", 1044 current_uA, ERR_PTR(err)); 1045 } else { 1046 /* 1047 * Unfortunately in some cases the constraints->valid_ops has 1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1049 * That's not really legit but we won't consider it a fatal 1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1051 * wasn't set. 1052 */ 1053 if (!rdev->constraints->valid_modes_mask) { 1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1055 return 0; 1056 } 1057 1058 /* get output voltage */ 1059 output_uV = regulator_get_voltage_rdev(rdev); 1060 1061 /* 1062 * Don't return an error; if regulator driver cares about 1063 * output_uV then it's up to the driver to validate. 1064 */ 1065 if (output_uV <= 0) 1066 rdev_dbg(rdev, "invalid output voltage found\n"); 1067 1068 /* get input voltage */ 1069 input_uV = 0; 1070 if (rdev->supply) 1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1072 if (input_uV <= 0) 1073 input_uV = rdev->constraints->input_uV; 1074 1075 /* 1076 * Don't return an error; if regulator driver cares about 1077 * input_uV then it's up to the driver to validate. 1078 */ 1079 if (input_uV <= 0) 1080 rdev_dbg(rdev, "invalid input voltage found\n"); 1081 1082 /* now get the optimum mode for our new total regulator load */ 1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1084 output_uV, current_uA); 1085 1086 /* check the new mode is allowed */ 1087 err = regulator_mode_constrain(rdev, &mode); 1088 if (err < 0) { 1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1090 current_uA, input_uV, output_uV, ERR_PTR(err)); 1091 return err; 1092 } 1093 1094 err = rdev->desc->ops->set_mode(rdev, mode); 1095 if (err < 0) 1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1097 mode, ERR_PTR(err)); 1098 } 1099 1100 return err; 1101 } 1102 1103 static int __suspend_set_state(struct regulator_dev *rdev, 1104 const struct regulator_state *rstate) 1105 { 1106 int ret = 0; 1107 1108 if (rstate->enabled == ENABLE_IN_SUSPEND && 1109 rdev->desc->ops->set_suspend_enable) 1110 ret = rdev->desc->ops->set_suspend_enable(rdev); 1111 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1112 rdev->desc->ops->set_suspend_disable) 1113 ret = rdev->desc->ops->set_suspend_disable(rdev); 1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1115 ret = 0; 1116 1117 if (ret < 0) { 1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1119 return ret; 1120 } 1121 1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1124 if (ret < 0) { 1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1126 return ret; 1127 } 1128 } 1129 1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1132 if (ret < 0) { 1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1134 return ret; 1135 } 1136 } 1137 1138 return ret; 1139 } 1140 1141 static int suspend_set_initial_state(struct regulator_dev *rdev) 1142 { 1143 const struct regulator_state *rstate; 1144 1145 rstate = regulator_get_suspend_state_check(rdev, 1146 rdev->constraints->initial_state); 1147 if (!rstate) 1148 return 0; 1149 1150 return __suspend_set_state(rdev, rstate); 1151 } 1152 1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1154 static void print_constraints_debug(struct regulator_dev *rdev) 1155 { 1156 struct regulation_constraints *constraints = rdev->constraints; 1157 char buf[160] = ""; 1158 size_t len = sizeof(buf) - 1; 1159 int count = 0; 1160 int ret; 1161 1162 if (constraints->min_uV && constraints->max_uV) { 1163 if (constraints->min_uV == constraints->max_uV) 1164 count += scnprintf(buf + count, len - count, "%d mV ", 1165 constraints->min_uV / 1000); 1166 else 1167 count += scnprintf(buf + count, len - count, 1168 "%d <--> %d mV ", 1169 constraints->min_uV / 1000, 1170 constraints->max_uV / 1000); 1171 } 1172 1173 if (!constraints->min_uV || 1174 constraints->min_uV != constraints->max_uV) { 1175 ret = regulator_get_voltage_rdev(rdev); 1176 if (ret > 0) 1177 count += scnprintf(buf + count, len - count, 1178 "at %d mV ", ret / 1000); 1179 } 1180 1181 if (constraints->uV_offset) 1182 count += scnprintf(buf + count, len - count, "%dmV offset ", 1183 constraints->uV_offset / 1000); 1184 1185 if (constraints->min_uA && constraints->max_uA) { 1186 if (constraints->min_uA == constraints->max_uA) 1187 count += scnprintf(buf + count, len - count, "%d mA ", 1188 constraints->min_uA / 1000); 1189 else 1190 count += scnprintf(buf + count, len - count, 1191 "%d <--> %d mA ", 1192 constraints->min_uA / 1000, 1193 constraints->max_uA / 1000); 1194 } 1195 1196 if (!constraints->min_uA || 1197 constraints->min_uA != constraints->max_uA) { 1198 ret = _regulator_get_current_limit(rdev); 1199 if (ret > 0) 1200 count += scnprintf(buf + count, len - count, 1201 "at %d mA ", ret / 1000); 1202 } 1203 1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1205 count += scnprintf(buf + count, len - count, "fast "); 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1207 count += scnprintf(buf + count, len - count, "normal "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1209 count += scnprintf(buf + count, len - count, "idle "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1211 count += scnprintf(buf + count, len - count, "standby "); 1212 1213 if (!count) 1214 count = scnprintf(buf, len, "no parameters"); 1215 else 1216 --count; 1217 1218 count += scnprintf(buf + count, len - count, ", %s", 1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1220 1221 rdev_dbg(rdev, "%s\n", buf); 1222 } 1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 1227 static void print_constraints(struct regulator_dev *rdev) 1228 { 1229 struct regulation_constraints *constraints = rdev->constraints; 1230 1231 print_constraints_debug(rdev); 1232 1233 if ((constraints->min_uV != constraints->max_uV) && 1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1235 rdev_warn(rdev, 1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1237 } 1238 1239 static int machine_constraints_voltage(struct regulator_dev *rdev, 1240 struct regulation_constraints *constraints) 1241 { 1242 const struct regulator_ops *ops = rdev->desc->ops; 1243 int ret; 1244 1245 /* do we need to apply the constraint voltage */ 1246 if (rdev->constraints->apply_uV && 1247 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1248 int target_min, target_max; 1249 int current_uV = regulator_get_voltage_rdev(rdev); 1250 1251 if (current_uV == -ENOTRECOVERABLE) { 1252 /* This regulator can't be read and must be initialized */ 1253 rdev_info(rdev, "Setting %d-%duV\n", 1254 rdev->constraints->min_uV, 1255 rdev->constraints->max_uV); 1256 _regulator_do_set_voltage(rdev, 1257 rdev->constraints->min_uV, 1258 rdev->constraints->max_uV); 1259 current_uV = regulator_get_voltage_rdev(rdev); 1260 } 1261 1262 if (current_uV < 0) { 1263 if (current_uV != -EPROBE_DEFER) 1264 rdev_err(rdev, 1265 "failed to get the current voltage: %pe\n", 1266 ERR_PTR(current_uV)); 1267 return current_uV; 1268 } 1269 1270 /* 1271 * If we're below the minimum voltage move up to the 1272 * minimum voltage, if we're above the maximum voltage 1273 * then move down to the maximum. 1274 */ 1275 target_min = current_uV; 1276 target_max = current_uV; 1277 1278 if (current_uV < rdev->constraints->min_uV) { 1279 target_min = rdev->constraints->min_uV; 1280 target_max = rdev->constraints->min_uV; 1281 } 1282 1283 if (current_uV > rdev->constraints->max_uV) { 1284 target_min = rdev->constraints->max_uV; 1285 target_max = rdev->constraints->max_uV; 1286 } 1287 1288 if (target_min != current_uV || target_max != current_uV) { 1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1290 current_uV, target_min, target_max); 1291 ret = _regulator_do_set_voltage( 1292 rdev, target_min, target_max); 1293 if (ret < 0) { 1294 rdev_err(rdev, 1295 "failed to apply %d-%duV constraint: %pe\n", 1296 target_min, target_max, ERR_PTR(ret)); 1297 return ret; 1298 } 1299 } 1300 } 1301 1302 /* constrain machine-level voltage specs to fit 1303 * the actual range supported by this regulator. 1304 */ 1305 if (ops->list_voltage && rdev->desc->n_voltages) { 1306 int count = rdev->desc->n_voltages; 1307 int i; 1308 int min_uV = INT_MAX; 1309 int max_uV = INT_MIN; 1310 int cmin = constraints->min_uV; 1311 int cmax = constraints->max_uV; 1312 1313 /* it's safe to autoconfigure fixed-voltage supplies 1314 * and the constraints are used by list_voltage. 1315 */ 1316 if (count == 1 && !cmin) { 1317 cmin = 1; 1318 cmax = INT_MAX; 1319 constraints->min_uV = cmin; 1320 constraints->max_uV = cmax; 1321 } 1322 1323 /* voltage constraints are optional */ 1324 if ((cmin == 0) && (cmax == 0)) 1325 return 0; 1326 1327 /* else require explicit machine-level constraints */ 1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1329 rdev_err(rdev, "invalid voltage constraints\n"); 1330 return -EINVAL; 1331 } 1332 1333 /* no need to loop voltages if range is continuous */ 1334 if (rdev->desc->continuous_voltage_range) 1335 return 0; 1336 1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1338 for (i = 0; i < count; i++) { 1339 int value; 1340 1341 value = ops->list_voltage(rdev, i); 1342 if (value <= 0) 1343 continue; 1344 1345 /* maybe adjust [min_uV..max_uV] */ 1346 if (value >= cmin && value < min_uV) 1347 min_uV = value; 1348 if (value <= cmax && value > max_uV) 1349 max_uV = value; 1350 } 1351 1352 /* final: [min_uV..max_uV] valid iff constraints valid */ 1353 if (max_uV < min_uV) { 1354 rdev_err(rdev, 1355 "unsupportable voltage constraints %u-%uuV\n", 1356 min_uV, max_uV); 1357 return -EINVAL; 1358 } 1359 1360 /* use regulator's subset of machine constraints */ 1361 if (constraints->min_uV < min_uV) { 1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1363 constraints->min_uV, min_uV); 1364 constraints->min_uV = min_uV; 1365 } 1366 if (constraints->max_uV > max_uV) { 1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1368 constraints->max_uV, max_uV); 1369 constraints->max_uV = max_uV; 1370 } 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int machine_constraints_current(struct regulator_dev *rdev, 1377 struct regulation_constraints *constraints) 1378 { 1379 const struct regulator_ops *ops = rdev->desc->ops; 1380 int ret; 1381 1382 if (!constraints->min_uA && !constraints->max_uA) 1383 return 0; 1384 1385 if (constraints->min_uA > constraints->max_uA) { 1386 rdev_err(rdev, "Invalid current constraints\n"); 1387 return -EINVAL; 1388 } 1389 1390 if (!ops->set_current_limit || !ops->get_current_limit) { 1391 rdev_warn(rdev, "Operation of current configuration missing\n"); 1392 return 0; 1393 } 1394 1395 /* Set regulator current in constraints range */ 1396 ret = ops->set_current_limit(rdev, constraints->min_uA, 1397 constraints->max_uA); 1398 if (ret < 0) { 1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1400 return ret; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int _regulator_do_enable(struct regulator_dev *rdev); 1407 1408 static int notif_set_limit(struct regulator_dev *rdev, 1409 int (*set)(struct regulator_dev *, int, int, bool), 1410 int limit, int severity) 1411 { 1412 bool enable; 1413 1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1415 enable = false; 1416 limit = 0; 1417 } else { 1418 enable = true; 1419 } 1420 1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1422 limit = 0; 1423 1424 return set(rdev, limit, severity, enable); 1425 } 1426 1427 static int handle_notify_limits(struct regulator_dev *rdev, 1428 int (*set)(struct regulator_dev *, int, int, bool), 1429 struct notification_limit *limits) 1430 { 1431 int ret = 0; 1432 1433 if (!set) 1434 return -EOPNOTSUPP; 1435 1436 if (limits->prot) 1437 ret = notif_set_limit(rdev, set, limits->prot, 1438 REGULATOR_SEVERITY_PROT); 1439 if (ret) 1440 return ret; 1441 1442 if (limits->err) 1443 ret = notif_set_limit(rdev, set, limits->err, 1444 REGULATOR_SEVERITY_ERR); 1445 if (ret) 1446 return ret; 1447 1448 if (limits->warn) 1449 ret = notif_set_limit(rdev, set, limits->warn, 1450 REGULATOR_SEVERITY_WARN); 1451 1452 return ret; 1453 } 1454 /** 1455 * set_machine_constraints - sets regulator constraints 1456 * @rdev: regulator source 1457 * 1458 * Allows platform initialisation code to define and constrain 1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1460 * Constraints *must* be set by platform code in order for some 1461 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1462 * set_mode. 1463 */ 1464 static int set_machine_constraints(struct regulator_dev *rdev) 1465 { 1466 int ret = 0; 1467 const struct regulator_ops *ops = rdev->desc->ops; 1468 1469 ret = machine_constraints_voltage(rdev, rdev->constraints); 1470 if (ret != 0) 1471 return ret; 1472 1473 ret = machine_constraints_current(rdev, rdev->constraints); 1474 if (ret != 0) 1475 return ret; 1476 1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1478 ret = ops->set_input_current_limit(rdev, 1479 rdev->constraints->ilim_uA); 1480 if (ret < 0) { 1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1482 return ret; 1483 } 1484 } 1485 1486 /* do we need to setup our suspend state */ 1487 if (rdev->constraints->initial_state) { 1488 ret = suspend_set_initial_state(rdev); 1489 if (ret < 0) { 1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1491 return ret; 1492 } 1493 } 1494 1495 if (rdev->constraints->initial_mode) { 1496 if (!ops->set_mode) { 1497 rdev_err(rdev, "no set_mode operation\n"); 1498 return -EINVAL; 1499 } 1500 1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1502 if (ret < 0) { 1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1504 return ret; 1505 } 1506 } else if (rdev->constraints->system_load) { 1507 /* 1508 * We'll only apply the initial system load if an 1509 * initial mode wasn't specified. 1510 */ 1511 drms_uA_update(rdev); 1512 } 1513 1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1515 && ops->set_ramp_delay) { 1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1517 if (ret < 0) { 1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1519 return ret; 1520 } 1521 } 1522 1523 if (rdev->constraints->pull_down && ops->set_pull_down) { 1524 ret = ops->set_pull_down(rdev); 1525 if (ret < 0) { 1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1527 return ret; 1528 } 1529 } 1530 1531 if (rdev->constraints->soft_start && ops->set_soft_start) { 1532 ret = ops->set_soft_start(rdev); 1533 if (ret < 0) { 1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1535 return ret; 1536 } 1537 } 1538 1539 /* 1540 * Existing logic does not warn if over_current_protection is given as 1541 * a constraint but driver does not support that. I think we should 1542 * warn about this type of issues as it is possible someone changes 1543 * PMIC on board to another type - and the another PMIC's driver does 1544 * not support setting protection. Board composer may happily believe 1545 * the DT limits are respected - especially if the new PMIC HW also 1546 * supports protection but the driver does not. I won't change the logic 1547 * without hearing more experienced opinion on this though. 1548 * 1549 * If warning is seen as a good idea then we can merge handling the 1550 * over-curret protection and detection and get rid of this special 1551 * handling. 1552 */ 1553 if (rdev->constraints->over_current_protection 1554 && ops->set_over_current_protection) { 1555 int lim = rdev->constraints->over_curr_limits.prot; 1556 1557 ret = ops->set_over_current_protection(rdev, lim, 1558 REGULATOR_SEVERITY_PROT, 1559 true); 1560 if (ret < 0) { 1561 rdev_err(rdev, "failed to set over current protection: %pe\n", 1562 ERR_PTR(ret)); 1563 return ret; 1564 } 1565 } 1566 1567 if (rdev->constraints->over_current_detection) 1568 ret = handle_notify_limits(rdev, 1569 ops->set_over_current_protection, 1570 &rdev->constraints->over_curr_limits); 1571 if (ret) { 1572 if (ret != -EOPNOTSUPP) { 1573 rdev_err(rdev, "failed to set over current limits: %pe\n", 1574 ERR_PTR(ret)); 1575 return ret; 1576 } 1577 rdev_warn(rdev, 1578 "IC does not support requested over-current limits\n"); 1579 } 1580 1581 if (rdev->constraints->over_voltage_detection) 1582 ret = handle_notify_limits(rdev, 1583 ops->set_over_voltage_protection, 1584 &rdev->constraints->over_voltage_limits); 1585 if (ret) { 1586 if (ret != -EOPNOTSUPP) { 1587 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1588 ERR_PTR(ret)); 1589 return ret; 1590 } 1591 rdev_warn(rdev, 1592 "IC does not support requested over voltage limits\n"); 1593 } 1594 1595 if (rdev->constraints->under_voltage_detection) 1596 ret = handle_notify_limits(rdev, 1597 ops->set_under_voltage_protection, 1598 &rdev->constraints->under_voltage_limits); 1599 if (ret) { 1600 if (ret != -EOPNOTSUPP) { 1601 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1602 ERR_PTR(ret)); 1603 return ret; 1604 } 1605 rdev_warn(rdev, 1606 "IC does not support requested under voltage limits\n"); 1607 } 1608 1609 if (rdev->constraints->over_temp_detection) 1610 ret = handle_notify_limits(rdev, 1611 ops->set_thermal_protection, 1612 &rdev->constraints->temp_limits); 1613 if (ret) { 1614 if (ret != -EOPNOTSUPP) { 1615 rdev_err(rdev, "failed to set temperature limits %pe\n", 1616 ERR_PTR(ret)); 1617 return ret; 1618 } 1619 rdev_warn(rdev, 1620 "IC does not support requested temperature limits\n"); 1621 } 1622 1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1624 bool ad_state = (rdev->constraints->active_discharge == 1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1626 1627 ret = ops->set_active_discharge(rdev, ad_state); 1628 if (ret < 0) { 1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1630 return ret; 1631 } 1632 } 1633 1634 /* 1635 * If there is no mechanism for controlling the regulator then 1636 * flag it as always_on so we don't end up duplicating checks 1637 * for this so much. Note that we could control the state of 1638 * a supply to control the output on a regulator that has no 1639 * direct control. 1640 */ 1641 if (!rdev->ena_pin && !ops->enable) { 1642 if (rdev->supply_name && !rdev->supply) 1643 return -EPROBE_DEFER; 1644 1645 if (rdev->supply) 1646 rdev->constraints->always_on = 1647 rdev->supply->rdev->constraints->always_on; 1648 else 1649 rdev->constraints->always_on = true; 1650 } 1651 1652 /* If the constraints say the regulator should be on at this point 1653 * and we have control then make sure it is enabled. 1654 */ 1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1656 /* If we want to enable this regulator, make sure that we know 1657 * the supplying regulator. 1658 */ 1659 if (rdev->supply_name && !rdev->supply) 1660 return -EPROBE_DEFER; 1661 1662 /* If supplying regulator has already been enabled, 1663 * it's not intended to have use_count increment 1664 * when rdev is only boot-on. 1665 */ 1666 if (rdev->supply && 1667 (rdev->constraints->always_on || 1668 !regulator_is_enabled(rdev->supply))) { 1669 ret = regulator_enable(rdev->supply); 1670 if (ret < 0) { 1671 _regulator_put(rdev->supply); 1672 rdev->supply = NULL; 1673 return ret; 1674 } 1675 } 1676 1677 ret = _regulator_do_enable(rdev); 1678 if (ret < 0 && ret != -EINVAL) { 1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1680 return ret; 1681 } 1682 1683 if (rdev->constraints->always_on) 1684 rdev->use_count++; 1685 } else if (rdev->desc->off_on_delay) { 1686 rdev->last_off = ktime_get(); 1687 } 1688 1689 print_constraints(rdev); 1690 return 0; 1691 } 1692 1693 /** 1694 * set_supply - set regulator supply regulator 1695 * @rdev: regulator (locked) 1696 * @supply_rdev: supply regulator (locked)) 1697 * 1698 * Called by platform initialisation code to set the supply regulator for this 1699 * regulator. This ensures that a regulators supply will also be enabled by the 1700 * core if it's child is enabled. 1701 */ 1702 static int set_supply(struct regulator_dev *rdev, 1703 struct regulator_dev *supply_rdev) 1704 { 1705 int err; 1706 1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1708 1709 if (!try_module_get(supply_rdev->owner)) 1710 return -ENODEV; 1711 1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1713 if (rdev->supply == NULL) { 1714 module_put(supply_rdev->owner); 1715 err = -ENOMEM; 1716 return err; 1717 } 1718 supply_rdev->open_count++; 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1725 * @rdev: regulator source 1726 * @consumer_dev_name: dev_name() string for device supply applies to 1727 * @supply: symbolic name for supply 1728 * 1729 * Allows platform initialisation code to map physical regulator 1730 * sources to symbolic names for supplies for use by devices. Devices 1731 * should use these symbolic names to request regulators, avoiding the 1732 * need to provide board-specific regulator names as platform data. 1733 */ 1734 static int set_consumer_device_supply(struct regulator_dev *rdev, 1735 const char *consumer_dev_name, 1736 const char *supply) 1737 { 1738 struct regulator_map *node, *new_node; 1739 int has_dev; 1740 1741 if (supply == NULL) 1742 return -EINVAL; 1743 1744 if (consumer_dev_name != NULL) 1745 has_dev = 1; 1746 else 1747 has_dev = 0; 1748 1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1750 if (new_node == NULL) 1751 return -ENOMEM; 1752 1753 new_node->regulator = rdev; 1754 new_node->supply = supply; 1755 1756 if (has_dev) { 1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1758 if (new_node->dev_name == NULL) { 1759 kfree(new_node); 1760 return -ENOMEM; 1761 } 1762 } 1763 1764 mutex_lock(®ulator_list_mutex); 1765 list_for_each_entry(node, ®ulator_map_list, list) { 1766 if (node->dev_name && consumer_dev_name) { 1767 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1768 continue; 1769 } else if (node->dev_name || consumer_dev_name) { 1770 continue; 1771 } 1772 1773 if (strcmp(node->supply, supply) != 0) 1774 continue; 1775 1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1777 consumer_dev_name, 1778 dev_name(&node->regulator->dev), 1779 node->regulator->desc->name, 1780 supply, 1781 dev_name(&rdev->dev), rdev_get_name(rdev)); 1782 goto fail; 1783 } 1784 1785 list_add(&new_node->list, ®ulator_map_list); 1786 mutex_unlock(®ulator_list_mutex); 1787 1788 return 0; 1789 1790 fail: 1791 mutex_unlock(®ulator_list_mutex); 1792 kfree(new_node->dev_name); 1793 kfree(new_node); 1794 return -EBUSY; 1795 } 1796 1797 static void unset_regulator_supplies(struct regulator_dev *rdev) 1798 { 1799 struct regulator_map *node, *n; 1800 1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1802 if (rdev == node->regulator) { 1803 list_del(&node->list); 1804 kfree(node->dev_name); 1805 kfree(node); 1806 } 1807 } 1808 } 1809 1810 #ifdef CONFIG_DEBUG_FS 1811 static ssize_t constraint_flags_read_file(struct file *file, 1812 char __user *user_buf, 1813 size_t count, loff_t *ppos) 1814 { 1815 const struct regulator *regulator = file->private_data; 1816 const struct regulation_constraints *c = regulator->rdev->constraints; 1817 char *buf; 1818 ssize_t ret; 1819 1820 if (!c) 1821 return 0; 1822 1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1824 if (!buf) 1825 return -ENOMEM; 1826 1827 ret = snprintf(buf, PAGE_SIZE, 1828 "always_on: %u\n" 1829 "boot_on: %u\n" 1830 "apply_uV: %u\n" 1831 "ramp_disable: %u\n" 1832 "soft_start: %u\n" 1833 "pull_down: %u\n" 1834 "over_current_protection: %u\n", 1835 c->always_on, 1836 c->boot_on, 1837 c->apply_uV, 1838 c->ramp_disable, 1839 c->soft_start, 1840 c->pull_down, 1841 c->over_current_protection); 1842 1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1844 kfree(buf); 1845 1846 return ret; 1847 } 1848 1849 #endif 1850 1851 static const struct file_operations constraint_flags_fops = { 1852 #ifdef CONFIG_DEBUG_FS 1853 .open = simple_open, 1854 .read = constraint_flags_read_file, 1855 .llseek = default_llseek, 1856 #endif 1857 }; 1858 1859 #define REG_STR_SIZE 64 1860 1861 static struct regulator *create_regulator(struct regulator_dev *rdev, 1862 struct device *dev, 1863 const char *supply_name) 1864 { 1865 struct regulator *regulator; 1866 int err = 0; 1867 1868 lockdep_assert_held_once(&rdev->mutex.base); 1869 1870 if (dev) { 1871 char buf[REG_STR_SIZE]; 1872 int size; 1873 1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1875 dev->kobj.name, supply_name); 1876 if (size >= REG_STR_SIZE) 1877 return NULL; 1878 1879 supply_name = kstrdup(buf, GFP_KERNEL); 1880 if (supply_name == NULL) 1881 return NULL; 1882 } else { 1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1884 if (supply_name == NULL) 1885 return NULL; 1886 } 1887 1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1889 if (regulator == NULL) { 1890 kfree_const(supply_name); 1891 return NULL; 1892 } 1893 1894 regulator->rdev = rdev; 1895 regulator->supply_name = supply_name; 1896 1897 list_add(®ulator->list, &rdev->consumer_list); 1898 1899 if (dev) { 1900 regulator->dev = dev; 1901 1902 /* Add a link to the device sysfs entry */ 1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1904 supply_name); 1905 if (err) { 1906 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1907 dev->kobj.name, ERR_PTR(err)); 1908 /* non-fatal */ 1909 } 1910 } 1911 1912 if (err != -EEXIST) 1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1914 if (IS_ERR(regulator->debugfs)) 1915 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1916 1917 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1918 ®ulator->uA_load); 1919 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1920 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1921 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1922 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1923 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1924 regulator, &constraint_flags_fops); 1925 1926 /* 1927 * Check now if the regulator is an always on regulator - if 1928 * it is then we don't need to do nearly so much work for 1929 * enable/disable calls. 1930 */ 1931 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1932 _regulator_is_enabled(rdev)) 1933 regulator->always_on = true; 1934 1935 return regulator; 1936 } 1937 1938 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1939 { 1940 if (rdev->constraints && rdev->constraints->enable_time) 1941 return rdev->constraints->enable_time; 1942 if (rdev->desc->ops->enable_time) 1943 return rdev->desc->ops->enable_time(rdev); 1944 return rdev->desc->enable_time; 1945 } 1946 1947 static struct regulator_supply_alias *regulator_find_supply_alias( 1948 struct device *dev, const char *supply) 1949 { 1950 struct regulator_supply_alias *map; 1951 1952 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1953 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1954 return map; 1955 1956 return NULL; 1957 } 1958 1959 static void regulator_supply_alias(struct device **dev, const char **supply) 1960 { 1961 struct regulator_supply_alias *map; 1962 1963 map = regulator_find_supply_alias(*dev, *supply); 1964 if (map) { 1965 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1966 *supply, map->alias_supply, 1967 dev_name(map->alias_dev)); 1968 *dev = map->alias_dev; 1969 *supply = map->alias_supply; 1970 } 1971 } 1972 1973 static int regulator_match(struct device *dev, const void *data) 1974 { 1975 struct regulator_dev *r = dev_to_rdev(dev); 1976 1977 return strcmp(rdev_get_name(r), data) == 0; 1978 } 1979 1980 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1981 { 1982 struct device *dev; 1983 1984 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1985 1986 return dev ? dev_to_rdev(dev) : NULL; 1987 } 1988 1989 /** 1990 * regulator_dev_lookup - lookup a regulator device. 1991 * @dev: device for regulator "consumer". 1992 * @supply: Supply name or regulator ID. 1993 * 1994 * If successful, returns a struct regulator_dev that corresponds to the name 1995 * @supply and with the embedded struct device refcount incremented by one. 1996 * The refcount must be dropped by calling put_device(). 1997 * On failure one of the following ERR-PTR-encoded values is returned: 1998 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1999 * in the future. 2000 */ 2001 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2002 const char *supply) 2003 { 2004 struct regulator_dev *r = NULL; 2005 struct device_node *node; 2006 struct regulator_map *map; 2007 const char *devname = NULL; 2008 2009 regulator_supply_alias(&dev, &supply); 2010 2011 /* first do a dt based lookup */ 2012 if (dev && dev->of_node) { 2013 node = of_get_regulator(dev, supply); 2014 if (node) { 2015 r = of_find_regulator_by_node(node); 2016 of_node_put(node); 2017 if (r) 2018 return r; 2019 2020 /* 2021 * We have a node, but there is no device. 2022 * assume it has not registered yet. 2023 */ 2024 return ERR_PTR(-EPROBE_DEFER); 2025 } 2026 } 2027 2028 /* if not found, try doing it non-dt way */ 2029 if (dev) 2030 devname = dev_name(dev); 2031 2032 mutex_lock(®ulator_list_mutex); 2033 list_for_each_entry(map, ®ulator_map_list, list) { 2034 /* If the mapping has a device set up it must match */ 2035 if (map->dev_name && 2036 (!devname || strcmp(map->dev_name, devname))) 2037 continue; 2038 2039 if (strcmp(map->supply, supply) == 0 && 2040 get_device(&map->regulator->dev)) { 2041 r = map->regulator; 2042 break; 2043 } 2044 } 2045 mutex_unlock(®ulator_list_mutex); 2046 2047 if (r) 2048 return r; 2049 2050 r = regulator_lookup_by_name(supply); 2051 if (r) 2052 return r; 2053 2054 return ERR_PTR(-ENODEV); 2055 } 2056 2057 static int regulator_resolve_supply(struct regulator_dev *rdev) 2058 { 2059 struct regulator_dev *r; 2060 struct device *dev = rdev->dev.parent; 2061 struct ww_acquire_ctx ww_ctx; 2062 int ret = 0; 2063 2064 /* No supply to resolve? */ 2065 if (!rdev->supply_name) 2066 return 0; 2067 2068 /* Supply already resolved? (fast-path without locking contention) */ 2069 if (rdev->supply) 2070 return 0; 2071 2072 r = regulator_dev_lookup(dev, rdev->supply_name); 2073 if (IS_ERR(r)) { 2074 ret = PTR_ERR(r); 2075 2076 /* Did the lookup explicitly defer for us? */ 2077 if (ret == -EPROBE_DEFER) 2078 goto out; 2079 2080 if (have_full_constraints()) { 2081 r = dummy_regulator_rdev; 2082 get_device(&r->dev); 2083 } else { 2084 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2085 rdev->supply_name, rdev->desc->name); 2086 ret = -EPROBE_DEFER; 2087 goto out; 2088 } 2089 } 2090 2091 if (r == rdev) { 2092 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2093 rdev->desc->name, rdev->supply_name); 2094 if (!have_full_constraints()) { 2095 ret = -EINVAL; 2096 goto out; 2097 } 2098 r = dummy_regulator_rdev; 2099 get_device(&r->dev); 2100 } 2101 2102 /* 2103 * If the supply's parent device is not the same as the 2104 * regulator's parent device, then ensure the parent device 2105 * is bound before we resolve the supply, in case the parent 2106 * device get probe deferred and unregisters the supply. 2107 */ 2108 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2109 if (!device_is_bound(r->dev.parent)) { 2110 put_device(&r->dev); 2111 ret = -EPROBE_DEFER; 2112 goto out; 2113 } 2114 } 2115 2116 /* Recursively resolve the supply of the supply */ 2117 ret = regulator_resolve_supply(r); 2118 if (ret < 0) { 2119 put_device(&r->dev); 2120 goto out; 2121 } 2122 2123 /* 2124 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2125 * between rdev->supply null check and setting rdev->supply in 2126 * set_supply() from concurrent tasks. 2127 */ 2128 regulator_lock_two(rdev, r, &ww_ctx); 2129 2130 /* Supply just resolved by a concurrent task? */ 2131 if (rdev->supply) { 2132 regulator_unlock_two(rdev, r, &ww_ctx); 2133 put_device(&r->dev); 2134 goto out; 2135 } 2136 2137 ret = set_supply(rdev, r); 2138 if (ret < 0) { 2139 regulator_unlock_two(rdev, r, &ww_ctx); 2140 put_device(&r->dev); 2141 goto out; 2142 } 2143 2144 regulator_unlock_two(rdev, r, &ww_ctx); 2145 2146 /* 2147 * In set_machine_constraints() we may have turned this regulator on 2148 * but we couldn't propagate to the supply if it hadn't been resolved 2149 * yet. Do it now. 2150 */ 2151 if (rdev->use_count) { 2152 ret = regulator_enable(rdev->supply); 2153 if (ret < 0) { 2154 _regulator_put(rdev->supply); 2155 rdev->supply = NULL; 2156 goto out; 2157 } 2158 } 2159 2160 out: 2161 return ret; 2162 } 2163 2164 /* Internal regulator request function */ 2165 struct regulator *_regulator_get(struct device *dev, const char *id, 2166 enum regulator_get_type get_type) 2167 { 2168 struct regulator_dev *rdev; 2169 struct regulator *regulator; 2170 struct device_link *link; 2171 int ret; 2172 2173 if (get_type >= MAX_GET_TYPE) { 2174 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2175 return ERR_PTR(-EINVAL); 2176 } 2177 2178 if (id == NULL) { 2179 pr_err("get() with no identifier\n"); 2180 return ERR_PTR(-EINVAL); 2181 } 2182 2183 rdev = regulator_dev_lookup(dev, id); 2184 if (IS_ERR(rdev)) { 2185 ret = PTR_ERR(rdev); 2186 2187 /* 2188 * If regulator_dev_lookup() fails with error other 2189 * than -ENODEV our job here is done, we simply return it. 2190 */ 2191 if (ret != -ENODEV) 2192 return ERR_PTR(ret); 2193 2194 if (!have_full_constraints()) { 2195 dev_warn(dev, 2196 "incomplete constraints, dummy supplies not allowed\n"); 2197 return ERR_PTR(-ENODEV); 2198 } 2199 2200 switch (get_type) { 2201 case NORMAL_GET: 2202 /* 2203 * Assume that a regulator is physically present and 2204 * enabled, even if it isn't hooked up, and just 2205 * provide a dummy. 2206 */ 2207 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2208 rdev = dummy_regulator_rdev; 2209 get_device(&rdev->dev); 2210 break; 2211 2212 case EXCLUSIVE_GET: 2213 dev_warn(dev, 2214 "dummy supplies not allowed for exclusive requests\n"); 2215 fallthrough; 2216 2217 default: 2218 return ERR_PTR(-ENODEV); 2219 } 2220 } 2221 2222 if (rdev->exclusive) { 2223 regulator = ERR_PTR(-EPERM); 2224 put_device(&rdev->dev); 2225 return regulator; 2226 } 2227 2228 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2229 regulator = ERR_PTR(-EBUSY); 2230 put_device(&rdev->dev); 2231 return regulator; 2232 } 2233 2234 mutex_lock(®ulator_list_mutex); 2235 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2236 mutex_unlock(®ulator_list_mutex); 2237 2238 if (ret != 0) { 2239 regulator = ERR_PTR(-EPROBE_DEFER); 2240 put_device(&rdev->dev); 2241 return regulator; 2242 } 2243 2244 ret = regulator_resolve_supply(rdev); 2245 if (ret < 0) { 2246 regulator = ERR_PTR(ret); 2247 put_device(&rdev->dev); 2248 return regulator; 2249 } 2250 2251 if (!try_module_get(rdev->owner)) { 2252 regulator = ERR_PTR(-EPROBE_DEFER); 2253 put_device(&rdev->dev); 2254 return regulator; 2255 } 2256 2257 regulator_lock(rdev); 2258 regulator = create_regulator(rdev, dev, id); 2259 regulator_unlock(rdev); 2260 if (regulator == NULL) { 2261 regulator = ERR_PTR(-ENOMEM); 2262 module_put(rdev->owner); 2263 put_device(&rdev->dev); 2264 return regulator; 2265 } 2266 2267 rdev->open_count++; 2268 if (get_type == EXCLUSIVE_GET) { 2269 rdev->exclusive = 1; 2270 2271 ret = _regulator_is_enabled(rdev); 2272 if (ret > 0) { 2273 rdev->use_count = 1; 2274 regulator->enable_count = 1; 2275 } else { 2276 rdev->use_count = 0; 2277 regulator->enable_count = 0; 2278 } 2279 } 2280 2281 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2282 if (!IS_ERR_OR_NULL(link)) 2283 regulator->device_link = true; 2284 2285 return regulator; 2286 } 2287 2288 /** 2289 * regulator_get - lookup and obtain a reference to a regulator. 2290 * @dev: device for regulator "consumer" 2291 * @id: Supply name or regulator ID. 2292 * 2293 * Returns a struct regulator corresponding to the regulator producer, 2294 * or IS_ERR() condition containing errno. 2295 * 2296 * Use of supply names configured via set_consumer_device_supply() is 2297 * strongly encouraged. It is recommended that the supply name used 2298 * should match the name used for the supply and/or the relevant 2299 * device pins in the datasheet. 2300 */ 2301 struct regulator *regulator_get(struct device *dev, const char *id) 2302 { 2303 return _regulator_get(dev, id, NORMAL_GET); 2304 } 2305 EXPORT_SYMBOL_GPL(regulator_get); 2306 2307 /** 2308 * regulator_get_exclusive - obtain exclusive access to a regulator. 2309 * @dev: device for regulator "consumer" 2310 * @id: Supply name or regulator ID. 2311 * 2312 * Returns a struct regulator corresponding to the regulator producer, 2313 * or IS_ERR() condition containing errno. Other consumers will be 2314 * unable to obtain this regulator while this reference is held and the 2315 * use count for the regulator will be initialised to reflect the current 2316 * state of the regulator. 2317 * 2318 * This is intended for use by consumers which cannot tolerate shared 2319 * use of the regulator such as those which need to force the 2320 * regulator off for correct operation of the hardware they are 2321 * controlling. 2322 * 2323 * Use of supply names configured via set_consumer_device_supply() is 2324 * strongly encouraged. It is recommended that the supply name used 2325 * should match the name used for the supply and/or the relevant 2326 * device pins in the datasheet. 2327 */ 2328 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2329 { 2330 return _regulator_get(dev, id, EXCLUSIVE_GET); 2331 } 2332 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2333 2334 /** 2335 * regulator_get_optional - obtain optional access to a regulator. 2336 * @dev: device for regulator "consumer" 2337 * @id: Supply name or regulator ID. 2338 * 2339 * Returns a struct regulator corresponding to the regulator producer, 2340 * or IS_ERR() condition containing errno. 2341 * 2342 * This is intended for use by consumers for devices which can have 2343 * some supplies unconnected in normal use, such as some MMC devices. 2344 * It can allow the regulator core to provide stub supplies for other 2345 * supplies requested using normal regulator_get() calls without 2346 * disrupting the operation of drivers that can handle absent 2347 * supplies. 2348 * 2349 * Use of supply names configured via set_consumer_device_supply() is 2350 * strongly encouraged. It is recommended that the supply name used 2351 * should match the name used for the supply and/or the relevant 2352 * device pins in the datasheet. 2353 */ 2354 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2355 { 2356 return _regulator_get(dev, id, OPTIONAL_GET); 2357 } 2358 EXPORT_SYMBOL_GPL(regulator_get_optional); 2359 2360 static void destroy_regulator(struct regulator *regulator) 2361 { 2362 struct regulator_dev *rdev = regulator->rdev; 2363 2364 debugfs_remove_recursive(regulator->debugfs); 2365 2366 if (regulator->dev) { 2367 if (regulator->device_link) 2368 device_link_remove(regulator->dev, &rdev->dev); 2369 2370 /* remove any sysfs entries */ 2371 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2372 } 2373 2374 regulator_lock(rdev); 2375 list_del(®ulator->list); 2376 2377 rdev->open_count--; 2378 rdev->exclusive = 0; 2379 regulator_unlock(rdev); 2380 2381 kfree_const(regulator->supply_name); 2382 kfree(regulator); 2383 } 2384 2385 /* regulator_list_mutex lock held by regulator_put() */ 2386 static void _regulator_put(struct regulator *regulator) 2387 { 2388 struct regulator_dev *rdev; 2389 2390 if (IS_ERR_OR_NULL(regulator)) 2391 return; 2392 2393 lockdep_assert_held_once(®ulator_list_mutex); 2394 2395 /* Docs say you must disable before calling regulator_put() */ 2396 WARN_ON(regulator->enable_count); 2397 2398 rdev = regulator->rdev; 2399 2400 destroy_regulator(regulator); 2401 2402 module_put(rdev->owner); 2403 put_device(&rdev->dev); 2404 } 2405 2406 /** 2407 * regulator_put - "free" the regulator source 2408 * @regulator: regulator source 2409 * 2410 * Note: drivers must ensure that all regulator_enable calls made on this 2411 * regulator source are balanced by regulator_disable calls prior to calling 2412 * this function. 2413 */ 2414 void regulator_put(struct regulator *regulator) 2415 { 2416 mutex_lock(®ulator_list_mutex); 2417 _regulator_put(regulator); 2418 mutex_unlock(®ulator_list_mutex); 2419 } 2420 EXPORT_SYMBOL_GPL(regulator_put); 2421 2422 /** 2423 * regulator_register_supply_alias - Provide device alias for supply lookup 2424 * 2425 * @dev: device that will be given as the regulator "consumer" 2426 * @id: Supply name or regulator ID 2427 * @alias_dev: device that should be used to lookup the supply 2428 * @alias_id: Supply name or regulator ID that should be used to lookup the 2429 * supply 2430 * 2431 * All lookups for id on dev will instead be conducted for alias_id on 2432 * alias_dev. 2433 */ 2434 int regulator_register_supply_alias(struct device *dev, const char *id, 2435 struct device *alias_dev, 2436 const char *alias_id) 2437 { 2438 struct regulator_supply_alias *map; 2439 2440 map = regulator_find_supply_alias(dev, id); 2441 if (map) 2442 return -EEXIST; 2443 2444 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2445 if (!map) 2446 return -ENOMEM; 2447 2448 map->src_dev = dev; 2449 map->src_supply = id; 2450 map->alias_dev = alias_dev; 2451 map->alias_supply = alias_id; 2452 2453 list_add(&map->list, ®ulator_supply_alias_list); 2454 2455 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2456 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2457 2458 return 0; 2459 } 2460 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2461 2462 /** 2463 * regulator_unregister_supply_alias - Remove device alias 2464 * 2465 * @dev: device that will be given as the regulator "consumer" 2466 * @id: Supply name or regulator ID 2467 * 2468 * Remove a lookup alias if one exists for id on dev. 2469 */ 2470 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2471 { 2472 struct regulator_supply_alias *map; 2473 2474 map = regulator_find_supply_alias(dev, id); 2475 if (map) { 2476 list_del(&map->list); 2477 kfree(map); 2478 } 2479 } 2480 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2481 2482 /** 2483 * regulator_bulk_register_supply_alias - register multiple aliases 2484 * 2485 * @dev: device that will be given as the regulator "consumer" 2486 * @id: List of supply names or regulator IDs 2487 * @alias_dev: device that should be used to lookup the supply 2488 * @alias_id: List of supply names or regulator IDs that should be used to 2489 * lookup the supply 2490 * @num_id: Number of aliases to register 2491 * 2492 * @return 0 on success, an errno on failure. 2493 * 2494 * This helper function allows drivers to register several supply 2495 * aliases in one operation. If any of the aliases cannot be 2496 * registered any aliases that were registered will be removed 2497 * before returning to the caller. 2498 */ 2499 int regulator_bulk_register_supply_alias(struct device *dev, 2500 const char *const *id, 2501 struct device *alias_dev, 2502 const char *const *alias_id, 2503 int num_id) 2504 { 2505 int i; 2506 int ret; 2507 2508 for (i = 0; i < num_id; ++i) { 2509 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2510 alias_id[i]); 2511 if (ret < 0) 2512 goto err; 2513 } 2514 2515 return 0; 2516 2517 err: 2518 dev_err(dev, 2519 "Failed to create supply alias %s,%s -> %s,%s\n", 2520 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2521 2522 while (--i >= 0) 2523 regulator_unregister_supply_alias(dev, id[i]); 2524 2525 return ret; 2526 } 2527 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2528 2529 /** 2530 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2531 * 2532 * @dev: device that will be given as the regulator "consumer" 2533 * @id: List of supply names or regulator IDs 2534 * @num_id: Number of aliases to unregister 2535 * 2536 * This helper function allows drivers to unregister several supply 2537 * aliases in one operation. 2538 */ 2539 void regulator_bulk_unregister_supply_alias(struct device *dev, 2540 const char *const *id, 2541 int num_id) 2542 { 2543 int i; 2544 2545 for (i = 0; i < num_id; ++i) 2546 regulator_unregister_supply_alias(dev, id[i]); 2547 } 2548 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2549 2550 2551 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2552 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2553 const struct regulator_config *config) 2554 { 2555 struct regulator_enable_gpio *pin, *new_pin; 2556 struct gpio_desc *gpiod; 2557 2558 gpiod = config->ena_gpiod; 2559 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2560 2561 mutex_lock(®ulator_list_mutex); 2562 2563 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2564 if (pin->gpiod == gpiod) { 2565 rdev_dbg(rdev, "GPIO is already used\n"); 2566 goto update_ena_gpio_to_rdev; 2567 } 2568 } 2569 2570 if (new_pin == NULL) { 2571 mutex_unlock(®ulator_list_mutex); 2572 return -ENOMEM; 2573 } 2574 2575 pin = new_pin; 2576 new_pin = NULL; 2577 2578 pin->gpiod = gpiod; 2579 list_add(&pin->list, ®ulator_ena_gpio_list); 2580 2581 update_ena_gpio_to_rdev: 2582 pin->request_count++; 2583 rdev->ena_pin = pin; 2584 2585 mutex_unlock(®ulator_list_mutex); 2586 kfree(new_pin); 2587 2588 return 0; 2589 } 2590 2591 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2592 { 2593 struct regulator_enable_gpio *pin, *n; 2594 2595 if (!rdev->ena_pin) 2596 return; 2597 2598 /* Free the GPIO only in case of no use */ 2599 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2600 if (pin != rdev->ena_pin) 2601 continue; 2602 2603 if (--pin->request_count) 2604 break; 2605 2606 gpiod_put(pin->gpiod); 2607 list_del(&pin->list); 2608 kfree(pin); 2609 break; 2610 } 2611 2612 rdev->ena_pin = NULL; 2613 } 2614 2615 /** 2616 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2617 * @rdev: regulator_dev structure 2618 * @enable: enable GPIO at initial use? 2619 * 2620 * GPIO is enabled in case of initial use. (enable_count is 0) 2621 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2622 */ 2623 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2624 { 2625 struct regulator_enable_gpio *pin = rdev->ena_pin; 2626 2627 if (!pin) 2628 return -EINVAL; 2629 2630 if (enable) { 2631 /* Enable GPIO at initial use */ 2632 if (pin->enable_count == 0) 2633 gpiod_set_value_cansleep(pin->gpiod, 1); 2634 2635 pin->enable_count++; 2636 } else { 2637 if (pin->enable_count > 1) { 2638 pin->enable_count--; 2639 return 0; 2640 } 2641 2642 /* Disable GPIO if not used */ 2643 if (pin->enable_count <= 1) { 2644 gpiod_set_value_cansleep(pin->gpiod, 0); 2645 pin->enable_count = 0; 2646 } 2647 } 2648 2649 return 0; 2650 } 2651 2652 /** 2653 * _regulator_delay_helper - a delay helper function 2654 * @delay: time to delay in microseconds 2655 * 2656 * Delay for the requested amount of time as per the guidelines in: 2657 * 2658 * Documentation/timers/timers-howto.rst 2659 * 2660 * The assumption here is that these regulator operations will never used in 2661 * atomic context and therefore sleeping functions can be used. 2662 */ 2663 static void _regulator_delay_helper(unsigned int delay) 2664 { 2665 unsigned int ms = delay / 1000; 2666 unsigned int us = delay % 1000; 2667 2668 if (ms > 0) { 2669 /* 2670 * For small enough values, handle super-millisecond 2671 * delays in the usleep_range() call below. 2672 */ 2673 if (ms < 20) 2674 us += ms * 1000; 2675 else 2676 msleep(ms); 2677 } 2678 2679 /* 2680 * Give the scheduler some room to coalesce with any other 2681 * wakeup sources. For delays shorter than 10 us, don't even 2682 * bother setting up high-resolution timers and just busy- 2683 * loop. 2684 */ 2685 if (us >= 10) 2686 usleep_range(us, us + 100); 2687 else 2688 udelay(us); 2689 } 2690 2691 /** 2692 * _regulator_check_status_enabled 2693 * 2694 * A helper function to check if the regulator status can be interpreted 2695 * as 'regulator is enabled'. 2696 * @rdev: the regulator device to check 2697 * 2698 * Return: 2699 * * 1 - if status shows regulator is in enabled state 2700 * * 0 - if not enabled state 2701 * * Error Value - as received from ops->get_status() 2702 */ 2703 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2704 { 2705 int ret = rdev->desc->ops->get_status(rdev); 2706 2707 if (ret < 0) { 2708 rdev_info(rdev, "get_status returned error: %d\n", ret); 2709 return ret; 2710 } 2711 2712 switch (ret) { 2713 case REGULATOR_STATUS_OFF: 2714 case REGULATOR_STATUS_ERROR: 2715 case REGULATOR_STATUS_UNDEFINED: 2716 return 0; 2717 default: 2718 return 1; 2719 } 2720 } 2721 2722 static int _regulator_do_enable(struct regulator_dev *rdev) 2723 { 2724 int ret, delay; 2725 2726 /* Query before enabling in case configuration dependent. */ 2727 ret = _regulator_get_enable_time(rdev); 2728 if (ret >= 0) { 2729 delay = ret; 2730 } else { 2731 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2732 delay = 0; 2733 } 2734 2735 trace_regulator_enable(rdev_get_name(rdev)); 2736 2737 if (rdev->desc->off_on_delay) { 2738 /* if needed, keep a distance of off_on_delay from last time 2739 * this regulator was disabled. 2740 */ 2741 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2742 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2743 2744 if (remaining > 0) 2745 _regulator_delay_helper(remaining); 2746 } 2747 2748 if (rdev->ena_pin) { 2749 if (!rdev->ena_gpio_state) { 2750 ret = regulator_ena_gpio_ctrl(rdev, true); 2751 if (ret < 0) 2752 return ret; 2753 rdev->ena_gpio_state = 1; 2754 } 2755 } else if (rdev->desc->ops->enable) { 2756 ret = rdev->desc->ops->enable(rdev); 2757 if (ret < 0) 2758 return ret; 2759 } else { 2760 return -EINVAL; 2761 } 2762 2763 /* Allow the regulator to ramp; it would be useful to extend 2764 * this for bulk operations so that the regulators can ramp 2765 * together. 2766 */ 2767 trace_regulator_enable_delay(rdev_get_name(rdev)); 2768 2769 /* If poll_enabled_time is set, poll upto the delay calculated 2770 * above, delaying poll_enabled_time uS to check if the regulator 2771 * actually got enabled. 2772 * If the regulator isn't enabled after our delay helper has expired, 2773 * return -ETIMEDOUT. 2774 */ 2775 if (rdev->desc->poll_enabled_time) { 2776 int time_remaining = delay; 2777 2778 while (time_remaining > 0) { 2779 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2780 2781 if (rdev->desc->ops->get_status) { 2782 ret = _regulator_check_status_enabled(rdev); 2783 if (ret < 0) 2784 return ret; 2785 else if (ret) 2786 break; 2787 } else if (rdev->desc->ops->is_enabled(rdev)) 2788 break; 2789 2790 time_remaining -= rdev->desc->poll_enabled_time; 2791 } 2792 2793 if (time_remaining <= 0) { 2794 rdev_err(rdev, "Enabled check timed out\n"); 2795 return -ETIMEDOUT; 2796 } 2797 } else { 2798 _regulator_delay_helper(delay); 2799 } 2800 2801 trace_regulator_enable_complete(rdev_get_name(rdev)); 2802 2803 return 0; 2804 } 2805 2806 /** 2807 * _regulator_handle_consumer_enable - handle that a consumer enabled 2808 * @regulator: regulator source 2809 * 2810 * Some things on a regulator consumer (like the contribution towards total 2811 * load on the regulator) only have an effect when the consumer wants the 2812 * regulator enabled. Explained in example with two consumers of the same 2813 * regulator: 2814 * consumer A: set_load(100); => total load = 0 2815 * consumer A: regulator_enable(); => total load = 100 2816 * consumer B: set_load(1000); => total load = 100 2817 * consumer B: regulator_enable(); => total load = 1100 2818 * consumer A: regulator_disable(); => total_load = 1000 2819 * 2820 * This function (together with _regulator_handle_consumer_disable) is 2821 * responsible for keeping track of the refcount for a given regulator consumer 2822 * and applying / unapplying these things. 2823 * 2824 * Returns 0 upon no error; -error upon error. 2825 */ 2826 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2827 { 2828 int ret; 2829 struct regulator_dev *rdev = regulator->rdev; 2830 2831 lockdep_assert_held_once(&rdev->mutex.base); 2832 2833 regulator->enable_count++; 2834 if (regulator->uA_load && regulator->enable_count == 1) { 2835 ret = drms_uA_update(rdev); 2836 if (ret) 2837 regulator->enable_count--; 2838 return ret; 2839 } 2840 2841 return 0; 2842 } 2843 2844 /** 2845 * _regulator_handle_consumer_disable - handle that a consumer disabled 2846 * @regulator: regulator source 2847 * 2848 * The opposite of _regulator_handle_consumer_enable(). 2849 * 2850 * Returns 0 upon no error; -error upon error. 2851 */ 2852 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2853 { 2854 struct regulator_dev *rdev = regulator->rdev; 2855 2856 lockdep_assert_held_once(&rdev->mutex.base); 2857 2858 if (!regulator->enable_count) { 2859 rdev_err(rdev, "Underflow of regulator enable count\n"); 2860 return -EINVAL; 2861 } 2862 2863 regulator->enable_count--; 2864 if (regulator->uA_load && regulator->enable_count == 0) 2865 return drms_uA_update(rdev); 2866 2867 return 0; 2868 } 2869 2870 /* locks held by regulator_enable() */ 2871 static int _regulator_enable(struct regulator *regulator) 2872 { 2873 struct regulator_dev *rdev = regulator->rdev; 2874 int ret; 2875 2876 lockdep_assert_held_once(&rdev->mutex.base); 2877 2878 if (rdev->use_count == 0 && rdev->supply) { 2879 ret = _regulator_enable(rdev->supply); 2880 if (ret < 0) 2881 return ret; 2882 } 2883 2884 /* balance only if there are regulators coupled */ 2885 if (rdev->coupling_desc.n_coupled > 1) { 2886 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2887 if (ret < 0) 2888 goto err_disable_supply; 2889 } 2890 2891 ret = _regulator_handle_consumer_enable(regulator); 2892 if (ret < 0) 2893 goto err_disable_supply; 2894 2895 if (rdev->use_count == 0) { 2896 /* 2897 * The regulator may already be enabled if it's not switchable 2898 * or was left on 2899 */ 2900 ret = _regulator_is_enabled(rdev); 2901 if (ret == -EINVAL || ret == 0) { 2902 if (!regulator_ops_is_valid(rdev, 2903 REGULATOR_CHANGE_STATUS)) { 2904 ret = -EPERM; 2905 goto err_consumer_disable; 2906 } 2907 2908 ret = _regulator_do_enable(rdev); 2909 if (ret < 0) 2910 goto err_consumer_disable; 2911 2912 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2913 NULL); 2914 } else if (ret < 0) { 2915 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2916 goto err_consumer_disable; 2917 } 2918 /* Fallthrough on positive return values - already enabled */ 2919 } 2920 2921 if (regulator->enable_count == 1) 2922 rdev->use_count++; 2923 2924 return 0; 2925 2926 err_consumer_disable: 2927 _regulator_handle_consumer_disable(regulator); 2928 2929 err_disable_supply: 2930 if (rdev->use_count == 0 && rdev->supply) 2931 _regulator_disable(rdev->supply); 2932 2933 return ret; 2934 } 2935 2936 /** 2937 * regulator_enable - enable regulator output 2938 * @regulator: regulator source 2939 * 2940 * Request that the regulator be enabled with the regulator output at 2941 * the predefined voltage or current value. Calls to regulator_enable() 2942 * must be balanced with calls to regulator_disable(). 2943 * 2944 * NOTE: the output value can be set by other drivers, boot loader or may be 2945 * hardwired in the regulator. 2946 */ 2947 int regulator_enable(struct regulator *regulator) 2948 { 2949 struct regulator_dev *rdev = regulator->rdev; 2950 struct ww_acquire_ctx ww_ctx; 2951 int ret; 2952 2953 regulator_lock_dependent(rdev, &ww_ctx); 2954 ret = _regulator_enable(regulator); 2955 regulator_unlock_dependent(rdev, &ww_ctx); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(regulator_enable); 2960 2961 static int _regulator_do_disable(struct regulator_dev *rdev) 2962 { 2963 int ret; 2964 2965 trace_regulator_disable(rdev_get_name(rdev)); 2966 2967 if (rdev->ena_pin) { 2968 if (rdev->ena_gpio_state) { 2969 ret = regulator_ena_gpio_ctrl(rdev, false); 2970 if (ret < 0) 2971 return ret; 2972 rdev->ena_gpio_state = 0; 2973 } 2974 2975 } else if (rdev->desc->ops->disable) { 2976 ret = rdev->desc->ops->disable(rdev); 2977 if (ret != 0) 2978 return ret; 2979 } 2980 2981 if (rdev->desc->off_on_delay) 2982 rdev->last_off = ktime_get_boottime(); 2983 2984 trace_regulator_disable_complete(rdev_get_name(rdev)); 2985 2986 return 0; 2987 } 2988 2989 /* locks held by regulator_disable() */ 2990 static int _regulator_disable(struct regulator *regulator) 2991 { 2992 struct regulator_dev *rdev = regulator->rdev; 2993 int ret = 0; 2994 2995 lockdep_assert_held_once(&rdev->mutex.base); 2996 2997 if (WARN(regulator->enable_count == 0, 2998 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2999 return -EIO; 3000 3001 if (regulator->enable_count == 1) { 3002 /* disabling last enable_count from this regulator */ 3003 /* are we the last user and permitted to disable ? */ 3004 if (rdev->use_count == 1 && 3005 (rdev->constraints && !rdev->constraints->always_on)) { 3006 3007 /* we are last user */ 3008 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3009 ret = _notifier_call_chain(rdev, 3010 REGULATOR_EVENT_PRE_DISABLE, 3011 NULL); 3012 if (ret & NOTIFY_STOP_MASK) 3013 return -EINVAL; 3014 3015 ret = _regulator_do_disable(rdev); 3016 if (ret < 0) { 3017 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3018 _notifier_call_chain(rdev, 3019 REGULATOR_EVENT_ABORT_DISABLE, 3020 NULL); 3021 return ret; 3022 } 3023 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3024 NULL); 3025 } 3026 3027 rdev->use_count = 0; 3028 } else if (rdev->use_count > 1) { 3029 rdev->use_count--; 3030 } 3031 } 3032 3033 if (ret == 0) 3034 ret = _regulator_handle_consumer_disable(regulator); 3035 3036 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3037 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3038 3039 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3040 ret = _regulator_disable(rdev->supply); 3041 3042 return ret; 3043 } 3044 3045 /** 3046 * regulator_disable - disable regulator output 3047 * @regulator: regulator source 3048 * 3049 * Disable the regulator output voltage or current. Calls to 3050 * regulator_enable() must be balanced with calls to 3051 * regulator_disable(). 3052 * 3053 * NOTE: this will only disable the regulator output if no other consumer 3054 * devices have it enabled, the regulator device supports disabling and 3055 * machine constraints permit this operation. 3056 */ 3057 int regulator_disable(struct regulator *regulator) 3058 { 3059 struct regulator_dev *rdev = regulator->rdev; 3060 struct ww_acquire_ctx ww_ctx; 3061 int ret; 3062 3063 regulator_lock_dependent(rdev, &ww_ctx); 3064 ret = _regulator_disable(regulator); 3065 regulator_unlock_dependent(rdev, &ww_ctx); 3066 3067 return ret; 3068 } 3069 EXPORT_SYMBOL_GPL(regulator_disable); 3070 3071 /* locks held by regulator_force_disable() */ 3072 static int _regulator_force_disable(struct regulator_dev *rdev) 3073 { 3074 int ret = 0; 3075 3076 lockdep_assert_held_once(&rdev->mutex.base); 3077 3078 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3079 REGULATOR_EVENT_PRE_DISABLE, NULL); 3080 if (ret & NOTIFY_STOP_MASK) 3081 return -EINVAL; 3082 3083 ret = _regulator_do_disable(rdev); 3084 if (ret < 0) { 3085 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3086 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3087 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3088 return ret; 3089 } 3090 3091 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3092 REGULATOR_EVENT_DISABLE, NULL); 3093 3094 return 0; 3095 } 3096 3097 /** 3098 * regulator_force_disable - force disable regulator output 3099 * @regulator: regulator source 3100 * 3101 * Forcibly disable the regulator output voltage or current. 3102 * NOTE: this *will* disable the regulator output even if other consumer 3103 * devices have it enabled. This should be used for situations when device 3104 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3105 */ 3106 int regulator_force_disable(struct regulator *regulator) 3107 { 3108 struct regulator_dev *rdev = regulator->rdev; 3109 struct ww_acquire_ctx ww_ctx; 3110 int ret; 3111 3112 regulator_lock_dependent(rdev, &ww_ctx); 3113 3114 ret = _regulator_force_disable(regulator->rdev); 3115 3116 if (rdev->coupling_desc.n_coupled > 1) 3117 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3118 3119 if (regulator->uA_load) { 3120 regulator->uA_load = 0; 3121 ret = drms_uA_update(rdev); 3122 } 3123 3124 if (rdev->use_count != 0 && rdev->supply) 3125 _regulator_disable(rdev->supply); 3126 3127 regulator_unlock_dependent(rdev, &ww_ctx); 3128 3129 return ret; 3130 } 3131 EXPORT_SYMBOL_GPL(regulator_force_disable); 3132 3133 static void regulator_disable_work(struct work_struct *work) 3134 { 3135 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3136 disable_work.work); 3137 struct ww_acquire_ctx ww_ctx; 3138 int count, i, ret; 3139 struct regulator *regulator; 3140 int total_count = 0; 3141 3142 regulator_lock_dependent(rdev, &ww_ctx); 3143 3144 /* 3145 * Workqueue functions queue the new work instance while the previous 3146 * work instance is being processed. Cancel the queued work instance 3147 * as the work instance under processing does the job of the queued 3148 * work instance. 3149 */ 3150 cancel_delayed_work(&rdev->disable_work); 3151 3152 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3153 count = regulator->deferred_disables; 3154 3155 if (!count) 3156 continue; 3157 3158 total_count += count; 3159 regulator->deferred_disables = 0; 3160 3161 for (i = 0; i < count; i++) { 3162 ret = _regulator_disable(regulator); 3163 if (ret != 0) 3164 rdev_err(rdev, "Deferred disable failed: %pe\n", 3165 ERR_PTR(ret)); 3166 } 3167 } 3168 WARN_ON(!total_count); 3169 3170 if (rdev->coupling_desc.n_coupled > 1) 3171 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3172 3173 regulator_unlock_dependent(rdev, &ww_ctx); 3174 } 3175 3176 /** 3177 * regulator_disable_deferred - disable regulator output with delay 3178 * @regulator: regulator source 3179 * @ms: milliseconds until the regulator is disabled 3180 * 3181 * Execute regulator_disable() on the regulator after a delay. This 3182 * is intended for use with devices that require some time to quiesce. 3183 * 3184 * NOTE: this will only disable the regulator output if no other consumer 3185 * devices have it enabled, the regulator device supports disabling and 3186 * machine constraints permit this operation. 3187 */ 3188 int regulator_disable_deferred(struct regulator *regulator, int ms) 3189 { 3190 struct regulator_dev *rdev = regulator->rdev; 3191 3192 if (!ms) 3193 return regulator_disable(regulator); 3194 3195 regulator_lock(rdev); 3196 regulator->deferred_disables++; 3197 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3198 msecs_to_jiffies(ms)); 3199 regulator_unlock(rdev); 3200 3201 return 0; 3202 } 3203 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3204 3205 static int _regulator_is_enabled(struct regulator_dev *rdev) 3206 { 3207 /* A GPIO control always takes precedence */ 3208 if (rdev->ena_pin) 3209 return rdev->ena_gpio_state; 3210 3211 /* If we don't know then assume that the regulator is always on */ 3212 if (!rdev->desc->ops->is_enabled) 3213 return 1; 3214 3215 return rdev->desc->ops->is_enabled(rdev); 3216 } 3217 3218 static int _regulator_list_voltage(struct regulator_dev *rdev, 3219 unsigned selector, int lock) 3220 { 3221 const struct regulator_ops *ops = rdev->desc->ops; 3222 int ret; 3223 3224 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3225 return rdev->desc->fixed_uV; 3226 3227 if (ops->list_voltage) { 3228 if (selector >= rdev->desc->n_voltages) 3229 return -EINVAL; 3230 if (selector < rdev->desc->linear_min_sel) 3231 return 0; 3232 if (lock) 3233 regulator_lock(rdev); 3234 ret = ops->list_voltage(rdev, selector); 3235 if (lock) 3236 regulator_unlock(rdev); 3237 } else if (rdev->is_switch && rdev->supply) { 3238 ret = _regulator_list_voltage(rdev->supply->rdev, 3239 selector, lock); 3240 } else { 3241 return -EINVAL; 3242 } 3243 3244 if (ret > 0) { 3245 if (ret < rdev->constraints->min_uV) 3246 ret = 0; 3247 else if (ret > rdev->constraints->max_uV) 3248 ret = 0; 3249 } 3250 3251 return ret; 3252 } 3253 3254 /** 3255 * regulator_is_enabled - is the regulator output enabled 3256 * @regulator: regulator source 3257 * 3258 * Returns positive if the regulator driver backing the source/client 3259 * has requested that the device be enabled, zero if it hasn't, else a 3260 * negative errno code. 3261 * 3262 * Note that the device backing this regulator handle can have multiple 3263 * users, so it might be enabled even if regulator_enable() was never 3264 * called for this particular source. 3265 */ 3266 int regulator_is_enabled(struct regulator *regulator) 3267 { 3268 int ret; 3269 3270 if (regulator->always_on) 3271 return 1; 3272 3273 regulator_lock(regulator->rdev); 3274 ret = _regulator_is_enabled(regulator->rdev); 3275 regulator_unlock(regulator->rdev); 3276 3277 return ret; 3278 } 3279 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3280 3281 /** 3282 * regulator_count_voltages - count regulator_list_voltage() selectors 3283 * @regulator: regulator source 3284 * 3285 * Returns number of selectors, or negative errno. Selectors are 3286 * numbered starting at zero, and typically correspond to bitfields 3287 * in hardware registers. 3288 */ 3289 int regulator_count_voltages(struct regulator *regulator) 3290 { 3291 struct regulator_dev *rdev = regulator->rdev; 3292 3293 if (rdev->desc->n_voltages) 3294 return rdev->desc->n_voltages; 3295 3296 if (!rdev->is_switch || !rdev->supply) 3297 return -EINVAL; 3298 3299 return regulator_count_voltages(rdev->supply); 3300 } 3301 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3302 3303 /** 3304 * regulator_list_voltage - enumerate supported voltages 3305 * @regulator: regulator source 3306 * @selector: identify voltage to list 3307 * Context: can sleep 3308 * 3309 * Returns a voltage that can be passed to @regulator_set_voltage(), 3310 * zero if this selector code can't be used on this system, or a 3311 * negative errno. 3312 */ 3313 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3314 { 3315 return _regulator_list_voltage(regulator->rdev, selector, 1); 3316 } 3317 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3318 3319 /** 3320 * regulator_get_regmap - get the regulator's register map 3321 * @regulator: regulator source 3322 * 3323 * Returns the register map for the given regulator, or an ERR_PTR value 3324 * if the regulator doesn't use regmap. 3325 */ 3326 struct regmap *regulator_get_regmap(struct regulator *regulator) 3327 { 3328 struct regmap *map = regulator->rdev->regmap; 3329 3330 return map ? map : ERR_PTR(-EOPNOTSUPP); 3331 } 3332 3333 /** 3334 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3335 * @regulator: regulator source 3336 * @vsel_reg: voltage selector register, output parameter 3337 * @vsel_mask: mask for voltage selector bitfield, output parameter 3338 * 3339 * Returns the hardware register offset and bitmask used for setting the 3340 * regulator voltage. This might be useful when configuring voltage-scaling 3341 * hardware or firmware that can make I2C requests behind the kernel's back, 3342 * for example. 3343 * 3344 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3345 * and 0 is returned, otherwise a negative errno is returned. 3346 */ 3347 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3348 unsigned *vsel_reg, 3349 unsigned *vsel_mask) 3350 { 3351 struct regulator_dev *rdev = regulator->rdev; 3352 const struct regulator_ops *ops = rdev->desc->ops; 3353 3354 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3355 return -EOPNOTSUPP; 3356 3357 *vsel_reg = rdev->desc->vsel_reg; 3358 *vsel_mask = rdev->desc->vsel_mask; 3359 3360 return 0; 3361 } 3362 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3363 3364 /** 3365 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3366 * @regulator: regulator source 3367 * @selector: identify voltage to list 3368 * 3369 * Converts the selector to a hardware-specific voltage selector that can be 3370 * directly written to the regulator registers. The address of the voltage 3371 * register can be determined by calling @regulator_get_hardware_vsel_register. 3372 * 3373 * On error a negative errno is returned. 3374 */ 3375 int regulator_list_hardware_vsel(struct regulator *regulator, 3376 unsigned selector) 3377 { 3378 struct regulator_dev *rdev = regulator->rdev; 3379 const struct regulator_ops *ops = rdev->desc->ops; 3380 3381 if (selector >= rdev->desc->n_voltages) 3382 return -EINVAL; 3383 if (selector < rdev->desc->linear_min_sel) 3384 return 0; 3385 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3386 return -EOPNOTSUPP; 3387 3388 return selector; 3389 } 3390 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3391 3392 /** 3393 * regulator_get_linear_step - return the voltage step size between VSEL values 3394 * @regulator: regulator source 3395 * 3396 * Returns the voltage step size between VSEL values for linear 3397 * regulators, or return 0 if the regulator isn't a linear regulator. 3398 */ 3399 unsigned int regulator_get_linear_step(struct regulator *regulator) 3400 { 3401 struct regulator_dev *rdev = regulator->rdev; 3402 3403 return rdev->desc->uV_step; 3404 } 3405 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3406 3407 /** 3408 * regulator_is_supported_voltage - check if a voltage range can be supported 3409 * 3410 * @regulator: Regulator to check. 3411 * @min_uV: Minimum required voltage in uV. 3412 * @max_uV: Maximum required voltage in uV. 3413 * 3414 * Returns a boolean. 3415 */ 3416 int regulator_is_supported_voltage(struct regulator *regulator, 3417 int min_uV, int max_uV) 3418 { 3419 struct regulator_dev *rdev = regulator->rdev; 3420 int i, voltages, ret; 3421 3422 /* If we can't change voltage check the current voltage */ 3423 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3424 ret = regulator_get_voltage(regulator); 3425 if (ret >= 0) 3426 return min_uV <= ret && ret <= max_uV; 3427 else 3428 return ret; 3429 } 3430 3431 /* Any voltage within constrains range is fine? */ 3432 if (rdev->desc->continuous_voltage_range) 3433 return min_uV >= rdev->constraints->min_uV && 3434 max_uV <= rdev->constraints->max_uV; 3435 3436 ret = regulator_count_voltages(regulator); 3437 if (ret < 0) 3438 return 0; 3439 voltages = ret; 3440 3441 for (i = 0; i < voltages; i++) { 3442 ret = regulator_list_voltage(regulator, i); 3443 3444 if (ret >= min_uV && ret <= max_uV) 3445 return 1; 3446 } 3447 3448 return 0; 3449 } 3450 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3451 3452 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3453 int max_uV) 3454 { 3455 const struct regulator_desc *desc = rdev->desc; 3456 3457 if (desc->ops->map_voltage) 3458 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3459 3460 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3461 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3462 3463 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3464 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3465 3466 if (desc->ops->list_voltage == 3467 regulator_list_voltage_pickable_linear_range) 3468 return regulator_map_voltage_pickable_linear_range(rdev, 3469 min_uV, max_uV); 3470 3471 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3472 } 3473 3474 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3475 int min_uV, int max_uV, 3476 unsigned *selector) 3477 { 3478 struct pre_voltage_change_data data; 3479 int ret; 3480 3481 data.old_uV = regulator_get_voltage_rdev(rdev); 3482 data.min_uV = min_uV; 3483 data.max_uV = max_uV; 3484 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3485 &data); 3486 if (ret & NOTIFY_STOP_MASK) 3487 return -EINVAL; 3488 3489 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3490 if (ret >= 0) 3491 return ret; 3492 3493 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3494 (void *)data.old_uV); 3495 3496 return ret; 3497 } 3498 3499 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3500 int uV, unsigned selector) 3501 { 3502 struct pre_voltage_change_data data; 3503 int ret; 3504 3505 data.old_uV = regulator_get_voltage_rdev(rdev); 3506 data.min_uV = uV; 3507 data.max_uV = uV; 3508 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3509 &data); 3510 if (ret & NOTIFY_STOP_MASK) 3511 return -EINVAL; 3512 3513 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3514 if (ret >= 0) 3515 return ret; 3516 3517 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3518 (void *)data.old_uV); 3519 3520 return ret; 3521 } 3522 3523 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3524 int uV, int new_selector) 3525 { 3526 const struct regulator_ops *ops = rdev->desc->ops; 3527 int diff, old_sel, curr_sel, ret; 3528 3529 /* Stepping is only needed if the regulator is enabled. */ 3530 if (!_regulator_is_enabled(rdev)) 3531 goto final_set; 3532 3533 if (!ops->get_voltage_sel) 3534 return -EINVAL; 3535 3536 old_sel = ops->get_voltage_sel(rdev); 3537 if (old_sel < 0) 3538 return old_sel; 3539 3540 diff = new_selector - old_sel; 3541 if (diff == 0) 3542 return 0; /* No change needed. */ 3543 3544 if (diff > 0) { 3545 /* Stepping up. */ 3546 for (curr_sel = old_sel + rdev->desc->vsel_step; 3547 curr_sel < new_selector; 3548 curr_sel += rdev->desc->vsel_step) { 3549 /* 3550 * Call the callback directly instead of using 3551 * _regulator_call_set_voltage_sel() as we don't 3552 * want to notify anyone yet. Same in the branch 3553 * below. 3554 */ 3555 ret = ops->set_voltage_sel(rdev, curr_sel); 3556 if (ret) 3557 goto try_revert; 3558 } 3559 } else { 3560 /* Stepping down. */ 3561 for (curr_sel = old_sel - rdev->desc->vsel_step; 3562 curr_sel > new_selector; 3563 curr_sel -= rdev->desc->vsel_step) { 3564 ret = ops->set_voltage_sel(rdev, curr_sel); 3565 if (ret) 3566 goto try_revert; 3567 } 3568 } 3569 3570 final_set: 3571 /* The final selector will trigger the notifiers. */ 3572 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3573 3574 try_revert: 3575 /* 3576 * At least try to return to the previous voltage if setting a new 3577 * one failed. 3578 */ 3579 (void)ops->set_voltage_sel(rdev, old_sel); 3580 return ret; 3581 } 3582 3583 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3584 int old_uV, int new_uV) 3585 { 3586 unsigned int ramp_delay = 0; 3587 3588 if (rdev->constraints->ramp_delay) 3589 ramp_delay = rdev->constraints->ramp_delay; 3590 else if (rdev->desc->ramp_delay) 3591 ramp_delay = rdev->desc->ramp_delay; 3592 else if (rdev->constraints->settling_time) 3593 return rdev->constraints->settling_time; 3594 else if (rdev->constraints->settling_time_up && 3595 (new_uV > old_uV)) 3596 return rdev->constraints->settling_time_up; 3597 else if (rdev->constraints->settling_time_down && 3598 (new_uV < old_uV)) 3599 return rdev->constraints->settling_time_down; 3600 3601 if (ramp_delay == 0) 3602 return 0; 3603 3604 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3605 } 3606 3607 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3608 int min_uV, int max_uV) 3609 { 3610 int ret; 3611 int delay = 0; 3612 int best_val = 0; 3613 unsigned int selector; 3614 int old_selector = -1; 3615 const struct regulator_ops *ops = rdev->desc->ops; 3616 int old_uV = regulator_get_voltage_rdev(rdev); 3617 3618 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3619 3620 min_uV += rdev->constraints->uV_offset; 3621 max_uV += rdev->constraints->uV_offset; 3622 3623 /* 3624 * If we can't obtain the old selector there is not enough 3625 * info to call set_voltage_time_sel(). 3626 */ 3627 if (_regulator_is_enabled(rdev) && 3628 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3629 old_selector = ops->get_voltage_sel(rdev); 3630 if (old_selector < 0) 3631 return old_selector; 3632 } 3633 3634 if (ops->set_voltage) { 3635 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3636 &selector); 3637 3638 if (ret >= 0) { 3639 if (ops->list_voltage) 3640 best_val = ops->list_voltage(rdev, 3641 selector); 3642 else 3643 best_val = regulator_get_voltage_rdev(rdev); 3644 } 3645 3646 } else if (ops->set_voltage_sel) { 3647 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3648 if (ret >= 0) { 3649 best_val = ops->list_voltage(rdev, ret); 3650 if (min_uV <= best_val && max_uV >= best_val) { 3651 selector = ret; 3652 if (old_selector == selector) 3653 ret = 0; 3654 else if (rdev->desc->vsel_step) 3655 ret = _regulator_set_voltage_sel_step( 3656 rdev, best_val, selector); 3657 else 3658 ret = _regulator_call_set_voltage_sel( 3659 rdev, best_val, selector); 3660 } else { 3661 ret = -EINVAL; 3662 } 3663 } 3664 } else { 3665 ret = -EINVAL; 3666 } 3667 3668 if (ret) 3669 goto out; 3670 3671 if (ops->set_voltage_time_sel) { 3672 /* 3673 * Call set_voltage_time_sel if successfully obtained 3674 * old_selector 3675 */ 3676 if (old_selector >= 0 && old_selector != selector) 3677 delay = ops->set_voltage_time_sel(rdev, old_selector, 3678 selector); 3679 } else { 3680 if (old_uV != best_val) { 3681 if (ops->set_voltage_time) 3682 delay = ops->set_voltage_time(rdev, old_uV, 3683 best_val); 3684 else 3685 delay = _regulator_set_voltage_time(rdev, 3686 old_uV, 3687 best_val); 3688 } 3689 } 3690 3691 if (delay < 0) { 3692 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3693 delay = 0; 3694 } 3695 3696 /* Insert any necessary delays */ 3697 _regulator_delay_helper(delay); 3698 3699 if (best_val >= 0) { 3700 unsigned long data = best_val; 3701 3702 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3703 (void *)data); 3704 } 3705 3706 out: 3707 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3708 3709 return ret; 3710 } 3711 3712 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3713 int min_uV, int max_uV, suspend_state_t state) 3714 { 3715 struct regulator_state *rstate; 3716 int uV, sel; 3717 3718 rstate = regulator_get_suspend_state(rdev, state); 3719 if (rstate == NULL) 3720 return -EINVAL; 3721 3722 if (min_uV < rstate->min_uV) 3723 min_uV = rstate->min_uV; 3724 if (max_uV > rstate->max_uV) 3725 max_uV = rstate->max_uV; 3726 3727 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3728 if (sel < 0) 3729 return sel; 3730 3731 uV = rdev->desc->ops->list_voltage(rdev, sel); 3732 if (uV >= min_uV && uV <= max_uV) 3733 rstate->uV = uV; 3734 3735 return 0; 3736 } 3737 3738 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3739 int min_uV, int max_uV, 3740 suspend_state_t state) 3741 { 3742 struct regulator_dev *rdev = regulator->rdev; 3743 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3744 int ret = 0; 3745 int old_min_uV, old_max_uV; 3746 int current_uV; 3747 3748 /* If we're setting the same range as last time the change 3749 * should be a noop (some cpufreq implementations use the same 3750 * voltage for multiple frequencies, for example). 3751 */ 3752 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3753 goto out; 3754 3755 /* If we're trying to set a range that overlaps the current voltage, 3756 * return successfully even though the regulator does not support 3757 * changing the voltage. 3758 */ 3759 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3760 current_uV = regulator_get_voltage_rdev(rdev); 3761 if (min_uV <= current_uV && current_uV <= max_uV) { 3762 voltage->min_uV = min_uV; 3763 voltage->max_uV = max_uV; 3764 goto out; 3765 } 3766 } 3767 3768 /* sanity check */ 3769 if (!rdev->desc->ops->set_voltage && 3770 !rdev->desc->ops->set_voltage_sel) { 3771 ret = -EINVAL; 3772 goto out; 3773 } 3774 3775 /* constraints check */ 3776 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3777 if (ret < 0) 3778 goto out; 3779 3780 /* restore original values in case of error */ 3781 old_min_uV = voltage->min_uV; 3782 old_max_uV = voltage->max_uV; 3783 voltage->min_uV = min_uV; 3784 voltage->max_uV = max_uV; 3785 3786 /* for not coupled regulators this will just set the voltage */ 3787 ret = regulator_balance_voltage(rdev, state); 3788 if (ret < 0) { 3789 voltage->min_uV = old_min_uV; 3790 voltage->max_uV = old_max_uV; 3791 } 3792 3793 out: 3794 return ret; 3795 } 3796 3797 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3798 int max_uV, suspend_state_t state) 3799 { 3800 int best_supply_uV = 0; 3801 int supply_change_uV = 0; 3802 int ret; 3803 3804 if (rdev->supply && 3805 regulator_ops_is_valid(rdev->supply->rdev, 3806 REGULATOR_CHANGE_VOLTAGE) && 3807 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3808 rdev->desc->ops->get_voltage_sel))) { 3809 int current_supply_uV; 3810 int selector; 3811 3812 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3813 if (selector < 0) { 3814 ret = selector; 3815 goto out; 3816 } 3817 3818 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3819 if (best_supply_uV < 0) { 3820 ret = best_supply_uV; 3821 goto out; 3822 } 3823 3824 best_supply_uV += rdev->desc->min_dropout_uV; 3825 3826 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3827 if (current_supply_uV < 0) { 3828 ret = current_supply_uV; 3829 goto out; 3830 } 3831 3832 supply_change_uV = best_supply_uV - current_supply_uV; 3833 } 3834 3835 if (supply_change_uV > 0) { 3836 ret = regulator_set_voltage_unlocked(rdev->supply, 3837 best_supply_uV, INT_MAX, state); 3838 if (ret) { 3839 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3840 ERR_PTR(ret)); 3841 goto out; 3842 } 3843 } 3844 3845 if (state == PM_SUSPEND_ON) 3846 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3847 else 3848 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3849 max_uV, state); 3850 if (ret < 0) 3851 goto out; 3852 3853 if (supply_change_uV < 0) { 3854 ret = regulator_set_voltage_unlocked(rdev->supply, 3855 best_supply_uV, INT_MAX, state); 3856 if (ret) 3857 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3858 ERR_PTR(ret)); 3859 /* No need to fail here */ 3860 ret = 0; 3861 } 3862 3863 out: 3864 return ret; 3865 } 3866 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3867 3868 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3869 int *current_uV, int *min_uV) 3870 { 3871 struct regulation_constraints *constraints = rdev->constraints; 3872 3873 /* Limit voltage change only if necessary */ 3874 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3875 return 1; 3876 3877 if (*current_uV < 0) { 3878 *current_uV = regulator_get_voltage_rdev(rdev); 3879 3880 if (*current_uV < 0) 3881 return *current_uV; 3882 } 3883 3884 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3885 return 1; 3886 3887 /* Clamp target voltage within the given step */ 3888 if (*current_uV < *min_uV) 3889 *min_uV = min(*current_uV + constraints->max_uV_step, 3890 *min_uV); 3891 else 3892 *min_uV = max(*current_uV - constraints->max_uV_step, 3893 *min_uV); 3894 3895 return 0; 3896 } 3897 3898 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3899 int *current_uV, 3900 int *min_uV, int *max_uV, 3901 suspend_state_t state, 3902 int n_coupled) 3903 { 3904 struct coupling_desc *c_desc = &rdev->coupling_desc; 3905 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3906 struct regulation_constraints *constraints = rdev->constraints; 3907 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3908 int max_current_uV = 0, min_current_uV = INT_MAX; 3909 int highest_min_uV = 0, target_uV, possible_uV; 3910 int i, ret, max_spread; 3911 bool done; 3912 3913 *current_uV = -1; 3914 3915 /* 3916 * If there are no coupled regulators, simply set the voltage 3917 * demanded by consumers. 3918 */ 3919 if (n_coupled == 1) { 3920 /* 3921 * If consumers don't provide any demands, set voltage 3922 * to min_uV 3923 */ 3924 desired_min_uV = constraints->min_uV; 3925 desired_max_uV = constraints->max_uV; 3926 3927 ret = regulator_check_consumers(rdev, 3928 &desired_min_uV, 3929 &desired_max_uV, state); 3930 if (ret < 0) 3931 return ret; 3932 3933 possible_uV = desired_min_uV; 3934 done = true; 3935 3936 goto finish; 3937 } 3938 3939 /* Find highest min desired voltage */ 3940 for (i = 0; i < n_coupled; i++) { 3941 int tmp_min = 0; 3942 int tmp_max = INT_MAX; 3943 3944 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3945 3946 ret = regulator_check_consumers(c_rdevs[i], 3947 &tmp_min, 3948 &tmp_max, state); 3949 if (ret < 0) 3950 return ret; 3951 3952 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3953 if (ret < 0) 3954 return ret; 3955 3956 highest_min_uV = max(highest_min_uV, tmp_min); 3957 3958 if (i == 0) { 3959 desired_min_uV = tmp_min; 3960 desired_max_uV = tmp_max; 3961 } 3962 } 3963 3964 max_spread = constraints->max_spread[0]; 3965 3966 /* 3967 * Let target_uV be equal to the desired one if possible. 3968 * If not, set it to minimum voltage, allowed by other coupled 3969 * regulators. 3970 */ 3971 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3972 3973 /* 3974 * Find min and max voltages, which currently aren't violating 3975 * max_spread. 3976 */ 3977 for (i = 1; i < n_coupled; i++) { 3978 int tmp_act; 3979 3980 if (!_regulator_is_enabled(c_rdevs[i])) 3981 continue; 3982 3983 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3984 if (tmp_act < 0) 3985 return tmp_act; 3986 3987 min_current_uV = min(tmp_act, min_current_uV); 3988 max_current_uV = max(tmp_act, max_current_uV); 3989 } 3990 3991 /* There aren't any other regulators enabled */ 3992 if (max_current_uV == 0) { 3993 possible_uV = target_uV; 3994 } else { 3995 /* 3996 * Correct target voltage, so as it currently isn't 3997 * violating max_spread 3998 */ 3999 possible_uV = max(target_uV, max_current_uV - max_spread); 4000 possible_uV = min(possible_uV, min_current_uV + max_spread); 4001 } 4002 4003 if (possible_uV > desired_max_uV) 4004 return -EINVAL; 4005 4006 done = (possible_uV == target_uV); 4007 desired_min_uV = possible_uV; 4008 4009 finish: 4010 /* Apply max_uV_step constraint if necessary */ 4011 if (state == PM_SUSPEND_ON) { 4012 ret = regulator_limit_voltage_step(rdev, current_uV, 4013 &desired_min_uV); 4014 if (ret < 0) 4015 return ret; 4016 4017 if (ret == 0) 4018 done = false; 4019 } 4020 4021 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4022 if (n_coupled > 1 && *current_uV == -1) { 4023 4024 if (_regulator_is_enabled(rdev)) { 4025 ret = regulator_get_voltage_rdev(rdev); 4026 if (ret < 0) 4027 return ret; 4028 4029 *current_uV = ret; 4030 } else { 4031 *current_uV = desired_min_uV; 4032 } 4033 } 4034 4035 *min_uV = desired_min_uV; 4036 *max_uV = desired_max_uV; 4037 4038 return done; 4039 } 4040 4041 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4042 suspend_state_t state, bool skip_coupled) 4043 { 4044 struct regulator_dev **c_rdevs; 4045 struct regulator_dev *best_rdev; 4046 struct coupling_desc *c_desc = &rdev->coupling_desc; 4047 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4048 unsigned int delta, best_delta; 4049 unsigned long c_rdev_done = 0; 4050 bool best_c_rdev_done; 4051 4052 c_rdevs = c_desc->coupled_rdevs; 4053 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4054 4055 /* 4056 * Find the best possible voltage change on each loop. Leave the loop 4057 * if there isn't any possible change. 4058 */ 4059 do { 4060 best_c_rdev_done = false; 4061 best_delta = 0; 4062 best_min_uV = 0; 4063 best_max_uV = 0; 4064 best_c_rdev = 0; 4065 best_rdev = NULL; 4066 4067 /* 4068 * Find highest difference between optimal voltage 4069 * and current voltage. 4070 */ 4071 for (i = 0; i < n_coupled; i++) { 4072 /* 4073 * optimal_uV is the best voltage that can be set for 4074 * i-th regulator at the moment without violating 4075 * max_spread constraint in order to balance 4076 * the coupled voltages. 4077 */ 4078 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4079 4080 if (test_bit(i, &c_rdev_done)) 4081 continue; 4082 4083 ret = regulator_get_optimal_voltage(c_rdevs[i], 4084 ¤t_uV, 4085 &optimal_uV, 4086 &optimal_max_uV, 4087 state, n_coupled); 4088 if (ret < 0) 4089 goto out; 4090 4091 delta = abs(optimal_uV - current_uV); 4092 4093 if (delta && best_delta <= delta) { 4094 best_c_rdev_done = ret; 4095 best_delta = delta; 4096 best_rdev = c_rdevs[i]; 4097 best_min_uV = optimal_uV; 4098 best_max_uV = optimal_max_uV; 4099 best_c_rdev = i; 4100 } 4101 } 4102 4103 /* Nothing to change, return successfully */ 4104 if (!best_rdev) { 4105 ret = 0; 4106 goto out; 4107 } 4108 4109 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4110 best_max_uV, state); 4111 4112 if (ret < 0) 4113 goto out; 4114 4115 if (best_c_rdev_done) 4116 set_bit(best_c_rdev, &c_rdev_done); 4117 4118 } while (n_coupled > 1); 4119 4120 out: 4121 return ret; 4122 } 4123 4124 static int regulator_balance_voltage(struct regulator_dev *rdev, 4125 suspend_state_t state) 4126 { 4127 struct coupling_desc *c_desc = &rdev->coupling_desc; 4128 struct regulator_coupler *coupler = c_desc->coupler; 4129 bool skip_coupled = false; 4130 4131 /* 4132 * If system is in a state other than PM_SUSPEND_ON, don't check 4133 * other coupled regulators. 4134 */ 4135 if (state != PM_SUSPEND_ON) 4136 skip_coupled = true; 4137 4138 if (c_desc->n_resolved < c_desc->n_coupled) { 4139 rdev_err(rdev, "Not all coupled regulators registered\n"); 4140 return -EPERM; 4141 } 4142 4143 /* Invoke custom balancer for customized couplers */ 4144 if (coupler && coupler->balance_voltage) 4145 return coupler->balance_voltage(coupler, rdev, state); 4146 4147 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4148 } 4149 4150 /** 4151 * regulator_set_voltage - set regulator output voltage 4152 * @regulator: regulator source 4153 * @min_uV: Minimum required voltage in uV 4154 * @max_uV: Maximum acceptable voltage in uV 4155 * 4156 * Sets a voltage regulator to the desired output voltage. This can be set 4157 * during any regulator state. IOW, regulator can be disabled or enabled. 4158 * 4159 * If the regulator is enabled then the voltage will change to the new value 4160 * immediately otherwise if the regulator is disabled the regulator will 4161 * output at the new voltage when enabled. 4162 * 4163 * NOTE: If the regulator is shared between several devices then the lowest 4164 * request voltage that meets the system constraints will be used. 4165 * Regulator system constraints must be set for this regulator before 4166 * calling this function otherwise this call will fail. 4167 */ 4168 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4169 { 4170 struct ww_acquire_ctx ww_ctx; 4171 int ret; 4172 4173 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4174 4175 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4176 PM_SUSPEND_ON); 4177 4178 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4179 4180 return ret; 4181 } 4182 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4183 4184 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4185 suspend_state_t state, bool en) 4186 { 4187 struct regulator_state *rstate; 4188 4189 rstate = regulator_get_suspend_state(rdev, state); 4190 if (rstate == NULL) 4191 return -EINVAL; 4192 4193 if (!rstate->changeable) 4194 return -EPERM; 4195 4196 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4197 4198 return 0; 4199 } 4200 4201 int regulator_suspend_enable(struct regulator_dev *rdev, 4202 suspend_state_t state) 4203 { 4204 return regulator_suspend_toggle(rdev, state, true); 4205 } 4206 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4207 4208 int regulator_suspend_disable(struct regulator_dev *rdev, 4209 suspend_state_t state) 4210 { 4211 struct regulator *regulator; 4212 struct regulator_voltage *voltage; 4213 4214 /* 4215 * if any consumer wants this regulator device keeping on in 4216 * suspend states, don't set it as disabled. 4217 */ 4218 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4219 voltage = ®ulator->voltage[state]; 4220 if (voltage->min_uV || voltage->max_uV) 4221 return 0; 4222 } 4223 4224 return regulator_suspend_toggle(rdev, state, false); 4225 } 4226 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4227 4228 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4229 int min_uV, int max_uV, 4230 suspend_state_t state) 4231 { 4232 struct regulator_dev *rdev = regulator->rdev; 4233 struct regulator_state *rstate; 4234 4235 rstate = regulator_get_suspend_state(rdev, state); 4236 if (rstate == NULL) 4237 return -EINVAL; 4238 4239 if (rstate->min_uV == rstate->max_uV) { 4240 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4241 return -EPERM; 4242 } 4243 4244 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4245 } 4246 4247 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4248 int max_uV, suspend_state_t state) 4249 { 4250 struct ww_acquire_ctx ww_ctx; 4251 int ret; 4252 4253 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4254 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4255 return -EINVAL; 4256 4257 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4258 4259 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4260 max_uV, state); 4261 4262 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4263 4264 return ret; 4265 } 4266 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4267 4268 /** 4269 * regulator_set_voltage_time - get raise/fall time 4270 * @regulator: regulator source 4271 * @old_uV: starting voltage in microvolts 4272 * @new_uV: target voltage in microvolts 4273 * 4274 * Provided with the starting and ending voltage, this function attempts to 4275 * calculate the time in microseconds required to rise or fall to this new 4276 * voltage. 4277 */ 4278 int regulator_set_voltage_time(struct regulator *regulator, 4279 int old_uV, int new_uV) 4280 { 4281 struct regulator_dev *rdev = regulator->rdev; 4282 const struct regulator_ops *ops = rdev->desc->ops; 4283 int old_sel = -1; 4284 int new_sel = -1; 4285 int voltage; 4286 int i; 4287 4288 if (ops->set_voltage_time) 4289 return ops->set_voltage_time(rdev, old_uV, new_uV); 4290 else if (!ops->set_voltage_time_sel) 4291 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4292 4293 /* Currently requires operations to do this */ 4294 if (!ops->list_voltage || !rdev->desc->n_voltages) 4295 return -EINVAL; 4296 4297 for (i = 0; i < rdev->desc->n_voltages; i++) { 4298 /* We only look for exact voltage matches here */ 4299 if (i < rdev->desc->linear_min_sel) 4300 continue; 4301 4302 if (old_sel >= 0 && new_sel >= 0) 4303 break; 4304 4305 voltage = regulator_list_voltage(regulator, i); 4306 if (voltage < 0) 4307 return -EINVAL; 4308 if (voltage == 0) 4309 continue; 4310 if (voltage == old_uV) 4311 old_sel = i; 4312 if (voltage == new_uV) 4313 new_sel = i; 4314 } 4315 4316 if (old_sel < 0 || new_sel < 0) 4317 return -EINVAL; 4318 4319 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4320 } 4321 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4322 4323 /** 4324 * regulator_set_voltage_time_sel - get raise/fall time 4325 * @rdev: regulator source device 4326 * @old_selector: selector for starting voltage 4327 * @new_selector: selector for target voltage 4328 * 4329 * Provided with the starting and target voltage selectors, this function 4330 * returns time in microseconds required to rise or fall to this new voltage 4331 * 4332 * Drivers providing ramp_delay in regulation_constraints can use this as their 4333 * set_voltage_time_sel() operation. 4334 */ 4335 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4336 unsigned int old_selector, 4337 unsigned int new_selector) 4338 { 4339 int old_volt, new_volt; 4340 4341 /* sanity check */ 4342 if (!rdev->desc->ops->list_voltage) 4343 return -EINVAL; 4344 4345 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4346 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4347 4348 if (rdev->desc->ops->set_voltage_time) 4349 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4350 new_volt); 4351 else 4352 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4353 } 4354 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4355 4356 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4357 { 4358 int ret; 4359 4360 regulator_lock(rdev); 4361 4362 if (!rdev->desc->ops->set_voltage && 4363 !rdev->desc->ops->set_voltage_sel) { 4364 ret = -EINVAL; 4365 goto out; 4366 } 4367 4368 /* balance only, if regulator is coupled */ 4369 if (rdev->coupling_desc.n_coupled > 1) 4370 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4371 else 4372 ret = -EOPNOTSUPP; 4373 4374 out: 4375 regulator_unlock(rdev); 4376 return ret; 4377 } 4378 4379 /** 4380 * regulator_sync_voltage - re-apply last regulator output voltage 4381 * @regulator: regulator source 4382 * 4383 * Re-apply the last configured voltage. This is intended to be used 4384 * where some external control source the consumer is cooperating with 4385 * has caused the configured voltage to change. 4386 */ 4387 int regulator_sync_voltage(struct regulator *regulator) 4388 { 4389 struct regulator_dev *rdev = regulator->rdev; 4390 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4391 int ret, min_uV, max_uV; 4392 4393 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4394 return 0; 4395 4396 regulator_lock(rdev); 4397 4398 if (!rdev->desc->ops->set_voltage && 4399 !rdev->desc->ops->set_voltage_sel) { 4400 ret = -EINVAL; 4401 goto out; 4402 } 4403 4404 /* This is only going to work if we've had a voltage configured. */ 4405 if (!voltage->min_uV && !voltage->max_uV) { 4406 ret = -EINVAL; 4407 goto out; 4408 } 4409 4410 min_uV = voltage->min_uV; 4411 max_uV = voltage->max_uV; 4412 4413 /* This should be a paranoia check... */ 4414 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4415 if (ret < 0) 4416 goto out; 4417 4418 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4419 if (ret < 0) 4420 goto out; 4421 4422 /* balance only, if regulator is coupled */ 4423 if (rdev->coupling_desc.n_coupled > 1) 4424 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4425 else 4426 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4427 4428 out: 4429 regulator_unlock(rdev); 4430 return ret; 4431 } 4432 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4433 4434 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4435 { 4436 int sel, ret; 4437 bool bypassed; 4438 4439 if (rdev->desc->ops->get_bypass) { 4440 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4441 if (ret < 0) 4442 return ret; 4443 if (bypassed) { 4444 /* if bypassed the regulator must have a supply */ 4445 if (!rdev->supply) { 4446 rdev_err(rdev, 4447 "bypassed regulator has no supply!\n"); 4448 return -EPROBE_DEFER; 4449 } 4450 4451 return regulator_get_voltage_rdev(rdev->supply->rdev); 4452 } 4453 } 4454 4455 if (rdev->desc->ops->get_voltage_sel) { 4456 sel = rdev->desc->ops->get_voltage_sel(rdev); 4457 if (sel < 0) 4458 return sel; 4459 ret = rdev->desc->ops->list_voltage(rdev, sel); 4460 } else if (rdev->desc->ops->get_voltage) { 4461 ret = rdev->desc->ops->get_voltage(rdev); 4462 } else if (rdev->desc->ops->list_voltage) { 4463 ret = rdev->desc->ops->list_voltage(rdev, 0); 4464 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4465 ret = rdev->desc->fixed_uV; 4466 } else if (rdev->supply) { 4467 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4468 } else if (rdev->supply_name) { 4469 return -EPROBE_DEFER; 4470 } else { 4471 return -EINVAL; 4472 } 4473 4474 if (ret < 0) 4475 return ret; 4476 return ret - rdev->constraints->uV_offset; 4477 } 4478 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4479 4480 /** 4481 * regulator_get_voltage - get regulator output voltage 4482 * @regulator: regulator source 4483 * 4484 * This returns the current regulator voltage in uV. 4485 * 4486 * NOTE: If the regulator is disabled it will return the voltage value. This 4487 * function should not be used to determine regulator state. 4488 */ 4489 int regulator_get_voltage(struct regulator *regulator) 4490 { 4491 struct ww_acquire_ctx ww_ctx; 4492 int ret; 4493 4494 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4495 ret = regulator_get_voltage_rdev(regulator->rdev); 4496 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4501 4502 /** 4503 * regulator_set_current_limit - set regulator output current limit 4504 * @regulator: regulator source 4505 * @min_uA: Minimum supported current in uA 4506 * @max_uA: Maximum supported current in uA 4507 * 4508 * Sets current sink to the desired output current. This can be set during 4509 * any regulator state. IOW, regulator can be disabled or enabled. 4510 * 4511 * If the regulator is enabled then the current will change to the new value 4512 * immediately otherwise if the regulator is disabled the regulator will 4513 * output at the new current when enabled. 4514 * 4515 * NOTE: Regulator system constraints must be set for this regulator before 4516 * calling this function otherwise this call will fail. 4517 */ 4518 int regulator_set_current_limit(struct regulator *regulator, 4519 int min_uA, int max_uA) 4520 { 4521 struct regulator_dev *rdev = regulator->rdev; 4522 int ret; 4523 4524 regulator_lock(rdev); 4525 4526 /* sanity check */ 4527 if (!rdev->desc->ops->set_current_limit) { 4528 ret = -EINVAL; 4529 goto out; 4530 } 4531 4532 /* constraints check */ 4533 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4534 if (ret < 0) 4535 goto out; 4536 4537 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4538 out: 4539 regulator_unlock(rdev); 4540 return ret; 4541 } 4542 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4543 4544 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4545 { 4546 /* sanity check */ 4547 if (!rdev->desc->ops->get_current_limit) 4548 return -EINVAL; 4549 4550 return rdev->desc->ops->get_current_limit(rdev); 4551 } 4552 4553 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4554 { 4555 int ret; 4556 4557 regulator_lock(rdev); 4558 ret = _regulator_get_current_limit_unlocked(rdev); 4559 regulator_unlock(rdev); 4560 4561 return ret; 4562 } 4563 4564 /** 4565 * regulator_get_current_limit - get regulator output current 4566 * @regulator: regulator source 4567 * 4568 * This returns the current supplied by the specified current sink in uA. 4569 * 4570 * NOTE: If the regulator is disabled it will return the current value. This 4571 * function should not be used to determine regulator state. 4572 */ 4573 int regulator_get_current_limit(struct regulator *regulator) 4574 { 4575 return _regulator_get_current_limit(regulator->rdev); 4576 } 4577 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4578 4579 /** 4580 * regulator_set_mode - set regulator operating mode 4581 * @regulator: regulator source 4582 * @mode: operating mode - one of the REGULATOR_MODE constants 4583 * 4584 * Set regulator operating mode to increase regulator efficiency or improve 4585 * regulation performance. 4586 * 4587 * NOTE: Regulator system constraints must be set for this regulator before 4588 * calling this function otherwise this call will fail. 4589 */ 4590 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4591 { 4592 struct regulator_dev *rdev = regulator->rdev; 4593 int ret; 4594 int regulator_curr_mode; 4595 4596 regulator_lock(rdev); 4597 4598 /* sanity check */ 4599 if (!rdev->desc->ops->set_mode) { 4600 ret = -EINVAL; 4601 goto out; 4602 } 4603 4604 /* return if the same mode is requested */ 4605 if (rdev->desc->ops->get_mode) { 4606 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4607 if (regulator_curr_mode == mode) { 4608 ret = 0; 4609 goto out; 4610 } 4611 } 4612 4613 /* constraints check */ 4614 ret = regulator_mode_constrain(rdev, &mode); 4615 if (ret < 0) 4616 goto out; 4617 4618 ret = rdev->desc->ops->set_mode(rdev, mode); 4619 out: 4620 regulator_unlock(rdev); 4621 return ret; 4622 } 4623 EXPORT_SYMBOL_GPL(regulator_set_mode); 4624 4625 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4626 { 4627 /* sanity check */ 4628 if (!rdev->desc->ops->get_mode) 4629 return -EINVAL; 4630 4631 return rdev->desc->ops->get_mode(rdev); 4632 } 4633 4634 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4635 { 4636 int ret; 4637 4638 regulator_lock(rdev); 4639 ret = _regulator_get_mode_unlocked(rdev); 4640 regulator_unlock(rdev); 4641 4642 return ret; 4643 } 4644 4645 /** 4646 * regulator_get_mode - get regulator operating mode 4647 * @regulator: regulator source 4648 * 4649 * Get the current regulator operating mode. 4650 */ 4651 unsigned int regulator_get_mode(struct regulator *regulator) 4652 { 4653 return _regulator_get_mode(regulator->rdev); 4654 } 4655 EXPORT_SYMBOL_GPL(regulator_get_mode); 4656 4657 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4658 { 4659 int ret = 0; 4660 4661 if (rdev->use_cached_err) { 4662 spin_lock(&rdev->err_lock); 4663 ret = rdev->cached_err; 4664 spin_unlock(&rdev->err_lock); 4665 } 4666 return ret; 4667 } 4668 4669 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4670 unsigned int *flags) 4671 { 4672 int cached_flags, ret = 0; 4673 4674 regulator_lock(rdev); 4675 4676 cached_flags = rdev_get_cached_err_flags(rdev); 4677 4678 if (rdev->desc->ops->get_error_flags) 4679 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4680 else if (!rdev->use_cached_err) 4681 ret = -EINVAL; 4682 4683 *flags |= cached_flags; 4684 4685 regulator_unlock(rdev); 4686 4687 return ret; 4688 } 4689 4690 /** 4691 * regulator_get_error_flags - get regulator error information 4692 * @regulator: regulator source 4693 * @flags: pointer to store error flags 4694 * 4695 * Get the current regulator error information. 4696 */ 4697 int regulator_get_error_flags(struct regulator *regulator, 4698 unsigned int *flags) 4699 { 4700 return _regulator_get_error_flags(regulator->rdev, flags); 4701 } 4702 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4703 4704 /** 4705 * regulator_set_load - set regulator load 4706 * @regulator: regulator source 4707 * @uA_load: load current 4708 * 4709 * Notifies the regulator core of a new device load. This is then used by 4710 * DRMS (if enabled by constraints) to set the most efficient regulator 4711 * operating mode for the new regulator loading. 4712 * 4713 * Consumer devices notify their supply regulator of the maximum power 4714 * they will require (can be taken from device datasheet in the power 4715 * consumption tables) when they change operational status and hence power 4716 * state. Examples of operational state changes that can affect power 4717 * consumption are :- 4718 * 4719 * o Device is opened / closed. 4720 * o Device I/O is about to begin or has just finished. 4721 * o Device is idling in between work. 4722 * 4723 * This information is also exported via sysfs to userspace. 4724 * 4725 * DRMS will sum the total requested load on the regulator and change 4726 * to the most efficient operating mode if platform constraints allow. 4727 * 4728 * NOTE: when a regulator consumer requests to have a regulator 4729 * disabled then any load that consumer requested no longer counts 4730 * toward the total requested load. If the regulator is re-enabled 4731 * then the previously requested load will start counting again. 4732 * 4733 * If a regulator is an always-on regulator then an individual consumer's 4734 * load will still be removed if that consumer is fully disabled. 4735 * 4736 * On error a negative errno is returned. 4737 */ 4738 int regulator_set_load(struct regulator *regulator, int uA_load) 4739 { 4740 struct regulator_dev *rdev = regulator->rdev; 4741 int old_uA_load; 4742 int ret = 0; 4743 4744 regulator_lock(rdev); 4745 old_uA_load = regulator->uA_load; 4746 regulator->uA_load = uA_load; 4747 if (regulator->enable_count && old_uA_load != uA_load) { 4748 ret = drms_uA_update(rdev); 4749 if (ret < 0) 4750 regulator->uA_load = old_uA_load; 4751 } 4752 regulator_unlock(rdev); 4753 4754 return ret; 4755 } 4756 EXPORT_SYMBOL_GPL(regulator_set_load); 4757 4758 /** 4759 * regulator_allow_bypass - allow the regulator to go into bypass mode 4760 * 4761 * @regulator: Regulator to configure 4762 * @enable: enable or disable bypass mode 4763 * 4764 * Allow the regulator to go into bypass mode if all other consumers 4765 * for the regulator also enable bypass mode and the machine 4766 * constraints allow this. Bypass mode means that the regulator is 4767 * simply passing the input directly to the output with no regulation. 4768 */ 4769 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4770 { 4771 struct regulator_dev *rdev = regulator->rdev; 4772 const char *name = rdev_get_name(rdev); 4773 int ret = 0; 4774 4775 if (!rdev->desc->ops->set_bypass) 4776 return 0; 4777 4778 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4779 return 0; 4780 4781 regulator_lock(rdev); 4782 4783 if (enable && !regulator->bypass) { 4784 rdev->bypass_count++; 4785 4786 if (rdev->bypass_count == rdev->open_count) { 4787 trace_regulator_bypass_enable(name); 4788 4789 ret = rdev->desc->ops->set_bypass(rdev, enable); 4790 if (ret != 0) 4791 rdev->bypass_count--; 4792 else 4793 trace_regulator_bypass_enable_complete(name); 4794 } 4795 4796 } else if (!enable && regulator->bypass) { 4797 rdev->bypass_count--; 4798 4799 if (rdev->bypass_count != rdev->open_count) { 4800 trace_regulator_bypass_disable(name); 4801 4802 ret = rdev->desc->ops->set_bypass(rdev, enable); 4803 if (ret != 0) 4804 rdev->bypass_count++; 4805 else 4806 trace_regulator_bypass_disable_complete(name); 4807 } 4808 } 4809 4810 if (ret == 0) 4811 regulator->bypass = enable; 4812 4813 regulator_unlock(rdev); 4814 4815 return ret; 4816 } 4817 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4818 4819 /** 4820 * regulator_register_notifier - register regulator event notifier 4821 * @regulator: regulator source 4822 * @nb: notifier block 4823 * 4824 * Register notifier block to receive regulator events. 4825 */ 4826 int regulator_register_notifier(struct regulator *regulator, 4827 struct notifier_block *nb) 4828 { 4829 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4830 nb); 4831 } 4832 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4833 4834 /** 4835 * regulator_unregister_notifier - unregister regulator event notifier 4836 * @regulator: regulator source 4837 * @nb: notifier block 4838 * 4839 * Unregister regulator event notifier block. 4840 */ 4841 int regulator_unregister_notifier(struct regulator *regulator, 4842 struct notifier_block *nb) 4843 { 4844 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4845 nb); 4846 } 4847 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4848 4849 /* notify regulator consumers and downstream regulator consumers. 4850 * Note mutex must be held by caller. 4851 */ 4852 static int _notifier_call_chain(struct regulator_dev *rdev, 4853 unsigned long event, void *data) 4854 { 4855 /* call rdev chain first */ 4856 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4857 } 4858 4859 int _regulator_bulk_get(struct device *dev, int num_consumers, 4860 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4861 { 4862 int i; 4863 int ret; 4864 4865 for (i = 0; i < num_consumers; i++) 4866 consumers[i].consumer = NULL; 4867 4868 for (i = 0; i < num_consumers; i++) { 4869 consumers[i].consumer = _regulator_get(dev, 4870 consumers[i].supply, get_type); 4871 if (IS_ERR(consumers[i].consumer)) { 4872 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4873 "Failed to get supply '%s'", 4874 consumers[i].supply); 4875 consumers[i].consumer = NULL; 4876 goto err; 4877 } 4878 4879 if (consumers[i].init_load_uA > 0) { 4880 ret = regulator_set_load(consumers[i].consumer, 4881 consumers[i].init_load_uA); 4882 if (ret) { 4883 i++; 4884 goto err; 4885 } 4886 } 4887 } 4888 4889 return 0; 4890 4891 err: 4892 while (--i >= 0) 4893 regulator_put(consumers[i].consumer); 4894 4895 return ret; 4896 } 4897 4898 /** 4899 * regulator_bulk_get - get multiple regulator consumers 4900 * 4901 * @dev: Device to supply 4902 * @num_consumers: Number of consumers to register 4903 * @consumers: Configuration of consumers; clients are stored here. 4904 * 4905 * @return 0 on success, an errno on failure. 4906 * 4907 * This helper function allows drivers to get several regulator 4908 * consumers in one operation. If any of the regulators cannot be 4909 * acquired then any regulators that were allocated will be freed 4910 * before returning to the caller. 4911 */ 4912 int regulator_bulk_get(struct device *dev, int num_consumers, 4913 struct regulator_bulk_data *consumers) 4914 { 4915 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4916 } 4917 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4918 4919 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4920 { 4921 struct regulator_bulk_data *bulk = data; 4922 4923 bulk->ret = regulator_enable(bulk->consumer); 4924 } 4925 4926 /** 4927 * regulator_bulk_enable - enable multiple regulator consumers 4928 * 4929 * @num_consumers: Number of consumers 4930 * @consumers: Consumer data; clients are stored here. 4931 * @return 0 on success, an errno on failure 4932 * 4933 * This convenience API allows consumers to enable multiple regulator 4934 * clients in a single API call. If any consumers cannot be enabled 4935 * then any others that were enabled will be disabled again prior to 4936 * return. 4937 */ 4938 int regulator_bulk_enable(int num_consumers, 4939 struct regulator_bulk_data *consumers) 4940 { 4941 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4942 int i; 4943 int ret = 0; 4944 4945 for (i = 0; i < num_consumers; i++) { 4946 async_schedule_domain(regulator_bulk_enable_async, 4947 &consumers[i], &async_domain); 4948 } 4949 4950 async_synchronize_full_domain(&async_domain); 4951 4952 /* If any consumer failed we need to unwind any that succeeded */ 4953 for (i = 0; i < num_consumers; i++) { 4954 if (consumers[i].ret != 0) { 4955 ret = consumers[i].ret; 4956 goto err; 4957 } 4958 } 4959 4960 return 0; 4961 4962 err: 4963 for (i = 0; i < num_consumers; i++) { 4964 if (consumers[i].ret < 0) 4965 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4966 ERR_PTR(consumers[i].ret)); 4967 else 4968 regulator_disable(consumers[i].consumer); 4969 } 4970 4971 return ret; 4972 } 4973 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4974 4975 /** 4976 * regulator_bulk_disable - disable multiple regulator consumers 4977 * 4978 * @num_consumers: Number of consumers 4979 * @consumers: Consumer data; clients are stored here. 4980 * @return 0 on success, an errno on failure 4981 * 4982 * This convenience API allows consumers to disable multiple regulator 4983 * clients in a single API call. If any consumers cannot be disabled 4984 * then any others that were disabled will be enabled again prior to 4985 * return. 4986 */ 4987 int regulator_bulk_disable(int num_consumers, 4988 struct regulator_bulk_data *consumers) 4989 { 4990 int i; 4991 int ret, r; 4992 4993 for (i = num_consumers - 1; i >= 0; --i) { 4994 ret = regulator_disable(consumers[i].consumer); 4995 if (ret != 0) 4996 goto err; 4997 } 4998 4999 return 0; 5000 5001 err: 5002 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5003 for (++i; i < num_consumers; ++i) { 5004 r = regulator_enable(consumers[i].consumer); 5005 if (r != 0) 5006 pr_err("Failed to re-enable %s: %pe\n", 5007 consumers[i].supply, ERR_PTR(r)); 5008 } 5009 5010 return ret; 5011 } 5012 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5013 5014 /** 5015 * regulator_bulk_force_disable - force disable multiple regulator consumers 5016 * 5017 * @num_consumers: Number of consumers 5018 * @consumers: Consumer data; clients are stored here. 5019 * @return 0 on success, an errno on failure 5020 * 5021 * This convenience API allows consumers to forcibly disable multiple regulator 5022 * clients in a single API call. 5023 * NOTE: This should be used for situations when device damage will 5024 * likely occur if the regulators are not disabled (e.g. over temp). 5025 * Although regulator_force_disable function call for some consumers can 5026 * return error numbers, the function is called for all consumers. 5027 */ 5028 int regulator_bulk_force_disable(int num_consumers, 5029 struct regulator_bulk_data *consumers) 5030 { 5031 int i; 5032 int ret = 0; 5033 5034 for (i = 0; i < num_consumers; i++) { 5035 consumers[i].ret = 5036 regulator_force_disable(consumers[i].consumer); 5037 5038 /* Store first error for reporting */ 5039 if (consumers[i].ret && !ret) 5040 ret = consumers[i].ret; 5041 } 5042 5043 return ret; 5044 } 5045 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5046 5047 /** 5048 * regulator_bulk_free - free multiple regulator consumers 5049 * 5050 * @num_consumers: Number of consumers 5051 * @consumers: Consumer data; clients are stored here. 5052 * 5053 * This convenience API allows consumers to free multiple regulator 5054 * clients in a single API call. 5055 */ 5056 void regulator_bulk_free(int num_consumers, 5057 struct regulator_bulk_data *consumers) 5058 { 5059 int i; 5060 5061 for (i = 0; i < num_consumers; i++) { 5062 regulator_put(consumers[i].consumer); 5063 consumers[i].consumer = NULL; 5064 } 5065 } 5066 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5067 5068 /** 5069 * regulator_notifier_call_chain - call regulator event notifier 5070 * @rdev: regulator source 5071 * @event: notifier block 5072 * @data: callback-specific data. 5073 * 5074 * Called by regulator drivers to notify clients a regulator event has 5075 * occurred. 5076 */ 5077 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5078 unsigned long event, void *data) 5079 { 5080 _notifier_call_chain(rdev, event, data); 5081 return NOTIFY_DONE; 5082 5083 } 5084 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5085 5086 /** 5087 * regulator_mode_to_status - convert a regulator mode into a status 5088 * 5089 * @mode: Mode to convert 5090 * 5091 * Convert a regulator mode into a status. 5092 */ 5093 int regulator_mode_to_status(unsigned int mode) 5094 { 5095 switch (mode) { 5096 case REGULATOR_MODE_FAST: 5097 return REGULATOR_STATUS_FAST; 5098 case REGULATOR_MODE_NORMAL: 5099 return REGULATOR_STATUS_NORMAL; 5100 case REGULATOR_MODE_IDLE: 5101 return REGULATOR_STATUS_IDLE; 5102 case REGULATOR_MODE_STANDBY: 5103 return REGULATOR_STATUS_STANDBY; 5104 default: 5105 return REGULATOR_STATUS_UNDEFINED; 5106 } 5107 } 5108 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5109 5110 static struct attribute *regulator_dev_attrs[] = { 5111 &dev_attr_name.attr, 5112 &dev_attr_num_users.attr, 5113 &dev_attr_type.attr, 5114 &dev_attr_microvolts.attr, 5115 &dev_attr_microamps.attr, 5116 &dev_attr_opmode.attr, 5117 &dev_attr_state.attr, 5118 &dev_attr_status.attr, 5119 &dev_attr_bypass.attr, 5120 &dev_attr_requested_microamps.attr, 5121 &dev_attr_min_microvolts.attr, 5122 &dev_attr_max_microvolts.attr, 5123 &dev_attr_min_microamps.attr, 5124 &dev_attr_max_microamps.attr, 5125 &dev_attr_under_voltage.attr, 5126 &dev_attr_over_current.attr, 5127 &dev_attr_regulation_out.attr, 5128 &dev_attr_fail.attr, 5129 &dev_attr_over_temp.attr, 5130 &dev_attr_under_voltage_warn.attr, 5131 &dev_attr_over_current_warn.attr, 5132 &dev_attr_over_voltage_warn.attr, 5133 &dev_attr_over_temp_warn.attr, 5134 &dev_attr_suspend_standby_state.attr, 5135 &dev_attr_suspend_mem_state.attr, 5136 &dev_attr_suspend_disk_state.attr, 5137 &dev_attr_suspend_standby_microvolts.attr, 5138 &dev_attr_suspend_mem_microvolts.attr, 5139 &dev_attr_suspend_disk_microvolts.attr, 5140 &dev_attr_suspend_standby_mode.attr, 5141 &dev_attr_suspend_mem_mode.attr, 5142 &dev_attr_suspend_disk_mode.attr, 5143 NULL 5144 }; 5145 5146 /* 5147 * To avoid cluttering sysfs (and memory) with useless state, only 5148 * create attributes that can be meaningfully displayed. 5149 */ 5150 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5151 struct attribute *attr, int idx) 5152 { 5153 struct device *dev = kobj_to_dev(kobj); 5154 struct regulator_dev *rdev = dev_to_rdev(dev); 5155 const struct regulator_ops *ops = rdev->desc->ops; 5156 umode_t mode = attr->mode; 5157 5158 /* these three are always present */ 5159 if (attr == &dev_attr_name.attr || 5160 attr == &dev_attr_num_users.attr || 5161 attr == &dev_attr_type.attr) 5162 return mode; 5163 5164 /* some attributes need specific methods to be displayed */ 5165 if (attr == &dev_attr_microvolts.attr) { 5166 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5167 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5168 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5169 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5170 return mode; 5171 return 0; 5172 } 5173 5174 if (attr == &dev_attr_microamps.attr) 5175 return ops->get_current_limit ? mode : 0; 5176 5177 if (attr == &dev_attr_opmode.attr) 5178 return ops->get_mode ? mode : 0; 5179 5180 if (attr == &dev_attr_state.attr) 5181 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5182 5183 if (attr == &dev_attr_status.attr) 5184 return ops->get_status ? mode : 0; 5185 5186 if (attr == &dev_attr_bypass.attr) 5187 return ops->get_bypass ? mode : 0; 5188 5189 if (attr == &dev_attr_under_voltage.attr || 5190 attr == &dev_attr_over_current.attr || 5191 attr == &dev_attr_regulation_out.attr || 5192 attr == &dev_attr_fail.attr || 5193 attr == &dev_attr_over_temp.attr || 5194 attr == &dev_attr_under_voltage_warn.attr || 5195 attr == &dev_attr_over_current_warn.attr || 5196 attr == &dev_attr_over_voltage_warn.attr || 5197 attr == &dev_attr_over_temp_warn.attr) 5198 return ops->get_error_flags ? mode : 0; 5199 5200 /* constraints need specific supporting methods */ 5201 if (attr == &dev_attr_min_microvolts.attr || 5202 attr == &dev_attr_max_microvolts.attr) 5203 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5204 5205 if (attr == &dev_attr_min_microamps.attr || 5206 attr == &dev_attr_max_microamps.attr) 5207 return ops->set_current_limit ? mode : 0; 5208 5209 if (attr == &dev_attr_suspend_standby_state.attr || 5210 attr == &dev_attr_suspend_mem_state.attr || 5211 attr == &dev_attr_suspend_disk_state.attr) 5212 return mode; 5213 5214 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5215 attr == &dev_attr_suspend_mem_microvolts.attr || 5216 attr == &dev_attr_suspend_disk_microvolts.attr) 5217 return ops->set_suspend_voltage ? mode : 0; 5218 5219 if (attr == &dev_attr_suspend_standby_mode.attr || 5220 attr == &dev_attr_suspend_mem_mode.attr || 5221 attr == &dev_attr_suspend_disk_mode.attr) 5222 return ops->set_suspend_mode ? mode : 0; 5223 5224 return mode; 5225 } 5226 5227 static const struct attribute_group regulator_dev_group = { 5228 .attrs = regulator_dev_attrs, 5229 .is_visible = regulator_attr_is_visible, 5230 }; 5231 5232 static const struct attribute_group *regulator_dev_groups[] = { 5233 ®ulator_dev_group, 5234 NULL 5235 }; 5236 5237 static void regulator_dev_release(struct device *dev) 5238 { 5239 struct regulator_dev *rdev = dev_get_drvdata(dev); 5240 5241 debugfs_remove_recursive(rdev->debugfs); 5242 kfree(rdev->constraints); 5243 of_node_put(rdev->dev.of_node); 5244 kfree(rdev); 5245 } 5246 5247 static void rdev_init_debugfs(struct regulator_dev *rdev) 5248 { 5249 struct device *parent = rdev->dev.parent; 5250 const char *rname = rdev_get_name(rdev); 5251 char name[NAME_MAX]; 5252 5253 /* Avoid duplicate debugfs directory names */ 5254 if (parent && rname == rdev->desc->name) { 5255 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5256 rname); 5257 rname = name; 5258 } 5259 5260 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5261 if (IS_ERR(rdev->debugfs)) 5262 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5263 5264 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5265 &rdev->use_count); 5266 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5267 &rdev->open_count); 5268 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5269 &rdev->bypass_count); 5270 } 5271 5272 static int regulator_register_resolve_supply(struct device *dev, void *data) 5273 { 5274 struct regulator_dev *rdev = dev_to_rdev(dev); 5275 5276 if (regulator_resolve_supply(rdev)) 5277 rdev_dbg(rdev, "unable to resolve supply\n"); 5278 5279 return 0; 5280 } 5281 5282 int regulator_coupler_register(struct regulator_coupler *coupler) 5283 { 5284 mutex_lock(®ulator_list_mutex); 5285 list_add_tail(&coupler->list, ®ulator_coupler_list); 5286 mutex_unlock(®ulator_list_mutex); 5287 5288 return 0; 5289 } 5290 5291 static struct regulator_coupler * 5292 regulator_find_coupler(struct regulator_dev *rdev) 5293 { 5294 struct regulator_coupler *coupler; 5295 int err; 5296 5297 /* 5298 * Note that regulators are appended to the list and the generic 5299 * coupler is registered first, hence it will be attached at last 5300 * if nobody cared. 5301 */ 5302 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5303 err = coupler->attach_regulator(coupler, rdev); 5304 if (!err) { 5305 if (!coupler->balance_voltage && 5306 rdev->coupling_desc.n_coupled > 2) 5307 goto err_unsupported; 5308 5309 return coupler; 5310 } 5311 5312 if (err < 0) 5313 return ERR_PTR(err); 5314 5315 if (err == 1) 5316 continue; 5317 5318 break; 5319 } 5320 5321 return ERR_PTR(-EINVAL); 5322 5323 err_unsupported: 5324 if (coupler->detach_regulator) 5325 coupler->detach_regulator(coupler, rdev); 5326 5327 rdev_err(rdev, 5328 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5329 5330 return ERR_PTR(-EPERM); 5331 } 5332 5333 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5334 { 5335 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5336 struct coupling_desc *c_desc = &rdev->coupling_desc; 5337 int n_coupled = c_desc->n_coupled; 5338 struct regulator_dev *c_rdev; 5339 int i; 5340 5341 for (i = 1; i < n_coupled; i++) { 5342 /* already resolved */ 5343 if (c_desc->coupled_rdevs[i]) 5344 continue; 5345 5346 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5347 5348 if (!c_rdev) 5349 continue; 5350 5351 if (c_rdev->coupling_desc.coupler != coupler) { 5352 rdev_err(rdev, "coupler mismatch with %s\n", 5353 rdev_get_name(c_rdev)); 5354 return; 5355 } 5356 5357 c_desc->coupled_rdevs[i] = c_rdev; 5358 c_desc->n_resolved++; 5359 5360 regulator_resolve_coupling(c_rdev); 5361 } 5362 } 5363 5364 static void regulator_remove_coupling(struct regulator_dev *rdev) 5365 { 5366 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5367 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5368 struct regulator_dev *__c_rdev, *c_rdev; 5369 unsigned int __n_coupled, n_coupled; 5370 int i, k; 5371 int err; 5372 5373 n_coupled = c_desc->n_coupled; 5374 5375 for (i = 1; i < n_coupled; i++) { 5376 c_rdev = c_desc->coupled_rdevs[i]; 5377 5378 if (!c_rdev) 5379 continue; 5380 5381 regulator_lock(c_rdev); 5382 5383 __c_desc = &c_rdev->coupling_desc; 5384 __n_coupled = __c_desc->n_coupled; 5385 5386 for (k = 1; k < __n_coupled; k++) { 5387 __c_rdev = __c_desc->coupled_rdevs[k]; 5388 5389 if (__c_rdev == rdev) { 5390 __c_desc->coupled_rdevs[k] = NULL; 5391 __c_desc->n_resolved--; 5392 break; 5393 } 5394 } 5395 5396 regulator_unlock(c_rdev); 5397 5398 c_desc->coupled_rdevs[i] = NULL; 5399 c_desc->n_resolved--; 5400 } 5401 5402 if (coupler && coupler->detach_regulator) { 5403 err = coupler->detach_regulator(coupler, rdev); 5404 if (err) 5405 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5406 ERR_PTR(err)); 5407 } 5408 5409 kfree(rdev->coupling_desc.coupled_rdevs); 5410 rdev->coupling_desc.coupled_rdevs = NULL; 5411 } 5412 5413 static int regulator_init_coupling(struct regulator_dev *rdev) 5414 { 5415 struct regulator_dev **coupled; 5416 int err, n_phandles; 5417 5418 if (!IS_ENABLED(CONFIG_OF)) 5419 n_phandles = 0; 5420 else 5421 n_phandles = of_get_n_coupled(rdev); 5422 5423 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5424 if (!coupled) 5425 return -ENOMEM; 5426 5427 rdev->coupling_desc.coupled_rdevs = coupled; 5428 5429 /* 5430 * Every regulator should always have coupling descriptor filled with 5431 * at least pointer to itself. 5432 */ 5433 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5434 rdev->coupling_desc.n_coupled = n_phandles + 1; 5435 rdev->coupling_desc.n_resolved++; 5436 5437 /* regulator isn't coupled */ 5438 if (n_phandles == 0) 5439 return 0; 5440 5441 if (!of_check_coupling_data(rdev)) 5442 return -EPERM; 5443 5444 mutex_lock(®ulator_list_mutex); 5445 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5446 mutex_unlock(®ulator_list_mutex); 5447 5448 if (IS_ERR(rdev->coupling_desc.coupler)) { 5449 err = PTR_ERR(rdev->coupling_desc.coupler); 5450 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5451 return err; 5452 } 5453 5454 return 0; 5455 } 5456 5457 static int generic_coupler_attach(struct regulator_coupler *coupler, 5458 struct regulator_dev *rdev) 5459 { 5460 if (rdev->coupling_desc.n_coupled > 2) { 5461 rdev_err(rdev, 5462 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5463 return -EPERM; 5464 } 5465 5466 if (!rdev->constraints->always_on) { 5467 rdev_err(rdev, 5468 "Coupling of a non always-on regulator is unimplemented\n"); 5469 return -ENOTSUPP; 5470 } 5471 5472 return 0; 5473 } 5474 5475 static struct regulator_coupler generic_regulator_coupler = { 5476 .attach_regulator = generic_coupler_attach, 5477 }; 5478 5479 /** 5480 * regulator_register - register regulator 5481 * @dev: the device that drive the regulator 5482 * @regulator_desc: regulator to register 5483 * @cfg: runtime configuration for regulator 5484 * 5485 * Called by regulator drivers to register a regulator. 5486 * Returns a valid pointer to struct regulator_dev on success 5487 * or an ERR_PTR() on error. 5488 */ 5489 struct regulator_dev * 5490 regulator_register(struct device *dev, 5491 const struct regulator_desc *regulator_desc, 5492 const struct regulator_config *cfg) 5493 { 5494 const struct regulator_init_data *init_data; 5495 struct regulator_config *config = NULL; 5496 static atomic_t regulator_no = ATOMIC_INIT(-1); 5497 struct regulator_dev *rdev; 5498 bool dangling_cfg_gpiod = false; 5499 bool dangling_of_gpiod = false; 5500 int ret, i; 5501 bool resolved_early = false; 5502 5503 if (cfg == NULL) 5504 return ERR_PTR(-EINVAL); 5505 if (cfg->ena_gpiod) 5506 dangling_cfg_gpiod = true; 5507 if (regulator_desc == NULL) { 5508 ret = -EINVAL; 5509 goto rinse; 5510 } 5511 5512 WARN_ON(!dev || !cfg->dev); 5513 5514 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5515 ret = -EINVAL; 5516 goto rinse; 5517 } 5518 5519 if (regulator_desc->type != REGULATOR_VOLTAGE && 5520 regulator_desc->type != REGULATOR_CURRENT) { 5521 ret = -EINVAL; 5522 goto rinse; 5523 } 5524 5525 /* Only one of each should be implemented */ 5526 WARN_ON(regulator_desc->ops->get_voltage && 5527 regulator_desc->ops->get_voltage_sel); 5528 WARN_ON(regulator_desc->ops->set_voltage && 5529 regulator_desc->ops->set_voltage_sel); 5530 5531 /* If we're using selectors we must implement list_voltage. */ 5532 if (regulator_desc->ops->get_voltage_sel && 5533 !regulator_desc->ops->list_voltage) { 5534 ret = -EINVAL; 5535 goto rinse; 5536 } 5537 if (regulator_desc->ops->set_voltage_sel && 5538 !regulator_desc->ops->list_voltage) { 5539 ret = -EINVAL; 5540 goto rinse; 5541 } 5542 5543 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5544 if (rdev == NULL) { 5545 ret = -ENOMEM; 5546 goto rinse; 5547 } 5548 device_initialize(&rdev->dev); 5549 dev_set_drvdata(&rdev->dev, rdev); 5550 rdev->dev.class = ®ulator_class; 5551 spin_lock_init(&rdev->err_lock); 5552 5553 /* 5554 * Duplicate the config so the driver could override it after 5555 * parsing init data. 5556 */ 5557 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5558 if (config == NULL) { 5559 ret = -ENOMEM; 5560 goto clean; 5561 } 5562 5563 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5564 &rdev->dev.of_node); 5565 5566 /* 5567 * Sometimes not all resources are probed already so we need to take 5568 * that into account. This happens most the time if the ena_gpiod comes 5569 * from a gpio extender or something else. 5570 */ 5571 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5572 ret = -EPROBE_DEFER; 5573 goto clean; 5574 } 5575 5576 /* 5577 * We need to keep track of any GPIO descriptor coming from the 5578 * device tree until we have handled it over to the core. If the 5579 * config that was passed in to this function DOES NOT contain 5580 * a descriptor, and the config after this call DOES contain 5581 * a descriptor, we definitely got one from parsing the device 5582 * tree. 5583 */ 5584 if (!cfg->ena_gpiod && config->ena_gpiod) 5585 dangling_of_gpiod = true; 5586 if (!init_data) { 5587 init_data = config->init_data; 5588 rdev->dev.of_node = of_node_get(config->of_node); 5589 } 5590 5591 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5592 rdev->reg_data = config->driver_data; 5593 rdev->owner = regulator_desc->owner; 5594 rdev->desc = regulator_desc; 5595 if (config->regmap) 5596 rdev->regmap = config->regmap; 5597 else if (dev_get_regmap(dev, NULL)) 5598 rdev->regmap = dev_get_regmap(dev, NULL); 5599 else if (dev->parent) 5600 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5601 INIT_LIST_HEAD(&rdev->consumer_list); 5602 INIT_LIST_HEAD(&rdev->list); 5603 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5604 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5605 5606 if (init_data && init_data->supply_regulator) 5607 rdev->supply_name = init_data->supply_regulator; 5608 else if (regulator_desc->supply_name) 5609 rdev->supply_name = regulator_desc->supply_name; 5610 5611 /* register with sysfs */ 5612 rdev->dev.parent = config->dev; 5613 dev_set_name(&rdev->dev, "regulator.%lu", 5614 (unsigned long) atomic_inc_return(®ulator_no)); 5615 5616 /* set regulator constraints */ 5617 if (init_data) 5618 rdev->constraints = kmemdup(&init_data->constraints, 5619 sizeof(*rdev->constraints), 5620 GFP_KERNEL); 5621 else 5622 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5623 GFP_KERNEL); 5624 if (!rdev->constraints) { 5625 ret = -ENOMEM; 5626 goto wash; 5627 } 5628 5629 if ((rdev->supply_name && !rdev->supply) && 5630 (rdev->constraints->always_on || 5631 rdev->constraints->boot_on)) { 5632 ret = regulator_resolve_supply(rdev); 5633 if (ret) 5634 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5635 ERR_PTR(ret)); 5636 5637 resolved_early = true; 5638 } 5639 5640 /* perform any regulator specific init */ 5641 if (init_data && init_data->regulator_init) { 5642 ret = init_data->regulator_init(rdev->reg_data); 5643 if (ret < 0) 5644 goto wash; 5645 } 5646 5647 if (config->ena_gpiod) { 5648 ret = regulator_ena_gpio_request(rdev, config); 5649 if (ret != 0) { 5650 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5651 ERR_PTR(ret)); 5652 goto wash; 5653 } 5654 /* The regulator core took over the GPIO descriptor */ 5655 dangling_cfg_gpiod = false; 5656 dangling_of_gpiod = false; 5657 } 5658 5659 ret = set_machine_constraints(rdev); 5660 if (ret == -EPROBE_DEFER && !resolved_early) { 5661 /* Regulator might be in bypass mode and so needs its supply 5662 * to set the constraints 5663 */ 5664 /* FIXME: this currently triggers a chicken-and-egg problem 5665 * when creating -SUPPLY symlink in sysfs to a regulator 5666 * that is just being created 5667 */ 5668 rdev_dbg(rdev, "will resolve supply early: %s\n", 5669 rdev->supply_name); 5670 ret = regulator_resolve_supply(rdev); 5671 if (!ret) 5672 ret = set_machine_constraints(rdev); 5673 else 5674 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5675 ERR_PTR(ret)); 5676 } 5677 if (ret < 0) 5678 goto wash; 5679 5680 ret = regulator_init_coupling(rdev); 5681 if (ret < 0) 5682 goto wash; 5683 5684 /* add consumers devices */ 5685 if (init_data) { 5686 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5687 ret = set_consumer_device_supply(rdev, 5688 init_data->consumer_supplies[i].dev_name, 5689 init_data->consumer_supplies[i].supply); 5690 if (ret < 0) { 5691 dev_err(dev, "Failed to set supply %s\n", 5692 init_data->consumer_supplies[i].supply); 5693 goto unset_supplies; 5694 } 5695 } 5696 } 5697 5698 if (!rdev->desc->ops->get_voltage && 5699 !rdev->desc->ops->list_voltage && 5700 !rdev->desc->fixed_uV) 5701 rdev->is_switch = true; 5702 5703 ret = device_add(&rdev->dev); 5704 if (ret != 0) 5705 goto unset_supplies; 5706 5707 rdev_init_debugfs(rdev); 5708 5709 /* try to resolve regulators coupling since a new one was registered */ 5710 mutex_lock(®ulator_list_mutex); 5711 regulator_resolve_coupling(rdev); 5712 mutex_unlock(®ulator_list_mutex); 5713 5714 /* try to resolve regulators supply since a new one was registered */ 5715 class_for_each_device(®ulator_class, NULL, NULL, 5716 regulator_register_resolve_supply); 5717 kfree(config); 5718 return rdev; 5719 5720 unset_supplies: 5721 mutex_lock(®ulator_list_mutex); 5722 unset_regulator_supplies(rdev); 5723 regulator_remove_coupling(rdev); 5724 mutex_unlock(®ulator_list_mutex); 5725 wash: 5726 regulator_put(rdev->supply); 5727 kfree(rdev->coupling_desc.coupled_rdevs); 5728 mutex_lock(®ulator_list_mutex); 5729 regulator_ena_gpio_free(rdev); 5730 mutex_unlock(®ulator_list_mutex); 5731 clean: 5732 if (dangling_of_gpiod) 5733 gpiod_put(config->ena_gpiod); 5734 kfree(config); 5735 put_device(&rdev->dev); 5736 rinse: 5737 if (dangling_cfg_gpiod) 5738 gpiod_put(cfg->ena_gpiod); 5739 return ERR_PTR(ret); 5740 } 5741 EXPORT_SYMBOL_GPL(regulator_register); 5742 5743 /** 5744 * regulator_unregister - unregister regulator 5745 * @rdev: regulator to unregister 5746 * 5747 * Called by regulator drivers to unregister a regulator. 5748 */ 5749 void regulator_unregister(struct regulator_dev *rdev) 5750 { 5751 if (rdev == NULL) 5752 return; 5753 5754 if (rdev->supply) { 5755 while (rdev->use_count--) 5756 regulator_disable(rdev->supply); 5757 regulator_put(rdev->supply); 5758 } 5759 5760 flush_work(&rdev->disable_work.work); 5761 5762 mutex_lock(®ulator_list_mutex); 5763 5764 WARN_ON(rdev->open_count); 5765 regulator_remove_coupling(rdev); 5766 unset_regulator_supplies(rdev); 5767 list_del(&rdev->list); 5768 regulator_ena_gpio_free(rdev); 5769 device_unregister(&rdev->dev); 5770 5771 mutex_unlock(®ulator_list_mutex); 5772 } 5773 EXPORT_SYMBOL_GPL(regulator_unregister); 5774 5775 #ifdef CONFIG_SUSPEND 5776 /** 5777 * regulator_suspend - prepare regulators for system wide suspend 5778 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5779 * 5780 * Configure each regulator with it's suspend operating parameters for state. 5781 */ 5782 static int regulator_suspend(struct device *dev) 5783 { 5784 struct regulator_dev *rdev = dev_to_rdev(dev); 5785 suspend_state_t state = pm_suspend_target_state; 5786 int ret; 5787 const struct regulator_state *rstate; 5788 5789 rstate = regulator_get_suspend_state_check(rdev, state); 5790 if (!rstate) 5791 return 0; 5792 5793 regulator_lock(rdev); 5794 ret = __suspend_set_state(rdev, rstate); 5795 regulator_unlock(rdev); 5796 5797 return ret; 5798 } 5799 5800 static int regulator_resume(struct device *dev) 5801 { 5802 suspend_state_t state = pm_suspend_target_state; 5803 struct regulator_dev *rdev = dev_to_rdev(dev); 5804 struct regulator_state *rstate; 5805 int ret = 0; 5806 5807 rstate = regulator_get_suspend_state(rdev, state); 5808 if (rstate == NULL) 5809 return 0; 5810 5811 /* Avoid grabbing the lock if we don't need to */ 5812 if (!rdev->desc->ops->resume) 5813 return 0; 5814 5815 regulator_lock(rdev); 5816 5817 if (rstate->enabled == ENABLE_IN_SUSPEND || 5818 rstate->enabled == DISABLE_IN_SUSPEND) 5819 ret = rdev->desc->ops->resume(rdev); 5820 5821 regulator_unlock(rdev); 5822 5823 return ret; 5824 } 5825 #else /* !CONFIG_SUSPEND */ 5826 5827 #define regulator_suspend NULL 5828 #define regulator_resume NULL 5829 5830 #endif /* !CONFIG_SUSPEND */ 5831 5832 #ifdef CONFIG_PM 5833 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5834 .suspend = regulator_suspend, 5835 .resume = regulator_resume, 5836 }; 5837 #endif 5838 5839 struct class regulator_class = { 5840 .name = "regulator", 5841 .dev_release = regulator_dev_release, 5842 .dev_groups = regulator_dev_groups, 5843 #ifdef CONFIG_PM 5844 .pm = ®ulator_pm_ops, 5845 #endif 5846 }; 5847 /** 5848 * regulator_has_full_constraints - the system has fully specified constraints 5849 * 5850 * Calling this function will cause the regulator API to disable all 5851 * regulators which have a zero use count and don't have an always_on 5852 * constraint in a late_initcall. 5853 * 5854 * The intention is that this will become the default behaviour in a 5855 * future kernel release so users are encouraged to use this facility 5856 * now. 5857 */ 5858 void regulator_has_full_constraints(void) 5859 { 5860 has_full_constraints = 1; 5861 } 5862 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5863 5864 /** 5865 * rdev_get_drvdata - get rdev regulator driver data 5866 * @rdev: regulator 5867 * 5868 * Get rdev regulator driver private data. This call can be used in the 5869 * regulator driver context. 5870 */ 5871 void *rdev_get_drvdata(struct regulator_dev *rdev) 5872 { 5873 return rdev->reg_data; 5874 } 5875 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5876 5877 /** 5878 * regulator_get_drvdata - get regulator driver data 5879 * @regulator: regulator 5880 * 5881 * Get regulator driver private data. This call can be used in the consumer 5882 * driver context when non API regulator specific functions need to be called. 5883 */ 5884 void *regulator_get_drvdata(struct regulator *regulator) 5885 { 5886 return regulator->rdev->reg_data; 5887 } 5888 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5889 5890 /** 5891 * regulator_set_drvdata - set regulator driver data 5892 * @regulator: regulator 5893 * @data: data 5894 */ 5895 void regulator_set_drvdata(struct regulator *regulator, void *data) 5896 { 5897 regulator->rdev->reg_data = data; 5898 } 5899 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5900 5901 /** 5902 * rdev_get_id - get regulator ID 5903 * @rdev: regulator 5904 */ 5905 int rdev_get_id(struct regulator_dev *rdev) 5906 { 5907 return rdev->desc->id; 5908 } 5909 EXPORT_SYMBOL_GPL(rdev_get_id); 5910 5911 struct device *rdev_get_dev(struct regulator_dev *rdev) 5912 { 5913 return &rdev->dev; 5914 } 5915 EXPORT_SYMBOL_GPL(rdev_get_dev); 5916 5917 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5918 { 5919 return rdev->regmap; 5920 } 5921 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5922 5923 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5924 { 5925 return reg_init_data->driver_data; 5926 } 5927 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5928 5929 #ifdef CONFIG_DEBUG_FS 5930 static int supply_map_show(struct seq_file *sf, void *data) 5931 { 5932 struct regulator_map *map; 5933 5934 list_for_each_entry(map, ®ulator_map_list, list) { 5935 seq_printf(sf, "%s -> %s.%s\n", 5936 rdev_get_name(map->regulator), map->dev_name, 5937 map->supply); 5938 } 5939 5940 return 0; 5941 } 5942 DEFINE_SHOW_ATTRIBUTE(supply_map); 5943 5944 struct summary_data { 5945 struct seq_file *s; 5946 struct regulator_dev *parent; 5947 int level; 5948 }; 5949 5950 static void regulator_summary_show_subtree(struct seq_file *s, 5951 struct regulator_dev *rdev, 5952 int level); 5953 5954 static int regulator_summary_show_children(struct device *dev, void *data) 5955 { 5956 struct regulator_dev *rdev = dev_to_rdev(dev); 5957 struct summary_data *summary_data = data; 5958 5959 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5960 regulator_summary_show_subtree(summary_data->s, rdev, 5961 summary_data->level + 1); 5962 5963 return 0; 5964 } 5965 5966 static void regulator_summary_show_subtree(struct seq_file *s, 5967 struct regulator_dev *rdev, 5968 int level) 5969 { 5970 struct regulation_constraints *c; 5971 struct regulator *consumer; 5972 struct summary_data summary_data; 5973 unsigned int opmode; 5974 5975 if (!rdev) 5976 return; 5977 5978 opmode = _regulator_get_mode_unlocked(rdev); 5979 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5980 level * 3 + 1, "", 5981 30 - level * 3, rdev_get_name(rdev), 5982 rdev->use_count, rdev->open_count, rdev->bypass_count, 5983 regulator_opmode_to_str(opmode)); 5984 5985 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5986 seq_printf(s, "%5dmA ", 5987 _regulator_get_current_limit_unlocked(rdev) / 1000); 5988 5989 c = rdev->constraints; 5990 if (c) { 5991 switch (rdev->desc->type) { 5992 case REGULATOR_VOLTAGE: 5993 seq_printf(s, "%5dmV %5dmV ", 5994 c->min_uV / 1000, c->max_uV / 1000); 5995 break; 5996 case REGULATOR_CURRENT: 5997 seq_printf(s, "%5dmA %5dmA ", 5998 c->min_uA / 1000, c->max_uA / 1000); 5999 break; 6000 } 6001 } 6002 6003 seq_puts(s, "\n"); 6004 6005 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6006 if (consumer->dev && consumer->dev->class == ®ulator_class) 6007 continue; 6008 6009 seq_printf(s, "%*s%-*s ", 6010 (level + 1) * 3 + 1, "", 6011 30 - (level + 1) * 3, 6012 consumer->supply_name ? consumer->supply_name : 6013 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6014 6015 switch (rdev->desc->type) { 6016 case REGULATOR_VOLTAGE: 6017 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6018 consumer->enable_count, 6019 consumer->uA_load / 1000, 6020 consumer->uA_load && !consumer->enable_count ? 6021 '*' : ' ', 6022 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6023 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6024 break; 6025 case REGULATOR_CURRENT: 6026 break; 6027 } 6028 6029 seq_puts(s, "\n"); 6030 } 6031 6032 summary_data.s = s; 6033 summary_data.level = level; 6034 summary_data.parent = rdev; 6035 6036 class_for_each_device(®ulator_class, NULL, &summary_data, 6037 regulator_summary_show_children); 6038 } 6039 6040 struct summary_lock_data { 6041 struct ww_acquire_ctx *ww_ctx; 6042 struct regulator_dev **new_contended_rdev; 6043 struct regulator_dev **old_contended_rdev; 6044 }; 6045 6046 static int regulator_summary_lock_one(struct device *dev, void *data) 6047 { 6048 struct regulator_dev *rdev = dev_to_rdev(dev); 6049 struct summary_lock_data *lock_data = data; 6050 int ret = 0; 6051 6052 if (rdev != *lock_data->old_contended_rdev) { 6053 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6054 6055 if (ret == -EDEADLK) 6056 *lock_data->new_contended_rdev = rdev; 6057 else 6058 WARN_ON_ONCE(ret); 6059 } else { 6060 *lock_data->old_contended_rdev = NULL; 6061 } 6062 6063 return ret; 6064 } 6065 6066 static int regulator_summary_unlock_one(struct device *dev, void *data) 6067 { 6068 struct regulator_dev *rdev = dev_to_rdev(dev); 6069 struct summary_lock_data *lock_data = data; 6070 6071 if (lock_data) { 6072 if (rdev == *lock_data->new_contended_rdev) 6073 return -EDEADLK; 6074 } 6075 6076 regulator_unlock(rdev); 6077 6078 return 0; 6079 } 6080 6081 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6082 struct regulator_dev **new_contended_rdev, 6083 struct regulator_dev **old_contended_rdev) 6084 { 6085 struct summary_lock_data lock_data; 6086 int ret; 6087 6088 lock_data.ww_ctx = ww_ctx; 6089 lock_data.new_contended_rdev = new_contended_rdev; 6090 lock_data.old_contended_rdev = old_contended_rdev; 6091 6092 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6093 regulator_summary_lock_one); 6094 if (ret) 6095 class_for_each_device(®ulator_class, NULL, &lock_data, 6096 regulator_summary_unlock_one); 6097 6098 return ret; 6099 } 6100 6101 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6102 { 6103 struct regulator_dev *new_contended_rdev = NULL; 6104 struct regulator_dev *old_contended_rdev = NULL; 6105 int err; 6106 6107 mutex_lock(®ulator_list_mutex); 6108 6109 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6110 6111 do { 6112 if (new_contended_rdev) { 6113 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6114 old_contended_rdev = new_contended_rdev; 6115 old_contended_rdev->ref_cnt++; 6116 old_contended_rdev->mutex_owner = current; 6117 } 6118 6119 err = regulator_summary_lock_all(ww_ctx, 6120 &new_contended_rdev, 6121 &old_contended_rdev); 6122 6123 if (old_contended_rdev) 6124 regulator_unlock(old_contended_rdev); 6125 6126 } while (err == -EDEADLK); 6127 6128 ww_acquire_done(ww_ctx); 6129 } 6130 6131 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6132 { 6133 class_for_each_device(®ulator_class, NULL, NULL, 6134 regulator_summary_unlock_one); 6135 ww_acquire_fini(ww_ctx); 6136 6137 mutex_unlock(®ulator_list_mutex); 6138 } 6139 6140 static int regulator_summary_show_roots(struct device *dev, void *data) 6141 { 6142 struct regulator_dev *rdev = dev_to_rdev(dev); 6143 struct seq_file *s = data; 6144 6145 if (!rdev->supply) 6146 regulator_summary_show_subtree(s, rdev, 0); 6147 6148 return 0; 6149 } 6150 6151 static int regulator_summary_show(struct seq_file *s, void *data) 6152 { 6153 struct ww_acquire_ctx ww_ctx; 6154 6155 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6156 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6157 6158 regulator_summary_lock(&ww_ctx); 6159 6160 class_for_each_device(®ulator_class, NULL, s, 6161 regulator_summary_show_roots); 6162 6163 regulator_summary_unlock(&ww_ctx); 6164 6165 return 0; 6166 } 6167 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6168 #endif /* CONFIG_DEBUG_FS */ 6169 6170 static int __init regulator_init(void) 6171 { 6172 int ret; 6173 6174 ret = class_register(®ulator_class); 6175 6176 debugfs_root = debugfs_create_dir("regulator", NULL); 6177 if (IS_ERR(debugfs_root)) 6178 pr_debug("regulator: Failed to create debugfs directory\n"); 6179 6180 #ifdef CONFIG_DEBUG_FS 6181 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6182 &supply_map_fops); 6183 6184 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6185 NULL, ®ulator_summary_fops); 6186 #endif 6187 regulator_dummy_init(); 6188 6189 regulator_coupler_register(&generic_regulator_coupler); 6190 6191 return ret; 6192 } 6193 6194 /* init early to allow our consumers to complete system booting */ 6195 core_initcall(regulator_init); 6196 6197 static int regulator_late_cleanup(struct device *dev, void *data) 6198 { 6199 struct regulator_dev *rdev = dev_to_rdev(dev); 6200 struct regulation_constraints *c = rdev->constraints; 6201 int ret; 6202 6203 if (c && c->always_on) 6204 return 0; 6205 6206 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6207 return 0; 6208 6209 regulator_lock(rdev); 6210 6211 if (rdev->use_count) 6212 goto unlock; 6213 6214 /* If reading the status failed, assume that it's off. */ 6215 if (_regulator_is_enabled(rdev) <= 0) 6216 goto unlock; 6217 6218 if (have_full_constraints()) { 6219 /* We log since this may kill the system if it goes 6220 * wrong. 6221 */ 6222 rdev_info(rdev, "disabling\n"); 6223 ret = _regulator_do_disable(rdev); 6224 if (ret != 0) 6225 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6226 } else { 6227 /* The intention is that in future we will 6228 * assume that full constraints are provided 6229 * so warn even if we aren't going to do 6230 * anything here. 6231 */ 6232 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6233 } 6234 6235 unlock: 6236 regulator_unlock(rdev); 6237 6238 return 0; 6239 } 6240 6241 static void regulator_init_complete_work_function(struct work_struct *work) 6242 { 6243 /* 6244 * Regulators may had failed to resolve their input supplies 6245 * when were registered, either because the input supply was 6246 * not registered yet or because its parent device was not 6247 * bound yet. So attempt to resolve the input supplies for 6248 * pending regulators before trying to disable unused ones. 6249 */ 6250 class_for_each_device(®ulator_class, NULL, NULL, 6251 regulator_register_resolve_supply); 6252 6253 /* If we have a full configuration then disable any regulators 6254 * we have permission to change the status for and which are 6255 * not in use or always_on. This is effectively the default 6256 * for DT and ACPI as they have full constraints. 6257 */ 6258 class_for_each_device(®ulator_class, NULL, NULL, 6259 regulator_late_cleanup); 6260 } 6261 6262 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6263 regulator_init_complete_work_function); 6264 6265 static int __init regulator_init_complete(void) 6266 { 6267 /* 6268 * Since DT doesn't provide an idiomatic mechanism for 6269 * enabling full constraints and since it's much more natural 6270 * with DT to provide them just assume that a DT enabled 6271 * system has full constraints. 6272 */ 6273 if (of_have_populated_dt()) 6274 has_full_constraints = true; 6275 6276 /* 6277 * We punt completion for an arbitrary amount of time since 6278 * systems like distros will load many drivers from userspace 6279 * so consumers might not always be ready yet, this is 6280 * particularly an issue with laptops where this might bounce 6281 * the display off then on. Ideally we'd get a notification 6282 * from userspace when this happens but we don't so just wait 6283 * a bit and hope we waited long enough. It'd be better if 6284 * we'd only do this on systems that need it, and a kernel 6285 * command line option might be useful. 6286 */ 6287 schedule_delayed_work(®ulator_init_complete_work, 6288 msecs_to_jiffies(30000)); 6289 6290 return 0; 6291 } 6292 late_initcall_sync(regulator_init_complete); 6293