1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c -- Voltage/Current Regulator framework. 4 * 5 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 * Copyright 2008 SlimLogic Ltd. 7 * 8 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/debugfs.h> 14 #include <linux/device.h> 15 #include <linux/slab.h> 16 #include <linux/async.h> 17 #include <linux/err.h> 18 #include <linux/mutex.h> 19 #include <linux/suspend.h> 20 #include <linux/delay.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/of.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static bool has_full_constraints; 54 55 static struct dentry *debugfs_root; 56 57 /* 58 * struct regulator_map 59 * 60 * Used to provide symbolic supply names to devices. 61 */ 62 struct regulator_map { 63 struct list_head list; 64 const char *dev_name; /* The dev_name() for the consumer */ 65 const char *supply; 66 struct regulator_dev *regulator; 67 }; 68 69 /* 70 * struct regulator_enable_gpio 71 * 72 * Management for shared enable GPIO pin 73 */ 74 struct regulator_enable_gpio { 75 struct list_head list; 76 struct gpio_desc *gpiod; 77 u32 enable_count; /* a number of enabled shared GPIO */ 78 u32 request_count; /* a number of requested shared GPIO */ 79 }; 80 81 /* 82 * struct regulator_supply_alias 83 * 84 * Used to map lookups for a supply onto an alternative device. 85 */ 86 struct regulator_supply_alias { 87 struct list_head list; 88 struct device *src_dev; 89 const char *src_supply; 90 struct device *alias_dev; 91 const char *alias_supply; 92 }; 93 94 static int _regulator_is_enabled(struct regulator_dev *rdev); 95 static int _regulator_disable(struct regulator *regulator); 96 static int _regulator_get_voltage(struct regulator_dev *rdev); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, 106 int min_uV, int max_uV, 107 suspend_state_t state); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 static void _regulator_put(struct regulator *regulator); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 129 { 130 if (!rdev->constraints) { 131 rdev_err(rdev, "no constraints\n"); 132 return false; 133 } 134 135 if (rdev->constraints->valid_ops_mask & ops) 136 return true; 137 138 return false; 139 } 140 141 /** 142 * regulator_lock_nested - lock a single regulator 143 * @rdev: regulator source 144 * @ww_ctx: w/w mutex acquire context 145 * 146 * This function can be called many times by one task on 147 * a single regulator and its mutex will be locked only 148 * once. If a task, which is calling this function is other 149 * than the one, which initially locked the mutex, it will 150 * wait on mutex. 151 */ 152 static inline int regulator_lock_nested(struct regulator_dev *rdev, 153 struct ww_acquire_ctx *ww_ctx) 154 { 155 bool lock = false; 156 int ret = 0; 157 158 mutex_lock(®ulator_nesting_mutex); 159 160 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 161 if (rdev->mutex_owner == current) 162 rdev->ref_cnt++; 163 else 164 lock = true; 165 166 if (lock) { 167 mutex_unlock(®ulator_nesting_mutex); 168 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 169 mutex_lock(®ulator_nesting_mutex); 170 } 171 } else { 172 lock = true; 173 } 174 175 if (lock && ret != -EDEADLK) { 176 rdev->ref_cnt++; 177 rdev->mutex_owner = current; 178 } 179 180 mutex_unlock(®ulator_nesting_mutex); 181 182 return ret; 183 } 184 185 /** 186 * regulator_lock - lock a single regulator 187 * @rdev: regulator source 188 * 189 * This function can be called many times by one task on 190 * a single regulator and its mutex will be locked only 191 * once. If a task, which is calling this function is other 192 * than the one, which initially locked the mutex, it will 193 * wait on mutex. 194 */ 195 void regulator_lock(struct regulator_dev *rdev) 196 { 197 regulator_lock_nested(rdev, NULL); 198 } 199 EXPORT_SYMBOL_GPL(regulator_lock); 200 201 /** 202 * regulator_unlock - unlock a single regulator 203 * @rdev: regulator_source 204 * 205 * This function unlocks the mutex when the 206 * reference counter reaches 0. 207 */ 208 void regulator_unlock(struct regulator_dev *rdev) 209 { 210 mutex_lock(®ulator_nesting_mutex); 211 212 if (--rdev->ref_cnt == 0) { 213 rdev->mutex_owner = NULL; 214 ww_mutex_unlock(&rdev->mutex); 215 } 216 217 WARN_ON_ONCE(rdev->ref_cnt < 0); 218 219 mutex_unlock(®ulator_nesting_mutex); 220 } 221 EXPORT_SYMBOL_GPL(regulator_unlock); 222 223 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 224 { 225 struct regulator_dev *c_rdev; 226 int i; 227 228 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 229 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 230 231 if (rdev->supply->rdev == c_rdev) 232 return true; 233 } 234 235 return false; 236 } 237 238 static void regulator_unlock_recursive(struct regulator_dev *rdev, 239 unsigned int n_coupled) 240 { 241 struct regulator_dev *c_rdev; 242 int i; 243 244 for (i = n_coupled; i > 0; i--) { 245 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 246 247 if (!c_rdev) 248 continue; 249 250 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) 251 regulator_unlock_recursive( 252 c_rdev->supply->rdev, 253 c_rdev->coupling_desc.n_coupled); 254 255 regulator_unlock(c_rdev); 256 } 257 } 258 259 static int regulator_lock_recursive(struct regulator_dev *rdev, 260 struct regulator_dev **new_contended_rdev, 261 struct regulator_dev **old_contended_rdev, 262 struct ww_acquire_ctx *ww_ctx) 263 { 264 struct regulator_dev *c_rdev; 265 int i, err; 266 267 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 268 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 269 270 if (!c_rdev) 271 continue; 272 273 if (c_rdev != *old_contended_rdev) { 274 err = regulator_lock_nested(c_rdev, ww_ctx); 275 if (err) { 276 if (err == -EDEADLK) { 277 *new_contended_rdev = c_rdev; 278 goto err_unlock; 279 } 280 281 /* shouldn't happen */ 282 WARN_ON_ONCE(err != -EALREADY); 283 } 284 } else { 285 *old_contended_rdev = NULL; 286 } 287 288 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 289 err = regulator_lock_recursive(c_rdev->supply->rdev, 290 new_contended_rdev, 291 old_contended_rdev, 292 ww_ctx); 293 if (err) { 294 regulator_unlock(c_rdev); 295 goto err_unlock; 296 } 297 } 298 } 299 300 return 0; 301 302 err_unlock: 303 regulator_unlock_recursive(rdev, i); 304 305 return err; 306 } 307 308 /** 309 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 310 * regulators 311 * @rdev: regulator source 312 * @ww_ctx: w/w mutex acquire context 313 * 314 * Unlock all regulators related with rdev by coupling or supplying. 315 */ 316 static void regulator_unlock_dependent(struct regulator_dev *rdev, 317 struct ww_acquire_ctx *ww_ctx) 318 { 319 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 320 ww_acquire_fini(ww_ctx); 321 } 322 323 /** 324 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 325 * @rdev: regulator source 326 * @ww_ctx: w/w mutex acquire context 327 * 328 * This function as a wrapper on regulator_lock_recursive(), which locks 329 * all regulators related with rdev by coupling or supplying. 330 */ 331 static void regulator_lock_dependent(struct regulator_dev *rdev, 332 struct ww_acquire_ctx *ww_ctx) 333 { 334 struct regulator_dev *new_contended_rdev = NULL; 335 struct regulator_dev *old_contended_rdev = NULL; 336 int err; 337 338 mutex_lock(®ulator_list_mutex); 339 340 ww_acquire_init(ww_ctx, ®ulator_ww_class); 341 342 do { 343 if (new_contended_rdev) { 344 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 345 old_contended_rdev = new_contended_rdev; 346 old_contended_rdev->ref_cnt++; 347 } 348 349 err = regulator_lock_recursive(rdev, 350 &new_contended_rdev, 351 &old_contended_rdev, 352 ww_ctx); 353 354 if (old_contended_rdev) 355 regulator_unlock(old_contended_rdev); 356 357 } while (err == -EDEADLK); 358 359 ww_acquire_done(ww_ctx); 360 361 mutex_unlock(®ulator_list_mutex); 362 } 363 364 /** 365 * of_get_child_regulator - get a child regulator device node 366 * based on supply name 367 * @parent: Parent device node 368 * @prop_name: Combination regulator supply name and "-supply" 369 * 370 * Traverse all child nodes. 371 * Extract the child regulator device node corresponding to the supply name. 372 * returns the device node corresponding to the regulator if found, else 373 * returns NULL. 374 */ 375 static struct device_node *of_get_child_regulator(struct device_node *parent, 376 const char *prop_name) 377 { 378 struct device_node *regnode = NULL; 379 struct device_node *child = NULL; 380 381 for_each_child_of_node(parent, child) { 382 regnode = of_parse_phandle(child, prop_name, 0); 383 384 if (!regnode) { 385 regnode = of_get_child_regulator(child, prop_name); 386 if (regnode) 387 return regnode; 388 } else { 389 return regnode; 390 } 391 } 392 return NULL; 393 } 394 395 /** 396 * of_get_regulator - get a regulator device node based on supply name 397 * @dev: Device pointer for the consumer (of regulator) device 398 * @supply: regulator supply name 399 * 400 * Extract the regulator device node corresponding to the supply name. 401 * returns the device node corresponding to the regulator if found, else 402 * returns NULL. 403 */ 404 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 405 { 406 struct device_node *regnode = NULL; 407 char prop_name[32]; /* 32 is max size of property name */ 408 409 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 410 411 snprintf(prop_name, 32, "%s-supply", supply); 412 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 413 414 if (!regnode) { 415 regnode = of_get_child_regulator(dev->of_node, prop_name); 416 if (regnode) 417 return regnode; 418 419 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 420 prop_name, dev->of_node); 421 return NULL; 422 } 423 return regnode; 424 } 425 426 /* Platform voltage constraint check */ 427 static int regulator_check_voltage(struct regulator_dev *rdev, 428 int *min_uV, int *max_uV) 429 { 430 BUG_ON(*min_uV > *max_uV); 431 432 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 433 rdev_err(rdev, "voltage operation not allowed\n"); 434 return -EPERM; 435 } 436 437 if (*max_uV > rdev->constraints->max_uV) 438 *max_uV = rdev->constraints->max_uV; 439 if (*min_uV < rdev->constraints->min_uV) 440 *min_uV = rdev->constraints->min_uV; 441 442 if (*min_uV > *max_uV) { 443 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 444 *min_uV, *max_uV); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 /* return 0 if the state is valid */ 452 static int regulator_check_states(suspend_state_t state) 453 { 454 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 455 } 456 457 /* Make sure we select a voltage that suits the needs of all 458 * regulator consumers 459 */ 460 static int regulator_check_consumers(struct regulator_dev *rdev, 461 int *min_uV, int *max_uV, 462 suspend_state_t state) 463 { 464 struct regulator *regulator; 465 struct regulator_voltage *voltage; 466 467 list_for_each_entry(regulator, &rdev->consumer_list, list) { 468 voltage = ®ulator->voltage[state]; 469 /* 470 * Assume consumers that didn't say anything are OK 471 * with anything in the constraint range. 472 */ 473 if (!voltage->min_uV && !voltage->max_uV) 474 continue; 475 476 if (*max_uV > voltage->max_uV) 477 *max_uV = voltage->max_uV; 478 if (*min_uV < voltage->min_uV) 479 *min_uV = voltage->min_uV; 480 } 481 482 if (*min_uV > *max_uV) { 483 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 484 *min_uV, *max_uV); 485 return -EINVAL; 486 } 487 488 return 0; 489 } 490 491 /* current constraint check */ 492 static int regulator_check_current_limit(struct regulator_dev *rdev, 493 int *min_uA, int *max_uA) 494 { 495 BUG_ON(*min_uA > *max_uA); 496 497 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 498 rdev_err(rdev, "current operation not allowed\n"); 499 return -EPERM; 500 } 501 502 if (*max_uA > rdev->constraints->max_uA) 503 *max_uA = rdev->constraints->max_uA; 504 if (*min_uA < rdev->constraints->min_uA) 505 *min_uA = rdev->constraints->min_uA; 506 507 if (*min_uA > *max_uA) { 508 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 509 *min_uA, *max_uA); 510 return -EINVAL; 511 } 512 513 return 0; 514 } 515 516 /* operating mode constraint check */ 517 static int regulator_mode_constrain(struct regulator_dev *rdev, 518 unsigned int *mode) 519 { 520 switch (*mode) { 521 case REGULATOR_MODE_FAST: 522 case REGULATOR_MODE_NORMAL: 523 case REGULATOR_MODE_IDLE: 524 case REGULATOR_MODE_STANDBY: 525 break; 526 default: 527 rdev_err(rdev, "invalid mode %x specified\n", *mode); 528 return -EINVAL; 529 } 530 531 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 532 rdev_err(rdev, "mode operation not allowed\n"); 533 return -EPERM; 534 } 535 536 /* The modes are bitmasks, the most power hungry modes having 537 * the lowest values. If the requested mode isn't supported 538 * try higher modes. */ 539 while (*mode) { 540 if (rdev->constraints->valid_modes_mask & *mode) 541 return 0; 542 *mode /= 2; 543 } 544 545 return -EINVAL; 546 } 547 548 static inline struct regulator_state * 549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 550 { 551 if (rdev->constraints == NULL) 552 return NULL; 553 554 switch (state) { 555 case PM_SUSPEND_STANDBY: 556 return &rdev->constraints->state_standby; 557 case PM_SUSPEND_MEM: 558 return &rdev->constraints->state_mem; 559 case PM_SUSPEND_MAX: 560 return &rdev->constraints->state_disk; 561 default: 562 return NULL; 563 } 564 } 565 566 static ssize_t regulator_uV_show(struct device *dev, 567 struct device_attribute *attr, char *buf) 568 { 569 struct regulator_dev *rdev = dev_get_drvdata(dev); 570 ssize_t ret; 571 572 regulator_lock(rdev); 573 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 574 regulator_unlock(rdev); 575 576 return ret; 577 } 578 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 579 580 static ssize_t regulator_uA_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 586 } 587 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 588 589 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 590 char *buf) 591 { 592 struct regulator_dev *rdev = dev_get_drvdata(dev); 593 594 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 595 } 596 static DEVICE_ATTR_RO(name); 597 598 static const char *regulator_opmode_to_str(int mode) 599 { 600 switch (mode) { 601 case REGULATOR_MODE_FAST: 602 return "fast"; 603 case REGULATOR_MODE_NORMAL: 604 return "normal"; 605 case REGULATOR_MODE_IDLE: 606 return "idle"; 607 case REGULATOR_MODE_STANDBY: 608 return "standby"; 609 } 610 return "unknown"; 611 } 612 613 static ssize_t regulator_print_opmode(char *buf, int mode) 614 { 615 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 616 } 617 618 static ssize_t regulator_opmode_show(struct device *dev, 619 struct device_attribute *attr, char *buf) 620 { 621 struct regulator_dev *rdev = dev_get_drvdata(dev); 622 623 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 624 } 625 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 626 627 static ssize_t regulator_print_state(char *buf, int state) 628 { 629 if (state > 0) 630 return sprintf(buf, "enabled\n"); 631 else if (state == 0) 632 return sprintf(buf, "disabled\n"); 633 else 634 return sprintf(buf, "unknown\n"); 635 } 636 637 static ssize_t regulator_state_show(struct device *dev, 638 struct device_attribute *attr, char *buf) 639 { 640 struct regulator_dev *rdev = dev_get_drvdata(dev); 641 ssize_t ret; 642 643 regulator_lock(rdev); 644 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 645 regulator_unlock(rdev); 646 647 return ret; 648 } 649 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 650 651 static ssize_t regulator_status_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 int status; 656 char *label; 657 658 status = rdev->desc->ops->get_status(rdev); 659 if (status < 0) 660 return status; 661 662 switch (status) { 663 case REGULATOR_STATUS_OFF: 664 label = "off"; 665 break; 666 case REGULATOR_STATUS_ON: 667 label = "on"; 668 break; 669 case REGULATOR_STATUS_ERROR: 670 label = "error"; 671 break; 672 case REGULATOR_STATUS_FAST: 673 label = "fast"; 674 break; 675 case REGULATOR_STATUS_NORMAL: 676 label = "normal"; 677 break; 678 case REGULATOR_STATUS_IDLE: 679 label = "idle"; 680 break; 681 case REGULATOR_STATUS_STANDBY: 682 label = "standby"; 683 break; 684 case REGULATOR_STATUS_BYPASS: 685 label = "bypass"; 686 break; 687 case REGULATOR_STATUS_UNDEFINED: 688 label = "undefined"; 689 break; 690 default: 691 return -ERANGE; 692 } 693 694 return sprintf(buf, "%s\n", label); 695 } 696 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 697 698 static ssize_t regulator_min_uA_show(struct device *dev, 699 struct device_attribute *attr, char *buf) 700 { 701 struct regulator_dev *rdev = dev_get_drvdata(dev); 702 703 if (!rdev->constraints) 704 return sprintf(buf, "constraint not defined\n"); 705 706 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 707 } 708 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 709 710 static ssize_t regulator_max_uA_show(struct device *dev, 711 struct device_attribute *attr, char *buf) 712 { 713 struct regulator_dev *rdev = dev_get_drvdata(dev); 714 715 if (!rdev->constraints) 716 return sprintf(buf, "constraint not defined\n"); 717 718 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 719 } 720 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 721 722 static ssize_t regulator_min_uV_show(struct device *dev, 723 struct device_attribute *attr, char *buf) 724 { 725 struct regulator_dev *rdev = dev_get_drvdata(dev); 726 727 if (!rdev->constraints) 728 return sprintf(buf, "constraint not defined\n"); 729 730 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 731 } 732 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 733 734 static ssize_t regulator_max_uV_show(struct device *dev, 735 struct device_attribute *attr, char *buf) 736 { 737 struct regulator_dev *rdev = dev_get_drvdata(dev); 738 739 if (!rdev->constraints) 740 return sprintf(buf, "constraint not defined\n"); 741 742 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 743 } 744 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 745 746 static ssize_t regulator_total_uA_show(struct device *dev, 747 struct device_attribute *attr, char *buf) 748 { 749 struct regulator_dev *rdev = dev_get_drvdata(dev); 750 struct regulator *regulator; 751 int uA = 0; 752 753 regulator_lock(rdev); 754 list_for_each_entry(regulator, &rdev->consumer_list, list) { 755 if (regulator->enable_count) 756 uA += regulator->uA_load; 757 } 758 regulator_unlock(rdev); 759 return sprintf(buf, "%d\n", uA); 760 } 761 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 762 763 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 764 char *buf) 765 { 766 struct regulator_dev *rdev = dev_get_drvdata(dev); 767 return sprintf(buf, "%d\n", rdev->use_count); 768 } 769 static DEVICE_ATTR_RO(num_users); 770 771 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 772 char *buf) 773 { 774 struct regulator_dev *rdev = dev_get_drvdata(dev); 775 776 switch (rdev->desc->type) { 777 case REGULATOR_VOLTAGE: 778 return sprintf(buf, "voltage\n"); 779 case REGULATOR_CURRENT: 780 return sprintf(buf, "current\n"); 781 } 782 return sprintf(buf, "unknown\n"); 783 } 784 static DEVICE_ATTR_RO(type); 785 786 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 787 struct device_attribute *attr, char *buf) 788 { 789 struct regulator_dev *rdev = dev_get_drvdata(dev); 790 791 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 792 } 793 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 794 regulator_suspend_mem_uV_show, NULL); 795 796 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 797 struct device_attribute *attr, char *buf) 798 { 799 struct regulator_dev *rdev = dev_get_drvdata(dev); 800 801 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 802 } 803 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 804 regulator_suspend_disk_uV_show, NULL); 805 806 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 807 struct device_attribute *attr, char *buf) 808 { 809 struct regulator_dev *rdev = dev_get_drvdata(dev); 810 811 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 812 } 813 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 814 regulator_suspend_standby_uV_show, NULL); 815 816 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 817 struct device_attribute *attr, char *buf) 818 { 819 struct regulator_dev *rdev = dev_get_drvdata(dev); 820 821 return regulator_print_opmode(buf, 822 rdev->constraints->state_mem.mode); 823 } 824 static DEVICE_ATTR(suspend_mem_mode, 0444, 825 regulator_suspend_mem_mode_show, NULL); 826 827 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 828 struct device_attribute *attr, char *buf) 829 { 830 struct regulator_dev *rdev = dev_get_drvdata(dev); 831 832 return regulator_print_opmode(buf, 833 rdev->constraints->state_disk.mode); 834 } 835 static DEVICE_ATTR(suspend_disk_mode, 0444, 836 regulator_suspend_disk_mode_show, NULL); 837 838 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 839 struct device_attribute *attr, char *buf) 840 { 841 struct regulator_dev *rdev = dev_get_drvdata(dev); 842 843 return regulator_print_opmode(buf, 844 rdev->constraints->state_standby.mode); 845 } 846 static DEVICE_ATTR(suspend_standby_mode, 0444, 847 regulator_suspend_standby_mode_show, NULL); 848 849 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 850 struct device_attribute *attr, char *buf) 851 { 852 struct regulator_dev *rdev = dev_get_drvdata(dev); 853 854 return regulator_print_state(buf, 855 rdev->constraints->state_mem.enabled); 856 } 857 static DEVICE_ATTR(suspend_mem_state, 0444, 858 regulator_suspend_mem_state_show, NULL); 859 860 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 861 struct device_attribute *attr, char *buf) 862 { 863 struct regulator_dev *rdev = dev_get_drvdata(dev); 864 865 return regulator_print_state(buf, 866 rdev->constraints->state_disk.enabled); 867 } 868 static DEVICE_ATTR(suspend_disk_state, 0444, 869 regulator_suspend_disk_state_show, NULL); 870 871 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 872 struct device_attribute *attr, char *buf) 873 { 874 struct regulator_dev *rdev = dev_get_drvdata(dev); 875 876 return regulator_print_state(buf, 877 rdev->constraints->state_standby.enabled); 878 } 879 static DEVICE_ATTR(suspend_standby_state, 0444, 880 regulator_suspend_standby_state_show, NULL); 881 882 static ssize_t regulator_bypass_show(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 struct regulator_dev *rdev = dev_get_drvdata(dev); 886 const char *report; 887 bool bypass; 888 int ret; 889 890 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 891 892 if (ret != 0) 893 report = "unknown"; 894 else if (bypass) 895 report = "enabled"; 896 else 897 report = "disabled"; 898 899 return sprintf(buf, "%s\n", report); 900 } 901 static DEVICE_ATTR(bypass, 0444, 902 regulator_bypass_show, NULL); 903 904 /* Calculate the new optimum regulator operating mode based on the new total 905 * consumer load. All locks held by caller */ 906 static int drms_uA_update(struct regulator_dev *rdev) 907 { 908 struct regulator *sibling; 909 int current_uA = 0, output_uV, input_uV, err; 910 unsigned int mode; 911 912 /* 913 * first check to see if we can set modes at all, otherwise just 914 * tell the consumer everything is OK. 915 */ 916 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 917 rdev_dbg(rdev, "DRMS operation not allowed\n"); 918 return 0; 919 } 920 921 if (!rdev->desc->ops->get_optimum_mode && 922 !rdev->desc->ops->set_load) 923 return 0; 924 925 if (!rdev->desc->ops->set_mode && 926 !rdev->desc->ops->set_load) 927 return -EINVAL; 928 929 /* calc total requested load */ 930 list_for_each_entry(sibling, &rdev->consumer_list, list) { 931 if (sibling->enable_count) 932 current_uA += sibling->uA_load; 933 } 934 935 current_uA += rdev->constraints->system_load; 936 937 if (rdev->desc->ops->set_load) { 938 /* set the optimum mode for our new total regulator load */ 939 err = rdev->desc->ops->set_load(rdev, current_uA); 940 if (err < 0) 941 rdev_err(rdev, "failed to set load %d\n", current_uA); 942 } else { 943 /* get output voltage */ 944 output_uV = _regulator_get_voltage(rdev); 945 if (output_uV <= 0) { 946 rdev_err(rdev, "invalid output voltage found\n"); 947 return -EINVAL; 948 } 949 950 /* get input voltage */ 951 input_uV = 0; 952 if (rdev->supply) 953 input_uV = regulator_get_voltage(rdev->supply); 954 if (input_uV <= 0) 955 input_uV = rdev->constraints->input_uV; 956 if (input_uV <= 0) { 957 rdev_err(rdev, "invalid input voltage found\n"); 958 return -EINVAL; 959 } 960 961 /* now get the optimum mode for our new total regulator load */ 962 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 963 output_uV, current_uA); 964 965 /* check the new mode is allowed */ 966 err = regulator_mode_constrain(rdev, &mode); 967 if (err < 0) { 968 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 969 current_uA, input_uV, output_uV); 970 return err; 971 } 972 973 err = rdev->desc->ops->set_mode(rdev, mode); 974 if (err < 0) 975 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 976 } 977 978 return err; 979 } 980 981 static int suspend_set_state(struct regulator_dev *rdev, 982 suspend_state_t state) 983 { 984 int ret = 0; 985 struct regulator_state *rstate; 986 987 rstate = regulator_get_suspend_state(rdev, state); 988 if (rstate == NULL) 989 return 0; 990 991 /* If we have no suspend mode configuration don't set anything; 992 * only warn if the driver implements set_suspend_voltage or 993 * set_suspend_mode callback. 994 */ 995 if (rstate->enabled != ENABLE_IN_SUSPEND && 996 rstate->enabled != DISABLE_IN_SUSPEND) { 997 if (rdev->desc->ops->set_suspend_voltage || 998 rdev->desc->ops->set_suspend_mode) 999 rdev_warn(rdev, "No configuration\n"); 1000 return 0; 1001 } 1002 1003 if (rstate->enabled == ENABLE_IN_SUSPEND && 1004 rdev->desc->ops->set_suspend_enable) 1005 ret = rdev->desc->ops->set_suspend_enable(rdev); 1006 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1007 rdev->desc->ops->set_suspend_disable) 1008 ret = rdev->desc->ops->set_suspend_disable(rdev); 1009 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1010 ret = 0; 1011 1012 if (ret < 0) { 1013 rdev_err(rdev, "failed to enabled/disable\n"); 1014 return ret; 1015 } 1016 1017 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1018 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1019 if (ret < 0) { 1020 rdev_err(rdev, "failed to set voltage\n"); 1021 return ret; 1022 } 1023 } 1024 1025 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1026 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1027 if (ret < 0) { 1028 rdev_err(rdev, "failed to set mode\n"); 1029 return ret; 1030 } 1031 } 1032 1033 return ret; 1034 } 1035 1036 static void print_constraints(struct regulator_dev *rdev) 1037 { 1038 struct regulation_constraints *constraints = rdev->constraints; 1039 char buf[160] = ""; 1040 size_t len = sizeof(buf) - 1; 1041 int count = 0; 1042 int ret; 1043 1044 if (constraints->min_uV && constraints->max_uV) { 1045 if (constraints->min_uV == constraints->max_uV) 1046 count += scnprintf(buf + count, len - count, "%d mV ", 1047 constraints->min_uV / 1000); 1048 else 1049 count += scnprintf(buf + count, len - count, 1050 "%d <--> %d mV ", 1051 constraints->min_uV / 1000, 1052 constraints->max_uV / 1000); 1053 } 1054 1055 if (!constraints->min_uV || 1056 constraints->min_uV != constraints->max_uV) { 1057 ret = _regulator_get_voltage(rdev); 1058 if (ret > 0) 1059 count += scnprintf(buf + count, len - count, 1060 "at %d mV ", ret / 1000); 1061 } 1062 1063 if (constraints->uV_offset) 1064 count += scnprintf(buf + count, len - count, "%dmV offset ", 1065 constraints->uV_offset / 1000); 1066 1067 if (constraints->min_uA && constraints->max_uA) { 1068 if (constraints->min_uA == constraints->max_uA) 1069 count += scnprintf(buf + count, len - count, "%d mA ", 1070 constraints->min_uA / 1000); 1071 else 1072 count += scnprintf(buf + count, len - count, 1073 "%d <--> %d mA ", 1074 constraints->min_uA / 1000, 1075 constraints->max_uA / 1000); 1076 } 1077 1078 if (!constraints->min_uA || 1079 constraints->min_uA != constraints->max_uA) { 1080 ret = _regulator_get_current_limit(rdev); 1081 if (ret > 0) 1082 count += scnprintf(buf + count, len - count, 1083 "at %d mA ", ret / 1000); 1084 } 1085 1086 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1087 count += scnprintf(buf + count, len - count, "fast "); 1088 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1089 count += scnprintf(buf + count, len - count, "normal "); 1090 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1091 count += scnprintf(buf + count, len - count, "idle "); 1092 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1093 count += scnprintf(buf + count, len - count, "standby"); 1094 1095 if (!count) 1096 scnprintf(buf, len, "no parameters"); 1097 1098 rdev_dbg(rdev, "%s\n", buf); 1099 1100 if ((constraints->min_uV != constraints->max_uV) && 1101 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1102 rdev_warn(rdev, 1103 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1104 } 1105 1106 static int machine_constraints_voltage(struct regulator_dev *rdev, 1107 struct regulation_constraints *constraints) 1108 { 1109 const struct regulator_ops *ops = rdev->desc->ops; 1110 int ret; 1111 1112 /* do we need to apply the constraint voltage */ 1113 if (rdev->constraints->apply_uV && 1114 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1115 int target_min, target_max; 1116 int current_uV = _regulator_get_voltage(rdev); 1117 1118 if (current_uV == -ENOTRECOVERABLE) { 1119 /* This regulator can't be read and must be initialized */ 1120 rdev_info(rdev, "Setting %d-%duV\n", 1121 rdev->constraints->min_uV, 1122 rdev->constraints->max_uV); 1123 _regulator_do_set_voltage(rdev, 1124 rdev->constraints->min_uV, 1125 rdev->constraints->max_uV); 1126 current_uV = _regulator_get_voltage(rdev); 1127 } 1128 1129 if (current_uV < 0) { 1130 rdev_err(rdev, 1131 "failed to get the current voltage(%d)\n", 1132 current_uV); 1133 return current_uV; 1134 } 1135 1136 /* 1137 * If we're below the minimum voltage move up to the 1138 * minimum voltage, if we're above the maximum voltage 1139 * then move down to the maximum. 1140 */ 1141 target_min = current_uV; 1142 target_max = current_uV; 1143 1144 if (current_uV < rdev->constraints->min_uV) { 1145 target_min = rdev->constraints->min_uV; 1146 target_max = rdev->constraints->min_uV; 1147 } 1148 1149 if (current_uV > rdev->constraints->max_uV) { 1150 target_min = rdev->constraints->max_uV; 1151 target_max = rdev->constraints->max_uV; 1152 } 1153 1154 if (target_min != current_uV || target_max != current_uV) { 1155 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1156 current_uV, target_min, target_max); 1157 ret = _regulator_do_set_voltage( 1158 rdev, target_min, target_max); 1159 if (ret < 0) { 1160 rdev_err(rdev, 1161 "failed to apply %d-%duV constraint(%d)\n", 1162 target_min, target_max, ret); 1163 return ret; 1164 } 1165 } 1166 } 1167 1168 /* constrain machine-level voltage specs to fit 1169 * the actual range supported by this regulator. 1170 */ 1171 if (ops->list_voltage && rdev->desc->n_voltages) { 1172 int count = rdev->desc->n_voltages; 1173 int i; 1174 int min_uV = INT_MAX; 1175 int max_uV = INT_MIN; 1176 int cmin = constraints->min_uV; 1177 int cmax = constraints->max_uV; 1178 1179 /* it's safe to autoconfigure fixed-voltage supplies 1180 and the constraints are used by list_voltage. */ 1181 if (count == 1 && !cmin) { 1182 cmin = 1; 1183 cmax = INT_MAX; 1184 constraints->min_uV = cmin; 1185 constraints->max_uV = cmax; 1186 } 1187 1188 /* voltage constraints are optional */ 1189 if ((cmin == 0) && (cmax == 0)) 1190 return 0; 1191 1192 /* else require explicit machine-level constraints */ 1193 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1194 rdev_err(rdev, "invalid voltage constraints\n"); 1195 return -EINVAL; 1196 } 1197 1198 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1199 for (i = 0; i < count; i++) { 1200 int value; 1201 1202 value = ops->list_voltage(rdev, i); 1203 if (value <= 0) 1204 continue; 1205 1206 /* maybe adjust [min_uV..max_uV] */ 1207 if (value >= cmin && value < min_uV) 1208 min_uV = value; 1209 if (value <= cmax && value > max_uV) 1210 max_uV = value; 1211 } 1212 1213 /* final: [min_uV..max_uV] valid iff constraints valid */ 1214 if (max_uV < min_uV) { 1215 rdev_err(rdev, 1216 "unsupportable voltage constraints %u-%uuV\n", 1217 min_uV, max_uV); 1218 return -EINVAL; 1219 } 1220 1221 /* use regulator's subset of machine constraints */ 1222 if (constraints->min_uV < min_uV) { 1223 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1224 constraints->min_uV, min_uV); 1225 constraints->min_uV = min_uV; 1226 } 1227 if (constraints->max_uV > max_uV) { 1228 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1229 constraints->max_uV, max_uV); 1230 constraints->max_uV = max_uV; 1231 } 1232 } 1233 1234 return 0; 1235 } 1236 1237 static int machine_constraints_current(struct regulator_dev *rdev, 1238 struct regulation_constraints *constraints) 1239 { 1240 const struct regulator_ops *ops = rdev->desc->ops; 1241 int ret; 1242 1243 if (!constraints->min_uA && !constraints->max_uA) 1244 return 0; 1245 1246 if (constraints->min_uA > constraints->max_uA) { 1247 rdev_err(rdev, "Invalid current constraints\n"); 1248 return -EINVAL; 1249 } 1250 1251 if (!ops->set_current_limit || !ops->get_current_limit) { 1252 rdev_warn(rdev, "Operation of current configuration missing\n"); 1253 return 0; 1254 } 1255 1256 /* Set regulator current in constraints range */ 1257 ret = ops->set_current_limit(rdev, constraints->min_uA, 1258 constraints->max_uA); 1259 if (ret < 0) { 1260 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 1267 static int _regulator_do_enable(struct regulator_dev *rdev); 1268 1269 /** 1270 * set_machine_constraints - sets regulator constraints 1271 * @rdev: regulator source 1272 * @constraints: constraints to apply 1273 * 1274 * Allows platform initialisation code to define and constrain 1275 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1276 * Constraints *must* be set by platform code in order for some 1277 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1278 * set_mode. 1279 */ 1280 static int set_machine_constraints(struct regulator_dev *rdev, 1281 const struct regulation_constraints *constraints) 1282 { 1283 int ret = 0; 1284 const struct regulator_ops *ops = rdev->desc->ops; 1285 1286 if (constraints) 1287 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1288 GFP_KERNEL); 1289 else 1290 rdev->constraints = kzalloc(sizeof(*constraints), 1291 GFP_KERNEL); 1292 if (!rdev->constraints) 1293 return -ENOMEM; 1294 1295 ret = machine_constraints_voltage(rdev, rdev->constraints); 1296 if (ret != 0) 1297 return ret; 1298 1299 ret = machine_constraints_current(rdev, rdev->constraints); 1300 if (ret != 0) 1301 return ret; 1302 1303 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1304 ret = ops->set_input_current_limit(rdev, 1305 rdev->constraints->ilim_uA); 1306 if (ret < 0) { 1307 rdev_err(rdev, "failed to set input limit\n"); 1308 return ret; 1309 } 1310 } 1311 1312 /* do we need to setup our suspend state */ 1313 if (rdev->constraints->initial_state) { 1314 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1315 if (ret < 0) { 1316 rdev_err(rdev, "failed to set suspend state\n"); 1317 return ret; 1318 } 1319 } 1320 1321 if (rdev->constraints->initial_mode) { 1322 if (!ops->set_mode) { 1323 rdev_err(rdev, "no set_mode operation\n"); 1324 return -EINVAL; 1325 } 1326 1327 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1328 if (ret < 0) { 1329 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1330 return ret; 1331 } 1332 } else if (rdev->constraints->system_load) { 1333 /* 1334 * We'll only apply the initial system load if an 1335 * initial mode wasn't specified. 1336 */ 1337 drms_uA_update(rdev); 1338 } 1339 1340 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1341 && ops->set_ramp_delay) { 1342 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1343 if (ret < 0) { 1344 rdev_err(rdev, "failed to set ramp_delay\n"); 1345 return ret; 1346 } 1347 } 1348 1349 if (rdev->constraints->pull_down && ops->set_pull_down) { 1350 ret = ops->set_pull_down(rdev); 1351 if (ret < 0) { 1352 rdev_err(rdev, "failed to set pull down\n"); 1353 return ret; 1354 } 1355 } 1356 1357 if (rdev->constraints->soft_start && ops->set_soft_start) { 1358 ret = ops->set_soft_start(rdev); 1359 if (ret < 0) { 1360 rdev_err(rdev, "failed to set soft start\n"); 1361 return ret; 1362 } 1363 } 1364 1365 if (rdev->constraints->over_current_protection 1366 && ops->set_over_current_protection) { 1367 ret = ops->set_over_current_protection(rdev); 1368 if (ret < 0) { 1369 rdev_err(rdev, "failed to set over current protection\n"); 1370 return ret; 1371 } 1372 } 1373 1374 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1375 bool ad_state = (rdev->constraints->active_discharge == 1376 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1377 1378 ret = ops->set_active_discharge(rdev, ad_state); 1379 if (ret < 0) { 1380 rdev_err(rdev, "failed to set active discharge\n"); 1381 return ret; 1382 } 1383 } 1384 1385 /* If the constraints say the regulator should be on at this point 1386 * and we have control then make sure it is enabled. 1387 */ 1388 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1389 if (rdev->supply) { 1390 ret = regulator_enable(rdev->supply); 1391 if (ret < 0) { 1392 _regulator_put(rdev->supply); 1393 rdev->supply = NULL; 1394 return ret; 1395 } 1396 } 1397 1398 ret = _regulator_do_enable(rdev); 1399 if (ret < 0 && ret != -EINVAL) { 1400 rdev_err(rdev, "failed to enable\n"); 1401 return ret; 1402 } 1403 rdev->use_count++; 1404 } 1405 1406 print_constraints(rdev); 1407 return 0; 1408 } 1409 1410 /** 1411 * set_supply - set regulator supply regulator 1412 * @rdev: regulator name 1413 * @supply_rdev: supply regulator name 1414 * 1415 * Called by platform initialisation code to set the supply regulator for this 1416 * regulator. This ensures that a regulators supply will also be enabled by the 1417 * core if it's child is enabled. 1418 */ 1419 static int set_supply(struct regulator_dev *rdev, 1420 struct regulator_dev *supply_rdev) 1421 { 1422 int err; 1423 1424 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1425 1426 if (!try_module_get(supply_rdev->owner)) 1427 return -ENODEV; 1428 1429 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1430 if (rdev->supply == NULL) { 1431 err = -ENOMEM; 1432 return err; 1433 } 1434 supply_rdev->open_count++; 1435 1436 return 0; 1437 } 1438 1439 /** 1440 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1441 * @rdev: regulator source 1442 * @consumer_dev_name: dev_name() string for device supply applies to 1443 * @supply: symbolic name for supply 1444 * 1445 * Allows platform initialisation code to map physical regulator 1446 * sources to symbolic names for supplies for use by devices. Devices 1447 * should use these symbolic names to request regulators, avoiding the 1448 * need to provide board-specific regulator names as platform data. 1449 */ 1450 static int set_consumer_device_supply(struct regulator_dev *rdev, 1451 const char *consumer_dev_name, 1452 const char *supply) 1453 { 1454 struct regulator_map *node; 1455 int has_dev; 1456 1457 if (supply == NULL) 1458 return -EINVAL; 1459 1460 if (consumer_dev_name != NULL) 1461 has_dev = 1; 1462 else 1463 has_dev = 0; 1464 1465 list_for_each_entry(node, ®ulator_map_list, list) { 1466 if (node->dev_name && consumer_dev_name) { 1467 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1468 continue; 1469 } else if (node->dev_name || consumer_dev_name) { 1470 continue; 1471 } 1472 1473 if (strcmp(node->supply, supply) != 0) 1474 continue; 1475 1476 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1477 consumer_dev_name, 1478 dev_name(&node->regulator->dev), 1479 node->regulator->desc->name, 1480 supply, 1481 dev_name(&rdev->dev), rdev_get_name(rdev)); 1482 return -EBUSY; 1483 } 1484 1485 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1486 if (node == NULL) 1487 return -ENOMEM; 1488 1489 node->regulator = rdev; 1490 node->supply = supply; 1491 1492 if (has_dev) { 1493 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1494 if (node->dev_name == NULL) { 1495 kfree(node); 1496 return -ENOMEM; 1497 } 1498 } 1499 1500 list_add(&node->list, ®ulator_map_list); 1501 return 0; 1502 } 1503 1504 static void unset_regulator_supplies(struct regulator_dev *rdev) 1505 { 1506 struct regulator_map *node, *n; 1507 1508 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1509 if (rdev == node->regulator) { 1510 list_del(&node->list); 1511 kfree(node->dev_name); 1512 kfree(node); 1513 } 1514 } 1515 } 1516 1517 #ifdef CONFIG_DEBUG_FS 1518 static ssize_t constraint_flags_read_file(struct file *file, 1519 char __user *user_buf, 1520 size_t count, loff_t *ppos) 1521 { 1522 const struct regulator *regulator = file->private_data; 1523 const struct regulation_constraints *c = regulator->rdev->constraints; 1524 char *buf; 1525 ssize_t ret; 1526 1527 if (!c) 1528 return 0; 1529 1530 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1531 if (!buf) 1532 return -ENOMEM; 1533 1534 ret = snprintf(buf, PAGE_SIZE, 1535 "always_on: %u\n" 1536 "boot_on: %u\n" 1537 "apply_uV: %u\n" 1538 "ramp_disable: %u\n" 1539 "soft_start: %u\n" 1540 "pull_down: %u\n" 1541 "over_current_protection: %u\n", 1542 c->always_on, 1543 c->boot_on, 1544 c->apply_uV, 1545 c->ramp_disable, 1546 c->soft_start, 1547 c->pull_down, 1548 c->over_current_protection); 1549 1550 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1551 kfree(buf); 1552 1553 return ret; 1554 } 1555 1556 #endif 1557 1558 static const struct file_operations constraint_flags_fops = { 1559 #ifdef CONFIG_DEBUG_FS 1560 .open = simple_open, 1561 .read = constraint_flags_read_file, 1562 .llseek = default_llseek, 1563 #endif 1564 }; 1565 1566 #define REG_STR_SIZE 64 1567 1568 static struct regulator *create_regulator(struct regulator_dev *rdev, 1569 struct device *dev, 1570 const char *supply_name) 1571 { 1572 struct regulator *regulator; 1573 char buf[REG_STR_SIZE]; 1574 int err, size; 1575 1576 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1577 if (regulator == NULL) 1578 return NULL; 1579 1580 regulator_lock(rdev); 1581 regulator->rdev = rdev; 1582 list_add(®ulator->list, &rdev->consumer_list); 1583 1584 if (dev) { 1585 regulator->dev = dev; 1586 1587 /* Add a link to the device sysfs entry */ 1588 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1589 dev->kobj.name, supply_name); 1590 if (size >= REG_STR_SIZE) 1591 goto overflow_err; 1592 1593 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1594 if (regulator->supply_name == NULL) 1595 goto overflow_err; 1596 1597 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1598 buf); 1599 if (err) { 1600 rdev_dbg(rdev, "could not add device link %s err %d\n", 1601 dev->kobj.name, err); 1602 /* non-fatal */ 1603 } 1604 } else { 1605 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1606 if (regulator->supply_name == NULL) 1607 goto overflow_err; 1608 } 1609 1610 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1611 rdev->debugfs); 1612 if (!regulator->debugfs) { 1613 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1614 } else { 1615 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1616 ®ulator->uA_load); 1617 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1618 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1619 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1620 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1621 debugfs_create_file("constraint_flags", 0444, 1622 regulator->debugfs, regulator, 1623 &constraint_flags_fops); 1624 } 1625 1626 /* 1627 * Check now if the regulator is an always on regulator - if 1628 * it is then we don't need to do nearly so much work for 1629 * enable/disable calls. 1630 */ 1631 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1632 _regulator_is_enabled(rdev)) 1633 regulator->always_on = true; 1634 1635 regulator_unlock(rdev); 1636 return regulator; 1637 overflow_err: 1638 list_del(®ulator->list); 1639 kfree(regulator); 1640 regulator_unlock(rdev); 1641 return NULL; 1642 } 1643 1644 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1645 { 1646 if (rdev->constraints && rdev->constraints->enable_time) 1647 return rdev->constraints->enable_time; 1648 if (!rdev->desc->ops->enable_time) 1649 return rdev->desc->enable_time; 1650 return rdev->desc->ops->enable_time(rdev); 1651 } 1652 1653 static struct regulator_supply_alias *regulator_find_supply_alias( 1654 struct device *dev, const char *supply) 1655 { 1656 struct regulator_supply_alias *map; 1657 1658 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1659 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1660 return map; 1661 1662 return NULL; 1663 } 1664 1665 static void regulator_supply_alias(struct device **dev, const char **supply) 1666 { 1667 struct regulator_supply_alias *map; 1668 1669 map = regulator_find_supply_alias(*dev, *supply); 1670 if (map) { 1671 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1672 *supply, map->alias_supply, 1673 dev_name(map->alias_dev)); 1674 *dev = map->alias_dev; 1675 *supply = map->alias_supply; 1676 } 1677 } 1678 1679 static int regulator_match(struct device *dev, const void *data) 1680 { 1681 struct regulator_dev *r = dev_to_rdev(dev); 1682 1683 return strcmp(rdev_get_name(r), data) == 0; 1684 } 1685 1686 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1687 { 1688 struct device *dev; 1689 1690 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1691 1692 return dev ? dev_to_rdev(dev) : NULL; 1693 } 1694 1695 /** 1696 * regulator_dev_lookup - lookup a regulator device. 1697 * @dev: device for regulator "consumer". 1698 * @supply: Supply name or regulator ID. 1699 * 1700 * If successful, returns a struct regulator_dev that corresponds to the name 1701 * @supply and with the embedded struct device refcount incremented by one. 1702 * The refcount must be dropped by calling put_device(). 1703 * On failure one of the following ERR-PTR-encoded values is returned: 1704 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1705 * in the future. 1706 */ 1707 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1708 const char *supply) 1709 { 1710 struct regulator_dev *r = NULL; 1711 struct device_node *node; 1712 struct regulator_map *map; 1713 const char *devname = NULL; 1714 1715 regulator_supply_alias(&dev, &supply); 1716 1717 /* first do a dt based lookup */ 1718 if (dev && dev->of_node) { 1719 node = of_get_regulator(dev, supply); 1720 if (node) { 1721 r = of_find_regulator_by_node(node); 1722 if (r) 1723 return r; 1724 1725 /* 1726 * We have a node, but there is no device. 1727 * assume it has not registered yet. 1728 */ 1729 return ERR_PTR(-EPROBE_DEFER); 1730 } 1731 } 1732 1733 /* if not found, try doing it non-dt way */ 1734 if (dev) 1735 devname = dev_name(dev); 1736 1737 mutex_lock(®ulator_list_mutex); 1738 list_for_each_entry(map, ®ulator_map_list, list) { 1739 /* If the mapping has a device set up it must match */ 1740 if (map->dev_name && 1741 (!devname || strcmp(map->dev_name, devname))) 1742 continue; 1743 1744 if (strcmp(map->supply, supply) == 0 && 1745 get_device(&map->regulator->dev)) { 1746 r = map->regulator; 1747 break; 1748 } 1749 } 1750 mutex_unlock(®ulator_list_mutex); 1751 1752 if (r) 1753 return r; 1754 1755 r = regulator_lookup_by_name(supply); 1756 if (r) 1757 return r; 1758 1759 return ERR_PTR(-ENODEV); 1760 } 1761 1762 static int regulator_resolve_supply(struct regulator_dev *rdev) 1763 { 1764 struct regulator_dev *r; 1765 struct device *dev = rdev->dev.parent; 1766 int ret; 1767 1768 /* No supply to resolve? */ 1769 if (!rdev->supply_name) 1770 return 0; 1771 1772 /* Supply already resolved? */ 1773 if (rdev->supply) 1774 return 0; 1775 1776 r = regulator_dev_lookup(dev, rdev->supply_name); 1777 if (IS_ERR(r)) { 1778 ret = PTR_ERR(r); 1779 1780 /* Did the lookup explicitly defer for us? */ 1781 if (ret == -EPROBE_DEFER) 1782 return ret; 1783 1784 if (have_full_constraints()) { 1785 r = dummy_regulator_rdev; 1786 get_device(&r->dev); 1787 } else { 1788 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1789 rdev->supply_name, rdev->desc->name); 1790 return -EPROBE_DEFER; 1791 } 1792 } 1793 1794 /* 1795 * If the supply's parent device is not the same as the 1796 * regulator's parent device, then ensure the parent device 1797 * is bound before we resolve the supply, in case the parent 1798 * device get probe deferred and unregisters the supply. 1799 */ 1800 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1801 if (!device_is_bound(r->dev.parent)) { 1802 put_device(&r->dev); 1803 return -EPROBE_DEFER; 1804 } 1805 } 1806 1807 /* Recursively resolve the supply of the supply */ 1808 ret = regulator_resolve_supply(r); 1809 if (ret < 0) { 1810 put_device(&r->dev); 1811 return ret; 1812 } 1813 1814 ret = set_supply(rdev, r); 1815 if (ret < 0) { 1816 put_device(&r->dev); 1817 return ret; 1818 } 1819 1820 /* 1821 * In set_machine_constraints() we may have turned this regulator on 1822 * but we couldn't propagate to the supply if it hadn't been resolved 1823 * yet. Do it now. 1824 */ 1825 if (rdev->use_count) { 1826 ret = regulator_enable(rdev->supply); 1827 if (ret < 0) { 1828 _regulator_put(rdev->supply); 1829 rdev->supply = NULL; 1830 return ret; 1831 } 1832 } 1833 1834 return 0; 1835 } 1836 1837 /* Internal regulator request function */ 1838 struct regulator *_regulator_get(struct device *dev, const char *id, 1839 enum regulator_get_type get_type) 1840 { 1841 struct regulator_dev *rdev; 1842 struct regulator *regulator; 1843 const char *devname = dev ? dev_name(dev) : "deviceless"; 1844 int ret; 1845 1846 if (get_type >= MAX_GET_TYPE) { 1847 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1848 return ERR_PTR(-EINVAL); 1849 } 1850 1851 if (id == NULL) { 1852 pr_err("get() with no identifier\n"); 1853 return ERR_PTR(-EINVAL); 1854 } 1855 1856 rdev = regulator_dev_lookup(dev, id); 1857 if (IS_ERR(rdev)) { 1858 ret = PTR_ERR(rdev); 1859 1860 /* 1861 * If regulator_dev_lookup() fails with error other 1862 * than -ENODEV our job here is done, we simply return it. 1863 */ 1864 if (ret != -ENODEV) 1865 return ERR_PTR(ret); 1866 1867 if (!have_full_constraints()) { 1868 dev_warn(dev, 1869 "incomplete constraints, dummy supplies not allowed\n"); 1870 return ERR_PTR(-ENODEV); 1871 } 1872 1873 switch (get_type) { 1874 case NORMAL_GET: 1875 /* 1876 * Assume that a regulator is physically present and 1877 * enabled, even if it isn't hooked up, and just 1878 * provide a dummy. 1879 */ 1880 dev_warn(dev, 1881 "%s supply %s not found, using dummy regulator\n", 1882 devname, id); 1883 rdev = dummy_regulator_rdev; 1884 get_device(&rdev->dev); 1885 break; 1886 1887 case EXCLUSIVE_GET: 1888 dev_warn(dev, 1889 "dummy supplies not allowed for exclusive requests\n"); 1890 /* fall through */ 1891 1892 default: 1893 return ERR_PTR(-ENODEV); 1894 } 1895 } 1896 1897 if (rdev->exclusive) { 1898 regulator = ERR_PTR(-EPERM); 1899 put_device(&rdev->dev); 1900 return regulator; 1901 } 1902 1903 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1904 regulator = ERR_PTR(-EBUSY); 1905 put_device(&rdev->dev); 1906 return regulator; 1907 } 1908 1909 mutex_lock(®ulator_list_mutex); 1910 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1911 mutex_unlock(®ulator_list_mutex); 1912 1913 if (ret != 0) { 1914 regulator = ERR_PTR(-EPROBE_DEFER); 1915 put_device(&rdev->dev); 1916 return regulator; 1917 } 1918 1919 ret = regulator_resolve_supply(rdev); 1920 if (ret < 0) { 1921 regulator = ERR_PTR(ret); 1922 put_device(&rdev->dev); 1923 return regulator; 1924 } 1925 1926 if (!try_module_get(rdev->owner)) { 1927 regulator = ERR_PTR(-EPROBE_DEFER); 1928 put_device(&rdev->dev); 1929 return regulator; 1930 } 1931 1932 regulator = create_regulator(rdev, dev, id); 1933 if (regulator == NULL) { 1934 regulator = ERR_PTR(-ENOMEM); 1935 put_device(&rdev->dev); 1936 module_put(rdev->owner); 1937 return regulator; 1938 } 1939 1940 rdev->open_count++; 1941 if (get_type == EXCLUSIVE_GET) { 1942 rdev->exclusive = 1; 1943 1944 ret = _regulator_is_enabled(rdev); 1945 if (ret > 0) 1946 rdev->use_count = 1; 1947 else 1948 rdev->use_count = 0; 1949 } 1950 1951 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 1952 1953 return regulator; 1954 } 1955 1956 /** 1957 * regulator_get - lookup and obtain a reference to a regulator. 1958 * @dev: device for regulator "consumer" 1959 * @id: Supply name or regulator ID. 1960 * 1961 * Returns a struct regulator corresponding to the regulator producer, 1962 * or IS_ERR() condition containing errno. 1963 * 1964 * Use of supply names configured via regulator_set_device_supply() is 1965 * strongly encouraged. It is recommended that the supply name used 1966 * should match the name used for the supply and/or the relevant 1967 * device pins in the datasheet. 1968 */ 1969 struct regulator *regulator_get(struct device *dev, const char *id) 1970 { 1971 return _regulator_get(dev, id, NORMAL_GET); 1972 } 1973 EXPORT_SYMBOL_GPL(regulator_get); 1974 1975 /** 1976 * regulator_get_exclusive - obtain exclusive access to a regulator. 1977 * @dev: device for regulator "consumer" 1978 * @id: Supply name or regulator ID. 1979 * 1980 * Returns a struct regulator corresponding to the regulator producer, 1981 * or IS_ERR() condition containing errno. Other consumers will be 1982 * unable to obtain this regulator while this reference is held and the 1983 * use count for the regulator will be initialised to reflect the current 1984 * state of the regulator. 1985 * 1986 * This is intended for use by consumers which cannot tolerate shared 1987 * use of the regulator such as those which need to force the 1988 * regulator off for correct operation of the hardware they are 1989 * controlling. 1990 * 1991 * Use of supply names configured via regulator_set_device_supply() is 1992 * strongly encouraged. It is recommended that the supply name used 1993 * should match the name used for the supply and/or the relevant 1994 * device pins in the datasheet. 1995 */ 1996 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1997 { 1998 return _regulator_get(dev, id, EXCLUSIVE_GET); 1999 } 2000 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2001 2002 /** 2003 * regulator_get_optional - obtain optional access to a regulator. 2004 * @dev: device for regulator "consumer" 2005 * @id: Supply name or regulator ID. 2006 * 2007 * Returns a struct regulator corresponding to the regulator producer, 2008 * or IS_ERR() condition containing errno. 2009 * 2010 * This is intended for use by consumers for devices which can have 2011 * some supplies unconnected in normal use, such as some MMC devices. 2012 * It can allow the regulator core to provide stub supplies for other 2013 * supplies requested using normal regulator_get() calls without 2014 * disrupting the operation of drivers that can handle absent 2015 * supplies. 2016 * 2017 * Use of supply names configured via regulator_set_device_supply() is 2018 * strongly encouraged. It is recommended that the supply name used 2019 * should match the name used for the supply and/or the relevant 2020 * device pins in the datasheet. 2021 */ 2022 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2023 { 2024 return _regulator_get(dev, id, OPTIONAL_GET); 2025 } 2026 EXPORT_SYMBOL_GPL(regulator_get_optional); 2027 2028 /* regulator_list_mutex lock held by regulator_put() */ 2029 static void _regulator_put(struct regulator *regulator) 2030 { 2031 struct regulator_dev *rdev; 2032 2033 if (IS_ERR_OR_NULL(regulator)) 2034 return; 2035 2036 lockdep_assert_held_once(®ulator_list_mutex); 2037 2038 /* Docs say you must disable before calling regulator_put() */ 2039 WARN_ON(regulator->enable_count); 2040 2041 rdev = regulator->rdev; 2042 2043 debugfs_remove_recursive(regulator->debugfs); 2044 2045 if (regulator->dev) { 2046 device_link_remove(regulator->dev, &rdev->dev); 2047 2048 /* remove any sysfs entries */ 2049 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2050 } 2051 2052 regulator_lock(rdev); 2053 list_del(®ulator->list); 2054 2055 rdev->open_count--; 2056 rdev->exclusive = 0; 2057 put_device(&rdev->dev); 2058 regulator_unlock(rdev); 2059 2060 kfree_const(regulator->supply_name); 2061 kfree(regulator); 2062 2063 module_put(rdev->owner); 2064 } 2065 2066 /** 2067 * regulator_put - "free" the regulator source 2068 * @regulator: regulator source 2069 * 2070 * Note: drivers must ensure that all regulator_enable calls made on this 2071 * regulator source are balanced by regulator_disable calls prior to calling 2072 * this function. 2073 */ 2074 void regulator_put(struct regulator *regulator) 2075 { 2076 mutex_lock(®ulator_list_mutex); 2077 _regulator_put(regulator); 2078 mutex_unlock(®ulator_list_mutex); 2079 } 2080 EXPORT_SYMBOL_GPL(regulator_put); 2081 2082 /** 2083 * regulator_register_supply_alias - Provide device alias for supply lookup 2084 * 2085 * @dev: device that will be given as the regulator "consumer" 2086 * @id: Supply name or regulator ID 2087 * @alias_dev: device that should be used to lookup the supply 2088 * @alias_id: Supply name or regulator ID that should be used to lookup the 2089 * supply 2090 * 2091 * All lookups for id on dev will instead be conducted for alias_id on 2092 * alias_dev. 2093 */ 2094 int regulator_register_supply_alias(struct device *dev, const char *id, 2095 struct device *alias_dev, 2096 const char *alias_id) 2097 { 2098 struct regulator_supply_alias *map; 2099 2100 map = regulator_find_supply_alias(dev, id); 2101 if (map) 2102 return -EEXIST; 2103 2104 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2105 if (!map) 2106 return -ENOMEM; 2107 2108 map->src_dev = dev; 2109 map->src_supply = id; 2110 map->alias_dev = alias_dev; 2111 map->alias_supply = alias_id; 2112 2113 list_add(&map->list, ®ulator_supply_alias_list); 2114 2115 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2116 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2117 2118 return 0; 2119 } 2120 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2121 2122 /** 2123 * regulator_unregister_supply_alias - Remove device alias 2124 * 2125 * @dev: device that will be given as the regulator "consumer" 2126 * @id: Supply name or regulator ID 2127 * 2128 * Remove a lookup alias if one exists for id on dev. 2129 */ 2130 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2131 { 2132 struct regulator_supply_alias *map; 2133 2134 map = regulator_find_supply_alias(dev, id); 2135 if (map) { 2136 list_del(&map->list); 2137 kfree(map); 2138 } 2139 } 2140 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2141 2142 /** 2143 * regulator_bulk_register_supply_alias - register multiple aliases 2144 * 2145 * @dev: device that will be given as the regulator "consumer" 2146 * @id: List of supply names or regulator IDs 2147 * @alias_dev: device that should be used to lookup the supply 2148 * @alias_id: List of supply names or regulator IDs that should be used to 2149 * lookup the supply 2150 * @num_id: Number of aliases to register 2151 * 2152 * @return 0 on success, an errno on failure. 2153 * 2154 * This helper function allows drivers to register several supply 2155 * aliases in one operation. If any of the aliases cannot be 2156 * registered any aliases that were registered will be removed 2157 * before returning to the caller. 2158 */ 2159 int regulator_bulk_register_supply_alias(struct device *dev, 2160 const char *const *id, 2161 struct device *alias_dev, 2162 const char *const *alias_id, 2163 int num_id) 2164 { 2165 int i; 2166 int ret; 2167 2168 for (i = 0; i < num_id; ++i) { 2169 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2170 alias_id[i]); 2171 if (ret < 0) 2172 goto err; 2173 } 2174 2175 return 0; 2176 2177 err: 2178 dev_err(dev, 2179 "Failed to create supply alias %s,%s -> %s,%s\n", 2180 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2181 2182 while (--i >= 0) 2183 regulator_unregister_supply_alias(dev, id[i]); 2184 2185 return ret; 2186 } 2187 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2188 2189 /** 2190 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2191 * 2192 * @dev: device that will be given as the regulator "consumer" 2193 * @id: List of supply names or regulator IDs 2194 * @num_id: Number of aliases to unregister 2195 * 2196 * This helper function allows drivers to unregister several supply 2197 * aliases in one operation. 2198 */ 2199 void regulator_bulk_unregister_supply_alias(struct device *dev, 2200 const char *const *id, 2201 int num_id) 2202 { 2203 int i; 2204 2205 for (i = 0; i < num_id; ++i) 2206 regulator_unregister_supply_alias(dev, id[i]); 2207 } 2208 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2209 2210 2211 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2212 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2213 const struct regulator_config *config) 2214 { 2215 struct regulator_enable_gpio *pin; 2216 struct gpio_desc *gpiod; 2217 2218 gpiod = config->ena_gpiod; 2219 2220 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2221 if (pin->gpiod == gpiod) { 2222 rdev_dbg(rdev, "GPIO is already used\n"); 2223 goto update_ena_gpio_to_rdev; 2224 } 2225 } 2226 2227 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 2228 if (pin == NULL) 2229 return -ENOMEM; 2230 2231 pin->gpiod = gpiod; 2232 list_add(&pin->list, ®ulator_ena_gpio_list); 2233 2234 update_ena_gpio_to_rdev: 2235 pin->request_count++; 2236 rdev->ena_pin = pin; 2237 return 0; 2238 } 2239 2240 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2241 { 2242 struct regulator_enable_gpio *pin, *n; 2243 2244 if (!rdev->ena_pin) 2245 return; 2246 2247 /* Free the GPIO only in case of no use */ 2248 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2249 if (pin->gpiod == rdev->ena_pin->gpiod) { 2250 if (pin->request_count <= 1) { 2251 pin->request_count = 0; 2252 gpiod_put(pin->gpiod); 2253 list_del(&pin->list); 2254 kfree(pin); 2255 rdev->ena_pin = NULL; 2256 return; 2257 } else { 2258 pin->request_count--; 2259 } 2260 } 2261 } 2262 } 2263 2264 /** 2265 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2266 * @rdev: regulator_dev structure 2267 * @enable: enable GPIO at initial use? 2268 * 2269 * GPIO is enabled in case of initial use. (enable_count is 0) 2270 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2271 */ 2272 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2273 { 2274 struct regulator_enable_gpio *pin = rdev->ena_pin; 2275 2276 if (!pin) 2277 return -EINVAL; 2278 2279 if (enable) { 2280 /* Enable GPIO at initial use */ 2281 if (pin->enable_count == 0) 2282 gpiod_set_value_cansleep(pin->gpiod, 1); 2283 2284 pin->enable_count++; 2285 } else { 2286 if (pin->enable_count > 1) { 2287 pin->enable_count--; 2288 return 0; 2289 } 2290 2291 /* Disable GPIO if not used */ 2292 if (pin->enable_count <= 1) { 2293 gpiod_set_value_cansleep(pin->gpiod, 0); 2294 pin->enable_count = 0; 2295 } 2296 } 2297 2298 return 0; 2299 } 2300 2301 /** 2302 * _regulator_enable_delay - a delay helper function 2303 * @delay: time to delay in microseconds 2304 * 2305 * Delay for the requested amount of time as per the guidelines in: 2306 * 2307 * Documentation/timers/timers-howto.txt 2308 * 2309 * The assumption here is that regulators will never be enabled in 2310 * atomic context and therefore sleeping functions can be used. 2311 */ 2312 static void _regulator_enable_delay(unsigned int delay) 2313 { 2314 unsigned int ms = delay / 1000; 2315 unsigned int us = delay % 1000; 2316 2317 if (ms > 0) { 2318 /* 2319 * For small enough values, handle super-millisecond 2320 * delays in the usleep_range() call below. 2321 */ 2322 if (ms < 20) 2323 us += ms * 1000; 2324 else 2325 msleep(ms); 2326 } 2327 2328 /* 2329 * Give the scheduler some room to coalesce with any other 2330 * wakeup sources. For delays shorter than 10 us, don't even 2331 * bother setting up high-resolution timers and just busy- 2332 * loop. 2333 */ 2334 if (us >= 10) 2335 usleep_range(us, us + 100); 2336 else 2337 udelay(us); 2338 } 2339 2340 static int _regulator_do_enable(struct regulator_dev *rdev) 2341 { 2342 int ret, delay; 2343 2344 /* Query before enabling in case configuration dependent. */ 2345 ret = _regulator_get_enable_time(rdev); 2346 if (ret >= 0) { 2347 delay = ret; 2348 } else { 2349 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2350 delay = 0; 2351 } 2352 2353 trace_regulator_enable(rdev_get_name(rdev)); 2354 2355 if (rdev->desc->off_on_delay) { 2356 /* if needed, keep a distance of off_on_delay from last time 2357 * this regulator was disabled. 2358 */ 2359 unsigned long start_jiffy = jiffies; 2360 unsigned long intended, max_delay, remaining; 2361 2362 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2363 intended = rdev->last_off_jiffy + max_delay; 2364 2365 if (time_before(start_jiffy, intended)) { 2366 /* calc remaining jiffies to deal with one-time 2367 * timer wrapping. 2368 * in case of multiple timer wrapping, either it can be 2369 * detected by out-of-range remaining, or it cannot be 2370 * detected and we get a penalty of 2371 * _regulator_enable_delay(). 2372 */ 2373 remaining = intended - start_jiffy; 2374 if (remaining <= max_delay) 2375 _regulator_enable_delay( 2376 jiffies_to_usecs(remaining)); 2377 } 2378 } 2379 2380 if (rdev->ena_pin) { 2381 if (!rdev->ena_gpio_state) { 2382 ret = regulator_ena_gpio_ctrl(rdev, true); 2383 if (ret < 0) 2384 return ret; 2385 rdev->ena_gpio_state = 1; 2386 } 2387 } else if (rdev->desc->ops->enable) { 2388 ret = rdev->desc->ops->enable(rdev); 2389 if (ret < 0) 2390 return ret; 2391 } else { 2392 return -EINVAL; 2393 } 2394 2395 /* Allow the regulator to ramp; it would be useful to extend 2396 * this for bulk operations so that the regulators can ramp 2397 * together. */ 2398 trace_regulator_enable_delay(rdev_get_name(rdev)); 2399 2400 _regulator_enable_delay(delay); 2401 2402 trace_regulator_enable_complete(rdev_get_name(rdev)); 2403 2404 return 0; 2405 } 2406 2407 /** 2408 * _regulator_handle_consumer_enable - handle that a consumer enabled 2409 * @regulator: regulator source 2410 * 2411 * Some things on a regulator consumer (like the contribution towards total 2412 * load on the regulator) only have an effect when the consumer wants the 2413 * regulator enabled. Explained in example with two consumers of the same 2414 * regulator: 2415 * consumer A: set_load(100); => total load = 0 2416 * consumer A: regulator_enable(); => total load = 100 2417 * consumer B: set_load(1000); => total load = 100 2418 * consumer B: regulator_enable(); => total load = 1100 2419 * consumer A: regulator_disable(); => total_load = 1000 2420 * 2421 * This function (together with _regulator_handle_consumer_disable) is 2422 * responsible for keeping track of the refcount for a given regulator consumer 2423 * and applying / unapplying these things. 2424 * 2425 * Returns 0 upon no error; -error upon error. 2426 */ 2427 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2428 { 2429 struct regulator_dev *rdev = regulator->rdev; 2430 2431 lockdep_assert_held_once(&rdev->mutex.base); 2432 2433 regulator->enable_count++; 2434 if (regulator->uA_load && regulator->enable_count == 1) 2435 return drms_uA_update(rdev); 2436 2437 return 0; 2438 } 2439 2440 /** 2441 * _regulator_handle_consumer_disable - handle that a consumer disabled 2442 * @regulator: regulator source 2443 * 2444 * The opposite of _regulator_handle_consumer_enable(). 2445 * 2446 * Returns 0 upon no error; -error upon error. 2447 */ 2448 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2449 { 2450 struct regulator_dev *rdev = regulator->rdev; 2451 2452 lockdep_assert_held_once(&rdev->mutex.base); 2453 2454 if (!regulator->enable_count) { 2455 rdev_err(rdev, "Underflow of regulator enable count\n"); 2456 return -EINVAL; 2457 } 2458 2459 regulator->enable_count--; 2460 if (regulator->uA_load && regulator->enable_count == 0) 2461 return drms_uA_update(rdev); 2462 2463 return 0; 2464 } 2465 2466 /* locks held by regulator_enable() */ 2467 static int _regulator_enable(struct regulator *regulator) 2468 { 2469 struct regulator_dev *rdev = regulator->rdev; 2470 int ret; 2471 2472 lockdep_assert_held_once(&rdev->mutex.base); 2473 2474 if (rdev->use_count == 0 && rdev->supply) { 2475 ret = _regulator_enable(rdev->supply); 2476 if (ret < 0) 2477 return ret; 2478 } 2479 2480 /* balance only if there are regulators coupled */ 2481 if (rdev->coupling_desc.n_coupled > 1) { 2482 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2483 if (ret < 0) 2484 goto err_disable_supply; 2485 } 2486 2487 ret = _regulator_handle_consumer_enable(regulator); 2488 if (ret < 0) 2489 goto err_disable_supply; 2490 2491 if (rdev->use_count == 0) { 2492 /* The regulator may on if it's not switchable or left on */ 2493 ret = _regulator_is_enabled(rdev); 2494 if (ret == -EINVAL || ret == 0) { 2495 if (!regulator_ops_is_valid(rdev, 2496 REGULATOR_CHANGE_STATUS)) { 2497 ret = -EPERM; 2498 goto err_consumer_disable; 2499 } 2500 2501 ret = _regulator_do_enable(rdev); 2502 if (ret < 0) 2503 goto err_consumer_disable; 2504 2505 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2506 NULL); 2507 } else if (ret < 0) { 2508 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2509 goto err_consumer_disable; 2510 } 2511 /* Fallthrough on positive return values - already enabled */ 2512 } 2513 2514 rdev->use_count++; 2515 2516 return 0; 2517 2518 err_consumer_disable: 2519 _regulator_handle_consumer_disable(regulator); 2520 2521 err_disable_supply: 2522 if (rdev->use_count == 0 && rdev->supply) 2523 _regulator_disable(rdev->supply); 2524 2525 return ret; 2526 } 2527 2528 /** 2529 * regulator_enable - enable regulator output 2530 * @regulator: regulator source 2531 * 2532 * Request that the regulator be enabled with the regulator output at 2533 * the predefined voltage or current value. Calls to regulator_enable() 2534 * must be balanced with calls to regulator_disable(). 2535 * 2536 * NOTE: the output value can be set by other drivers, boot loader or may be 2537 * hardwired in the regulator. 2538 */ 2539 int regulator_enable(struct regulator *regulator) 2540 { 2541 struct regulator_dev *rdev = regulator->rdev; 2542 struct ww_acquire_ctx ww_ctx; 2543 int ret; 2544 2545 regulator_lock_dependent(rdev, &ww_ctx); 2546 ret = _regulator_enable(regulator); 2547 regulator_unlock_dependent(rdev, &ww_ctx); 2548 2549 return ret; 2550 } 2551 EXPORT_SYMBOL_GPL(regulator_enable); 2552 2553 static int _regulator_do_disable(struct regulator_dev *rdev) 2554 { 2555 int ret; 2556 2557 trace_regulator_disable(rdev_get_name(rdev)); 2558 2559 if (rdev->ena_pin) { 2560 if (rdev->ena_gpio_state) { 2561 ret = regulator_ena_gpio_ctrl(rdev, false); 2562 if (ret < 0) 2563 return ret; 2564 rdev->ena_gpio_state = 0; 2565 } 2566 2567 } else if (rdev->desc->ops->disable) { 2568 ret = rdev->desc->ops->disable(rdev); 2569 if (ret != 0) 2570 return ret; 2571 } 2572 2573 /* cares about last_off_jiffy only if off_on_delay is required by 2574 * device. 2575 */ 2576 if (rdev->desc->off_on_delay) 2577 rdev->last_off_jiffy = jiffies; 2578 2579 trace_regulator_disable_complete(rdev_get_name(rdev)); 2580 2581 return 0; 2582 } 2583 2584 /* locks held by regulator_disable() */ 2585 static int _regulator_disable(struct regulator *regulator) 2586 { 2587 struct regulator_dev *rdev = regulator->rdev; 2588 int ret = 0; 2589 2590 lockdep_assert_held_once(&rdev->mutex.base); 2591 2592 if (WARN(rdev->use_count <= 0, 2593 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2594 return -EIO; 2595 2596 /* are we the last user and permitted to disable ? */ 2597 if (rdev->use_count == 1 && 2598 (rdev->constraints && !rdev->constraints->always_on)) { 2599 2600 /* we are last user */ 2601 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2602 ret = _notifier_call_chain(rdev, 2603 REGULATOR_EVENT_PRE_DISABLE, 2604 NULL); 2605 if (ret & NOTIFY_STOP_MASK) 2606 return -EINVAL; 2607 2608 ret = _regulator_do_disable(rdev); 2609 if (ret < 0) { 2610 rdev_err(rdev, "failed to disable\n"); 2611 _notifier_call_chain(rdev, 2612 REGULATOR_EVENT_ABORT_DISABLE, 2613 NULL); 2614 return ret; 2615 } 2616 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2617 NULL); 2618 } 2619 2620 rdev->use_count = 0; 2621 } else if (rdev->use_count > 1) { 2622 rdev->use_count--; 2623 } 2624 2625 if (ret == 0) 2626 ret = _regulator_handle_consumer_disable(regulator); 2627 2628 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2629 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2630 2631 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2632 ret = _regulator_disable(rdev->supply); 2633 2634 return ret; 2635 } 2636 2637 /** 2638 * regulator_disable - disable regulator output 2639 * @regulator: regulator source 2640 * 2641 * Disable the regulator output voltage or current. Calls to 2642 * regulator_enable() must be balanced with calls to 2643 * regulator_disable(). 2644 * 2645 * NOTE: this will only disable the regulator output if no other consumer 2646 * devices have it enabled, the regulator device supports disabling and 2647 * machine constraints permit this operation. 2648 */ 2649 int regulator_disable(struct regulator *regulator) 2650 { 2651 struct regulator_dev *rdev = regulator->rdev; 2652 struct ww_acquire_ctx ww_ctx; 2653 int ret; 2654 2655 regulator_lock_dependent(rdev, &ww_ctx); 2656 ret = _regulator_disable(regulator); 2657 regulator_unlock_dependent(rdev, &ww_ctx); 2658 2659 return ret; 2660 } 2661 EXPORT_SYMBOL_GPL(regulator_disable); 2662 2663 /* locks held by regulator_force_disable() */ 2664 static int _regulator_force_disable(struct regulator_dev *rdev) 2665 { 2666 int ret = 0; 2667 2668 lockdep_assert_held_once(&rdev->mutex.base); 2669 2670 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2671 REGULATOR_EVENT_PRE_DISABLE, NULL); 2672 if (ret & NOTIFY_STOP_MASK) 2673 return -EINVAL; 2674 2675 ret = _regulator_do_disable(rdev); 2676 if (ret < 0) { 2677 rdev_err(rdev, "failed to force disable\n"); 2678 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2679 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2680 return ret; 2681 } 2682 2683 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2684 REGULATOR_EVENT_DISABLE, NULL); 2685 2686 return 0; 2687 } 2688 2689 /** 2690 * regulator_force_disable - force disable regulator output 2691 * @regulator: regulator source 2692 * 2693 * Forcibly disable the regulator output voltage or current. 2694 * NOTE: this *will* disable the regulator output even if other consumer 2695 * devices have it enabled. This should be used for situations when device 2696 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2697 */ 2698 int regulator_force_disable(struct regulator *regulator) 2699 { 2700 struct regulator_dev *rdev = regulator->rdev; 2701 struct ww_acquire_ctx ww_ctx; 2702 int ret; 2703 2704 regulator_lock_dependent(rdev, &ww_ctx); 2705 2706 ret = _regulator_force_disable(regulator->rdev); 2707 2708 if (rdev->coupling_desc.n_coupled > 1) 2709 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2710 2711 if (regulator->uA_load) { 2712 regulator->uA_load = 0; 2713 ret = drms_uA_update(rdev); 2714 } 2715 2716 if (rdev->use_count != 0 && rdev->supply) 2717 _regulator_disable(rdev->supply); 2718 2719 regulator_unlock_dependent(rdev, &ww_ctx); 2720 2721 return ret; 2722 } 2723 EXPORT_SYMBOL_GPL(regulator_force_disable); 2724 2725 static void regulator_disable_work(struct work_struct *work) 2726 { 2727 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2728 disable_work.work); 2729 struct ww_acquire_ctx ww_ctx; 2730 int count, i, ret; 2731 struct regulator *regulator; 2732 int total_count = 0; 2733 2734 regulator_lock_dependent(rdev, &ww_ctx); 2735 2736 /* 2737 * Workqueue functions queue the new work instance while the previous 2738 * work instance is being processed. Cancel the queued work instance 2739 * as the work instance under processing does the job of the queued 2740 * work instance. 2741 */ 2742 cancel_delayed_work(&rdev->disable_work); 2743 2744 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2745 count = regulator->deferred_disables; 2746 2747 if (!count) 2748 continue; 2749 2750 total_count += count; 2751 regulator->deferred_disables = 0; 2752 2753 for (i = 0; i < count; i++) { 2754 ret = _regulator_disable(regulator); 2755 if (ret != 0) 2756 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2757 } 2758 } 2759 WARN_ON(!total_count); 2760 2761 if (rdev->coupling_desc.n_coupled > 1) 2762 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2763 2764 regulator_unlock_dependent(rdev, &ww_ctx); 2765 } 2766 2767 /** 2768 * regulator_disable_deferred - disable regulator output with delay 2769 * @regulator: regulator source 2770 * @ms: milliseconds until the regulator is disabled 2771 * 2772 * Execute regulator_disable() on the regulator after a delay. This 2773 * is intended for use with devices that require some time to quiesce. 2774 * 2775 * NOTE: this will only disable the regulator output if no other consumer 2776 * devices have it enabled, the regulator device supports disabling and 2777 * machine constraints permit this operation. 2778 */ 2779 int regulator_disable_deferred(struct regulator *regulator, int ms) 2780 { 2781 struct regulator_dev *rdev = regulator->rdev; 2782 2783 if (!ms) 2784 return regulator_disable(regulator); 2785 2786 regulator_lock(rdev); 2787 regulator->deferred_disables++; 2788 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2789 msecs_to_jiffies(ms)); 2790 regulator_unlock(rdev); 2791 2792 return 0; 2793 } 2794 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2795 2796 static int _regulator_is_enabled(struct regulator_dev *rdev) 2797 { 2798 /* A GPIO control always takes precedence */ 2799 if (rdev->ena_pin) 2800 return rdev->ena_gpio_state; 2801 2802 /* If we don't know then assume that the regulator is always on */ 2803 if (!rdev->desc->ops->is_enabled) 2804 return 1; 2805 2806 return rdev->desc->ops->is_enabled(rdev); 2807 } 2808 2809 static int _regulator_list_voltage(struct regulator_dev *rdev, 2810 unsigned selector, int lock) 2811 { 2812 const struct regulator_ops *ops = rdev->desc->ops; 2813 int ret; 2814 2815 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2816 return rdev->desc->fixed_uV; 2817 2818 if (ops->list_voltage) { 2819 if (selector >= rdev->desc->n_voltages) 2820 return -EINVAL; 2821 if (lock) 2822 regulator_lock(rdev); 2823 ret = ops->list_voltage(rdev, selector); 2824 if (lock) 2825 regulator_unlock(rdev); 2826 } else if (rdev->is_switch && rdev->supply) { 2827 ret = _regulator_list_voltage(rdev->supply->rdev, 2828 selector, lock); 2829 } else { 2830 return -EINVAL; 2831 } 2832 2833 if (ret > 0) { 2834 if (ret < rdev->constraints->min_uV) 2835 ret = 0; 2836 else if (ret > rdev->constraints->max_uV) 2837 ret = 0; 2838 } 2839 2840 return ret; 2841 } 2842 2843 /** 2844 * regulator_is_enabled - is the regulator output enabled 2845 * @regulator: regulator source 2846 * 2847 * Returns positive if the regulator driver backing the source/client 2848 * has requested that the device be enabled, zero if it hasn't, else a 2849 * negative errno code. 2850 * 2851 * Note that the device backing this regulator handle can have multiple 2852 * users, so it might be enabled even if regulator_enable() was never 2853 * called for this particular source. 2854 */ 2855 int regulator_is_enabled(struct regulator *regulator) 2856 { 2857 int ret; 2858 2859 if (regulator->always_on) 2860 return 1; 2861 2862 regulator_lock(regulator->rdev); 2863 ret = _regulator_is_enabled(regulator->rdev); 2864 regulator_unlock(regulator->rdev); 2865 2866 return ret; 2867 } 2868 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2869 2870 /** 2871 * regulator_count_voltages - count regulator_list_voltage() selectors 2872 * @regulator: regulator source 2873 * 2874 * Returns number of selectors, or negative errno. Selectors are 2875 * numbered starting at zero, and typically correspond to bitfields 2876 * in hardware registers. 2877 */ 2878 int regulator_count_voltages(struct regulator *regulator) 2879 { 2880 struct regulator_dev *rdev = regulator->rdev; 2881 2882 if (rdev->desc->n_voltages) 2883 return rdev->desc->n_voltages; 2884 2885 if (!rdev->is_switch || !rdev->supply) 2886 return -EINVAL; 2887 2888 return regulator_count_voltages(rdev->supply); 2889 } 2890 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2891 2892 /** 2893 * regulator_list_voltage - enumerate supported voltages 2894 * @regulator: regulator source 2895 * @selector: identify voltage to list 2896 * Context: can sleep 2897 * 2898 * Returns a voltage that can be passed to @regulator_set_voltage(), 2899 * zero if this selector code can't be used on this system, or a 2900 * negative errno. 2901 */ 2902 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2903 { 2904 return _regulator_list_voltage(regulator->rdev, selector, 1); 2905 } 2906 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2907 2908 /** 2909 * regulator_get_regmap - get the regulator's register map 2910 * @regulator: regulator source 2911 * 2912 * Returns the register map for the given regulator, or an ERR_PTR value 2913 * if the regulator doesn't use regmap. 2914 */ 2915 struct regmap *regulator_get_regmap(struct regulator *regulator) 2916 { 2917 struct regmap *map = regulator->rdev->regmap; 2918 2919 return map ? map : ERR_PTR(-EOPNOTSUPP); 2920 } 2921 2922 /** 2923 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2924 * @regulator: regulator source 2925 * @vsel_reg: voltage selector register, output parameter 2926 * @vsel_mask: mask for voltage selector bitfield, output parameter 2927 * 2928 * Returns the hardware register offset and bitmask used for setting the 2929 * regulator voltage. This might be useful when configuring voltage-scaling 2930 * hardware or firmware that can make I2C requests behind the kernel's back, 2931 * for example. 2932 * 2933 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2934 * and 0 is returned, otherwise a negative errno is returned. 2935 */ 2936 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2937 unsigned *vsel_reg, 2938 unsigned *vsel_mask) 2939 { 2940 struct regulator_dev *rdev = regulator->rdev; 2941 const struct regulator_ops *ops = rdev->desc->ops; 2942 2943 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2944 return -EOPNOTSUPP; 2945 2946 *vsel_reg = rdev->desc->vsel_reg; 2947 *vsel_mask = rdev->desc->vsel_mask; 2948 2949 return 0; 2950 } 2951 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2952 2953 /** 2954 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2955 * @regulator: regulator source 2956 * @selector: identify voltage to list 2957 * 2958 * Converts the selector to a hardware-specific voltage selector that can be 2959 * directly written to the regulator registers. The address of the voltage 2960 * register can be determined by calling @regulator_get_hardware_vsel_register. 2961 * 2962 * On error a negative errno is returned. 2963 */ 2964 int regulator_list_hardware_vsel(struct regulator *regulator, 2965 unsigned selector) 2966 { 2967 struct regulator_dev *rdev = regulator->rdev; 2968 const struct regulator_ops *ops = rdev->desc->ops; 2969 2970 if (selector >= rdev->desc->n_voltages) 2971 return -EINVAL; 2972 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2973 return -EOPNOTSUPP; 2974 2975 return selector; 2976 } 2977 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2978 2979 /** 2980 * regulator_get_linear_step - return the voltage step size between VSEL values 2981 * @regulator: regulator source 2982 * 2983 * Returns the voltage step size between VSEL values for linear 2984 * regulators, or return 0 if the regulator isn't a linear regulator. 2985 */ 2986 unsigned int regulator_get_linear_step(struct regulator *regulator) 2987 { 2988 struct regulator_dev *rdev = regulator->rdev; 2989 2990 return rdev->desc->uV_step; 2991 } 2992 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2993 2994 /** 2995 * regulator_is_supported_voltage - check if a voltage range can be supported 2996 * 2997 * @regulator: Regulator to check. 2998 * @min_uV: Minimum required voltage in uV. 2999 * @max_uV: Maximum required voltage in uV. 3000 * 3001 * Returns a boolean. 3002 */ 3003 int regulator_is_supported_voltage(struct regulator *regulator, 3004 int min_uV, int max_uV) 3005 { 3006 struct regulator_dev *rdev = regulator->rdev; 3007 int i, voltages, ret; 3008 3009 /* If we can't change voltage check the current voltage */ 3010 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3011 ret = regulator_get_voltage(regulator); 3012 if (ret >= 0) 3013 return min_uV <= ret && ret <= max_uV; 3014 else 3015 return ret; 3016 } 3017 3018 /* Any voltage within constrains range is fine? */ 3019 if (rdev->desc->continuous_voltage_range) 3020 return min_uV >= rdev->constraints->min_uV && 3021 max_uV <= rdev->constraints->max_uV; 3022 3023 ret = regulator_count_voltages(regulator); 3024 if (ret < 0) 3025 return 0; 3026 voltages = ret; 3027 3028 for (i = 0; i < voltages; i++) { 3029 ret = regulator_list_voltage(regulator, i); 3030 3031 if (ret >= min_uV && ret <= max_uV) 3032 return 1; 3033 } 3034 3035 return 0; 3036 } 3037 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3038 3039 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3040 int max_uV) 3041 { 3042 const struct regulator_desc *desc = rdev->desc; 3043 3044 if (desc->ops->map_voltage) 3045 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3046 3047 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3048 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3049 3050 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3051 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3052 3053 if (desc->ops->list_voltage == 3054 regulator_list_voltage_pickable_linear_range) 3055 return regulator_map_voltage_pickable_linear_range(rdev, 3056 min_uV, max_uV); 3057 3058 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3059 } 3060 3061 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3062 int min_uV, int max_uV, 3063 unsigned *selector) 3064 { 3065 struct pre_voltage_change_data data; 3066 int ret; 3067 3068 data.old_uV = _regulator_get_voltage(rdev); 3069 data.min_uV = min_uV; 3070 data.max_uV = max_uV; 3071 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3072 &data); 3073 if (ret & NOTIFY_STOP_MASK) 3074 return -EINVAL; 3075 3076 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3077 if (ret >= 0) 3078 return ret; 3079 3080 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3081 (void *)data.old_uV); 3082 3083 return ret; 3084 } 3085 3086 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3087 int uV, unsigned selector) 3088 { 3089 struct pre_voltage_change_data data; 3090 int ret; 3091 3092 data.old_uV = _regulator_get_voltage(rdev); 3093 data.min_uV = uV; 3094 data.max_uV = uV; 3095 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3096 &data); 3097 if (ret & NOTIFY_STOP_MASK) 3098 return -EINVAL; 3099 3100 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3101 if (ret >= 0) 3102 return ret; 3103 3104 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3105 (void *)data.old_uV); 3106 3107 return ret; 3108 } 3109 3110 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3111 int old_uV, int new_uV) 3112 { 3113 unsigned int ramp_delay = 0; 3114 3115 if (rdev->constraints->ramp_delay) 3116 ramp_delay = rdev->constraints->ramp_delay; 3117 else if (rdev->desc->ramp_delay) 3118 ramp_delay = rdev->desc->ramp_delay; 3119 else if (rdev->constraints->settling_time) 3120 return rdev->constraints->settling_time; 3121 else if (rdev->constraints->settling_time_up && 3122 (new_uV > old_uV)) 3123 return rdev->constraints->settling_time_up; 3124 else if (rdev->constraints->settling_time_down && 3125 (new_uV < old_uV)) 3126 return rdev->constraints->settling_time_down; 3127 3128 if (ramp_delay == 0) { 3129 rdev_dbg(rdev, "ramp_delay not set\n"); 3130 return 0; 3131 } 3132 3133 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3134 } 3135 3136 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3137 int min_uV, int max_uV) 3138 { 3139 int ret; 3140 int delay = 0; 3141 int best_val = 0; 3142 unsigned int selector; 3143 int old_selector = -1; 3144 const struct regulator_ops *ops = rdev->desc->ops; 3145 int old_uV = _regulator_get_voltage(rdev); 3146 3147 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3148 3149 min_uV += rdev->constraints->uV_offset; 3150 max_uV += rdev->constraints->uV_offset; 3151 3152 /* 3153 * If we can't obtain the old selector there is not enough 3154 * info to call set_voltage_time_sel(). 3155 */ 3156 if (_regulator_is_enabled(rdev) && 3157 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3158 old_selector = ops->get_voltage_sel(rdev); 3159 if (old_selector < 0) 3160 return old_selector; 3161 } 3162 3163 if (ops->set_voltage) { 3164 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3165 &selector); 3166 3167 if (ret >= 0) { 3168 if (ops->list_voltage) 3169 best_val = ops->list_voltage(rdev, 3170 selector); 3171 else 3172 best_val = _regulator_get_voltage(rdev); 3173 } 3174 3175 } else if (ops->set_voltage_sel) { 3176 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3177 if (ret >= 0) { 3178 best_val = ops->list_voltage(rdev, ret); 3179 if (min_uV <= best_val && max_uV >= best_val) { 3180 selector = ret; 3181 if (old_selector == selector) 3182 ret = 0; 3183 else 3184 ret = _regulator_call_set_voltage_sel( 3185 rdev, best_val, selector); 3186 } else { 3187 ret = -EINVAL; 3188 } 3189 } 3190 } else { 3191 ret = -EINVAL; 3192 } 3193 3194 if (ret) 3195 goto out; 3196 3197 if (ops->set_voltage_time_sel) { 3198 /* 3199 * Call set_voltage_time_sel if successfully obtained 3200 * old_selector 3201 */ 3202 if (old_selector >= 0 && old_selector != selector) 3203 delay = ops->set_voltage_time_sel(rdev, old_selector, 3204 selector); 3205 } else { 3206 if (old_uV != best_val) { 3207 if (ops->set_voltage_time) 3208 delay = ops->set_voltage_time(rdev, old_uV, 3209 best_val); 3210 else 3211 delay = _regulator_set_voltage_time(rdev, 3212 old_uV, 3213 best_val); 3214 } 3215 } 3216 3217 if (delay < 0) { 3218 rdev_warn(rdev, "failed to get delay: %d\n", delay); 3219 delay = 0; 3220 } 3221 3222 /* Insert any necessary delays */ 3223 if (delay >= 1000) { 3224 mdelay(delay / 1000); 3225 udelay(delay % 1000); 3226 } else if (delay) { 3227 udelay(delay); 3228 } 3229 3230 if (best_val >= 0) { 3231 unsigned long data = best_val; 3232 3233 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3234 (void *)data); 3235 } 3236 3237 out: 3238 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3239 3240 return ret; 3241 } 3242 3243 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3244 int min_uV, int max_uV, suspend_state_t state) 3245 { 3246 struct regulator_state *rstate; 3247 int uV, sel; 3248 3249 rstate = regulator_get_suspend_state(rdev, state); 3250 if (rstate == NULL) 3251 return -EINVAL; 3252 3253 if (min_uV < rstate->min_uV) 3254 min_uV = rstate->min_uV; 3255 if (max_uV > rstate->max_uV) 3256 max_uV = rstate->max_uV; 3257 3258 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3259 if (sel < 0) 3260 return sel; 3261 3262 uV = rdev->desc->ops->list_voltage(rdev, sel); 3263 if (uV >= min_uV && uV <= max_uV) 3264 rstate->uV = uV; 3265 3266 return 0; 3267 } 3268 3269 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3270 int min_uV, int max_uV, 3271 suspend_state_t state) 3272 { 3273 struct regulator_dev *rdev = regulator->rdev; 3274 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3275 int ret = 0; 3276 int old_min_uV, old_max_uV; 3277 int current_uV; 3278 3279 /* If we're setting the same range as last time the change 3280 * should be a noop (some cpufreq implementations use the same 3281 * voltage for multiple frequencies, for example). 3282 */ 3283 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3284 goto out; 3285 3286 /* If we're trying to set a range that overlaps the current voltage, 3287 * return successfully even though the regulator does not support 3288 * changing the voltage. 3289 */ 3290 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3291 current_uV = _regulator_get_voltage(rdev); 3292 if (min_uV <= current_uV && current_uV <= max_uV) { 3293 voltage->min_uV = min_uV; 3294 voltage->max_uV = max_uV; 3295 goto out; 3296 } 3297 } 3298 3299 /* sanity check */ 3300 if (!rdev->desc->ops->set_voltage && 3301 !rdev->desc->ops->set_voltage_sel) { 3302 ret = -EINVAL; 3303 goto out; 3304 } 3305 3306 /* constraints check */ 3307 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3308 if (ret < 0) 3309 goto out; 3310 3311 /* restore original values in case of error */ 3312 old_min_uV = voltage->min_uV; 3313 old_max_uV = voltage->max_uV; 3314 voltage->min_uV = min_uV; 3315 voltage->max_uV = max_uV; 3316 3317 /* for not coupled regulators this will just set the voltage */ 3318 ret = regulator_balance_voltage(rdev, state); 3319 if (ret < 0) { 3320 voltage->min_uV = old_min_uV; 3321 voltage->max_uV = old_max_uV; 3322 } 3323 3324 out: 3325 return ret; 3326 } 3327 3328 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3329 int max_uV, suspend_state_t state) 3330 { 3331 int best_supply_uV = 0; 3332 int supply_change_uV = 0; 3333 int ret; 3334 3335 if (rdev->supply && 3336 regulator_ops_is_valid(rdev->supply->rdev, 3337 REGULATOR_CHANGE_VOLTAGE) && 3338 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3339 rdev->desc->ops->get_voltage_sel))) { 3340 int current_supply_uV; 3341 int selector; 3342 3343 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3344 if (selector < 0) { 3345 ret = selector; 3346 goto out; 3347 } 3348 3349 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3350 if (best_supply_uV < 0) { 3351 ret = best_supply_uV; 3352 goto out; 3353 } 3354 3355 best_supply_uV += rdev->desc->min_dropout_uV; 3356 3357 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 3358 if (current_supply_uV < 0) { 3359 ret = current_supply_uV; 3360 goto out; 3361 } 3362 3363 supply_change_uV = best_supply_uV - current_supply_uV; 3364 } 3365 3366 if (supply_change_uV > 0) { 3367 ret = regulator_set_voltage_unlocked(rdev->supply, 3368 best_supply_uV, INT_MAX, state); 3369 if (ret) { 3370 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3371 ret); 3372 goto out; 3373 } 3374 } 3375 3376 if (state == PM_SUSPEND_ON) 3377 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3378 else 3379 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3380 max_uV, state); 3381 if (ret < 0) 3382 goto out; 3383 3384 if (supply_change_uV < 0) { 3385 ret = regulator_set_voltage_unlocked(rdev->supply, 3386 best_supply_uV, INT_MAX, state); 3387 if (ret) 3388 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3389 ret); 3390 /* No need to fail here */ 3391 ret = 0; 3392 } 3393 3394 out: 3395 return ret; 3396 } 3397 3398 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3399 int *current_uV, int *min_uV) 3400 { 3401 struct regulation_constraints *constraints = rdev->constraints; 3402 3403 /* Limit voltage change only if necessary */ 3404 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3405 return 1; 3406 3407 if (*current_uV < 0) { 3408 *current_uV = _regulator_get_voltage(rdev); 3409 3410 if (*current_uV < 0) 3411 return *current_uV; 3412 } 3413 3414 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3415 return 1; 3416 3417 /* Clamp target voltage within the given step */ 3418 if (*current_uV < *min_uV) 3419 *min_uV = min(*current_uV + constraints->max_uV_step, 3420 *min_uV); 3421 else 3422 *min_uV = max(*current_uV - constraints->max_uV_step, 3423 *min_uV); 3424 3425 return 0; 3426 } 3427 3428 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3429 int *current_uV, 3430 int *min_uV, int *max_uV, 3431 suspend_state_t state, 3432 int n_coupled) 3433 { 3434 struct coupling_desc *c_desc = &rdev->coupling_desc; 3435 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3436 struct regulation_constraints *constraints = rdev->constraints; 3437 int max_spread = constraints->max_spread; 3438 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3439 int max_current_uV = 0, min_current_uV = INT_MAX; 3440 int highest_min_uV = 0, target_uV, possible_uV; 3441 int i, ret; 3442 bool done; 3443 3444 *current_uV = -1; 3445 3446 /* 3447 * If there are no coupled regulators, simply set the voltage 3448 * demanded by consumers. 3449 */ 3450 if (n_coupled == 1) { 3451 /* 3452 * If consumers don't provide any demands, set voltage 3453 * to min_uV 3454 */ 3455 desired_min_uV = constraints->min_uV; 3456 desired_max_uV = constraints->max_uV; 3457 3458 ret = regulator_check_consumers(rdev, 3459 &desired_min_uV, 3460 &desired_max_uV, state); 3461 if (ret < 0) 3462 return ret; 3463 3464 possible_uV = desired_min_uV; 3465 done = true; 3466 3467 goto finish; 3468 } 3469 3470 /* Find highest min desired voltage */ 3471 for (i = 0; i < n_coupled; i++) { 3472 int tmp_min = 0; 3473 int tmp_max = INT_MAX; 3474 3475 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3476 3477 ret = regulator_check_consumers(c_rdevs[i], 3478 &tmp_min, 3479 &tmp_max, state); 3480 if (ret < 0) 3481 return ret; 3482 3483 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3484 if (ret < 0) 3485 return ret; 3486 3487 highest_min_uV = max(highest_min_uV, tmp_min); 3488 3489 if (i == 0) { 3490 desired_min_uV = tmp_min; 3491 desired_max_uV = tmp_max; 3492 } 3493 } 3494 3495 /* 3496 * Let target_uV be equal to the desired one if possible. 3497 * If not, set it to minimum voltage, allowed by other coupled 3498 * regulators. 3499 */ 3500 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3501 3502 /* 3503 * Find min and max voltages, which currently aren't violating 3504 * max_spread. 3505 */ 3506 for (i = 1; i < n_coupled; i++) { 3507 int tmp_act; 3508 3509 if (!_regulator_is_enabled(c_rdevs[i])) 3510 continue; 3511 3512 tmp_act = _regulator_get_voltage(c_rdevs[i]); 3513 if (tmp_act < 0) 3514 return tmp_act; 3515 3516 min_current_uV = min(tmp_act, min_current_uV); 3517 max_current_uV = max(tmp_act, max_current_uV); 3518 } 3519 3520 /* There aren't any other regulators enabled */ 3521 if (max_current_uV == 0) { 3522 possible_uV = target_uV; 3523 } else { 3524 /* 3525 * Correct target voltage, so as it currently isn't 3526 * violating max_spread 3527 */ 3528 possible_uV = max(target_uV, max_current_uV - max_spread); 3529 possible_uV = min(possible_uV, min_current_uV + max_spread); 3530 } 3531 3532 if (possible_uV > desired_max_uV) 3533 return -EINVAL; 3534 3535 done = (possible_uV == target_uV); 3536 desired_min_uV = possible_uV; 3537 3538 finish: 3539 /* Apply max_uV_step constraint if necessary */ 3540 if (state == PM_SUSPEND_ON) { 3541 ret = regulator_limit_voltage_step(rdev, current_uV, 3542 &desired_min_uV); 3543 if (ret < 0) 3544 return ret; 3545 3546 if (ret == 0) 3547 done = false; 3548 } 3549 3550 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3551 if (n_coupled > 1 && *current_uV == -1) { 3552 3553 if (_regulator_is_enabled(rdev)) { 3554 ret = _regulator_get_voltage(rdev); 3555 if (ret < 0) 3556 return ret; 3557 3558 *current_uV = ret; 3559 } else { 3560 *current_uV = desired_min_uV; 3561 } 3562 } 3563 3564 *min_uV = desired_min_uV; 3565 *max_uV = desired_max_uV; 3566 3567 return done; 3568 } 3569 3570 static int regulator_balance_voltage(struct regulator_dev *rdev, 3571 suspend_state_t state) 3572 { 3573 struct regulator_dev **c_rdevs; 3574 struct regulator_dev *best_rdev; 3575 struct coupling_desc *c_desc = &rdev->coupling_desc; 3576 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3577 bool best_c_rdev_done, c_rdev_done[MAX_COUPLED]; 3578 unsigned int delta, best_delta; 3579 3580 c_rdevs = c_desc->coupled_rdevs; 3581 n_coupled = c_desc->n_coupled; 3582 3583 /* 3584 * If system is in a state other than PM_SUSPEND_ON, don't check 3585 * other coupled regulators. 3586 */ 3587 if (state != PM_SUSPEND_ON) 3588 n_coupled = 1; 3589 3590 if (c_desc->n_resolved < n_coupled) { 3591 rdev_err(rdev, "Not all coupled regulators registered\n"); 3592 return -EPERM; 3593 } 3594 3595 for (i = 0; i < n_coupled; i++) 3596 c_rdev_done[i] = false; 3597 3598 /* 3599 * Find the best possible voltage change on each loop. Leave the loop 3600 * if there isn't any possible change. 3601 */ 3602 do { 3603 best_c_rdev_done = false; 3604 best_delta = 0; 3605 best_min_uV = 0; 3606 best_max_uV = 0; 3607 best_c_rdev = 0; 3608 best_rdev = NULL; 3609 3610 /* 3611 * Find highest difference between optimal voltage 3612 * and current voltage. 3613 */ 3614 for (i = 0; i < n_coupled; i++) { 3615 /* 3616 * optimal_uV is the best voltage that can be set for 3617 * i-th regulator at the moment without violating 3618 * max_spread constraint in order to balance 3619 * the coupled voltages. 3620 */ 3621 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3622 3623 if (c_rdev_done[i]) 3624 continue; 3625 3626 ret = regulator_get_optimal_voltage(c_rdevs[i], 3627 ¤t_uV, 3628 &optimal_uV, 3629 &optimal_max_uV, 3630 state, n_coupled); 3631 if (ret < 0) 3632 goto out; 3633 3634 delta = abs(optimal_uV - current_uV); 3635 3636 if (delta && best_delta <= delta) { 3637 best_c_rdev_done = ret; 3638 best_delta = delta; 3639 best_rdev = c_rdevs[i]; 3640 best_min_uV = optimal_uV; 3641 best_max_uV = optimal_max_uV; 3642 best_c_rdev = i; 3643 } 3644 } 3645 3646 /* Nothing to change, return successfully */ 3647 if (!best_rdev) { 3648 ret = 0; 3649 goto out; 3650 } 3651 3652 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3653 best_max_uV, state); 3654 3655 if (ret < 0) 3656 goto out; 3657 3658 c_rdev_done[best_c_rdev] = best_c_rdev_done; 3659 3660 } while (n_coupled > 1); 3661 3662 out: 3663 return ret; 3664 } 3665 3666 /** 3667 * regulator_set_voltage - set regulator output voltage 3668 * @regulator: regulator source 3669 * @min_uV: Minimum required voltage in uV 3670 * @max_uV: Maximum acceptable voltage in uV 3671 * 3672 * Sets a voltage regulator to the desired output voltage. This can be set 3673 * during any regulator state. IOW, regulator can be disabled or enabled. 3674 * 3675 * If the regulator is enabled then the voltage will change to the new value 3676 * immediately otherwise if the regulator is disabled the regulator will 3677 * output at the new voltage when enabled. 3678 * 3679 * NOTE: If the regulator is shared between several devices then the lowest 3680 * request voltage that meets the system constraints will be used. 3681 * Regulator system constraints must be set for this regulator before 3682 * calling this function otherwise this call will fail. 3683 */ 3684 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3685 { 3686 struct ww_acquire_ctx ww_ctx; 3687 int ret; 3688 3689 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3690 3691 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3692 PM_SUSPEND_ON); 3693 3694 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3695 3696 return ret; 3697 } 3698 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3699 3700 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3701 suspend_state_t state, bool en) 3702 { 3703 struct regulator_state *rstate; 3704 3705 rstate = regulator_get_suspend_state(rdev, state); 3706 if (rstate == NULL) 3707 return -EINVAL; 3708 3709 if (!rstate->changeable) 3710 return -EPERM; 3711 3712 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3713 3714 return 0; 3715 } 3716 3717 int regulator_suspend_enable(struct regulator_dev *rdev, 3718 suspend_state_t state) 3719 { 3720 return regulator_suspend_toggle(rdev, state, true); 3721 } 3722 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3723 3724 int regulator_suspend_disable(struct regulator_dev *rdev, 3725 suspend_state_t state) 3726 { 3727 struct regulator *regulator; 3728 struct regulator_voltage *voltage; 3729 3730 /* 3731 * if any consumer wants this regulator device keeping on in 3732 * suspend states, don't set it as disabled. 3733 */ 3734 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3735 voltage = ®ulator->voltage[state]; 3736 if (voltage->min_uV || voltage->max_uV) 3737 return 0; 3738 } 3739 3740 return regulator_suspend_toggle(rdev, state, false); 3741 } 3742 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3743 3744 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3745 int min_uV, int max_uV, 3746 suspend_state_t state) 3747 { 3748 struct regulator_dev *rdev = regulator->rdev; 3749 struct regulator_state *rstate; 3750 3751 rstate = regulator_get_suspend_state(rdev, state); 3752 if (rstate == NULL) 3753 return -EINVAL; 3754 3755 if (rstate->min_uV == rstate->max_uV) { 3756 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3757 return -EPERM; 3758 } 3759 3760 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3761 } 3762 3763 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3764 int max_uV, suspend_state_t state) 3765 { 3766 struct ww_acquire_ctx ww_ctx; 3767 int ret; 3768 3769 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3770 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3771 return -EINVAL; 3772 3773 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3774 3775 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3776 max_uV, state); 3777 3778 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3779 3780 return ret; 3781 } 3782 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3783 3784 /** 3785 * regulator_set_voltage_time - get raise/fall time 3786 * @regulator: regulator source 3787 * @old_uV: starting voltage in microvolts 3788 * @new_uV: target voltage in microvolts 3789 * 3790 * Provided with the starting and ending voltage, this function attempts to 3791 * calculate the time in microseconds required to rise or fall to this new 3792 * voltage. 3793 */ 3794 int regulator_set_voltage_time(struct regulator *regulator, 3795 int old_uV, int new_uV) 3796 { 3797 struct regulator_dev *rdev = regulator->rdev; 3798 const struct regulator_ops *ops = rdev->desc->ops; 3799 int old_sel = -1; 3800 int new_sel = -1; 3801 int voltage; 3802 int i; 3803 3804 if (ops->set_voltage_time) 3805 return ops->set_voltage_time(rdev, old_uV, new_uV); 3806 else if (!ops->set_voltage_time_sel) 3807 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3808 3809 /* Currently requires operations to do this */ 3810 if (!ops->list_voltage || !rdev->desc->n_voltages) 3811 return -EINVAL; 3812 3813 for (i = 0; i < rdev->desc->n_voltages; i++) { 3814 /* We only look for exact voltage matches here */ 3815 voltage = regulator_list_voltage(regulator, i); 3816 if (voltage < 0) 3817 return -EINVAL; 3818 if (voltage == 0) 3819 continue; 3820 if (voltage == old_uV) 3821 old_sel = i; 3822 if (voltage == new_uV) 3823 new_sel = i; 3824 } 3825 3826 if (old_sel < 0 || new_sel < 0) 3827 return -EINVAL; 3828 3829 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3830 } 3831 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3832 3833 /** 3834 * regulator_set_voltage_time_sel - get raise/fall time 3835 * @rdev: regulator source device 3836 * @old_selector: selector for starting voltage 3837 * @new_selector: selector for target voltage 3838 * 3839 * Provided with the starting and target voltage selectors, this function 3840 * returns time in microseconds required to rise or fall to this new voltage 3841 * 3842 * Drivers providing ramp_delay in regulation_constraints can use this as their 3843 * set_voltage_time_sel() operation. 3844 */ 3845 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3846 unsigned int old_selector, 3847 unsigned int new_selector) 3848 { 3849 int old_volt, new_volt; 3850 3851 /* sanity check */ 3852 if (!rdev->desc->ops->list_voltage) 3853 return -EINVAL; 3854 3855 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3856 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3857 3858 if (rdev->desc->ops->set_voltage_time) 3859 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3860 new_volt); 3861 else 3862 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3863 } 3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3865 3866 /** 3867 * regulator_sync_voltage - re-apply last regulator output voltage 3868 * @regulator: regulator source 3869 * 3870 * Re-apply the last configured voltage. This is intended to be used 3871 * where some external control source the consumer is cooperating with 3872 * has caused the configured voltage to change. 3873 */ 3874 int regulator_sync_voltage(struct regulator *regulator) 3875 { 3876 struct regulator_dev *rdev = regulator->rdev; 3877 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3878 int ret, min_uV, max_uV; 3879 3880 regulator_lock(rdev); 3881 3882 if (!rdev->desc->ops->set_voltage && 3883 !rdev->desc->ops->set_voltage_sel) { 3884 ret = -EINVAL; 3885 goto out; 3886 } 3887 3888 /* This is only going to work if we've had a voltage configured. */ 3889 if (!voltage->min_uV && !voltage->max_uV) { 3890 ret = -EINVAL; 3891 goto out; 3892 } 3893 3894 min_uV = voltage->min_uV; 3895 max_uV = voltage->max_uV; 3896 3897 /* This should be a paranoia check... */ 3898 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3899 if (ret < 0) 3900 goto out; 3901 3902 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3903 if (ret < 0) 3904 goto out; 3905 3906 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3907 3908 out: 3909 regulator_unlock(rdev); 3910 return ret; 3911 } 3912 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3913 3914 static int _regulator_get_voltage(struct regulator_dev *rdev) 3915 { 3916 int sel, ret; 3917 bool bypassed; 3918 3919 if (rdev->desc->ops->get_bypass) { 3920 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3921 if (ret < 0) 3922 return ret; 3923 if (bypassed) { 3924 /* if bypassed the regulator must have a supply */ 3925 if (!rdev->supply) { 3926 rdev_err(rdev, 3927 "bypassed regulator has no supply!\n"); 3928 return -EPROBE_DEFER; 3929 } 3930 3931 return _regulator_get_voltage(rdev->supply->rdev); 3932 } 3933 } 3934 3935 if (rdev->desc->ops->get_voltage_sel) { 3936 sel = rdev->desc->ops->get_voltage_sel(rdev); 3937 if (sel < 0) 3938 return sel; 3939 ret = rdev->desc->ops->list_voltage(rdev, sel); 3940 } else if (rdev->desc->ops->get_voltage) { 3941 ret = rdev->desc->ops->get_voltage(rdev); 3942 } else if (rdev->desc->ops->list_voltage) { 3943 ret = rdev->desc->ops->list_voltage(rdev, 0); 3944 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3945 ret = rdev->desc->fixed_uV; 3946 } else if (rdev->supply) { 3947 ret = _regulator_get_voltage(rdev->supply->rdev); 3948 } else { 3949 return -EINVAL; 3950 } 3951 3952 if (ret < 0) 3953 return ret; 3954 return ret - rdev->constraints->uV_offset; 3955 } 3956 3957 /** 3958 * regulator_get_voltage - get regulator output voltage 3959 * @regulator: regulator source 3960 * 3961 * This returns the current regulator voltage in uV. 3962 * 3963 * NOTE: If the regulator is disabled it will return the voltage value. This 3964 * function should not be used to determine regulator state. 3965 */ 3966 int regulator_get_voltage(struct regulator *regulator) 3967 { 3968 struct ww_acquire_ctx ww_ctx; 3969 int ret; 3970 3971 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3972 ret = _regulator_get_voltage(regulator->rdev); 3973 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3974 3975 return ret; 3976 } 3977 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3978 3979 /** 3980 * regulator_set_current_limit - set regulator output current limit 3981 * @regulator: regulator source 3982 * @min_uA: Minimum supported current in uA 3983 * @max_uA: Maximum supported current in uA 3984 * 3985 * Sets current sink to the desired output current. This can be set during 3986 * any regulator state. IOW, regulator can be disabled or enabled. 3987 * 3988 * If the regulator is enabled then the current will change to the new value 3989 * immediately otherwise if the regulator is disabled the regulator will 3990 * output at the new current when enabled. 3991 * 3992 * NOTE: Regulator system constraints must be set for this regulator before 3993 * calling this function otherwise this call will fail. 3994 */ 3995 int regulator_set_current_limit(struct regulator *regulator, 3996 int min_uA, int max_uA) 3997 { 3998 struct regulator_dev *rdev = regulator->rdev; 3999 int ret; 4000 4001 regulator_lock(rdev); 4002 4003 /* sanity check */ 4004 if (!rdev->desc->ops->set_current_limit) { 4005 ret = -EINVAL; 4006 goto out; 4007 } 4008 4009 /* constraints check */ 4010 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4011 if (ret < 0) 4012 goto out; 4013 4014 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4015 out: 4016 regulator_unlock(rdev); 4017 return ret; 4018 } 4019 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4020 4021 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4022 { 4023 /* sanity check */ 4024 if (!rdev->desc->ops->get_current_limit) 4025 return -EINVAL; 4026 4027 return rdev->desc->ops->get_current_limit(rdev); 4028 } 4029 4030 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4031 { 4032 int ret; 4033 4034 regulator_lock(rdev); 4035 ret = _regulator_get_current_limit_unlocked(rdev); 4036 regulator_unlock(rdev); 4037 4038 return ret; 4039 } 4040 4041 /** 4042 * regulator_get_current_limit - get regulator output current 4043 * @regulator: regulator source 4044 * 4045 * This returns the current supplied by the specified current sink in uA. 4046 * 4047 * NOTE: If the regulator is disabled it will return the current value. This 4048 * function should not be used to determine regulator state. 4049 */ 4050 int regulator_get_current_limit(struct regulator *regulator) 4051 { 4052 return _regulator_get_current_limit(regulator->rdev); 4053 } 4054 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4055 4056 /** 4057 * regulator_set_mode - set regulator operating mode 4058 * @regulator: regulator source 4059 * @mode: operating mode - one of the REGULATOR_MODE constants 4060 * 4061 * Set regulator operating mode to increase regulator efficiency or improve 4062 * regulation performance. 4063 * 4064 * NOTE: Regulator system constraints must be set for this regulator before 4065 * calling this function otherwise this call will fail. 4066 */ 4067 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4068 { 4069 struct regulator_dev *rdev = regulator->rdev; 4070 int ret; 4071 int regulator_curr_mode; 4072 4073 regulator_lock(rdev); 4074 4075 /* sanity check */ 4076 if (!rdev->desc->ops->set_mode) { 4077 ret = -EINVAL; 4078 goto out; 4079 } 4080 4081 /* return if the same mode is requested */ 4082 if (rdev->desc->ops->get_mode) { 4083 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4084 if (regulator_curr_mode == mode) { 4085 ret = 0; 4086 goto out; 4087 } 4088 } 4089 4090 /* constraints check */ 4091 ret = regulator_mode_constrain(rdev, &mode); 4092 if (ret < 0) 4093 goto out; 4094 4095 ret = rdev->desc->ops->set_mode(rdev, mode); 4096 out: 4097 regulator_unlock(rdev); 4098 return ret; 4099 } 4100 EXPORT_SYMBOL_GPL(regulator_set_mode); 4101 4102 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4103 { 4104 /* sanity check */ 4105 if (!rdev->desc->ops->get_mode) 4106 return -EINVAL; 4107 4108 return rdev->desc->ops->get_mode(rdev); 4109 } 4110 4111 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4112 { 4113 int ret; 4114 4115 regulator_lock(rdev); 4116 ret = _regulator_get_mode_unlocked(rdev); 4117 regulator_unlock(rdev); 4118 4119 return ret; 4120 } 4121 4122 /** 4123 * regulator_get_mode - get regulator operating mode 4124 * @regulator: regulator source 4125 * 4126 * Get the current regulator operating mode. 4127 */ 4128 unsigned int regulator_get_mode(struct regulator *regulator) 4129 { 4130 return _regulator_get_mode(regulator->rdev); 4131 } 4132 EXPORT_SYMBOL_GPL(regulator_get_mode); 4133 4134 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4135 unsigned int *flags) 4136 { 4137 int ret; 4138 4139 regulator_lock(rdev); 4140 4141 /* sanity check */ 4142 if (!rdev->desc->ops->get_error_flags) { 4143 ret = -EINVAL; 4144 goto out; 4145 } 4146 4147 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4148 out: 4149 regulator_unlock(rdev); 4150 return ret; 4151 } 4152 4153 /** 4154 * regulator_get_error_flags - get regulator error information 4155 * @regulator: regulator source 4156 * @flags: pointer to store error flags 4157 * 4158 * Get the current regulator error information. 4159 */ 4160 int regulator_get_error_flags(struct regulator *regulator, 4161 unsigned int *flags) 4162 { 4163 return _regulator_get_error_flags(regulator->rdev, flags); 4164 } 4165 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4166 4167 /** 4168 * regulator_set_load - set regulator load 4169 * @regulator: regulator source 4170 * @uA_load: load current 4171 * 4172 * Notifies the regulator core of a new device load. This is then used by 4173 * DRMS (if enabled by constraints) to set the most efficient regulator 4174 * operating mode for the new regulator loading. 4175 * 4176 * Consumer devices notify their supply regulator of the maximum power 4177 * they will require (can be taken from device datasheet in the power 4178 * consumption tables) when they change operational status and hence power 4179 * state. Examples of operational state changes that can affect power 4180 * consumption are :- 4181 * 4182 * o Device is opened / closed. 4183 * o Device I/O is about to begin or has just finished. 4184 * o Device is idling in between work. 4185 * 4186 * This information is also exported via sysfs to userspace. 4187 * 4188 * DRMS will sum the total requested load on the regulator and change 4189 * to the most efficient operating mode if platform constraints allow. 4190 * 4191 * NOTE: when a regulator consumer requests to have a regulator 4192 * disabled then any load that consumer requested no longer counts 4193 * toward the total requested load. If the regulator is re-enabled 4194 * then the previously requested load will start counting again. 4195 * 4196 * If a regulator is an always-on regulator then an individual consumer's 4197 * load will still be removed if that consumer is fully disabled. 4198 * 4199 * On error a negative errno is returned. 4200 */ 4201 int regulator_set_load(struct regulator *regulator, int uA_load) 4202 { 4203 struct regulator_dev *rdev = regulator->rdev; 4204 int old_uA_load; 4205 int ret = 0; 4206 4207 regulator_lock(rdev); 4208 old_uA_load = regulator->uA_load; 4209 regulator->uA_load = uA_load; 4210 if (regulator->enable_count && old_uA_load != uA_load) { 4211 ret = drms_uA_update(rdev); 4212 if (ret < 0) 4213 regulator->uA_load = old_uA_load; 4214 } 4215 regulator_unlock(rdev); 4216 4217 return ret; 4218 } 4219 EXPORT_SYMBOL_GPL(regulator_set_load); 4220 4221 /** 4222 * regulator_allow_bypass - allow the regulator to go into bypass mode 4223 * 4224 * @regulator: Regulator to configure 4225 * @enable: enable or disable bypass mode 4226 * 4227 * Allow the regulator to go into bypass mode if all other consumers 4228 * for the regulator also enable bypass mode and the machine 4229 * constraints allow this. Bypass mode means that the regulator is 4230 * simply passing the input directly to the output with no regulation. 4231 */ 4232 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4233 { 4234 struct regulator_dev *rdev = regulator->rdev; 4235 int ret = 0; 4236 4237 if (!rdev->desc->ops->set_bypass) 4238 return 0; 4239 4240 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4241 return 0; 4242 4243 regulator_lock(rdev); 4244 4245 if (enable && !regulator->bypass) { 4246 rdev->bypass_count++; 4247 4248 if (rdev->bypass_count == rdev->open_count) { 4249 ret = rdev->desc->ops->set_bypass(rdev, enable); 4250 if (ret != 0) 4251 rdev->bypass_count--; 4252 } 4253 4254 } else if (!enable && regulator->bypass) { 4255 rdev->bypass_count--; 4256 4257 if (rdev->bypass_count != rdev->open_count) { 4258 ret = rdev->desc->ops->set_bypass(rdev, enable); 4259 if (ret != 0) 4260 rdev->bypass_count++; 4261 } 4262 } 4263 4264 if (ret == 0) 4265 regulator->bypass = enable; 4266 4267 regulator_unlock(rdev); 4268 4269 return ret; 4270 } 4271 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4272 4273 /** 4274 * regulator_register_notifier - register regulator event notifier 4275 * @regulator: regulator source 4276 * @nb: notifier block 4277 * 4278 * Register notifier block to receive regulator events. 4279 */ 4280 int regulator_register_notifier(struct regulator *regulator, 4281 struct notifier_block *nb) 4282 { 4283 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4284 nb); 4285 } 4286 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4287 4288 /** 4289 * regulator_unregister_notifier - unregister regulator event notifier 4290 * @regulator: regulator source 4291 * @nb: notifier block 4292 * 4293 * Unregister regulator event notifier block. 4294 */ 4295 int regulator_unregister_notifier(struct regulator *regulator, 4296 struct notifier_block *nb) 4297 { 4298 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4299 nb); 4300 } 4301 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4302 4303 /* notify regulator consumers and downstream regulator consumers. 4304 * Note mutex must be held by caller. 4305 */ 4306 static int _notifier_call_chain(struct regulator_dev *rdev, 4307 unsigned long event, void *data) 4308 { 4309 /* call rdev chain first */ 4310 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4311 } 4312 4313 /** 4314 * regulator_bulk_get - get multiple regulator consumers 4315 * 4316 * @dev: Device to supply 4317 * @num_consumers: Number of consumers to register 4318 * @consumers: Configuration of consumers; clients are stored here. 4319 * 4320 * @return 0 on success, an errno on failure. 4321 * 4322 * This helper function allows drivers to get several regulator 4323 * consumers in one operation. If any of the regulators cannot be 4324 * acquired then any regulators that were allocated will be freed 4325 * before returning to the caller. 4326 */ 4327 int regulator_bulk_get(struct device *dev, int num_consumers, 4328 struct regulator_bulk_data *consumers) 4329 { 4330 int i; 4331 int ret; 4332 4333 for (i = 0; i < num_consumers; i++) 4334 consumers[i].consumer = NULL; 4335 4336 for (i = 0; i < num_consumers; i++) { 4337 consumers[i].consumer = regulator_get(dev, 4338 consumers[i].supply); 4339 if (IS_ERR(consumers[i].consumer)) { 4340 ret = PTR_ERR(consumers[i].consumer); 4341 consumers[i].consumer = NULL; 4342 goto err; 4343 } 4344 } 4345 4346 return 0; 4347 4348 err: 4349 if (ret != -EPROBE_DEFER) 4350 dev_err(dev, "Failed to get supply '%s': %d\n", 4351 consumers[i].supply, ret); 4352 else 4353 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4354 consumers[i].supply); 4355 4356 while (--i >= 0) 4357 regulator_put(consumers[i].consumer); 4358 4359 return ret; 4360 } 4361 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4362 4363 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4364 { 4365 struct regulator_bulk_data *bulk = data; 4366 4367 bulk->ret = regulator_enable(bulk->consumer); 4368 } 4369 4370 /** 4371 * regulator_bulk_enable - enable multiple regulator consumers 4372 * 4373 * @num_consumers: Number of consumers 4374 * @consumers: Consumer data; clients are stored here. 4375 * @return 0 on success, an errno on failure 4376 * 4377 * This convenience API allows consumers to enable multiple regulator 4378 * clients in a single API call. If any consumers cannot be enabled 4379 * then any others that were enabled will be disabled again prior to 4380 * return. 4381 */ 4382 int regulator_bulk_enable(int num_consumers, 4383 struct regulator_bulk_data *consumers) 4384 { 4385 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4386 int i; 4387 int ret = 0; 4388 4389 for (i = 0; i < num_consumers; i++) { 4390 async_schedule_domain(regulator_bulk_enable_async, 4391 &consumers[i], &async_domain); 4392 } 4393 4394 async_synchronize_full_domain(&async_domain); 4395 4396 /* If any consumer failed we need to unwind any that succeeded */ 4397 for (i = 0; i < num_consumers; i++) { 4398 if (consumers[i].ret != 0) { 4399 ret = consumers[i].ret; 4400 goto err; 4401 } 4402 } 4403 4404 return 0; 4405 4406 err: 4407 for (i = 0; i < num_consumers; i++) { 4408 if (consumers[i].ret < 0) 4409 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 4410 consumers[i].ret); 4411 else 4412 regulator_disable(consumers[i].consumer); 4413 } 4414 4415 return ret; 4416 } 4417 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4418 4419 /** 4420 * regulator_bulk_disable - disable multiple regulator consumers 4421 * 4422 * @num_consumers: Number of consumers 4423 * @consumers: Consumer data; clients are stored here. 4424 * @return 0 on success, an errno on failure 4425 * 4426 * This convenience API allows consumers to disable multiple regulator 4427 * clients in a single API call. If any consumers cannot be disabled 4428 * then any others that were disabled will be enabled again prior to 4429 * return. 4430 */ 4431 int regulator_bulk_disable(int num_consumers, 4432 struct regulator_bulk_data *consumers) 4433 { 4434 int i; 4435 int ret, r; 4436 4437 for (i = num_consumers - 1; i >= 0; --i) { 4438 ret = regulator_disable(consumers[i].consumer); 4439 if (ret != 0) 4440 goto err; 4441 } 4442 4443 return 0; 4444 4445 err: 4446 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 4447 for (++i; i < num_consumers; ++i) { 4448 r = regulator_enable(consumers[i].consumer); 4449 if (r != 0) 4450 pr_err("Failed to re-enable %s: %d\n", 4451 consumers[i].supply, r); 4452 } 4453 4454 return ret; 4455 } 4456 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4457 4458 /** 4459 * regulator_bulk_force_disable - force disable multiple regulator consumers 4460 * 4461 * @num_consumers: Number of consumers 4462 * @consumers: Consumer data; clients are stored here. 4463 * @return 0 on success, an errno on failure 4464 * 4465 * This convenience API allows consumers to forcibly disable multiple regulator 4466 * clients in a single API call. 4467 * NOTE: This should be used for situations when device damage will 4468 * likely occur if the regulators are not disabled (e.g. over temp). 4469 * Although regulator_force_disable function call for some consumers can 4470 * return error numbers, the function is called for all consumers. 4471 */ 4472 int regulator_bulk_force_disable(int num_consumers, 4473 struct regulator_bulk_data *consumers) 4474 { 4475 int i; 4476 int ret = 0; 4477 4478 for (i = 0; i < num_consumers; i++) { 4479 consumers[i].ret = 4480 regulator_force_disable(consumers[i].consumer); 4481 4482 /* Store first error for reporting */ 4483 if (consumers[i].ret && !ret) 4484 ret = consumers[i].ret; 4485 } 4486 4487 return ret; 4488 } 4489 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4490 4491 /** 4492 * regulator_bulk_free - free multiple regulator consumers 4493 * 4494 * @num_consumers: Number of consumers 4495 * @consumers: Consumer data; clients are stored here. 4496 * 4497 * This convenience API allows consumers to free multiple regulator 4498 * clients in a single API call. 4499 */ 4500 void regulator_bulk_free(int num_consumers, 4501 struct regulator_bulk_data *consumers) 4502 { 4503 int i; 4504 4505 for (i = 0; i < num_consumers; i++) { 4506 regulator_put(consumers[i].consumer); 4507 consumers[i].consumer = NULL; 4508 } 4509 } 4510 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4511 4512 /** 4513 * regulator_notifier_call_chain - call regulator event notifier 4514 * @rdev: regulator source 4515 * @event: notifier block 4516 * @data: callback-specific data. 4517 * 4518 * Called by regulator drivers to notify clients a regulator event has 4519 * occurred. We also notify regulator clients downstream. 4520 * Note lock must be held by caller. 4521 */ 4522 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4523 unsigned long event, void *data) 4524 { 4525 lockdep_assert_held_once(&rdev->mutex.base); 4526 4527 _notifier_call_chain(rdev, event, data); 4528 return NOTIFY_DONE; 4529 4530 } 4531 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4532 4533 /** 4534 * regulator_mode_to_status - convert a regulator mode into a status 4535 * 4536 * @mode: Mode to convert 4537 * 4538 * Convert a regulator mode into a status. 4539 */ 4540 int regulator_mode_to_status(unsigned int mode) 4541 { 4542 switch (mode) { 4543 case REGULATOR_MODE_FAST: 4544 return REGULATOR_STATUS_FAST; 4545 case REGULATOR_MODE_NORMAL: 4546 return REGULATOR_STATUS_NORMAL; 4547 case REGULATOR_MODE_IDLE: 4548 return REGULATOR_STATUS_IDLE; 4549 case REGULATOR_MODE_STANDBY: 4550 return REGULATOR_STATUS_STANDBY; 4551 default: 4552 return REGULATOR_STATUS_UNDEFINED; 4553 } 4554 } 4555 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4556 4557 static struct attribute *regulator_dev_attrs[] = { 4558 &dev_attr_name.attr, 4559 &dev_attr_num_users.attr, 4560 &dev_attr_type.attr, 4561 &dev_attr_microvolts.attr, 4562 &dev_attr_microamps.attr, 4563 &dev_attr_opmode.attr, 4564 &dev_attr_state.attr, 4565 &dev_attr_status.attr, 4566 &dev_attr_bypass.attr, 4567 &dev_attr_requested_microamps.attr, 4568 &dev_attr_min_microvolts.attr, 4569 &dev_attr_max_microvolts.attr, 4570 &dev_attr_min_microamps.attr, 4571 &dev_attr_max_microamps.attr, 4572 &dev_attr_suspend_standby_state.attr, 4573 &dev_attr_suspend_mem_state.attr, 4574 &dev_attr_suspend_disk_state.attr, 4575 &dev_attr_suspend_standby_microvolts.attr, 4576 &dev_attr_suspend_mem_microvolts.attr, 4577 &dev_attr_suspend_disk_microvolts.attr, 4578 &dev_attr_suspend_standby_mode.attr, 4579 &dev_attr_suspend_mem_mode.attr, 4580 &dev_attr_suspend_disk_mode.attr, 4581 NULL 4582 }; 4583 4584 /* 4585 * To avoid cluttering sysfs (and memory) with useless state, only 4586 * create attributes that can be meaningfully displayed. 4587 */ 4588 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4589 struct attribute *attr, int idx) 4590 { 4591 struct device *dev = kobj_to_dev(kobj); 4592 struct regulator_dev *rdev = dev_to_rdev(dev); 4593 const struct regulator_ops *ops = rdev->desc->ops; 4594 umode_t mode = attr->mode; 4595 4596 /* these three are always present */ 4597 if (attr == &dev_attr_name.attr || 4598 attr == &dev_attr_num_users.attr || 4599 attr == &dev_attr_type.attr) 4600 return mode; 4601 4602 /* some attributes need specific methods to be displayed */ 4603 if (attr == &dev_attr_microvolts.attr) { 4604 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4605 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4606 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4607 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4608 return mode; 4609 return 0; 4610 } 4611 4612 if (attr == &dev_attr_microamps.attr) 4613 return ops->get_current_limit ? mode : 0; 4614 4615 if (attr == &dev_attr_opmode.attr) 4616 return ops->get_mode ? mode : 0; 4617 4618 if (attr == &dev_attr_state.attr) 4619 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4620 4621 if (attr == &dev_attr_status.attr) 4622 return ops->get_status ? mode : 0; 4623 4624 if (attr == &dev_attr_bypass.attr) 4625 return ops->get_bypass ? mode : 0; 4626 4627 /* constraints need specific supporting methods */ 4628 if (attr == &dev_attr_min_microvolts.attr || 4629 attr == &dev_attr_max_microvolts.attr) 4630 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4631 4632 if (attr == &dev_attr_min_microamps.attr || 4633 attr == &dev_attr_max_microamps.attr) 4634 return ops->set_current_limit ? mode : 0; 4635 4636 if (attr == &dev_attr_suspend_standby_state.attr || 4637 attr == &dev_attr_suspend_mem_state.attr || 4638 attr == &dev_attr_suspend_disk_state.attr) 4639 return mode; 4640 4641 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4642 attr == &dev_attr_suspend_mem_microvolts.attr || 4643 attr == &dev_attr_suspend_disk_microvolts.attr) 4644 return ops->set_suspend_voltage ? mode : 0; 4645 4646 if (attr == &dev_attr_suspend_standby_mode.attr || 4647 attr == &dev_attr_suspend_mem_mode.attr || 4648 attr == &dev_attr_suspend_disk_mode.attr) 4649 return ops->set_suspend_mode ? mode : 0; 4650 4651 return mode; 4652 } 4653 4654 static const struct attribute_group regulator_dev_group = { 4655 .attrs = regulator_dev_attrs, 4656 .is_visible = regulator_attr_is_visible, 4657 }; 4658 4659 static const struct attribute_group *regulator_dev_groups[] = { 4660 ®ulator_dev_group, 4661 NULL 4662 }; 4663 4664 static void regulator_dev_release(struct device *dev) 4665 { 4666 struct regulator_dev *rdev = dev_get_drvdata(dev); 4667 4668 kfree(rdev->constraints); 4669 of_node_put(rdev->dev.of_node); 4670 kfree(rdev); 4671 } 4672 4673 static void rdev_init_debugfs(struct regulator_dev *rdev) 4674 { 4675 struct device *parent = rdev->dev.parent; 4676 const char *rname = rdev_get_name(rdev); 4677 char name[NAME_MAX]; 4678 4679 /* Avoid duplicate debugfs directory names */ 4680 if (parent && rname == rdev->desc->name) { 4681 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4682 rname); 4683 rname = name; 4684 } 4685 4686 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4687 if (!rdev->debugfs) { 4688 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4689 return; 4690 } 4691 4692 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4693 &rdev->use_count); 4694 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4695 &rdev->open_count); 4696 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4697 &rdev->bypass_count); 4698 } 4699 4700 static int regulator_register_resolve_supply(struct device *dev, void *data) 4701 { 4702 struct regulator_dev *rdev = dev_to_rdev(dev); 4703 4704 if (regulator_resolve_supply(rdev)) 4705 rdev_dbg(rdev, "unable to resolve supply\n"); 4706 4707 return 0; 4708 } 4709 4710 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4711 { 4712 struct coupling_desc *c_desc = &rdev->coupling_desc; 4713 int n_coupled = c_desc->n_coupled; 4714 struct regulator_dev *c_rdev; 4715 int i; 4716 4717 for (i = 1; i < n_coupled; i++) { 4718 /* already resolved */ 4719 if (c_desc->coupled_rdevs[i]) 4720 continue; 4721 4722 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 4723 4724 if (!c_rdev) 4725 continue; 4726 4727 regulator_lock(c_rdev); 4728 4729 c_desc->coupled_rdevs[i] = c_rdev; 4730 c_desc->n_resolved++; 4731 4732 regulator_unlock(c_rdev); 4733 4734 regulator_resolve_coupling(c_rdev); 4735 } 4736 } 4737 4738 static void regulator_remove_coupling(struct regulator_dev *rdev) 4739 { 4740 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 4741 struct regulator_dev *__c_rdev, *c_rdev; 4742 unsigned int __n_coupled, n_coupled; 4743 int i, k; 4744 4745 n_coupled = c_desc->n_coupled; 4746 4747 for (i = 1; i < n_coupled; i++) { 4748 c_rdev = c_desc->coupled_rdevs[i]; 4749 4750 if (!c_rdev) 4751 continue; 4752 4753 regulator_lock(c_rdev); 4754 4755 __c_desc = &c_rdev->coupling_desc; 4756 __n_coupled = __c_desc->n_coupled; 4757 4758 for (k = 1; k < __n_coupled; k++) { 4759 __c_rdev = __c_desc->coupled_rdevs[k]; 4760 4761 if (__c_rdev == rdev) { 4762 __c_desc->coupled_rdevs[k] = NULL; 4763 __c_desc->n_resolved--; 4764 break; 4765 } 4766 } 4767 4768 regulator_unlock(c_rdev); 4769 4770 c_desc->coupled_rdevs[i] = NULL; 4771 c_desc->n_resolved--; 4772 } 4773 } 4774 4775 static int regulator_init_coupling(struct regulator_dev *rdev) 4776 { 4777 int n_phandles; 4778 4779 if (!IS_ENABLED(CONFIG_OF)) 4780 n_phandles = 0; 4781 else 4782 n_phandles = of_get_n_coupled(rdev); 4783 4784 if (n_phandles + 1 > MAX_COUPLED) { 4785 rdev_err(rdev, "too many regulators coupled\n"); 4786 return -EPERM; 4787 } 4788 4789 /* 4790 * Every regulator should always have coupling descriptor filled with 4791 * at least pointer to itself. 4792 */ 4793 rdev->coupling_desc.coupled_rdevs[0] = rdev; 4794 rdev->coupling_desc.n_coupled = n_phandles + 1; 4795 rdev->coupling_desc.n_resolved++; 4796 4797 /* regulator isn't coupled */ 4798 if (n_phandles == 0) 4799 return 0; 4800 4801 /* regulator, which can't change its voltage, can't be coupled */ 4802 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 4803 rdev_err(rdev, "voltage operation not allowed\n"); 4804 return -EPERM; 4805 } 4806 4807 if (rdev->constraints->max_spread <= 0) { 4808 rdev_err(rdev, "wrong max_spread value\n"); 4809 return -EPERM; 4810 } 4811 4812 if (!of_check_coupling_data(rdev)) 4813 return -EPERM; 4814 4815 return 0; 4816 } 4817 4818 /** 4819 * regulator_register - register regulator 4820 * @regulator_desc: regulator to register 4821 * @cfg: runtime configuration for regulator 4822 * 4823 * Called by regulator drivers to register a regulator. 4824 * Returns a valid pointer to struct regulator_dev on success 4825 * or an ERR_PTR() on error. 4826 */ 4827 struct regulator_dev * 4828 regulator_register(const struct regulator_desc *regulator_desc, 4829 const struct regulator_config *cfg) 4830 { 4831 const struct regulation_constraints *constraints = NULL; 4832 const struct regulator_init_data *init_data; 4833 struct regulator_config *config = NULL; 4834 static atomic_t regulator_no = ATOMIC_INIT(-1); 4835 struct regulator_dev *rdev; 4836 bool dangling_cfg_gpiod = false; 4837 bool dangling_of_gpiod = false; 4838 struct device *dev; 4839 int ret, i; 4840 4841 if (cfg == NULL) 4842 return ERR_PTR(-EINVAL); 4843 if (cfg->ena_gpiod) 4844 dangling_cfg_gpiod = true; 4845 if (regulator_desc == NULL) { 4846 ret = -EINVAL; 4847 goto rinse; 4848 } 4849 4850 dev = cfg->dev; 4851 WARN_ON(!dev); 4852 4853 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 4854 ret = -EINVAL; 4855 goto rinse; 4856 } 4857 4858 if (regulator_desc->type != REGULATOR_VOLTAGE && 4859 regulator_desc->type != REGULATOR_CURRENT) { 4860 ret = -EINVAL; 4861 goto rinse; 4862 } 4863 4864 /* Only one of each should be implemented */ 4865 WARN_ON(regulator_desc->ops->get_voltage && 4866 regulator_desc->ops->get_voltage_sel); 4867 WARN_ON(regulator_desc->ops->set_voltage && 4868 regulator_desc->ops->set_voltage_sel); 4869 4870 /* If we're using selectors we must implement list_voltage. */ 4871 if (regulator_desc->ops->get_voltage_sel && 4872 !regulator_desc->ops->list_voltage) { 4873 ret = -EINVAL; 4874 goto rinse; 4875 } 4876 if (regulator_desc->ops->set_voltage_sel && 4877 !regulator_desc->ops->list_voltage) { 4878 ret = -EINVAL; 4879 goto rinse; 4880 } 4881 4882 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4883 if (rdev == NULL) { 4884 ret = -ENOMEM; 4885 goto rinse; 4886 } 4887 4888 /* 4889 * Duplicate the config so the driver could override it after 4890 * parsing init data. 4891 */ 4892 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4893 if (config == NULL) { 4894 kfree(rdev); 4895 ret = -ENOMEM; 4896 goto rinse; 4897 } 4898 4899 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4900 &rdev->dev.of_node); 4901 /* 4902 * We need to keep track of any GPIO descriptor coming from the 4903 * device tree until we have handled it over to the core. If the 4904 * config that was passed in to this function DOES NOT contain 4905 * a descriptor, and the config after this call DOES contain 4906 * a descriptor, we definitely got one from parsing the device 4907 * tree. 4908 */ 4909 if (!cfg->ena_gpiod && config->ena_gpiod) 4910 dangling_of_gpiod = true; 4911 if (!init_data) { 4912 init_data = config->init_data; 4913 rdev->dev.of_node = of_node_get(config->of_node); 4914 } 4915 4916 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 4917 rdev->reg_data = config->driver_data; 4918 rdev->owner = regulator_desc->owner; 4919 rdev->desc = regulator_desc; 4920 if (config->regmap) 4921 rdev->regmap = config->regmap; 4922 else if (dev_get_regmap(dev, NULL)) 4923 rdev->regmap = dev_get_regmap(dev, NULL); 4924 else if (dev->parent) 4925 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4926 INIT_LIST_HEAD(&rdev->consumer_list); 4927 INIT_LIST_HEAD(&rdev->list); 4928 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4929 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4930 4931 /* preform any regulator specific init */ 4932 if (init_data && init_data->regulator_init) { 4933 ret = init_data->regulator_init(rdev->reg_data); 4934 if (ret < 0) 4935 goto clean; 4936 } 4937 4938 if (config->ena_gpiod) { 4939 mutex_lock(®ulator_list_mutex); 4940 ret = regulator_ena_gpio_request(rdev, config); 4941 mutex_unlock(®ulator_list_mutex); 4942 if (ret != 0) { 4943 rdev_err(rdev, "Failed to request enable GPIO: %d\n", 4944 ret); 4945 goto clean; 4946 } 4947 /* The regulator core took over the GPIO descriptor */ 4948 dangling_cfg_gpiod = false; 4949 dangling_of_gpiod = false; 4950 } 4951 4952 /* register with sysfs */ 4953 rdev->dev.class = ®ulator_class; 4954 rdev->dev.parent = dev; 4955 dev_set_name(&rdev->dev, "regulator.%lu", 4956 (unsigned long) atomic_inc_return(®ulator_no)); 4957 4958 /* set regulator constraints */ 4959 if (init_data) 4960 constraints = &init_data->constraints; 4961 4962 if (init_data && init_data->supply_regulator) 4963 rdev->supply_name = init_data->supply_regulator; 4964 else if (regulator_desc->supply_name) 4965 rdev->supply_name = regulator_desc->supply_name; 4966 4967 /* 4968 * Attempt to resolve the regulator supply, if specified, 4969 * but don't return an error if we fail because we will try 4970 * to resolve it again later as more regulators are added. 4971 */ 4972 if (regulator_resolve_supply(rdev)) 4973 rdev_dbg(rdev, "unable to resolve supply\n"); 4974 4975 ret = set_machine_constraints(rdev, constraints); 4976 if (ret < 0) 4977 goto wash; 4978 4979 ret = regulator_init_coupling(rdev); 4980 if (ret < 0) 4981 goto wash; 4982 4983 /* add consumers devices */ 4984 if (init_data) { 4985 mutex_lock(®ulator_list_mutex); 4986 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4987 ret = set_consumer_device_supply(rdev, 4988 init_data->consumer_supplies[i].dev_name, 4989 init_data->consumer_supplies[i].supply); 4990 if (ret < 0) { 4991 mutex_unlock(®ulator_list_mutex); 4992 dev_err(dev, "Failed to set supply %s\n", 4993 init_data->consumer_supplies[i].supply); 4994 goto unset_supplies; 4995 } 4996 } 4997 mutex_unlock(®ulator_list_mutex); 4998 } 4999 5000 if (!rdev->desc->ops->get_voltage && 5001 !rdev->desc->ops->list_voltage && 5002 !rdev->desc->fixed_uV) 5003 rdev->is_switch = true; 5004 5005 dev_set_drvdata(&rdev->dev, rdev); 5006 ret = device_register(&rdev->dev); 5007 if (ret != 0) { 5008 put_device(&rdev->dev); 5009 goto unset_supplies; 5010 } 5011 5012 rdev_init_debugfs(rdev); 5013 5014 /* try to resolve regulators coupling since a new one was registered */ 5015 mutex_lock(®ulator_list_mutex); 5016 regulator_resolve_coupling(rdev); 5017 mutex_unlock(®ulator_list_mutex); 5018 5019 /* try to resolve regulators supply since a new one was registered */ 5020 class_for_each_device(®ulator_class, NULL, NULL, 5021 regulator_register_resolve_supply); 5022 kfree(config); 5023 return rdev; 5024 5025 unset_supplies: 5026 mutex_lock(®ulator_list_mutex); 5027 unset_regulator_supplies(rdev); 5028 mutex_unlock(®ulator_list_mutex); 5029 wash: 5030 kfree(rdev->constraints); 5031 mutex_lock(®ulator_list_mutex); 5032 regulator_ena_gpio_free(rdev); 5033 mutex_unlock(®ulator_list_mutex); 5034 clean: 5035 if (dangling_of_gpiod) 5036 gpiod_put(config->ena_gpiod); 5037 kfree(rdev); 5038 kfree(config); 5039 rinse: 5040 if (dangling_cfg_gpiod) 5041 gpiod_put(cfg->ena_gpiod); 5042 return ERR_PTR(ret); 5043 } 5044 EXPORT_SYMBOL_GPL(regulator_register); 5045 5046 /** 5047 * regulator_unregister - unregister regulator 5048 * @rdev: regulator to unregister 5049 * 5050 * Called by regulator drivers to unregister a regulator. 5051 */ 5052 void regulator_unregister(struct regulator_dev *rdev) 5053 { 5054 if (rdev == NULL) 5055 return; 5056 5057 if (rdev->supply) { 5058 while (rdev->use_count--) 5059 regulator_disable(rdev->supply); 5060 regulator_put(rdev->supply); 5061 } 5062 5063 flush_work(&rdev->disable_work.work); 5064 5065 mutex_lock(®ulator_list_mutex); 5066 5067 debugfs_remove_recursive(rdev->debugfs); 5068 WARN_ON(rdev->open_count); 5069 regulator_remove_coupling(rdev); 5070 unset_regulator_supplies(rdev); 5071 list_del(&rdev->list); 5072 regulator_ena_gpio_free(rdev); 5073 device_unregister(&rdev->dev); 5074 5075 mutex_unlock(®ulator_list_mutex); 5076 } 5077 EXPORT_SYMBOL_GPL(regulator_unregister); 5078 5079 #ifdef CONFIG_SUSPEND 5080 /** 5081 * regulator_suspend - prepare regulators for system wide suspend 5082 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5083 * 5084 * Configure each regulator with it's suspend operating parameters for state. 5085 */ 5086 static int regulator_suspend(struct device *dev) 5087 { 5088 struct regulator_dev *rdev = dev_to_rdev(dev); 5089 suspend_state_t state = pm_suspend_target_state; 5090 int ret; 5091 5092 regulator_lock(rdev); 5093 ret = suspend_set_state(rdev, state); 5094 regulator_unlock(rdev); 5095 5096 return ret; 5097 } 5098 5099 static int regulator_resume(struct device *dev) 5100 { 5101 suspend_state_t state = pm_suspend_target_state; 5102 struct regulator_dev *rdev = dev_to_rdev(dev); 5103 struct regulator_state *rstate; 5104 int ret = 0; 5105 5106 rstate = regulator_get_suspend_state(rdev, state); 5107 if (rstate == NULL) 5108 return 0; 5109 5110 regulator_lock(rdev); 5111 5112 if (rdev->desc->ops->resume && 5113 (rstate->enabled == ENABLE_IN_SUSPEND || 5114 rstate->enabled == DISABLE_IN_SUSPEND)) 5115 ret = rdev->desc->ops->resume(rdev); 5116 5117 regulator_unlock(rdev); 5118 5119 return ret; 5120 } 5121 #else /* !CONFIG_SUSPEND */ 5122 5123 #define regulator_suspend NULL 5124 #define regulator_resume NULL 5125 5126 #endif /* !CONFIG_SUSPEND */ 5127 5128 #ifdef CONFIG_PM 5129 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5130 .suspend = regulator_suspend, 5131 .resume = regulator_resume, 5132 }; 5133 #endif 5134 5135 struct class regulator_class = { 5136 .name = "regulator", 5137 .dev_release = regulator_dev_release, 5138 .dev_groups = regulator_dev_groups, 5139 #ifdef CONFIG_PM 5140 .pm = ®ulator_pm_ops, 5141 #endif 5142 }; 5143 /** 5144 * regulator_has_full_constraints - the system has fully specified constraints 5145 * 5146 * Calling this function will cause the regulator API to disable all 5147 * regulators which have a zero use count and don't have an always_on 5148 * constraint in a late_initcall. 5149 * 5150 * The intention is that this will become the default behaviour in a 5151 * future kernel release so users are encouraged to use this facility 5152 * now. 5153 */ 5154 void regulator_has_full_constraints(void) 5155 { 5156 has_full_constraints = 1; 5157 } 5158 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5159 5160 /** 5161 * rdev_get_drvdata - get rdev regulator driver data 5162 * @rdev: regulator 5163 * 5164 * Get rdev regulator driver private data. This call can be used in the 5165 * regulator driver context. 5166 */ 5167 void *rdev_get_drvdata(struct regulator_dev *rdev) 5168 { 5169 return rdev->reg_data; 5170 } 5171 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5172 5173 /** 5174 * regulator_get_drvdata - get regulator driver data 5175 * @regulator: regulator 5176 * 5177 * Get regulator driver private data. This call can be used in the consumer 5178 * driver context when non API regulator specific functions need to be called. 5179 */ 5180 void *regulator_get_drvdata(struct regulator *regulator) 5181 { 5182 return regulator->rdev->reg_data; 5183 } 5184 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5185 5186 /** 5187 * regulator_set_drvdata - set regulator driver data 5188 * @regulator: regulator 5189 * @data: data 5190 */ 5191 void regulator_set_drvdata(struct regulator *regulator, void *data) 5192 { 5193 regulator->rdev->reg_data = data; 5194 } 5195 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5196 5197 /** 5198 * regulator_get_id - get regulator ID 5199 * @rdev: regulator 5200 */ 5201 int rdev_get_id(struct regulator_dev *rdev) 5202 { 5203 return rdev->desc->id; 5204 } 5205 EXPORT_SYMBOL_GPL(rdev_get_id); 5206 5207 struct device *rdev_get_dev(struct regulator_dev *rdev) 5208 { 5209 return &rdev->dev; 5210 } 5211 EXPORT_SYMBOL_GPL(rdev_get_dev); 5212 5213 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5214 { 5215 return rdev->regmap; 5216 } 5217 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5218 5219 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5220 { 5221 return reg_init_data->driver_data; 5222 } 5223 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5224 5225 #ifdef CONFIG_DEBUG_FS 5226 static int supply_map_show(struct seq_file *sf, void *data) 5227 { 5228 struct regulator_map *map; 5229 5230 list_for_each_entry(map, ®ulator_map_list, list) { 5231 seq_printf(sf, "%s -> %s.%s\n", 5232 rdev_get_name(map->regulator), map->dev_name, 5233 map->supply); 5234 } 5235 5236 return 0; 5237 } 5238 DEFINE_SHOW_ATTRIBUTE(supply_map); 5239 5240 struct summary_data { 5241 struct seq_file *s; 5242 struct regulator_dev *parent; 5243 int level; 5244 }; 5245 5246 static void regulator_summary_show_subtree(struct seq_file *s, 5247 struct regulator_dev *rdev, 5248 int level); 5249 5250 static int regulator_summary_show_children(struct device *dev, void *data) 5251 { 5252 struct regulator_dev *rdev = dev_to_rdev(dev); 5253 struct summary_data *summary_data = data; 5254 5255 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5256 regulator_summary_show_subtree(summary_data->s, rdev, 5257 summary_data->level + 1); 5258 5259 return 0; 5260 } 5261 5262 static void regulator_summary_show_subtree(struct seq_file *s, 5263 struct regulator_dev *rdev, 5264 int level) 5265 { 5266 struct regulation_constraints *c; 5267 struct regulator *consumer; 5268 struct summary_data summary_data; 5269 unsigned int opmode; 5270 5271 if (!rdev) 5272 return; 5273 5274 opmode = _regulator_get_mode_unlocked(rdev); 5275 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5276 level * 3 + 1, "", 5277 30 - level * 3, rdev_get_name(rdev), 5278 rdev->use_count, rdev->open_count, rdev->bypass_count, 5279 regulator_opmode_to_str(opmode)); 5280 5281 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 5282 seq_printf(s, "%5dmA ", 5283 _regulator_get_current_limit_unlocked(rdev) / 1000); 5284 5285 c = rdev->constraints; 5286 if (c) { 5287 switch (rdev->desc->type) { 5288 case REGULATOR_VOLTAGE: 5289 seq_printf(s, "%5dmV %5dmV ", 5290 c->min_uV / 1000, c->max_uV / 1000); 5291 break; 5292 case REGULATOR_CURRENT: 5293 seq_printf(s, "%5dmA %5dmA ", 5294 c->min_uA / 1000, c->max_uA / 1000); 5295 break; 5296 } 5297 } 5298 5299 seq_puts(s, "\n"); 5300 5301 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5302 if (consumer->dev && consumer->dev->class == ®ulator_class) 5303 continue; 5304 5305 seq_printf(s, "%*s%-*s ", 5306 (level + 1) * 3 + 1, "", 5307 30 - (level + 1) * 3, 5308 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5309 5310 switch (rdev->desc->type) { 5311 case REGULATOR_VOLTAGE: 5312 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5313 consumer->enable_count, 5314 consumer->uA_load / 1000, 5315 consumer->uA_load && !consumer->enable_count ? 5316 '*' : ' ', 5317 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5318 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5319 break; 5320 case REGULATOR_CURRENT: 5321 break; 5322 } 5323 5324 seq_puts(s, "\n"); 5325 } 5326 5327 summary_data.s = s; 5328 summary_data.level = level; 5329 summary_data.parent = rdev; 5330 5331 class_for_each_device(®ulator_class, NULL, &summary_data, 5332 regulator_summary_show_children); 5333 } 5334 5335 struct summary_lock_data { 5336 struct ww_acquire_ctx *ww_ctx; 5337 struct regulator_dev **new_contended_rdev; 5338 struct regulator_dev **old_contended_rdev; 5339 }; 5340 5341 static int regulator_summary_lock_one(struct device *dev, void *data) 5342 { 5343 struct regulator_dev *rdev = dev_to_rdev(dev); 5344 struct summary_lock_data *lock_data = data; 5345 int ret = 0; 5346 5347 if (rdev != *lock_data->old_contended_rdev) { 5348 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5349 5350 if (ret == -EDEADLK) 5351 *lock_data->new_contended_rdev = rdev; 5352 else 5353 WARN_ON_ONCE(ret); 5354 } else { 5355 *lock_data->old_contended_rdev = NULL; 5356 } 5357 5358 return ret; 5359 } 5360 5361 static int regulator_summary_unlock_one(struct device *dev, void *data) 5362 { 5363 struct regulator_dev *rdev = dev_to_rdev(dev); 5364 struct summary_lock_data *lock_data = data; 5365 5366 if (lock_data) { 5367 if (rdev == *lock_data->new_contended_rdev) 5368 return -EDEADLK; 5369 } 5370 5371 regulator_unlock(rdev); 5372 5373 return 0; 5374 } 5375 5376 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5377 struct regulator_dev **new_contended_rdev, 5378 struct regulator_dev **old_contended_rdev) 5379 { 5380 struct summary_lock_data lock_data; 5381 int ret; 5382 5383 lock_data.ww_ctx = ww_ctx; 5384 lock_data.new_contended_rdev = new_contended_rdev; 5385 lock_data.old_contended_rdev = old_contended_rdev; 5386 5387 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5388 regulator_summary_lock_one); 5389 if (ret) 5390 class_for_each_device(®ulator_class, NULL, &lock_data, 5391 regulator_summary_unlock_one); 5392 5393 return ret; 5394 } 5395 5396 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5397 { 5398 struct regulator_dev *new_contended_rdev = NULL; 5399 struct regulator_dev *old_contended_rdev = NULL; 5400 int err; 5401 5402 mutex_lock(®ulator_list_mutex); 5403 5404 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5405 5406 do { 5407 if (new_contended_rdev) { 5408 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5409 old_contended_rdev = new_contended_rdev; 5410 old_contended_rdev->ref_cnt++; 5411 } 5412 5413 err = regulator_summary_lock_all(ww_ctx, 5414 &new_contended_rdev, 5415 &old_contended_rdev); 5416 5417 if (old_contended_rdev) 5418 regulator_unlock(old_contended_rdev); 5419 5420 } while (err == -EDEADLK); 5421 5422 ww_acquire_done(ww_ctx); 5423 } 5424 5425 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5426 { 5427 class_for_each_device(®ulator_class, NULL, NULL, 5428 regulator_summary_unlock_one); 5429 ww_acquire_fini(ww_ctx); 5430 5431 mutex_unlock(®ulator_list_mutex); 5432 } 5433 5434 static int regulator_summary_show_roots(struct device *dev, void *data) 5435 { 5436 struct regulator_dev *rdev = dev_to_rdev(dev); 5437 struct seq_file *s = data; 5438 5439 if (!rdev->supply) 5440 regulator_summary_show_subtree(s, rdev, 0); 5441 5442 return 0; 5443 } 5444 5445 static int regulator_summary_show(struct seq_file *s, void *data) 5446 { 5447 struct ww_acquire_ctx ww_ctx; 5448 5449 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5450 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5451 5452 regulator_summary_lock(&ww_ctx); 5453 5454 class_for_each_device(®ulator_class, NULL, s, 5455 regulator_summary_show_roots); 5456 5457 regulator_summary_unlock(&ww_ctx); 5458 5459 return 0; 5460 } 5461 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5462 #endif /* CONFIG_DEBUG_FS */ 5463 5464 static int __init regulator_init(void) 5465 { 5466 int ret; 5467 5468 ret = class_register(®ulator_class); 5469 5470 debugfs_root = debugfs_create_dir("regulator", NULL); 5471 if (!debugfs_root) 5472 pr_warn("regulator: Failed to create debugfs directory\n"); 5473 5474 #ifdef CONFIG_DEBUG_FS 5475 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5476 &supply_map_fops); 5477 5478 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5479 NULL, ®ulator_summary_fops); 5480 #endif 5481 regulator_dummy_init(); 5482 5483 return ret; 5484 } 5485 5486 /* init early to allow our consumers to complete system booting */ 5487 core_initcall(regulator_init); 5488 5489 static int __init regulator_late_cleanup(struct device *dev, void *data) 5490 { 5491 struct regulator_dev *rdev = dev_to_rdev(dev); 5492 const struct regulator_ops *ops = rdev->desc->ops; 5493 struct regulation_constraints *c = rdev->constraints; 5494 int enabled, ret; 5495 5496 if (c && c->always_on) 5497 return 0; 5498 5499 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5500 return 0; 5501 5502 regulator_lock(rdev); 5503 5504 if (rdev->use_count) 5505 goto unlock; 5506 5507 /* If we can't read the status assume it's on. */ 5508 if (ops->is_enabled) 5509 enabled = ops->is_enabled(rdev); 5510 else 5511 enabled = 1; 5512 5513 if (!enabled) 5514 goto unlock; 5515 5516 if (have_full_constraints()) { 5517 /* We log since this may kill the system if it goes 5518 * wrong. */ 5519 rdev_info(rdev, "disabling\n"); 5520 ret = _regulator_do_disable(rdev); 5521 if (ret != 0) 5522 rdev_err(rdev, "couldn't disable: %d\n", ret); 5523 } else { 5524 /* The intention is that in future we will 5525 * assume that full constraints are provided 5526 * so warn even if we aren't going to do 5527 * anything here. 5528 */ 5529 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5530 } 5531 5532 unlock: 5533 regulator_unlock(rdev); 5534 5535 return 0; 5536 } 5537 5538 static int __init regulator_init_complete(void) 5539 { 5540 /* 5541 * Since DT doesn't provide an idiomatic mechanism for 5542 * enabling full constraints and since it's much more natural 5543 * with DT to provide them just assume that a DT enabled 5544 * system has full constraints. 5545 */ 5546 if (of_have_populated_dt()) 5547 has_full_constraints = true; 5548 5549 /* 5550 * Regulators may had failed to resolve their input supplies 5551 * when were registered, either because the input supply was 5552 * not registered yet or because its parent device was not 5553 * bound yet. So attempt to resolve the input supplies for 5554 * pending regulators before trying to disable unused ones. 5555 */ 5556 class_for_each_device(®ulator_class, NULL, NULL, 5557 regulator_register_resolve_supply); 5558 5559 /* If we have a full configuration then disable any regulators 5560 * we have permission to change the status for and which are 5561 * not in use or always_on. This is effectively the default 5562 * for DT and ACPI as they have full constraints. 5563 */ 5564 class_for_each_device(®ulator_class, NULL, NULL, 5565 regulator_late_cleanup); 5566 5567 return 0; 5568 } 5569 late_initcall_sync(regulator_init_complete); 5570