xref: /openbmc/linux/drivers/regulator/core.c (revision 867a0e05)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 	struct device_node *regnode = NULL;
140 	char prop_name[32]; /* 32 is max size of property name */
141 
142 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 
144 	snprintf(prop_name, 32, "%s-supply", supply);
145 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 
147 	if (!regnode) {
148 		dev_dbg(dev, "Looking up %s property in node %s failed",
149 				prop_name, dev->of_node->full_name);
150 		return NULL;
151 	}
152 	return regnode;
153 }
154 
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 	if (!rdev->constraints)
158 		return 0;
159 
160 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 		return 1;
162 	else
163 		return 0;
164 }
165 
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 				   int *min_uV, int *max_uV)
169 {
170 	BUG_ON(*min_uV > *max_uV);
171 
172 	if (!rdev->constraints) {
173 		rdev_err(rdev, "no constraints\n");
174 		return -ENODEV;
175 	}
176 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 		rdev_err(rdev, "operation not allowed\n");
178 		return -EPERM;
179 	}
180 
181 	if (*max_uV > rdev->constraints->max_uV)
182 		*max_uV = rdev->constraints->max_uV;
183 	if (*min_uV < rdev->constraints->min_uV)
184 		*min_uV = rdev->constraints->min_uV;
185 
186 	if (*min_uV > *max_uV) {
187 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 			 *min_uV, *max_uV);
189 		return -EINVAL;
190 	}
191 
192 	return 0;
193 }
194 
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 				     int *min_uV, int *max_uV)
200 {
201 	struct regulator *regulator;
202 
203 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 		/*
205 		 * Assume consumers that didn't say anything are OK
206 		 * with anything in the constraint range.
207 		 */
208 		if (!regulator->min_uV && !regulator->max_uV)
209 			continue;
210 
211 		if (*max_uV > regulator->max_uV)
212 			*max_uV = regulator->max_uV;
213 		if (*min_uV < regulator->min_uV)
214 			*min_uV = regulator->min_uV;
215 	}
216 
217 	if (*min_uV > *max_uV) {
218 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 			*min_uV, *max_uV);
220 		return -EINVAL;
221 	}
222 
223 	return 0;
224 }
225 
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 					int *min_uA, int *max_uA)
229 {
230 	BUG_ON(*min_uA > *max_uA);
231 
232 	if (!rdev->constraints) {
233 		rdev_err(rdev, "no constraints\n");
234 		return -ENODEV;
235 	}
236 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 		rdev_err(rdev, "operation not allowed\n");
238 		return -EPERM;
239 	}
240 
241 	if (*max_uA > rdev->constraints->max_uA)
242 		*max_uA = rdev->constraints->max_uA;
243 	if (*min_uA < rdev->constraints->min_uA)
244 		*min_uA = rdev->constraints->min_uA;
245 
246 	if (*min_uA > *max_uA) {
247 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 			 *min_uA, *max_uA);
249 		return -EINVAL;
250 	}
251 
252 	return 0;
253 }
254 
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 	switch (*mode) {
259 	case REGULATOR_MODE_FAST:
260 	case REGULATOR_MODE_NORMAL:
261 	case REGULATOR_MODE_IDLE:
262 	case REGULATOR_MODE_STANDBY:
263 		break;
264 	default:
265 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 		return -EINVAL;
267 	}
268 
269 	if (!rdev->constraints) {
270 		rdev_err(rdev, "no constraints\n");
271 		return -ENODEV;
272 	}
273 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 		rdev_err(rdev, "operation not allowed\n");
275 		return -EPERM;
276 	}
277 
278 	/* The modes are bitmasks, the most power hungry modes having
279 	 * the lowest values. If the requested mode isn't supported
280 	 * try higher modes. */
281 	while (*mode) {
282 		if (rdev->constraints->valid_modes_mask & *mode)
283 			return 0;
284 		*mode /= 2;
285 	}
286 
287 	return -EINVAL;
288 }
289 
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 	if (!rdev->constraints) {
294 		rdev_err(rdev, "no constraints\n");
295 		return -ENODEV;
296 	}
297 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 		rdev_err(rdev, "operation not allowed\n");
299 		return -EPERM;
300 	}
301 	return 0;
302 }
303 
304 static ssize_t regulator_uV_show(struct device *dev,
305 				struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 	ssize_t ret;
309 
310 	mutex_lock(&rdev->mutex);
311 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 	mutex_unlock(&rdev->mutex);
313 
314 	return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 
318 static ssize_t regulator_uA_show(struct device *dev,
319 				struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 
323 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 			 char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 
332 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335 
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	case REGULATOR_STATUS_BYPASS:
418 		label = "bypass";
419 		break;
420 	case REGULATOR_STATUS_UNDEFINED:
421 		label = "undefined";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 			      char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501 
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 			 char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 
507 	switch (rdev->desc->type) {
508 	case REGULATOR_VOLTAGE:
509 		return sprintf(buf, "voltage\n");
510 	case REGULATOR_CURRENT:
511 		return sprintf(buf, "current\n");
512 	}
513 	return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516 
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 				struct device_attribute *attr, char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 
522 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 		regulator_suspend_mem_uV_show, NULL);
526 
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 				struct device_attribute *attr, char *buf)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 		regulator_suspend_disk_uV_show, NULL);
536 
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 		regulator_suspend_standby_uV_show, NULL);
546 
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 				struct device_attribute *attr, char *buf)
549 {
550 	struct regulator_dev *rdev = dev_get_drvdata(dev);
551 
552 	return regulator_print_opmode(buf,
553 		rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 		regulator_suspend_mem_mode_show, NULL);
557 
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 				struct device_attribute *attr, char *buf)
560 {
561 	struct regulator_dev *rdev = dev_get_drvdata(dev);
562 
563 	return regulator_print_opmode(buf,
564 		rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 		regulator_suspend_disk_mode_show, NULL);
568 
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 		regulator_suspend_standby_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 				   struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_state(buf,
586 			rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 		regulator_suspend_mem_state_show, NULL);
590 
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 				   struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_state(buf,
597 			rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 		regulator_suspend_disk_state_show, NULL);
601 
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 		regulator_suspend_standby_state_show, NULL);
612 
613 static ssize_t regulator_bypass_show(struct device *dev,
614 				     struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 	const char *report;
618 	bool bypass;
619 	int ret;
620 
621 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 
623 	if (ret != 0)
624 		report = "unknown";
625 	else if (bypass)
626 		report = "enabled";
627 	else
628 		report = "disabled";
629 
630 	return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 		   regulator_bypass_show, NULL);
634 
635 /*
636  * These are the only attributes are present for all regulators.
637  * Other attributes are a function of regulator functionality.
638  */
639 static struct attribute *regulator_dev_attrs[] = {
640 	&dev_attr_name.attr,
641 	&dev_attr_num_users.attr,
642 	&dev_attr_type.attr,
643 	NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646 
647 static void regulator_dev_release(struct device *dev)
648 {
649 	struct regulator_dev *rdev = dev_get_drvdata(dev);
650 	kfree(rdev);
651 }
652 
653 static struct class regulator_class = {
654 	.name = "regulator",
655 	.dev_release = regulator_dev_release,
656 	.dev_groups = regulator_dev_groups,
657 };
658 
659 /* Calculate the new optimum regulator operating mode based on the new total
660  * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663 	struct regulator *sibling;
664 	int current_uA = 0, output_uV, input_uV, err;
665 	unsigned int mode;
666 
667 	err = regulator_check_drms(rdev);
668 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669 	    (!rdev->desc->ops->get_voltage &&
670 	     !rdev->desc->ops->get_voltage_sel) ||
671 	    !rdev->desc->ops->set_mode)
672 		return;
673 
674 	/* get output voltage */
675 	output_uV = _regulator_get_voltage(rdev);
676 	if (output_uV <= 0)
677 		return;
678 
679 	/* get input voltage */
680 	input_uV = 0;
681 	if (rdev->supply)
682 		input_uV = regulator_get_voltage(rdev->supply);
683 	if (input_uV <= 0)
684 		input_uV = rdev->constraints->input_uV;
685 	if (input_uV <= 0)
686 		return;
687 
688 	/* calc total requested load */
689 	list_for_each_entry(sibling, &rdev->consumer_list, list)
690 		current_uA += sibling->uA_load;
691 
692 	/* now get the optimum mode for our new total regulator load */
693 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 						  output_uV, current_uA);
695 
696 	/* check the new mode is allowed */
697 	err = regulator_mode_constrain(rdev, &mode);
698 	if (err == 0)
699 		rdev->desc->ops->set_mode(rdev, mode);
700 }
701 
702 static int suspend_set_state(struct regulator_dev *rdev,
703 	struct regulator_state *rstate)
704 {
705 	int ret = 0;
706 
707 	/* If we have no suspend mode configration don't set anything;
708 	 * only warn if the driver implements set_suspend_voltage or
709 	 * set_suspend_mode callback.
710 	 */
711 	if (!rstate->enabled && !rstate->disabled) {
712 		if (rdev->desc->ops->set_suspend_voltage ||
713 		    rdev->desc->ops->set_suspend_mode)
714 			rdev_warn(rdev, "No configuration\n");
715 		return 0;
716 	}
717 
718 	if (rstate->enabled && rstate->disabled) {
719 		rdev_err(rdev, "invalid configuration\n");
720 		return -EINVAL;
721 	}
722 
723 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724 		ret = rdev->desc->ops->set_suspend_enable(rdev);
725 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726 		ret = rdev->desc->ops->set_suspend_disable(rdev);
727 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728 		ret = 0;
729 
730 	if (ret < 0) {
731 		rdev_err(rdev, "failed to enabled/disable\n");
732 		return ret;
733 	}
734 
735 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737 		if (ret < 0) {
738 			rdev_err(rdev, "failed to set voltage\n");
739 			return ret;
740 		}
741 	}
742 
743 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745 		if (ret < 0) {
746 			rdev_err(rdev, "failed to set mode\n");
747 			return ret;
748 		}
749 	}
750 	return ret;
751 }
752 
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756 	if (!rdev->constraints)
757 		return -EINVAL;
758 
759 	switch (state) {
760 	case PM_SUSPEND_STANDBY:
761 		return suspend_set_state(rdev,
762 			&rdev->constraints->state_standby);
763 	case PM_SUSPEND_MEM:
764 		return suspend_set_state(rdev,
765 			&rdev->constraints->state_mem);
766 	case PM_SUSPEND_MAX:
767 		return suspend_set_state(rdev,
768 			&rdev->constraints->state_disk);
769 	default:
770 		return -EINVAL;
771 	}
772 }
773 
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776 	struct regulation_constraints *constraints = rdev->constraints;
777 	char buf[80] = "";
778 	int count = 0;
779 	int ret;
780 
781 	if (constraints->min_uV && constraints->max_uV) {
782 		if (constraints->min_uV == constraints->max_uV)
783 			count += sprintf(buf + count, "%d mV ",
784 					 constraints->min_uV / 1000);
785 		else
786 			count += sprintf(buf + count, "%d <--> %d mV ",
787 					 constraints->min_uV / 1000,
788 					 constraints->max_uV / 1000);
789 	}
790 
791 	if (!constraints->min_uV ||
792 	    constraints->min_uV != constraints->max_uV) {
793 		ret = _regulator_get_voltage(rdev);
794 		if (ret > 0)
795 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
796 	}
797 
798 	if (constraints->uV_offset)
799 		count += sprintf(buf, "%dmV offset ",
800 				 constraints->uV_offset / 1000);
801 
802 	if (constraints->min_uA && constraints->max_uA) {
803 		if (constraints->min_uA == constraints->max_uA)
804 			count += sprintf(buf + count, "%d mA ",
805 					 constraints->min_uA / 1000);
806 		else
807 			count += sprintf(buf + count, "%d <--> %d mA ",
808 					 constraints->min_uA / 1000,
809 					 constraints->max_uA / 1000);
810 	}
811 
812 	if (!constraints->min_uA ||
813 	    constraints->min_uA != constraints->max_uA) {
814 		ret = _regulator_get_current_limit(rdev);
815 		if (ret > 0)
816 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
817 	}
818 
819 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820 		count += sprintf(buf + count, "fast ");
821 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822 		count += sprintf(buf + count, "normal ");
823 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824 		count += sprintf(buf + count, "idle ");
825 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826 		count += sprintf(buf + count, "standby");
827 
828 	if (!count)
829 		sprintf(buf, "no parameters");
830 
831 	rdev_dbg(rdev, "%s\n", buf);
832 
833 	if ((constraints->min_uV != constraints->max_uV) &&
834 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835 		rdev_warn(rdev,
836 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838 
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840 	struct regulation_constraints *constraints)
841 {
842 	const struct regulator_ops *ops = rdev->desc->ops;
843 	int ret;
844 
845 	/* do we need to apply the constraint voltage */
846 	if (rdev->constraints->apply_uV &&
847 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
848 		int current_uV = _regulator_get_voltage(rdev);
849 		if (current_uV < 0) {
850 			rdev_err(rdev,
851 				 "failed to get the current voltage(%d)\n",
852 				 current_uV);
853 			return current_uV;
854 		}
855 		if (current_uV < rdev->constraints->min_uV ||
856 		    current_uV > rdev->constraints->max_uV) {
857 			ret = _regulator_do_set_voltage(
858 				rdev, rdev->constraints->min_uV,
859 				rdev->constraints->max_uV);
860 			if (ret < 0) {
861 				rdev_err(rdev,
862 					"failed to apply %duV constraint(%d)\n",
863 					rdev->constraints->min_uV, ret);
864 				return ret;
865 			}
866 		}
867 	}
868 
869 	/* constrain machine-level voltage specs to fit
870 	 * the actual range supported by this regulator.
871 	 */
872 	if (ops->list_voltage && rdev->desc->n_voltages) {
873 		int	count = rdev->desc->n_voltages;
874 		int	i;
875 		int	min_uV = INT_MAX;
876 		int	max_uV = INT_MIN;
877 		int	cmin = constraints->min_uV;
878 		int	cmax = constraints->max_uV;
879 
880 		/* it's safe to autoconfigure fixed-voltage supplies
881 		   and the constraints are used by list_voltage. */
882 		if (count == 1 && !cmin) {
883 			cmin = 1;
884 			cmax = INT_MAX;
885 			constraints->min_uV = cmin;
886 			constraints->max_uV = cmax;
887 		}
888 
889 		/* voltage constraints are optional */
890 		if ((cmin == 0) && (cmax == 0))
891 			return 0;
892 
893 		/* else require explicit machine-level constraints */
894 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895 			rdev_err(rdev, "invalid voltage constraints\n");
896 			return -EINVAL;
897 		}
898 
899 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 		for (i = 0; i < count; i++) {
901 			int	value;
902 
903 			value = ops->list_voltage(rdev, i);
904 			if (value <= 0)
905 				continue;
906 
907 			/* maybe adjust [min_uV..max_uV] */
908 			if (value >= cmin && value < min_uV)
909 				min_uV = value;
910 			if (value <= cmax && value > max_uV)
911 				max_uV = value;
912 		}
913 
914 		/* final: [min_uV..max_uV] valid iff constraints valid */
915 		if (max_uV < min_uV) {
916 			rdev_err(rdev,
917 				 "unsupportable voltage constraints %u-%uuV\n",
918 				 min_uV, max_uV);
919 			return -EINVAL;
920 		}
921 
922 		/* use regulator's subset of machine constraints */
923 		if (constraints->min_uV < min_uV) {
924 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925 				 constraints->min_uV, min_uV);
926 			constraints->min_uV = min_uV;
927 		}
928 		if (constraints->max_uV > max_uV) {
929 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930 				 constraints->max_uV, max_uV);
931 			constraints->max_uV = max_uV;
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 static int machine_constraints_current(struct regulator_dev *rdev,
939 	struct regulation_constraints *constraints)
940 {
941 	const struct regulator_ops *ops = rdev->desc->ops;
942 	int ret;
943 
944 	if (!constraints->min_uA && !constraints->max_uA)
945 		return 0;
946 
947 	if (constraints->min_uA > constraints->max_uA) {
948 		rdev_err(rdev, "Invalid current constraints\n");
949 		return -EINVAL;
950 	}
951 
952 	if (!ops->set_current_limit || !ops->get_current_limit) {
953 		rdev_warn(rdev, "Operation of current configuration missing\n");
954 		return 0;
955 	}
956 
957 	/* Set regulator current in constraints range */
958 	ret = ops->set_current_limit(rdev, constraints->min_uA,
959 			constraints->max_uA);
960 	if (ret < 0) {
961 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962 		return ret;
963 	}
964 
965 	return 0;
966 }
967 
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969 
970 /**
971  * set_machine_constraints - sets regulator constraints
972  * @rdev: regulator source
973  * @constraints: constraints to apply
974  *
975  * Allows platform initialisation code to define and constrain
976  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977  * Constraints *must* be set by platform code in order for some
978  * regulator operations to proceed i.e. set_voltage, set_current_limit,
979  * set_mode.
980  */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982 	const struct regulation_constraints *constraints)
983 {
984 	int ret = 0;
985 	const struct regulator_ops *ops = rdev->desc->ops;
986 
987 	if (constraints)
988 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989 					    GFP_KERNEL);
990 	else
991 		rdev->constraints = kzalloc(sizeof(*constraints),
992 					    GFP_KERNEL);
993 	if (!rdev->constraints)
994 		return -ENOMEM;
995 
996 	ret = machine_constraints_voltage(rdev, rdev->constraints);
997 	if (ret != 0)
998 		goto out;
999 
1000 	ret = machine_constraints_current(rdev, rdev->constraints);
1001 	if (ret != 0)
1002 		goto out;
1003 
1004 	/* do we need to setup our suspend state */
1005 	if (rdev->constraints->initial_state) {
1006 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007 		if (ret < 0) {
1008 			rdev_err(rdev, "failed to set suspend state\n");
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	if (rdev->constraints->initial_mode) {
1014 		if (!ops->set_mode) {
1015 			rdev_err(rdev, "no set_mode operation\n");
1016 			ret = -EINVAL;
1017 			goto out;
1018 		}
1019 
1020 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021 		if (ret < 0) {
1022 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023 			goto out;
1024 		}
1025 	}
1026 
1027 	/* If the constraints say the regulator should be on at this point
1028 	 * and we have control then make sure it is enabled.
1029 	 */
1030 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031 		ret = _regulator_do_enable(rdev);
1032 		if (ret < 0 && ret != -EINVAL) {
1033 			rdev_err(rdev, "failed to enable\n");
1034 			goto out;
1035 		}
1036 	}
1037 
1038 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039 		&& ops->set_ramp_delay) {
1040 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041 		if (ret < 0) {
1042 			rdev_err(rdev, "failed to set ramp_delay\n");
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	print_constraints(rdev);
1048 	return 0;
1049 out:
1050 	kfree(rdev->constraints);
1051 	rdev->constraints = NULL;
1052 	return ret;
1053 }
1054 
1055 /**
1056  * set_supply - set regulator supply regulator
1057  * @rdev: regulator name
1058  * @supply_rdev: supply regulator name
1059  *
1060  * Called by platform initialisation code to set the supply regulator for this
1061  * regulator. This ensures that a regulators supply will also be enabled by the
1062  * core if it's child is enabled.
1063  */
1064 static int set_supply(struct regulator_dev *rdev,
1065 		      struct regulator_dev *supply_rdev)
1066 {
1067 	int err;
1068 
1069 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070 
1071 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072 	if (rdev->supply == NULL) {
1073 		err = -ENOMEM;
1074 		return err;
1075 	}
1076 	supply_rdev->open_count++;
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083  * @rdev:         regulator source
1084  * @consumer_dev_name: dev_name() string for device supply applies to
1085  * @supply:       symbolic name for supply
1086  *
1087  * Allows platform initialisation code to map physical regulator
1088  * sources to symbolic names for supplies for use by devices.  Devices
1089  * should use these symbolic names to request regulators, avoiding the
1090  * need to provide board-specific regulator names as platform data.
1091  */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093 				      const char *consumer_dev_name,
1094 				      const char *supply)
1095 {
1096 	struct regulator_map *node;
1097 	int has_dev;
1098 
1099 	if (supply == NULL)
1100 		return -EINVAL;
1101 
1102 	if (consumer_dev_name != NULL)
1103 		has_dev = 1;
1104 	else
1105 		has_dev = 0;
1106 
1107 	list_for_each_entry(node, &regulator_map_list, list) {
1108 		if (node->dev_name && consumer_dev_name) {
1109 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110 				continue;
1111 		} else if (node->dev_name || consumer_dev_name) {
1112 			continue;
1113 		}
1114 
1115 		if (strcmp(node->supply, supply) != 0)
1116 			continue;
1117 
1118 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119 			 consumer_dev_name,
1120 			 dev_name(&node->regulator->dev),
1121 			 node->regulator->desc->name,
1122 			 supply,
1123 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1124 		return -EBUSY;
1125 	}
1126 
1127 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128 	if (node == NULL)
1129 		return -ENOMEM;
1130 
1131 	node->regulator = rdev;
1132 	node->supply = supply;
1133 
1134 	if (has_dev) {
1135 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136 		if (node->dev_name == NULL) {
1137 			kfree(node);
1138 			return -ENOMEM;
1139 		}
1140 	}
1141 
1142 	list_add(&node->list, &regulator_map_list);
1143 	return 0;
1144 }
1145 
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148 	struct regulator_map *node, *n;
1149 
1150 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151 		if (rdev == node->regulator) {
1152 			list_del(&node->list);
1153 			kfree(node->dev_name);
1154 			kfree(node);
1155 		}
1156 	}
1157 }
1158 
1159 #define REG_STR_SIZE	64
1160 
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162 					  struct device *dev,
1163 					  const char *supply_name)
1164 {
1165 	struct regulator *regulator;
1166 	char buf[REG_STR_SIZE];
1167 	int err, size;
1168 
1169 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170 	if (regulator == NULL)
1171 		return NULL;
1172 
1173 	mutex_lock(&rdev->mutex);
1174 	regulator->rdev = rdev;
1175 	list_add(&regulator->list, &rdev->consumer_list);
1176 
1177 	if (dev) {
1178 		regulator->dev = dev;
1179 
1180 		/* Add a link to the device sysfs entry */
1181 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182 				 dev->kobj.name, supply_name);
1183 		if (size >= REG_STR_SIZE)
1184 			goto overflow_err;
1185 
1186 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187 		if (regulator->supply_name == NULL)
1188 			goto overflow_err;
1189 
1190 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191 					buf);
1192 		if (err) {
1193 			rdev_warn(rdev, "could not add device link %s err %d\n",
1194 				  dev->kobj.name, err);
1195 			/* non-fatal */
1196 		}
1197 	} else {
1198 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199 		if (regulator->supply_name == NULL)
1200 			goto overflow_err;
1201 	}
1202 
1203 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204 						rdev->debugfs);
1205 	if (!regulator->debugfs) {
1206 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1207 	} else {
1208 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209 				   &regulator->uA_load);
1210 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211 				   &regulator->min_uV);
1212 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213 				   &regulator->max_uV);
1214 	}
1215 
1216 	/*
1217 	 * Check now if the regulator is an always on regulator - if
1218 	 * it is then we don't need to do nearly so much work for
1219 	 * enable/disable calls.
1220 	 */
1221 	if (!_regulator_can_change_status(rdev) &&
1222 	    _regulator_is_enabled(rdev))
1223 		regulator->always_on = true;
1224 
1225 	mutex_unlock(&rdev->mutex);
1226 	return regulator;
1227 overflow_err:
1228 	list_del(&regulator->list);
1229 	kfree(regulator);
1230 	mutex_unlock(&rdev->mutex);
1231 	return NULL;
1232 }
1233 
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236 	if (rdev->constraints && rdev->constraints->enable_time)
1237 		return rdev->constraints->enable_time;
1238 	if (!rdev->desc->ops->enable_time)
1239 		return rdev->desc->enable_time;
1240 	return rdev->desc->ops->enable_time(rdev);
1241 }
1242 
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244 		struct device *dev, const char *supply)
1245 {
1246 	struct regulator_supply_alias *map;
1247 
1248 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1249 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250 			return map;
1251 
1252 	return NULL;
1253 }
1254 
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257 	struct regulator_supply_alias *map;
1258 
1259 	map = regulator_find_supply_alias(*dev, *supply);
1260 	if (map) {
1261 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262 				*supply, map->alias_supply,
1263 				dev_name(map->alias_dev));
1264 		*dev = map->alias_dev;
1265 		*supply = map->alias_supply;
1266 	}
1267 }
1268 
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270 						  const char *supply,
1271 						  int *ret)
1272 {
1273 	struct regulator_dev *r;
1274 	struct device_node *node;
1275 	struct regulator_map *map;
1276 	const char *devname = NULL;
1277 
1278 	regulator_supply_alias(&dev, &supply);
1279 
1280 	/* first do a dt based lookup */
1281 	if (dev && dev->of_node) {
1282 		node = of_get_regulator(dev, supply);
1283 		if (node) {
1284 			list_for_each_entry(r, &regulator_list, list)
1285 				if (r->dev.parent &&
1286 					node == r->dev.of_node)
1287 					return r;
1288 			*ret = -EPROBE_DEFER;
1289 			return NULL;
1290 		} else {
1291 			/*
1292 			 * If we couldn't even get the node then it's
1293 			 * not just that the device didn't register
1294 			 * yet, there's no node and we'll never
1295 			 * succeed.
1296 			 */
1297 			*ret = -ENODEV;
1298 		}
1299 	}
1300 
1301 	/* if not found, try doing it non-dt way */
1302 	if (dev)
1303 		devname = dev_name(dev);
1304 
1305 	list_for_each_entry(r, &regulator_list, list)
1306 		if (strcmp(rdev_get_name(r), supply) == 0)
1307 			return r;
1308 
1309 	list_for_each_entry(map, &regulator_map_list, list) {
1310 		/* If the mapping has a device set up it must match */
1311 		if (map->dev_name &&
1312 		    (!devname || strcmp(map->dev_name, devname)))
1313 			continue;
1314 
1315 		if (strcmp(map->supply, supply) == 0)
1316 			return map->regulator;
1317 	}
1318 
1319 
1320 	return NULL;
1321 }
1322 
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325 					bool exclusive, bool allow_dummy)
1326 {
1327 	struct regulator_dev *rdev;
1328 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329 	const char *devname = NULL;
1330 	int ret;
1331 
1332 	if (id == NULL) {
1333 		pr_err("get() with no identifier\n");
1334 		return ERR_PTR(-EINVAL);
1335 	}
1336 
1337 	if (dev)
1338 		devname = dev_name(dev);
1339 
1340 	if (have_full_constraints())
1341 		ret = -ENODEV;
1342 	else
1343 		ret = -EPROBE_DEFER;
1344 
1345 	mutex_lock(&regulator_list_mutex);
1346 
1347 	rdev = regulator_dev_lookup(dev, id, &ret);
1348 	if (rdev)
1349 		goto found;
1350 
1351 	regulator = ERR_PTR(ret);
1352 
1353 	/*
1354 	 * If we have return value from dev_lookup fail, we do not expect to
1355 	 * succeed, so, quit with appropriate error value
1356 	 */
1357 	if (ret && ret != -ENODEV)
1358 		goto out;
1359 
1360 	if (!devname)
1361 		devname = "deviceless";
1362 
1363 	/*
1364 	 * Assume that a regulator is physically present and enabled
1365 	 * even if it isn't hooked up and just provide a dummy.
1366 	 */
1367 	if (have_full_constraints() && allow_dummy) {
1368 		pr_warn("%s supply %s not found, using dummy regulator\n",
1369 			devname, id);
1370 
1371 		rdev = dummy_regulator_rdev;
1372 		goto found;
1373 	/* Don't log an error when called from regulator_get_optional() */
1374 	} else if (!have_full_constraints() || exclusive) {
1375 		dev_warn(dev, "dummy supplies not allowed\n");
1376 	}
1377 
1378 	mutex_unlock(&regulator_list_mutex);
1379 	return regulator;
1380 
1381 found:
1382 	if (rdev->exclusive) {
1383 		regulator = ERR_PTR(-EPERM);
1384 		goto out;
1385 	}
1386 
1387 	if (exclusive && rdev->open_count) {
1388 		regulator = ERR_PTR(-EBUSY);
1389 		goto out;
1390 	}
1391 
1392 	if (!try_module_get(rdev->owner))
1393 		goto out;
1394 
1395 	regulator = create_regulator(rdev, dev, id);
1396 	if (regulator == NULL) {
1397 		regulator = ERR_PTR(-ENOMEM);
1398 		module_put(rdev->owner);
1399 		goto out;
1400 	}
1401 
1402 	rdev->open_count++;
1403 	if (exclusive) {
1404 		rdev->exclusive = 1;
1405 
1406 		ret = _regulator_is_enabled(rdev);
1407 		if (ret > 0)
1408 			rdev->use_count = 1;
1409 		else
1410 			rdev->use_count = 0;
1411 	}
1412 
1413 out:
1414 	mutex_unlock(&regulator_list_mutex);
1415 
1416 	return regulator;
1417 }
1418 
1419 /**
1420  * regulator_get - lookup and obtain a reference to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.
1426  *
1427  * Use of supply names configured via regulator_set_device_supply() is
1428  * strongly encouraged.  It is recommended that the supply name used
1429  * should match the name used for the supply and/or the relevant
1430  * device pins in the datasheet.
1431  */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434 	return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437 
1438 /**
1439  * regulator_get_exclusive - obtain exclusive access to a regulator.
1440  * @dev: device for regulator "consumer"
1441  * @id: Supply name or regulator ID.
1442  *
1443  * Returns a struct regulator corresponding to the regulator producer,
1444  * or IS_ERR() condition containing errno.  Other consumers will be
1445  * unable to obtain this regulator while this reference is held and the
1446  * use count for the regulator will be initialised to reflect the current
1447  * state of the regulator.
1448  *
1449  * This is intended for use by consumers which cannot tolerate shared
1450  * use of the regulator such as those which need to force the
1451  * regulator off for correct operation of the hardware they are
1452  * controlling.
1453  *
1454  * Use of supply names configured via regulator_set_device_supply() is
1455  * strongly encouraged.  It is recommended that the supply name used
1456  * should match the name used for the supply and/or the relevant
1457  * device pins in the datasheet.
1458  */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461 	return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464 
1465 /**
1466  * regulator_get_optional - obtain optional access to a regulator.
1467  * @dev: device for regulator "consumer"
1468  * @id: Supply name or regulator ID.
1469  *
1470  * Returns a struct regulator corresponding to the regulator producer,
1471  * or IS_ERR() condition containing errno.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487 	return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490 
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494 	struct regulator_dev *rdev;
1495 
1496 	if (regulator == NULL || IS_ERR(regulator))
1497 		return;
1498 
1499 	rdev = regulator->rdev;
1500 
1501 	debugfs_remove_recursive(regulator->debugfs);
1502 
1503 	/* remove any sysfs entries */
1504 	if (regulator->dev)
1505 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506 	kfree(regulator->supply_name);
1507 	list_del(&regulator->list);
1508 	kfree(regulator);
1509 
1510 	rdev->open_count--;
1511 	rdev->exclusive = 0;
1512 
1513 	module_put(rdev->owner);
1514 }
1515 
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526 	mutex_lock(&regulator_list_mutex);
1527 	_regulator_put(regulator);
1528 	mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531 
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545 				    struct device *alias_dev,
1546 				    const char *alias_id)
1547 {
1548 	struct regulator_supply_alias *map;
1549 
1550 	map = regulator_find_supply_alias(dev, id);
1551 	if (map)
1552 		return -EEXIST;
1553 
1554 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555 	if (!map)
1556 		return -ENOMEM;
1557 
1558 	map->src_dev = dev;
1559 	map->src_supply = id;
1560 	map->alias_dev = alias_dev;
1561 	map->alias_supply = alias_id;
1562 
1563 	list_add(&map->list, &regulator_supply_alias_list);
1564 
1565 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571 
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582 	struct regulator_supply_alias *map;
1583 
1584 	map = regulator_find_supply_alias(dev, id);
1585 	if (map) {
1586 		list_del(&map->list);
1587 		kfree(map);
1588 	}
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591 
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610 					 const char *const *id,
1611 					 struct device *alias_dev,
1612 					 const char *const *alias_id,
1613 					 int num_id)
1614 {
1615 	int i;
1616 	int ret;
1617 
1618 	for (i = 0; i < num_id; ++i) {
1619 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620 						      alias_id[i]);
1621 		if (ret < 0)
1622 			goto err;
1623 	}
1624 
1625 	return 0;
1626 
1627 err:
1628 	dev_err(dev,
1629 		"Failed to create supply alias %s,%s -> %s,%s\n",
1630 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631 
1632 	while (--i >= 0)
1633 		regulator_unregister_supply_alias(dev, id[i]);
1634 
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638 
1639 /**
1640  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641  *
1642  * @dev: device that will be given as the regulator "consumer"
1643  * @id: List of supply names or regulator IDs
1644  * @num_id: Number of aliases to unregister
1645  *
1646  * This helper function allows drivers to unregister several supply
1647  * aliases in one operation.
1648  */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650 					    const char *const *id,
1651 					    int num_id)
1652 {
1653 	int i;
1654 
1655 	for (i = 0; i < num_id; ++i)
1656 		regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659 
1660 
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663 				const struct regulator_config *config)
1664 {
1665 	struct regulator_enable_gpio *pin;
1666 	struct gpio_desc *gpiod;
1667 	int ret;
1668 
1669 	gpiod = gpio_to_desc(config->ena_gpio);
1670 
1671 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672 		if (pin->gpiod == gpiod) {
1673 			rdev_dbg(rdev, "GPIO %d is already used\n",
1674 				config->ena_gpio);
1675 			goto update_ena_gpio_to_rdev;
1676 		}
1677 	}
1678 
1679 	ret = gpio_request_one(config->ena_gpio,
1680 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1681 				rdev_get_name(rdev));
1682 	if (ret)
1683 		return ret;
1684 
1685 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686 	if (pin == NULL) {
1687 		gpio_free(config->ena_gpio);
1688 		return -ENOMEM;
1689 	}
1690 
1691 	pin->gpiod = gpiod;
1692 	pin->ena_gpio_invert = config->ena_gpio_invert;
1693 	list_add(&pin->list, &regulator_ena_gpio_list);
1694 
1695 update_ena_gpio_to_rdev:
1696 	pin->request_count++;
1697 	rdev->ena_pin = pin;
1698 	return 0;
1699 }
1700 
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703 	struct regulator_enable_gpio *pin, *n;
1704 
1705 	if (!rdev->ena_pin)
1706 		return;
1707 
1708 	/* Free the GPIO only in case of no use */
1709 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1711 			if (pin->request_count <= 1) {
1712 				pin->request_count = 0;
1713 				gpiod_put(pin->gpiod);
1714 				list_del(&pin->list);
1715 				kfree(pin);
1716 				rdev->ena_pin = NULL;
1717 				return;
1718 			} else {
1719 				pin->request_count--;
1720 			}
1721 		}
1722 	}
1723 }
1724 
1725 /**
1726  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1727  * @rdev: regulator_dev structure
1728  * @enable: enable GPIO at initial use?
1729  *
1730  * GPIO is enabled in case of initial use. (enable_count is 0)
1731  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1732  */
1733 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1734 {
1735 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1736 
1737 	if (!pin)
1738 		return -EINVAL;
1739 
1740 	if (enable) {
1741 		/* Enable GPIO at initial use */
1742 		if (pin->enable_count == 0)
1743 			gpiod_set_value_cansleep(pin->gpiod,
1744 						 !pin->ena_gpio_invert);
1745 
1746 		pin->enable_count++;
1747 	} else {
1748 		if (pin->enable_count > 1) {
1749 			pin->enable_count--;
1750 			return 0;
1751 		}
1752 
1753 		/* Disable GPIO if not used */
1754 		if (pin->enable_count <= 1) {
1755 			gpiod_set_value_cansleep(pin->gpiod,
1756 						 pin->ena_gpio_invert);
1757 			pin->enable_count = 0;
1758 		}
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 /**
1765  * _regulator_enable_delay - a delay helper function
1766  * @delay: time to delay in microseconds
1767  *
1768  * Delay for the requested amount of time as per the guidelines in:
1769  *
1770  *     Documentation/timers/timers-howto.txt
1771  *
1772  * The assumption here is that regulators will never be enabled in
1773  * atomic context and therefore sleeping functions can be used.
1774  */
1775 static void _regulator_enable_delay(unsigned int delay)
1776 {
1777 	unsigned int ms = delay / 1000;
1778 	unsigned int us = delay % 1000;
1779 
1780 	if (ms > 0) {
1781 		/*
1782 		 * For small enough values, handle super-millisecond
1783 		 * delays in the usleep_range() call below.
1784 		 */
1785 		if (ms < 20)
1786 			us += ms * 1000;
1787 		else
1788 			msleep(ms);
1789 	}
1790 
1791 	/*
1792 	 * Give the scheduler some room to coalesce with any other
1793 	 * wakeup sources. For delays shorter than 10 us, don't even
1794 	 * bother setting up high-resolution timers and just busy-
1795 	 * loop.
1796 	 */
1797 	if (us >= 10)
1798 		usleep_range(us, us + 100);
1799 	else
1800 		udelay(us);
1801 }
1802 
1803 static int _regulator_do_enable(struct regulator_dev *rdev)
1804 {
1805 	int ret, delay;
1806 
1807 	/* Query before enabling in case configuration dependent.  */
1808 	ret = _regulator_get_enable_time(rdev);
1809 	if (ret >= 0) {
1810 		delay = ret;
1811 	} else {
1812 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1813 		delay = 0;
1814 	}
1815 
1816 	trace_regulator_enable(rdev_get_name(rdev));
1817 
1818 	if (rdev->desc->off_on_delay) {
1819 		/* if needed, keep a distance of off_on_delay from last time
1820 		 * this regulator was disabled.
1821 		 */
1822 		unsigned long start_jiffy = jiffies;
1823 		unsigned long intended, max_delay, remaining;
1824 
1825 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1826 		intended = rdev->last_off_jiffy + max_delay;
1827 
1828 		if (time_before(start_jiffy, intended)) {
1829 			/* calc remaining jiffies to deal with one-time
1830 			 * timer wrapping.
1831 			 * in case of multiple timer wrapping, either it can be
1832 			 * detected by out-of-range remaining, or it cannot be
1833 			 * detected and we gets a panelty of
1834 			 * _regulator_enable_delay().
1835 			 */
1836 			remaining = intended - start_jiffy;
1837 			if (remaining <= max_delay)
1838 				_regulator_enable_delay(
1839 						jiffies_to_usecs(remaining));
1840 		}
1841 	}
1842 
1843 	if (rdev->ena_pin) {
1844 		ret = regulator_ena_gpio_ctrl(rdev, true);
1845 		if (ret < 0)
1846 			return ret;
1847 		rdev->ena_gpio_state = 1;
1848 	} else if (rdev->desc->ops->enable) {
1849 		ret = rdev->desc->ops->enable(rdev);
1850 		if (ret < 0)
1851 			return ret;
1852 	} else {
1853 		return -EINVAL;
1854 	}
1855 
1856 	/* Allow the regulator to ramp; it would be useful to extend
1857 	 * this for bulk operations so that the regulators can ramp
1858 	 * together.  */
1859 	trace_regulator_enable_delay(rdev_get_name(rdev));
1860 
1861 	_regulator_enable_delay(delay);
1862 
1863 	trace_regulator_enable_complete(rdev_get_name(rdev));
1864 
1865 	return 0;
1866 }
1867 
1868 /* locks held by regulator_enable() */
1869 static int _regulator_enable(struct regulator_dev *rdev)
1870 {
1871 	int ret;
1872 
1873 	/* check voltage and requested load before enabling */
1874 	if (rdev->constraints &&
1875 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1876 		drms_uA_update(rdev);
1877 
1878 	if (rdev->use_count == 0) {
1879 		/* The regulator may on if it's not switchable or left on */
1880 		ret = _regulator_is_enabled(rdev);
1881 		if (ret == -EINVAL || ret == 0) {
1882 			if (!_regulator_can_change_status(rdev))
1883 				return -EPERM;
1884 
1885 			ret = _regulator_do_enable(rdev);
1886 			if (ret < 0)
1887 				return ret;
1888 
1889 		} else if (ret < 0) {
1890 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1891 			return ret;
1892 		}
1893 		/* Fallthrough on positive return values - already enabled */
1894 	}
1895 
1896 	rdev->use_count++;
1897 
1898 	return 0;
1899 }
1900 
1901 /**
1902  * regulator_enable - enable regulator output
1903  * @regulator: regulator source
1904  *
1905  * Request that the regulator be enabled with the regulator output at
1906  * the predefined voltage or current value.  Calls to regulator_enable()
1907  * must be balanced with calls to regulator_disable().
1908  *
1909  * NOTE: the output value can be set by other drivers, boot loader or may be
1910  * hardwired in the regulator.
1911  */
1912 int regulator_enable(struct regulator *regulator)
1913 {
1914 	struct regulator_dev *rdev = regulator->rdev;
1915 	int ret = 0;
1916 
1917 	if (regulator->always_on)
1918 		return 0;
1919 
1920 	if (rdev->supply) {
1921 		ret = regulator_enable(rdev->supply);
1922 		if (ret != 0)
1923 			return ret;
1924 	}
1925 
1926 	mutex_lock(&rdev->mutex);
1927 	ret = _regulator_enable(rdev);
1928 	mutex_unlock(&rdev->mutex);
1929 
1930 	if (ret != 0 && rdev->supply)
1931 		regulator_disable(rdev->supply);
1932 
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(regulator_enable);
1936 
1937 static int _regulator_do_disable(struct regulator_dev *rdev)
1938 {
1939 	int ret;
1940 
1941 	trace_regulator_disable(rdev_get_name(rdev));
1942 
1943 	if (rdev->ena_pin) {
1944 		ret = regulator_ena_gpio_ctrl(rdev, false);
1945 		if (ret < 0)
1946 			return ret;
1947 		rdev->ena_gpio_state = 0;
1948 
1949 	} else if (rdev->desc->ops->disable) {
1950 		ret = rdev->desc->ops->disable(rdev);
1951 		if (ret != 0)
1952 			return ret;
1953 	}
1954 
1955 	/* cares about last_off_jiffy only if off_on_delay is required by
1956 	 * device.
1957 	 */
1958 	if (rdev->desc->off_on_delay)
1959 		rdev->last_off_jiffy = jiffies;
1960 
1961 	trace_regulator_disable_complete(rdev_get_name(rdev));
1962 
1963 	return 0;
1964 }
1965 
1966 /* locks held by regulator_disable() */
1967 static int _regulator_disable(struct regulator_dev *rdev)
1968 {
1969 	int ret = 0;
1970 
1971 	if (WARN(rdev->use_count <= 0,
1972 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1973 		return -EIO;
1974 
1975 	/* are we the last user and permitted to disable ? */
1976 	if (rdev->use_count == 1 &&
1977 	    (rdev->constraints && !rdev->constraints->always_on)) {
1978 
1979 		/* we are last user */
1980 		if (_regulator_can_change_status(rdev)) {
1981 			ret = _notifier_call_chain(rdev,
1982 						   REGULATOR_EVENT_PRE_DISABLE,
1983 						   NULL);
1984 			if (ret & NOTIFY_STOP_MASK)
1985 				return -EINVAL;
1986 
1987 			ret = _regulator_do_disable(rdev);
1988 			if (ret < 0) {
1989 				rdev_err(rdev, "failed to disable\n");
1990 				_notifier_call_chain(rdev,
1991 						REGULATOR_EVENT_ABORT_DISABLE,
1992 						NULL);
1993 				return ret;
1994 			}
1995 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1996 					NULL);
1997 		}
1998 
1999 		rdev->use_count = 0;
2000 	} else if (rdev->use_count > 1) {
2001 
2002 		if (rdev->constraints &&
2003 			(rdev->constraints->valid_ops_mask &
2004 			REGULATOR_CHANGE_DRMS))
2005 			drms_uA_update(rdev);
2006 
2007 		rdev->use_count--;
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 /**
2014  * regulator_disable - disable regulator output
2015  * @regulator: regulator source
2016  *
2017  * Disable the regulator output voltage or current.  Calls to
2018  * regulator_enable() must be balanced with calls to
2019  * regulator_disable().
2020  *
2021  * NOTE: this will only disable the regulator output if no other consumer
2022  * devices have it enabled, the regulator device supports disabling and
2023  * machine constraints permit this operation.
2024  */
2025 int regulator_disable(struct regulator *regulator)
2026 {
2027 	struct regulator_dev *rdev = regulator->rdev;
2028 	int ret = 0;
2029 
2030 	if (regulator->always_on)
2031 		return 0;
2032 
2033 	mutex_lock(&rdev->mutex);
2034 	ret = _regulator_disable(rdev);
2035 	mutex_unlock(&rdev->mutex);
2036 
2037 	if (ret == 0 && rdev->supply)
2038 		regulator_disable(rdev->supply);
2039 
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_disable);
2043 
2044 /* locks held by regulator_force_disable() */
2045 static int _regulator_force_disable(struct regulator_dev *rdev)
2046 {
2047 	int ret = 0;
2048 
2049 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2050 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2051 	if (ret & NOTIFY_STOP_MASK)
2052 		return -EINVAL;
2053 
2054 	ret = _regulator_do_disable(rdev);
2055 	if (ret < 0) {
2056 		rdev_err(rdev, "failed to force disable\n");
2057 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2058 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2059 		return ret;
2060 	}
2061 
2062 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2063 			REGULATOR_EVENT_DISABLE, NULL);
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * regulator_force_disable - force disable regulator output
2070  * @regulator: regulator source
2071  *
2072  * Forcibly disable the regulator output voltage or current.
2073  * NOTE: this *will* disable the regulator output even if other consumer
2074  * devices have it enabled. This should be used for situations when device
2075  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2076  */
2077 int regulator_force_disable(struct regulator *regulator)
2078 {
2079 	struct regulator_dev *rdev = regulator->rdev;
2080 	int ret;
2081 
2082 	mutex_lock(&rdev->mutex);
2083 	regulator->uA_load = 0;
2084 	ret = _regulator_force_disable(regulator->rdev);
2085 	mutex_unlock(&rdev->mutex);
2086 
2087 	if (rdev->supply)
2088 		while (rdev->open_count--)
2089 			regulator_disable(rdev->supply);
2090 
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(regulator_force_disable);
2094 
2095 static void regulator_disable_work(struct work_struct *work)
2096 {
2097 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2098 						  disable_work.work);
2099 	int count, i, ret;
2100 
2101 	mutex_lock(&rdev->mutex);
2102 
2103 	BUG_ON(!rdev->deferred_disables);
2104 
2105 	count = rdev->deferred_disables;
2106 	rdev->deferred_disables = 0;
2107 
2108 	for (i = 0; i < count; i++) {
2109 		ret = _regulator_disable(rdev);
2110 		if (ret != 0)
2111 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2112 	}
2113 
2114 	mutex_unlock(&rdev->mutex);
2115 
2116 	if (rdev->supply) {
2117 		for (i = 0; i < count; i++) {
2118 			ret = regulator_disable(rdev->supply);
2119 			if (ret != 0) {
2120 				rdev_err(rdev,
2121 					 "Supply disable failed: %d\n", ret);
2122 			}
2123 		}
2124 	}
2125 }
2126 
2127 /**
2128  * regulator_disable_deferred - disable regulator output with delay
2129  * @regulator: regulator source
2130  * @ms: miliseconds until the regulator is disabled
2131  *
2132  * Execute regulator_disable() on the regulator after a delay.  This
2133  * is intended for use with devices that require some time to quiesce.
2134  *
2135  * NOTE: this will only disable the regulator output if no other consumer
2136  * devices have it enabled, the regulator device supports disabling and
2137  * machine constraints permit this operation.
2138  */
2139 int regulator_disable_deferred(struct regulator *regulator, int ms)
2140 {
2141 	struct regulator_dev *rdev = regulator->rdev;
2142 	int ret;
2143 
2144 	if (regulator->always_on)
2145 		return 0;
2146 
2147 	if (!ms)
2148 		return regulator_disable(regulator);
2149 
2150 	mutex_lock(&rdev->mutex);
2151 	rdev->deferred_disables++;
2152 	mutex_unlock(&rdev->mutex);
2153 
2154 	ret = queue_delayed_work(system_power_efficient_wq,
2155 				 &rdev->disable_work,
2156 				 msecs_to_jiffies(ms));
2157 	if (ret < 0)
2158 		return ret;
2159 	else
2160 		return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2163 
2164 static int _regulator_is_enabled(struct regulator_dev *rdev)
2165 {
2166 	/* A GPIO control always takes precedence */
2167 	if (rdev->ena_pin)
2168 		return rdev->ena_gpio_state;
2169 
2170 	/* If we don't know then assume that the regulator is always on */
2171 	if (!rdev->desc->ops->is_enabled)
2172 		return 1;
2173 
2174 	return rdev->desc->ops->is_enabled(rdev);
2175 }
2176 
2177 /**
2178  * regulator_is_enabled - is the regulator output enabled
2179  * @regulator: regulator source
2180  *
2181  * Returns positive if the regulator driver backing the source/client
2182  * has requested that the device be enabled, zero if it hasn't, else a
2183  * negative errno code.
2184  *
2185  * Note that the device backing this regulator handle can have multiple
2186  * users, so it might be enabled even if regulator_enable() was never
2187  * called for this particular source.
2188  */
2189 int regulator_is_enabled(struct regulator *regulator)
2190 {
2191 	int ret;
2192 
2193 	if (regulator->always_on)
2194 		return 1;
2195 
2196 	mutex_lock(&regulator->rdev->mutex);
2197 	ret = _regulator_is_enabled(regulator->rdev);
2198 	mutex_unlock(&regulator->rdev->mutex);
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2203 
2204 /**
2205  * regulator_can_change_voltage - check if regulator can change voltage
2206  * @regulator: regulator source
2207  *
2208  * Returns positive if the regulator driver backing the source/client
2209  * can change its voltage, false otherwise. Useful for detecting fixed
2210  * or dummy regulators and disabling voltage change logic in the client
2211  * driver.
2212  */
2213 int regulator_can_change_voltage(struct regulator *regulator)
2214 {
2215 	struct regulator_dev	*rdev = regulator->rdev;
2216 
2217 	if (rdev->constraints &&
2218 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2219 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2220 			return 1;
2221 
2222 		if (rdev->desc->continuous_voltage_range &&
2223 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2224 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2225 			return 1;
2226 	}
2227 
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2231 
2232 /**
2233  * regulator_count_voltages - count regulator_list_voltage() selectors
2234  * @regulator: regulator source
2235  *
2236  * Returns number of selectors, or negative errno.  Selectors are
2237  * numbered starting at zero, and typically correspond to bitfields
2238  * in hardware registers.
2239  */
2240 int regulator_count_voltages(struct regulator *regulator)
2241 {
2242 	struct regulator_dev	*rdev = regulator->rdev;
2243 
2244 	if (rdev->desc->n_voltages)
2245 		return rdev->desc->n_voltages;
2246 
2247 	if (!rdev->supply)
2248 		return -EINVAL;
2249 
2250 	return regulator_count_voltages(rdev->supply);
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2253 
2254 /**
2255  * regulator_list_voltage - enumerate supported voltages
2256  * @regulator: regulator source
2257  * @selector: identify voltage to list
2258  * Context: can sleep
2259  *
2260  * Returns a voltage that can be passed to @regulator_set_voltage(),
2261  * zero if this selector code can't be used on this system, or a
2262  * negative errno.
2263  */
2264 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2265 {
2266 	struct regulator_dev *rdev = regulator->rdev;
2267 	const struct regulator_ops *ops = rdev->desc->ops;
2268 	int ret;
2269 
2270 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2271 		return rdev->desc->fixed_uV;
2272 
2273 	if (ops->list_voltage) {
2274 		if (selector >= rdev->desc->n_voltages)
2275 			return -EINVAL;
2276 		mutex_lock(&rdev->mutex);
2277 		ret = ops->list_voltage(rdev, selector);
2278 		mutex_unlock(&rdev->mutex);
2279 	} else if (rdev->supply) {
2280 		ret = regulator_list_voltage(rdev->supply, selector);
2281 	} else {
2282 		return -EINVAL;
2283 	}
2284 
2285 	if (ret > 0) {
2286 		if (ret < rdev->constraints->min_uV)
2287 			ret = 0;
2288 		else if (ret > rdev->constraints->max_uV)
2289 			ret = 0;
2290 	}
2291 
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2295 
2296 /**
2297  * regulator_get_regmap - get the regulator's register map
2298  * @regulator: regulator source
2299  *
2300  * Returns the register map for the given regulator, or an ERR_PTR value
2301  * if the regulator doesn't use regmap.
2302  */
2303 struct regmap *regulator_get_regmap(struct regulator *regulator)
2304 {
2305 	struct regmap *map = regulator->rdev->regmap;
2306 
2307 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2308 }
2309 
2310 /**
2311  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2312  * @regulator: regulator source
2313  * @vsel_reg: voltage selector register, output parameter
2314  * @vsel_mask: mask for voltage selector bitfield, output parameter
2315  *
2316  * Returns the hardware register offset and bitmask used for setting the
2317  * regulator voltage. This might be useful when configuring voltage-scaling
2318  * hardware or firmware that can make I2C requests behind the kernel's back,
2319  * for example.
2320  *
2321  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2322  * and 0 is returned, otherwise a negative errno is returned.
2323  */
2324 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2325 					 unsigned *vsel_reg,
2326 					 unsigned *vsel_mask)
2327 {
2328 	struct regulator_dev *rdev = regulator->rdev;
2329 	const struct regulator_ops *ops = rdev->desc->ops;
2330 
2331 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2332 		return -EOPNOTSUPP;
2333 
2334 	 *vsel_reg = rdev->desc->vsel_reg;
2335 	 *vsel_mask = rdev->desc->vsel_mask;
2336 
2337 	 return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2340 
2341 /**
2342  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2343  * @regulator: regulator source
2344  * @selector: identify voltage to list
2345  *
2346  * Converts the selector to a hardware-specific voltage selector that can be
2347  * directly written to the regulator registers. The address of the voltage
2348  * register can be determined by calling @regulator_get_hardware_vsel_register.
2349  *
2350  * On error a negative errno is returned.
2351  */
2352 int regulator_list_hardware_vsel(struct regulator *regulator,
2353 				 unsigned selector)
2354 {
2355 	struct regulator_dev *rdev = regulator->rdev;
2356 	const struct regulator_ops *ops = rdev->desc->ops;
2357 
2358 	if (selector >= rdev->desc->n_voltages)
2359 		return -EINVAL;
2360 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2361 		return -EOPNOTSUPP;
2362 
2363 	return selector;
2364 }
2365 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2366 
2367 /**
2368  * regulator_get_linear_step - return the voltage step size between VSEL values
2369  * @regulator: regulator source
2370  *
2371  * Returns the voltage step size between VSEL values for linear
2372  * regulators, or return 0 if the regulator isn't a linear regulator.
2373  */
2374 unsigned int regulator_get_linear_step(struct regulator *regulator)
2375 {
2376 	struct regulator_dev *rdev = regulator->rdev;
2377 
2378 	return rdev->desc->uV_step;
2379 }
2380 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2381 
2382 /**
2383  * regulator_is_supported_voltage - check if a voltage range can be supported
2384  *
2385  * @regulator: Regulator to check.
2386  * @min_uV: Minimum required voltage in uV.
2387  * @max_uV: Maximum required voltage in uV.
2388  *
2389  * Returns a boolean or a negative error code.
2390  */
2391 int regulator_is_supported_voltage(struct regulator *regulator,
2392 				   int min_uV, int max_uV)
2393 {
2394 	struct regulator_dev *rdev = regulator->rdev;
2395 	int i, voltages, ret;
2396 
2397 	/* If we can't change voltage check the current voltage */
2398 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2399 		ret = regulator_get_voltage(regulator);
2400 		if (ret >= 0)
2401 			return min_uV <= ret && ret <= max_uV;
2402 		else
2403 			return ret;
2404 	}
2405 
2406 	/* Any voltage within constrains range is fine? */
2407 	if (rdev->desc->continuous_voltage_range)
2408 		return min_uV >= rdev->constraints->min_uV &&
2409 				max_uV <= rdev->constraints->max_uV;
2410 
2411 	ret = regulator_count_voltages(regulator);
2412 	if (ret < 0)
2413 		return ret;
2414 	voltages = ret;
2415 
2416 	for (i = 0; i < voltages; i++) {
2417 		ret = regulator_list_voltage(regulator, i);
2418 
2419 		if (ret >= min_uV && ret <= max_uV)
2420 			return 1;
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2426 
2427 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2428 				       int min_uV, int max_uV,
2429 				       unsigned *selector)
2430 {
2431 	struct pre_voltage_change_data data;
2432 	int ret;
2433 
2434 	data.old_uV = _regulator_get_voltage(rdev);
2435 	data.min_uV = min_uV;
2436 	data.max_uV = max_uV;
2437 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2438 				   &data);
2439 	if (ret & NOTIFY_STOP_MASK)
2440 		return -EINVAL;
2441 
2442 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2443 	if (ret >= 0)
2444 		return ret;
2445 
2446 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2447 			     (void *)data.old_uV);
2448 
2449 	return ret;
2450 }
2451 
2452 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2453 					   int uV, unsigned selector)
2454 {
2455 	struct pre_voltage_change_data data;
2456 	int ret;
2457 
2458 	data.old_uV = _regulator_get_voltage(rdev);
2459 	data.min_uV = uV;
2460 	data.max_uV = uV;
2461 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2462 				   &data);
2463 	if (ret & NOTIFY_STOP_MASK)
2464 		return -EINVAL;
2465 
2466 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2467 	if (ret >= 0)
2468 		return ret;
2469 
2470 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2471 			     (void *)data.old_uV);
2472 
2473 	return ret;
2474 }
2475 
2476 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2477 				     int min_uV, int max_uV)
2478 {
2479 	int ret;
2480 	int delay = 0;
2481 	int best_val = 0;
2482 	unsigned int selector;
2483 	int old_selector = -1;
2484 
2485 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2486 
2487 	min_uV += rdev->constraints->uV_offset;
2488 	max_uV += rdev->constraints->uV_offset;
2489 
2490 	/*
2491 	 * If we can't obtain the old selector there is not enough
2492 	 * info to call set_voltage_time_sel().
2493 	 */
2494 	if (_regulator_is_enabled(rdev) &&
2495 	    rdev->desc->ops->set_voltage_time_sel &&
2496 	    rdev->desc->ops->get_voltage_sel) {
2497 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2498 		if (old_selector < 0)
2499 			return old_selector;
2500 	}
2501 
2502 	if (rdev->desc->ops->set_voltage) {
2503 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2504 						  &selector);
2505 
2506 		if (ret >= 0) {
2507 			if (rdev->desc->ops->list_voltage)
2508 				best_val = rdev->desc->ops->list_voltage(rdev,
2509 									 selector);
2510 			else
2511 				best_val = _regulator_get_voltage(rdev);
2512 		}
2513 
2514 	} else if (rdev->desc->ops->set_voltage_sel) {
2515 		if (rdev->desc->ops->map_voltage) {
2516 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2517 							   max_uV);
2518 		} else {
2519 			if (rdev->desc->ops->list_voltage ==
2520 			    regulator_list_voltage_linear)
2521 				ret = regulator_map_voltage_linear(rdev,
2522 								min_uV, max_uV);
2523 			else if (rdev->desc->ops->list_voltage ==
2524 				 regulator_list_voltage_linear_range)
2525 				ret = regulator_map_voltage_linear_range(rdev,
2526 								min_uV, max_uV);
2527 			else
2528 				ret = regulator_map_voltage_iterate(rdev,
2529 								min_uV, max_uV);
2530 		}
2531 
2532 		if (ret >= 0) {
2533 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2534 			if (min_uV <= best_val && max_uV >= best_val) {
2535 				selector = ret;
2536 				if (old_selector == selector)
2537 					ret = 0;
2538 				else
2539 					ret = _regulator_call_set_voltage_sel(
2540 						rdev, best_val, selector);
2541 			} else {
2542 				ret = -EINVAL;
2543 			}
2544 		}
2545 	} else {
2546 		ret = -EINVAL;
2547 	}
2548 
2549 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2550 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2551 		&& old_selector != selector) {
2552 
2553 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2554 						old_selector, selector);
2555 		if (delay < 0) {
2556 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2557 				  delay);
2558 			delay = 0;
2559 		}
2560 
2561 		/* Insert any necessary delays */
2562 		if (delay >= 1000) {
2563 			mdelay(delay / 1000);
2564 			udelay(delay % 1000);
2565 		} else if (delay) {
2566 			udelay(delay);
2567 		}
2568 	}
2569 
2570 	if (ret == 0 && best_val >= 0) {
2571 		unsigned long data = best_val;
2572 
2573 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2574 				     (void *)data);
2575 	}
2576 
2577 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2578 
2579 	return ret;
2580 }
2581 
2582 /**
2583  * regulator_set_voltage - set regulator output voltage
2584  * @regulator: regulator source
2585  * @min_uV: Minimum required voltage in uV
2586  * @max_uV: Maximum acceptable voltage in uV
2587  *
2588  * Sets a voltage regulator to the desired output voltage. This can be set
2589  * during any regulator state. IOW, regulator can be disabled or enabled.
2590  *
2591  * If the regulator is enabled then the voltage will change to the new value
2592  * immediately otherwise if the regulator is disabled the regulator will
2593  * output at the new voltage when enabled.
2594  *
2595  * NOTE: If the regulator is shared between several devices then the lowest
2596  * request voltage that meets the system constraints will be used.
2597  * Regulator system constraints must be set for this regulator before
2598  * calling this function otherwise this call will fail.
2599  */
2600 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2601 {
2602 	struct regulator_dev *rdev = regulator->rdev;
2603 	int ret = 0;
2604 	int old_min_uV, old_max_uV;
2605 	int current_uV;
2606 
2607 	mutex_lock(&rdev->mutex);
2608 
2609 	/* If we're setting the same range as last time the change
2610 	 * should be a noop (some cpufreq implementations use the same
2611 	 * voltage for multiple frequencies, for example).
2612 	 */
2613 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2614 		goto out;
2615 
2616 	/* If we're trying to set a range that overlaps the current voltage,
2617 	 * return succesfully even though the regulator does not support
2618 	 * changing the voltage.
2619 	 */
2620 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2621 		current_uV = _regulator_get_voltage(rdev);
2622 		if (min_uV <= current_uV && current_uV <= max_uV) {
2623 			regulator->min_uV = min_uV;
2624 			regulator->max_uV = max_uV;
2625 			goto out;
2626 		}
2627 	}
2628 
2629 	/* sanity check */
2630 	if (!rdev->desc->ops->set_voltage &&
2631 	    !rdev->desc->ops->set_voltage_sel) {
2632 		ret = -EINVAL;
2633 		goto out;
2634 	}
2635 
2636 	/* constraints check */
2637 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2638 	if (ret < 0)
2639 		goto out;
2640 
2641 	/* restore original values in case of error */
2642 	old_min_uV = regulator->min_uV;
2643 	old_max_uV = regulator->max_uV;
2644 	regulator->min_uV = min_uV;
2645 	regulator->max_uV = max_uV;
2646 
2647 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2648 	if (ret < 0)
2649 		goto out2;
2650 
2651 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2652 	if (ret < 0)
2653 		goto out2;
2654 
2655 out:
2656 	mutex_unlock(&rdev->mutex);
2657 	return ret;
2658 out2:
2659 	regulator->min_uV = old_min_uV;
2660 	regulator->max_uV = old_max_uV;
2661 	mutex_unlock(&rdev->mutex);
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2665 
2666 /**
2667  * regulator_set_voltage_time - get raise/fall time
2668  * @regulator: regulator source
2669  * @old_uV: starting voltage in microvolts
2670  * @new_uV: target voltage in microvolts
2671  *
2672  * Provided with the starting and ending voltage, this function attempts to
2673  * calculate the time in microseconds required to rise or fall to this new
2674  * voltage.
2675  */
2676 int regulator_set_voltage_time(struct regulator *regulator,
2677 			       int old_uV, int new_uV)
2678 {
2679 	struct regulator_dev *rdev = regulator->rdev;
2680 	const struct regulator_ops *ops = rdev->desc->ops;
2681 	int old_sel = -1;
2682 	int new_sel = -1;
2683 	int voltage;
2684 	int i;
2685 
2686 	/* Currently requires operations to do this */
2687 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2688 	    || !rdev->desc->n_voltages)
2689 		return -EINVAL;
2690 
2691 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2692 		/* We only look for exact voltage matches here */
2693 		voltage = regulator_list_voltage(regulator, i);
2694 		if (voltage < 0)
2695 			return -EINVAL;
2696 		if (voltage == 0)
2697 			continue;
2698 		if (voltage == old_uV)
2699 			old_sel = i;
2700 		if (voltage == new_uV)
2701 			new_sel = i;
2702 	}
2703 
2704 	if (old_sel < 0 || new_sel < 0)
2705 		return -EINVAL;
2706 
2707 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2708 }
2709 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2710 
2711 /**
2712  * regulator_set_voltage_time_sel - get raise/fall time
2713  * @rdev: regulator source device
2714  * @old_selector: selector for starting voltage
2715  * @new_selector: selector for target voltage
2716  *
2717  * Provided with the starting and target voltage selectors, this function
2718  * returns time in microseconds required to rise or fall to this new voltage
2719  *
2720  * Drivers providing ramp_delay in regulation_constraints can use this as their
2721  * set_voltage_time_sel() operation.
2722  */
2723 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2724 				   unsigned int old_selector,
2725 				   unsigned int new_selector)
2726 {
2727 	unsigned int ramp_delay = 0;
2728 	int old_volt, new_volt;
2729 
2730 	if (rdev->constraints->ramp_delay)
2731 		ramp_delay = rdev->constraints->ramp_delay;
2732 	else if (rdev->desc->ramp_delay)
2733 		ramp_delay = rdev->desc->ramp_delay;
2734 
2735 	if (ramp_delay == 0) {
2736 		rdev_warn(rdev, "ramp_delay not set\n");
2737 		return 0;
2738 	}
2739 
2740 	/* sanity check */
2741 	if (!rdev->desc->ops->list_voltage)
2742 		return -EINVAL;
2743 
2744 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2745 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2746 
2747 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2748 }
2749 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2750 
2751 /**
2752  * regulator_sync_voltage - re-apply last regulator output voltage
2753  * @regulator: regulator source
2754  *
2755  * Re-apply the last configured voltage.  This is intended to be used
2756  * where some external control source the consumer is cooperating with
2757  * has caused the configured voltage to change.
2758  */
2759 int regulator_sync_voltage(struct regulator *regulator)
2760 {
2761 	struct regulator_dev *rdev = regulator->rdev;
2762 	int ret, min_uV, max_uV;
2763 
2764 	mutex_lock(&rdev->mutex);
2765 
2766 	if (!rdev->desc->ops->set_voltage &&
2767 	    !rdev->desc->ops->set_voltage_sel) {
2768 		ret = -EINVAL;
2769 		goto out;
2770 	}
2771 
2772 	/* This is only going to work if we've had a voltage configured. */
2773 	if (!regulator->min_uV && !regulator->max_uV) {
2774 		ret = -EINVAL;
2775 		goto out;
2776 	}
2777 
2778 	min_uV = regulator->min_uV;
2779 	max_uV = regulator->max_uV;
2780 
2781 	/* This should be a paranoia check... */
2782 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2783 	if (ret < 0)
2784 		goto out;
2785 
2786 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2787 	if (ret < 0)
2788 		goto out;
2789 
2790 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2791 
2792 out:
2793 	mutex_unlock(&rdev->mutex);
2794 	return ret;
2795 }
2796 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2797 
2798 static int _regulator_get_voltage(struct regulator_dev *rdev)
2799 {
2800 	int sel, ret;
2801 
2802 	if (rdev->desc->ops->get_voltage_sel) {
2803 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2804 		if (sel < 0)
2805 			return sel;
2806 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2807 	} else if (rdev->desc->ops->get_voltage) {
2808 		ret = rdev->desc->ops->get_voltage(rdev);
2809 	} else if (rdev->desc->ops->list_voltage) {
2810 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2811 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2812 		ret = rdev->desc->fixed_uV;
2813 	} else if (rdev->supply) {
2814 		ret = regulator_get_voltage(rdev->supply);
2815 	} else {
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (ret < 0)
2820 		return ret;
2821 	return ret - rdev->constraints->uV_offset;
2822 }
2823 
2824 /**
2825  * regulator_get_voltage - get regulator output voltage
2826  * @regulator: regulator source
2827  *
2828  * This returns the current regulator voltage in uV.
2829  *
2830  * NOTE: If the regulator is disabled it will return the voltage value. This
2831  * function should not be used to determine regulator state.
2832  */
2833 int regulator_get_voltage(struct regulator *regulator)
2834 {
2835 	int ret;
2836 
2837 	mutex_lock(&regulator->rdev->mutex);
2838 
2839 	ret = _regulator_get_voltage(regulator->rdev);
2840 
2841 	mutex_unlock(&regulator->rdev->mutex);
2842 
2843 	return ret;
2844 }
2845 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2846 
2847 /**
2848  * regulator_set_current_limit - set regulator output current limit
2849  * @regulator: regulator source
2850  * @min_uA: Minimum supported current in uA
2851  * @max_uA: Maximum supported current in uA
2852  *
2853  * Sets current sink to the desired output current. This can be set during
2854  * any regulator state. IOW, regulator can be disabled or enabled.
2855  *
2856  * If the regulator is enabled then the current will change to the new value
2857  * immediately otherwise if the regulator is disabled the regulator will
2858  * output at the new current when enabled.
2859  *
2860  * NOTE: Regulator system constraints must be set for this regulator before
2861  * calling this function otherwise this call will fail.
2862  */
2863 int regulator_set_current_limit(struct regulator *regulator,
2864 			       int min_uA, int max_uA)
2865 {
2866 	struct regulator_dev *rdev = regulator->rdev;
2867 	int ret;
2868 
2869 	mutex_lock(&rdev->mutex);
2870 
2871 	/* sanity check */
2872 	if (!rdev->desc->ops->set_current_limit) {
2873 		ret = -EINVAL;
2874 		goto out;
2875 	}
2876 
2877 	/* constraints check */
2878 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2879 	if (ret < 0)
2880 		goto out;
2881 
2882 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2883 out:
2884 	mutex_unlock(&rdev->mutex);
2885 	return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2888 
2889 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2890 {
2891 	int ret;
2892 
2893 	mutex_lock(&rdev->mutex);
2894 
2895 	/* sanity check */
2896 	if (!rdev->desc->ops->get_current_limit) {
2897 		ret = -EINVAL;
2898 		goto out;
2899 	}
2900 
2901 	ret = rdev->desc->ops->get_current_limit(rdev);
2902 out:
2903 	mutex_unlock(&rdev->mutex);
2904 	return ret;
2905 }
2906 
2907 /**
2908  * regulator_get_current_limit - get regulator output current
2909  * @regulator: regulator source
2910  *
2911  * This returns the current supplied by the specified current sink in uA.
2912  *
2913  * NOTE: If the regulator is disabled it will return the current value. This
2914  * function should not be used to determine regulator state.
2915  */
2916 int regulator_get_current_limit(struct regulator *regulator)
2917 {
2918 	return _regulator_get_current_limit(regulator->rdev);
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2921 
2922 /**
2923  * regulator_set_mode - set regulator operating mode
2924  * @regulator: regulator source
2925  * @mode: operating mode - one of the REGULATOR_MODE constants
2926  *
2927  * Set regulator operating mode to increase regulator efficiency or improve
2928  * regulation performance.
2929  *
2930  * NOTE: Regulator system constraints must be set for this regulator before
2931  * calling this function otherwise this call will fail.
2932  */
2933 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2934 {
2935 	struct regulator_dev *rdev = regulator->rdev;
2936 	int ret;
2937 	int regulator_curr_mode;
2938 
2939 	mutex_lock(&rdev->mutex);
2940 
2941 	/* sanity check */
2942 	if (!rdev->desc->ops->set_mode) {
2943 		ret = -EINVAL;
2944 		goto out;
2945 	}
2946 
2947 	/* return if the same mode is requested */
2948 	if (rdev->desc->ops->get_mode) {
2949 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2950 		if (regulator_curr_mode == mode) {
2951 			ret = 0;
2952 			goto out;
2953 		}
2954 	}
2955 
2956 	/* constraints check */
2957 	ret = regulator_mode_constrain(rdev, &mode);
2958 	if (ret < 0)
2959 		goto out;
2960 
2961 	ret = rdev->desc->ops->set_mode(rdev, mode);
2962 out:
2963 	mutex_unlock(&rdev->mutex);
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(regulator_set_mode);
2967 
2968 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2969 {
2970 	int ret;
2971 
2972 	mutex_lock(&rdev->mutex);
2973 
2974 	/* sanity check */
2975 	if (!rdev->desc->ops->get_mode) {
2976 		ret = -EINVAL;
2977 		goto out;
2978 	}
2979 
2980 	ret = rdev->desc->ops->get_mode(rdev);
2981 out:
2982 	mutex_unlock(&rdev->mutex);
2983 	return ret;
2984 }
2985 
2986 /**
2987  * regulator_get_mode - get regulator operating mode
2988  * @regulator: regulator source
2989  *
2990  * Get the current regulator operating mode.
2991  */
2992 unsigned int regulator_get_mode(struct regulator *regulator)
2993 {
2994 	return _regulator_get_mode(regulator->rdev);
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_get_mode);
2997 
2998 /**
2999  * regulator_set_optimum_mode - set regulator optimum operating mode
3000  * @regulator: regulator source
3001  * @uA_load: load current
3002  *
3003  * Notifies the regulator core of a new device load. This is then used by
3004  * DRMS (if enabled by constraints) to set the most efficient regulator
3005  * operating mode for the new regulator loading.
3006  *
3007  * Consumer devices notify their supply regulator of the maximum power
3008  * they will require (can be taken from device datasheet in the power
3009  * consumption tables) when they change operational status and hence power
3010  * state. Examples of operational state changes that can affect power
3011  * consumption are :-
3012  *
3013  *    o Device is opened / closed.
3014  *    o Device I/O is about to begin or has just finished.
3015  *    o Device is idling in between work.
3016  *
3017  * This information is also exported via sysfs to userspace.
3018  *
3019  * DRMS will sum the total requested load on the regulator and change
3020  * to the most efficient operating mode if platform constraints allow.
3021  *
3022  * Returns the new regulator mode or error.
3023  */
3024 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3025 {
3026 	struct regulator_dev *rdev = regulator->rdev;
3027 	struct regulator *consumer;
3028 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
3029 	unsigned int mode;
3030 
3031 	if (rdev->supply)
3032 		input_uV = regulator_get_voltage(rdev->supply);
3033 
3034 	mutex_lock(&rdev->mutex);
3035 
3036 	/*
3037 	 * first check to see if we can set modes at all, otherwise just
3038 	 * tell the consumer everything is OK.
3039 	 */
3040 	regulator->uA_load = uA_load;
3041 	ret = regulator_check_drms(rdev);
3042 	if (ret < 0) {
3043 		ret = 0;
3044 		goto out;
3045 	}
3046 
3047 	if (!rdev->desc->ops->get_optimum_mode)
3048 		goto out;
3049 
3050 	/*
3051 	 * we can actually do this so any errors are indicators of
3052 	 * potential real failure.
3053 	 */
3054 	ret = -EINVAL;
3055 
3056 	if (!rdev->desc->ops->set_mode)
3057 		goto out;
3058 
3059 	/* get output voltage */
3060 	output_uV = _regulator_get_voltage(rdev);
3061 	if (output_uV <= 0) {
3062 		rdev_err(rdev, "invalid output voltage found\n");
3063 		goto out;
3064 	}
3065 
3066 	/* No supply? Use constraint voltage */
3067 	if (input_uV <= 0)
3068 		input_uV = rdev->constraints->input_uV;
3069 	if (input_uV <= 0) {
3070 		rdev_err(rdev, "invalid input voltage found\n");
3071 		goto out;
3072 	}
3073 
3074 	/* calc total requested load for this regulator */
3075 	list_for_each_entry(consumer, &rdev->consumer_list, list)
3076 		total_uA_load += consumer->uA_load;
3077 
3078 	mode = rdev->desc->ops->get_optimum_mode(rdev,
3079 						 input_uV, output_uV,
3080 						 total_uA_load);
3081 	ret = regulator_mode_constrain(rdev, &mode);
3082 	if (ret < 0) {
3083 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3084 			 total_uA_load, input_uV, output_uV);
3085 		goto out;
3086 	}
3087 
3088 	ret = rdev->desc->ops->set_mode(rdev, mode);
3089 	if (ret < 0) {
3090 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3091 		goto out;
3092 	}
3093 	ret = mode;
3094 out:
3095 	mutex_unlock(&rdev->mutex);
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3099 
3100 /**
3101  * regulator_allow_bypass - allow the regulator to go into bypass mode
3102  *
3103  * @regulator: Regulator to configure
3104  * @enable: enable or disable bypass mode
3105  *
3106  * Allow the regulator to go into bypass mode if all other consumers
3107  * for the regulator also enable bypass mode and the machine
3108  * constraints allow this.  Bypass mode means that the regulator is
3109  * simply passing the input directly to the output with no regulation.
3110  */
3111 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3112 {
3113 	struct regulator_dev *rdev = regulator->rdev;
3114 	int ret = 0;
3115 
3116 	if (!rdev->desc->ops->set_bypass)
3117 		return 0;
3118 
3119 	if (rdev->constraints &&
3120 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3121 		return 0;
3122 
3123 	mutex_lock(&rdev->mutex);
3124 
3125 	if (enable && !regulator->bypass) {
3126 		rdev->bypass_count++;
3127 
3128 		if (rdev->bypass_count == rdev->open_count) {
3129 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3130 			if (ret != 0)
3131 				rdev->bypass_count--;
3132 		}
3133 
3134 	} else if (!enable && regulator->bypass) {
3135 		rdev->bypass_count--;
3136 
3137 		if (rdev->bypass_count != rdev->open_count) {
3138 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3139 			if (ret != 0)
3140 				rdev->bypass_count++;
3141 		}
3142 	}
3143 
3144 	if (ret == 0)
3145 		regulator->bypass = enable;
3146 
3147 	mutex_unlock(&rdev->mutex);
3148 
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3152 
3153 /**
3154  * regulator_register_notifier - register regulator event notifier
3155  * @regulator: regulator source
3156  * @nb: notifier block
3157  *
3158  * Register notifier block to receive regulator events.
3159  */
3160 int regulator_register_notifier(struct regulator *regulator,
3161 			      struct notifier_block *nb)
3162 {
3163 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3164 						nb);
3165 }
3166 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3167 
3168 /**
3169  * regulator_unregister_notifier - unregister regulator event notifier
3170  * @regulator: regulator source
3171  * @nb: notifier block
3172  *
3173  * Unregister regulator event notifier block.
3174  */
3175 int regulator_unregister_notifier(struct regulator *regulator,
3176 				struct notifier_block *nb)
3177 {
3178 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3179 						  nb);
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3182 
3183 /* notify regulator consumers and downstream regulator consumers.
3184  * Note mutex must be held by caller.
3185  */
3186 static int _notifier_call_chain(struct regulator_dev *rdev,
3187 				  unsigned long event, void *data)
3188 {
3189 	/* call rdev chain first */
3190 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3191 }
3192 
3193 /**
3194  * regulator_bulk_get - get multiple regulator consumers
3195  *
3196  * @dev:           Device to supply
3197  * @num_consumers: Number of consumers to register
3198  * @consumers:     Configuration of consumers; clients are stored here.
3199  *
3200  * @return 0 on success, an errno on failure.
3201  *
3202  * This helper function allows drivers to get several regulator
3203  * consumers in one operation.  If any of the regulators cannot be
3204  * acquired then any regulators that were allocated will be freed
3205  * before returning to the caller.
3206  */
3207 int regulator_bulk_get(struct device *dev, int num_consumers,
3208 		       struct regulator_bulk_data *consumers)
3209 {
3210 	int i;
3211 	int ret;
3212 
3213 	for (i = 0; i < num_consumers; i++)
3214 		consumers[i].consumer = NULL;
3215 
3216 	for (i = 0; i < num_consumers; i++) {
3217 		consumers[i].consumer = regulator_get(dev,
3218 						      consumers[i].supply);
3219 		if (IS_ERR(consumers[i].consumer)) {
3220 			ret = PTR_ERR(consumers[i].consumer);
3221 			dev_err(dev, "Failed to get supply '%s': %d\n",
3222 				consumers[i].supply, ret);
3223 			consumers[i].consumer = NULL;
3224 			goto err;
3225 		}
3226 	}
3227 
3228 	return 0;
3229 
3230 err:
3231 	while (--i >= 0)
3232 		regulator_put(consumers[i].consumer);
3233 
3234 	return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3237 
3238 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3239 {
3240 	struct regulator_bulk_data *bulk = data;
3241 
3242 	bulk->ret = regulator_enable(bulk->consumer);
3243 }
3244 
3245 /**
3246  * regulator_bulk_enable - enable multiple regulator consumers
3247  *
3248  * @num_consumers: Number of consumers
3249  * @consumers:     Consumer data; clients are stored here.
3250  * @return         0 on success, an errno on failure
3251  *
3252  * This convenience API allows consumers to enable multiple regulator
3253  * clients in a single API call.  If any consumers cannot be enabled
3254  * then any others that were enabled will be disabled again prior to
3255  * return.
3256  */
3257 int regulator_bulk_enable(int num_consumers,
3258 			  struct regulator_bulk_data *consumers)
3259 {
3260 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3261 	int i;
3262 	int ret = 0;
3263 
3264 	for (i = 0; i < num_consumers; i++) {
3265 		if (consumers[i].consumer->always_on)
3266 			consumers[i].ret = 0;
3267 		else
3268 			async_schedule_domain(regulator_bulk_enable_async,
3269 					      &consumers[i], &async_domain);
3270 	}
3271 
3272 	async_synchronize_full_domain(&async_domain);
3273 
3274 	/* If any consumer failed we need to unwind any that succeeded */
3275 	for (i = 0; i < num_consumers; i++) {
3276 		if (consumers[i].ret != 0) {
3277 			ret = consumers[i].ret;
3278 			goto err;
3279 		}
3280 	}
3281 
3282 	return 0;
3283 
3284 err:
3285 	for (i = 0; i < num_consumers; i++) {
3286 		if (consumers[i].ret < 0)
3287 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3288 			       consumers[i].ret);
3289 		else
3290 			regulator_disable(consumers[i].consumer);
3291 	}
3292 
3293 	return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3296 
3297 /**
3298  * regulator_bulk_disable - disable multiple regulator consumers
3299  *
3300  * @num_consumers: Number of consumers
3301  * @consumers:     Consumer data; clients are stored here.
3302  * @return         0 on success, an errno on failure
3303  *
3304  * This convenience API allows consumers to disable multiple regulator
3305  * clients in a single API call.  If any consumers cannot be disabled
3306  * then any others that were disabled will be enabled again prior to
3307  * return.
3308  */
3309 int regulator_bulk_disable(int num_consumers,
3310 			   struct regulator_bulk_data *consumers)
3311 {
3312 	int i;
3313 	int ret, r;
3314 
3315 	for (i = num_consumers - 1; i >= 0; --i) {
3316 		ret = regulator_disable(consumers[i].consumer);
3317 		if (ret != 0)
3318 			goto err;
3319 	}
3320 
3321 	return 0;
3322 
3323 err:
3324 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3325 	for (++i; i < num_consumers; ++i) {
3326 		r = regulator_enable(consumers[i].consumer);
3327 		if (r != 0)
3328 			pr_err("Failed to reename %s: %d\n",
3329 			       consumers[i].supply, r);
3330 	}
3331 
3332 	return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3335 
3336 /**
3337  * regulator_bulk_force_disable - force disable multiple regulator consumers
3338  *
3339  * @num_consumers: Number of consumers
3340  * @consumers:     Consumer data; clients are stored here.
3341  * @return         0 on success, an errno on failure
3342  *
3343  * This convenience API allows consumers to forcibly disable multiple regulator
3344  * clients in a single API call.
3345  * NOTE: This should be used for situations when device damage will
3346  * likely occur if the regulators are not disabled (e.g. over temp).
3347  * Although regulator_force_disable function call for some consumers can
3348  * return error numbers, the function is called for all consumers.
3349  */
3350 int regulator_bulk_force_disable(int num_consumers,
3351 			   struct regulator_bulk_data *consumers)
3352 {
3353 	int i;
3354 	int ret;
3355 
3356 	for (i = 0; i < num_consumers; i++)
3357 		consumers[i].ret =
3358 			    regulator_force_disable(consumers[i].consumer);
3359 
3360 	for (i = 0; i < num_consumers; i++) {
3361 		if (consumers[i].ret != 0) {
3362 			ret = consumers[i].ret;
3363 			goto out;
3364 		}
3365 	}
3366 
3367 	return 0;
3368 out:
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3372 
3373 /**
3374  * regulator_bulk_free - free multiple regulator consumers
3375  *
3376  * @num_consumers: Number of consumers
3377  * @consumers:     Consumer data; clients are stored here.
3378  *
3379  * This convenience API allows consumers to free multiple regulator
3380  * clients in a single API call.
3381  */
3382 void regulator_bulk_free(int num_consumers,
3383 			 struct regulator_bulk_data *consumers)
3384 {
3385 	int i;
3386 
3387 	for (i = 0; i < num_consumers; i++) {
3388 		regulator_put(consumers[i].consumer);
3389 		consumers[i].consumer = NULL;
3390 	}
3391 }
3392 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3393 
3394 /**
3395  * regulator_notifier_call_chain - call regulator event notifier
3396  * @rdev: regulator source
3397  * @event: notifier block
3398  * @data: callback-specific data.
3399  *
3400  * Called by regulator drivers to notify clients a regulator event has
3401  * occurred. We also notify regulator clients downstream.
3402  * Note lock must be held by caller.
3403  */
3404 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3405 				  unsigned long event, void *data)
3406 {
3407 	_notifier_call_chain(rdev, event, data);
3408 	return NOTIFY_DONE;
3409 
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3412 
3413 /**
3414  * regulator_mode_to_status - convert a regulator mode into a status
3415  *
3416  * @mode: Mode to convert
3417  *
3418  * Convert a regulator mode into a status.
3419  */
3420 int regulator_mode_to_status(unsigned int mode)
3421 {
3422 	switch (mode) {
3423 	case REGULATOR_MODE_FAST:
3424 		return REGULATOR_STATUS_FAST;
3425 	case REGULATOR_MODE_NORMAL:
3426 		return REGULATOR_STATUS_NORMAL;
3427 	case REGULATOR_MODE_IDLE:
3428 		return REGULATOR_STATUS_IDLE;
3429 	case REGULATOR_MODE_STANDBY:
3430 		return REGULATOR_STATUS_STANDBY;
3431 	default:
3432 		return REGULATOR_STATUS_UNDEFINED;
3433 	}
3434 }
3435 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3436 
3437 /*
3438  * To avoid cluttering sysfs (and memory) with useless state, only
3439  * create attributes that can be meaningfully displayed.
3440  */
3441 static int add_regulator_attributes(struct regulator_dev *rdev)
3442 {
3443 	struct device *dev = &rdev->dev;
3444 	const struct regulator_ops *ops = rdev->desc->ops;
3445 	int status = 0;
3446 
3447 	/* some attributes need specific methods to be displayed */
3448 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3449 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3450 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3451 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3452 		status = device_create_file(dev, &dev_attr_microvolts);
3453 		if (status < 0)
3454 			return status;
3455 	}
3456 	if (ops->get_current_limit) {
3457 		status = device_create_file(dev, &dev_attr_microamps);
3458 		if (status < 0)
3459 			return status;
3460 	}
3461 	if (ops->get_mode) {
3462 		status = device_create_file(dev, &dev_attr_opmode);
3463 		if (status < 0)
3464 			return status;
3465 	}
3466 	if (rdev->ena_pin || ops->is_enabled) {
3467 		status = device_create_file(dev, &dev_attr_state);
3468 		if (status < 0)
3469 			return status;
3470 	}
3471 	if (ops->get_status) {
3472 		status = device_create_file(dev, &dev_attr_status);
3473 		if (status < 0)
3474 			return status;
3475 	}
3476 	if (ops->get_bypass) {
3477 		status = device_create_file(dev, &dev_attr_bypass);
3478 		if (status < 0)
3479 			return status;
3480 	}
3481 
3482 	/* some attributes are type-specific */
3483 	if (rdev->desc->type == REGULATOR_CURRENT) {
3484 		status = device_create_file(dev, &dev_attr_requested_microamps);
3485 		if (status < 0)
3486 			return status;
3487 	}
3488 
3489 	/* all the other attributes exist to support constraints;
3490 	 * don't show them if there are no constraints, or if the
3491 	 * relevant supporting methods are missing.
3492 	 */
3493 	if (!rdev->constraints)
3494 		return status;
3495 
3496 	/* constraints need specific supporting methods */
3497 	if (ops->set_voltage || ops->set_voltage_sel) {
3498 		status = device_create_file(dev, &dev_attr_min_microvolts);
3499 		if (status < 0)
3500 			return status;
3501 		status = device_create_file(dev, &dev_attr_max_microvolts);
3502 		if (status < 0)
3503 			return status;
3504 	}
3505 	if (ops->set_current_limit) {
3506 		status = device_create_file(dev, &dev_attr_min_microamps);
3507 		if (status < 0)
3508 			return status;
3509 		status = device_create_file(dev, &dev_attr_max_microamps);
3510 		if (status < 0)
3511 			return status;
3512 	}
3513 
3514 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3515 	if (status < 0)
3516 		return status;
3517 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3518 	if (status < 0)
3519 		return status;
3520 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3521 	if (status < 0)
3522 		return status;
3523 
3524 	if (ops->set_suspend_voltage) {
3525 		status = device_create_file(dev,
3526 				&dev_attr_suspend_standby_microvolts);
3527 		if (status < 0)
3528 			return status;
3529 		status = device_create_file(dev,
3530 				&dev_attr_suspend_mem_microvolts);
3531 		if (status < 0)
3532 			return status;
3533 		status = device_create_file(dev,
3534 				&dev_attr_suspend_disk_microvolts);
3535 		if (status < 0)
3536 			return status;
3537 	}
3538 
3539 	if (ops->set_suspend_mode) {
3540 		status = device_create_file(dev,
3541 				&dev_attr_suspend_standby_mode);
3542 		if (status < 0)
3543 			return status;
3544 		status = device_create_file(dev,
3545 				&dev_attr_suspend_mem_mode);
3546 		if (status < 0)
3547 			return status;
3548 		status = device_create_file(dev,
3549 				&dev_attr_suspend_disk_mode);
3550 		if (status < 0)
3551 			return status;
3552 	}
3553 
3554 	return status;
3555 }
3556 
3557 static void rdev_init_debugfs(struct regulator_dev *rdev)
3558 {
3559 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3560 	if (!rdev->debugfs) {
3561 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3562 		return;
3563 	}
3564 
3565 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3566 			   &rdev->use_count);
3567 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3568 			   &rdev->open_count);
3569 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3570 			   &rdev->bypass_count);
3571 }
3572 
3573 /**
3574  * regulator_register - register regulator
3575  * @regulator_desc: regulator to register
3576  * @config: runtime configuration for regulator
3577  *
3578  * Called by regulator drivers to register a regulator.
3579  * Returns a valid pointer to struct regulator_dev on success
3580  * or an ERR_PTR() on error.
3581  */
3582 struct regulator_dev *
3583 regulator_register(const struct regulator_desc *regulator_desc,
3584 		   const struct regulator_config *config)
3585 {
3586 	const struct regulation_constraints *constraints = NULL;
3587 	const struct regulator_init_data *init_data;
3588 	static atomic_t regulator_no = ATOMIC_INIT(0);
3589 	struct regulator_dev *rdev;
3590 	struct device *dev;
3591 	int ret, i;
3592 	const char *supply = NULL;
3593 
3594 	if (regulator_desc == NULL || config == NULL)
3595 		return ERR_PTR(-EINVAL);
3596 
3597 	dev = config->dev;
3598 	WARN_ON(!dev);
3599 
3600 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3601 		return ERR_PTR(-EINVAL);
3602 
3603 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3604 	    regulator_desc->type != REGULATOR_CURRENT)
3605 		return ERR_PTR(-EINVAL);
3606 
3607 	/* Only one of each should be implemented */
3608 	WARN_ON(regulator_desc->ops->get_voltage &&
3609 		regulator_desc->ops->get_voltage_sel);
3610 	WARN_ON(regulator_desc->ops->set_voltage &&
3611 		regulator_desc->ops->set_voltage_sel);
3612 
3613 	/* If we're using selectors we must implement list_voltage. */
3614 	if (regulator_desc->ops->get_voltage_sel &&
3615 	    !regulator_desc->ops->list_voltage) {
3616 		return ERR_PTR(-EINVAL);
3617 	}
3618 	if (regulator_desc->ops->set_voltage_sel &&
3619 	    !regulator_desc->ops->list_voltage) {
3620 		return ERR_PTR(-EINVAL);
3621 	}
3622 
3623 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3624 	if (rdev == NULL)
3625 		return ERR_PTR(-ENOMEM);
3626 
3627 	init_data = regulator_of_get_init_data(dev, regulator_desc,
3628 					       &rdev->dev.of_node);
3629 	if (!init_data) {
3630 		init_data = config->init_data;
3631 		rdev->dev.of_node = of_node_get(config->of_node);
3632 	}
3633 
3634 	mutex_lock(&regulator_list_mutex);
3635 
3636 	mutex_init(&rdev->mutex);
3637 	rdev->reg_data = config->driver_data;
3638 	rdev->owner = regulator_desc->owner;
3639 	rdev->desc = regulator_desc;
3640 	if (config->regmap)
3641 		rdev->regmap = config->regmap;
3642 	else if (dev_get_regmap(dev, NULL))
3643 		rdev->regmap = dev_get_regmap(dev, NULL);
3644 	else if (dev->parent)
3645 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3646 	INIT_LIST_HEAD(&rdev->consumer_list);
3647 	INIT_LIST_HEAD(&rdev->list);
3648 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3649 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3650 
3651 	/* preform any regulator specific init */
3652 	if (init_data && init_data->regulator_init) {
3653 		ret = init_data->regulator_init(rdev->reg_data);
3654 		if (ret < 0)
3655 			goto clean;
3656 	}
3657 
3658 	/* register with sysfs */
3659 	rdev->dev.class = &regulator_class;
3660 	rdev->dev.parent = dev;
3661 	dev_set_name(&rdev->dev, "regulator.%d",
3662 		     atomic_inc_return(&regulator_no) - 1);
3663 	ret = device_register(&rdev->dev);
3664 	if (ret != 0) {
3665 		put_device(&rdev->dev);
3666 		goto clean;
3667 	}
3668 
3669 	dev_set_drvdata(&rdev->dev, rdev);
3670 
3671 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3672 	    gpio_is_valid(config->ena_gpio)) {
3673 		ret = regulator_ena_gpio_request(rdev, config);
3674 		if (ret != 0) {
3675 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3676 				 config->ena_gpio, ret);
3677 			goto wash;
3678 		}
3679 
3680 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3681 			rdev->ena_gpio_state = 1;
3682 
3683 		if (config->ena_gpio_invert)
3684 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3685 	}
3686 
3687 	/* set regulator constraints */
3688 	if (init_data)
3689 		constraints = &init_data->constraints;
3690 
3691 	ret = set_machine_constraints(rdev, constraints);
3692 	if (ret < 0)
3693 		goto scrub;
3694 
3695 	/* add attributes supported by this regulator */
3696 	ret = add_regulator_attributes(rdev);
3697 	if (ret < 0)
3698 		goto scrub;
3699 
3700 	if (init_data && init_data->supply_regulator)
3701 		supply = init_data->supply_regulator;
3702 	else if (regulator_desc->supply_name)
3703 		supply = regulator_desc->supply_name;
3704 
3705 	if (supply) {
3706 		struct regulator_dev *r;
3707 
3708 		r = regulator_dev_lookup(dev, supply, &ret);
3709 
3710 		if (ret == -ENODEV) {
3711 			/*
3712 			 * No supply was specified for this regulator and
3713 			 * there will never be one.
3714 			 */
3715 			ret = 0;
3716 			goto add_dev;
3717 		} else if (!r) {
3718 			dev_err(dev, "Failed to find supply %s\n", supply);
3719 			ret = -EPROBE_DEFER;
3720 			goto scrub;
3721 		}
3722 
3723 		ret = set_supply(rdev, r);
3724 		if (ret < 0)
3725 			goto scrub;
3726 
3727 		/* Enable supply if rail is enabled */
3728 		if (_regulator_is_enabled(rdev)) {
3729 			ret = regulator_enable(rdev->supply);
3730 			if (ret < 0)
3731 				goto scrub;
3732 		}
3733 	}
3734 
3735 add_dev:
3736 	/* add consumers devices */
3737 	if (init_data) {
3738 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3739 			ret = set_consumer_device_supply(rdev,
3740 				init_data->consumer_supplies[i].dev_name,
3741 				init_data->consumer_supplies[i].supply);
3742 			if (ret < 0) {
3743 				dev_err(dev, "Failed to set supply %s\n",
3744 					init_data->consumer_supplies[i].supply);
3745 				goto unset_supplies;
3746 			}
3747 		}
3748 	}
3749 
3750 	list_add(&rdev->list, &regulator_list);
3751 
3752 	rdev_init_debugfs(rdev);
3753 out:
3754 	mutex_unlock(&regulator_list_mutex);
3755 	return rdev;
3756 
3757 unset_supplies:
3758 	unset_regulator_supplies(rdev);
3759 
3760 scrub:
3761 	if (rdev->supply)
3762 		_regulator_put(rdev->supply);
3763 	regulator_ena_gpio_free(rdev);
3764 	kfree(rdev->constraints);
3765 wash:
3766 	device_unregister(&rdev->dev);
3767 	/* device core frees rdev */
3768 	rdev = ERR_PTR(ret);
3769 	goto out;
3770 
3771 clean:
3772 	kfree(rdev);
3773 	rdev = ERR_PTR(ret);
3774 	goto out;
3775 }
3776 EXPORT_SYMBOL_GPL(regulator_register);
3777 
3778 /**
3779  * regulator_unregister - unregister regulator
3780  * @rdev: regulator to unregister
3781  *
3782  * Called by regulator drivers to unregister a regulator.
3783  */
3784 void regulator_unregister(struct regulator_dev *rdev)
3785 {
3786 	if (rdev == NULL)
3787 		return;
3788 
3789 	if (rdev->supply) {
3790 		while (rdev->use_count--)
3791 			regulator_disable(rdev->supply);
3792 		regulator_put(rdev->supply);
3793 	}
3794 	mutex_lock(&regulator_list_mutex);
3795 	debugfs_remove_recursive(rdev->debugfs);
3796 	flush_work(&rdev->disable_work.work);
3797 	WARN_ON(rdev->open_count);
3798 	unset_regulator_supplies(rdev);
3799 	list_del(&rdev->list);
3800 	kfree(rdev->constraints);
3801 	regulator_ena_gpio_free(rdev);
3802 	of_node_put(rdev->dev.of_node);
3803 	device_unregister(&rdev->dev);
3804 	mutex_unlock(&regulator_list_mutex);
3805 }
3806 EXPORT_SYMBOL_GPL(regulator_unregister);
3807 
3808 /**
3809  * regulator_suspend_prepare - prepare regulators for system wide suspend
3810  * @state: system suspend state
3811  *
3812  * Configure each regulator with it's suspend operating parameters for state.
3813  * This will usually be called by machine suspend code prior to supending.
3814  */
3815 int regulator_suspend_prepare(suspend_state_t state)
3816 {
3817 	struct regulator_dev *rdev;
3818 	int ret = 0;
3819 
3820 	/* ON is handled by regulator active state */
3821 	if (state == PM_SUSPEND_ON)
3822 		return -EINVAL;
3823 
3824 	mutex_lock(&regulator_list_mutex);
3825 	list_for_each_entry(rdev, &regulator_list, list) {
3826 
3827 		mutex_lock(&rdev->mutex);
3828 		ret = suspend_prepare(rdev, state);
3829 		mutex_unlock(&rdev->mutex);
3830 
3831 		if (ret < 0) {
3832 			rdev_err(rdev, "failed to prepare\n");
3833 			goto out;
3834 		}
3835 	}
3836 out:
3837 	mutex_unlock(&regulator_list_mutex);
3838 	return ret;
3839 }
3840 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3841 
3842 /**
3843  * regulator_suspend_finish - resume regulators from system wide suspend
3844  *
3845  * Turn on regulators that might be turned off by regulator_suspend_prepare
3846  * and that should be turned on according to the regulators properties.
3847  */
3848 int regulator_suspend_finish(void)
3849 {
3850 	struct regulator_dev *rdev;
3851 	int ret = 0, error;
3852 
3853 	mutex_lock(&regulator_list_mutex);
3854 	list_for_each_entry(rdev, &regulator_list, list) {
3855 		mutex_lock(&rdev->mutex);
3856 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3857 			error = _regulator_do_enable(rdev);
3858 			if (error)
3859 				ret = error;
3860 		} else {
3861 			if (!have_full_constraints())
3862 				goto unlock;
3863 			if (!_regulator_is_enabled(rdev))
3864 				goto unlock;
3865 
3866 			error = _regulator_do_disable(rdev);
3867 			if (error)
3868 				ret = error;
3869 		}
3870 unlock:
3871 		mutex_unlock(&rdev->mutex);
3872 	}
3873 	mutex_unlock(&regulator_list_mutex);
3874 	return ret;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3877 
3878 /**
3879  * regulator_has_full_constraints - the system has fully specified constraints
3880  *
3881  * Calling this function will cause the regulator API to disable all
3882  * regulators which have a zero use count and don't have an always_on
3883  * constraint in a late_initcall.
3884  *
3885  * The intention is that this will become the default behaviour in a
3886  * future kernel release so users are encouraged to use this facility
3887  * now.
3888  */
3889 void regulator_has_full_constraints(void)
3890 {
3891 	has_full_constraints = 1;
3892 }
3893 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3894 
3895 /**
3896  * rdev_get_drvdata - get rdev regulator driver data
3897  * @rdev: regulator
3898  *
3899  * Get rdev regulator driver private data. This call can be used in the
3900  * regulator driver context.
3901  */
3902 void *rdev_get_drvdata(struct regulator_dev *rdev)
3903 {
3904 	return rdev->reg_data;
3905 }
3906 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3907 
3908 /**
3909  * regulator_get_drvdata - get regulator driver data
3910  * @regulator: regulator
3911  *
3912  * Get regulator driver private data. This call can be used in the consumer
3913  * driver context when non API regulator specific functions need to be called.
3914  */
3915 void *regulator_get_drvdata(struct regulator *regulator)
3916 {
3917 	return regulator->rdev->reg_data;
3918 }
3919 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3920 
3921 /**
3922  * regulator_set_drvdata - set regulator driver data
3923  * @regulator: regulator
3924  * @data: data
3925  */
3926 void regulator_set_drvdata(struct regulator *regulator, void *data)
3927 {
3928 	regulator->rdev->reg_data = data;
3929 }
3930 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3931 
3932 /**
3933  * regulator_get_id - get regulator ID
3934  * @rdev: regulator
3935  */
3936 int rdev_get_id(struct regulator_dev *rdev)
3937 {
3938 	return rdev->desc->id;
3939 }
3940 EXPORT_SYMBOL_GPL(rdev_get_id);
3941 
3942 struct device *rdev_get_dev(struct regulator_dev *rdev)
3943 {
3944 	return &rdev->dev;
3945 }
3946 EXPORT_SYMBOL_GPL(rdev_get_dev);
3947 
3948 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3949 {
3950 	return reg_init_data->driver_data;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3953 
3954 #ifdef CONFIG_DEBUG_FS
3955 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3956 				    size_t count, loff_t *ppos)
3957 {
3958 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3959 	ssize_t len, ret = 0;
3960 	struct regulator_map *map;
3961 
3962 	if (!buf)
3963 		return -ENOMEM;
3964 
3965 	list_for_each_entry(map, &regulator_map_list, list) {
3966 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3967 			       "%s -> %s.%s\n",
3968 			       rdev_get_name(map->regulator), map->dev_name,
3969 			       map->supply);
3970 		if (len >= 0)
3971 			ret += len;
3972 		if (ret > PAGE_SIZE) {
3973 			ret = PAGE_SIZE;
3974 			break;
3975 		}
3976 	}
3977 
3978 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3979 
3980 	kfree(buf);
3981 
3982 	return ret;
3983 }
3984 #endif
3985 
3986 static const struct file_operations supply_map_fops = {
3987 #ifdef CONFIG_DEBUG_FS
3988 	.read = supply_map_read_file,
3989 	.llseek = default_llseek,
3990 #endif
3991 };
3992 
3993 static int __init regulator_init(void)
3994 {
3995 	int ret;
3996 
3997 	ret = class_register(&regulator_class);
3998 
3999 	debugfs_root = debugfs_create_dir("regulator", NULL);
4000 	if (!debugfs_root)
4001 		pr_warn("regulator: Failed to create debugfs directory\n");
4002 
4003 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4004 			    &supply_map_fops);
4005 
4006 	regulator_dummy_init();
4007 
4008 	return ret;
4009 }
4010 
4011 /* init early to allow our consumers to complete system booting */
4012 core_initcall(regulator_init);
4013 
4014 static int __init regulator_init_complete(void)
4015 {
4016 	struct regulator_dev *rdev;
4017 	const struct regulator_ops *ops;
4018 	struct regulation_constraints *c;
4019 	int enabled, ret;
4020 
4021 	/*
4022 	 * Since DT doesn't provide an idiomatic mechanism for
4023 	 * enabling full constraints and since it's much more natural
4024 	 * with DT to provide them just assume that a DT enabled
4025 	 * system has full constraints.
4026 	 */
4027 	if (of_have_populated_dt())
4028 		has_full_constraints = true;
4029 
4030 	mutex_lock(&regulator_list_mutex);
4031 
4032 	/* If we have a full configuration then disable any regulators
4033 	 * we have permission to change the status for and which are
4034 	 * not in use or always_on.  This is effectively the default
4035 	 * for DT and ACPI as they have full constraints.
4036 	 */
4037 	list_for_each_entry(rdev, &regulator_list, list) {
4038 		ops = rdev->desc->ops;
4039 		c = rdev->constraints;
4040 
4041 		if (c && c->always_on)
4042 			continue;
4043 
4044 		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4045 			continue;
4046 
4047 		mutex_lock(&rdev->mutex);
4048 
4049 		if (rdev->use_count)
4050 			goto unlock;
4051 
4052 		/* If we can't read the status assume it's on. */
4053 		if (ops->is_enabled)
4054 			enabled = ops->is_enabled(rdev);
4055 		else
4056 			enabled = 1;
4057 
4058 		if (!enabled)
4059 			goto unlock;
4060 
4061 		if (have_full_constraints()) {
4062 			/* We log since this may kill the system if it
4063 			 * goes wrong. */
4064 			rdev_info(rdev, "disabling\n");
4065 			ret = _regulator_do_disable(rdev);
4066 			if (ret != 0)
4067 				rdev_err(rdev, "couldn't disable: %d\n", ret);
4068 		} else {
4069 			/* The intention is that in future we will
4070 			 * assume that full constraints are provided
4071 			 * so warn even if we aren't going to do
4072 			 * anything here.
4073 			 */
4074 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4075 		}
4076 
4077 unlock:
4078 		mutex_unlock(&rdev->mutex);
4079 	}
4080 
4081 	mutex_unlock(&regulator_list_mutex);
4082 
4083 	return 0;
4084 }
4085 late_initcall_sync(regulator_init_complete);
4086