xref: /openbmc/linux/drivers/regulator/core.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 
32 /**
33  * struct regulator_dev
34  *
35  * Voltage / Current regulator class device. One for each regulator.
36  */
37 struct regulator_dev {
38 	struct regulator_desc *desc;
39 	int use_count;
40 
41 	/* lists we belong to */
42 	struct list_head list; /* list of all regulators */
43 	struct list_head slist; /* list of supplied regulators */
44 
45 	/* lists we own */
46 	struct list_head consumer_list; /* consumers we supply */
47 	struct list_head supply_list; /* regulators we supply */
48 
49 	struct blocking_notifier_head notifier;
50 	struct mutex mutex; /* consumer lock */
51 	struct module *owner;
52 	struct device dev;
53 	struct regulation_constraints *constraints;
54 	struct regulator_dev *supply;	/* for tree */
55 
56 	void *reg_data;		/* regulator_dev data */
57 };
58 
59 /**
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65 	struct list_head list;
66 	struct device *dev;
67 	const char *supply;
68 	struct regulator_dev *regulator;
69 };
70 
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77 	struct device *dev;
78 	struct list_head list;
79 	int uA_load;
80 	int min_uV;
81 	int max_uV;
82 	int enabled; /* client has called enabled */
83 	char *supply_name;
84 	struct device_attribute dev_attr;
85 	struct regulator_dev *rdev;
86 };
87 
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 				  unsigned long event, void *data);
95 
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99 	struct regulator *regulator = NULL;
100 	struct regulator_dev *rdev;
101 
102 	mutex_lock(&regulator_list_mutex);
103 	list_for_each_entry(rdev, &regulator_list, list) {
104 		mutex_lock(&rdev->mutex);
105 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
106 			if (regulator->dev == dev) {
107 				mutex_unlock(&rdev->mutex);
108 				mutex_unlock(&regulator_list_mutex);
109 				return regulator;
110 			}
111 		}
112 		mutex_unlock(&rdev->mutex);
113 	}
114 	mutex_unlock(&regulator_list_mutex);
115 	return NULL;
116 }
117 
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120 				   int *min_uV, int *max_uV)
121 {
122 	BUG_ON(*min_uV > *max_uV);
123 
124 	if (!rdev->constraints) {
125 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126 		       rdev->desc->name);
127 		return -ENODEV;
128 	}
129 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130 		printk(KERN_ERR "%s: operation not allowed for %s\n",
131 		       __func__, rdev->desc->name);
132 		return -EPERM;
133 	}
134 
135 	if (*max_uV > rdev->constraints->max_uV)
136 		*max_uV = rdev->constraints->max_uV;
137 	if (*min_uV < rdev->constraints->min_uV)
138 		*min_uV = rdev->constraints->min_uV;
139 
140 	if (*min_uV > *max_uV)
141 		return -EINVAL;
142 
143 	return 0;
144 }
145 
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148 					int *min_uA, int *max_uA)
149 {
150 	BUG_ON(*min_uA > *max_uA);
151 
152 	if (!rdev->constraints) {
153 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154 		       rdev->desc->name);
155 		return -ENODEV;
156 	}
157 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158 		printk(KERN_ERR "%s: operation not allowed for %s\n",
159 		       __func__, rdev->desc->name);
160 		return -EPERM;
161 	}
162 
163 	if (*max_uA > rdev->constraints->max_uA)
164 		*max_uA = rdev->constraints->max_uA;
165 	if (*min_uA < rdev->constraints->min_uA)
166 		*min_uA = rdev->constraints->min_uA;
167 
168 	if (*min_uA > *max_uA)
169 		return -EINVAL;
170 
171 	return 0;
172 }
173 
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177 	if (!rdev->constraints) {
178 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179 		       rdev->desc->name);
180 		return -ENODEV;
181 	}
182 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183 		printk(KERN_ERR "%s: operation not allowed for %s\n",
184 		       __func__, rdev->desc->name);
185 		return -EPERM;
186 	}
187 	if (!(rdev->constraints->valid_modes_mask & mode)) {
188 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
189 		       __func__, mode, rdev->desc->name);
190 		return -EINVAL;
191 	}
192 	return 0;
193 }
194 
195 /* dynamic regulator mode switching constraint check */
196 static int regulator_check_drms(struct regulator_dev *rdev)
197 {
198 	if (!rdev->constraints) {
199 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200 		       rdev->desc->name);
201 		return -ENODEV;
202 	}
203 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204 		printk(KERN_ERR "%s: operation not allowed for %s\n",
205 		       __func__, rdev->desc->name);
206 		return -EPERM;
207 	}
208 	return 0;
209 }
210 
211 static ssize_t device_requested_uA_show(struct device *dev,
212 			     struct device_attribute *attr, char *buf)
213 {
214 	struct regulator *regulator;
215 
216 	regulator = get_device_regulator(dev);
217 	if (regulator == NULL)
218 		return 0;
219 
220 	return sprintf(buf, "%d\n", regulator->uA_load);
221 }
222 
223 static ssize_t regulator_uV_show(struct device *dev,
224 				struct device_attribute *attr, char *buf)
225 {
226 	struct regulator_dev *rdev = dev_get_drvdata(dev);
227 	ssize_t ret;
228 
229 	mutex_lock(&rdev->mutex);
230 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231 	mutex_unlock(&rdev->mutex);
232 
233 	return ret;
234 }
235 
236 static ssize_t regulator_uA_show(struct device *dev,
237 				struct device_attribute *attr, char *buf)
238 {
239 	struct regulator_dev *rdev = dev_get_drvdata(dev);
240 
241 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 
244 static ssize_t regulator_name_show(struct device *dev,
245 			     struct device_attribute *attr, char *buf)
246 {
247 	struct regulator_dev *rdev = dev_get_drvdata(dev);
248 	const char *name;
249 
250 	if (rdev->constraints->name)
251 		name = rdev->constraints->name;
252 	else if (rdev->desc->name)
253 		name = rdev->desc->name;
254 	else
255 		name = "";
256 
257 	return sprintf(buf, "%s\n", name);
258 }
259 
260 static ssize_t regulator_opmode_show(struct device *dev,
261 				    struct device_attribute *attr, char *buf)
262 {
263 	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 	int mode = _regulator_get_mode(rdev);
265 
266 	switch (mode) {
267 	case REGULATOR_MODE_FAST:
268 		return sprintf(buf, "fast\n");
269 	case REGULATOR_MODE_NORMAL:
270 		return sprintf(buf, "normal\n");
271 	case REGULATOR_MODE_IDLE:
272 		return sprintf(buf, "idle\n");
273 	case REGULATOR_MODE_STANDBY:
274 		return sprintf(buf, "standby\n");
275 	}
276 	return sprintf(buf, "unknown\n");
277 }
278 
279 static ssize_t regulator_state_show(struct device *dev,
280 				   struct device_attribute *attr, char *buf)
281 {
282 	struct regulator_dev *rdev = dev_get_drvdata(dev);
283 	int state = _regulator_is_enabled(rdev);
284 
285 	if (state > 0)
286 		return sprintf(buf, "enabled\n");
287 	else if (state == 0)
288 		return sprintf(buf, "disabled\n");
289 	else
290 		return sprintf(buf, "unknown\n");
291 }
292 
293 static ssize_t regulator_min_uA_show(struct device *dev,
294 				    struct device_attribute *attr, char *buf)
295 {
296 	struct regulator_dev *rdev = dev_get_drvdata(dev);
297 
298 	if (!rdev->constraints)
299 		return sprintf(buf, "constraint not defined\n");
300 
301 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
302 }
303 
304 static ssize_t regulator_max_uA_show(struct device *dev,
305 				    struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 
309 	if (!rdev->constraints)
310 		return sprintf(buf, "constraint not defined\n");
311 
312 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
313 }
314 
315 static ssize_t regulator_min_uV_show(struct device *dev,
316 				    struct device_attribute *attr, char *buf)
317 {
318 	struct regulator_dev *rdev = dev_get_drvdata(dev);
319 
320 	if (!rdev->constraints)
321 		return sprintf(buf, "constraint not defined\n");
322 
323 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
324 }
325 
326 static ssize_t regulator_max_uV_show(struct device *dev,
327 				    struct device_attribute *attr, char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	if (!rdev->constraints)
332 		return sprintf(buf, "constraint not defined\n");
333 
334 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
335 }
336 
337 static ssize_t regulator_total_uA_show(struct device *dev,
338 				      struct device_attribute *attr, char *buf)
339 {
340 	struct regulator_dev *rdev = dev_get_drvdata(dev);
341 	struct regulator *regulator;
342 	int uA = 0;
343 
344 	mutex_lock(&rdev->mutex);
345 	list_for_each_entry(regulator, &rdev->consumer_list, list)
346 	    uA += regulator->uA_load;
347 	mutex_unlock(&rdev->mutex);
348 	return sprintf(buf, "%d\n", uA);
349 }
350 
351 static ssize_t regulator_num_users_show(struct device *dev,
352 				      struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 	return sprintf(buf, "%d\n", rdev->use_count);
356 }
357 
358 static ssize_t regulator_type_show(struct device *dev,
359 				  struct device_attribute *attr, char *buf)
360 {
361 	struct regulator_dev *rdev = dev_get_drvdata(dev);
362 
363 	switch (rdev->desc->type) {
364 	case REGULATOR_VOLTAGE:
365 		return sprintf(buf, "voltage\n");
366 	case REGULATOR_CURRENT:
367 		return sprintf(buf, "current\n");
368 	}
369 	return sprintf(buf, "unknown\n");
370 }
371 
372 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
373 				struct device_attribute *attr, char *buf)
374 {
375 	struct regulator_dev *rdev = dev_get_drvdata(dev);
376 
377 	if (!rdev->constraints)
378 		return sprintf(buf, "not defined\n");
379 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
380 }
381 
382 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
383 				struct device_attribute *attr, char *buf)
384 {
385 	struct regulator_dev *rdev = dev_get_drvdata(dev);
386 
387 	if (!rdev->constraints)
388 		return sprintf(buf, "not defined\n");
389 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
390 }
391 
392 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
393 				struct device_attribute *attr, char *buf)
394 {
395 	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 
397 	if (!rdev->constraints)
398 		return sprintf(buf, "not defined\n");
399 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
400 }
401 
402 static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
403 	unsigned int mode, char *buf)
404 {
405 	switch (mode) {
406 	case REGULATOR_MODE_FAST:
407 		return sprintf(buf, "fast\n");
408 	case REGULATOR_MODE_NORMAL:
409 		return sprintf(buf, "normal\n");
410 	case REGULATOR_MODE_IDLE:
411 		return sprintf(buf, "idle\n");
412 	case REGULATOR_MODE_STANDBY:
413 		return sprintf(buf, "standby\n");
414 	}
415 	return sprintf(buf, "unknown\n");
416 }
417 
418 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
419 				struct device_attribute *attr, char *buf)
420 {
421 	struct regulator_dev *rdev = dev_get_drvdata(dev);
422 
423 	if (!rdev->constraints)
424 		return sprintf(buf, "not defined\n");
425 	return suspend_opmode_show(rdev,
426 		rdev->constraints->state_mem.mode, buf);
427 }
428 
429 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
430 				struct device_attribute *attr, char *buf)
431 {
432 	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 
434 	if (!rdev->constraints)
435 		return sprintf(buf, "not defined\n");
436 	return suspend_opmode_show(rdev,
437 		rdev->constraints->state_disk.mode, buf);
438 }
439 
440 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
441 				struct device_attribute *attr, char *buf)
442 {
443 	struct regulator_dev *rdev = dev_get_drvdata(dev);
444 
445 	if (!rdev->constraints)
446 		return sprintf(buf, "not defined\n");
447 	return suspend_opmode_show(rdev,
448 		rdev->constraints->state_standby.mode, buf);
449 }
450 
451 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
452 				   struct device_attribute *attr, char *buf)
453 {
454 	struct regulator_dev *rdev = dev_get_drvdata(dev);
455 
456 	if (!rdev->constraints)
457 		return sprintf(buf, "not defined\n");
458 
459 	if (rdev->constraints->state_mem.enabled)
460 		return sprintf(buf, "enabled\n");
461 	else
462 		return sprintf(buf, "disabled\n");
463 }
464 
465 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
466 				   struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	if (!rdev->constraints)
471 		return sprintf(buf, "not defined\n");
472 
473 	if (rdev->constraints->state_disk.enabled)
474 		return sprintf(buf, "enabled\n");
475 	else
476 		return sprintf(buf, "disabled\n");
477 }
478 
479 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
480 				   struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 
484 	if (!rdev->constraints)
485 		return sprintf(buf, "not defined\n");
486 
487 	if (rdev->constraints->state_standby.enabled)
488 		return sprintf(buf, "enabled\n");
489 	else
490 		return sprintf(buf, "disabled\n");
491 }
492 
493 static struct device_attribute regulator_dev_attrs[] = {
494 	__ATTR(name, 0444, regulator_name_show, NULL),
495 	__ATTR(microvolts, 0444, regulator_uV_show, NULL),
496 	__ATTR(microamps, 0444, regulator_uA_show, NULL),
497 	__ATTR(opmode, 0444, regulator_opmode_show, NULL),
498 	__ATTR(state, 0444, regulator_state_show, NULL),
499 	__ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
500 	__ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
501 	__ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
502 	__ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
503 	__ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
504 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
505 	__ATTR(type, 0444, regulator_type_show, NULL),
506 	__ATTR(suspend_mem_microvolts, 0444,
507 		regulator_suspend_mem_uV_show, NULL),
508 	__ATTR(suspend_disk_microvolts, 0444,
509 		regulator_suspend_disk_uV_show, NULL),
510 	__ATTR(suspend_standby_microvolts, 0444,
511 		regulator_suspend_standby_uV_show, NULL),
512 	__ATTR(suspend_mem_mode, 0444,
513 		regulator_suspend_mem_mode_show, NULL),
514 	__ATTR(suspend_disk_mode, 0444,
515 		regulator_suspend_disk_mode_show, NULL),
516 	__ATTR(suspend_standby_mode, 0444,
517 		regulator_suspend_standby_mode_show, NULL),
518 	__ATTR(suspend_mem_state, 0444,
519 		regulator_suspend_mem_state_show, NULL),
520 	__ATTR(suspend_disk_state, 0444,
521 		regulator_suspend_disk_state_show, NULL),
522 	__ATTR(suspend_standby_state, 0444,
523 		regulator_suspend_standby_state_show, NULL),
524 	__ATTR_NULL,
525 };
526 
527 static void regulator_dev_release(struct device *dev)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 	kfree(rdev);
531 }
532 
533 static struct class regulator_class = {
534 	.name = "regulator",
535 	.dev_release = regulator_dev_release,
536 	.dev_attrs = regulator_dev_attrs,
537 };
538 
539 /* Calculate the new optimum regulator operating mode based on the new total
540  * consumer load. All locks held by caller */
541 static void drms_uA_update(struct regulator_dev *rdev)
542 {
543 	struct regulator *sibling;
544 	int current_uA = 0, output_uV, input_uV, err;
545 	unsigned int mode;
546 
547 	err = regulator_check_drms(rdev);
548 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
549 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
550 	return;
551 
552 	/* get output voltage */
553 	output_uV = rdev->desc->ops->get_voltage(rdev);
554 	if (output_uV <= 0)
555 		return;
556 
557 	/* get input voltage */
558 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
559 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
560 	else
561 		input_uV = rdev->constraints->input_uV;
562 	if (input_uV <= 0)
563 		return;
564 
565 	/* calc total requested load */
566 	list_for_each_entry(sibling, &rdev->consumer_list, list)
567 	    current_uA += sibling->uA_load;
568 
569 	/* now get the optimum mode for our new total regulator load */
570 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
571 						  output_uV, current_uA);
572 
573 	/* check the new mode is allowed */
574 	err = regulator_check_mode(rdev, mode);
575 	if (err == 0)
576 		rdev->desc->ops->set_mode(rdev, mode);
577 }
578 
579 static int suspend_set_state(struct regulator_dev *rdev,
580 	struct regulator_state *rstate)
581 {
582 	int ret = 0;
583 
584 	/* enable & disable are mandatory for suspend control */
585 	if (!rdev->desc->ops->set_suspend_enable ||
586 		!rdev->desc->ops->set_suspend_disable) {
587 		printk(KERN_ERR "%s: no way to set suspend state\n",
588 			__func__);
589 		return -EINVAL;
590 	}
591 
592 	if (rstate->enabled)
593 		ret = rdev->desc->ops->set_suspend_enable(rdev);
594 	else
595 		ret = rdev->desc->ops->set_suspend_disable(rdev);
596 	if (ret < 0) {
597 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
598 		return ret;
599 	}
600 
601 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
602 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
603 		if (ret < 0) {
604 			printk(KERN_ERR "%s: failed to set voltage\n",
605 				__func__);
606 			return ret;
607 		}
608 	}
609 
610 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
611 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
612 		if (ret < 0) {
613 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
614 			return ret;
615 		}
616 	}
617 	return ret;
618 }
619 
620 /* locks held by caller */
621 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
622 {
623 	if (!rdev->constraints)
624 		return -EINVAL;
625 
626 	switch (state) {
627 	case PM_SUSPEND_STANDBY:
628 		return suspend_set_state(rdev,
629 			&rdev->constraints->state_standby);
630 	case PM_SUSPEND_MEM:
631 		return suspend_set_state(rdev,
632 			&rdev->constraints->state_mem);
633 	case PM_SUSPEND_MAX:
634 		return suspend_set_state(rdev,
635 			&rdev->constraints->state_disk);
636 	default:
637 		return -EINVAL;
638 	}
639 }
640 
641 static void print_constraints(struct regulator_dev *rdev)
642 {
643 	struct regulation_constraints *constraints = rdev->constraints;
644 	char buf[80];
645 	int count;
646 
647 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
648 		if (constraints->min_uV == constraints->max_uV)
649 			count = sprintf(buf, "%d mV ",
650 					constraints->min_uV / 1000);
651 		else
652 			count = sprintf(buf, "%d <--> %d mV ",
653 					constraints->min_uV / 1000,
654 					constraints->max_uV / 1000);
655 	} else {
656 		if (constraints->min_uA == constraints->max_uA)
657 			count = sprintf(buf, "%d mA ",
658 					constraints->min_uA / 1000);
659 		else
660 			count = sprintf(buf, "%d <--> %d mA ",
661 					constraints->min_uA / 1000,
662 					constraints->max_uA / 1000);
663 	}
664 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
665 		count += sprintf(buf + count, "fast ");
666 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
667 		count += sprintf(buf + count, "normal ");
668 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
669 		count += sprintf(buf + count, "idle ");
670 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
671 		count += sprintf(buf + count, "standby");
672 
673 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
674 }
675 
676 /**
677  * set_machine_constraints - sets regulator constraints
678  * @regulator: regulator source
679  *
680  * Allows platform initialisation code to define and constrain
681  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682  * Constraints *must* be set by platform code in order for some
683  * regulator operations to proceed i.e. set_voltage, set_current_limit,
684  * set_mode.
685  */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 	struct regulation_constraints *constraints)
688 {
689 	int ret = 0;
690 	const char *name;
691 	struct regulator_ops *ops = rdev->desc->ops;
692 
693 	if (constraints->name)
694 		name = constraints->name;
695 	else if (rdev->desc->name)
696 		name = rdev->desc->name;
697 	else
698 		name = "regulator";
699 
700 	rdev->constraints = constraints;
701 
702 	/* do we need to apply the constraint voltage */
703 	if (rdev->constraints->apply_uV &&
704 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
705 		ops->set_voltage) {
706 		ret = ops->set_voltage(rdev,
707 			rdev->constraints->min_uV, rdev->constraints->max_uV);
708 			if (ret < 0) {
709 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
710 				       __func__,
711 				       rdev->constraints->min_uV, name);
712 				rdev->constraints = NULL;
713 				goto out;
714 			}
715 	}
716 
717 	/* are we enabled at boot time by firmware / bootloader */
718 	if (rdev->constraints->boot_on)
719 		rdev->use_count = 1;
720 
721 	/* do we need to setup our suspend state */
722 	if (constraints->initial_state) {
723 		ret = suspend_prepare(rdev, constraints->initial_state);
724 		if (ret < 0) {
725 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
726 			       __func__, name);
727 			rdev->constraints = NULL;
728 			goto out;
729 		}
730 	}
731 
732 	/* if always_on is set then turn the regulator on if it's not
733 	 * already on. */
734 	if (constraints->always_on && ops->enable &&
735 	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
736 	     (!ops->is_enabled && !constraints->boot_on))) {
737 		ret = ops->enable(rdev);
738 		if (ret < 0) {
739 			printk(KERN_ERR "%s: failed to enable %s\n",
740 			       __func__, name);
741 			rdev->constraints = NULL;
742 			goto out;
743 		}
744 	}
745 
746 	print_constraints(rdev);
747 out:
748 	return ret;
749 }
750 
751 /**
752  * set_supply - set regulator supply regulator
753  * @regulator: regulator name
754  * @supply: supply regulator name
755  *
756  * Called by platform initialisation code to set the supply regulator for this
757  * regulator. This ensures that a regulators supply will also be enabled by the
758  * core if it's child is enabled.
759  */
760 static int set_supply(struct regulator_dev *rdev,
761 	struct regulator_dev *supply_rdev)
762 {
763 	int err;
764 
765 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
766 				"supply");
767 	if (err) {
768 		printk(KERN_ERR
769 		       "%s: could not add device link %s err %d\n",
770 		       __func__, supply_rdev->dev.kobj.name, err);
771 		       goto out;
772 	}
773 	rdev->supply = supply_rdev;
774 	list_add(&rdev->slist, &supply_rdev->supply_list);
775 out:
776 	return err;
777 }
778 
779 /**
780  * set_consumer_device_supply: Bind a regulator to a symbolic supply
781  * @regulator: regulator source
782  * @dev:       device the supply applies to
783  * @supply:    symbolic name for supply
784  *
785  * Allows platform initialisation code to map physical regulator
786  * sources to symbolic names for supplies for use by devices.  Devices
787  * should use these symbolic names to request regulators, avoiding the
788  * need to provide board-specific regulator names as platform data.
789  */
790 static int set_consumer_device_supply(struct regulator_dev *rdev,
791 	struct device *consumer_dev, const char *supply)
792 {
793 	struct regulator_map *node;
794 
795 	if (supply == NULL)
796 		return -EINVAL;
797 
798 	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
799 	if (node == NULL)
800 		return -ENOMEM;
801 
802 	node->regulator = rdev;
803 	node->dev = consumer_dev;
804 	node->supply = supply;
805 
806 	list_add(&node->list, &regulator_map_list);
807 	return 0;
808 }
809 
810 static void unset_consumer_device_supply(struct regulator_dev *rdev,
811 	struct device *consumer_dev)
812 {
813 	struct regulator_map *node, *n;
814 
815 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
816 		if (rdev == node->regulator &&
817 			consumer_dev == node->dev) {
818 			list_del(&node->list);
819 			kfree(node);
820 			return;
821 		}
822 	}
823 }
824 
825 #define REG_STR_SIZE	32
826 
827 static struct regulator *create_regulator(struct regulator_dev *rdev,
828 					  struct device *dev,
829 					  const char *supply_name)
830 {
831 	struct regulator *regulator;
832 	char buf[REG_STR_SIZE];
833 	int err, size;
834 
835 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
836 	if (regulator == NULL)
837 		return NULL;
838 
839 	mutex_lock(&rdev->mutex);
840 	regulator->rdev = rdev;
841 	list_add(&regulator->list, &rdev->consumer_list);
842 
843 	if (dev) {
844 		/* create a 'requested_microamps_name' sysfs entry */
845 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
846 			supply_name);
847 		if (size >= REG_STR_SIZE)
848 			goto overflow_err;
849 
850 		regulator->dev = dev;
851 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
852 		if (regulator->dev_attr.attr.name == NULL)
853 			goto attr_name_err;
854 
855 		regulator->dev_attr.attr.owner = THIS_MODULE;
856 		regulator->dev_attr.attr.mode = 0444;
857 		regulator->dev_attr.show = device_requested_uA_show;
858 		err = device_create_file(dev, &regulator->dev_attr);
859 		if (err < 0) {
860 			printk(KERN_WARNING "%s: could not add regulator_dev"
861 				" load sysfs\n", __func__);
862 			goto attr_name_err;
863 		}
864 
865 		/* also add a link to the device sysfs entry */
866 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
867 				 dev->kobj.name, supply_name);
868 		if (size >= REG_STR_SIZE)
869 			goto attr_err;
870 
871 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
872 		if (regulator->supply_name == NULL)
873 			goto attr_err;
874 
875 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
876 					buf);
877 		if (err) {
878 			printk(KERN_WARNING
879 			       "%s: could not add device link %s err %d\n",
880 			       __func__, dev->kobj.name, err);
881 			device_remove_file(dev, &regulator->dev_attr);
882 			goto link_name_err;
883 		}
884 	}
885 	mutex_unlock(&rdev->mutex);
886 	return regulator;
887 link_name_err:
888 	kfree(regulator->supply_name);
889 attr_err:
890 	device_remove_file(regulator->dev, &regulator->dev_attr);
891 attr_name_err:
892 	kfree(regulator->dev_attr.attr.name);
893 overflow_err:
894 	list_del(&regulator->list);
895 	kfree(regulator);
896 	mutex_unlock(&rdev->mutex);
897 	return NULL;
898 }
899 
900 /**
901  * regulator_get - lookup and obtain a reference to a regulator.
902  * @dev: device for regulator "consumer"
903  * @id: Supply name or regulator ID.
904  *
905  * Returns a struct regulator corresponding to the regulator producer,
906  * or IS_ERR() condition containing errno.  Use of supply names
907  * configured via regulator_set_device_supply() is strongly
908  * encouraged.
909  */
910 struct regulator *regulator_get(struct device *dev, const char *id)
911 {
912 	struct regulator_dev *rdev;
913 	struct regulator_map *map;
914 	struct regulator *regulator = ERR_PTR(-ENODEV);
915 
916 	if (id == NULL) {
917 		printk(KERN_ERR "regulator: get() with no identifier\n");
918 		return regulator;
919 	}
920 
921 	mutex_lock(&regulator_list_mutex);
922 
923 	list_for_each_entry(map, &regulator_map_list, list) {
924 		if (dev == map->dev &&
925 		    strcmp(map->supply, id) == 0) {
926 			rdev = map->regulator;
927 			goto found;
928 		}
929 	}
930 	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
931 	       id);
932 	mutex_unlock(&regulator_list_mutex);
933 	return regulator;
934 
935 found:
936 	if (!try_module_get(rdev->owner))
937 		goto out;
938 
939 	regulator = create_regulator(rdev, dev, id);
940 	if (regulator == NULL) {
941 		regulator = ERR_PTR(-ENOMEM);
942 		module_put(rdev->owner);
943 	}
944 
945 out:
946 	mutex_unlock(&regulator_list_mutex);
947 	return regulator;
948 }
949 EXPORT_SYMBOL_GPL(regulator_get);
950 
951 /**
952  * regulator_put - "free" the regulator source
953  * @regulator: regulator source
954  *
955  * Note: drivers must ensure that all regulator_enable calls made on this
956  * regulator source are balanced by regulator_disable calls prior to calling
957  * this function.
958  */
959 void regulator_put(struct regulator *regulator)
960 {
961 	struct regulator_dev *rdev;
962 
963 	if (regulator == NULL || IS_ERR(regulator))
964 		return;
965 
966 	if (regulator->enabled) {
967 		printk(KERN_WARNING "Releasing supply %s while enabled\n",
968 		       regulator->supply_name);
969 		WARN_ON(regulator->enabled);
970 		regulator_disable(regulator);
971 	}
972 
973 	mutex_lock(&regulator_list_mutex);
974 	rdev = regulator->rdev;
975 
976 	/* remove any sysfs entries */
977 	if (regulator->dev) {
978 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
979 		kfree(regulator->supply_name);
980 		device_remove_file(regulator->dev, &regulator->dev_attr);
981 		kfree(regulator->dev_attr.attr.name);
982 	}
983 	list_del(&regulator->list);
984 	kfree(regulator);
985 
986 	module_put(rdev->owner);
987 	mutex_unlock(&regulator_list_mutex);
988 }
989 EXPORT_SYMBOL_GPL(regulator_put);
990 
991 /* locks held by regulator_enable() */
992 static int _regulator_enable(struct regulator_dev *rdev)
993 {
994 	int ret = -EINVAL;
995 
996 	if (!rdev->constraints) {
997 		printk(KERN_ERR "%s: %s has no constraints\n",
998 		       __func__, rdev->desc->name);
999 		return ret;
1000 	}
1001 
1002 	/* do we need to enable the supply regulator first */
1003 	if (rdev->supply) {
1004 		ret = _regulator_enable(rdev->supply);
1005 		if (ret < 0) {
1006 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1007 			       __func__, rdev->desc->name, ret);
1008 			return ret;
1009 		}
1010 	}
1011 
1012 	/* check voltage and requested load before enabling */
1013 	if (rdev->desc->ops->enable) {
1014 
1015 		if (rdev->constraints &&
1016 			(rdev->constraints->valid_ops_mask &
1017 			REGULATOR_CHANGE_DRMS))
1018 			drms_uA_update(rdev);
1019 
1020 		ret = rdev->desc->ops->enable(rdev);
1021 		if (ret < 0) {
1022 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1023 			       __func__, rdev->desc->name, ret);
1024 			return ret;
1025 		}
1026 		rdev->use_count++;
1027 		return ret;
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 /**
1034  * regulator_enable - enable regulator output
1035  * @regulator: regulator source
1036  *
1037  * Enable the regulator output at the predefined voltage or current value.
1038  * NOTE: the output value can be set by other drivers, boot loader or may be
1039  * hardwired in the regulator.
1040  * NOTE: calls to regulator_enable() must be balanced with calls to
1041  * regulator_disable().
1042  */
1043 int regulator_enable(struct regulator *regulator)
1044 {
1045 	int ret;
1046 
1047 	if (regulator->enabled) {
1048 		printk(KERN_CRIT "Regulator %s already enabled\n",
1049 		       regulator->supply_name);
1050 		WARN_ON(regulator->enabled);
1051 		return 0;
1052 	}
1053 
1054 	mutex_lock(&regulator->rdev->mutex);
1055 	regulator->enabled = 1;
1056 	ret = _regulator_enable(regulator->rdev);
1057 	if (ret != 0)
1058 		regulator->enabled = 0;
1059 	mutex_unlock(&regulator->rdev->mutex);
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(regulator_enable);
1063 
1064 /* locks held by regulator_disable() */
1065 static int _regulator_disable(struct regulator_dev *rdev)
1066 {
1067 	int ret = 0;
1068 
1069 	/* are we the last user and permitted to disable ? */
1070 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1071 
1072 		/* we are last user */
1073 		if (rdev->desc->ops->disable) {
1074 			ret = rdev->desc->ops->disable(rdev);
1075 			if (ret < 0) {
1076 				printk(KERN_ERR "%s: failed to disable %s\n",
1077 				       __func__, rdev->desc->name);
1078 				return ret;
1079 			}
1080 		}
1081 
1082 		/* decrease our supplies ref count and disable if required */
1083 		if (rdev->supply)
1084 			_regulator_disable(rdev->supply);
1085 
1086 		rdev->use_count = 0;
1087 	} else if (rdev->use_count > 1) {
1088 
1089 		if (rdev->constraints &&
1090 			(rdev->constraints->valid_ops_mask &
1091 			REGULATOR_CHANGE_DRMS))
1092 			drms_uA_update(rdev);
1093 
1094 		rdev->use_count--;
1095 	}
1096 	return ret;
1097 }
1098 
1099 /**
1100  * regulator_disable - disable regulator output
1101  * @regulator: regulator source
1102  *
1103  * Disable the regulator output voltage or current.
1104  * NOTE: this will only disable the regulator output if no other consumer
1105  * devices have it enabled.
1106  * NOTE: calls to regulator_enable() must be balanced with calls to
1107  * regulator_disable().
1108  */
1109 int regulator_disable(struct regulator *regulator)
1110 {
1111 	int ret;
1112 
1113 	if (!regulator->enabled) {
1114 		printk(KERN_ERR "%s: not in use by this consumer\n",
1115 			__func__);
1116 		return 0;
1117 	}
1118 
1119 	mutex_lock(&regulator->rdev->mutex);
1120 	regulator->enabled = 0;
1121 	regulator->uA_load = 0;
1122 	ret = _regulator_disable(regulator->rdev);
1123 	mutex_unlock(&regulator->rdev->mutex);
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL_GPL(regulator_disable);
1127 
1128 /* locks held by regulator_force_disable() */
1129 static int _regulator_force_disable(struct regulator_dev *rdev)
1130 {
1131 	int ret = 0;
1132 
1133 	/* force disable */
1134 	if (rdev->desc->ops->disable) {
1135 		/* ah well, who wants to live forever... */
1136 		ret = rdev->desc->ops->disable(rdev);
1137 		if (ret < 0) {
1138 			printk(KERN_ERR "%s: failed to force disable %s\n",
1139 			       __func__, rdev->desc->name);
1140 			return ret;
1141 		}
1142 		/* notify other consumers that power has been forced off */
1143 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1144 			NULL);
1145 	}
1146 
1147 	/* decrease our supplies ref count and disable if required */
1148 	if (rdev->supply)
1149 		_regulator_disable(rdev->supply);
1150 
1151 	rdev->use_count = 0;
1152 	return ret;
1153 }
1154 
1155 /**
1156  * regulator_force_disable - force disable regulator output
1157  * @regulator: regulator source
1158  *
1159  * Forcibly disable the regulator output voltage or current.
1160  * NOTE: this *will* disable the regulator output even if other consumer
1161  * devices have it enabled. This should be used for situations when device
1162  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1163  */
1164 int regulator_force_disable(struct regulator *regulator)
1165 {
1166 	int ret;
1167 
1168 	mutex_lock(&regulator->rdev->mutex);
1169 	regulator->enabled = 0;
1170 	regulator->uA_load = 0;
1171 	ret = _regulator_force_disable(regulator->rdev);
1172 	mutex_unlock(&regulator->rdev->mutex);
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL_GPL(regulator_force_disable);
1176 
1177 static int _regulator_is_enabled(struct regulator_dev *rdev)
1178 {
1179 	int ret;
1180 
1181 	mutex_lock(&rdev->mutex);
1182 
1183 	/* sanity check */
1184 	if (!rdev->desc->ops->is_enabled) {
1185 		ret = -EINVAL;
1186 		goto out;
1187 	}
1188 
1189 	ret = rdev->desc->ops->is_enabled(rdev);
1190 out:
1191 	mutex_unlock(&rdev->mutex);
1192 	return ret;
1193 }
1194 
1195 /**
1196  * regulator_is_enabled - is the regulator output enabled
1197  * @regulator: regulator source
1198  *
1199  * Returns zero for disabled otherwise return number of enable requests.
1200  */
1201 int regulator_is_enabled(struct regulator *regulator)
1202 {
1203 	return _regulator_is_enabled(regulator->rdev);
1204 }
1205 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1206 
1207 /**
1208  * regulator_set_voltage - set regulator output voltage
1209  * @regulator: regulator source
1210  * @min_uV: Minimum required voltage in uV
1211  * @max_uV: Maximum acceptable voltage in uV
1212  *
1213  * Sets a voltage regulator to the desired output voltage. This can be set
1214  * during any regulator state. IOW, regulator can be disabled or enabled.
1215  *
1216  * If the regulator is enabled then the voltage will change to the new value
1217  * immediately otherwise if the regulator is disabled the regulator will
1218  * output at the new voltage when enabled.
1219  *
1220  * NOTE: If the regulator is shared between several devices then the lowest
1221  * request voltage that meets the system constraints will be used.
1222  * NOTE: Regulator system constraints must be set for this regulator before
1223  * calling this function otherwise this call will fail.
1224  */
1225 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1226 {
1227 	struct regulator_dev *rdev = regulator->rdev;
1228 	int ret;
1229 
1230 	mutex_lock(&rdev->mutex);
1231 
1232 	/* sanity check */
1233 	if (!rdev->desc->ops->set_voltage) {
1234 		ret = -EINVAL;
1235 		goto out;
1236 	}
1237 
1238 	/* constraints check */
1239 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1240 	if (ret < 0)
1241 		goto out;
1242 	regulator->min_uV = min_uV;
1243 	regulator->max_uV = max_uV;
1244 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1245 
1246 out:
1247 	mutex_unlock(&rdev->mutex);
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1251 
1252 static int _regulator_get_voltage(struct regulator_dev *rdev)
1253 {
1254 	/* sanity check */
1255 	if (rdev->desc->ops->get_voltage)
1256 		return rdev->desc->ops->get_voltage(rdev);
1257 	else
1258 		return -EINVAL;
1259 }
1260 
1261 /**
1262  * regulator_get_voltage - get regulator output voltage
1263  * @regulator: regulator source
1264  *
1265  * This returns the current regulator voltage in uV.
1266  *
1267  * NOTE: If the regulator is disabled it will return the voltage value. This
1268  * function should not be used to determine regulator state.
1269  */
1270 int regulator_get_voltage(struct regulator *regulator)
1271 {
1272 	int ret;
1273 
1274 	mutex_lock(&regulator->rdev->mutex);
1275 
1276 	ret = _regulator_get_voltage(regulator->rdev);
1277 
1278 	mutex_unlock(&regulator->rdev->mutex);
1279 
1280 	return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1283 
1284 /**
1285  * regulator_set_current_limit - set regulator output current limit
1286  * @regulator: regulator source
1287  * @min_uA: Minimuum supported current in uA
1288  * @max_uA: Maximum supported current in uA
1289  *
1290  * Sets current sink to the desired output current. This can be set during
1291  * any regulator state. IOW, regulator can be disabled or enabled.
1292  *
1293  * If the regulator is enabled then the current will change to the new value
1294  * immediately otherwise if the regulator is disabled the regulator will
1295  * output at the new current when enabled.
1296  *
1297  * NOTE: Regulator system constraints must be set for this regulator before
1298  * calling this function otherwise this call will fail.
1299  */
1300 int regulator_set_current_limit(struct regulator *regulator,
1301 			       int min_uA, int max_uA)
1302 {
1303 	struct regulator_dev *rdev = regulator->rdev;
1304 	int ret;
1305 
1306 	mutex_lock(&rdev->mutex);
1307 
1308 	/* sanity check */
1309 	if (!rdev->desc->ops->set_current_limit) {
1310 		ret = -EINVAL;
1311 		goto out;
1312 	}
1313 
1314 	/* constraints check */
1315 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1316 	if (ret < 0)
1317 		goto out;
1318 
1319 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1320 out:
1321 	mutex_unlock(&rdev->mutex);
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1325 
1326 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1327 {
1328 	int ret;
1329 
1330 	mutex_lock(&rdev->mutex);
1331 
1332 	/* sanity check */
1333 	if (!rdev->desc->ops->get_current_limit) {
1334 		ret = -EINVAL;
1335 		goto out;
1336 	}
1337 
1338 	ret = rdev->desc->ops->get_current_limit(rdev);
1339 out:
1340 	mutex_unlock(&rdev->mutex);
1341 	return ret;
1342 }
1343 
1344 /**
1345  * regulator_get_current_limit - get regulator output current
1346  * @regulator: regulator source
1347  *
1348  * This returns the current supplied by the specified current sink in uA.
1349  *
1350  * NOTE: If the regulator is disabled it will return the current value. This
1351  * function should not be used to determine regulator state.
1352  */
1353 int regulator_get_current_limit(struct regulator *regulator)
1354 {
1355 	return _regulator_get_current_limit(regulator->rdev);
1356 }
1357 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1358 
1359 /**
1360  * regulator_set_mode - set regulator operating mode
1361  * @regulator: regulator source
1362  * @mode: operating mode - one of the REGULATOR_MODE constants
1363  *
1364  * Set regulator operating mode to increase regulator efficiency or improve
1365  * regulation performance.
1366  *
1367  * NOTE: Regulator system constraints must be set for this regulator before
1368  * calling this function otherwise this call will fail.
1369  */
1370 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1371 {
1372 	struct regulator_dev *rdev = regulator->rdev;
1373 	int ret;
1374 
1375 	mutex_lock(&rdev->mutex);
1376 
1377 	/* sanity check */
1378 	if (!rdev->desc->ops->set_mode) {
1379 		ret = -EINVAL;
1380 		goto out;
1381 	}
1382 
1383 	/* constraints check */
1384 	ret = regulator_check_mode(rdev, mode);
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	ret = rdev->desc->ops->set_mode(rdev, mode);
1389 out:
1390 	mutex_unlock(&rdev->mutex);
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(regulator_set_mode);
1394 
1395 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1396 {
1397 	int ret;
1398 
1399 	mutex_lock(&rdev->mutex);
1400 
1401 	/* sanity check */
1402 	if (!rdev->desc->ops->get_mode) {
1403 		ret = -EINVAL;
1404 		goto out;
1405 	}
1406 
1407 	ret = rdev->desc->ops->get_mode(rdev);
1408 out:
1409 	mutex_unlock(&rdev->mutex);
1410 	return ret;
1411 }
1412 
1413 /**
1414  * regulator_get_mode - get regulator operating mode
1415  * @regulator: regulator source
1416  *
1417  * Get the current regulator operating mode.
1418  */
1419 unsigned int regulator_get_mode(struct regulator *regulator)
1420 {
1421 	return _regulator_get_mode(regulator->rdev);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_get_mode);
1424 
1425 /**
1426  * regulator_set_optimum_mode - set regulator optimum operating mode
1427  * @regulator: regulator source
1428  * @uA_load: load current
1429  *
1430  * Notifies the regulator core of a new device load. This is then used by
1431  * DRMS (if enabled by constraints) to set the most efficient regulator
1432  * operating mode for the new regulator loading.
1433  *
1434  * Consumer devices notify their supply regulator of the maximum power
1435  * they will require (can be taken from device datasheet in the power
1436  * consumption tables) when they change operational status and hence power
1437  * state. Examples of operational state changes that can affect power
1438  * consumption are :-
1439  *
1440  *    o Device is opened / closed.
1441  *    o Device I/O is about to begin or has just finished.
1442  *    o Device is idling in between work.
1443  *
1444  * This information is also exported via sysfs to userspace.
1445  *
1446  * DRMS will sum the total requested load on the regulator and change
1447  * to the most efficient operating mode if platform constraints allow.
1448  *
1449  * Returns the new regulator mode or error.
1450  */
1451 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1452 {
1453 	struct regulator_dev *rdev = regulator->rdev;
1454 	struct regulator *consumer;
1455 	int ret, output_uV, input_uV, total_uA_load = 0;
1456 	unsigned int mode;
1457 
1458 	mutex_lock(&rdev->mutex);
1459 
1460 	regulator->uA_load = uA_load;
1461 	ret = regulator_check_drms(rdev);
1462 	if (ret < 0)
1463 		goto out;
1464 	ret = -EINVAL;
1465 
1466 	/* sanity check */
1467 	if (!rdev->desc->ops->get_optimum_mode)
1468 		goto out;
1469 
1470 	/* get output voltage */
1471 	output_uV = rdev->desc->ops->get_voltage(rdev);
1472 	if (output_uV <= 0) {
1473 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1474 			__func__, rdev->desc->name);
1475 		goto out;
1476 	}
1477 
1478 	/* get input voltage */
1479 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1480 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1481 	else
1482 		input_uV = rdev->constraints->input_uV;
1483 	if (input_uV <= 0) {
1484 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1485 			__func__, rdev->desc->name);
1486 		goto out;
1487 	}
1488 
1489 	/* calc total requested load for this regulator */
1490 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1491 	    total_uA_load += consumer->uA_load;
1492 
1493 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1494 						 input_uV, output_uV,
1495 						 total_uA_load);
1496 	if (ret <= 0) {
1497 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1498 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1499 			total_uA_load, input_uV, output_uV);
1500 		goto out;
1501 	}
1502 
1503 	ret = rdev->desc->ops->set_mode(rdev, mode);
1504 	if (ret <= 0) {
1505 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1506 			__func__, mode, rdev->desc->name);
1507 		goto out;
1508 	}
1509 	ret = mode;
1510 out:
1511 	mutex_unlock(&rdev->mutex);
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1515 
1516 /**
1517  * regulator_register_notifier - register regulator event notifier
1518  * @regulator: regulator source
1519  * @notifier_block: notifier block
1520  *
1521  * Register notifier block to receive regulator events.
1522  */
1523 int regulator_register_notifier(struct regulator *regulator,
1524 			      struct notifier_block *nb)
1525 {
1526 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1527 						nb);
1528 }
1529 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1530 
1531 /**
1532  * regulator_unregister_notifier - unregister regulator event notifier
1533  * @regulator: regulator source
1534  * @notifier_block: notifier block
1535  *
1536  * Unregister regulator event notifier block.
1537  */
1538 int regulator_unregister_notifier(struct regulator *regulator,
1539 				struct notifier_block *nb)
1540 {
1541 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1542 						  nb);
1543 }
1544 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1545 
1546 /* notify regulator consumers and downstream regulator consumers */
1547 static void _notifier_call_chain(struct regulator_dev *rdev,
1548 				  unsigned long event, void *data)
1549 {
1550 	struct regulator_dev *_rdev;
1551 
1552 	/* call rdev chain first */
1553 	mutex_lock(&rdev->mutex);
1554 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1555 	mutex_unlock(&rdev->mutex);
1556 
1557 	/* now notify regulator we supply */
1558 	list_for_each_entry(_rdev, &rdev->supply_list, slist)
1559 		_notifier_call_chain(_rdev, event, data);
1560 }
1561 
1562 /**
1563  * regulator_bulk_get - get multiple regulator consumers
1564  *
1565  * @dev:           Device to supply
1566  * @num_consumers: Number of consumers to register
1567  * @consumers:     Configuration of consumers; clients are stored here.
1568  *
1569  * @return 0 on success, an errno on failure.
1570  *
1571  * This helper function allows drivers to get several regulator
1572  * consumers in one operation.  If any of the regulators cannot be
1573  * acquired then any regulators that were allocated will be freed
1574  * before returning to the caller.
1575  */
1576 int regulator_bulk_get(struct device *dev, int num_consumers,
1577 		       struct regulator_bulk_data *consumers)
1578 {
1579 	int i;
1580 	int ret;
1581 
1582 	for (i = 0; i < num_consumers; i++)
1583 		consumers[i].consumer = NULL;
1584 
1585 	for (i = 0; i < num_consumers; i++) {
1586 		consumers[i].consumer = regulator_get(dev,
1587 						      consumers[i].supply);
1588 		if (IS_ERR(consumers[i].consumer)) {
1589 			dev_err(dev, "Failed to get supply '%s'\n",
1590 				consumers[i].supply);
1591 			ret = PTR_ERR(consumers[i].consumer);
1592 			consumers[i].consumer = NULL;
1593 			goto err;
1594 		}
1595 	}
1596 
1597 	return 0;
1598 
1599 err:
1600 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1601 		regulator_put(consumers[i].consumer);
1602 
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1606 
1607 /**
1608  * regulator_bulk_enable - enable multiple regulator consumers
1609  *
1610  * @num_consumers: Number of consumers
1611  * @consumers:     Consumer data; clients are stored here.
1612  * @return         0 on success, an errno on failure
1613  *
1614  * This convenience API allows consumers to enable multiple regulator
1615  * clients in a single API call.  If any consumers cannot be enabled
1616  * then any others that were enabled will be disabled again prior to
1617  * return.
1618  */
1619 int regulator_bulk_enable(int num_consumers,
1620 			  struct regulator_bulk_data *consumers)
1621 {
1622 	int i;
1623 	int ret;
1624 
1625 	for (i = 0; i < num_consumers; i++) {
1626 		ret = regulator_enable(consumers[i].consumer);
1627 		if (ret != 0)
1628 			goto err;
1629 	}
1630 
1631 	return 0;
1632 
1633 err:
1634 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1635 	for (i = 0; i < num_consumers; i++)
1636 		regulator_disable(consumers[i].consumer);
1637 
1638 	return ret;
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1641 
1642 /**
1643  * regulator_bulk_disable - disable multiple regulator consumers
1644  *
1645  * @num_consumers: Number of consumers
1646  * @consumers:     Consumer data; clients are stored here.
1647  * @return         0 on success, an errno on failure
1648  *
1649  * This convenience API allows consumers to disable multiple regulator
1650  * clients in a single API call.  If any consumers cannot be enabled
1651  * then any others that were disabled will be disabled again prior to
1652  * return.
1653  */
1654 int regulator_bulk_disable(int num_consumers,
1655 			   struct regulator_bulk_data *consumers)
1656 {
1657 	int i;
1658 	int ret;
1659 
1660 	for (i = 0; i < num_consumers; i++) {
1661 		ret = regulator_disable(consumers[i].consumer);
1662 		if (ret != 0)
1663 			goto err;
1664 	}
1665 
1666 	return 0;
1667 
1668 err:
1669 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1670 	for (i = 0; i < num_consumers; i++)
1671 		regulator_enable(consumers[i].consumer);
1672 
1673 	return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1676 
1677 /**
1678  * regulator_bulk_free - free multiple regulator consumers
1679  *
1680  * @num_consumers: Number of consumers
1681  * @consumers:     Consumer data; clients are stored here.
1682  *
1683  * This convenience API allows consumers to free multiple regulator
1684  * clients in a single API call.
1685  */
1686 void regulator_bulk_free(int num_consumers,
1687 			 struct regulator_bulk_data *consumers)
1688 {
1689 	int i;
1690 
1691 	for (i = 0; i < num_consumers; i++) {
1692 		regulator_put(consumers[i].consumer);
1693 		consumers[i].consumer = NULL;
1694 	}
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1697 
1698 /**
1699  * regulator_notifier_call_chain - call regulator event notifier
1700  * @regulator: regulator source
1701  * @event: notifier block
1702  * @data:
1703  *
1704  * Called by regulator drivers to notify clients a regulator event has
1705  * occurred. We also notify regulator clients downstream.
1706  */
1707 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1708 				  unsigned long event, void *data)
1709 {
1710 	_notifier_call_chain(rdev, event, data);
1711 	return NOTIFY_DONE;
1712 
1713 }
1714 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1715 
1716 /**
1717  * regulator_register - register regulator
1718  * @regulator: regulator source
1719  * @reg_data: private regulator data
1720  *
1721  * Called by regulator drivers to register a regulator.
1722  * Returns 0 on success.
1723  */
1724 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1725 	struct device *dev, void *driver_data)
1726 {
1727 	static atomic_t regulator_no = ATOMIC_INIT(0);
1728 	struct regulator_dev *rdev;
1729 	struct regulator_init_data *init_data = dev->platform_data;
1730 	int ret, i;
1731 
1732 	if (regulator_desc == NULL)
1733 		return ERR_PTR(-EINVAL);
1734 
1735 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1736 		return ERR_PTR(-EINVAL);
1737 
1738 	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1739 	    !regulator_desc->type == REGULATOR_CURRENT)
1740 		return ERR_PTR(-EINVAL);
1741 
1742 	if (!init_data)
1743 		return ERR_PTR(-EINVAL);
1744 
1745 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1746 	if (rdev == NULL)
1747 		return ERR_PTR(-ENOMEM);
1748 
1749 	mutex_lock(&regulator_list_mutex);
1750 
1751 	mutex_init(&rdev->mutex);
1752 	rdev->reg_data = driver_data;
1753 	rdev->owner = regulator_desc->owner;
1754 	rdev->desc = regulator_desc;
1755 	INIT_LIST_HEAD(&rdev->consumer_list);
1756 	INIT_LIST_HEAD(&rdev->supply_list);
1757 	INIT_LIST_HEAD(&rdev->list);
1758 	INIT_LIST_HEAD(&rdev->slist);
1759 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1760 
1761 	/* preform any regulator specific init */
1762 	if (init_data->regulator_init) {
1763 		ret = init_data->regulator_init(rdev->reg_data);
1764 		if (ret < 0) {
1765 			kfree(rdev);
1766 			rdev = ERR_PTR(ret);
1767 			goto out;
1768 		}
1769 	}
1770 
1771 	/* set regulator constraints */
1772 	ret = set_machine_constraints(rdev, &init_data->constraints);
1773 	if (ret < 0) {
1774 		kfree(rdev);
1775 		rdev = ERR_PTR(ret);
1776 		goto out;
1777 	}
1778 
1779 	/* register with sysfs */
1780 	rdev->dev.class = &regulator_class;
1781 	rdev->dev.parent = dev;
1782 	snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1783 		 "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1784 	ret = device_register(&rdev->dev);
1785 	if (ret != 0) {
1786 		kfree(rdev);
1787 		rdev = ERR_PTR(ret);
1788 		goto out;
1789 	}
1790 
1791 	dev_set_drvdata(&rdev->dev, rdev);
1792 
1793 	/* set supply regulator if it exists */
1794 	if (init_data->supply_regulator_dev) {
1795 		ret = set_supply(rdev,
1796 			dev_get_drvdata(init_data->supply_regulator_dev));
1797 		if (ret < 0) {
1798 			device_unregister(&rdev->dev);
1799 			kfree(rdev);
1800 			rdev = ERR_PTR(ret);
1801 			goto out;
1802 		}
1803 	}
1804 
1805 	/* add consumers devices */
1806 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
1807 		ret = set_consumer_device_supply(rdev,
1808 			init_data->consumer_supplies[i].dev,
1809 			init_data->consumer_supplies[i].supply);
1810 		if (ret < 0) {
1811 			for (--i; i >= 0; i--)
1812 				unset_consumer_device_supply(rdev,
1813 					init_data->consumer_supplies[i].dev);
1814 			device_unregister(&rdev->dev);
1815 			kfree(rdev);
1816 			rdev = ERR_PTR(ret);
1817 			goto out;
1818 		}
1819 	}
1820 
1821 	list_add(&rdev->list, &regulator_list);
1822 out:
1823 	mutex_unlock(&regulator_list_mutex);
1824 	return rdev;
1825 }
1826 EXPORT_SYMBOL_GPL(regulator_register);
1827 
1828 /**
1829  * regulator_unregister - unregister regulator
1830  * @regulator: regulator source
1831  *
1832  * Called by regulator drivers to unregister a regulator.
1833  */
1834 void regulator_unregister(struct regulator_dev *rdev)
1835 {
1836 	if (rdev == NULL)
1837 		return;
1838 
1839 	mutex_lock(&regulator_list_mutex);
1840 	list_del(&rdev->list);
1841 	if (rdev->supply)
1842 		sysfs_remove_link(&rdev->dev.kobj, "supply");
1843 	device_unregister(&rdev->dev);
1844 	mutex_unlock(&regulator_list_mutex);
1845 }
1846 EXPORT_SYMBOL_GPL(regulator_unregister);
1847 
1848 /**
1849  * regulator_suspend_prepare: prepare regulators for system wide suspend
1850  * @state: system suspend state
1851  *
1852  * Configure each regulator with it's suspend operating parameters for state.
1853  * This will usually be called by machine suspend code prior to supending.
1854  */
1855 int regulator_suspend_prepare(suspend_state_t state)
1856 {
1857 	struct regulator_dev *rdev;
1858 	int ret = 0;
1859 
1860 	/* ON is handled by regulator active state */
1861 	if (state == PM_SUSPEND_ON)
1862 		return -EINVAL;
1863 
1864 	mutex_lock(&regulator_list_mutex);
1865 	list_for_each_entry(rdev, &regulator_list, list) {
1866 
1867 		mutex_lock(&rdev->mutex);
1868 		ret = suspend_prepare(rdev, state);
1869 		mutex_unlock(&rdev->mutex);
1870 
1871 		if (ret < 0) {
1872 			printk(KERN_ERR "%s: failed to prepare %s\n",
1873 				__func__, rdev->desc->name);
1874 			goto out;
1875 		}
1876 	}
1877 out:
1878 	mutex_unlock(&regulator_list_mutex);
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1882 
1883 /**
1884  * rdev_get_drvdata - get rdev regulator driver data
1885  * @regulator: regulator
1886  *
1887  * Get rdev regulator driver private data. This call can be used in the
1888  * regulator driver context.
1889  */
1890 void *rdev_get_drvdata(struct regulator_dev *rdev)
1891 {
1892 	return rdev->reg_data;
1893 }
1894 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1895 
1896 /**
1897  * regulator_get_drvdata - get regulator driver data
1898  * @regulator: regulator
1899  *
1900  * Get regulator driver private data. This call can be used in the consumer
1901  * driver context when non API regulator specific functions need to be called.
1902  */
1903 void *regulator_get_drvdata(struct regulator *regulator)
1904 {
1905 	return regulator->rdev->reg_data;
1906 }
1907 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1908 
1909 /**
1910  * regulator_set_drvdata - set regulator driver data
1911  * @regulator: regulator
1912  * @data: data
1913  */
1914 void regulator_set_drvdata(struct regulator *regulator, void *data)
1915 {
1916 	regulator->rdev->reg_data = data;
1917 }
1918 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1919 
1920 /**
1921  * regulator_get_id - get regulator ID
1922  * @regulator: regulator
1923  */
1924 int rdev_get_id(struct regulator_dev *rdev)
1925 {
1926 	return rdev->desc->id;
1927 }
1928 EXPORT_SYMBOL_GPL(rdev_get_id);
1929 
1930 struct device *rdev_get_dev(struct regulator_dev *rdev)
1931 {
1932 	return &rdev->dev;
1933 }
1934 EXPORT_SYMBOL_GPL(rdev_get_dev);
1935 
1936 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1937 {
1938 	return reg_init_data->driver_data;
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1941 
1942 static int __init regulator_init(void)
1943 {
1944 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1945 	return class_register(&regulator_class);
1946 }
1947 
1948 /* init early to allow our consumers to complete system booting */
1949 core_initcall(regulator_init);
1950