1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static LIST_HEAD(regulator_coupler_list); 54 static bool has_full_constraints; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator_enable_gpio 72 * 73 * Management for shared enable GPIO pin 74 */ 75 struct regulator_enable_gpio { 76 struct list_head list; 77 struct gpio_desc *gpiod; 78 u32 enable_count; /* a number of enabled shared GPIO */ 79 u32 request_count; /* a number of requested shared GPIO */ 80 }; 81 82 /* 83 * struct regulator_supply_alias 84 * 85 * Used to map lookups for a supply onto an alternative device. 86 */ 87 struct regulator_supply_alias { 88 struct list_head list; 89 struct device *src_dev; 90 const char *src_supply; 91 struct device *alias_dev; 92 const char *alias_supply; 93 }; 94 95 static int _regulator_is_enabled(struct regulator_dev *rdev); 96 static int _regulator_disable(struct regulator *regulator); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static struct regulator *create_regulator(struct regulator_dev *rdev, 106 struct device *dev, 107 const char *supply_name); 108 static void destroy_regulator(struct regulator *regulator); 109 static void _regulator_put(struct regulator *regulator); 110 111 const char *rdev_get_name(struct regulator_dev *rdev) 112 { 113 if (rdev->constraints && rdev->constraints->name) 114 return rdev->constraints->name; 115 else if (rdev->desc->name) 116 return rdev->desc->name; 117 else 118 return ""; 119 } 120 121 static bool have_full_constraints(void) 122 { 123 return has_full_constraints || of_have_populated_dt(); 124 } 125 126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 127 { 128 if (!rdev->constraints) { 129 rdev_err(rdev, "no constraints\n"); 130 return false; 131 } 132 133 if (rdev->constraints->valid_ops_mask & ops) 134 return true; 135 136 return false; 137 } 138 139 /** 140 * regulator_lock_nested - lock a single regulator 141 * @rdev: regulator source 142 * @ww_ctx: w/w mutex acquire context 143 * 144 * This function can be called many times by one task on 145 * a single regulator and its mutex will be locked only 146 * once. If a task, which is calling this function is other 147 * than the one, which initially locked the mutex, it will 148 * wait on mutex. 149 */ 150 static inline int regulator_lock_nested(struct regulator_dev *rdev, 151 struct ww_acquire_ctx *ww_ctx) 152 { 153 bool lock = false; 154 int ret = 0; 155 156 mutex_lock(®ulator_nesting_mutex); 157 158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 159 if (rdev->mutex_owner == current) 160 rdev->ref_cnt++; 161 else 162 lock = true; 163 164 if (lock) { 165 mutex_unlock(®ulator_nesting_mutex); 166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 167 mutex_lock(®ulator_nesting_mutex); 168 } 169 } else { 170 lock = true; 171 } 172 173 if (lock && ret != -EDEADLK) { 174 rdev->ref_cnt++; 175 rdev->mutex_owner = current; 176 } 177 178 mutex_unlock(®ulator_nesting_mutex); 179 180 return ret; 181 } 182 183 /** 184 * regulator_lock - lock a single regulator 185 * @rdev: regulator source 186 * 187 * This function can be called many times by one task on 188 * a single regulator and its mutex will be locked only 189 * once. If a task, which is calling this function is other 190 * than the one, which initially locked the mutex, it will 191 * wait on mutex. 192 */ 193 static void regulator_lock(struct regulator_dev *rdev) 194 { 195 regulator_lock_nested(rdev, NULL); 196 } 197 198 /** 199 * regulator_unlock - unlock a single regulator 200 * @rdev: regulator_source 201 * 202 * This function unlocks the mutex when the 203 * reference counter reaches 0. 204 */ 205 static void regulator_unlock(struct regulator_dev *rdev) 206 { 207 mutex_lock(®ulator_nesting_mutex); 208 209 if (--rdev->ref_cnt == 0) { 210 rdev->mutex_owner = NULL; 211 ww_mutex_unlock(&rdev->mutex); 212 } 213 214 WARN_ON_ONCE(rdev->ref_cnt < 0); 215 216 mutex_unlock(®ulator_nesting_mutex); 217 } 218 219 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 220 { 221 struct regulator_dev *c_rdev; 222 int i; 223 224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 225 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 226 227 if (rdev->supply->rdev == c_rdev) 228 return true; 229 } 230 231 return false; 232 } 233 234 static void regulator_unlock_recursive(struct regulator_dev *rdev, 235 unsigned int n_coupled) 236 { 237 struct regulator_dev *c_rdev, *supply_rdev; 238 int i, supply_n_coupled; 239 240 for (i = n_coupled; i > 0; i--) { 241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 242 243 if (!c_rdev) 244 continue; 245 246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 247 supply_rdev = c_rdev->supply->rdev; 248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 249 250 regulator_unlock_recursive(supply_rdev, 251 supply_n_coupled); 252 } 253 254 regulator_unlock(c_rdev); 255 } 256 } 257 258 static int regulator_lock_recursive(struct regulator_dev *rdev, 259 struct regulator_dev **new_contended_rdev, 260 struct regulator_dev **old_contended_rdev, 261 struct ww_acquire_ctx *ww_ctx) 262 { 263 struct regulator_dev *c_rdev; 264 int i, err; 265 266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 267 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 268 269 if (!c_rdev) 270 continue; 271 272 if (c_rdev != *old_contended_rdev) { 273 err = regulator_lock_nested(c_rdev, ww_ctx); 274 if (err) { 275 if (err == -EDEADLK) { 276 *new_contended_rdev = c_rdev; 277 goto err_unlock; 278 } 279 280 /* shouldn't happen */ 281 WARN_ON_ONCE(err != -EALREADY); 282 } 283 } else { 284 *old_contended_rdev = NULL; 285 } 286 287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 288 err = regulator_lock_recursive(c_rdev->supply->rdev, 289 new_contended_rdev, 290 old_contended_rdev, 291 ww_ctx); 292 if (err) { 293 regulator_unlock(c_rdev); 294 goto err_unlock; 295 } 296 } 297 } 298 299 return 0; 300 301 err_unlock: 302 regulator_unlock_recursive(rdev, i); 303 304 return err; 305 } 306 307 /** 308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 309 * regulators 310 * @rdev: regulator source 311 * @ww_ctx: w/w mutex acquire context 312 * 313 * Unlock all regulators related with rdev by coupling or supplying. 314 */ 315 static void regulator_unlock_dependent(struct regulator_dev *rdev, 316 struct ww_acquire_ctx *ww_ctx) 317 { 318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 319 ww_acquire_fini(ww_ctx); 320 } 321 322 /** 323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 324 * @rdev: regulator source 325 * @ww_ctx: w/w mutex acquire context 326 * 327 * This function as a wrapper on regulator_lock_recursive(), which locks 328 * all regulators related with rdev by coupling or supplying. 329 */ 330 static void regulator_lock_dependent(struct regulator_dev *rdev, 331 struct ww_acquire_ctx *ww_ctx) 332 { 333 struct regulator_dev *new_contended_rdev = NULL; 334 struct regulator_dev *old_contended_rdev = NULL; 335 int err; 336 337 mutex_lock(®ulator_list_mutex); 338 339 ww_acquire_init(ww_ctx, ®ulator_ww_class); 340 341 do { 342 if (new_contended_rdev) { 343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 344 old_contended_rdev = new_contended_rdev; 345 old_contended_rdev->ref_cnt++; 346 } 347 348 err = regulator_lock_recursive(rdev, 349 &new_contended_rdev, 350 &old_contended_rdev, 351 ww_ctx); 352 353 if (old_contended_rdev) 354 regulator_unlock(old_contended_rdev); 355 356 } while (err == -EDEADLK); 357 358 ww_acquire_done(ww_ctx); 359 360 mutex_unlock(®ulator_list_mutex); 361 } 362 363 /** 364 * of_get_child_regulator - get a child regulator device node 365 * based on supply name 366 * @parent: Parent device node 367 * @prop_name: Combination regulator supply name and "-supply" 368 * 369 * Traverse all child nodes. 370 * Extract the child regulator device node corresponding to the supply name. 371 * returns the device node corresponding to the regulator if found, else 372 * returns NULL. 373 */ 374 static struct device_node *of_get_child_regulator(struct device_node *parent, 375 const char *prop_name) 376 { 377 struct device_node *regnode = NULL; 378 struct device_node *child = NULL; 379 380 for_each_child_of_node(parent, child) { 381 regnode = of_parse_phandle(child, prop_name, 0); 382 383 if (!regnode) { 384 regnode = of_get_child_regulator(child, prop_name); 385 if (regnode) 386 goto err_node_put; 387 } else { 388 goto err_node_put; 389 } 390 } 391 return NULL; 392 393 err_node_put: 394 of_node_put(child); 395 return regnode; 396 } 397 398 /** 399 * of_get_regulator - get a regulator device node based on supply name 400 * @dev: Device pointer for the consumer (of regulator) device 401 * @supply: regulator supply name 402 * 403 * Extract the regulator device node corresponding to the supply name. 404 * returns the device node corresponding to the regulator if found, else 405 * returns NULL. 406 */ 407 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 408 { 409 struct device_node *regnode = NULL; 410 char prop_name[64]; /* 64 is max size of property name */ 411 412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 413 414 snprintf(prop_name, 64, "%s-supply", supply); 415 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 416 417 if (!regnode) { 418 regnode = of_get_child_regulator(dev->of_node, prop_name); 419 if (regnode) 420 return regnode; 421 422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 423 prop_name, dev->of_node); 424 return NULL; 425 } 426 return regnode; 427 } 428 429 /* Platform voltage constraint check */ 430 int regulator_check_voltage(struct regulator_dev *rdev, 431 int *min_uV, int *max_uV) 432 { 433 BUG_ON(*min_uV > *max_uV); 434 435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 436 rdev_err(rdev, "voltage operation not allowed\n"); 437 return -EPERM; 438 } 439 440 if (*max_uV > rdev->constraints->max_uV) 441 *max_uV = rdev->constraints->max_uV; 442 if (*min_uV < rdev->constraints->min_uV) 443 *min_uV = rdev->constraints->min_uV; 444 445 if (*min_uV > *max_uV) { 446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 447 *min_uV, *max_uV); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 /* return 0 if the state is valid */ 455 static int regulator_check_states(suspend_state_t state) 456 { 457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 458 } 459 460 /* Make sure we select a voltage that suits the needs of all 461 * regulator consumers 462 */ 463 int regulator_check_consumers(struct regulator_dev *rdev, 464 int *min_uV, int *max_uV, 465 suspend_state_t state) 466 { 467 struct regulator *regulator; 468 struct regulator_voltage *voltage; 469 470 list_for_each_entry(regulator, &rdev->consumer_list, list) { 471 voltage = ®ulator->voltage[state]; 472 /* 473 * Assume consumers that didn't say anything are OK 474 * with anything in the constraint range. 475 */ 476 if (!voltage->min_uV && !voltage->max_uV) 477 continue; 478 479 if (*max_uV > voltage->max_uV) 480 *max_uV = voltage->max_uV; 481 if (*min_uV < voltage->min_uV) 482 *min_uV = voltage->min_uV; 483 } 484 485 if (*min_uV > *max_uV) { 486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 487 *min_uV, *max_uV); 488 return -EINVAL; 489 } 490 491 return 0; 492 } 493 494 /* current constraint check */ 495 static int regulator_check_current_limit(struct regulator_dev *rdev, 496 int *min_uA, int *max_uA) 497 { 498 BUG_ON(*min_uA > *max_uA); 499 500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 501 rdev_err(rdev, "current operation not allowed\n"); 502 return -EPERM; 503 } 504 505 if (*max_uA > rdev->constraints->max_uA) 506 *max_uA = rdev->constraints->max_uA; 507 if (*min_uA < rdev->constraints->min_uA) 508 *min_uA = rdev->constraints->min_uA; 509 510 if (*min_uA > *max_uA) { 511 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 512 *min_uA, *max_uA); 513 return -EINVAL; 514 } 515 516 return 0; 517 } 518 519 /* operating mode constraint check */ 520 static int regulator_mode_constrain(struct regulator_dev *rdev, 521 unsigned int *mode) 522 { 523 switch (*mode) { 524 case REGULATOR_MODE_FAST: 525 case REGULATOR_MODE_NORMAL: 526 case REGULATOR_MODE_IDLE: 527 case REGULATOR_MODE_STANDBY: 528 break; 529 default: 530 rdev_err(rdev, "invalid mode %x specified\n", *mode); 531 return -EINVAL; 532 } 533 534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 535 rdev_err(rdev, "mode operation not allowed\n"); 536 return -EPERM; 537 } 538 539 /* The modes are bitmasks, the most power hungry modes having 540 * the lowest values. If the requested mode isn't supported 541 * try higher modes. */ 542 while (*mode) { 543 if (rdev->constraints->valid_modes_mask & *mode) 544 return 0; 545 *mode /= 2; 546 } 547 548 return -EINVAL; 549 } 550 551 static inline struct regulator_state * 552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 553 { 554 if (rdev->constraints == NULL) 555 return NULL; 556 557 switch (state) { 558 case PM_SUSPEND_STANDBY: 559 return &rdev->constraints->state_standby; 560 case PM_SUSPEND_MEM: 561 return &rdev->constraints->state_mem; 562 case PM_SUSPEND_MAX: 563 return &rdev->constraints->state_disk; 564 default: 565 return NULL; 566 } 567 } 568 569 static const struct regulator_state * 570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 571 { 572 const struct regulator_state *rstate; 573 574 rstate = regulator_get_suspend_state(rdev, state); 575 if (rstate == NULL) 576 return NULL; 577 578 /* If we have no suspend mode configuration don't set anything; 579 * only warn if the driver implements set_suspend_voltage or 580 * set_suspend_mode callback. 581 */ 582 if (rstate->enabled != ENABLE_IN_SUSPEND && 583 rstate->enabled != DISABLE_IN_SUSPEND) { 584 if (rdev->desc->ops->set_suspend_voltage || 585 rdev->desc->ops->set_suspend_mode) 586 rdev_warn(rdev, "No configuration\n"); 587 return NULL; 588 } 589 590 return rstate; 591 } 592 593 static ssize_t regulator_uV_show(struct device *dev, 594 struct device_attribute *attr, char *buf) 595 { 596 struct regulator_dev *rdev = dev_get_drvdata(dev); 597 int uV; 598 599 regulator_lock(rdev); 600 uV = regulator_get_voltage_rdev(rdev); 601 regulator_unlock(rdev); 602 603 if (uV < 0) 604 return uV; 605 return sprintf(buf, "%d\n", uV); 606 } 607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 608 609 static ssize_t regulator_uA_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct regulator_dev *rdev = dev_get_drvdata(dev); 613 614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 615 } 616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 617 618 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 619 char *buf) 620 { 621 struct regulator_dev *rdev = dev_get_drvdata(dev); 622 623 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 624 } 625 static DEVICE_ATTR_RO(name); 626 627 static const char *regulator_opmode_to_str(int mode) 628 { 629 switch (mode) { 630 case REGULATOR_MODE_FAST: 631 return "fast"; 632 case REGULATOR_MODE_NORMAL: 633 return "normal"; 634 case REGULATOR_MODE_IDLE: 635 return "idle"; 636 case REGULATOR_MODE_STANDBY: 637 return "standby"; 638 } 639 return "unknown"; 640 } 641 642 static ssize_t regulator_print_opmode(char *buf, int mode) 643 { 644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 645 } 646 647 static ssize_t regulator_opmode_show(struct device *dev, 648 struct device_attribute *attr, char *buf) 649 { 650 struct regulator_dev *rdev = dev_get_drvdata(dev); 651 652 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 653 } 654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 655 656 static ssize_t regulator_print_state(char *buf, int state) 657 { 658 if (state > 0) 659 return sprintf(buf, "enabled\n"); 660 else if (state == 0) 661 return sprintf(buf, "disabled\n"); 662 else 663 return sprintf(buf, "unknown\n"); 664 } 665 666 static ssize_t regulator_state_show(struct device *dev, 667 struct device_attribute *attr, char *buf) 668 { 669 struct regulator_dev *rdev = dev_get_drvdata(dev); 670 ssize_t ret; 671 672 regulator_lock(rdev); 673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 674 regulator_unlock(rdev); 675 676 return ret; 677 } 678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 679 680 static ssize_t regulator_status_show(struct device *dev, 681 struct device_attribute *attr, char *buf) 682 { 683 struct regulator_dev *rdev = dev_get_drvdata(dev); 684 int status; 685 char *label; 686 687 status = rdev->desc->ops->get_status(rdev); 688 if (status < 0) 689 return status; 690 691 switch (status) { 692 case REGULATOR_STATUS_OFF: 693 label = "off"; 694 break; 695 case REGULATOR_STATUS_ON: 696 label = "on"; 697 break; 698 case REGULATOR_STATUS_ERROR: 699 label = "error"; 700 break; 701 case REGULATOR_STATUS_FAST: 702 label = "fast"; 703 break; 704 case REGULATOR_STATUS_NORMAL: 705 label = "normal"; 706 break; 707 case REGULATOR_STATUS_IDLE: 708 label = "idle"; 709 break; 710 case REGULATOR_STATUS_STANDBY: 711 label = "standby"; 712 break; 713 case REGULATOR_STATUS_BYPASS: 714 label = "bypass"; 715 break; 716 case REGULATOR_STATUS_UNDEFINED: 717 label = "undefined"; 718 break; 719 default: 720 return -ERANGE; 721 } 722 723 return sprintf(buf, "%s\n", label); 724 } 725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 726 727 static ssize_t regulator_min_uA_show(struct device *dev, 728 struct device_attribute *attr, char *buf) 729 { 730 struct regulator_dev *rdev = dev_get_drvdata(dev); 731 732 if (!rdev->constraints) 733 return sprintf(buf, "constraint not defined\n"); 734 735 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 736 } 737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 738 739 static ssize_t regulator_max_uA_show(struct device *dev, 740 struct device_attribute *attr, char *buf) 741 { 742 struct regulator_dev *rdev = dev_get_drvdata(dev); 743 744 if (!rdev->constraints) 745 return sprintf(buf, "constraint not defined\n"); 746 747 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 748 } 749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 750 751 static ssize_t regulator_min_uV_show(struct device *dev, 752 struct device_attribute *attr, char *buf) 753 { 754 struct regulator_dev *rdev = dev_get_drvdata(dev); 755 756 if (!rdev->constraints) 757 return sprintf(buf, "constraint not defined\n"); 758 759 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 760 } 761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 762 763 static ssize_t regulator_max_uV_show(struct device *dev, 764 struct device_attribute *attr, char *buf) 765 { 766 struct regulator_dev *rdev = dev_get_drvdata(dev); 767 768 if (!rdev->constraints) 769 return sprintf(buf, "constraint not defined\n"); 770 771 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 772 } 773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 774 775 static ssize_t regulator_total_uA_show(struct device *dev, 776 struct device_attribute *attr, char *buf) 777 { 778 struct regulator_dev *rdev = dev_get_drvdata(dev); 779 struct regulator *regulator; 780 int uA = 0; 781 782 regulator_lock(rdev); 783 list_for_each_entry(regulator, &rdev->consumer_list, list) { 784 if (regulator->enable_count) 785 uA += regulator->uA_load; 786 } 787 regulator_unlock(rdev); 788 return sprintf(buf, "%d\n", uA); 789 } 790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 791 792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 793 char *buf) 794 { 795 struct regulator_dev *rdev = dev_get_drvdata(dev); 796 return sprintf(buf, "%d\n", rdev->use_count); 797 } 798 static DEVICE_ATTR_RO(num_users); 799 800 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 801 char *buf) 802 { 803 struct regulator_dev *rdev = dev_get_drvdata(dev); 804 805 switch (rdev->desc->type) { 806 case REGULATOR_VOLTAGE: 807 return sprintf(buf, "voltage\n"); 808 case REGULATOR_CURRENT: 809 return sprintf(buf, "current\n"); 810 } 811 return sprintf(buf, "unknown\n"); 812 } 813 static DEVICE_ATTR_RO(type); 814 815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 816 struct device_attribute *attr, char *buf) 817 { 818 struct regulator_dev *rdev = dev_get_drvdata(dev); 819 820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 821 } 822 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 823 regulator_suspend_mem_uV_show, NULL); 824 825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 826 struct device_attribute *attr, char *buf) 827 { 828 struct regulator_dev *rdev = dev_get_drvdata(dev); 829 830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 831 } 832 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 833 regulator_suspend_disk_uV_show, NULL); 834 835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 836 struct device_attribute *attr, char *buf) 837 { 838 struct regulator_dev *rdev = dev_get_drvdata(dev); 839 840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 841 } 842 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 843 regulator_suspend_standby_uV_show, NULL); 844 845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 846 struct device_attribute *attr, char *buf) 847 { 848 struct regulator_dev *rdev = dev_get_drvdata(dev); 849 850 return regulator_print_opmode(buf, 851 rdev->constraints->state_mem.mode); 852 } 853 static DEVICE_ATTR(suspend_mem_mode, 0444, 854 regulator_suspend_mem_mode_show, NULL); 855 856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 857 struct device_attribute *attr, char *buf) 858 { 859 struct regulator_dev *rdev = dev_get_drvdata(dev); 860 861 return regulator_print_opmode(buf, 862 rdev->constraints->state_disk.mode); 863 } 864 static DEVICE_ATTR(suspend_disk_mode, 0444, 865 regulator_suspend_disk_mode_show, NULL); 866 867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 868 struct device_attribute *attr, char *buf) 869 { 870 struct regulator_dev *rdev = dev_get_drvdata(dev); 871 872 return regulator_print_opmode(buf, 873 rdev->constraints->state_standby.mode); 874 } 875 static DEVICE_ATTR(suspend_standby_mode, 0444, 876 regulator_suspend_standby_mode_show, NULL); 877 878 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 879 struct device_attribute *attr, char *buf) 880 { 881 struct regulator_dev *rdev = dev_get_drvdata(dev); 882 883 return regulator_print_state(buf, 884 rdev->constraints->state_mem.enabled); 885 } 886 static DEVICE_ATTR(suspend_mem_state, 0444, 887 regulator_suspend_mem_state_show, NULL); 888 889 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 890 struct device_attribute *attr, char *buf) 891 { 892 struct regulator_dev *rdev = dev_get_drvdata(dev); 893 894 return regulator_print_state(buf, 895 rdev->constraints->state_disk.enabled); 896 } 897 static DEVICE_ATTR(suspend_disk_state, 0444, 898 regulator_suspend_disk_state_show, NULL); 899 900 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 901 struct device_attribute *attr, char *buf) 902 { 903 struct regulator_dev *rdev = dev_get_drvdata(dev); 904 905 return regulator_print_state(buf, 906 rdev->constraints->state_standby.enabled); 907 } 908 static DEVICE_ATTR(suspend_standby_state, 0444, 909 regulator_suspend_standby_state_show, NULL); 910 911 static ssize_t regulator_bypass_show(struct device *dev, 912 struct device_attribute *attr, char *buf) 913 { 914 struct regulator_dev *rdev = dev_get_drvdata(dev); 915 const char *report; 916 bool bypass; 917 int ret; 918 919 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 920 921 if (ret != 0) 922 report = "unknown"; 923 else if (bypass) 924 report = "enabled"; 925 else 926 report = "disabled"; 927 928 return sprintf(buf, "%s\n", report); 929 } 930 static DEVICE_ATTR(bypass, 0444, 931 regulator_bypass_show, NULL); 932 933 /* Calculate the new optimum regulator operating mode based on the new total 934 * consumer load. All locks held by caller */ 935 static int drms_uA_update(struct regulator_dev *rdev) 936 { 937 struct regulator *sibling; 938 int current_uA = 0, output_uV, input_uV, err; 939 unsigned int mode; 940 941 /* 942 * first check to see if we can set modes at all, otherwise just 943 * tell the consumer everything is OK. 944 */ 945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 946 rdev_dbg(rdev, "DRMS operation not allowed\n"); 947 return 0; 948 } 949 950 if (!rdev->desc->ops->get_optimum_mode && 951 !rdev->desc->ops->set_load) 952 return 0; 953 954 if (!rdev->desc->ops->set_mode && 955 !rdev->desc->ops->set_load) 956 return -EINVAL; 957 958 /* calc total requested load */ 959 list_for_each_entry(sibling, &rdev->consumer_list, list) { 960 if (sibling->enable_count) 961 current_uA += sibling->uA_load; 962 } 963 964 current_uA += rdev->constraints->system_load; 965 966 if (rdev->desc->ops->set_load) { 967 /* set the optimum mode for our new total regulator load */ 968 err = rdev->desc->ops->set_load(rdev, current_uA); 969 if (err < 0) 970 rdev_err(rdev, "failed to set load %d: %pe\n", 971 current_uA, ERR_PTR(err)); 972 } else { 973 /* get output voltage */ 974 output_uV = regulator_get_voltage_rdev(rdev); 975 if (output_uV <= 0) { 976 rdev_err(rdev, "invalid output voltage found\n"); 977 return -EINVAL; 978 } 979 980 /* get input voltage */ 981 input_uV = 0; 982 if (rdev->supply) 983 input_uV = regulator_get_voltage(rdev->supply); 984 if (input_uV <= 0) 985 input_uV = rdev->constraints->input_uV; 986 if (input_uV <= 0) { 987 rdev_err(rdev, "invalid input voltage found\n"); 988 return -EINVAL; 989 } 990 991 /* now get the optimum mode for our new total regulator load */ 992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 993 output_uV, current_uA); 994 995 /* check the new mode is allowed */ 996 err = regulator_mode_constrain(rdev, &mode); 997 if (err < 0) { 998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 999 current_uA, input_uV, output_uV, ERR_PTR(err)); 1000 return err; 1001 } 1002 1003 err = rdev->desc->ops->set_mode(rdev, mode); 1004 if (err < 0) 1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1006 mode, ERR_PTR(err)); 1007 } 1008 1009 return err; 1010 } 1011 1012 static int __suspend_set_state(struct regulator_dev *rdev, 1013 const struct regulator_state *rstate) 1014 { 1015 int ret = 0; 1016 1017 if (rstate->enabled == ENABLE_IN_SUSPEND && 1018 rdev->desc->ops->set_suspend_enable) 1019 ret = rdev->desc->ops->set_suspend_enable(rdev); 1020 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1021 rdev->desc->ops->set_suspend_disable) 1022 ret = rdev->desc->ops->set_suspend_disable(rdev); 1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1024 ret = 0; 1025 1026 if (ret < 0) { 1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1028 return ret; 1029 } 1030 1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1033 if (ret < 0) { 1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1035 return ret; 1036 } 1037 } 1038 1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1041 if (ret < 0) { 1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1043 return ret; 1044 } 1045 } 1046 1047 return ret; 1048 } 1049 1050 static int suspend_set_initial_state(struct regulator_dev *rdev) 1051 { 1052 const struct regulator_state *rstate; 1053 1054 rstate = regulator_get_suspend_state_check(rdev, 1055 rdev->constraints->initial_state); 1056 if (!rstate) 1057 return 0; 1058 1059 return __suspend_set_state(rdev, rstate); 1060 } 1061 1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1063 static void print_constraints_debug(struct regulator_dev *rdev) 1064 { 1065 struct regulation_constraints *constraints = rdev->constraints; 1066 char buf[160] = ""; 1067 size_t len = sizeof(buf) - 1; 1068 int count = 0; 1069 int ret; 1070 1071 if (constraints->min_uV && constraints->max_uV) { 1072 if (constraints->min_uV == constraints->max_uV) 1073 count += scnprintf(buf + count, len - count, "%d mV ", 1074 constraints->min_uV / 1000); 1075 else 1076 count += scnprintf(buf + count, len - count, 1077 "%d <--> %d mV ", 1078 constraints->min_uV / 1000, 1079 constraints->max_uV / 1000); 1080 } 1081 1082 if (!constraints->min_uV || 1083 constraints->min_uV != constraints->max_uV) { 1084 ret = regulator_get_voltage_rdev(rdev); 1085 if (ret > 0) 1086 count += scnprintf(buf + count, len - count, 1087 "at %d mV ", ret / 1000); 1088 } 1089 1090 if (constraints->uV_offset) 1091 count += scnprintf(buf + count, len - count, "%dmV offset ", 1092 constraints->uV_offset / 1000); 1093 1094 if (constraints->min_uA && constraints->max_uA) { 1095 if (constraints->min_uA == constraints->max_uA) 1096 count += scnprintf(buf + count, len - count, "%d mA ", 1097 constraints->min_uA / 1000); 1098 else 1099 count += scnprintf(buf + count, len - count, 1100 "%d <--> %d mA ", 1101 constraints->min_uA / 1000, 1102 constraints->max_uA / 1000); 1103 } 1104 1105 if (!constraints->min_uA || 1106 constraints->min_uA != constraints->max_uA) { 1107 ret = _regulator_get_current_limit(rdev); 1108 if (ret > 0) 1109 count += scnprintf(buf + count, len - count, 1110 "at %d mA ", ret / 1000); 1111 } 1112 1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1114 count += scnprintf(buf + count, len - count, "fast "); 1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1116 count += scnprintf(buf + count, len - count, "normal "); 1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1118 count += scnprintf(buf + count, len - count, "idle "); 1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1120 count += scnprintf(buf + count, len - count, "standby "); 1121 1122 if (!count) 1123 count = scnprintf(buf, len, "no parameters"); 1124 else 1125 --count; 1126 1127 count += scnprintf(buf + count, len - count, ", %s", 1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1129 1130 rdev_dbg(rdev, "%s\n", buf); 1131 } 1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1135 1136 static void print_constraints(struct regulator_dev *rdev) 1137 { 1138 struct regulation_constraints *constraints = rdev->constraints; 1139 1140 print_constraints_debug(rdev); 1141 1142 if ((constraints->min_uV != constraints->max_uV) && 1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1144 rdev_warn(rdev, 1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1146 } 1147 1148 static int machine_constraints_voltage(struct regulator_dev *rdev, 1149 struct regulation_constraints *constraints) 1150 { 1151 const struct regulator_ops *ops = rdev->desc->ops; 1152 int ret; 1153 1154 /* do we need to apply the constraint voltage */ 1155 if (rdev->constraints->apply_uV && 1156 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1157 int target_min, target_max; 1158 int current_uV = regulator_get_voltage_rdev(rdev); 1159 1160 if (current_uV == -ENOTRECOVERABLE) { 1161 /* This regulator can't be read and must be initialized */ 1162 rdev_info(rdev, "Setting %d-%duV\n", 1163 rdev->constraints->min_uV, 1164 rdev->constraints->max_uV); 1165 _regulator_do_set_voltage(rdev, 1166 rdev->constraints->min_uV, 1167 rdev->constraints->max_uV); 1168 current_uV = regulator_get_voltage_rdev(rdev); 1169 } 1170 1171 if (current_uV < 0) { 1172 rdev_err(rdev, 1173 "failed to get the current voltage: %pe\n", 1174 ERR_PTR(current_uV)); 1175 return current_uV; 1176 } 1177 1178 /* 1179 * If we're below the minimum voltage move up to the 1180 * minimum voltage, if we're above the maximum voltage 1181 * then move down to the maximum. 1182 */ 1183 target_min = current_uV; 1184 target_max = current_uV; 1185 1186 if (current_uV < rdev->constraints->min_uV) { 1187 target_min = rdev->constraints->min_uV; 1188 target_max = rdev->constraints->min_uV; 1189 } 1190 1191 if (current_uV > rdev->constraints->max_uV) { 1192 target_min = rdev->constraints->max_uV; 1193 target_max = rdev->constraints->max_uV; 1194 } 1195 1196 if (target_min != current_uV || target_max != current_uV) { 1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1198 current_uV, target_min, target_max); 1199 ret = _regulator_do_set_voltage( 1200 rdev, target_min, target_max); 1201 if (ret < 0) { 1202 rdev_err(rdev, 1203 "failed to apply %d-%duV constraint: %pe\n", 1204 target_min, target_max, ERR_PTR(ret)); 1205 return ret; 1206 } 1207 } 1208 } 1209 1210 /* constrain machine-level voltage specs to fit 1211 * the actual range supported by this regulator. 1212 */ 1213 if (ops->list_voltage && rdev->desc->n_voltages) { 1214 int count = rdev->desc->n_voltages; 1215 int i; 1216 int min_uV = INT_MAX; 1217 int max_uV = INT_MIN; 1218 int cmin = constraints->min_uV; 1219 int cmax = constraints->max_uV; 1220 1221 /* it's safe to autoconfigure fixed-voltage supplies 1222 and the constraints are used by list_voltage. */ 1223 if (count == 1 && !cmin) { 1224 cmin = 1; 1225 cmax = INT_MAX; 1226 constraints->min_uV = cmin; 1227 constraints->max_uV = cmax; 1228 } 1229 1230 /* voltage constraints are optional */ 1231 if ((cmin == 0) && (cmax == 0)) 1232 return 0; 1233 1234 /* else require explicit machine-level constraints */ 1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1236 rdev_err(rdev, "invalid voltage constraints\n"); 1237 return -EINVAL; 1238 } 1239 1240 /* no need to loop voltages if range is continuous */ 1241 if (rdev->desc->continuous_voltage_range) 1242 return 0; 1243 1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1245 for (i = 0; i < count; i++) { 1246 int value; 1247 1248 value = ops->list_voltage(rdev, i); 1249 if (value <= 0) 1250 continue; 1251 1252 /* maybe adjust [min_uV..max_uV] */ 1253 if (value >= cmin && value < min_uV) 1254 min_uV = value; 1255 if (value <= cmax && value > max_uV) 1256 max_uV = value; 1257 } 1258 1259 /* final: [min_uV..max_uV] valid iff constraints valid */ 1260 if (max_uV < min_uV) { 1261 rdev_err(rdev, 1262 "unsupportable voltage constraints %u-%uuV\n", 1263 min_uV, max_uV); 1264 return -EINVAL; 1265 } 1266 1267 /* use regulator's subset of machine constraints */ 1268 if (constraints->min_uV < min_uV) { 1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1270 constraints->min_uV, min_uV); 1271 constraints->min_uV = min_uV; 1272 } 1273 if (constraints->max_uV > max_uV) { 1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1275 constraints->max_uV, max_uV); 1276 constraints->max_uV = max_uV; 1277 } 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int machine_constraints_current(struct regulator_dev *rdev, 1284 struct regulation_constraints *constraints) 1285 { 1286 const struct regulator_ops *ops = rdev->desc->ops; 1287 int ret; 1288 1289 if (!constraints->min_uA && !constraints->max_uA) 1290 return 0; 1291 1292 if (constraints->min_uA > constraints->max_uA) { 1293 rdev_err(rdev, "Invalid current constraints\n"); 1294 return -EINVAL; 1295 } 1296 1297 if (!ops->set_current_limit || !ops->get_current_limit) { 1298 rdev_warn(rdev, "Operation of current configuration missing\n"); 1299 return 0; 1300 } 1301 1302 /* Set regulator current in constraints range */ 1303 ret = ops->set_current_limit(rdev, constraints->min_uA, 1304 constraints->max_uA); 1305 if (ret < 0) { 1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1307 return ret; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static int _regulator_do_enable(struct regulator_dev *rdev); 1314 1315 /** 1316 * set_machine_constraints - sets regulator constraints 1317 * @rdev: regulator source 1318 * 1319 * Allows platform initialisation code to define and constrain 1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1321 * Constraints *must* be set by platform code in order for some 1322 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1323 * set_mode. 1324 */ 1325 static int set_machine_constraints(struct regulator_dev *rdev) 1326 { 1327 int ret = 0; 1328 const struct regulator_ops *ops = rdev->desc->ops; 1329 1330 ret = machine_constraints_voltage(rdev, rdev->constraints); 1331 if (ret != 0) 1332 return ret; 1333 1334 ret = machine_constraints_current(rdev, rdev->constraints); 1335 if (ret != 0) 1336 return ret; 1337 1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1339 ret = ops->set_input_current_limit(rdev, 1340 rdev->constraints->ilim_uA); 1341 if (ret < 0) { 1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1343 return ret; 1344 } 1345 } 1346 1347 /* do we need to setup our suspend state */ 1348 if (rdev->constraints->initial_state) { 1349 ret = suspend_set_initial_state(rdev); 1350 if (ret < 0) { 1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1352 return ret; 1353 } 1354 } 1355 1356 if (rdev->constraints->initial_mode) { 1357 if (!ops->set_mode) { 1358 rdev_err(rdev, "no set_mode operation\n"); 1359 return -EINVAL; 1360 } 1361 1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1363 if (ret < 0) { 1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1365 return ret; 1366 } 1367 } else if (rdev->constraints->system_load) { 1368 /* 1369 * We'll only apply the initial system load if an 1370 * initial mode wasn't specified. 1371 */ 1372 drms_uA_update(rdev); 1373 } 1374 1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1376 && ops->set_ramp_delay) { 1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1378 if (ret < 0) { 1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1380 return ret; 1381 } 1382 } 1383 1384 if (rdev->constraints->pull_down && ops->set_pull_down) { 1385 ret = ops->set_pull_down(rdev); 1386 if (ret < 0) { 1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1388 return ret; 1389 } 1390 } 1391 1392 if (rdev->constraints->soft_start && ops->set_soft_start) { 1393 ret = ops->set_soft_start(rdev); 1394 if (ret < 0) { 1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1396 return ret; 1397 } 1398 } 1399 1400 if (rdev->constraints->over_current_protection 1401 && ops->set_over_current_protection) { 1402 ret = ops->set_over_current_protection(rdev); 1403 if (ret < 0) { 1404 rdev_err(rdev, "failed to set over current protection: %pe\n", 1405 ERR_PTR(ret)); 1406 return ret; 1407 } 1408 } 1409 1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1411 bool ad_state = (rdev->constraints->active_discharge == 1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1413 1414 ret = ops->set_active_discharge(rdev, ad_state); 1415 if (ret < 0) { 1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1417 return ret; 1418 } 1419 } 1420 1421 /* If the constraints say the regulator should be on at this point 1422 * and we have control then make sure it is enabled. 1423 */ 1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1425 if (rdev->supply) { 1426 ret = regulator_enable(rdev->supply); 1427 if (ret < 0) { 1428 _regulator_put(rdev->supply); 1429 rdev->supply = NULL; 1430 return ret; 1431 } 1432 } 1433 1434 ret = _regulator_do_enable(rdev); 1435 if (ret < 0 && ret != -EINVAL) { 1436 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1437 return ret; 1438 } 1439 1440 if (rdev->constraints->always_on) 1441 rdev->use_count++; 1442 } 1443 1444 print_constraints(rdev); 1445 return 0; 1446 } 1447 1448 /** 1449 * set_supply - set regulator supply regulator 1450 * @rdev: regulator name 1451 * @supply_rdev: supply regulator name 1452 * 1453 * Called by platform initialisation code to set the supply regulator for this 1454 * regulator. This ensures that a regulators supply will also be enabled by the 1455 * core if it's child is enabled. 1456 */ 1457 static int set_supply(struct regulator_dev *rdev, 1458 struct regulator_dev *supply_rdev) 1459 { 1460 int err; 1461 1462 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1463 1464 if (!try_module_get(supply_rdev->owner)) 1465 return -ENODEV; 1466 1467 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1468 if (rdev->supply == NULL) { 1469 err = -ENOMEM; 1470 return err; 1471 } 1472 supply_rdev->open_count++; 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1479 * @rdev: regulator source 1480 * @consumer_dev_name: dev_name() string for device supply applies to 1481 * @supply: symbolic name for supply 1482 * 1483 * Allows platform initialisation code to map physical regulator 1484 * sources to symbolic names for supplies for use by devices. Devices 1485 * should use these symbolic names to request regulators, avoiding the 1486 * need to provide board-specific regulator names as platform data. 1487 */ 1488 static int set_consumer_device_supply(struct regulator_dev *rdev, 1489 const char *consumer_dev_name, 1490 const char *supply) 1491 { 1492 struct regulator_map *node, *new_node; 1493 int has_dev; 1494 1495 if (supply == NULL) 1496 return -EINVAL; 1497 1498 if (consumer_dev_name != NULL) 1499 has_dev = 1; 1500 else 1501 has_dev = 0; 1502 1503 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1504 if (new_node == NULL) 1505 return -ENOMEM; 1506 1507 new_node->regulator = rdev; 1508 new_node->supply = supply; 1509 1510 if (has_dev) { 1511 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1512 if (new_node->dev_name == NULL) { 1513 kfree(new_node); 1514 return -ENOMEM; 1515 } 1516 } 1517 1518 mutex_lock(®ulator_list_mutex); 1519 list_for_each_entry(node, ®ulator_map_list, list) { 1520 if (node->dev_name && consumer_dev_name) { 1521 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1522 continue; 1523 } else if (node->dev_name || consumer_dev_name) { 1524 continue; 1525 } 1526 1527 if (strcmp(node->supply, supply) != 0) 1528 continue; 1529 1530 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1531 consumer_dev_name, 1532 dev_name(&node->regulator->dev), 1533 node->regulator->desc->name, 1534 supply, 1535 dev_name(&rdev->dev), rdev_get_name(rdev)); 1536 goto fail; 1537 } 1538 1539 list_add(&new_node->list, ®ulator_map_list); 1540 mutex_unlock(®ulator_list_mutex); 1541 1542 return 0; 1543 1544 fail: 1545 mutex_unlock(®ulator_list_mutex); 1546 kfree(new_node->dev_name); 1547 kfree(new_node); 1548 return -EBUSY; 1549 } 1550 1551 static void unset_regulator_supplies(struct regulator_dev *rdev) 1552 { 1553 struct regulator_map *node, *n; 1554 1555 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1556 if (rdev == node->regulator) { 1557 list_del(&node->list); 1558 kfree(node->dev_name); 1559 kfree(node); 1560 } 1561 } 1562 } 1563 1564 #ifdef CONFIG_DEBUG_FS 1565 static ssize_t constraint_flags_read_file(struct file *file, 1566 char __user *user_buf, 1567 size_t count, loff_t *ppos) 1568 { 1569 const struct regulator *regulator = file->private_data; 1570 const struct regulation_constraints *c = regulator->rdev->constraints; 1571 char *buf; 1572 ssize_t ret; 1573 1574 if (!c) 1575 return 0; 1576 1577 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1578 if (!buf) 1579 return -ENOMEM; 1580 1581 ret = snprintf(buf, PAGE_SIZE, 1582 "always_on: %u\n" 1583 "boot_on: %u\n" 1584 "apply_uV: %u\n" 1585 "ramp_disable: %u\n" 1586 "soft_start: %u\n" 1587 "pull_down: %u\n" 1588 "over_current_protection: %u\n", 1589 c->always_on, 1590 c->boot_on, 1591 c->apply_uV, 1592 c->ramp_disable, 1593 c->soft_start, 1594 c->pull_down, 1595 c->over_current_protection); 1596 1597 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1598 kfree(buf); 1599 1600 return ret; 1601 } 1602 1603 #endif 1604 1605 static const struct file_operations constraint_flags_fops = { 1606 #ifdef CONFIG_DEBUG_FS 1607 .open = simple_open, 1608 .read = constraint_flags_read_file, 1609 .llseek = default_llseek, 1610 #endif 1611 }; 1612 1613 #define REG_STR_SIZE 64 1614 1615 static struct regulator *create_regulator(struct regulator_dev *rdev, 1616 struct device *dev, 1617 const char *supply_name) 1618 { 1619 struct regulator *regulator; 1620 int err; 1621 1622 if (dev) { 1623 char buf[REG_STR_SIZE]; 1624 int size; 1625 1626 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1627 dev->kobj.name, supply_name); 1628 if (size >= REG_STR_SIZE) 1629 return NULL; 1630 1631 supply_name = kstrdup(buf, GFP_KERNEL); 1632 if (supply_name == NULL) 1633 return NULL; 1634 } else { 1635 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1636 if (supply_name == NULL) 1637 return NULL; 1638 } 1639 1640 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1641 if (regulator == NULL) { 1642 kfree(supply_name); 1643 return NULL; 1644 } 1645 1646 regulator->rdev = rdev; 1647 regulator->supply_name = supply_name; 1648 1649 regulator_lock(rdev); 1650 list_add(®ulator->list, &rdev->consumer_list); 1651 regulator_unlock(rdev); 1652 1653 if (dev) { 1654 regulator->dev = dev; 1655 1656 /* Add a link to the device sysfs entry */ 1657 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1658 supply_name); 1659 if (err) { 1660 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1661 dev->kobj.name, ERR_PTR(err)); 1662 /* non-fatal */ 1663 } 1664 } 1665 1666 regulator->debugfs = debugfs_create_dir(supply_name, 1667 rdev->debugfs); 1668 if (!regulator->debugfs) { 1669 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1670 } else { 1671 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1672 ®ulator->uA_load); 1673 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1674 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1675 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1676 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1677 debugfs_create_file("constraint_flags", 0444, 1678 regulator->debugfs, regulator, 1679 &constraint_flags_fops); 1680 } 1681 1682 /* 1683 * Check now if the regulator is an always on regulator - if 1684 * it is then we don't need to do nearly so much work for 1685 * enable/disable calls. 1686 */ 1687 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1688 _regulator_is_enabled(rdev)) 1689 regulator->always_on = true; 1690 1691 return regulator; 1692 } 1693 1694 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1695 { 1696 if (rdev->constraints && rdev->constraints->enable_time) 1697 return rdev->constraints->enable_time; 1698 if (rdev->desc->ops->enable_time) 1699 return rdev->desc->ops->enable_time(rdev); 1700 return rdev->desc->enable_time; 1701 } 1702 1703 static struct regulator_supply_alias *regulator_find_supply_alias( 1704 struct device *dev, const char *supply) 1705 { 1706 struct regulator_supply_alias *map; 1707 1708 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1709 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1710 return map; 1711 1712 return NULL; 1713 } 1714 1715 static void regulator_supply_alias(struct device **dev, const char **supply) 1716 { 1717 struct regulator_supply_alias *map; 1718 1719 map = regulator_find_supply_alias(*dev, *supply); 1720 if (map) { 1721 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1722 *supply, map->alias_supply, 1723 dev_name(map->alias_dev)); 1724 *dev = map->alias_dev; 1725 *supply = map->alias_supply; 1726 } 1727 } 1728 1729 static int regulator_match(struct device *dev, const void *data) 1730 { 1731 struct regulator_dev *r = dev_to_rdev(dev); 1732 1733 return strcmp(rdev_get_name(r), data) == 0; 1734 } 1735 1736 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1737 { 1738 struct device *dev; 1739 1740 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1741 1742 return dev ? dev_to_rdev(dev) : NULL; 1743 } 1744 1745 /** 1746 * regulator_dev_lookup - lookup a regulator device. 1747 * @dev: device for regulator "consumer". 1748 * @supply: Supply name or regulator ID. 1749 * 1750 * If successful, returns a struct regulator_dev that corresponds to the name 1751 * @supply and with the embedded struct device refcount incremented by one. 1752 * The refcount must be dropped by calling put_device(). 1753 * On failure one of the following ERR-PTR-encoded values is returned: 1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1755 * in the future. 1756 */ 1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1758 const char *supply) 1759 { 1760 struct regulator_dev *r = NULL; 1761 struct device_node *node; 1762 struct regulator_map *map; 1763 const char *devname = NULL; 1764 1765 regulator_supply_alias(&dev, &supply); 1766 1767 /* first do a dt based lookup */ 1768 if (dev && dev->of_node) { 1769 node = of_get_regulator(dev, supply); 1770 if (node) { 1771 r = of_find_regulator_by_node(node); 1772 if (r) 1773 return r; 1774 1775 /* 1776 * We have a node, but there is no device. 1777 * assume it has not registered yet. 1778 */ 1779 return ERR_PTR(-EPROBE_DEFER); 1780 } 1781 } 1782 1783 /* if not found, try doing it non-dt way */ 1784 if (dev) 1785 devname = dev_name(dev); 1786 1787 mutex_lock(®ulator_list_mutex); 1788 list_for_each_entry(map, ®ulator_map_list, list) { 1789 /* If the mapping has a device set up it must match */ 1790 if (map->dev_name && 1791 (!devname || strcmp(map->dev_name, devname))) 1792 continue; 1793 1794 if (strcmp(map->supply, supply) == 0 && 1795 get_device(&map->regulator->dev)) { 1796 r = map->regulator; 1797 break; 1798 } 1799 } 1800 mutex_unlock(®ulator_list_mutex); 1801 1802 if (r) 1803 return r; 1804 1805 r = regulator_lookup_by_name(supply); 1806 if (r) 1807 return r; 1808 1809 return ERR_PTR(-ENODEV); 1810 } 1811 1812 static int regulator_resolve_supply(struct regulator_dev *rdev) 1813 { 1814 struct regulator_dev *r; 1815 struct device *dev = rdev->dev.parent; 1816 int ret; 1817 1818 /* No supply to resolve? */ 1819 if (!rdev->supply_name) 1820 return 0; 1821 1822 /* Supply already resolved? */ 1823 if (rdev->supply) 1824 return 0; 1825 1826 r = regulator_dev_lookup(dev, rdev->supply_name); 1827 if (IS_ERR(r)) { 1828 ret = PTR_ERR(r); 1829 1830 /* Did the lookup explicitly defer for us? */ 1831 if (ret == -EPROBE_DEFER) 1832 return ret; 1833 1834 if (have_full_constraints()) { 1835 r = dummy_regulator_rdev; 1836 get_device(&r->dev); 1837 } else { 1838 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1839 rdev->supply_name, rdev->desc->name); 1840 return -EPROBE_DEFER; 1841 } 1842 } 1843 1844 if (r == rdev) { 1845 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 1846 rdev->desc->name, rdev->supply_name); 1847 if (!have_full_constraints()) 1848 return -EINVAL; 1849 r = dummy_regulator_rdev; 1850 get_device(&r->dev); 1851 } 1852 1853 /* 1854 * If the supply's parent device is not the same as the 1855 * regulator's parent device, then ensure the parent device 1856 * is bound before we resolve the supply, in case the parent 1857 * device get probe deferred and unregisters the supply. 1858 */ 1859 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1860 if (!device_is_bound(r->dev.parent)) { 1861 put_device(&r->dev); 1862 return -EPROBE_DEFER; 1863 } 1864 } 1865 1866 /* Recursively resolve the supply of the supply */ 1867 ret = regulator_resolve_supply(r); 1868 if (ret < 0) { 1869 put_device(&r->dev); 1870 return ret; 1871 } 1872 1873 ret = set_supply(rdev, r); 1874 if (ret < 0) { 1875 put_device(&r->dev); 1876 return ret; 1877 } 1878 1879 /* 1880 * In set_machine_constraints() we may have turned this regulator on 1881 * but we couldn't propagate to the supply if it hadn't been resolved 1882 * yet. Do it now. 1883 */ 1884 if (rdev->use_count) { 1885 ret = regulator_enable(rdev->supply); 1886 if (ret < 0) { 1887 _regulator_put(rdev->supply); 1888 rdev->supply = NULL; 1889 return ret; 1890 } 1891 } 1892 1893 return 0; 1894 } 1895 1896 /* Internal regulator request function */ 1897 struct regulator *_regulator_get(struct device *dev, const char *id, 1898 enum regulator_get_type get_type) 1899 { 1900 struct regulator_dev *rdev; 1901 struct regulator *regulator; 1902 struct device_link *link; 1903 int ret; 1904 1905 if (get_type >= MAX_GET_TYPE) { 1906 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1907 return ERR_PTR(-EINVAL); 1908 } 1909 1910 if (id == NULL) { 1911 pr_err("get() with no identifier\n"); 1912 return ERR_PTR(-EINVAL); 1913 } 1914 1915 rdev = regulator_dev_lookup(dev, id); 1916 if (IS_ERR(rdev)) { 1917 ret = PTR_ERR(rdev); 1918 1919 /* 1920 * If regulator_dev_lookup() fails with error other 1921 * than -ENODEV our job here is done, we simply return it. 1922 */ 1923 if (ret != -ENODEV) 1924 return ERR_PTR(ret); 1925 1926 if (!have_full_constraints()) { 1927 dev_warn(dev, 1928 "incomplete constraints, dummy supplies not allowed\n"); 1929 return ERR_PTR(-ENODEV); 1930 } 1931 1932 switch (get_type) { 1933 case NORMAL_GET: 1934 /* 1935 * Assume that a regulator is physically present and 1936 * enabled, even if it isn't hooked up, and just 1937 * provide a dummy. 1938 */ 1939 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 1940 rdev = dummy_regulator_rdev; 1941 get_device(&rdev->dev); 1942 break; 1943 1944 case EXCLUSIVE_GET: 1945 dev_warn(dev, 1946 "dummy supplies not allowed for exclusive requests\n"); 1947 fallthrough; 1948 1949 default: 1950 return ERR_PTR(-ENODEV); 1951 } 1952 } 1953 1954 if (rdev->exclusive) { 1955 regulator = ERR_PTR(-EPERM); 1956 put_device(&rdev->dev); 1957 return regulator; 1958 } 1959 1960 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1961 regulator = ERR_PTR(-EBUSY); 1962 put_device(&rdev->dev); 1963 return regulator; 1964 } 1965 1966 mutex_lock(®ulator_list_mutex); 1967 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1968 mutex_unlock(®ulator_list_mutex); 1969 1970 if (ret != 0) { 1971 regulator = ERR_PTR(-EPROBE_DEFER); 1972 put_device(&rdev->dev); 1973 return regulator; 1974 } 1975 1976 ret = regulator_resolve_supply(rdev); 1977 if (ret < 0) { 1978 regulator = ERR_PTR(ret); 1979 put_device(&rdev->dev); 1980 return regulator; 1981 } 1982 1983 if (!try_module_get(rdev->owner)) { 1984 regulator = ERR_PTR(-EPROBE_DEFER); 1985 put_device(&rdev->dev); 1986 return regulator; 1987 } 1988 1989 regulator = create_regulator(rdev, dev, id); 1990 if (regulator == NULL) { 1991 regulator = ERR_PTR(-ENOMEM); 1992 module_put(rdev->owner); 1993 put_device(&rdev->dev); 1994 return regulator; 1995 } 1996 1997 rdev->open_count++; 1998 if (get_type == EXCLUSIVE_GET) { 1999 rdev->exclusive = 1; 2000 2001 ret = _regulator_is_enabled(rdev); 2002 if (ret > 0) 2003 rdev->use_count = 1; 2004 else 2005 rdev->use_count = 0; 2006 } 2007 2008 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2009 if (!IS_ERR_OR_NULL(link)) 2010 regulator->device_link = true; 2011 2012 return regulator; 2013 } 2014 2015 /** 2016 * regulator_get - lookup and obtain a reference to a regulator. 2017 * @dev: device for regulator "consumer" 2018 * @id: Supply name or regulator ID. 2019 * 2020 * Returns a struct regulator corresponding to the regulator producer, 2021 * or IS_ERR() condition containing errno. 2022 * 2023 * Use of supply names configured via regulator_set_device_supply() is 2024 * strongly encouraged. It is recommended that the supply name used 2025 * should match the name used for the supply and/or the relevant 2026 * device pins in the datasheet. 2027 */ 2028 struct regulator *regulator_get(struct device *dev, const char *id) 2029 { 2030 return _regulator_get(dev, id, NORMAL_GET); 2031 } 2032 EXPORT_SYMBOL_GPL(regulator_get); 2033 2034 /** 2035 * regulator_get_exclusive - obtain exclusive access to a regulator. 2036 * @dev: device for regulator "consumer" 2037 * @id: Supply name or regulator ID. 2038 * 2039 * Returns a struct regulator corresponding to the regulator producer, 2040 * or IS_ERR() condition containing errno. Other consumers will be 2041 * unable to obtain this regulator while this reference is held and the 2042 * use count for the regulator will be initialised to reflect the current 2043 * state of the regulator. 2044 * 2045 * This is intended for use by consumers which cannot tolerate shared 2046 * use of the regulator such as those which need to force the 2047 * regulator off for correct operation of the hardware they are 2048 * controlling. 2049 * 2050 * Use of supply names configured via regulator_set_device_supply() is 2051 * strongly encouraged. It is recommended that the supply name used 2052 * should match the name used for the supply and/or the relevant 2053 * device pins in the datasheet. 2054 */ 2055 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2056 { 2057 return _regulator_get(dev, id, EXCLUSIVE_GET); 2058 } 2059 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2060 2061 /** 2062 * regulator_get_optional - obtain optional access to a regulator. 2063 * @dev: device for regulator "consumer" 2064 * @id: Supply name or regulator ID. 2065 * 2066 * Returns a struct regulator corresponding to the regulator producer, 2067 * or IS_ERR() condition containing errno. 2068 * 2069 * This is intended for use by consumers for devices which can have 2070 * some supplies unconnected in normal use, such as some MMC devices. 2071 * It can allow the regulator core to provide stub supplies for other 2072 * supplies requested using normal regulator_get() calls without 2073 * disrupting the operation of drivers that can handle absent 2074 * supplies. 2075 * 2076 * Use of supply names configured via regulator_set_device_supply() is 2077 * strongly encouraged. It is recommended that the supply name used 2078 * should match the name used for the supply and/or the relevant 2079 * device pins in the datasheet. 2080 */ 2081 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2082 { 2083 return _regulator_get(dev, id, OPTIONAL_GET); 2084 } 2085 EXPORT_SYMBOL_GPL(regulator_get_optional); 2086 2087 static void destroy_regulator(struct regulator *regulator) 2088 { 2089 struct regulator_dev *rdev = regulator->rdev; 2090 2091 debugfs_remove_recursive(regulator->debugfs); 2092 2093 if (regulator->dev) { 2094 if (regulator->device_link) 2095 device_link_remove(regulator->dev, &rdev->dev); 2096 2097 /* remove any sysfs entries */ 2098 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2099 } 2100 2101 regulator_lock(rdev); 2102 list_del(®ulator->list); 2103 2104 rdev->open_count--; 2105 rdev->exclusive = 0; 2106 regulator_unlock(rdev); 2107 2108 kfree_const(regulator->supply_name); 2109 kfree(regulator); 2110 } 2111 2112 /* regulator_list_mutex lock held by regulator_put() */ 2113 static void _regulator_put(struct regulator *regulator) 2114 { 2115 struct regulator_dev *rdev; 2116 2117 if (IS_ERR_OR_NULL(regulator)) 2118 return; 2119 2120 lockdep_assert_held_once(®ulator_list_mutex); 2121 2122 /* Docs say you must disable before calling regulator_put() */ 2123 WARN_ON(regulator->enable_count); 2124 2125 rdev = regulator->rdev; 2126 2127 destroy_regulator(regulator); 2128 2129 module_put(rdev->owner); 2130 put_device(&rdev->dev); 2131 } 2132 2133 /** 2134 * regulator_put - "free" the regulator source 2135 * @regulator: regulator source 2136 * 2137 * Note: drivers must ensure that all regulator_enable calls made on this 2138 * regulator source are balanced by regulator_disable calls prior to calling 2139 * this function. 2140 */ 2141 void regulator_put(struct regulator *regulator) 2142 { 2143 mutex_lock(®ulator_list_mutex); 2144 _regulator_put(regulator); 2145 mutex_unlock(®ulator_list_mutex); 2146 } 2147 EXPORT_SYMBOL_GPL(regulator_put); 2148 2149 /** 2150 * regulator_register_supply_alias - Provide device alias for supply lookup 2151 * 2152 * @dev: device that will be given as the regulator "consumer" 2153 * @id: Supply name or regulator ID 2154 * @alias_dev: device that should be used to lookup the supply 2155 * @alias_id: Supply name or regulator ID that should be used to lookup the 2156 * supply 2157 * 2158 * All lookups for id on dev will instead be conducted for alias_id on 2159 * alias_dev. 2160 */ 2161 int regulator_register_supply_alias(struct device *dev, const char *id, 2162 struct device *alias_dev, 2163 const char *alias_id) 2164 { 2165 struct regulator_supply_alias *map; 2166 2167 map = regulator_find_supply_alias(dev, id); 2168 if (map) 2169 return -EEXIST; 2170 2171 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2172 if (!map) 2173 return -ENOMEM; 2174 2175 map->src_dev = dev; 2176 map->src_supply = id; 2177 map->alias_dev = alias_dev; 2178 map->alias_supply = alias_id; 2179 2180 list_add(&map->list, ®ulator_supply_alias_list); 2181 2182 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2183 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2184 2185 return 0; 2186 } 2187 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2188 2189 /** 2190 * regulator_unregister_supply_alias - Remove device alias 2191 * 2192 * @dev: device that will be given as the regulator "consumer" 2193 * @id: Supply name or regulator ID 2194 * 2195 * Remove a lookup alias if one exists for id on dev. 2196 */ 2197 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2198 { 2199 struct regulator_supply_alias *map; 2200 2201 map = regulator_find_supply_alias(dev, id); 2202 if (map) { 2203 list_del(&map->list); 2204 kfree(map); 2205 } 2206 } 2207 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2208 2209 /** 2210 * regulator_bulk_register_supply_alias - register multiple aliases 2211 * 2212 * @dev: device that will be given as the regulator "consumer" 2213 * @id: List of supply names or regulator IDs 2214 * @alias_dev: device that should be used to lookup the supply 2215 * @alias_id: List of supply names or regulator IDs that should be used to 2216 * lookup the supply 2217 * @num_id: Number of aliases to register 2218 * 2219 * @return 0 on success, an errno on failure. 2220 * 2221 * This helper function allows drivers to register several supply 2222 * aliases in one operation. If any of the aliases cannot be 2223 * registered any aliases that were registered will be removed 2224 * before returning to the caller. 2225 */ 2226 int regulator_bulk_register_supply_alias(struct device *dev, 2227 const char *const *id, 2228 struct device *alias_dev, 2229 const char *const *alias_id, 2230 int num_id) 2231 { 2232 int i; 2233 int ret; 2234 2235 for (i = 0; i < num_id; ++i) { 2236 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2237 alias_id[i]); 2238 if (ret < 0) 2239 goto err; 2240 } 2241 2242 return 0; 2243 2244 err: 2245 dev_err(dev, 2246 "Failed to create supply alias %s,%s -> %s,%s\n", 2247 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2248 2249 while (--i >= 0) 2250 regulator_unregister_supply_alias(dev, id[i]); 2251 2252 return ret; 2253 } 2254 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2255 2256 /** 2257 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2258 * 2259 * @dev: device that will be given as the regulator "consumer" 2260 * @id: List of supply names or regulator IDs 2261 * @num_id: Number of aliases to unregister 2262 * 2263 * This helper function allows drivers to unregister several supply 2264 * aliases in one operation. 2265 */ 2266 void regulator_bulk_unregister_supply_alias(struct device *dev, 2267 const char *const *id, 2268 int num_id) 2269 { 2270 int i; 2271 2272 for (i = 0; i < num_id; ++i) 2273 regulator_unregister_supply_alias(dev, id[i]); 2274 } 2275 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2276 2277 2278 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2279 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2280 const struct regulator_config *config) 2281 { 2282 struct regulator_enable_gpio *pin, *new_pin; 2283 struct gpio_desc *gpiod; 2284 2285 gpiod = config->ena_gpiod; 2286 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2287 2288 mutex_lock(®ulator_list_mutex); 2289 2290 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2291 if (pin->gpiod == gpiod) { 2292 rdev_dbg(rdev, "GPIO is already used\n"); 2293 goto update_ena_gpio_to_rdev; 2294 } 2295 } 2296 2297 if (new_pin == NULL) { 2298 mutex_unlock(®ulator_list_mutex); 2299 return -ENOMEM; 2300 } 2301 2302 pin = new_pin; 2303 new_pin = NULL; 2304 2305 pin->gpiod = gpiod; 2306 list_add(&pin->list, ®ulator_ena_gpio_list); 2307 2308 update_ena_gpio_to_rdev: 2309 pin->request_count++; 2310 rdev->ena_pin = pin; 2311 2312 mutex_unlock(®ulator_list_mutex); 2313 kfree(new_pin); 2314 2315 return 0; 2316 } 2317 2318 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2319 { 2320 struct regulator_enable_gpio *pin, *n; 2321 2322 if (!rdev->ena_pin) 2323 return; 2324 2325 /* Free the GPIO only in case of no use */ 2326 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2327 if (pin != rdev->ena_pin) 2328 continue; 2329 2330 if (--pin->request_count) 2331 break; 2332 2333 gpiod_put(pin->gpiod); 2334 list_del(&pin->list); 2335 kfree(pin); 2336 break; 2337 } 2338 2339 rdev->ena_pin = NULL; 2340 } 2341 2342 /** 2343 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2344 * @rdev: regulator_dev structure 2345 * @enable: enable GPIO at initial use? 2346 * 2347 * GPIO is enabled in case of initial use. (enable_count is 0) 2348 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2349 */ 2350 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2351 { 2352 struct regulator_enable_gpio *pin = rdev->ena_pin; 2353 2354 if (!pin) 2355 return -EINVAL; 2356 2357 if (enable) { 2358 /* Enable GPIO at initial use */ 2359 if (pin->enable_count == 0) 2360 gpiod_set_value_cansleep(pin->gpiod, 1); 2361 2362 pin->enable_count++; 2363 } else { 2364 if (pin->enable_count > 1) { 2365 pin->enable_count--; 2366 return 0; 2367 } 2368 2369 /* Disable GPIO if not used */ 2370 if (pin->enable_count <= 1) { 2371 gpiod_set_value_cansleep(pin->gpiod, 0); 2372 pin->enable_count = 0; 2373 } 2374 } 2375 2376 return 0; 2377 } 2378 2379 /** 2380 * _regulator_enable_delay - a delay helper function 2381 * @delay: time to delay in microseconds 2382 * 2383 * Delay for the requested amount of time as per the guidelines in: 2384 * 2385 * Documentation/timers/timers-howto.rst 2386 * 2387 * The assumption here is that regulators will never be enabled in 2388 * atomic context and therefore sleeping functions can be used. 2389 */ 2390 static void _regulator_enable_delay(unsigned int delay) 2391 { 2392 unsigned int ms = delay / 1000; 2393 unsigned int us = delay % 1000; 2394 2395 if (ms > 0) { 2396 /* 2397 * For small enough values, handle super-millisecond 2398 * delays in the usleep_range() call below. 2399 */ 2400 if (ms < 20) 2401 us += ms * 1000; 2402 else 2403 msleep(ms); 2404 } 2405 2406 /* 2407 * Give the scheduler some room to coalesce with any other 2408 * wakeup sources. For delays shorter than 10 us, don't even 2409 * bother setting up high-resolution timers and just busy- 2410 * loop. 2411 */ 2412 if (us >= 10) 2413 usleep_range(us, us + 100); 2414 else 2415 udelay(us); 2416 } 2417 2418 /** 2419 * _regulator_check_status_enabled 2420 * 2421 * A helper function to check if the regulator status can be interpreted 2422 * as 'regulator is enabled'. 2423 * @rdev: the regulator device to check 2424 * 2425 * Return: 2426 * * 1 - if status shows regulator is in enabled state 2427 * * 0 - if not enabled state 2428 * * Error Value - as received from ops->get_status() 2429 */ 2430 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2431 { 2432 int ret = rdev->desc->ops->get_status(rdev); 2433 2434 if (ret < 0) { 2435 rdev_info(rdev, "get_status returned error: %d\n", ret); 2436 return ret; 2437 } 2438 2439 switch (ret) { 2440 case REGULATOR_STATUS_OFF: 2441 case REGULATOR_STATUS_ERROR: 2442 case REGULATOR_STATUS_UNDEFINED: 2443 return 0; 2444 default: 2445 return 1; 2446 } 2447 } 2448 2449 static int _regulator_do_enable(struct regulator_dev *rdev) 2450 { 2451 int ret, delay; 2452 2453 /* Query before enabling in case configuration dependent. */ 2454 ret = _regulator_get_enable_time(rdev); 2455 if (ret >= 0) { 2456 delay = ret; 2457 } else { 2458 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2459 delay = 0; 2460 } 2461 2462 trace_regulator_enable(rdev_get_name(rdev)); 2463 2464 if (rdev->desc->off_on_delay) { 2465 /* if needed, keep a distance of off_on_delay from last time 2466 * this regulator was disabled. 2467 */ 2468 unsigned long start_jiffy = jiffies; 2469 unsigned long intended, max_delay, remaining; 2470 2471 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2472 intended = rdev->last_off_jiffy + max_delay; 2473 2474 if (time_before(start_jiffy, intended)) { 2475 /* calc remaining jiffies to deal with one-time 2476 * timer wrapping. 2477 * in case of multiple timer wrapping, either it can be 2478 * detected by out-of-range remaining, or it cannot be 2479 * detected and we get a penalty of 2480 * _regulator_enable_delay(). 2481 */ 2482 remaining = intended - start_jiffy; 2483 if (remaining <= max_delay) 2484 _regulator_enable_delay( 2485 jiffies_to_usecs(remaining)); 2486 } 2487 } 2488 2489 if (rdev->ena_pin) { 2490 if (!rdev->ena_gpio_state) { 2491 ret = regulator_ena_gpio_ctrl(rdev, true); 2492 if (ret < 0) 2493 return ret; 2494 rdev->ena_gpio_state = 1; 2495 } 2496 } else if (rdev->desc->ops->enable) { 2497 ret = rdev->desc->ops->enable(rdev); 2498 if (ret < 0) 2499 return ret; 2500 } else { 2501 return -EINVAL; 2502 } 2503 2504 /* Allow the regulator to ramp; it would be useful to extend 2505 * this for bulk operations so that the regulators can ramp 2506 * together. */ 2507 trace_regulator_enable_delay(rdev_get_name(rdev)); 2508 2509 /* If poll_enabled_time is set, poll upto the delay calculated 2510 * above, delaying poll_enabled_time uS to check if the regulator 2511 * actually got enabled. 2512 * If the regulator isn't enabled after enable_delay has 2513 * expired, return -ETIMEDOUT. 2514 */ 2515 if (rdev->desc->poll_enabled_time) { 2516 unsigned int time_remaining = delay; 2517 2518 while (time_remaining > 0) { 2519 _regulator_enable_delay(rdev->desc->poll_enabled_time); 2520 2521 if (rdev->desc->ops->get_status) { 2522 ret = _regulator_check_status_enabled(rdev); 2523 if (ret < 0) 2524 return ret; 2525 else if (ret) 2526 break; 2527 } else if (rdev->desc->ops->is_enabled(rdev)) 2528 break; 2529 2530 time_remaining -= rdev->desc->poll_enabled_time; 2531 } 2532 2533 if (time_remaining <= 0) { 2534 rdev_err(rdev, "Enabled check timed out\n"); 2535 return -ETIMEDOUT; 2536 } 2537 } else { 2538 _regulator_enable_delay(delay); 2539 } 2540 2541 trace_regulator_enable_complete(rdev_get_name(rdev)); 2542 2543 return 0; 2544 } 2545 2546 /** 2547 * _regulator_handle_consumer_enable - handle that a consumer enabled 2548 * @regulator: regulator source 2549 * 2550 * Some things on a regulator consumer (like the contribution towards total 2551 * load on the regulator) only have an effect when the consumer wants the 2552 * regulator enabled. Explained in example with two consumers of the same 2553 * regulator: 2554 * consumer A: set_load(100); => total load = 0 2555 * consumer A: regulator_enable(); => total load = 100 2556 * consumer B: set_load(1000); => total load = 100 2557 * consumer B: regulator_enable(); => total load = 1100 2558 * consumer A: regulator_disable(); => total_load = 1000 2559 * 2560 * This function (together with _regulator_handle_consumer_disable) is 2561 * responsible for keeping track of the refcount for a given regulator consumer 2562 * and applying / unapplying these things. 2563 * 2564 * Returns 0 upon no error; -error upon error. 2565 */ 2566 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2567 { 2568 struct regulator_dev *rdev = regulator->rdev; 2569 2570 lockdep_assert_held_once(&rdev->mutex.base); 2571 2572 regulator->enable_count++; 2573 if (regulator->uA_load && regulator->enable_count == 1) 2574 return drms_uA_update(rdev); 2575 2576 return 0; 2577 } 2578 2579 /** 2580 * _regulator_handle_consumer_disable - handle that a consumer disabled 2581 * @regulator: regulator source 2582 * 2583 * The opposite of _regulator_handle_consumer_enable(). 2584 * 2585 * Returns 0 upon no error; -error upon error. 2586 */ 2587 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2588 { 2589 struct regulator_dev *rdev = regulator->rdev; 2590 2591 lockdep_assert_held_once(&rdev->mutex.base); 2592 2593 if (!regulator->enable_count) { 2594 rdev_err(rdev, "Underflow of regulator enable count\n"); 2595 return -EINVAL; 2596 } 2597 2598 regulator->enable_count--; 2599 if (regulator->uA_load && regulator->enable_count == 0) 2600 return drms_uA_update(rdev); 2601 2602 return 0; 2603 } 2604 2605 /* locks held by regulator_enable() */ 2606 static int _regulator_enable(struct regulator *regulator) 2607 { 2608 struct regulator_dev *rdev = regulator->rdev; 2609 int ret; 2610 2611 lockdep_assert_held_once(&rdev->mutex.base); 2612 2613 if (rdev->use_count == 0 && rdev->supply) { 2614 ret = _regulator_enable(rdev->supply); 2615 if (ret < 0) 2616 return ret; 2617 } 2618 2619 /* balance only if there are regulators coupled */ 2620 if (rdev->coupling_desc.n_coupled > 1) { 2621 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2622 if (ret < 0) 2623 goto err_disable_supply; 2624 } 2625 2626 ret = _regulator_handle_consumer_enable(regulator); 2627 if (ret < 0) 2628 goto err_disable_supply; 2629 2630 if (rdev->use_count == 0) { 2631 /* The regulator may on if it's not switchable or left on */ 2632 ret = _regulator_is_enabled(rdev); 2633 if (ret == -EINVAL || ret == 0) { 2634 if (!regulator_ops_is_valid(rdev, 2635 REGULATOR_CHANGE_STATUS)) { 2636 ret = -EPERM; 2637 goto err_consumer_disable; 2638 } 2639 2640 ret = _regulator_do_enable(rdev); 2641 if (ret < 0) 2642 goto err_consumer_disable; 2643 2644 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2645 NULL); 2646 } else if (ret < 0) { 2647 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2648 goto err_consumer_disable; 2649 } 2650 /* Fallthrough on positive return values - already enabled */ 2651 } 2652 2653 rdev->use_count++; 2654 2655 return 0; 2656 2657 err_consumer_disable: 2658 _regulator_handle_consumer_disable(regulator); 2659 2660 err_disable_supply: 2661 if (rdev->use_count == 0 && rdev->supply) 2662 _regulator_disable(rdev->supply); 2663 2664 return ret; 2665 } 2666 2667 /** 2668 * regulator_enable - enable regulator output 2669 * @regulator: regulator source 2670 * 2671 * Request that the regulator be enabled with the regulator output at 2672 * the predefined voltage or current value. Calls to regulator_enable() 2673 * must be balanced with calls to regulator_disable(). 2674 * 2675 * NOTE: the output value can be set by other drivers, boot loader or may be 2676 * hardwired in the regulator. 2677 */ 2678 int regulator_enable(struct regulator *regulator) 2679 { 2680 struct regulator_dev *rdev = regulator->rdev; 2681 struct ww_acquire_ctx ww_ctx; 2682 int ret; 2683 2684 regulator_lock_dependent(rdev, &ww_ctx); 2685 ret = _regulator_enable(regulator); 2686 regulator_unlock_dependent(rdev, &ww_ctx); 2687 2688 return ret; 2689 } 2690 EXPORT_SYMBOL_GPL(regulator_enable); 2691 2692 static int _regulator_do_disable(struct regulator_dev *rdev) 2693 { 2694 int ret; 2695 2696 trace_regulator_disable(rdev_get_name(rdev)); 2697 2698 if (rdev->ena_pin) { 2699 if (rdev->ena_gpio_state) { 2700 ret = regulator_ena_gpio_ctrl(rdev, false); 2701 if (ret < 0) 2702 return ret; 2703 rdev->ena_gpio_state = 0; 2704 } 2705 2706 } else if (rdev->desc->ops->disable) { 2707 ret = rdev->desc->ops->disable(rdev); 2708 if (ret != 0) 2709 return ret; 2710 } 2711 2712 /* cares about last_off_jiffy only if off_on_delay is required by 2713 * device. 2714 */ 2715 if (rdev->desc->off_on_delay) 2716 rdev->last_off_jiffy = jiffies; 2717 2718 trace_regulator_disable_complete(rdev_get_name(rdev)); 2719 2720 return 0; 2721 } 2722 2723 /* locks held by regulator_disable() */ 2724 static int _regulator_disable(struct regulator *regulator) 2725 { 2726 struct regulator_dev *rdev = regulator->rdev; 2727 int ret = 0; 2728 2729 lockdep_assert_held_once(&rdev->mutex.base); 2730 2731 if (WARN(rdev->use_count <= 0, 2732 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2733 return -EIO; 2734 2735 /* are we the last user and permitted to disable ? */ 2736 if (rdev->use_count == 1 && 2737 (rdev->constraints && !rdev->constraints->always_on)) { 2738 2739 /* we are last user */ 2740 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2741 ret = _notifier_call_chain(rdev, 2742 REGULATOR_EVENT_PRE_DISABLE, 2743 NULL); 2744 if (ret & NOTIFY_STOP_MASK) 2745 return -EINVAL; 2746 2747 ret = _regulator_do_disable(rdev); 2748 if (ret < 0) { 2749 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 2750 _notifier_call_chain(rdev, 2751 REGULATOR_EVENT_ABORT_DISABLE, 2752 NULL); 2753 return ret; 2754 } 2755 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2756 NULL); 2757 } 2758 2759 rdev->use_count = 0; 2760 } else if (rdev->use_count > 1) { 2761 rdev->use_count--; 2762 } 2763 2764 if (ret == 0) 2765 ret = _regulator_handle_consumer_disable(regulator); 2766 2767 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2768 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2769 2770 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2771 ret = _regulator_disable(rdev->supply); 2772 2773 return ret; 2774 } 2775 2776 /** 2777 * regulator_disable - disable regulator output 2778 * @regulator: regulator source 2779 * 2780 * Disable the regulator output voltage or current. Calls to 2781 * regulator_enable() must be balanced with calls to 2782 * regulator_disable(). 2783 * 2784 * NOTE: this will only disable the regulator output if no other consumer 2785 * devices have it enabled, the regulator device supports disabling and 2786 * machine constraints permit this operation. 2787 */ 2788 int regulator_disable(struct regulator *regulator) 2789 { 2790 struct regulator_dev *rdev = regulator->rdev; 2791 struct ww_acquire_ctx ww_ctx; 2792 int ret; 2793 2794 regulator_lock_dependent(rdev, &ww_ctx); 2795 ret = _regulator_disable(regulator); 2796 regulator_unlock_dependent(rdev, &ww_ctx); 2797 2798 return ret; 2799 } 2800 EXPORT_SYMBOL_GPL(regulator_disable); 2801 2802 /* locks held by regulator_force_disable() */ 2803 static int _regulator_force_disable(struct regulator_dev *rdev) 2804 { 2805 int ret = 0; 2806 2807 lockdep_assert_held_once(&rdev->mutex.base); 2808 2809 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2810 REGULATOR_EVENT_PRE_DISABLE, NULL); 2811 if (ret & NOTIFY_STOP_MASK) 2812 return -EINVAL; 2813 2814 ret = _regulator_do_disable(rdev); 2815 if (ret < 0) { 2816 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 2817 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2818 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2819 return ret; 2820 } 2821 2822 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2823 REGULATOR_EVENT_DISABLE, NULL); 2824 2825 return 0; 2826 } 2827 2828 /** 2829 * regulator_force_disable - force disable regulator output 2830 * @regulator: regulator source 2831 * 2832 * Forcibly disable the regulator output voltage or current. 2833 * NOTE: this *will* disable the regulator output even if other consumer 2834 * devices have it enabled. This should be used for situations when device 2835 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2836 */ 2837 int regulator_force_disable(struct regulator *regulator) 2838 { 2839 struct regulator_dev *rdev = regulator->rdev; 2840 struct ww_acquire_ctx ww_ctx; 2841 int ret; 2842 2843 regulator_lock_dependent(rdev, &ww_ctx); 2844 2845 ret = _regulator_force_disable(regulator->rdev); 2846 2847 if (rdev->coupling_desc.n_coupled > 1) 2848 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2849 2850 if (regulator->uA_load) { 2851 regulator->uA_load = 0; 2852 ret = drms_uA_update(rdev); 2853 } 2854 2855 if (rdev->use_count != 0 && rdev->supply) 2856 _regulator_disable(rdev->supply); 2857 2858 regulator_unlock_dependent(rdev, &ww_ctx); 2859 2860 return ret; 2861 } 2862 EXPORT_SYMBOL_GPL(regulator_force_disable); 2863 2864 static void regulator_disable_work(struct work_struct *work) 2865 { 2866 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2867 disable_work.work); 2868 struct ww_acquire_ctx ww_ctx; 2869 int count, i, ret; 2870 struct regulator *regulator; 2871 int total_count = 0; 2872 2873 regulator_lock_dependent(rdev, &ww_ctx); 2874 2875 /* 2876 * Workqueue functions queue the new work instance while the previous 2877 * work instance is being processed. Cancel the queued work instance 2878 * as the work instance under processing does the job of the queued 2879 * work instance. 2880 */ 2881 cancel_delayed_work(&rdev->disable_work); 2882 2883 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2884 count = regulator->deferred_disables; 2885 2886 if (!count) 2887 continue; 2888 2889 total_count += count; 2890 regulator->deferred_disables = 0; 2891 2892 for (i = 0; i < count; i++) { 2893 ret = _regulator_disable(regulator); 2894 if (ret != 0) 2895 rdev_err(rdev, "Deferred disable failed: %pe\n", 2896 ERR_PTR(ret)); 2897 } 2898 } 2899 WARN_ON(!total_count); 2900 2901 if (rdev->coupling_desc.n_coupled > 1) 2902 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2903 2904 regulator_unlock_dependent(rdev, &ww_ctx); 2905 } 2906 2907 /** 2908 * regulator_disable_deferred - disable regulator output with delay 2909 * @regulator: regulator source 2910 * @ms: milliseconds until the regulator is disabled 2911 * 2912 * Execute regulator_disable() on the regulator after a delay. This 2913 * is intended for use with devices that require some time to quiesce. 2914 * 2915 * NOTE: this will only disable the regulator output if no other consumer 2916 * devices have it enabled, the regulator device supports disabling and 2917 * machine constraints permit this operation. 2918 */ 2919 int regulator_disable_deferred(struct regulator *regulator, int ms) 2920 { 2921 struct regulator_dev *rdev = regulator->rdev; 2922 2923 if (!ms) 2924 return regulator_disable(regulator); 2925 2926 regulator_lock(rdev); 2927 regulator->deferred_disables++; 2928 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2929 msecs_to_jiffies(ms)); 2930 regulator_unlock(rdev); 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2935 2936 static int _regulator_is_enabled(struct regulator_dev *rdev) 2937 { 2938 /* A GPIO control always takes precedence */ 2939 if (rdev->ena_pin) 2940 return rdev->ena_gpio_state; 2941 2942 /* If we don't know then assume that the regulator is always on */ 2943 if (!rdev->desc->ops->is_enabled) 2944 return 1; 2945 2946 return rdev->desc->ops->is_enabled(rdev); 2947 } 2948 2949 static int _regulator_list_voltage(struct regulator_dev *rdev, 2950 unsigned selector, int lock) 2951 { 2952 const struct regulator_ops *ops = rdev->desc->ops; 2953 int ret; 2954 2955 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2956 return rdev->desc->fixed_uV; 2957 2958 if (ops->list_voltage) { 2959 if (selector >= rdev->desc->n_voltages) 2960 return -EINVAL; 2961 if (selector < rdev->desc->linear_min_sel) 2962 return 0; 2963 if (lock) 2964 regulator_lock(rdev); 2965 ret = ops->list_voltage(rdev, selector); 2966 if (lock) 2967 regulator_unlock(rdev); 2968 } else if (rdev->is_switch && rdev->supply) { 2969 ret = _regulator_list_voltage(rdev->supply->rdev, 2970 selector, lock); 2971 } else { 2972 return -EINVAL; 2973 } 2974 2975 if (ret > 0) { 2976 if (ret < rdev->constraints->min_uV) 2977 ret = 0; 2978 else if (ret > rdev->constraints->max_uV) 2979 ret = 0; 2980 } 2981 2982 return ret; 2983 } 2984 2985 /** 2986 * regulator_is_enabled - is the regulator output enabled 2987 * @regulator: regulator source 2988 * 2989 * Returns positive if the regulator driver backing the source/client 2990 * has requested that the device be enabled, zero if it hasn't, else a 2991 * negative errno code. 2992 * 2993 * Note that the device backing this regulator handle can have multiple 2994 * users, so it might be enabled even if regulator_enable() was never 2995 * called for this particular source. 2996 */ 2997 int regulator_is_enabled(struct regulator *regulator) 2998 { 2999 int ret; 3000 3001 if (regulator->always_on) 3002 return 1; 3003 3004 regulator_lock(regulator->rdev); 3005 ret = _regulator_is_enabled(regulator->rdev); 3006 regulator_unlock(regulator->rdev); 3007 3008 return ret; 3009 } 3010 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3011 3012 /** 3013 * regulator_count_voltages - count regulator_list_voltage() selectors 3014 * @regulator: regulator source 3015 * 3016 * Returns number of selectors, or negative errno. Selectors are 3017 * numbered starting at zero, and typically correspond to bitfields 3018 * in hardware registers. 3019 */ 3020 int regulator_count_voltages(struct regulator *regulator) 3021 { 3022 struct regulator_dev *rdev = regulator->rdev; 3023 3024 if (rdev->desc->n_voltages) 3025 return rdev->desc->n_voltages; 3026 3027 if (!rdev->is_switch || !rdev->supply) 3028 return -EINVAL; 3029 3030 return regulator_count_voltages(rdev->supply); 3031 } 3032 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3033 3034 /** 3035 * regulator_list_voltage - enumerate supported voltages 3036 * @regulator: regulator source 3037 * @selector: identify voltage to list 3038 * Context: can sleep 3039 * 3040 * Returns a voltage that can be passed to @regulator_set_voltage(), 3041 * zero if this selector code can't be used on this system, or a 3042 * negative errno. 3043 */ 3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3045 { 3046 return _regulator_list_voltage(regulator->rdev, selector, 1); 3047 } 3048 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3049 3050 /** 3051 * regulator_get_regmap - get the regulator's register map 3052 * @regulator: regulator source 3053 * 3054 * Returns the register map for the given regulator, or an ERR_PTR value 3055 * if the regulator doesn't use regmap. 3056 */ 3057 struct regmap *regulator_get_regmap(struct regulator *regulator) 3058 { 3059 struct regmap *map = regulator->rdev->regmap; 3060 3061 return map ? map : ERR_PTR(-EOPNOTSUPP); 3062 } 3063 3064 /** 3065 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3066 * @regulator: regulator source 3067 * @vsel_reg: voltage selector register, output parameter 3068 * @vsel_mask: mask for voltage selector bitfield, output parameter 3069 * 3070 * Returns the hardware register offset and bitmask used for setting the 3071 * regulator voltage. This might be useful when configuring voltage-scaling 3072 * hardware or firmware that can make I2C requests behind the kernel's back, 3073 * for example. 3074 * 3075 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3076 * and 0 is returned, otherwise a negative errno is returned. 3077 */ 3078 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3079 unsigned *vsel_reg, 3080 unsigned *vsel_mask) 3081 { 3082 struct regulator_dev *rdev = regulator->rdev; 3083 const struct regulator_ops *ops = rdev->desc->ops; 3084 3085 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3086 return -EOPNOTSUPP; 3087 3088 *vsel_reg = rdev->desc->vsel_reg; 3089 *vsel_mask = rdev->desc->vsel_mask; 3090 3091 return 0; 3092 } 3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3094 3095 /** 3096 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3097 * @regulator: regulator source 3098 * @selector: identify voltage to list 3099 * 3100 * Converts the selector to a hardware-specific voltage selector that can be 3101 * directly written to the regulator registers. The address of the voltage 3102 * register can be determined by calling @regulator_get_hardware_vsel_register. 3103 * 3104 * On error a negative errno is returned. 3105 */ 3106 int regulator_list_hardware_vsel(struct regulator *regulator, 3107 unsigned selector) 3108 { 3109 struct regulator_dev *rdev = regulator->rdev; 3110 const struct regulator_ops *ops = rdev->desc->ops; 3111 3112 if (selector >= rdev->desc->n_voltages) 3113 return -EINVAL; 3114 if (selector < rdev->desc->linear_min_sel) 3115 return 0; 3116 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3117 return -EOPNOTSUPP; 3118 3119 return selector; 3120 } 3121 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3122 3123 /** 3124 * regulator_get_linear_step - return the voltage step size between VSEL values 3125 * @regulator: regulator source 3126 * 3127 * Returns the voltage step size between VSEL values for linear 3128 * regulators, or return 0 if the regulator isn't a linear regulator. 3129 */ 3130 unsigned int regulator_get_linear_step(struct regulator *regulator) 3131 { 3132 struct regulator_dev *rdev = regulator->rdev; 3133 3134 return rdev->desc->uV_step; 3135 } 3136 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3137 3138 /** 3139 * regulator_is_supported_voltage - check if a voltage range can be supported 3140 * 3141 * @regulator: Regulator to check. 3142 * @min_uV: Minimum required voltage in uV. 3143 * @max_uV: Maximum required voltage in uV. 3144 * 3145 * Returns a boolean. 3146 */ 3147 int regulator_is_supported_voltage(struct regulator *regulator, 3148 int min_uV, int max_uV) 3149 { 3150 struct regulator_dev *rdev = regulator->rdev; 3151 int i, voltages, ret; 3152 3153 /* If we can't change voltage check the current voltage */ 3154 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3155 ret = regulator_get_voltage(regulator); 3156 if (ret >= 0) 3157 return min_uV <= ret && ret <= max_uV; 3158 else 3159 return ret; 3160 } 3161 3162 /* Any voltage within constrains range is fine? */ 3163 if (rdev->desc->continuous_voltage_range) 3164 return min_uV >= rdev->constraints->min_uV && 3165 max_uV <= rdev->constraints->max_uV; 3166 3167 ret = regulator_count_voltages(regulator); 3168 if (ret < 0) 3169 return 0; 3170 voltages = ret; 3171 3172 for (i = 0; i < voltages; i++) { 3173 ret = regulator_list_voltage(regulator, i); 3174 3175 if (ret >= min_uV && ret <= max_uV) 3176 return 1; 3177 } 3178 3179 return 0; 3180 } 3181 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3182 3183 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3184 int max_uV) 3185 { 3186 const struct regulator_desc *desc = rdev->desc; 3187 3188 if (desc->ops->map_voltage) 3189 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3190 3191 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3192 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3193 3194 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3195 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3196 3197 if (desc->ops->list_voltage == 3198 regulator_list_voltage_pickable_linear_range) 3199 return regulator_map_voltage_pickable_linear_range(rdev, 3200 min_uV, max_uV); 3201 3202 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3203 } 3204 3205 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3206 int min_uV, int max_uV, 3207 unsigned *selector) 3208 { 3209 struct pre_voltage_change_data data; 3210 int ret; 3211 3212 data.old_uV = regulator_get_voltage_rdev(rdev); 3213 data.min_uV = min_uV; 3214 data.max_uV = max_uV; 3215 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3216 &data); 3217 if (ret & NOTIFY_STOP_MASK) 3218 return -EINVAL; 3219 3220 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3221 if (ret >= 0) 3222 return ret; 3223 3224 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3225 (void *)data.old_uV); 3226 3227 return ret; 3228 } 3229 3230 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3231 int uV, unsigned selector) 3232 { 3233 struct pre_voltage_change_data data; 3234 int ret; 3235 3236 data.old_uV = regulator_get_voltage_rdev(rdev); 3237 data.min_uV = uV; 3238 data.max_uV = uV; 3239 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3240 &data); 3241 if (ret & NOTIFY_STOP_MASK) 3242 return -EINVAL; 3243 3244 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3245 if (ret >= 0) 3246 return ret; 3247 3248 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3249 (void *)data.old_uV); 3250 3251 return ret; 3252 } 3253 3254 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3255 int uV, int new_selector) 3256 { 3257 const struct regulator_ops *ops = rdev->desc->ops; 3258 int diff, old_sel, curr_sel, ret; 3259 3260 /* Stepping is only needed if the regulator is enabled. */ 3261 if (!_regulator_is_enabled(rdev)) 3262 goto final_set; 3263 3264 if (!ops->get_voltage_sel) 3265 return -EINVAL; 3266 3267 old_sel = ops->get_voltage_sel(rdev); 3268 if (old_sel < 0) 3269 return old_sel; 3270 3271 diff = new_selector - old_sel; 3272 if (diff == 0) 3273 return 0; /* No change needed. */ 3274 3275 if (diff > 0) { 3276 /* Stepping up. */ 3277 for (curr_sel = old_sel + rdev->desc->vsel_step; 3278 curr_sel < new_selector; 3279 curr_sel += rdev->desc->vsel_step) { 3280 /* 3281 * Call the callback directly instead of using 3282 * _regulator_call_set_voltage_sel() as we don't 3283 * want to notify anyone yet. Same in the branch 3284 * below. 3285 */ 3286 ret = ops->set_voltage_sel(rdev, curr_sel); 3287 if (ret) 3288 goto try_revert; 3289 } 3290 } else { 3291 /* Stepping down. */ 3292 for (curr_sel = old_sel - rdev->desc->vsel_step; 3293 curr_sel > new_selector; 3294 curr_sel -= rdev->desc->vsel_step) { 3295 ret = ops->set_voltage_sel(rdev, curr_sel); 3296 if (ret) 3297 goto try_revert; 3298 } 3299 } 3300 3301 final_set: 3302 /* The final selector will trigger the notifiers. */ 3303 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3304 3305 try_revert: 3306 /* 3307 * At least try to return to the previous voltage if setting a new 3308 * one failed. 3309 */ 3310 (void)ops->set_voltage_sel(rdev, old_sel); 3311 return ret; 3312 } 3313 3314 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3315 int old_uV, int new_uV) 3316 { 3317 unsigned int ramp_delay = 0; 3318 3319 if (rdev->constraints->ramp_delay) 3320 ramp_delay = rdev->constraints->ramp_delay; 3321 else if (rdev->desc->ramp_delay) 3322 ramp_delay = rdev->desc->ramp_delay; 3323 else if (rdev->constraints->settling_time) 3324 return rdev->constraints->settling_time; 3325 else if (rdev->constraints->settling_time_up && 3326 (new_uV > old_uV)) 3327 return rdev->constraints->settling_time_up; 3328 else if (rdev->constraints->settling_time_down && 3329 (new_uV < old_uV)) 3330 return rdev->constraints->settling_time_down; 3331 3332 if (ramp_delay == 0) { 3333 rdev_dbg(rdev, "ramp_delay not set\n"); 3334 return 0; 3335 } 3336 3337 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3338 } 3339 3340 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3341 int min_uV, int max_uV) 3342 { 3343 int ret; 3344 int delay = 0; 3345 int best_val = 0; 3346 unsigned int selector; 3347 int old_selector = -1; 3348 const struct regulator_ops *ops = rdev->desc->ops; 3349 int old_uV = regulator_get_voltage_rdev(rdev); 3350 3351 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3352 3353 min_uV += rdev->constraints->uV_offset; 3354 max_uV += rdev->constraints->uV_offset; 3355 3356 /* 3357 * If we can't obtain the old selector there is not enough 3358 * info to call set_voltage_time_sel(). 3359 */ 3360 if (_regulator_is_enabled(rdev) && 3361 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3362 old_selector = ops->get_voltage_sel(rdev); 3363 if (old_selector < 0) 3364 return old_selector; 3365 } 3366 3367 if (ops->set_voltage) { 3368 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3369 &selector); 3370 3371 if (ret >= 0) { 3372 if (ops->list_voltage) 3373 best_val = ops->list_voltage(rdev, 3374 selector); 3375 else 3376 best_val = regulator_get_voltage_rdev(rdev); 3377 } 3378 3379 } else if (ops->set_voltage_sel) { 3380 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3381 if (ret >= 0) { 3382 best_val = ops->list_voltage(rdev, ret); 3383 if (min_uV <= best_val && max_uV >= best_val) { 3384 selector = ret; 3385 if (old_selector == selector) 3386 ret = 0; 3387 else if (rdev->desc->vsel_step) 3388 ret = _regulator_set_voltage_sel_step( 3389 rdev, best_val, selector); 3390 else 3391 ret = _regulator_call_set_voltage_sel( 3392 rdev, best_val, selector); 3393 } else { 3394 ret = -EINVAL; 3395 } 3396 } 3397 } else { 3398 ret = -EINVAL; 3399 } 3400 3401 if (ret) 3402 goto out; 3403 3404 if (ops->set_voltage_time_sel) { 3405 /* 3406 * Call set_voltage_time_sel if successfully obtained 3407 * old_selector 3408 */ 3409 if (old_selector >= 0 && old_selector != selector) 3410 delay = ops->set_voltage_time_sel(rdev, old_selector, 3411 selector); 3412 } else { 3413 if (old_uV != best_val) { 3414 if (ops->set_voltage_time) 3415 delay = ops->set_voltage_time(rdev, old_uV, 3416 best_val); 3417 else 3418 delay = _regulator_set_voltage_time(rdev, 3419 old_uV, 3420 best_val); 3421 } 3422 } 3423 3424 if (delay < 0) { 3425 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3426 delay = 0; 3427 } 3428 3429 /* Insert any necessary delays */ 3430 if (delay >= 1000) { 3431 mdelay(delay / 1000); 3432 udelay(delay % 1000); 3433 } else if (delay) { 3434 udelay(delay); 3435 } 3436 3437 if (best_val >= 0) { 3438 unsigned long data = best_val; 3439 3440 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3441 (void *)data); 3442 } 3443 3444 out: 3445 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3446 3447 return ret; 3448 } 3449 3450 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3451 int min_uV, int max_uV, suspend_state_t state) 3452 { 3453 struct regulator_state *rstate; 3454 int uV, sel; 3455 3456 rstate = regulator_get_suspend_state(rdev, state); 3457 if (rstate == NULL) 3458 return -EINVAL; 3459 3460 if (min_uV < rstate->min_uV) 3461 min_uV = rstate->min_uV; 3462 if (max_uV > rstate->max_uV) 3463 max_uV = rstate->max_uV; 3464 3465 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3466 if (sel < 0) 3467 return sel; 3468 3469 uV = rdev->desc->ops->list_voltage(rdev, sel); 3470 if (uV >= min_uV && uV <= max_uV) 3471 rstate->uV = uV; 3472 3473 return 0; 3474 } 3475 3476 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3477 int min_uV, int max_uV, 3478 suspend_state_t state) 3479 { 3480 struct regulator_dev *rdev = regulator->rdev; 3481 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3482 int ret = 0; 3483 int old_min_uV, old_max_uV; 3484 int current_uV; 3485 3486 /* If we're setting the same range as last time the change 3487 * should be a noop (some cpufreq implementations use the same 3488 * voltage for multiple frequencies, for example). 3489 */ 3490 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3491 goto out; 3492 3493 /* If we're trying to set a range that overlaps the current voltage, 3494 * return successfully even though the regulator does not support 3495 * changing the voltage. 3496 */ 3497 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3498 current_uV = regulator_get_voltage_rdev(rdev); 3499 if (min_uV <= current_uV && current_uV <= max_uV) { 3500 voltage->min_uV = min_uV; 3501 voltage->max_uV = max_uV; 3502 goto out; 3503 } 3504 } 3505 3506 /* sanity check */ 3507 if (!rdev->desc->ops->set_voltage && 3508 !rdev->desc->ops->set_voltage_sel) { 3509 ret = -EINVAL; 3510 goto out; 3511 } 3512 3513 /* constraints check */ 3514 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3515 if (ret < 0) 3516 goto out; 3517 3518 /* restore original values in case of error */ 3519 old_min_uV = voltage->min_uV; 3520 old_max_uV = voltage->max_uV; 3521 voltage->min_uV = min_uV; 3522 voltage->max_uV = max_uV; 3523 3524 /* for not coupled regulators this will just set the voltage */ 3525 ret = regulator_balance_voltage(rdev, state); 3526 if (ret < 0) { 3527 voltage->min_uV = old_min_uV; 3528 voltage->max_uV = old_max_uV; 3529 } 3530 3531 out: 3532 return ret; 3533 } 3534 3535 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3536 int max_uV, suspend_state_t state) 3537 { 3538 int best_supply_uV = 0; 3539 int supply_change_uV = 0; 3540 int ret; 3541 3542 if (rdev->supply && 3543 regulator_ops_is_valid(rdev->supply->rdev, 3544 REGULATOR_CHANGE_VOLTAGE) && 3545 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3546 rdev->desc->ops->get_voltage_sel))) { 3547 int current_supply_uV; 3548 int selector; 3549 3550 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3551 if (selector < 0) { 3552 ret = selector; 3553 goto out; 3554 } 3555 3556 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3557 if (best_supply_uV < 0) { 3558 ret = best_supply_uV; 3559 goto out; 3560 } 3561 3562 best_supply_uV += rdev->desc->min_dropout_uV; 3563 3564 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3565 if (current_supply_uV < 0) { 3566 ret = current_supply_uV; 3567 goto out; 3568 } 3569 3570 supply_change_uV = best_supply_uV - current_supply_uV; 3571 } 3572 3573 if (supply_change_uV > 0) { 3574 ret = regulator_set_voltage_unlocked(rdev->supply, 3575 best_supply_uV, INT_MAX, state); 3576 if (ret) { 3577 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3578 ERR_PTR(ret)); 3579 goto out; 3580 } 3581 } 3582 3583 if (state == PM_SUSPEND_ON) 3584 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3585 else 3586 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3587 max_uV, state); 3588 if (ret < 0) 3589 goto out; 3590 3591 if (supply_change_uV < 0) { 3592 ret = regulator_set_voltage_unlocked(rdev->supply, 3593 best_supply_uV, INT_MAX, state); 3594 if (ret) 3595 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3596 ERR_PTR(ret)); 3597 /* No need to fail here */ 3598 ret = 0; 3599 } 3600 3601 out: 3602 return ret; 3603 } 3604 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3605 3606 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3607 int *current_uV, int *min_uV) 3608 { 3609 struct regulation_constraints *constraints = rdev->constraints; 3610 3611 /* Limit voltage change only if necessary */ 3612 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3613 return 1; 3614 3615 if (*current_uV < 0) { 3616 *current_uV = regulator_get_voltage_rdev(rdev); 3617 3618 if (*current_uV < 0) 3619 return *current_uV; 3620 } 3621 3622 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3623 return 1; 3624 3625 /* Clamp target voltage within the given step */ 3626 if (*current_uV < *min_uV) 3627 *min_uV = min(*current_uV + constraints->max_uV_step, 3628 *min_uV); 3629 else 3630 *min_uV = max(*current_uV - constraints->max_uV_step, 3631 *min_uV); 3632 3633 return 0; 3634 } 3635 3636 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3637 int *current_uV, 3638 int *min_uV, int *max_uV, 3639 suspend_state_t state, 3640 int n_coupled) 3641 { 3642 struct coupling_desc *c_desc = &rdev->coupling_desc; 3643 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3644 struct regulation_constraints *constraints = rdev->constraints; 3645 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3646 int max_current_uV = 0, min_current_uV = INT_MAX; 3647 int highest_min_uV = 0, target_uV, possible_uV; 3648 int i, ret, max_spread; 3649 bool done; 3650 3651 *current_uV = -1; 3652 3653 /* 3654 * If there are no coupled regulators, simply set the voltage 3655 * demanded by consumers. 3656 */ 3657 if (n_coupled == 1) { 3658 /* 3659 * If consumers don't provide any demands, set voltage 3660 * to min_uV 3661 */ 3662 desired_min_uV = constraints->min_uV; 3663 desired_max_uV = constraints->max_uV; 3664 3665 ret = regulator_check_consumers(rdev, 3666 &desired_min_uV, 3667 &desired_max_uV, state); 3668 if (ret < 0) 3669 return ret; 3670 3671 possible_uV = desired_min_uV; 3672 done = true; 3673 3674 goto finish; 3675 } 3676 3677 /* Find highest min desired voltage */ 3678 for (i = 0; i < n_coupled; i++) { 3679 int tmp_min = 0; 3680 int tmp_max = INT_MAX; 3681 3682 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3683 3684 ret = regulator_check_consumers(c_rdevs[i], 3685 &tmp_min, 3686 &tmp_max, state); 3687 if (ret < 0) 3688 return ret; 3689 3690 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3691 if (ret < 0) 3692 return ret; 3693 3694 highest_min_uV = max(highest_min_uV, tmp_min); 3695 3696 if (i == 0) { 3697 desired_min_uV = tmp_min; 3698 desired_max_uV = tmp_max; 3699 } 3700 } 3701 3702 max_spread = constraints->max_spread[0]; 3703 3704 /* 3705 * Let target_uV be equal to the desired one if possible. 3706 * If not, set it to minimum voltage, allowed by other coupled 3707 * regulators. 3708 */ 3709 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3710 3711 /* 3712 * Find min and max voltages, which currently aren't violating 3713 * max_spread. 3714 */ 3715 for (i = 1; i < n_coupled; i++) { 3716 int tmp_act; 3717 3718 if (!_regulator_is_enabled(c_rdevs[i])) 3719 continue; 3720 3721 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3722 if (tmp_act < 0) 3723 return tmp_act; 3724 3725 min_current_uV = min(tmp_act, min_current_uV); 3726 max_current_uV = max(tmp_act, max_current_uV); 3727 } 3728 3729 /* There aren't any other regulators enabled */ 3730 if (max_current_uV == 0) { 3731 possible_uV = target_uV; 3732 } else { 3733 /* 3734 * Correct target voltage, so as it currently isn't 3735 * violating max_spread 3736 */ 3737 possible_uV = max(target_uV, max_current_uV - max_spread); 3738 possible_uV = min(possible_uV, min_current_uV + max_spread); 3739 } 3740 3741 if (possible_uV > desired_max_uV) 3742 return -EINVAL; 3743 3744 done = (possible_uV == target_uV); 3745 desired_min_uV = possible_uV; 3746 3747 finish: 3748 /* Apply max_uV_step constraint if necessary */ 3749 if (state == PM_SUSPEND_ON) { 3750 ret = regulator_limit_voltage_step(rdev, current_uV, 3751 &desired_min_uV); 3752 if (ret < 0) 3753 return ret; 3754 3755 if (ret == 0) 3756 done = false; 3757 } 3758 3759 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3760 if (n_coupled > 1 && *current_uV == -1) { 3761 3762 if (_regulator_is_enabled(rdev)) { 3763 ret = regulator_get_voltage_rdev(rdev); 3764 if (ret < 0) 3765 return ret; 3766 3767 *current_uV = ret; 3768 } else { 3769 *current_uV = desired_min_uV; 3770 } 3771 } 3772 3773 *min_uV = desired_min_uV; 3774 *max_uV = desired_max_uV; 3775 3776 return done; 3777 } 3778 3779 int regulator_do_balance_voltage(struct regulator_dev *rdev, 3780 suspend_state_t state, bool skip_coupled) 3781 { 3782 struct regulator_dev **c_rdevs; 3783 struct regulator_dev *best_rdev; 3784 struct coupling_desc *c_desc = &rdev->coupling_desc; 3785 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3786 unsigned int delta, best_delta; 3787 unsigned long c_rdev_done = 0; 3788 bool best_c_rdev_done; 3789 3790 c_rdevs = c_desc->coupled_rdevs; 3791 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 3792 3793 /* 3794 * Find the best possible voltage change on each loop. Leave the loop 3795 * if there isn't any possible change. 3796 */ 3797 do { 3798 best_c_rdev_done = false; 3799 best_delta = 0; 3800 best_min_uV = 0; 3801 best_max_uV = 0; 3802 best_c_rdev = 0; 3803 best_rdev = NULL; 3804 3805 /* 3806 * Find highest difference between optimal voltage 3807 * and current voltage. 3808 */ 3809 for (i = 0; i < n_coupled; i++) { 3810 /* 3811 * optimal_uV is the best voltage that can be set for 3812 * i-th regulator at the moment without violating 3813 * max_spread constraint in order to balance 3814 * the coupled voltages. 3815 */ 3816 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3817 3818 if (test_bit(i, &c_rdev_done)) 3819 continue; 3820 3821 ret = regulator_get_optimal_voltage(c_rdevs[i], 3822 ¤t_uV, 3823 &optimal_uV, 3824 &optimal_max_uV, 3825 state, n_coupled); 3826 if (ret < 0) 3827 goto out; 3828 3829 delta = abs(optimal_uV - current_uV); 3830 3831 if (delta && best_delta <= delta) { 3832 best_c_rdev_done = ret; 3833 best_delta = delta; 3834 best_rdev = c_rdevs[i]; 3835 best_min_uV = optimal_uV; 3836 best_max_uV = optimal_max_uV; 3837 best_c_rdev = i; 3838 } 3839 } 3840 3841 /* Nothing to change, return successfully */ 3842 if (!best_rdev) { 3843 ret = 0; 3844 goto out; 3845 } 3846 3847 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3848 best_max_uV, state); 3849 3850 if (ret < 0) 3851 goto out; 3852 3853 if (best_c_rdev_done) 3854 set_bit(best_c_rdev, &c_rdev_done); 3855 3856 } while (n_coupled > 1); 3857 3858 out: 3859 return ret; 3860 } 3861 3862 static int regulator_balance_voltage(struct regulator_dev *rdev, 3863 suspend_state_t state) 3864 { 3865 struct coupling_desc *c_desc = &rdev->coupling_desc; 3866 struct regulator_coupler *coupler = c_desc->coupler; 3867 bool skip_coupled = false; 3868 3869 /* 3870 * If system is in a state other than PM_SUSPEND_ON, don't check 3871 * other coupled regulators. 3872 */ 3873 if (state != PM_SUSPEND_ON) 3874 skip_coupled = true; 3875 3876 if (c_desc->n_resolved < c_desc->n_coupled) { 3877 rdev_err(rdev, "Not all coupled regulators registered\n"); 3878 return -EPERM; 3879 } 3880 3881 /* Invoke custom balancer for customized couplers */ 3882 if (coupler && coupler->balance_voltage) 3883 return coupler->balance_voltage(coupler, rdev, state); 3884 3885 return regulator_do_balance_voltage(rdev, state, skip_coupled); 3886 } 3887 3888 /** 3889 * regulator_set_voltage - set regulator output voltage 3890 * @regulator: regulator source 3891 * @min_uV: Minimum required voltage in uV 3892 * @max_uV: Maximum acceptable voltage in uV 3893 * 3894 * Sets a voltage regulator to the desired output voltage. This can be set 3895 * during any regulator state. IOW, regulator can be disabled or enabled. 3896 * 3897 * If the regulator is enabled then the voltage will change to the new value 3898 * immediately otherwise if the regulator is disabled the regulator will 3899 * output at the new voltage when enabled. 3900 * 3901 * NOTE: If the regulator is shared between several devices then the lowest 3902 * request voltage that meets the system constraints will be used. 3903 * Regulator system constraints must be set for this regulator before 3904 * calling this function otherwise this call will fail. 3905 */ 3906 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3907 { 3908 struct ww_acquire_ctx ww_ctx; 3909 int ret; 3910 3911 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3912 3913 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3914 PM_SUSPEND_ON); 3915 3916 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3917 3918 return ret; 3919 } 3920 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3921 3922 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3923 suspend_state_t state, bool en) 3924 { 3925 struct regulator_state *rstate; 3926 3927 rstate = regulator_get_suspend_state(rdev, state); 3928 if (rstate == NULL) 3929 return -EINVAL; 3930 3931 if (!rstate->changeable) 3932 return -EPERM; 3933 3934 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3935 3936 return 0; 3937 } 3938 3939 int regulator_suspend_enable(struct regulator_dev *rdev, 3940 suspend_state_t state) 3941 { 3942 return regulator_suspend_toggle(rdev, state, true); 3943 } 3944 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3945 3946 int regulator_suspend_disable(struct regulator_dev *rdev, 3947 suspend_state_t state) 3948 { 3949 struct regulator *regulator; 3950 struct regulator_voltage *voltage; 3951 3952 /* 3953 * if any consumer wants this regulator device keeping on in 3954 * suspend states, don't set it as disabled. 3955 */ 3956 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3957 voltage = ®ulator->voltage[state]; 3958 if (voltage->min_uV || voltage->max_uV) 3959 return 0; 3960 } 3961 3962 return regulator_suspend_toggle(rdev, state, false); 3963 } 3964 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3965 3966 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3967 int min_uV, int max_uV, 3968 suspend_state_t state) 3969 { 3970 struct regulator_dev *rdev = regulator->rdev; 3971 struct regulator_state *rstate; 3972 3973 rstate = regulator_get_suspend_state(rdev, state); 3974 if (rstate == NULL) 3975 return -EINVAL; 3976 3977 if (rstate->min_uV == rstate->max_uV) { 3978 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3979 return -EPERM; 3980 } 3981 3982 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3983 } 3984 3985 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3986 int max_uV, suspend_state_t state) 3987 { 3988 struct ww_acquire_ctx ww_ctx; 3989 int ret; 3990 3991 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3992 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3993 return -EINVAL; 3994 3995 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3996 3997 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3998 max_uV, state); 3999 4000 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4001 4002 return ret; 4003 } 4004 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4005 4006 /** 4007 * regulator_set_voltage_time - get raise/fall time 4008 * @regulator: regulator source 4009 * @old_uV: starting voltage in microvolts 4010 * @new_uV: target voltage in microvolts 4011 * 4012 * Provided with the starting and ending voltage, this function attempts to 4013 * calculate the time in microseconds required to rise or fall to this new 4014 * voltage. 4015 */ 4016 int regulator_set_voltage_time(struct regulator *regulator, 4017 int old_uV, int new_uV) 4018 { 4019 struct regulator_dev *rdev = regulator->rdev; 4020 const struct regulator_ops *ops = rdev->desc->ops; 4021 int old_sel = -1; 4022 int new_sel = -1; 4023 int voltage; 4024 int i; 4025 4026 if (ops->set_voltage_time) 4027 return ops->set_voltage_time(rdev, old_uV, new_uV); 4028 else if (!ops->set_voltage_time_sel) 4029 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4030 4031 /* Currently requires operations to do this */ 4032 if (!ops->list_voltage || !rdev->desc->n_voltages) 4033 return -EINVAL; 4034 4035 for (i = 0; i < rdev->desc->n_voltages; i++) { 4036 /* We only look for exact voltage matches here */ 4037 if (i < rdev->desc->linear_min_sel) 4038 continue; 4039 4040 if (old_sel >= 0 && new_sel >= 0) 4041 break; 4042 4043 voltage = regulator_list_voltage(regulator, i); 4044 if (voltage < 0) 4045 return -EINVAL; 4046 if (voltage == 0) 4047 continue; 4048 if (voltage == old_uV) 4049 old_sel = i; 4050 if (voltage == new_uV) 4051 new_sel = i; 4052 } 4053 4054 if (old_sel < 0 || new_sel < 0) 4055 return -EINVAL; 4056 4057 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4058 } 4059 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4060 4061 /** 4062 * regulator_set_voltage_time_sel - get raise/fall time 4063 * @rdev: regulator source device 4064 * @old_selector: selector for starting voltage 4065 * @new_selector: selector for target voltage 4066 * 4067 * Provided with the starting and target voltage selectors, this function 4068 * returns time in microseconds required to rise or fall to this new voltage 4069 * 4070 * Drivers providing ramp_delay in regulation_constraints can use this as their 4071 * set_voltage_time_sel() operation. 4072 */ 4073 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4074 unsigned int old_selector, 4075 unsigned int new_selector) 4076 { 4077 int old_volt, new_volt; 4078 4079 /* sanity check */ 4080 if (!rdev->desc->ops->list_voltage) 4081 return -EINVAL; 4082 4083 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4084 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4085 4086 if (rdev->desc->ops->set_voltage_time) 4087 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4088 new_volt); 4089 else 4090 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4091 } 4092 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4093 4094 /** 4095 * regulator_sync_voltage - re-apply last regulator output voltage 4096 * @regulator: regulator source 4097 * 4098 * Re-apply the last configured voltage. This is intended to be used 4099 * where some external control source the consumer is cooperating with 4100 * has caused the configured voltage to change. 4101 */ 4102 int regulator_sync_voltage(struct regulator *regulator) 4103 { 4104 struct regulator_dev *rdev = regulator->rdev; 4105 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4106 int ret, min_uV, max_uV; 4107 4108 regulator_lock(rdev); 4109 4110 if (!rdev->desc->ops->set_voltage && 4111 !rdev->desc->ops->set_voltage_sel) { 4112 ret = -EINVAL; 4113 goto out; 4114 } 4115 4116 /* This is only going to work if we've had a voltage configured. */ 4117 if (!voltage->min_uV && !voltage->max_uV) { 4118 ret = -EINVAL; 4119 goto out; 4120 } 4121 4122 min_uV = voltage->min_uV; 4123 max_uV = voltage->max_uV; 4124 4125 /* This should be a paranoia check... */ 4126 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4127 if (ret < 0) 4128 goto out; 4129 4130 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4131 if (ret < 0) 4132 goto out; 4133 4134 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4135 4136 out: 4137 regulator_unlock(rdev); 4138 return ret; 4139 } 4140 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4141 4142 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4143 { 4144 int sel, ret; 4145 bool bypassed; 4146 4147 if (rdev->desc->ops->get_bypass) { 4148 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4149 if (ret < 0) 4150 return ret; 4151 if (bypassed) { 4152 /* if bypassed the regulator must have a supply */ 4153 if (!rdev->supply) { 4154 rdev_err(rdev, 4155 "bypassed regulator has no supply!\n"); 4156 return -EPROBE_DEFER; 4157 } 4158 4159 return regulator_get_voltage_rdev(rdev->supply->rdev); 4160 } 4161 } 4162 4163 if (rdev->desc->ops->get_voltage_sel) { 4164 sel = rdev->desc->ops->get_voltage_sel(rdev); 4165 if (sel < 0) 4166 return sel; 4167 ret = rdev->desc->ops->list_voltage(rdev, sel); 4168 } else if (rdev->desc->ops->get_voltage) { 4169 ret = rdev->desc->ops->get_voltage(rdev); 4170 } else if (rdev->desc->ops->list_voltage) { 4171 ret = rdev->desc->ops->list_voltage(rdev, 0); 4172 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4173 ret = rdev->desc->fixed_uV; 4174 } else if (rdev->supply) { 4175 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4176 } else if (rdev->supply_name) { 4177 return -EPROBE_DEFER; 4178 } else { 4179 return -EINVAL; 4180 } 4181 4182 if (ret < 0) 4183 return ret; 4184 return ret - rdev->constraints->uV_offset; 4185 } 4186 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4187 4188 /** 4189 * regulator_get_voltage - get regulator output voltage 4190 * @regulator: regulator source 4191 * 4192 * This returns the current regulator voltage in uV. 4193 * 4194 * NOTE: If the regulator is disabled it will return the voltage value. This 4195 * function should not be used to determine regulator state. 4196 */ 4197 int regulator_get_voltage(struct regulator *regulator) 4198 { 4199 struct ww_acquire_ctx ww_ctx; 4200 int ret; 4201 4202 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4203 ret = regulator_get_voltage_rdev(regulator->rdev); 4204 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4205 4206 return ret; 4207 } 4208 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4209 4210 /** 4211 * regulator_set_current_limit - set regulator output current limit 4212 * @regulator: regulator source 4213 * @min_uA: Minimum supported current in uA 4214 * @max_uA: Maximum supported current in uA 4215 * 4216 * Sets current sink to the desired output current. This can be set during 4217 * any regulator state. IOW, regulator can be disabled or enabled. 4218 * 4219 * If the regulator is enabled then the current will change to the new value 4220 * immediately otherwise if the regulator is disabled the regulator will 4221 * output at the new current when enabled. 4222 * 4223 * NOTE: Regulator system constraints must be set for this regulator before 4224 * calling this function otherwise this call will fail. 4225 */ 4226 int regulator_set_current_limit(struct regulator *regulator, 4227 int min_uA, int max_uA) 4228 { 4229 struct regulator_dev *rdev = regulator->rdev; 4230 int ret; 4231 4232 regulator_lock(rdev); 4233 4234 /* sanity check */ 4235 if (!rdev->desc->ops->set_current_limit) { 4236 ret = -EINVAL; 4237 goto out; 4238 } 4239 4240 /* constraints check */ 4241 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4242 if (ret < 0) 4243 goto out; 4244 4245 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4246 out: 4247 regulator_unlock(rdev); 4248 return ret; 4249 } 4250 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4251 4252 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4253 { 4254 /* sanity check */ 4255 if (!rdev->desc->ops->get_current_limit) 4256 return -EINVAL; 4257 4258 return rdev->desc->ops->get_current_limit(rdev); 4259 } 4260 4261 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4262 { 4263 int ret; 4264 4265 regulator_lock(rdev); 4266 ret = _regulator_get_current_limit_unlocked(rdev); 4267 regulator_unlock(rdev); 4268 4269 return ret; 4270 } 4271 4272 /** 4273 * regulator_get_current_limit - get regulator output current 4274 * @regulator: regulator source 4275 * 4276 * This returns the current supplied by the specified current sink in uA. 4277 * 4278 * NOTE: If the regulator is disabled it will return the current value. This 4279 * function should not be used to determine regulator state. 4280 */ 4281 int regulator_get_current_limit(struct regulator *regulator) 4282 { 4283 return _regulator_get_current_limit(regulator->rdev); 4284 } 4285 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4286 4287 /** 4288 * regulator_set_mode - set regulator operating mode 4289 * @regulator: regulator source 4290 * @mode: operating mode - one of the REGULATOR_MODE constants 4291 * 4292 * Set regulator operating mode to increase regulator efficiency or improve 4293 * regulation performance. 4294 * 4295 * NOTE: Regulator system constraints must be set for this regulator before 4296 * calling this function otherwise this call will fail. 4297 */ 4298 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4299 { 4300 struct regulator_dev *rdev = regulator->rdev; 4301 int ret; 4302 int regulator_curr_mode; 4303 4304 regulator_lock(rdev); 4305 4306 /* sanity check */ 4307 if (!rdev->desc->ops->set_mode) { 4308 ret = -EINVAL; 4309 goto out; 4310 } 4311 4312 /* return if the same mode is requested */ 4313 if (rdev->desc->ops->get_mode) { 4314 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4315 if (regulator_curr_mode == mode) { 4316 ret = 0; 4317 goto out; 4318 } 4319 } 4320 4321 /* constraints check */ 4322 ret = regulator_mode_constrain(rdev, &mode); 4323 if (ret < 0) 4324 goto out; 4325 4326 ret = rdev->desc->ops->set_mode(rdev, mode); 4327 out: 4328 regulator_unlock(rdev); 4329 return ret; 4330 } 4331 EXPORT_SYMBOL_GPL(regulator_set_mode); 4332 4333 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4334 { 4335 /* sanity check */ 4336 if (!rdev->desc->ops->get_mode) 4337 return -EINVAL; 4338 4339 return rdev->desc->ops->get_mode(rdev); 4340 } 4341 4342 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4343 { 4344 int ret; 4345 4346 regulator_lock(rdev); 4347 ret = _regulator_get_mode_unlocked(rdev); 4348 regulator_unlock(rdev); 4349 4350 return ret; 4351 } 4352 4353 /** 4354 * regulator_get_mode - get regulator operating mode 4355 * @regulator: regulator source 4356 * 4357 * Get the current regulator operating mode. 4358 */ 4359 unsigned int regulator_get_mode(struct regulator *regulator) 4360 { 4361 return _regulator_get_mode(regulator->rdev); 4362 } 4363 EXPORT_SYMBOL_GPL(regulator_get_mode); 4364 4365 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4366 unsigned int *flags) 4367 { 4368 int ret; 4369 4370 regulator_lock(rdev); 4371 4372 /* sanity check */ 4373 if (!rdev->desc->ops->get_error_flags) { 4374 ret = -EINVAL; 4375 goto out; 4376 } 4377 4378 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4379 out: 4380 regulator_unlock(rdev); 4381 return ret; 4382 } 4383 4384 /** 4385 * regulator_get_error_flags - get regulator error information 4386 * @regulator: regulator source 4387 * @flags: pointer to store error flags 4388 * 4389 * Get the current regulator error information. 4390 */ 4391 int regulator_get_error_flags(struct regulator *regulator, 4392 unsigned int *flags) 4393 { 4394 return _regulator_get_error_flags(regulator->rdev, flags); 4395 } 4396 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4397 4398 /** 4399 * regulator_set_load - set regulator load 4400 * @regulator: regulator source 4401 * @uA_load: load current 4402 * 4403 * Notifies the regulator core of a new device load. This is then used by 4404 * DRMS (if enabled by constraints) to set the most efficient regulator 4405 * operating mode for the new regulator loading. 4406 * 4407 * Consumer devices notify their supply regulator of the maximum power 4408 * they will require (can be taken from device datasheet in the power 4409 * consumption tables) when they change operational status and hence power 4410 * state. Examples of operational state changes that can affect power 4411 * consumption are :- 4412 * 4413 * o Device is opened / closed. 4414 * o Device I/O is about to begin or has just finished. 4415 * o Device is idling in between work. 4416 * 4417 * This information is also exported via sysfs to userspace. 4418 * 4419 * DRMS will sum the total requested load on the regulator and change 4420 * to the most efficient operating mode if platform constraints allow. 4421 * 4422 * NOTE: when a regulator consumer requests to have a regulator 4423 * disabled then any load that consumer requested no longer counts 4424 * toward the total requested load. If the regulator is re-enabled 4425 * then the previously requested load will start counting again. 4426 * 4427 * If a regulator is an always-on regulator then an individual consumer's 4428 * load will still be removed if that consumer is fully disabled. 4429 * 4430 * On error a negative errno is returned. 4431 */ 4432 int regulator_set_load(struct regulator *regulator, int uA_load) 4433 { 4434 struct regulator_dev *rdev = regulator->rdev; 4435 int old_uA_load; 4436 int ret = 0; 4437 4438 regulator_lock(rdev); 4439 old_uA_load = regulator->uA_load; 4440 regulator->uA_load = uA_load; 4441 if (regulator->enable_count && old_uA_load != uA_load) { 4442 ret = drms_uA_update(rdev); 4443 if (ret < 0) 4444 regulator->uA_load = old_uA_load; 4445 } 4446 regulator_unlock(rdev); 4447 4448 return ret; 4449 } 4450 EXPORT_SYMBOL_GPL(regulator_set_load); 4451 4452 /** 4453 * regulator_allow_bypass - allow the regulator to go into bypass mode 4454 * 4455 * @regulator: Regulator to configure 4456 * @enable: enable or disable bypass mode 4457 * 4458 * Allow the regulator to go into bypass mode if all other consumers 4459 * for the regulator also enable bypass mode and the machine 4460 * constraints allow this. Bypass mode means that the regulator is 4461 * simply passing the input directly to the output with no regulation. 4462 */ 4463 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4464 { 4465 struct regulator_dev *rdev = regulator->rdev; 4466 const char *name = rdev_get_name(rdev); 4467 int ret = 0; 4468 4469 if (!rdev->desc->ops->set_bypass) 4470 return 0; 4471 4472 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4473 return 0; 4474 4475 regulator_lock(rdev); 4476 4477 if (enable && !regulator->bypass) { 4478 rdev->bypass_count++; 4479 4480 if (rdev->bypass_count == rdev->open_count) { 4481 trace_regulator_bypass_enable(name); 4482 4483 ret = rdev->desc->ops->set_bypass(rdev, enable); 4484 if (ret != 0) 4485 rdev->bypass_count--; 4486 else 4487 trace_regulator_bypass_enable_complete(name); 4488 } 4489 4490 } else if (!enable && regulator->bypass) { 4491 rdev->bypass_count--; 4492 4493 if (rdev->bypass_count != rdev->open_count) { 4494 trace_regulator_bypass_disable(name); 4495 4496 ret = rdev->desc->ops->set_bypass(rdev, enable); 4497 if (ret != 0) 4498 rdev->bypass_count++; 4499 else 4500 trace_regulator_bypass_disable_complete(name); 4501 } 4502 } 4503 4504 if (ret == 0) 4505 regulator->bypass = enable; 4506 4507 regulator_unlock(rdev); 4508 4509 return ret; 4510 } 4511 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4512 4513 /** 4514 * regulator_register_notifier - register regulator event notifier 4515 * @regulator: regulator source 4516 * @nb: notifier block 4517 * 4518 * Register notifier block to receive regulator events. 4519 */ 4520 int regulator_register_notifier(struct regulator *regulator, 4521 struct notifier_block *nb) 4522 { 4523 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4524 nb); 4525 } 4526 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4527 4528 /** 4529 * regulator_unregister_notifier - unregister regulator event notifier 4530 * @regulator: regulator source 4531 * @nb: notifier block 4532 * 4533 * Unregister regulator event notifier block. 4534 */ 4535 int regulator_unregister_notifier(struct regulator *regulator, 4536 struct notifier_block *nb) 4537 { 4538 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4539 nb); 4540 } 4541 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4542 4543 /* notify regulator consumers and downstream regulator consumers. 4544 * Note mutex must be held by caller. 4545 */ 4546 static int _notifier_call_chain(struct regulator_dev *rdev, 4547 unsigned long event, void *data) 4548 { 4549 /* call rdev chain first */ 4550 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4551 } 4552 4553 /** 4554 * regulator_bulk_get - get multiple regulator consumers 4555 * 4556 * @dev: Device to supply 4557 * @num_consumers: Number of consumers to register 4558 * @consumers: Configuration of consumers; clients are stored here. 4559 * 4560 * @return 0 on success, an errno on failure. 4561 * 4562 * This helper function allows drivers to get several regulator 4563 * consumers in one operation. If any of the regulators cannot be 4564 * acquired then any regulators that were allocated will be freed 4565 * before returning to the caller. 4566 */ 4567 int regulator_bulk_get(struct device *dev, int num_consumers, 4568 struct regulator_bulk_data *consumers) 4569 { 4570 int i; 4571 int ret; 4572 4573 for (i = 0; i < num_consumers; i++) 4574 consumers[i].consumer = NULL; 4575 4576 for (i = 0; i < num_consumers; i++) { 4577 consumers[i].consumer = regulator_get(dev, 4578 consumers[i].supply); 4579 if (IS_ERR(consumers[i].consumer)) { 4580 ret = PTR_ERR(consumers[i].consumer); 4581 consumers[i].consumer = NULL; 4582 goto err; 4583 } 4584 } 4585 4586 return 0; 4587 4588 err: 4589 if (ret != -EPROBE_DEFER) 4590 dev_err(dev, "Failed to get supply '%s': %pe\n", 4591 consumers[i].supply, ERR_PTR(ret)); 4592 else 4593 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4594 consumers[i].supply); 4595 4596 while (--i >= 0) 4597 regulator_put(consumers[i].consumer); 4598 4599 return ret; 4600 } 4601 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4602 4603 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4604 { 4605 struct regulator_bulk_data *bulk = data; 4606 4607 bulk->ret = regulator_enable(bulk->consumer); 4608 } 4609 4610 /** 4611 * regulator_bulk_enable - enable multiple regulator consumers 4612 * 4613 * @num_consumers: Number of consumers 4614 * @consumers: Consumer data; clients are stored here. 4615 * @return 0 on success, an errno on failure 4616 * 4617 * This convenience API allows consumers to enable multiple regulator 4618 * clients in a single API call. If any consumers cannot be enabled 4619 * then any others that were enabled will be disabled again prior to 4620 * return. 4621 */ 4622 int regulator_bulk_enable(int num_consumers, 4623 struct regulator_bulk_data *consumers) 4624 { 4625 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4626 int i; 4627 int ret = 0; 4628 4629 for (i = 0; i < num_consumers; i++) { 4630 async_schedule_domain(regulator_bulk_enable_async, 4631 &consumers[i], &async_domain); 4632 } 4633 4634 async_synchronize_full_domain(&async_domain); 4635 4636 /* If any consumer failed we need to unwind any that succeeded */ 4637 for (i = 0; i < num_consumers; i++) { 4638 if (consumers[i].ret != 0) { 4639 ret = consumers[i].ret; 4640 goto err; 4641 } 4642 } 4643 4644 return 0; 4645 4646 err: 4647 for (i = 0; i < num_consumers; i++) { 4648 if (consumers[i].ret < 0) 4649 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4650 ERR_PTR(consumers[i].ret)); 4651 else 4652 regulator_disable(consumers[i].consumer); 4653 } 4654 4655 return ret; 4656 } 4657 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4658 4659 /** 4660 * regulator_bulk_disable - disable multiple regulator consumers 4661 * 4662 * @num_consumers: Number of consumers 4663 * @consumers: Consumer data; clients are stored here. 4664 * @return 0 on success, an errno on failure 4665 * 4666 * This convenience API allows consumers to disable multiple regulator 4667 * clients in a single API call. If any consumers cannot be disabled 4668 * then any others that were disabled will be enabled again prior to 4669 * return. 4670 */ 4671 int regulator_bulk_disable(int num_consumers, 4672 struct regulator_bulk_data *consumers) 4673 { 4674 int i; 4675 int ret, r; 4676 4677 for (i = num_consumers - 1; i >= 0; --i) { 4678 ret = regulator_disable(consumers[i].consumer); 4679 if (ret != 0) 4680 goto err; 4681 } 4682 4683 return 0; 4684 4685 err: 4686 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 4687 for (++i; i < num_consumers; ++i) { 4688 r = regulator_enable(consumers[i].consumer); 4689 if (r != 0) 4690 pr_err("Failed to re-enable %s: %pe\n", 4691 consumers[i].supply, ERR_PTR(r)); 4692 } 4693 4694 return ret; 4695 } 4696 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4697 4698 /** 4699 * regulator_bulk_force_disable - force disable multiple regulator consumers 4700 * 4701 * @num_consumers: Number of consumers 4702 * @consumers: Consumer data; clients are stored here. 4703 * @return 0 on success, an errno on failure 4704 * 4705 * This convenience API allows consumers to forcibly disable multiple regulator 4706 * clients in a single API call. 4707 * NOTE: This should be used for situations when device damage will 4708 * likely occur if the regulators are not disabled (e.g. over temp). 4709 * Although regulator_force_disable function call for some consumers can 4710 * return error numbers, the function is called for all consumers. 4711 */ 4712 int regulator_bulk_force_disable(int num_consumers, 4713 struct regulator_bulk_data *consumers) 4714 { 4715 int i; 4716 int ret = 0; 4717 4718 for (i = 0; i < num_consumers; i++) { 4719 consumers[i].ret = 4720 regulator_force_disable(consumers[i].consumer); 4721 4722 /* Store first error for reporting */ 4723 if (consumers[i].ret && !ret) 4724 ret = consumers[i].ret; 4725 } 4726 4727 return ret; 4728 } 4729 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4730 4731 /** 4732 * regulator_bulk_free - free multiple regulator consumers 4733 * 4734 * @num_consumers: Number of consumers 4735 * @consumers: Consumer data; clients are stored here. 4736 * 4737 * This convenience API allows consumers to free multiple regulator 4738 * clients in a single API call. 4739 */ 4740 void regulator_bulk_free(int num_consumers, 4741 struct regulator_bulk_data *consumers) 4742 { 4743 int i; 4744 4745 for (i = 0; i < num_consumers; i++) { 4746 regulator_put(consumers[i].consumer); 4747 consumers[i].consumer = NULL; 4748 } 4749 } 4750 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4751 4752 /** 4753 * regulator_notifier_call_chain - call regulator event notifier 4754 * @rdev: regulator source 4755 * @event: notifier block 4756 * @data: callback-specific data. 4757 * 4758 * Called by regulator drivers to notify clients a regulator event has 4759 * occurred. 4760 */ 4761 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4762 unsigned long event, void *data) 4763 { 4764 _notifier_call_chain(rdev, event, data); 4765 return NOTIFY_DONE; 4766 4767 } 4768 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4769 4770 /** 4771 * regulator_mode_to_status - convert a regulator mode into a status 4772 * 4773 * @mode: Mode to convert 4774 * 4775 * Convert a regulator mode into a status. 4776 */ 4777 int regulator_mode_to_status(unsigned int mode) 4778 { 4779 switch (mode) { 4780 case REGULATOR_MODE_FAST: 4781 return REGULATOR_STATUS_FAST; 4782 case REGULATOR_MODE_NORMAL: 4783 return REGULATOR_STATUS_NORMAL; 4784 case REGULATOR_MODE_IDLE: 4785 return REGULATOR_STATUS_IDLE; 4786 case REGULATOR_MODE_STANDBY: 4787 return REGULATOR_STATUS_STANDBY; 4788 default: 4789 return REGULATOR_STATUS_UNDEFINED; 4790 } 4791 } 4792 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4793 4794 static struct attribute *regulator_dev_attrs[] = { 4795 &dev_attr_name.attr, 4796 &dev_attr_num_users.attr, 4797 &dev_attr_type.attr, 4798 &dev_attr_microvolts.attr, 4799 &dev_attr_microamps.attr, 4800 &dev_attr_opmode.attr, 4801 &dev_attr_state.attr, 4802 &dev_attr_status.attr, 4803 &dev_attr_bypass.attr, 4804 &dev_attr_requested_microamps.attr, 4805 &dev_attr_min_microvolts.attr, 4806 &dev_attr_max_microvolts.attr, 4807 &dev_attr_min_microamps.attr, 4808 &dev_attr_max_microamps.attr, 4809 &dev_attr_suspend_standby_state.attr, 4810 &dev_attr_suspend_mem_state.attr, 4811 &dev_attr_suspend_disk_state.attr, 4812 &dev_attr_suspend_standby_microvolts.attr, 4813 &dev_attr_suspend_mem_microvolts.attr, 4814 &dev_attr_suspend_disk_microvolts.attr, 4815 &dev_attr_suspend_standby_mode.attr, 4816 &dev_attr_suspend_mem_mode.attr, 4817 &dev_attr_suspend_disk_mode.attr, 4818 NULL 4819 }; 4820 4821 /* 4822 * To avoid cluttering sysfs (and memory) with useless state, only 4823 * create attributes that can be meaningfully displayed. 4824 */ 4825 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4826 struct attribute *attr, int idx) 4827 { 4828 struct device *dev = kobj_to_dev(kobj); 4829 struct regulator_dev *rdev = dev_to_rdev(dev); 4830 const struct regulator_ops *ops = rdev->desc->ops; 4831 umode_t mode = attr->mode; 4832 4833 /* these three are always present */ 4834 if (attr == &dev_attr_name.attr || 4835 attr == &dev_attr_num_users.attr || 4836 attr == &dev_attr_type.attr) 4837 return mode; 4838 4839 /* some attributes need specific methods to be displayed */ 4840 if (attr == &dev_attr_microvolts.attr) { 4841 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4842 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4843 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4844 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4845 return mode; 4846 return 0; 4847 } 4848 4849 if (attr == &dev_attr_microamps.attr) 4850 return ops->get_current_limit ? mode : 0; 4851 4852 if (attr == &dev_attr_opmode.attr) 4853 return ops->get_mode ? mode : 0; 4854 4855 if (attr == &dev_attr_state.attr) 4856 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4857 4858 if (attr == &dev_attr_status.attr) 4859 return ops->get_status ? mode : 0; 4860 4861 if (attr == &dev_attr_bypass.attr) 4862 return ops->get_bypass ? mode : 0; 4863 4864 /* constraints need specific supporting methods */ 4865 if (attr == &dev_attr_min_microvolts.attr || 4866 attr == &dev_attr_max_microvolts.attr) 4867 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4868 4869 if (attr == &dev_attr_min_microamps.attr || 4870 attr == &dev_attr_max_microamps.attr) 4871 return ops->set_current_limit ? mode : 0; 4872 4873 if (attr == &dev_attr_suspend_standby_state.attr || 4874 attr == &dev_attr_suspend_mem_state.attr || 4875 attr == &dev_attr_suspend_disk_state.attr) 4876 return mode; 4877 4878 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4879 attr == &dev_attr_suspend_mem_microvolts.attr || 4880 attr == &dev_attr_suspend_disk_microvolts.attr) 4881 return ops->set_suspend_voltage ? mode : 0; 4882 4883 if (attr == &dev_attr_suspend_standby_mode.attr || 4884 attr == &dev_attr_suspend_mem_mode.attr || 4885 attr == &dev_attr_suspend_disk_mode.attr) 4886 return ops->set_suspend_mode ? mode : 0; 4887 4888 return mode; 4889 } 4890 4891 static const struct attribute_group regulator_dev_group = { 4892 .attrs = regulator_dev_attrs, 4893 .is_visible = regulator_attr_is_visible, 4894 }; 4895 4896 static const struct attribute_group *regulator_dev_groups[] = { 4897 ®ulator_dev_group, 4898 NULL 4899 }; 4900 4901 static void regulator_dev_release(struct device *dev) 4902 { 4903 struct regulator_dev *rdev = dev_get_drvdata(dev); 4904 4905 kfree(rdev->constraints); 4906 of_node_put(rdev->dev.of_node); 4907 kfree(rdev); 4908 } 4909 4910 static void rdev_init_debugfs(struct regulator_dev *rdev) 4911 { 4912 struct device *parent = rdev->dev.parent; 4913 const char *rname = rdev_get_name(rdev); 4914 char name[NAME_MAX]; 4915 4916 /* Avoid duplicate debugfs directory names */ 4917 if (parent && rname == rdev->desc->name) { 4918 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4919 rname); 4920 rname = name; 4921 } 4922 4923 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4924 if (!rdev->debugfs) { 4925 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4926 return; 4927 } 4928 4929 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4930 &rdev->use_count); 4931 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4932 &rdev->open_count); 4933 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4934 &rdev->bypass_count); 4935 } 4936 4937 static int regulator_register_resolve_supply(struct device *dev, void *data) 4938 { 4939 struct regulator_dev *rdev = dev_to_rdev(dev); 4940 4941 if (regulator_resolve_supply(rdev)) 4942 rdev_dbg(rdev, "unable to resolve supply\n"); 4943 4944 return 0; 4945 } 4946 4947 int regulator_coupler_register(struct regulator_coupler *coupler) 4948 { 4949 mutex_lock(®ulator_list_mutex); 4950 list_add_tail(&coupler->list, ®ulator_coupler_list); 4951 mutex_unlock(®ulator_list_mutex); 4952 4953 return 0; 4954 } 4955 4956 static struct regulator_coupler * 4957 regulator_find_coupler(struct regulator_dev *rdev) 4958 { 4959 struct regulator_coupler *coupler; 4960 int err; 4961 4962 /* 4963 * Note that regulators are appended to the list and the generic 4964 * coupler is registered first, hence it will be attached at last 4965 * if nobody cared. 4966 */ 4967 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 4968 err = coupler->attach_regulator(coupler, rdev); 4969 if (!err) { 4970 if (!coupler->balance_voltage && 4971 rdev->coupling_desc.n_coupled > 2) 4972 goto err_unsupported; 4973 4974 return coupler; 4975 } 4976 4977 if (err < 0) 4978 return ERR_PTR(err); 4979 4980 if (err == 1) 4981 continue; 4982 4983 break; 4984 } 4985 4986 return ERR_PTR(-EINVAL); 4987 4988 err_unsupported: 4989 if (coupler->detach_regulator) 4990 coupler->detach_regulator(coupler, rdev); 4991 4992 rdev_err(rdev, 4993 "Voltage balancing for multiple regulator couples is unimplemented\n"); 4994 4995 return ERR_PTR(-EPERM); 4996 } 4997 4998 static void regulator_resolve_coupling(struct regulator_dev *rdev) 4999 { 5000 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5001 struct coupling_desc *c_desc = &rdev->coupling_desc; 5002 int n_coupled = c_desc->n_coupled; 5003 struct regulator_dev *c_rdev; 5004 int i; 5005 5006 for (i = 1; i < n_coupled; i++) { 5007 /* already resolved */ 5008 if (c_desc->coupled_rdevs[i]) 5009 continue; 5010 5011 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5012 5013 if (!c_rdev) 5014 continue; 5015 5016 if (c_rdev->coupling_desc.coupler != coupler) { 5017 rdev_err(rdev, "coupler mismatch with %s\n", 5018 rdev_get_name(c_rdev)); 5019 return; 5020 } 5021 5022 c_desc->coupled_rdevs[i] = c_rdev; 5023 c_desc->n_resolved++; 5024 5025 regulator_resolve_coupling(c_rdev); 5026 } 5027 } 5028 5029 static void regulator_remove_coupling(struct regulator_dev *rdev) 5030 { 5031 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5032 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5033 struct regulator_dev *__c_rdev, *c_rdev; 5034 unsigned int __n_coupled, n_coupled; 5035 int i, k; 5036 int err; 5037 5038 n_coupled = c_desc->n_coupled; 5039 5040 for (i = 1; i < n_coupled; i++) { 5041 c_rdev = c_desc->coupled_rdevs[i]; 5042 5043 if (!c_rdev) 5044 continue; 5045 5046 regulator_lock(c_rdev); 5047 5048 __c_desc = &c_rdev->coupling_desc; 5049 __n_coupled = __c_desc->n_coupled; 5050 5051 for (k = 1; k < __n_coupled; k++) { 5052 __c_rdev = __c_desc->coupled_rdevs[k]; 5053 5054 if (__c_rdev == rdev) { 5055 __c_desc->coupled_rdevs[k] = NULL; 5056 __c_desc->n_resolved--; 5057 break; 5058 } 5059 } 5060 5061 regulator_unlock(c_rdev); 5062 5063 c_desc->coupled_rdevs[i] = NULL; 5064 c_desc->n_resolved--; 5065 } 5066 5067 if (coupler && coupler->detach_regulator) { 5068 err = coupler->detach_regulator(coupler, rdev); 5069 if (err) 5070 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5071 ERR_PTR(err)); 5072 } 5073 5074 kfree(rdev->coupling_desc.coupled_rdevs); 5075 rdev->coupling_desc.coupled_rdevs = NULL; 5076 } 5077 5078 static int regulator_init_coupling(struct regulator_dev *rdev) 5079 { 5080 struct regulator_dev **coupled; 5081 int err, n_phandles; 5082 5083 if (!IS_ENABLED(CONFIG_OF)) 5084 n_phandles = 0; 5085 else 5086 n_phandles = of_get_n_coupled(rdev); 5087 5088 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5089 if (!coupled) 5090 return -ENOMEM; 5091 5092 rdev->coupling_desc.coupled_rdevs = coupled; 5093 5094 /* 5095 * Every regulator should always have coupling descriptor filled with 5096 * at least pointer to itself. 5097 */ 5098 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5099 rdev->coupling_desc.n_coupled = n_phandles + 1; 5100 rdev->coupling_desc.n_resolved++; 5101 5102 /* regulator isn't coupled */ 5103 if (n_phandles == 0) 5104 return 0; 5105 5106 if (!of_check_coupling_data(rdev)) 5107 return -EPERM; 5108 5109 mutex_lock(®ulator_list_mutex); 5110 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5111 mutex_unlock(®ulator_list_mutex); 5112 5113 if (IS_ERR(rdev->coupling_desc.coupler)) { 5114 err = PTR_ERR(rdev->coupling_desc.coupler); 5115 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5116 return err; 5117 } 5118 5119 return 0; 5120 } 5121 5122 static int generic_coupler_attach(struct regulator_coupler *coupler, 5123 struct regulator_dev *rdev) 5124 { 5125 if (rdev->coupling_desc.n_coupled > 2) { 5126 rdev_err(rdev, 5127 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5128 return -EPERM; 5129 } 5130 5131 if (!rdev->constraints->always_on) { 5132 rdev_err(rdev, 5133 "Coupling of a non always-on regulator is unimplemented\n"); 5134 return -ENOTSUPP; 5135 } 5136 5137 return 0; 5138 } 5139 5140 static struct regulator_coupler generic_regulator_coupler = { 5141 .attach_regulator = generic_coupler_attach, 5142 }; 5143 5144 /** 5145 * regulator_register - register regulator 5146 * @regulator_desc: regulator to register 5147 * @cfg: runtime configuration for regulator 5148 * 5149 * Called by regulator drivers to register a regulator. 5150 * Returns a valid pointer to struct regulator_dev on success 5151 * or an ERR_PTR() on error. 5152 */ 5153 struct regulator_dev * 5154 regulator_register(const struct regulator_desc *regulator_desc, 5155 const struct regulator_config *cfg) 5156 { 5157 const struct regulator_init_data *init_data; 5158 struct regulator_config *config = NULL; 5159 static atomic_t regulator_no = ATOMIC_INIT(-1); 5160 struct regulator_dev *rdev; 5161 bool dangling_cfg_gpiod = false; 5162 bool dangling_of_gpiod = false; 5163 struct device *dev; 5164 int ret, i; 5165 5166 if (cfg == NULL) 5167 return ERR_PTR(-EINVAL); 5168 if (cfg->ena_gpiod) 5169 dangling_cfg_gpiod = true; 5170 if (regulator_desc == NULL) { 5171 ret = -EINVAL; 5172 goto rinse; 5173 } 5174 5175 dev = cfg->dev; 5176 WARN_ON(!dev); 5177 5178 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5179 ret = -EINVAL; 5180 goto rinse; 5181 } 5182 5183 if (regulator_desc->type != REGULATOR_VOLTAGE && 5184 regulator_desc->type != REGULATOR_CURRENT) { 5185 ret = -EINVAL; 5186 goto rinse; 5187 } 5188 5189 /* Only one of each should be implemented */ 5190 WARN_ON(regulator_desc->ops->get_voltage && 5191 regulator_desc->ops->get_voltage_sel); 5192 WARN_ON(regulator_desc->ops->set_voltage && 5193 regulator_desc->ops->set_voltage_sel); 5194 5195 /* If we're using selectors we must implement list_voltage. */ 5196 if (regulator_desc->ops->get_voltage_sel && 5197 !regulator_desc->ops->list_voltage) { 5198 ret = -EINVAL; 5199 goto rinse; 5200 } 5201 if (regulator_desc->ops->set_voltage_sel && 5202 !regulator_desc->ops->list_voltage) { 5203 ret = -EINVAL; 5204 goto rinse; 5205 } 5206 5207 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5208 if (rdev == NULL) { 5209 ret = -ENOMEM; 5210 goto rinse; 5211 } 5212 device_initialize(&rdev->dev); 5213 5214 /* 5215 * Duplicate the config so the driver could override it after 5216 * parsing init data. 5217 */ 5218 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5219 if (config == NULL) { 5220 ret = -ENOMEM; 5221 goto clean; 5222 } 5223 5224 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5225 &rdev->dev.of_node); 5226 5227 /* 5228 * Sometimes not all resources are probed already so we need to take 5229 * that into account. This happens most the time if the ena_gpiod comes 5230 * from a gpio extender or something else. 5231 */ 5232 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5233 ret = -EPROBE_DEFER; 5234 goto clean; 5235 } 5236 5237 /* 5238 * We need to keep track of any GPIO descriptor coming from the 5239 * device tree until we have handled it over to the core. If the 5240 * config that was passed in to this function DOES NOT contain 5241 * a descriptor, and the config after this call DOES contain 5242 * a descriptor, we definitely got one from parsing the device 5243 * tree. 5244 */ 5245 if (!cfg->ena_gpiod && config->ena_gpiod) 5246 dangling_of_gpiod = true; 5247 if (!init_data) { 5248 init_data = config->init_data; 5249 rdev->dev.of_node = of_node_get(config->of_node); 5250 } 5251 5252 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5253 rdev->reg_data = config->driver_data; 5254 rdev->owner = regulator_desc->owner; 5255 rdev->desc = regulator_desc; 5256 if (config->regmap) 5257 rdev->regmap = config->regmap; 5258 else if (dev_get_regmap(dev, NULL)) 5259 rdev->regmap = dev_get_regmap(dev, NULL); 5260 else if (dev->parent) 5261 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5262 INIT_LIST_HEAD(&rdev->consumer_list); 5263 INIT_LIST_HEAD(&rdev->list); 5264 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5265 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5266 5267 /* preform any regulator specific init */ 5268 if (init_data && init_data->regulator_init) { 5269 ret = init_data->regulator_init(rdev->reg_data); 5270 if (ret < 0) 5271 goto clean; 5272 } 5273 5274 if (config->ena_gpiod) { 5275 ret = regulator_ena_gpio_request(rdev, config); 5276 if (ret != 0) { 5277 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5278 ERR_PTR(ret)); 5279 goto clean; 5280 } 5281 /* The regulator core took over the GPIO descriptor */ 5282 dangling_cfg_gpiod = false; 5283 dangling_of_gpiod = false; 5284 } 5285 5286 /* register with sysfs */ 5287 rdev->dev.class = ®ulator_class; 5288 rdev->dev.parent = dev; 5289 dev_set_name(&rdev->dev, "regulator.%lu", 5290 (unsigned long) atomic_inc_return(®ulator_no)); 5291 dev_set_drvdata(&rdev->dev, rdev); 5292 5293 /* set regulator constraints */ 5294 if (init_data) 5295 rdev->constraints = kmemdup(&init_data->constraints, 5296 sizeof(*rdev->constraints), 5297 GFP_KERNEL); 5298 else 5299 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5300 GFP_KERNEL); 5301 if (!rdev->constraints) { 5302 ret = -ENOMEM; 5303 goto wash; 5304 } 5305 5306 if (init_data && init_data->supply_regulator) 5307 rdev->supply_name = init_data->supply_regulator; 5308 else if (regulator_desc->supply_name) 5309 rdev->supply_name = regulator_desc->supply_name; 5310 5311 ret = set_machine_constraints(rdev); 5312 if (ret == -EPROBE_DEFER) { 5313 /* Regulator might be in bypass mode and so needs its supply 5314 * to set the constraints */ 5315 /* FIXME: this currently triggers a chicken-and-egg problem 5316 * when creating -SUPPLY symlink in sysfs to a regulator 5317 * that is just being created */ 5318 rdev_dbg(rdev, "will resolve supply early: %s\n", 5319 rdev->supply_name); 5320 ret = regulator_resolve_supply(rdev); 5321 if (!ret) 5322 ret = set_machine_constraints(rdev); 5323 else 5324 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5325 ERR_PTR(ret)); 5326 } 5327 if (ret < 0) 5328 goto wash; 5329 5330 ret = regulator_init_coupling(rdev); 5331 if (ret < 0) 5332 goto wash; 5333 5334 /* add consumers devices */ 5335 if (init_data) { 5336 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5337 ret = set_consumer_device_supply(rdev, 5338 init_data->consumer_supplies[i].dev_name, 5339 init_data->consumer_supplies[i].supply); 5340 if (ret < 0) { 5341 dev_err(dev, "Failed to set supply %s\n", 5342 init_data->consumer_supplies[i].supply); 5343 goto unset_supplies; 5344 } 5345 } 5346 } 5347 5348 if (!rdev->desc->ops->get_voltage && 5349 !rdev->desc->ops->list_voltage && 5350 !rdev->desc->fixed_uV) 5351 rdev->is_switch = true; 5352 5353 ret = device_add(&rdev->dev); 5354 if (ret != 0) 5355 goto unset_supplies; 5356 5357 rdev_init_debugfs(rdev); 5358 5359 /* try to resolve regulators coupling since a new one was registered */ 5360 mutex_lock(®ulator_list_mutex); 5361 regulator_resolve_coupling(rdev); 5362 mutex_unlock(®ulator_list_mutex); 5363 5364 /* try to resolve regulators supply since a new one was registered */ 5365 class_for_each_device(®ulator_class, NULL, NULL, 5366 regulator_register_resolve_supply); 5367 kfree(config); 5368 return rdev; 5369 5370 unset_supplies: 5371 mutex_lock(®ulator_list_mutex); 5372 unset_regulator_supplies(rdev); 5373 regulator_remove_coupling(rdev); 5374 mutex_unlock(®ulator_list_mutex); 5375 wash: 5376 kfree(rdev->coupling_desc.coupled_rdevs); 5377 mutex_lock(®ulator_list_mutex); 5378 regulator_ena_gpio_free(rdev); 5379 mutex_unlock(®ulator_list_mutex); 5380 clean: 5381 if (dangling_of_gpiod) 5382 gpiod_put(config->ena_gpiod); 5383 kfree(config); 5384 put_device(&rdev->dev); 5385 rinse: 5386 if (dangling_cfg_gpiod) 5387 gpiod_put(cfg->ena_gpiod); 5388 return ERR_PTR(ret); 5389 } 5390 EXPORT_SYMBOL_GPL(regulator_register); 5391 5392 /** 5393 * regulator_unregister - unregister regulator 5394 * @rdev: regulator to unregister 5395 * 5396 * Called by regulator drivers to unregister a regulator. 5397 */ 5398 void regulator_unregister(struct regulator_dev *rdev) 5399 { 5400 if (rdev == NULL) 5401 return; 5402 5403 if (rdev->supply) { 5404 while (rdev->use_count--) 5405 regulator_disable(rdev->supply); 5406 regulator_put(rdev->supply); 5407 } 5408 5409 flush_work(&rdev->disable_work.work); 5410 5411 mutex_lock(®ulator_list_mutex); 5412 5413 debugfs_remove_recursive(rdev->debugfs); 5414 WARN_ON(rdev->open_count); 5415 regulator_remove_coupling(rdev); 5416 unset_regulator_supplies(rdev); 5417 list_del(&rdev->list); 5418 regulator_ena_gpio_free(rdev); 5419 device_unregister(&rdev->dev); 5420 5421 mutex_unlock(®ulator_list_mutex); 5422 } 5423 EXPORT_SYMBOL_GPL(regulator_unregister); 5424 5425 #ifdef CONFIG_SUSPEND 5426 /** 5427 * regulator_suspend - prepare regulators for system wide suspend 5428 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5429 * 5430 * Configure each regulator with it's suspend operating parameters for state. 5431 */ 5432 static int regulator_suspend(struct device *dev) 5433 { 5434 struct regulator_dev *rdev = dev_to_rdev(dev); 5435 suspend_state_t state = pm_suspend_target_state; 5436 int ret; 5437 const struct regulator_state *rstate; 5438 5439 rstate = regulator_get_suspend_state_check(rdev, state); 5440 if (!rstate) 5441 return 0; 5442 5443 regulator_lock(rdev); 5444 ret = __suspend_set_state(rdev, rstate); 5445 regulator_unlock(rdev); 5446 5447 return ret; 5448 } 5449 5450 static int regulator_resume(struct device *dev) 5451 { 5452 suspend_state_t state = pm_suspend_target_state; 5453 struct regulator_dev *rdev = dev_to_rdev(dev); 5454 struct regulator_state *rstate; 5455 int ret = 0; 5456 5457 rstate = regulator_get_suspend_state(rdev, state); 5458 if (rstate == NULL) 5459 return 0; 5460 5461 /* Avoid grabbing the lock if we don't need to */ 5462 if (!rdev->desc->ops->resume) 5463 return 0; 5464 5465 regulator_lock(rdev); 5466 5467 if (rstate->enabled == ENABLE_IN_SUSPEND || 5468 rstate->enabled == DISABLE_IN_SUSPEND) 5469 ret = rdev->desc->ops->resume(rdev); 5470 5471 regulator_unlock(rdev); 5472 5473 return ret; 5474 } 5475 #else /* !CONFIG_SUSPEND */ 5476 5477 #define regulator_suspend NULL 5478 #define regulator_resume NULL 5479 5480 #endif /* !CONFIG_SUSPEND */ 5481 5482 #ifdef CONFIG_PM 5483 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5484 .suspend = regulator_suspend, 5485 .resume = regulator_resume, 5486 }; 5487 #endif 5488 5489 struct class regulator_class = { 5490 .name = "regulator", 5491 .dev_release = regulator_dev_release, 5492 .dev_groups = regulator_dev_groups, 5493 #ifdef CONFIG_PM 5494 .pm = ®ulator_pm_ops, 5495 #endif 5496 }; 5497 /** 5498 * regulator_has_full_constraints - the system has fully specified constraints 5499 * 5500 * Calling this function will cause the regulator API to disable all 5501 * regulators which have a zero use count and don't have an always_on 5502 * constraint in a late_initcall. 5503 * 5504 * The intention is that this will become the default behaviour in a 5505 * future kernel release so users are encouraged to use this facility 5506 * now. 5507 */ 5508 void regulator_has_full_constraints(void) 5509 { 5510 has_full_constraints = 1; 5511 } 5512 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5513 5514 /** 5515 * rdev_get_drvdata - get rdev regulator driver data 5516 * @rdev: regulator 5517 * 5518 * Get rdev regulator driver private data. This call can be used in the 5519 * regulator driver context. 5520 */ 5521 void *rdev_get_drvdata(struct regulator_dev *rdev) 5522 { 5523 return rdev->reg_data; 5524 } 5525 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5526 5527 /** 5528 * regulator_get_drvdata - get regulator driver data 5529 * @regulator: regulator 5530 * 5531 * Get regulator driver private data. This call can be used in the consumer 5532 * driver context when non API regulator specific functions need to be called. 5533 */ 5534 void *regulator_get_drvdata(struct regulator *regulator) 5535 { 5536 return regulator->rdev->reg_data; 5537 } 5538 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5539 5540 /** 5541 * regulator_set_drvdata - set regulator driver data 5542 * @regulator: regulator 5543 * @data: data 5544 */ 5545 void regulator_set_drvdata(struct regulator *regulator, void *data) 5546 { 5547 regulator->rdev->reg_data = data; 5548 } 5549 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5550 5551 /** 5552 * rdev_get_id - get regulator ID 5553 * @rdev: regulator 5554 */ 5555 int rdev_get_id(struct regulator_dev *rdev) 5556 { 5557 return rdev->desc->id; 5558 } 5559 EXPORT_SYMBOL_GPL(rdev_get_id); 5560 5561 struct device *rdev_get_dev(struct regulator_dev *rdev) 5562 { 5563 return &rdev->dev; 5564 } 5565 EXPORT_SYMBOL_GPL(rdev_get_dev); 5566 5567 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5568 { 5569 return rdev->regmap; 5570 } 5571 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5572 5573 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5574 { 5575 return reg_init_data->driver_data; 5576 } 5577 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5578 5579 #ifdef CONFIG_DEBUG_FS 5580 static int supply_map_show(struct seq_file *sf, void *data) 5581 { 5582 struct regulator_map *map; 5583 5584 list_for_each_entry(map, ®ulator_map_list, list) { 5585 seq_printf(sf, "%s -> %s.%s\n", 5586 rdev_get_name(map->regulator), map->dev_name, 5587 map->supply); 5588 } 5589 5590 return 0; 5591 } 5592 DEFINE_SHOW_ATTRIBUTE(supply_map); 5593 5594 struct summary_data { 5595 struct seq_file *s; 5596 struct regulator_dev *parent; 5597 int level; 5598 }; 5599 5600 static void regulator_summary_show_subtree(struct seq_file *s, 5601 struct regulator_dev *rdev, 5602 int level); 5603 5604 static int regulator_summary_show_children(struct device *dev, void *data) 5605 { 5606 struct regulator_dev *rdev = dev_to_rdev(dev); 5607 struct summary_data *summary_data = data; 5608 5609 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5610 regulator_summary_show_subtree(summary_data->s, rdev, 5611 summary_data->level + 1); 5612 5613 return 0; 5614 } 5615 5616 static void regulator_summary_show_subtree(struct seq_file *s, 5617 struct regulator_dev *rdev, 5618 int level) 5619 { 5620 struct regulation_constraints *c; 5621 struct regulator *consumer; 5622 struct summary_data summary_data; 5623 unsigned int opmode; 5624 5625 if (!rdev) 5626 return; 5627 5628 opmode = _regulator_get_mode_unlocked(rdev); 5629 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5630 level * 3 + 1, "", 5631 30 - level * 3, rdev_get_name(rdev), 5632 rdev->use_count, rdev->open_count, rdev->bypass_count, 5633 regulator_opmode_to_str(opmode)); 5634 5635 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5636 seq_printf(s, "%5dmA ", 5637 _regulator_get_current_limit_unlocked(rdev) / 1000); 5638 5639 c = rdev->constraints; 5640 if (c) { 5641 switch (rdev->desc->type) { 5642 case REGULATOR_VOLTAGE: 5643 seq_printf(s, "%5dmV %5dmV ", 5644 c->min_uV / 1000, c->max_uV / 1000); 5645 break; 5646 case REGULATOR_CURRENT: 5647 seq_printf(s, "%5dmA %5dmA ", 5648 c->min_uA / 1000, c->max_uA / 1000); 5649 break; 5650 } 5651 } 5652 5653 seq_puts(s, "\n"); 5654 5655 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5656 if (consumer->dev && consumer->dev->class == ®ulator_class) 5657 continue; 5658 5659 seq_printf(s, "%*s%-*s ", 5660 (level + 1) * 3 + 1, "", 5661 30 - (level + 1) * 3, 5662 consumer->supply_name ? consumer->supply_name : 5663 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5664 5665 switch (rdev->desc->type) { 5666 case REGULATOR_VOLTAGE: 5667 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5668 consumer->enable_count, 5669 consumer->uA_load / 1000, 5670 consumer->uA_load && !consumer->enable_count ? 5671 '*' : ' ', 5672 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5673 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5674 break; 5675 case REGULATOR_CURRENT: 5676 break; 5677 } 5678 5679 seq_puts(s, "\n"); 5680 } 5681 5682 summary_data.s = s; 5683 summary_data.level = level; 5684 summary_data.parent = rdev; 5685 5686 class_for_each_device(®ulator_class, NULL, &summary_data, 5687 regulator_summary_show_children); 5688 } 5689 5690 struct summary_lock_data { 5691 struct ww_acquire_ctx *ww_ctx; 5692 struct regulator_dev **new_contended_rdev; 5693 struct regulator_dev **old_contended_rdev; 5694 }; 5695 5696 static int regulator_summary_lock_one(struct device *dev, void *data) 5697 { 5698 struct regulator_dev *rdev = dev_to_rdev(dev); 5699 struct summary_lock_data *lock_data = data; 5700 int ret = 0; 5701 5702 if (rdev != *lock_data->old_contended_rdev) { 5703 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5704 5705 if (ret == -EDEADLK) 5706 *lock_data->new_contended_rdev = rdev; 5707 else 5708 WARN_ON_ONCE(ret); 5709 } else { 5710 *lock_data->old_contended_rdev = NULL; 5711 } 5712 5713 return ret; 5714 } 5715 5716 static int regulator_summary_unlock_one(struct device *dev, void *data) 5717 { 5718 struct regulator_dev *rdev = dev_to_rdev(dev); 5719 struct summary_lock_data *lock_data = data; 5720 5721 if (lock_data) { 5722 if (rdev == *lock_data->new_contended_rdev) 5723 return -EDEADLK; 5724 } 5725 5726 regulator_unlock(rdev); 5727 5728 return 0; 5729 } 5730 5731 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5732 struct regulator_dev **new_contended_rdev, 5733 struct regulator_dev **old_contended_rdev) 5734 { 5735 struct summary_lock_data lock_data; 5736 int ret; 5737 5738 lock_data.ww_ctx = ww_ctx; 5739 lock_data.new_contended_rdev = new_contended_rdev; 5740 lock_data.old_contended_rdev = old_contended_rdev; 5741 5742 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5743 regulator_summary_lock_one); 5744 if (ret) 5745 class_for_each_device(®ulator_class, NULL, &lock_data, 5746 regulator_summary_unlock_one); 5747 5748 return ret; 5749 } 5750 5751 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5752 { 5753 struct regulator_dev *new_contended_rdev = NULL; 5754 struct regulator_dev *old_contended_rdev = NULL; 5755 int err; 5756 5757 mutex_lock(®ulator_list_mutex); 5758 5759 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5760 5761 do { 5762 if (new_contended_rdev) { 5763 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5764 old_contended_rdev = new_contended_rdev; 5765 old_contended_rdev->ref_cnt++; 5766 } 5767 5768 err = regulator_summary_lock_all(ww_ctx, 5769 &new_contended_rdev, 5770 &old_contended_rdev); 5771 5772 if (old_contended_rdev) 5773 regulator_unlock(old_contended_rdev); 5774 5775 } while (err == -EDEADLK); 5776 5777 ww_acquire_done(ww_ctx); 5778 } 5779 5780 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5781 { 5782 class_for_each_device(®ulator_class, NULL, NULL, 5783 regulator_summary_unlock_one); 5784 ww_acquire_fini(ww_ctx); 5785 5786 mutex_unlock(®ulator_list_mutex); 5787 } 5788 5789 static int regulator_summary_show_roots(struct device *dev, void *data) 5790 { 5791 struct regulator_dev *rdev = dev_to_rdev(dev); 5792 struct seq_file *s = data; 5793 5794 if (!rdev->supply) 5795 regulator_summary_show_subtree(s, rdev, 0); 5796 5797 return 0; 5798 } 5799 5800 static int regulator_summary_show(struct seq_file *s, void *data) 5801 { 5802 struct ww_acquire_ctx ww_ctx; 5803 5804 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5805 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5806 5807 regulator_summary_lock(&ww_ctx); 5808 5809 class_for_each_device(®ulator_class, NULL, s, 5810 regulator_summary_show_roots); 5811 5812 regulator_summary_unlock(&ww_ctx); 5813 5814 return 0; 5815 } 5816 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5817 #endif /* CONFIG_DEBUG_FS */ 5818 5819 static int __init regulator_init(void) 5820 { 5821 int ret; 5822 5823 ret = class_register(®ulator_class); 5824 5825 debugfs_root = debugfs_create_dir("regulator", NULL); 5826 if (!debugfs_root) 5827 pr_warn("regulator: Failed to create debugfs directory\n"); 5828 5829 #ifdef CONFIG_DEBUG_FS 5830 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5831 &supply_map_fops); 5832 5833 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5834 NULL, ®ulator_summary_fops); 5835 #endif 5836 regulator_dummy_init(); 5837 5838 regulator_coupler_register(&generic_regulator_coupler); 5839 5840 return ret; 5841 } 5842 5843 /* init early to allow our consumers to complete system booting */ 5844 core_initcall(regulator_init); 5845 5846 static int regulator_late_cleanup(struct device *dev, void *data) 5847 { 5848 struct regulator_dev *rdev = dev_to_rdev(dev); 5849 const struct regulator_ops *ops = rdev->desc->ops; 5850 struct regulation_constraints *c = rdev->constraints; 5851 int enabled, ret; 5852 5853 if (c && c->always_on) 5854 return 0; 5855 5856 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5857 return 0; 5858 5859 regulator_lock(rdev); 5860 5861 if (rdev->use_count) 5862 goto unlock; 5863 5864 /* If we can't read the status assume it's always on. */ 5865 if (ops->is_enabled) 5866 enabled = ops->is_enabled(rdev); 5867 else 5868 enabled = 1; 5869 5870 /* But if reading the status failed, assume that it's off. */ 5871 if (enabled <= 0) 5872 goto unlock; 5873 5874 if (have_full_constraints()) { 5875 /* We log since this may kill the system if it goes 5876 * wrong. */ 5877 rdev_info(rdev, "disabling\n"); 5878 ret = _regulator_do_disable(rdev); 5879 if (ret != 0) 5880 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 5881 } else { 5882 /* The intention is that in future we will 5883 * assume that full constraints are provided 5884 * so warn even if we aren't going to do 5885 * anything here. 5886 */ 5887 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5888 } 5889 5890 unlock: 5891 regulator_unlock(rdev); 5892 5893 return 0; 5894 } 5895 5896 static void regulator_init_complete_work_function(struct work_struct *work) 5897 { 5898 /* 5899 * Regulators may had failed to resolve their input supplies 5900 * when were registered, either because the input supply was 5901 * not registered yet or because its parent device was not 5902 * bound yet. So attempt to resolve the input supplies for 5903 * pending regulators before trying to disable unused ones. 5904 */ 5905 class_for_each_device(®ulator_class, NULL, NULL, 5906 regulator_register_resolve_supply); 5907 5908 /* If we have a full configuration then disable any regulators 5909 * we have permission to change the status for and which are 5910 * not in use or always_on. This is effectively the default 5911 * for DT and ACPI as they have full constraints. 5912 */ 5913 class_for_each_device(®ulator_class, NULL, NULL, 5914 regulator_late_cleanup); 5915 } 5916 5917 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 5918 regulator_init_complete_work_function); 5919 5920 static int __init regulator_init_complete(void) 5921 { 5922 /* 5923 * Since DT doesn't provide an idiomatic mechanism for 5924 * enabling full constraints and since it's much more natural 5925 * with DT to provide them just assume that a DT enabled 5926 * system has full constraints. 5927 */ 5928 if (of_have_populated_dt()) 5929 has_full_constraints = true; 5930 5931 /* 5932 * We punt completion for an arbitrary amount of time since 5933 * systems like distros will load many drivers from userspace 5934 * so consumers might not always be ready yet, this is 5935 * particularly an issue with laptops where this might bounce 5936 * the display off then on. Ideally we'd get a notification 5937 * from userspace when this happens but we don't so just wait 5938 * a bit and hope we waited long enough. It'd be better if 5939 * we'd only do this on systems that need it, and a kernel 5940 * command line option might be useful. 5941 */ 5942 schedule_delayed_work(®ulator_init_complete_work, 5943 msecs_to_jiffies(30000)); 5944 5945 return 0; 5946 } 5947 late_initcall_sync(regulator_init_complete); 5948